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Abstract

The advent of pretrained probabilistic time series
foundation models has significantly advanced the
field of time series forecasting. Despite these
models’ growing popularity, the application of wa-
termarking techniques to them remains underex-
plored. This paper addresses this research gap by
benchmarking several widely used watermarking
methods to time series models and by introduc-
ing a novel watermarking technique named HTW
(Heads Tails Watermark). Unlike traditional prob-
abilistic watermarking approaches, HTW uses a
pseudo-random function to directly embed a sig-
nal into the numeric structure of the series, thereby
greatly enhancing its robustness against potential
attacks. Comprehensive experiments and evalua-
tions reveal that on average, HTW retains 98.4% pre-
diction accuracy, significantly outperforming other
conventional LLM watermarks. Furthermore, HTW
demonstrates robust performance with an average
z-score of 5.28 across various datasets and attack
scenarios for a series length of 48. These findings
establish HTW as a superior alternative for secur-
ing pretrained probabilistic time series foundation
models

1 Introduction
Time series foundation models have rapidly risen to the fore-
front of forecasting for decision-making across various do-
mains [10]. By leveraging time series data from diverse do-
mains, they improve zero-shot accuracy on unseen forecast-
ing tasks, greatly simplifying the forecasting pipeline. As
these models continue to grow in popularity, the risks asso-
ciated with their inappropriate use have also increased [25].
Watermarking [16], a technique for embedding detectable
signals into text through specific algorithms, has emerged
as a key strategy to mitigate the potential misuse of this
machine-generated content. In forecasting, watermarking en-
sures the integrity and authenticity of the predictions gener-
ated by these models, helping stakeholders trust the accuracy
and source of the forecasts.

However, the application of watermarks to probabilistic
time series models has not yet been investigated. Existing
watermarking techniques, which have been successfully ap-
plied to text, images, and even specific applications like Elec-
trocardiograms [24], often rely on metadata or other features
that are not directly transferable to typical time series data.
Time series data is unique in its composition, as illustrated
in Figure 1, being comprised solely of numerical values and
often consisting of relatively short sequences. These charac-
teristics present distinct challenges for watermarking, such as
maintaining the integrity of the numerical data and ensuring
the watermark does not distort the predictive quality of the
time series. This underscores the need for novel insights and
methodologies tailored to this context, emphasizing the im-
portance of developing specialized techniques for embedding
robust watermarks in time series models.
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Figure 1: Example of univariate time series forecasting and water-
marking

This work aims to investigate watermarking for time series
foundation models, a compelling area of LLM-generated con-
tent where significant advances have been made recently [3;
10]. The primary research question we aim to address is
how to develop a robust watermarking method for time series
foundation models. By ”robust,” we refer to the watermark’s
ability to withstand various levels of post-processing attacks.
We further define and explore the watermark’s robustness by
examining its impact on the prediction quality of the fore-
casted time series and assessing the level of confidence in the
watermark’s integrity.

The main contributions of this research as a result of these
questions are as follows:

1. An analysis framework and evaluation pipeline for as-
sessing the impact of watermarking on the accuracy and
reliability of LLM predictions in time series forecasting
and generation. We use sMAPE scores and the ground
truth values of each time series to perform this evalua-
tion across several datasets.

2. Development of a novel watermarking technique, HTW ,
designed to optimize robustness specifically for time se-
ries data. HTW functions by mapping the time series val-
ues via a normalized pseudo-random function to a Heads
or Tails range, thereby embedding a hidden signal in the
series structure by altering the probability of a Heads oc-
currence.

3. A comprehensive evaluation of the KGW, EXP and HTW
watermarking methods on two time series foundation
models and three data sets. These experiments conclude
that on average HTW retains a 98.4% prediction accuracy
and has significant robustness and detection confidence
under various datasets and attack scenarios, thereby out-
performing the conventional watermarks.

