

Delft University of Technology

Automated quantum software engineering

Sarkar, Aritra

DOI
10.1007/s10515-024-00436-x
Publication date
2024
Document Version
Final published version
Published in
Automated Software Engineering

Citation (APA)
Sarkar, A. (2024). Automated quantum software engineering. Automated Software Engineering, 31(1),
Article 36. https://doi.org/10.1007/s10515-024-00436-x

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10515-024-00436-x
https://doi.org/10.1007/s10515-024-00436-x

Vol.:(0123456789)

Automated Software Engineering (2024) 31:36
https://doi.org/10.1007/s10515-024-00436-x

1 3

Automated quantum software engineering

Aritra Sarkar1,2

Received: 10 August 2023 / Accepted: 19 March 2024
© The Author(s) 2024

Abstract
As bigger quantum processors with hundreds of qubits become increasingly avail-
able, the potential for quantum computing to solve problems intractable for clas-
sical computers is becoming more tangible. Designing efficient quantum algo-
rithms and software in tandem is key to achieving quantum advantage. Quantum
software engineering is challenging due to the unique counterintuitive nature of
quantum logic. Moreover, with larger quantum systems, traditional programming
using quantum assembly language and qubit-level reasoning is becoming infeasible.
Automated Quantum Software Engineering (AQSE) can help to reduce the barrier
to entry, speed up development, reduce errors, and improve the efficiency of quan-
tum software. This article elucidates the motivation to research AQSE (why), a pre-
cise description of such a framework (what), and reflections on components that are
required for implementing it (how).

Keywords Quantum algorithms · Software automation · Program synthesis

1 Introduction

Quantum computing (QC) is increasingly gaining focus for stakeholders in high-per-
formance computing. A major research avenue is on maturing the quantum comput-
ing hardware in terms of high-fidelity (decoherence, error rates of quantum opera-
tions) and scalability (number of qubits, connectivity). While this has proved rather
a challenging engineering feat, rapid strides were made in the last decade with a
plethora of physical technologies capable of demonstrating controllable processing
of quantum information.

 * Aritra Sarkar
 a.sarkar-3@tudelft.nl

1 Quantum Machine Learning Research Group, Quantum Computing Division, QuTech,
Lorentzweg 1, Delft 2628 CJ, The Netherlands

2 Department of Quantum and Computer Engineering, Delft University of Technology, Mekelweg
4, Delft 2628 CD, The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-024-00436-x&domain=pdf

 Automated Software Engineering (2024) 31:36

1 3

 36 Page 2 of 17

With quantum devices making steady progress, the complementary field of quan-
tum software engineering (QSE) (Zhao 2020; Serrano et al. 2022) is also gaining
traction. The field has its roots in the theoretical formulation of quantum information
and the earliest quantum algorithms. However, more recently, QSE has been rejuve-
nated in the light of being integrated within currently available quantum computing
pipelines and design methodologies from classical software to be compatible with
near-future avatars of quantum processors envisioned in technological road-maps.
While the importance of the underlying hardware cannot be understated, it is impor-
tant that these two fields of hardware and software progress in parallel to prevent a
quantum winter scenario where we have large costly quantum devices with no clear
understanding of what applications could benefit from it.

Currently, there are three approaches to quantum software development:

A
1
: Given the limited capabilities of a specific quantum computing hardware,

what useful computing can be implemented on that system?

A
2
: Given an industrial use case, how can it be solved using an existing quantum

algorithm (with some possible minor tweaking thereof)?

A
3
: Designing new quantum algorithms for novel scientific underpinnings (mostly

for specific mathematical properties) inspired by the superior (or at least dif-
ferent) computing capabilities of quantum information.

 For A
1
 , the focus is on extracting as much computation power as possible from

noisy intermediate-scale quantum (NISQ) (Preskill 2018) devices. The researchers
advocate a hardware-software co-design (Shi et al. 2020) approach for the current
technology readiness level (TRL) of QC. This involves diluting the abstraction layers
of the quantum accelerator stack. These help justify the research funding in quantum
computing by demonstrating state-of-the-art proofs-of-concept implementations.
However, these highly tuned pipelines become difficult to scale and design, as sur-
veyed in Ezratty (2023). Note that a major focus of experiments involving quantum
processors is decoupled from applications and focus on using advanced techniques
(like neural networks or pulse shaping) for tuning the building block like coherence
time, quantum gates, and control signals. In this article, however, we will not focus
on automation for quantum computer engineering, but rather on automating applica-
tion development on quantum accelerators. In A

2
 , researchers advocate adhering to

strict abstraction layers (Bertels et al. 2020), with separation (Bertels et al. 2021)
of concerns between the challenges of hardware (Leymann and Barzen 2020) and
software. Thus, the focus is on a proof-of-concept demonstration of the software
pipeline, often with a quantum computing simulator as the backend. This princi-
pled fashion of organizing the research produces modular designs that are hardware-
aware-yet-agnostic and are better aligned with the long-term aims of QSE. While in
A

3
 , the involvement of implementation, either on proof-of-concept QC simulators or

real quantum processors, are minimal. The focus is on specific mathematical proper-
ties, their proofs of correctness, and derivations of resource complexity bounds.

1 3

Automated Software Engineering (2024) 31:36 Page 3 of 17 36

To make this distinction clear, examples of typical problems addressed by these
approaches would be:

E
1
: Solving the protein-folding problem on a tetrahedral lattice using a hybrid clas-

sical-quantum digitized counterdiabatic algorithm on trapped ions and super-
conducting quantum processors (Chandarana et al. 2023),

E
2
: Implementing a pipeline for satellite image processing using one quantum con-

volution layer on a neural network architecture (Sebastianelli et al. 2021),

E
3
: Proving if quantum computing would provide a superpolynomial speedup

in determining the zeta function of a genus curve over a finite field (Kedlaya
2006).

 It can be easily appreciated that there exists a considerable gap between these
approaches—both in their aim and the domain expertise required to address them.

At this juncture, in this article, we explore promising research directions that will
aid in the advancement of QSE. In Sect. 2, the motivation behind automating QSE is
elucidated. Section 3 defines the two main perspective of automation: the user inter-
face, or the assessment of quantum advantage. In Sect. 4, theoretical disciplines and
tools required to automate QSE are surveyed. Section 5 concludes the article.