The paper is structured as follows: We commence by delv-
ing into the related work (Section 2), surveying existing lit-
erature and theories pertinent to our study and outlining the
conventional watermarks analysed during this study (KGW,



EXP). Subsequently, we introduce our new watermark (Sec-
tion 3.1), HTW , explaining its algorithm and the evaluation
pipeline used to assess it. We then present our results (Sec-
tion 4) of applying the chosen watermarks to a time series
model over several evaluation benchmarks and discuss the re-
spective performances of the watermarks. Finally, we analyze
responsible research methods (Section 5) and summarize our
findings in the Conclusion (Section 6).

2 Related Work & Preliminary
We primarily concern ourselves in this paper with the applica-
tion of watermarks onto time series foundation models. Both
fields have recently had many significant breakthroughs [3;
28; 1; 17], and thus to properly analyze both topics, this sec-
tion is divided into two parts.

Time series forecasting concerns the task of using his-
torical data to predict future values. Many traditional mod-
els such as ARIMA [14], and GARCH [6] have shown sub-
stantial performance by using auto-correlation as key fea-
ture for prediction. ETS (Error, Trend, Seasonality) mod-
els, which decompose time series into fundamental patterns
for predictions, offered an improvement in flexibility by ex-
plicity modeling error, trend and seasonality components. In
recent times, neural network models such as TimeGrad [22]
and DeepAR [23], so-called global models, have grown pop-
ular in academia and the commercial sector for their abilities
to zero-shot forecast and handle large volumes of data.

The recent advent of foundation models [20; 26; 9] has
shown that they serve as excellent pattern recognizers, par-
ticularly Transformer-based models [19]. This has caused a
paradigm shift, with large language models being directly ap-
plied as time series forecasters [18]. This is done by aligining
embeddings of time series segments with text prototypes, as
seen in works like GPT4TS [29] and Time-LLM [15]. These
models are still dependent on in-domain training or fine-
tuning, meaning they require being fitted on each dataset sep-
arately. Thus the final breakthrough was the implementation
of zero shot forecasting in foundation models. The first such
large scale time series zero shot forecaster was TimeGPT-
1, introduced in October 2023 by Garza et al [11]. The re-
lease of open weights Lag-Llama [21], along with concurrent
works like Amazon’s Chronos [3], Google’s TimesFM [10],
and Salesforce’s Moiraei [28], highlights the growing interest
in this new field. These models are popular in both private
and academic sectors due to their low computational require-
ments and ability to simplify the forecasting pipeline while
maintaining accuracy, offering inference-only alternatives to
traditional fine-tuning and training forecasting methods.

With Large Language Models becoming increasingly per-
vasive, the risk that they are used for malicious purposes has
grown dramatically. Thus there is an ethical need to try to
prevent such harm from occurring and detection of machine
generated-text via a watermark is at the forefront of meth-
ods to do so [13]. Predecessors to the current mainstream
watermarking method include the Adverserial Watermarking
Transformer (AWT) by Abdelnabi et al., [2], and the black-
box watermark by Adi et al., [4]. The first widely adopted
of these watermarks was KGW [16], whose relatively low

overhead would make it into the foremost of the Large Lan-
guage Model watermarks. Several other watermarks [8; 17;
1] would bring further improvements in quality retention, ro-
bustness and detection, but so far none have been directly ap-
plied nor tested on time series foundation models.

2.1 Watermarking Preliminary
The Kirchenbauer Geiping Watermark [16] (KGW) makes
use of a Large Language Model’s estimated likelihood to
compute red-green lists of values that can be used (the
”green” values) and values that cannot (the ”red” values) [16].
In the detection phase, the text can be retraced to determine
what values were allowed for each token wt. Then, a sim-
ple statistical test can be done to determine whether or not
the text was machine-generated. One problem with applying
KGW to time series foundation models is that its selection
of green and red values is impractical due to its biasing of
a token’s logits. We thus had to redesign this function and
its parameter δ. Instead of using the logits to determine the
probabilities via:

p̂
(t)
K =


exp(ltk)+δ∑

i∈R exp(ltk)+
∑

i∈G exp(ltk)+δ
if K ∈ G,

exp(ltk)∑
i∈R exp(ltk)+

∑
i∈G exp(ltk)+δ

if K ∈ R.

we instead leverage these probabilities and multiplicatively
offset the probability values on the green-list with δ,

p̂
(t)
K

′ = δ1[K∈G] p̂
(t)
K ,

The Exponent Watermark [1], building on several ad-
vances in watermarking techniques [8; 17], boosts the odds
of tokens with high values from a pseudo-random function.

Its full problem statement is that given a set of
tokens w, . . . , wt−1, a probability distribution D =
(pt,1, . . . , pt,K) over the token wt and a pseudo-random func-
tion f(wt−c+1, . . . , wt−1, i) with secret key y which maps
the latest c tokens to a value rt,i ∈ [0, 1], they try to select a
token that has a high rt,i score. They can do this via a Gum-
bel Softmax scheme where at each position, t, we choose the
token that maximizes

r
1/pt,i

t,i .

Detection then occurs by, when given the same set of to-
kens (w1, . . . , wt) and the pseudo-random function with its
secret key y, determining the average rt,i score and sta-
tistically analyzing how far it deviates from that of a non-
watermarked text.

Compared to the KGW Watermark, the EXP watermark
has several advantages including not requiring the probabili-
ties or logits of the tokens during detection.

3 Heads Tails Watermark (HTW )
We propose the Heads Tails Watermark (HTW ), shown in Fig-
ure 2, for time series foundation models. We first explain its
design and highlight the key components of generation and
detection in sections 3.1 and 3.2. In section 3.3, we de-
tail the evaluation pipeline which allows us to compare time
series foundation model watermarks over metrics including
the time series quality, detection confidence and robustness
against several proposed post-processing attacks.



Generation

Detection

TH
x̂t

x̂
t+1

x̂
t+2

x̂
t+3

x̂
t+4

x̂
t+5

x̂
t+6

x̂
t+7

x̂
t+8

x̂
t+9

HHHH TTTT HH H H HHHHH T

Attack
Theta (θ): Skew Factor

secret key y

secret key y

Xt Xt+1 Xt+2 Xt+3 Xt+4 Xt+5 Xt+6 Xt+7 Xt+8 Xt+9

time series: xs watermarked time series: ys

RNG

ŷ
t+9

ŷ
t+8

ŷ
t+7

ŷ
t+6

ŷ
t+5

ŷ
t+4

ŷ
t+3

ŷ
t+2

ŷ
t+1

ŷ
t

TH H H H H HHHH

normalization z-score ≥ 4.0

z-score < 4.0

Figure 2: High level overview of HTW Watermark: the algorithm watermarks a time series by first setting heads and tails targets based on a
desired skew factor θ. It then processes each element, normalizing and pseudo-randomly mapping it, based on a secret key y, to a Heads or
Tails value. It then adjusts the elements to meet the heads or tails target counts before outputting the watermarked series.

3.1 Generation

Contrary to state of the art watermarking methods such as
KGW and EXP, which make use of the probability distribu-
tion of each token to insert their watermarks, HTW directly
biases the mapping of each numeric value in the series to a
pseudo-random function, removing the dependency on the to-
ken’s estimated likelihood, a significant vulnerability for time
series compared to text. Its main parameter is the target rate,
θ, which determines the proportion of values in the time series
that the watermark directly modifies. In an unmodified time
series, the numeric values are pseudo-randomly assigned to
two categories: heads and tails, with approximately 50% of
the values in each category. By introducing the θ parameter,
we skew this distribution. For instance, a θ of 0.8 implies
that 80% of the numeric values in the series are mapped to
Category A (heads), thereby biasing the series towards val-
ues that return skewed pseudo-random results. The complete
algorithm is described in Alg.1.

We initialize counters to count the amount of Category A
(Heads) and Category B (Tails) values in the series. Given a
regular unmodified series, the expected value of either cate-
gory is 0.5 ∗ n. We then use a pseudo-random function f(x)
to check for each value x in the series to what Category it
belongs. If we have not met the count for the target category
and x belongs to the opposite category, we modify x until
f(x) belongs to the target category. If we have, we do not
modify x and add it to the watermarked series.