2 AQSE: Why?

Why do we need to automate quantum software engineering? To understand this,
first let’s enlist some of the major problems that the field of quantum software engi-
neering faces:

• Quantum mechanics is counter-intuitive to human cognition, even for experts.
• The barrier to entry for quantum algorithm development requires very different

training than classical software developers.
• Coverage of statistical testing is not scalable due to exponential state space, and

inspecting intermediate states is not feasible due to no-cloning.
• It is currently not possible to deploy realistic use cases on quantum processors,

and quantum computing simulators become infeasible at around 50 qubits.
• Similar to data-driven deep learning, the hybrid-quantum-classical algorithms

based on variational principles are not interpretable.

In general, there is a need to reduce the barrier to entry for assessing the impact of
QC for a use case and develop the quantum accelerated software pipeline.

Barrier to entry can be reduced either with training or by automation. Various
educational and industrial institutions are now investing in training the next genera-
tion of the quantum workforce (Yakaryilmaz and Delgado 2021; Aiello et al. 2021)
via courses, workshops, hackathons, tutorials, popular science articles, etc. The

 Automated Software Engineering (2024) 31:36

1 3

 36 Page 4 of 17

latter, i.e., automation, is a rather interesting research venture and is the focus of this
article.

A primary motivation towards automation is the counter-intuitive nature of the
semantic understanding of a quantum algorithm. Typically, graduate-level courses
introduce the formalism of quantum mechanics and quantum information. These
form the basis for advanced courses and research in quantum algorithms. How-
ever, it becomes clear that a phenomenological perspective of quantum algorithms
is impossible in the same sense as courses like computer architecture and organi-
zation, or Boolean logic design courses are internalized. While superposition can
be understood as multiple parallel threads of execution, and measurement can be
understood as a weighted random selection of the basis states, (similar to how these
are implemented in QC simulators), this is not enough. Gaining quantum advan-
tage depends crucially on orchestrating interference between those threads such that
the non-solutions destructively interfere and thereby increase the amplitude of the
solution states. Such insights often depend on serendipitous moments for skilled
researchers (Shor 2022).

Does that imply that understanding the benefits of QC and building QC-based
software solutions would remain the forte of a small circle of researchers? Present-
ing against this case is the core motivation behind AQSE. AQSE would allow the
prototyping and development of software with embedded quantum kernels with lit-
tle to no knowledge of quantum mechanics. Much like the graphics of a video game
automatically gets offloaded by the CPU to the GPU when available, we envision the
AQSE framework to utilize quantum computational resources automatically.

In what follows, we will define AQSE and contrast it with similar approaches.

3 AQSE: What?

Let us define automated quantum software engineering (AQSE) as: ‘a framework
capable of synthesizing a quantum computing solution for a given application.’ The
deliberate vagueness will be discussed and gradually refined in this section. At its
finest form, AQSE would take in user requirements and produce a quantum com-
puting implementation that would be a valid solution that the user can plug into an
existing software pipeline and reap the benefits. With that moonshot in mind, let us
understand two important aspects of AQSE.

3.1 Usability of the framework

Based on our motivation, the AQSE framework must conform to ease of use. We
will consider two aspects of ease: the user interface and the level of vagueness/rigor
in the problem specification.

The barrier to entry to the use of software can be frugally reduced by having a
graphical user interface (GUI). The evolution of most software bear testimony to this
trend, from operating systems to programming environments. While most application
software has GUI, visual programming languages (VPL) have not been as popular.

1 3

Automated Software Engineering (2024) 31:36 Page 5 of 17 36

Tools exist to easily design such interfaces for a code (e.g. in Python) at the back end.
Current quantum tools are mostly developed by researchers for fellow researchers with
considerable backgrounds in setting up programming platforms. Thus, efforts on these
are often considered superfluous. An intuitive user interface would go a long way in
lowering the barrier to entry. A few commercial/educational quantum platform provid-
ers are considering this more seriously. These include Quirk, IBM Quantum Composer,
Quantum Inspire, qBraid, Strangeworks, Elyah, Notate (Arawjo et al. 2022), etc. How-
ever, there is a crucial difference between these and the AQSE requirements. These
platforms aim to provide a quantum integrated development environment (IDE), aid-
ing researchers in setting up a cloud computing environment, interfacing with various
quantum hardware and simulator platforms, visualizing the results, and managing the
execution logs. We propose focusing on a Low Code, and eventually a No Code Devel-
opment Platform (NCDP) for AQSE.

The problem specification interfaces the intent of the user with the automation
engine. NCDP alone would not make quantum accelerators more accessible if it
involves drag-and-drop unitary gates, as with all current QC VPLs. Thus, this involves
a different modality of AQSE. The problem specification should abstract the details of
quantum information processing and focus on the functional or behavioral problem def-
inition. Since the quantum details are no longer visible to the user, the interface should
not look very different from similar tools on classical computing platforms. Thus, in
many aspects, it will be similar to a no-code AI or AutoML. These tools decouple pro-
gramming languages and syntax from logic and instead take a visual approach to soft-
ware development to enable rapid delivery. No-code AI with the additional capabil-
ity of reasoning in quantum logic and synthesizing quantum software is the vision of
AQSE.

Do such tools exist? Certainly not in the quantum software engineering space.
NCDP is more common for simple situations like web development, mobile apps, and
game logic (visual scripting). An intermediate solution would be graphical node/flow-
based programming interfaces like Simulink. The blocks can be specified at various
levels of abstraction, e.g., a database query application, a quantum search algorithm,
a Grover diffusion block, a multi-controlled Z gate, or a native gate/pulse for specific
quantum hardware. More recently, the proliferation of large language models (LLM)
for coding is considerably boosting the usability (Cai et al. 2023; Romera-Paredes et al.
2023) and efficiency of software engineering. Very likely, such prompt-based interfaces
will soon be integrated within the leading quantum software frameworks like Qiskit or
Azure Quantum. We will delve more into these levels of interfaces in the next section.

3.2 Assessment of applicability

The intentional software (Simonyi et al. 2006) development paradigm, for better or
worse, abstracts away the quantization of the desired solution. Thus, it is paramount
to understand when quantum computation is useful in the first place, based on the
user specification. In the broadest sense, this in itself is the core business idea of
many software consultancy companies in the quantum technology space. AQSE

 Automated Software Engineering (2024) 31:36

1 3

 36 Page 6 of 17

might not be able to be so versatile, and such a feature might only apply to a well-
specified problem definition.