To modify x, we use a switch that alternates between in-
crementing and decrementing, hereby aiming to preserve the
mean prediction quality of the series. The increment or decre-
ment value is determined by the precision of x, specifically by
counting the number of decimal places in x. We then adjust
x by 10−|decimals|, where |decimals| is the number of deci-

mal places in x. For instance, if x has three decimal places,
we adjust x by 0.001. This method ensures that changes to
x are minimal and well-camouflaged within the time series,
thereby preserving the integrity of the original series while
embedding the watermark in a hidden fashion.

Algorithm 1 HTW Series Generation

• Input: xs, θ (desired proportion of bias)
1: Compute the heads and tails targets based on θ
2: Initialize counters for the heads and tails categories.
3: Identify the min and max values in xs
4: for each element x in xs do
5: if x is min or max then
6: Append x to ys
7: else
8: Normalize x using min and max
9: Use a pseudo-random function f(x) to generate y

10: Determine a binary outcome based on y
11: if the binary outcome matches the required type

and target count is not reached then
12: Append x to ys
13: Increment the appropriate counter
14: else
15: Modify x until the opposite type is achieved
16: Append the modified x to ys
17: Increment the opposite counter
18: end if
19: end if
20: end for
21: return ys

The HTW algorithm utilizes a pseudo-random function
f(x), which is detailed in Alg. 2. It is important to note that



different functions can be employed in place of the one de-
scribed in the algorithm, providing flexibility in the choice
of the pseudo-random function. The normalization used in
this specific function provides robustness to several post-
processing attacks such as scaling and offsetting the series.
The use of a pseudo-random function that is only known to
the inserter of the watermark is advantageous as it ensures
that they are also the only ones capable of detection and can
decide for themselves who to share this information with. The
binary decider used to categorize the output of f(x) is

y =

{
0 if f(x) ≤ 0.5

1 if f(x) > 0.5.

A value of 0 would imply that y belongs to Category A
(Heads) and a value of 1 that it belongs to Category B (Tails).

Algorithm 2 Pseudo-random function f(x)

• Input: x, min, max
1: Min-max normalize x to get z
2: Use the hash of z as seed for randomness
3: return a random value y within [0, 1]

3.2 Detection Confidence
Similar to the EXP Watermark, we iterate over the series and
determine the binary count of Category A values and Cate-
gory B values as demonstrated in Alg. 3. During generation,
we used the normalized hash of x as the seed for the random-
ness generation, and we are thus able to retrace this during
detection.

Algorithm 3 HTW Series Detection

• Input: xs, f(x)
1: Min-max normalize x to get z
2: Use the hash of z as seed for randomness
3: for each element x in xs do
4: Compute f(x)
5: Use a binary decider to sort f(x)
6: end for
7: return the binary count

Given the count of Category A values, denoted |x|, we can
calculate the z-score as

z = ((|x|)− (n · 0.5))/
√
n · 0.25.

Knowing this formula, we can plot out the z-scores for vari-
ous values of θ, given that the series is unmodified and thus
|x| = θ · n, as seen in Figure 3.

3.3 Evaluation Pipeline
We employ a multi-faceted evaluation strategy to evaluate
the quality, detectablity and robustness of LLM watermarked
time-series. We leverage statistical measures to evaluate qual-
ity and detection confidence of watemarking. Moreover, we
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Figure 3: Z-scores for HTW for θ = [0.8, 0.9, 1.0]
and n = [0, 50]

evaluate robustness of the watermark through several post-
processing attacks.

Time series quality assesses how the predictive accuracy
of the time series prediction is affected by the inserted wa-
termark. By utilizing the Symmetric mean absolute percent-
age error (sMAPE), the comparison with both the ground and
predicted values should provide insights into the predictive
accuracy and reliability of the watermarked series.

Detection confidence is the confidence each watermarking
algorithm has that a time series was machine-generated. We
use the z-score, a statistical measure that indicates how many
standard deviations an element is from the mean, as the main
statistical method to interpret this. A higher z-score implies a
greater deviation from the expected value, thereby providing
stronger evidence that a time series is indeed watermarked
with our watermark.