There is some well-understood domain knowledge that can aid in this process
of applicability analysis. Quantum computation is among the only known viola-
tion (Bernstein and Vazirani 1993) of the complexity-theoretical Church-Turing the-
sis (CTT) that is allowed by our current laws of physics. There exist the complexity
class, called bounded-error quantum polynomial time (BQP), that includes problems
that are faster on a quantum model of computation (typically proved using a quan-
tum Turing machine) However, there are a few subtleties that need to be unpacked in
such theoretical underpinning:

1. The corresponding classical complexity classes are bounded-error probabilistic
polynomial time (BPP) and the polynomial time (P) classes that are efficient on
a classical probabilistic/deterministic Turing machine, respectively. Thus, the
focus of studying BQP problems is to rather identify problems in BQP∖BPP
or BQP∖ P region of computational time complexity. Our knowledge of such
problems includes only a few examples, although they are the shining gems of
quantum algorithms. Some of the early quantum algorithms like Deutsch-Josca,
Bernstein-Vazirani, Simon’s problems, Forrelation are about mathematical prop-
erties. Algorithms with more practical motivations include Shor’s discrete loga-
rithm, Shor’s factorization, and the HHL algorithm for solving linear equations.

2. Quantum computation does not solve an expanded set of functions, i.e., they are
at the same degree of Turing computability. This means it is not a strict violation
of the CTT, only of its extended version. This allows any quantum computation to
also be expressed at classical computation, which forms the basis of QC simula-
tors.

3. There are many classical universal models of computation, e.g., Turing machines,
cellular automata, Post machines, lambda calculus, Wang tiles, etc. These models
are equivalent to each other within a polynomial time overhead. Similarly, there
are universal models of quantum computation, like quantum Turing machines,
quantum cellular automata, quantum lambda calculus, adiabatic quantum comput-
ing, measurement-based quantum computing, and the canonical quantum circuit/
gate model. These are all related in similar ways to each other.

4. Points (2.) and (3.) mean any requirement specified to AQSE can be translated to
both a classical and quantum implementation. The code structure at the comput-
ability level cannot guide the choice of a quantum implementation, which makes
such a choice difficult. However, it also makes it interesting, as now each code
needs to be assessed more intelligently in a broader context to understand its
suitability of quantum acceleration. For example, an arithmetic operation would
not provide a speedup by translation to reversible logic but becomes imperative
if it is part of a quantum algorithm that manipulates superposition states.

5. Many industrial and social computational issues can be formulated as problems
that belong to the non-deterministic polynomial time (NP) class (or rather strictly
in NP∖ P class). It is believed that QC will not be able to exactly solve NP prob-
lems efficiently (i.e., in polynomial time) under realistic assumptions (e.g., P ≠
NP).

1 3

Automated Software Engineering (2024) 31:36 Page 7 of 17 36

6. The quantum Grover search provably provides a quadratic speedup for unstruc-
tured database search. Almost any problem can be posed as a search problem
over a solution domain, e.g., factoring can be a search over numbers that, on
multiplication, equals the result. Similarly, all problems in the NP class can be
posed as a search problem based on the constraints’ satisfiability (SAT) since SAT
is NP-complete.

7. Points (5.) and (6.) are the main reasons why we witness such proliferating
attempts to formulate NP-hard problems as quantum algorithms. While these do
not aim for an exponential speedup of Point (1.), just solving on a quantum model
might allow speedup because it is a different form of computational automata.
This latter case is particularly the motivation for quantum annealing (where quan-
tum tunneling can be beneficial for some specific optimization landscapes over
thermal fluctuations) and Boson sampling. Thus, understanding the formal model
of computation is important, as a quantum search on adiabatic quantum comput-
ing (AQC) would perform badly compared to a quantum circuit model, similar
to how simulating Game of Life on a Turing machine would perform poorly
compared to a cellular automata substrate.

8. Besides these complexity theoretic viewpoints, it is important to realize that there
are many problems where time complexity is not the major driver. Such problems
are particularly studied in machine learning (ML) and focus on space complex-
ity (Ventura and Martinez 1998), generalization, representation capacity, pattern
recognition (Schuld and Killoran 2019), etc. Thus, holistically the quantum solu-
tion needs to be assessed against other computational resources and metrics like
memory requirements, convergence rate, solution accuracy, etc.

These considerations imply that, though the interface of the No-code AI of AQSE
would look welcoming to users, the underlying automation engine needs to be
founded in rigorous mathematical principles to even assess the applicability, let
alone design the quantum solutions. At a superficial level, this seems as if they are at
odds with each other since the functional level description is about abstracting away
resource details, while resource estimates are crucial to assess the applicability. This
is the core innovation that AQSE needs to address via increasing rigorous levels of
abstraction and specification.

In the following section, we will clarify how understanding the resource advan-
tage of quantum software and synthesizing quantum software from requirements are
the same problem from two different perspectives.

4 AQSE: How?

Having presented the overall goal of AQSE for the external interface and internal
engine, in this section, we will delve deeper into components that will be necessary
for the internal engine.

This is perhaps the right moment to clarify that AQSE is neither an esoteric
nor a novel venture. There have been some attempts in the past to automate quan-
tum algorithm design. As early as 2004, a book (Spector 2004) titled Automatic

 Automated Software Engineering (2024) 31:36

1 3

 36 Page 8 of 17

Quantum Computer Programming discussed evolutionary approaches for discov-
ering novel quantum algorithms. More recently, in the ongoing quantum computer
engineering revolution, a few academic and commercial groups are pursuing this
same goal. Three of the most notable toolsets are discussed here, however, there are
many individual researchers whose theses are aligned with AQSE. Munich Quantum
Toolkit (MQT) includes a set of tools for design automation in QC (Zulehner and
Wille 2020). Most relevant to AQSE is the MQTProblemSolver (Quetschlich et al.
2022), aimed at users with little to no quantum computing knowledge. Provided with
a problem description (as a constraint satisfaction problem (CSP) or graph optimiza-
tion like TSP), it offers a selection of implemented quantum algorithms. The user’s
choice triggers an encapsulated quantum calculation, and the solution is returned
in the standard classical format. Horizon Quantum Computing aims to democratize
quantum computing applications for businesses by removing the need for quantum
algorithms knowledge for software developers. It features a compiler that automati-
cally constructs quantum algorithms from classical code. Their patent (Fitzsimons
and Tan 2021) and public presentations reveal a layered approach for various levels
of synthesis. The top layer, called Carbon, has many of the desirable AQSE proper-
ties of applicability assessment. Another company, Classiq Technologies, aims to
revolutionize the process of developing quantum computing software. Their software
platform transforms high-level functional models into optimized quantum circuits,
allowing quick development of large qubit circuits and execution on any gate-based
system. For example, it can generate the quantum circuit for initializing a state given
a specific probability distribution while optimizing for circuit depth, width, or preci-
sion. They hold a couple of patents (Naveh et al. 2021, 2021, 2021) on their offer-
ing that concerns AQSE. The core of their inspiration, like MQT, is to repurpose
methods from classical computer-aided design (CAD) in very large-scale integra-
tion (VLSI) logic design for quantum circuits. Discussions on the specifics of these
tools and others (like AlgebraicJulia (Brown et al. 2022), DisCoCirc (Coecke 2021),
SilQ (Bichsel et al. 2020), Qrisp (Seidel et al. xxx), AdaQuantum (Nichols et al.
2019), Klaus (Cervera-Lierta et al. 2022), Wolfram Quantum Framework (Gorard
et al. 2021), etc.) will be introduced in the respective components.