Robustness is the capability of the watermark to be re-
tained under various post-processing attacks. By simulating
various scenarios where the time series data may be altered
or manipulated after the watermark is embedded, we aim to
score and gauge the ability of the watermarking techniques to
withstand malicious interventions while preserving data in-
tegrity. We define several types of post-processing attacks to
test each watermark’s respective robustness. These attacks
are:

1. Random insertion attack, where random values replace
original values for nc values in the series. This is done
for c values in the range [0.05, 0.1, 0.15, 0.2, 0.25, 0.3],
representing 5% to 30% of the series length, reflecting
varying levels of noise insertion.

2. Shifting the time series in time, forward or back-
ward steps. This is done for x values in the range
[2, 4, 6, 8, 10, 12], representing shifts of up to 12 steps,
which is a small percentage of the total series length, to
simulate realistic time alignment issues.

3. Offsetting, or adding a constant value c to the entire se-
ries. This is done for values in the range [0, σ] where
σ is the standard deviation of the series, divided into 10
evenly spaced increments.

4. Scaling the entire series by a constant value c. This is
done for values in the range [0, σ] where σ is the standard
deviation of the series, divided into 10 evenly spaced



increments.
5. Min-Max replacement of the k largest and smallest val-

ues in the time series by random values. The parameter
chosen for k is 4 as it offers a sufficient amount of re-
placement to represent a realistic attack.

For all attacks, the resulting z-scores for each of the defined
values are averaged to obtain a single representative result for
each attack. This approach is reasonable as it accounts for
the variability and potential impact of different magnitudes of
modifications, providing a more comprehensive assessment
of each watermarks’ resilience to such attacks.

4 Experimental Setup and Results
4.1 Setup and Dataset
We use Chronos-T5-Base, a pretrained time series forecasting
model with 200M parameters [3] to perform the main experi-
ments and compare and analyse the performance of the water-
marks. We also use the Lag-Llama model [21] to demonstrate
the performance and cross-compatability of the watermarks
over different models. In our results, the baseline values used
for the time series are calculated as the mean values of the
n = 1000 samples, given by the formula:

Baseline value =
1

n

n∑
i=1

xi.

Watermarking methods chosen for this experiment are
KGW, EXP, and our proposed method the Heads Tails Water-
mark (HTW ). For the HTW watermark, the parameter chosen
for θ is 1. For the KGW watermark, we specifically apply the
Soft-Red List variation with the recommended parameter of
γ = 0.25, and a value of 4 for our modified δ parameter.

The context length, C, chosen for both the prediction qual-
ity and attack scenario experiments is 64 as this is the recom-
mended value for both the Lag-Llama and Chronos models.
The seed used for both the pseudo-random function and all
time series generation is 42.

The three datasets chosen for this study have varying fre-
quencies (Monthly, Hourly, and Daily), quantities, and lev-
els of complexity to ensure a robust evaluation of forecast-
ing models. These datasets, detailed in Table 2, were chosen
based on their relevance to common forecasting applications,
their varying degrees of difficulty, and their representation of
different domains. This diverse selection enables a thorough
assessment of forecasting models’ performance across differ-
ent types of data, frequencies, and forecasting difficulties.

4.2 Prediction Quality
Please see Table 1 for the results over various prediction
lengths, L. The results for the Chronos model reveal vary-
ing impacts on prediction quality across different datasets
and lengths when applying the three watermarking techniques
(HTW , KGW, and EXP).

1. For Air Passengers, HTW consistently shows the least
deviation from the baseline sMAPE values, with mini-
mal increases ranging from 0.02 to 0.04. This indicates
that HTW has a negligible impact on prediction quality.

In contrast, KGW displays more significant deviations,
particularly at longer lengths, with increases up to 9.30.
EXP shows moderate deviations, with an increase of up
to 3.06, but generally lower than KGW.

2. In the Temperatures dataset, HTW again demonstrates
minimal impact, with increases ranging from 1.96 to
3.79. KGW shows mixed performance, with slight de-
creases (up to -1.71) at some lengths and moderate in-
creases at others, up to 1.70. EXP generally shows mod-
erate increases, peaking at 5.13, indicating a slightly
higher impact on prediction quality compared to HTW .

3. For Electricity, HTW exhibits no significant deviations,
maintaining almost identical sMAPE values to the base-
line (ranging from -0.00 to 0.00 when rounded to two
decimals). KGW shows a more varied performance,
with deviations ranging from -1.98 to 1.54, while EXP
exhibits higher deviations, particularly at length 24
(5.78), suggesting a greater impact on prediction qual-
ity.

The results for the Lag-Llama model also show differences
in the impact of watermarking techniques on prediction qual-
ity across datasets and lengths.

1. For Air Passengers, HTW shows a minimal to slightly
negative impact, with changes ranging from -0.03 to
0.00, indicating a negligible effect. KGW shows sig-
nificant deviations, particularly at longer lengths, with
increases up to 58.89. EXP has the most substantial im-
pact, with deviations ranging from 43.84 to 81.12, in-
dicating a considerable reduction in prediction quality.
The reason both EXP and KGW show such high devia-
tions and bad performance for this model in the Air Pas-
sengers dataset could be due to a relatively high devia-
tion in probability selection that the Lag-Llama model
may have for this integer value-based dataset, resulting
in increasingly bad performance when subsampling the
probabilities as both watermarks do.

2. In the Temperatures dataset, HTW continues to maintain
the least impact, with changes ranging from 0.06 to 1.17.
KGW shows varied performance, with deviations rang-
ing from 0.87 to 8.73. EXP again shows higher devia-
tions, peaking at 11.89, indicating a moderate impact on
prediction quality.

3. For Electricity, HTW shows negligible deviations, main-
taining changes from -0.00 to 0.00. KGW demonstrates
significant deviations, with values ranging from 3.22 to
16.40. EXP shows the highest deviations, particularly at
longer lengths, with increases up to 33.89, indicating a
substantial impact on prediction quality.

Overall, across both models, HTW exhibits minimal impact
on prediction quality, showing the least deviation from base-
line sMAPE values across all datasets and lengths with an
average quality retention of 98.4%. KGW and EXP, how-
ever, show greater deviations, especially for the Lag-Llama
model, where probability values have higher variance, with
KGW performing variably and EXP generally showing mod-
erate to significant impacts.



Air Passengers Temperatures Electricity
Model L Base ∆HTW ∆KGW ∆EXP Base ∆HTW ∆KGW ∆EXP Base ∆HTW ∆KGW ∆EXP
Chronos 12 12.60 0.04 4.03 2.65 33.93 3.79 -1.71 5.13 0.95 -0.00 1.31 1.61

24 20.59 0.02 4.54 0.57 34.43 3.48 -0.73 3.48 2.99 0.00 1.54 5.78
36 27.27 0.03 2.95 0.92 31.15 2.92 1.59 1.33 6.39 0.00 -0.56 2.46
48 32.14 0.02 -0.08 3.06 35.75 2.43 1.70 2.00 10.05 -0.00 -0.92 3.56
60 37.01 0.02 0.84 0.07 36.68 2.18 1.52 1.71 11.24 -0.00 -1.98 2.96
72 42.36 0.03 9.30 -0.43 37.47 1.96 1.52 1.97 11.03 -0.00 -1.79 4.19

Lag-Llama 12 18.76 -0.03 11.89 43.84 30.14 1.17 0.87 10.39 1.57 0.00 5.25 2.15
24 19.27 0.00 27.28 59.09 29.36 1.05 6.70 9.06 4.77 0.00 3.22 13.90
36 18.49 -0.02 31.32 71.46 26.08 0.69 2.14 11.89 6.00 0.00 14.55 21.25
48 16.95 -0.01 43.87 79.81 29.12 0.57 8.73 9.94 9.58 0.00 10.46 30.62
60 20.30 -0.01 58.89 81.12 27.91 0.06 7.48 8.25 12.57 0.00 16.40 30.22
72 27.76 -0.01 36.95 75.11 27.86 0.12 6.65 7.37 15.09 0.00 14.32 33.89

Table 1: Differences from baseline sMAPE values for various prediction lengths and datasets for the Chronos and Lag-Llama models for
n = 1000, C = 64 and seed = 42

Table 2: Datasets used in the research

Name Domain Size Frequency
Air Passengers [7] Passenger

volume
144 Monthly

Electricity [12] Electricity 230.736 Hourly
Melbourne [5] Temperature 3.650 Daily

These results suggest that HTW is the most robust water-
marking technique in terms of retaining prediction quality,
while KGW and EXP may require careful consideration due
to their higher impact on the time series values.