The AQSE engine is essentially a stack of abstraction layers connecting an imple-
mentation to a user intent. Here we present some components and refinement levels
that will be crucial to develop AQSE.

4.1 User intent to application specification

Foremost, AQSE requires inputting the user intent. Very broadly, this can either
be (i) an extrinsic objective or (ii) an intrinsic motivation. The latter case involves
approaches like novelty search, which can eventually aid in the automated discovery
of quantum algorithms and their corresponding purpose. This is a rather niche field
and has mostly been explored in the context of robotics (Wang et al. 2020; Colas
et al. 2022). However, a similar framework can be applied to (quantum) program
synthesis. We will not discuss this here in detail and will focus on objective-driven
AQSE.

1 3

Automated Software Engineering (2024) 31:36 Page 9 of 17 36

The specification language for the objective determines the level of vagueness
allowed. A well-specified software is equivalent in complexity to the program it
translates to. Trading off to higher vagueness and abstraction translates to a larger
solution space. This also implies a certain degree of freedom, and any solution from
the larger space is assumed to satisfy the requirement of the user. In many synthesis
frameworks, the specification is iteratively refined by presenting behavioral exam-
ples to the user, eventually scoping the correct bounds of the problem space.

The key aspect of interfacing with the user, as discussed in the previous section,
is a classical NCDP that abstracts quantum information processing as well as pro-
gramming syntax.

4.2 Formalizing application specification

At the high end of the vagueness spectrum, we already witness the proliferation
of natural language-driven coding, e.g., using OpenAI’s Codex (Chen et al. 2021)
based on a modification of GPT framework. These are based on an enormous cor-
pus of training data, which might not be readily available for quantum computa-
tion. However, Codex and Qiskit have already shown some initial promising results.
Recently, LLMs like generative pre-trained transformers (GPT) have been used for
quantum architecture search (Liang et al. 2023), which potentially will become more
ubiquitous in other areas of QSE. A more sustainable and explainable abstraction
would be to refine the natural language to a formal specification language which can
be further processed downstream in a controlled fashion.

A slightly higher structure is obtained in specification based on pseudo-code or
LaTeX. LaTeX to Python code converters already exists for mathematical equa-
tions. Such tools can be handy specifically for optimization use cases based on SAT
solvers, which can readily be translated to QUBO and thereafter to variational algo-
rithms like QAOA (Bakó et al. 2022) or quantum annealing. These can be integrated
with frameworks like SilQ and Qrisp to enhance user accessibility. Similarly, soft-
ware design frameworks like UML have also been extended to Q-UML (Pérez-Cas-
tillo et al. 2021), which can be integrated into AQSE’s NCDP.

AQSE should also retain the current level of specification at the QASM or
embedded domain-specific language (DSL) level. These include cQASM, Open-
QASM, Qiskit, Q#, OpenQL, etc. In the NISQ era, this would also allow advanced
users to specify non-functional requirements, like noise level, connectivity topology
of hardware, qubit multiplicity, etc. However, the focus on AQSE is on future gen-
eration of quantum processors where the end-user is not concerned with these low-
level details, and can focus on algorithm development.

The right level of requirement specification is, of course, formal specification lan-
guages, like Z notation (Object Z, Z++) (Cartiere 2022) or B method. Another alter-
native that has a low level of obscure syntax is logic programming languages like
Prolog. However, these tools have a steep learning curve and are unknown to most
software developers, let alone quantum physics researchers. Thus, the refinement

 Automated Software Engineering (2024) 31:36

1 3

 36 Page 10 of 17

to this level of abstraction must be encapsulated by AQSE. We need to derive two
things at this level, the functionality, and how to test/qualify it and thus bind the
intention and validation aspects. The validation can either be analytical or a set of
test examples. The AQSE NCDP would output a classical formal specification of the
user requirements.

4.3 Formal specification to formal logic

Formal specification languages can be easily refined to 1st order predicate logic,
or proof obligations for interactive theorem provers (ITP) like Coq, Aqda, LEAN,
etc. The crucial aspect at this stage is to choose the formal logic to express the
axioms, theorems, and the validity of proof entailments. While classical or intui-
tionist logics are typically the default choices, in quantum it is worthwhile to use
linear logic (Girard 1987), which nicely captures the no-cloning of quantum infor-
mation. The corresponding language to express the logic is the dagger-lambda
calculus (Atzemoglou 2014). However, this needs further exploration and consid-
eration for other candidates like modal logic, temporal logic, computational tree
logic* (CTL*), and many-value logic (e.g., paraconsistent logic (Goertzel 2021)).

4.4 Solution representation

The synthesized artifact that is gradually constructed by the AQSE engine needs
to be represented and stored. Typically in formal logic, proofs are represented in
normal form (natural deduction) or tree form. Based on the logic used, other options
like Kripke semantics, sequent form, etc. can also be explored. A natural way to store
and explore proofs is via proof nets (Girard et al. 1989), in a graph data structure.
This allows easy manipulation, rewriting, probabilistic reasoning, etc. using already
well-developed libraries in most programming languages. Proof trees can alterna-
tively be replaced by abstract syntax trees (AST) or abstract semantic graphs (ASG).

4.5 Search space representation

Once a potential solution is represented as a proof net (or, AST/ASG), it can be
related to other solutions. This can be via a meta-graph structure, where the edges
represent the relation between the solution (e.g., one requires a qubit less, while the
other requires 5 CNOT gates more). In expressing relations (instead of functions),
it is often desirable to represent a group of solutions that has a certain property.
Thus, we suggest using a generalized meta graph with hyper-edges, as the search
space representation. Similar constructs are used in the Wolfram Quantum Frame-
work (Gorard et al. 2020) and the OpenCog Hyperon (Goertzel 2021) AGI cognitive
architecture.

1 3

Automated Software Engineering (2024) 31:36 Page 11 of 17 36

4.6 Synthesis method

The synthesis of valid solutions and their corresponding estimation of computa-
tional resources is the core of the AQSE engine. The refinement stages presented
above, between the user’s intent and synthesis, preserve explainability and verifi-
ability. However, a black box solution that skips these stages, e.g., a trained deep
neural network, would also qualify as a short-sighted AQSE implementation.
There are various methods for program synthesis (or, in this case, proof/AST/
ASG synthesis). Some of the most promising methods for quantum algorithms
are listed here, in increasing order of sophistication required to implement them.
On one end, search-based enumeration incorporates sophisticated heuristics like
learning, evolution, and symbolic logic. On the other end, formal logic dilutes to
incorporate probabilistic and inductive approximations. A trade-off between these
approaches needs to balance tractability and accuracy with interpretability.

4.6.1 Automated program search

Automated program search uses various techniques to generate solutions via heu-
ristic methods and assess their applicability. It can either be exhaustive or pruned
to preserve the tractability of the search while often sacrificing the guarantee of a
global optimum.

• Exhaustive enumeration: is easiest to implement; however, the entailment
graph grows exponentially and becomes intractable beyond small instances.
Formalisms like Nielsen geometry (Nielsen et al. 2006) and uncomplexity
metric (Brown et al. 2021) need to be incorporated to guide the search pro-
cess. These techniques are used in quantum optimal control for NISQ devices.

• Template-based meta-programming: can be used for small instances (or,
holes in program synthesis) to fine-tune a code this is already very close to an
acceptable solution. However, this is not specifically the goal of AQSE.

• Evolutionary approach: genetic programming (Spector 2004) based solutions
can be easily integrated with ProofNet/AST/ASG using linear logic. Other
evolutionary approaches like novelty search (Lehman et al. 2011) and gene
expression programming (Alvarez et al. 2023) might prove useful.

• Artificial neural networks (ANN): and deep reinforcement learning (DRL) has
been successfully applied in many cases on program learning, including the
recent success of AlphaTensor (Fawzi et al. 2022) and AlphaDev (Mankowitz
et al. 2023). These techniques can be readily applied to low-level quantum
algorithms.

• Foundational models: based on deep neural networks, are becoming popu-
lar tools for program induction. We have already mentioned LLM-based
solutions (Liang et al. 2023). Machine learning for synthesizing a desired
unitary transformation as a quantum circuit has also been demonstrated in
AutoQC (Murakami and Zhao 2022) and QSeed (Weiden et al. 2023).

 Automated Software Engineering (2024) 31:36

1 3

 36 Page 12 of 17

• Neuro-evolution: algorithms like NEAT (Stanley and Miikkulainen 2002) and
its later upgrades decouple the hyperparameter tuning and neural architecture
search to an evolutionary heuristic.

• Neuro-symbolic approach: trades off between the explainability of symbolic AI
with the efficiency of ANNs, and is specifically suited for symbolic regression
tasks like theorem proving.

• Quantum reinforcement learning: allows learning the solution given access to the
environment or its model. These techniques are explored in Hamiltonian learn-
ing, projective simulation (PS) (Saggio et al. 2021), quantum knowledge seeking
agent (QKSA) (Sarkar 2022), and quantum photonics setups like Melvin (Krenn
et al. 2016), AdaQuantum (Nichols et al. 2019) and Klaus (Cervera-Lierta et al.
2022). For AQSE, the environment can be a real quantum device, a quantum
computing simulator, or the set a corpus of input–output training sets (called
programming-by-example). PS, QKSA, and Klaus are particularly interesting as
these incorporate symbolic AI that allows interpretable solutions.

4.6.2 Automated theorem proving

Automated theorem proving (ATP) is based on the Curry-Howard correspond-
ence (Baez and Stay 2010) between mathematical proofs and programs on universal
automata. Proof refinement creates a procedure as a byproduct while proving the
validity of the quantum algorithm. While these techniques have been explored in
theoretical circles, the proliferation to QSE is due.

• Deductive proofs: are typically what is common in ATP. Some correspond-
ing quantum solutions for expressing quantum proofs already exist, like
QWIRE (Paykin et al. 2017), SQIR (Hietala et al. 2020), CoqQ (Zhou et al.
2022), LQP, QHL, etc.

• Categorical quantum mechanics: is a diagrammatic language for formal reason-
ing in quantum information. Tools like DisCoCirc (Coecke 2021), ZX-calculus,
Quantomatic, and Catlab.jl (Brown et al. 2022) can be used for the refinement
of ASG to quantum programs. Research is needed in computational category
theory for applied sciences (in contrast to applied category theory, which focuses
on formalizing and understanding applied sciences rather than proactive compu-
tational development).

• Probabilistic proofs: allows uncertainties (Nori et al. 2015) in the user speci-
fication to trickle down to formal synthesis in a controlled manner. Tools like
Markov logic networks (Richardson and Domingos 2006) and probabilistic logic
programming (Goertzel et al. 2008) (e.g., ProbFOIL (De Raedt et al. 2015)) can
be upgraded to incorporate quantum logic.

• Inductive proofs: allow generating solutions from incomplete specifications.
Similar concepts have been studied in the quantization (Arunachalam and Wolf
2017) of probably-approximate correct (PAC) in learning theory. However,
inductive tactics and approximations (Bornholt et al. 2015; Andriushchenko
et al. 2021) need to be incorporated in quantum formal proofs.

1 3

Automated Software Engineering (2024) 31:36 Page 13 of 17 36

We expect that future implementation of an AQSE framework would most likely
be a subset of these features. However, it is crucial to comprehensively evalu-
ate (Gulwani et al. 2017) the applicability of at least (and most likely, more of)
these techniques in the context of AQSE.

4.6.3 Concept discovery and component‑based development

While specification-based synthesis would be required for novel applications,
most quantum applications would depend of a small set of quantum kernels/
components with resource advantages over corresponding classical components.
Thus, incorporating component-based software engineering (CBSE) principles
in quantum algorithm automation (Kang and Oh 2023) can lead to more scal-
able and maintainable quantum software, making it easier to develop, test, and
optimize quantum algorithms for various applications. A major step for CBSE is
identifying quantum algorithm components that can be reused to develop solu-
tions. Such concepts for quantum compilation passed are often pre-designed, e.g.,
for circuit optimization, routing, and error correction. Quantum algorithm com-
ponents are currently available as libraries within programming frameworks or
cloud platforms (Martyniuk et al. 2021). Augmenting the set of useful compo-
nents can be automated via concept discovery. Recent works apply statistical met-
rics of quantum gates in circuits to define reusable modules (Cruz-Lemus et al.
2021; Heese et al. 2023; Sarra et al. 2023).