4.3 Detection Confidence and Robustness against
Post-editing Attacks

We attacked each watermark with several transformations
to assess how the confidence holds over different prediction
lengths. The results of this can be found in Table 3. We exclu-
sively used the Chronos model to perform this evaluation as
it provides a comprehensive and consistent benchmark for ro-
bustness testing. By focusing on a single model, we were able
to isolate the effects of the transformations more clearly and
ensure that our assessment of robustness was not confounded
by differences between models.

In analyzing the robustness of the watermarks under var-
ious attack scenarios, we compare the z-scores under attack
conditions to their respective baseline z-scores. In the base-
line scenario, the z-scores for all watermarks demonstrate
varying degrees of robustness across different datasets. HTW
consistently shows high scores (6.93 for all three datasets),
indicating strong robustness. KGW also performs well, espe-
cially in the Electricity dataset where it significantly outper-
forms HTW with a z-score of 11.00. EXP, while demonstrat-
ing moderate robustness with scores around 4.18 to 4.79, is
consistently lower than both HTW and KGW.

The random attack results in a reduction of z-scores for all
watermarks compared to the baseline. KGW demonstrates a
notable robustness with scores ranging from 4.33 for Air Pas-
sengers to 8.06 for Electricity. HTW ’s performance is mod-

erate, showing scores of 2.41 for Air Passengers and 5.00 for
both Temperatures and Electricity, indicating good robustness
for Temperatures and Electricity but poor for Air Passengers.
These differing results are likely a result of variance, depend-
ing on whether or not the random attack managed to find and
remove the minimum and maximum values in the series. EXP
struggles under this attack with lower z-scores of 2.60 to 2.84,
indicating poor robustness.

The shift attack shows significant variability in the z-
scores. HTW maintains perfect z-scores of 6.93 across all
datasets, indicating strong resilience due to the algorithm’s
reliance on only each value itself as seed for the random gen-
eration. In contrast, KGW’s performance is highly variable,
with scores ranging from a low of 0.11 for Air Passengers to
a high of 3.78 for Temperatures. This can be explained as a
result of in how far the attacks affected the seeding of each
value. EXP’s z-scores are close to zero across all datasets,
highlighting its complete vulnerability to shift attacks due to
its pseudo-random function depending on the c preceding val-
ues which can break under sufficiently large shift attacks.

The offset attack severely impacts the z-scores for KGW
and EXP. KGW shows a dramatic decrease with a consis-
tent z-score of -4.00 across all datasets, indicating a failure
to withstand this attack. EXP also scores zero across all
datasets. In contrast, HTW remains unaffected by the off-
set attack, maintaining its original baseline z-score of 6.93,
demonstrating its strong robustness due to the normalization
built in its algorithm.

Under the scale attack, the z-scores for HTW remain high
due to normalization, with scores of 6.93 for Air Passengers
and Temperatures, and slightly lower at 6.87 for Electricity,
which could be the result of a floating-point rounding error.
KGW, however, shows a consistent z-score of -4.00 across
all datasets, indicating a significant vulnerability. EXP’s z-
scores are zero across the board, indicating no robustness to
this type of attack.