4.7 Formal verification

Formal verification is baked in the AQSE engine and represents a complementary
research direction to stochastic verification (Wang et al. 2021). It is, however,
important that the formal proof of correctness also remain inspectable and inter-
pretable to end users. Tools that translate proofs to natural language, e.g. Coqa-
too (Bedford 2017), can be used for such purposes.

4.8 Hardware specific non‑functional requirements

Most available quantum processors are universal, in the sense that they have a
defined set of native quantum universal gates. However, the exact implementation
cost depends on various factors like decoherence time, gate errors, qubit connec-
tivity topology, control system multiplexing, etc. In this article, we focused on the
functional aspects of AQSE, with a theoretical pareto-optimization of quantum
computing resources. Low-level cost estimation are available in many available
compilers which can be plugged into AQSE’s synthesis cost estimator to special-
ize the framework for target hardware.

 Automated Software Engineering (2024) 31:36

1 3

 36 Page 14 of 17

5 Conclusion

This survey of the current state of quantum software engineering and the need for
automation is intended to not only scope out the research field around the topic of
automated discovery of quantum algorithms but also a pragmatic research proposal
and call-to-action for multidisciplinary researchers working on allied fields.

In our opinion, the correct vision to reduce the barrier to entry for quantum appli-
cation development requires automation in tandem with education. To achieve this,
we need to reevaluate the rich spectrum of techniques that are used in other fields
and tune them for quantum logic and physics. We want to highlight the crucial simi-
larity between the quantum-classical interface of controllability and measurement,
and that of interpretability and efficiency of AI models. This similarity hints that
AQSE would share some of the same successes and drawbacks as of the deep learn-
ing revolution and, eventually, would have to focus on hybrid approaches like neuro-
symbolic techniques.

AQSE is by no means an easy task. While AQSE can be critiqued as being futur-
istic and not applicable to current NISQ devices, it is important to look beyond the
immediate needs and extrapolate the growth and needs of the quantum software
industry a decade from now. We envision that, AQSE will be integrated within
quantum software frameworks independent of the advancement of quantum proces-
sors. Fascinatingly, AQSE would lead to exploring the limits of intelligence systems
compared to what human experts can achieve.

Author contributions A.S. wrote the main manuscript text.

Funding Not applicable.

Declarations

Conflict of interest Not applicable.

Consent for publication All authors consent to the publication.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Aiello, C.D., Awschalom, D.D., Bernien, H., Brower, T., Brown, K.R., Brun, T.A., Caram, J.R., Chi-
tambar, E., Di Felice, R., Edmonds, K.M.: Achieving a quantum smart workforce. Quantum Sci.
Technol. 6(3), 030501 (2021)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Automated Software Engineering (2024) 31:36 Page 15 of 17 36

Alvarez, G., Bennink, R., Irle, S., Jakowski, J.: Gene expression programming for quantum computing.
arXiv preprint arXiv: 2303. 08203 (2023)

Andriushchenko, R., Češka, M., Junges, S., Katoen, J.-P., Stupinskỳ, Š.: Paynt: a tool for inductive syn-
thesis of probabilistic programs. In: International Conference on Computer Aided Verification, 856–
869. Springer, Cham (2021)

Arawjo, I., DeArmas, A., Roberts, M., Basu, S., Parikh, T.: Notational programming for notebook envi-
ronments: A case study with quantum circuits. In: Proceedings of the 35th Annual ACM Sympo-
sium on User Interface Software and Technology, 1–20 (2022)

Arunachalam, S., Wolf, R.: Guest column: a survey of quantum learning theory. ACM SIGACT News
48(2), 41–67 (2017)

Atzemoglou, P.: The dagger lambda calculus. arXiv preprint arXiv: 1406. 1633 (2014)
Baez, J., Stay, M.: Physics, topology, logic and computation: a rosetta stone. In: New Structures for Phys-

ics, 95–172. Springer, Heidelberg (2010)
Bakó, B., Glos, A., Salehi, Ö., Zimborás, Z.: Near-optimal circuit design for variational quantum optimi-

zation. arXiv preprint arXiv: 2209. 03386 (2022)
Bedford, A.: Coqatoo: generating natural language versions of coq proofs. arXiv preprint arXiv: 1712.

03894 (2017)
Bernstein, E., Vazirani, U.: Quantum complexity theory. In: Proceedings of the Twenty-fifth Annual

ACM Symposium on Theory of Computing, 11–20 (1993)
Bertels, K., Sarkar, A., Hubregtsen, T., Serrao, M., Mouedenne, A.A., Yadav, A., Krol, A., Ashraf, I.:

Quantum computer architecture: Towards full-stack quantum accelerators. In: 2020 Design, Auto-
mation & Test in Europe Conference & Exhibition (DATE), 1–6 (2020). IEEE

Bertels, K., Sarkar, A., Ashraf, I.: Quantum computing: from NISQ to PISQ. IEEE Micro 41(5), 24–32
(2021)

Bichsel, B., Baader, M., Gehr, T., Vechev, M.: Silq: A high-level quantum language with safe uncomputa-
tion and intuitive semantics. In: Proceedings of the 41st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 286–300 (2020)

Bornholt, J., Torlak, E., Ceze, L., Grossman, D.: Approximate program synthesis. In: Workshop on
Approximate Computing Across the Stack (2015)

Brown, A.R., Freedman, M.H., Lin, H.W., Susskind, L.: Effective geometry, complexity, and universality.
arXiv preprint arXiv: 2111. 12700 (2021)

Brown, K., Hanks, T., Fairbanks, J.: Compositional exploration of combinatorial scientific models. arXiv
preprint arXiv: 2206. 08755 (2022)

Cai, Y., Mao, S., Wu, W., Wang, Z., Liang, Y., Ge, T., Wu, C., You, W., Song, T., Xia, Y., et al.: Low-
code llm: Visual programming over llms. arXiv preprint arXiv: 2304. 08103 (2023)

Cartiere, C.R.: Formal methods for quantum software engineering. In: Quantum Softw. Eng., pp. 85–101.
Springer, Cham (2022)

Cervera-Lierta, A., Krenn, M., Aspuru-Guzik, A.: Design of quantum optical experiments with logic arti-
ficial intelligence. Quantum 6, 836 (2022)

Chandarana, P., Hegade, N.N., Montalban, I., Solano, E., Chen, X.: Digitized counterdiabatic quantum
algorithm for protein folding. Phys. Rev. Appl. 20(1), 014024 (2023)

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.d.O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., et al.: Evaluating large language models trained on code. arXiv preprint arXiv: 2107.
03374 (2021)

Coecke, B.: The mathematics of text structure. In: J. Lambek (eds) The Interplay of Mathematics. Logic,
and Linguistics, pp. 181–217. Springer, Cham (2021)

Colas, C., Karch, T., Sigaud, O., Oudeyer, P.-Y.: Autotelic agents with intrinsically motivated goal-condi-
tioned reinforcement learning: a short survey. J. Artif. Intell. Res. 74, 1159–1199 (2022)

Cruz-Lemus, J.A., Marcelo, L.A., Piattini, M.: Towards a set of metrics for quantum circuits understand-
ability. In: International Conference on the Quality of Information and Communications Technol-
ogy, 239–249. Springer, Cham (2021)

De Raedt, L., Dries, A., Thon, I., Broeck, G., Verbeke, M.: Inducing probabilistic relational rules from
probabilistic examples. In: Twenty-fourth International Joint Conference on Artificial Intelligence
(2015)

Ezratty, O.: Where are we heading with nisq? arXiv preprint arXiv: 2305. 09518 (2023)
Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-Paredes, B., Barekatain, M., Novikov, A., Ruiz, R.,

F.J., Schrittwieser, J., Swirszcz, G.: Discovering faster matrix multiplication algorithms with rein-
forcement learning. Nature 610(7930), 47–53 (2022)

http://arxiv.org/abs/2303.08203
http://arxiv.org/abs/1406.1633
http://arxiv.org/abs/2209.03386
http://arxiv.org/abs/1712.03894
http://arxiv.org/abs/1712.03894
http://arxiv.org/abs/2111.12700
http://arxiv.org/abs/2206.08755
http://arxiv.org/abs/2304.08103
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2305.09518

 Automated Software Engineering (2024) 31:36

1 3

 36 Page 16 of 17

Fitzsimons, J.F., Tan, S.-H.: Systems and methods for unified computing on digital and quantum comput-
ers. Google Patents. US Patent App. 17/337,873 (2021)

Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987)
Girard, J.-Y., Taylor, P., Lafont, Y.: Proofs and Types, vol. 7. Cambridge University Press, Cambridge,

UK (1989)
Goertzel, B.: Paraconsistent foundations for quantum probability. arXiv preprint arXiv: 2101. 07498 (2021)
Goertzel, B.: Reflective metagraph rewriting as a foundation for an agi" language of thought". arXiv pre-

print arXiv: 2112. 08272 (2021)
Goertzel, B., Iklé, M., Goertzel, I.F., Heljakka, A.: Probabilistic Logic Networks: A Comprehensive

Framework for Uncertain Inference. Springer, New York (2008)
Gorard, J., Namuduri, M., Arsiwalla, X.D.: Zx-calculus and extended hypergraph rewriting systems i:

A multiway approach to categorical quantum information theory. arXiv preprint arXiv: 2010. 02752
(2020)

Gorard, J., Namuduri, M., Arsiwalla, X.D.: Zx-calculus and extended wolfram model systems ii: fast
diagrammatic reasoning with an application to quantum circuit simplification. arXiv preprint arXiv:
2103. 15820 (2021)

Gulwani, S., Polozov, O., Singh, R., : Program synthesis. Found. Trends® Programm. Lang. 4(1-2),
1–119 (2017)

Heese, R., Gerlach, T.T., Mücke, S., Müller, S., Jakobs, M., Piatkowski, N.: Explaining quantum circuits
with shapley values: Towards explainable quantum machine learning (2023)

Hietala, K., Rand, R., Hung, S.-H., Li, L., Hicks, M.: Proving quantum programs correct. arXiv preprint
arXiv: 2010. 01240 (2020)

Kang, C.G., Oh, H.: Modular component-based quantum circuit synthesis. Proc. ACM Programm. Lang.
7(OOPSLA1), 348–375 (2023)

Kedlaya, K.S.: Quantum computation of zeta functions of curves. Comput. Complex. 15, 1–19 (2006)
Krenn, M., Malik, M., Fickler, R., Lapkiewicz, R., Zeilinger, A.: Automated search for new quantum

experiments. Phys. Rev. Lett. 116(9), 090405 (2016)
Lehman, J., Stanley, K.O.: Novelty search and the problem with objectives. In: Genetic Programming

Theory and Practice IX, 37–56. Springer, Cham (2011)
Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algorithms in the NISQ era. Quant.

Sci. Technol. 5(4), 044007 (2020)
Liang, Z., Cheng, J., Yang, R., Ren, H., Song, Z., Wu, D., Qian, X., Li, T., Shi, Y.: Unleashing the poten-

tial of llms for quantum computing: A study in quantum architecture design. arXiv preprint arXiv:
2307. 08191 (2023)

Mankowitz, D.J., Michi, A., Zhernov, A., Gelmi, M., Selvi, M., Paduraru, C., Leurent, E., Iqbal, S., Les-
piau, J.-B., Ahern, A.: Faster sorting algorithms discovered using deep reinforcement learning.
Nature 618(7964), 257–263 (2023)

Martyniuk, D., Falkenthal, M., Karam, N., Paschke, A., Wild, K.: An analysis of ontological entities to
represent knowledge on quantum computing algorithms and implementations. In: Qurator (2021)

Murakami, K., Zhao, J.: Autoqc: Automated synthesis of quantum circuits using neural network. arXiv
preprint arXiv: 2210. 02766 (2022)

Naveh, Y., Naveh, A., Minerbi, N., Kirzner, O., Goldfeld, A., Ur, S.: Quantum circuit modeling. Google
Patents. US Patent App. 17/149,326 (2021)

Naveh, A., Ur, S., Naveh, Y., Kirzner, O., Alon, R., Goren, T., Goldfeld, A., Minerbi, N.: CSP-based syn-
thesis of a quantum circuit. Google Patents. US Patent App. 17/499,046 (2021)

Naveh, A., Ur, S., Naveh, Y., Kirzner, O., Alon, R., Goren, T., Minerbi, N.: Re-generation of a gate-level
quantum circuit based on gate-level analysis. Google Patents. US Patent App. 17/499,063 (2021)

Nichols, R., Mineh, L., Rubio, J., Matthews, J.C., Knott, P.A.: Designing quantum experiments with a
genetic algorithm. Quantum Sci Technol 4(4), 045012 (2019)