The min-max attack results are mixed. HTW ’s z-scores
drop significantly, with scores of -0.58 for Air Passengers,
-0.14 for Temperatures, and 0.29 for Electricity, indicating
it fails to recognize the series. This is expected as the algo-



Air Passengers Temperatures Electricity
Attacks HTW KGW EXP HTW KGW EXP HTW KGW EXP
Base 6.93 6.33 4.45 6.93 7.00 4.79 6.93 11.00 4.18
Arandom 2.41 4.33 2.84 5.00 5.11 2.77 5.00 8.06 2.60
Ashift 6.93 0.11 0.00 6.93 3.78 0.02 6.93 -0.44 0.00
Aoffset 6.93 -4.00 0.00 6.93 -4.00 0.00 6.93 -4.00 0.00
Ascale 6.93 -4.00 0.00 6.93 -4.00 0.00 6.87 -4.00 0.00
Amin−max -0.58 6.17 3.38 -0.14 6.67 3.85 0.29 10.00 3.23

Table 3: z-score values for various datasets and attacks for the Chronos model for C = 64 and L = 48

rithm is highly dependent on the minimum and maximum val-
ues in the series, its main vulnerability. KGW performs well
under this attack, showing z-scores of 6.17 for Air Passen-
gers, 6.67 for Temperatures, and 10.00 for Electricity, indicat-
ing strong resilience. EXP demonstrates moderate robustness
with scores ranging from 3.23 to 3.85 across all datasets.

The analysis reveals that HTW generally exhibits strong ro-
bustness across most attacks with an average z-score of 5.28,
except for the min-max attack where its performance signifi-
cantly drops, which is expected due to the design of the algo-
rithm and its dependence on the minimum and maximum val-
ues of the series for normalization. KGW shows exceptional
performance in the baseline and min-max attack, particularly
for the Electricity dataset, but is highly vulnerable to shift,
offset, and scale attacks. EXP, while maintaining moderate
scores, fails to show strong resilience under most attacks, par-
ticularly the shift, offset, and scale attacks. These results thus
demonstrate the weakness of conventional Large Language
Model watermarks and the strengths of the specialised HTW
to such post-processing time series attacks.

5 Responsible Research
5.1 Ethical Considerations
Algorithmic transparency has become a significant concern
in recent times as we seek to improve trust in machine learn-
ing systems and prevent issues such as algorithmic bias [27].
This is especially important due to the increasing pervasive-
ness of machine-generated decision making in our day-to-day
lives. That is why we have published and explained every step
of our algorithm in this paper.

Potential future iterative improvements on the algorithm
will be based solely on experimental results and will be trans-
parently published to ensure no changes will be unclear.

Misuse and incorrect usage of the algorithm can possibly
lead to incorrect conclusions about whether or not a time se-
ries was machine-generated. The algorithm presented in this
paper should thus solely be used for experimental and ex-
ploratory purposes.

5.2 Privacy
Datasets used for this research are all publicly available. No
personal or private data has been gathered or used during the
experiments, nor is there any data that can be traced to indi-
vidual people.

Watermarking as a method can result in privacy concerns
due to the ability to attribute a time series to a specified origin.

We want to emphasize that the algorithm in this paper is not
intended to be used for commercial or governmental use and
only for research purposes.

5.3 Reproducibility of Results
All algorithms used have a limited deterministic randomness
in their operations. Thus, to allow for full reproducibility of
methods and results, we have disclosed all seeds and runtime
configurations as clearly as possible in this paper.

6 Conclusions and Future Work
We introduce HTW , a novel method for watermarking time se-
ries foundation models, providing a different approach from
probabilistic watermarking methods that rely on a series’ dis-
tribution for detection and insertion. Through comprehensive
evaluation on two foundation models and three datasets, we
demonstrate that the proposed HTW watermark is a viable al-
ternative to these methods in benchmark performances such
as prediction quality and watermark detection. Specifically,
throughout our experiments, HTW maintains an average pre-
diction quality retention of 98.4% and achieves an average
z-score of 5.28 over several attack scenarios for a prediction
length of 48. These experiments thus show that HTW not only
exceeds traditional watermarks in almost every metric but that
it is able to consistently deliver high prediction quality and
detection accuracy.

Future work could look into the effect different training
sizes and context lengths have on the performance of the wa-
termarks. Another possible point of research is the appli-
cation of a watermark to other aspects of a time series than
the numeric structure and probabilistic range such as the fre-
quency.
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