Nielsen, M.A., Dowling, M.R., Gu, M., Doherty, A.C.: Quantum computation as geometry. Science
311(5764), 1133–1135 (2006)

Nori, A.V., Ozair, S., Rajamani, S.K., Vijaykeerthy, D.: Efficient synthesis of probabilistic programs.
ACM SIGPLAN Notices 50(6), 208–217 (2015)

Paykin, J., Rand, R., Zdancewic, S.: Qwire: a core language for quantum circuits. ACM SIGPLAN
Notices 52(1), 846–858 (2017)

Pérez-Castillo, R., Jiménez-Navajas, L., Piattini, M.: Modelling quantum circuits with uml. In: 2021
IEEE/ACM 2nd International Workshop on Quantum Software Engineering (Q-SE), 7–12 (2021).
IEEE

http://arxiv.org/abs/2101.07498
http://arxiv.org/abs/2112.08272
http://arxiv.org/abs/2010.02752
http://arxiv.org/abs/2103.15820
http://arxiv.org/abs/2103.15820
http://arxiv.org/abs/2010.01240
http://arxiv.org/abs/2307.08191
http://arxiv.org/abs/2307.08191
http://arxiv.org/abs/2210.02766

1 3

Automated Software Engineering (2024) 31:36 Page 17 of 17 36

Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)
Quetschlich, N., Burgholzer, L., Wille, R.: Towards an automated framework for realizing quantum com-

puting solutions. arXiv preprint arXiv: 2210. 14928 (2022)
Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1), 107–136 (2006)
Romera-Paredes, B., Barekatain, M., Novikov, A., Balog, M., Kumar, M.P., Dupont, E., Ruiz, F.J.R.,

Ellenberg, J.S., Wang, P., Fawzi, O., Kohli, P., Fawzi, A.: Mathematical discoveries from program
search with large language models. Nature (2023)

Saggio, V., Asenbeck, B.E., Hamann, A., Strömberg, T., Schiansky, P., Dunjko, V., Friis, N., Harris, N.C.,
Hochberg, M., Englund, D.: Experimental quantum speed-up in reinforcement learning agents.
Nature 591(7849), 229–233 (2021)

Sarkar, A.: Applications of quantum computation and algorithmic information: for causal modeling in
genomics and reinforcement learning (2022)

Sarra, L., Ellis, K., Marquardt, F.: Discovering quantum circuit components with program synthesis.
arXiv preprint arXiv: 2305. 01707 (2023)

Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Phys. Rev. Lett. 122(4),
040504 (2019)

Sebastianelli, A., Zaidenberg, D.A., Spiller, D., Le Saux, B., Ullo, S.L.: On circuit-based hybrid quan-
tum neural networks for remote sensing imagery classification. IEEE J. Select. Topics Appl. Earth
Observ. Remote Sens. 15, 565–580 (2021)

Seidel, R., Bock, S., Tcholtchev, N., Hauswirth, M.: Qrisp: a framework for compliable high-level pro-
gramming of gate-based quantum computers. PlanQC-Programm. Lang. Quantum Comput. (2022)

Serrano, M.A., Pérez-Castillo, R., Piattini, M.: Quantum Software Engineering. Springer, Cham (2022)
Shi, Y., Gokhale, P., Murali, P., Baker, J.M., Duckering, C., Ding, Y., Brown, N.C., Chamberland, C.,

Javadi-Abhari, A., Cross, A.W.: Resource-efficient quantum computing by breaking abstractions.
Proc. IEEE 108(8), 1353–1370 (2020)

Shor, P.W.: The early days of quantum computation. arXiv preprint arXiv: 2208. 09964 (2022)
Simonyi, C., Christerson, M., Clifford, S.: Intentional software. In: Proceedings of the 21st Annual ACM

SIGPLAN Conference on Object-oriented Programming Systems, Languages, and Applications,
451–464 (2006)

Spector, L.: Automatic Quantum Computer Programming: A Genetic Programming Approach, vol. 7.
Springer, New York (2004)

Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Com-
put. 10(2), 99–127 (2002)

Ventura, D., Martinez, T.: Quantum associative memory with exponential capacity. In: 1998 IEEE Inter-
national Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computa-
tional Intelligence (Cat. No. 98CH36227), 1, 509–513 (1998). IEEE

Wang, X., Arcaini, P., Yue, T., Ali, S.: Quito: a coverage-guided test generator for quantum programs.
In: 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE),
1237–1241 (2021). IEEE

Wang, R., Lehman, J., Rawal, A., Zhi, J., Li, Y., Clune, J., Stanley, K.: Enhanced poet: Open-ended rein-
forcement learning through unbounded invention of learning challenges and their solutions. In:
International Conference on Machine Learning, 9940–9951 (2020). PMLR

Weiden, M., Younis, E., Kalloor, J., Kubiatowicz, J., Iancu, C.: Improving quantum circuit synthesis with
machine learning. arXiv preprint arXiv: 2306. 05622 (2023)

Yakaryilmaz, A., Delgado, A.: QWorld: Inviting everyone to be part of the second quantum revolution.
APS March Meet. Abstracts 2021, A29-011 (2021)

Zhao, J.: Quantum software engineering: Landscapes and horizons. arXiv preprint arXiv: 2007. 07047
(2020)

Zhou, L., Barthe, G., Strub, P.-Y., Liu, J., Ying, M.: Coqq: Foundational verification of quantum pro-
grams. arXiv preprint arXiv: 2207. 11350 (2022)

Zulehner, A., Wille, R.: Introducing Design Automation for Quantum Computing, vol. 11. Springer,
Cham (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/2210.14928
http://arxiv.org/abs/2305.01707
http://arxiv.org/abs/2208.09964
http://arxiv.org/abs/2306.05622
http://arxiv.org/abs/2007.07047
http://arxiv.org/abs/2207.11350

	Automated quantum software engineering
	Abstract
	1 Introduction
	2 AQSE: Why?
	3 AQSE: What?
	3.1 Usability of the framework
	3.2 Assessment of applicability

	4 AQSE: How?
	4.1 User intent to application specification
	4.2 Formalizing application specification
	4.3 Formal specification to formal logic
	4.4 Solution representation
	4.5 Search space representation
	4.6 Synthesis method
	4.6.1 Automated program search
	4.6.2 Automated theorem proving
	4.6.3 Concept discovery and component-based development

	4.7 Formal verification
	4.8 Hardware specific non-functional requirements

	5 Conclusion
	References

