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Abstract

In this paper we classify the Zeckendorf expansions according to their digit blocks. It
turns out that if we consider these digit blocks as labels on the Fibonacci tree, then
the numbers ending with a given digit block in their Zeckendorf expansion appear
as compound Wythoff sequences in a natural way on this tree. Here the digit blocks
consisting of only 0’s are an exception. We also give a second description of these
occurrence sequences as generalized Beatty sequences. Finally, we characterize the
numbers with a fixed digit block occurring at an arbitrary fixed position in their
Zeckendorf expansions, and determine their densities.

1. Introduction

We define the Zeckendorf expansion, as introduced in [10] and [13]. Let the Fi-

bonacci numbers be given by F0 = 0, F1 = 1, F2 = 1, . . . . Let the twice shifted

Fibonacci numbers be defined by F̈i = Fi+2. Ignoring leading and trailing zeros,

any natural number N can be written uniquely as

N =

∞∑
i=0

diF̈i,

with digits di = 0 or 1, and where didi+1 = 11 is not allowed. We denote the

Zeckendorf expansion of N as Z(N), writing Z(N) = . . . d2d1d0.

In Theorem 2 in Section 2.3 we characterize those numbers N which have a

Zeckendorf expansion ending with the digit block w = dm−1 . . . d1d0 for any m, and

any choice of digits.

Several authors have obtained special cases of our results. In, e.g., the paper

[12], the digit blocks w = 0m, for m ≥ 1 are treated. It is interesting (in the light of

our Proposition 2), that Rytter ([12], page 219) writes “The remarkable property

of the sequence of occurrences of a word w = 0m is that its difference sequence is

structurally isomorphic to the infinite Fibonacci word. . . ”.

In Section 2.8 we solve the general problem of characterizing those numbers

N which have a Zeckendorf expansion Z(N) = . . . dk . . . d2d1d0 such that the digit
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block wwm−1 . . . w0 occurs at position k in Z(N), i.e., dk+m−1 . . . dk = wm−1 . . . w0.

In Section 2.9 we given the densities f
(k)
w of the numbers N which have a Zeck-

endorf expansion Z(N) = . . . dk . . . d2d1d0 such that the digit block w occurs at

position k.

Here too, a special case has been considered in the literature: in the paper [7]

the densities f
(k)
1 of the word w = 1 in position k are computed (in a different way).

The question arises as to what one can say about more general numeration sys-

tems, for example, about Ostrowski representations of the natural numbers. It

appears that even for quadratic irrationals, the situation is much more complicated

than for the golden mean.

One reason is that compound Beatty sequences, in particular iterated Beatty

sequences, will no longer be generalized Beatty sequences in general. The well

known example is AA(n) = bbnαcαc, with α =
√

2, see, e.g., Theorem 1 in [6]. So

a generalization of Theorem 1 does not exist, nor a ‘compound Beatty part’ of our

main Theorem 2.

Nevertheless, expressions involving generalized Beatty sequences are possible—

see, e.g., Theorem 5.3 in [4], which, as Theorem 7 and 8 in [3], is a special case of

the problem for arbitrary digit blocks. These are the subject of future work.

2. Zeckendorf Expansions

Let the golden mean be given by ϕ := (1 +
√

5)/2. It is well-known (see, e.g., [3],

[9]) that the numbers N whose Zeckendorf expansion Z(N) = . . . d2d1d0 has digit

d0 = 0 are exactly the elements N = 0, 2, 3, 5, 7, 8, 10, . . . from the lower Wythoff

sequence

(A(N)) = (bNϕc) = (1, 3, 4, 6, 8, 9, 11, . . . ), (1)

with 1 subtracted. Those with digit d0 = 1 are the elements N = 1, 4, 6, 9, 12, 14, . . .

from the upper Wythoff sequence

(B(N)) = (bNϕ2c) = (2, 5, 7, 10, 13, 15, . . . ), (2)

with 1 subtracted.

We consider the general question: given any word w of length m, what are the

numbers N whose Zeckendorf expansion Z(N) = . . . d2d1d0 ends with the digits

dm−1 . . . d0 = w?

2.1. Compound Wythoff Sequences

An important role is played by compositions of the two sequences A and B in

Equation (1) and (2), also known as compound Wythoff sequences. As usual, we

write these compositions as words over the monoid generated by A,B. For example,
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the compound sequence AB is given by AB(N) = A(B(N)) for N = 1, 2 . . . . These

compound Wythoff sequences have been extensively studied, as, e.g., in [3] and [5].

It turns out that, with exception of the words w = 0m, the numbers N whose

Zeckendorf expansion Z(N) ends with the digits dm−1 . . . d0 = w, are given by a

compound Wythoff sequence, which we denote by Cw or C(w).

In the pioneering paper [3] by Carlitz, Scoville and Hoggatt, we find that for

m ≥ 0

C(102m+1) = Bm+1A, C(102m) = ABmA, (3)

C(00102m+1) = Bm+1AA, C(0102m) = ABmAA, (4)

C(10102m+1) = Bm+1AB, C(10102m) = ABmAB. (5)

These are given in their Theorems 7 and 8. It is remarkable that these results are

presented as their main results in their introduction, but that their Theorem 13

(see Theorem 1 below), which we consider the most important result in [3], is not

mentioned.

The successive compound Wythoff sequences AA,BA,ABA,BBA, . . . in Equa-

tion (3) are the successive columns of the so-called Wythoff array W , defined by

W (n,m) = Fm+1bnϕc+ (n− 1)Fm n ≥ 1,m ≥ 0.

This is stated in Theorem 10 in the paper [8], but already implicitly proved in

[3]; see Equation (3.8), (6.10) and (6.16) in that paper. We remark further that

Proposition 2 gives a very simple way to obtain (4) and (5) from (3).

Theorem 1 ([3]). Let U = (U(n))n≥1 be a composition of the Wythoff sequences

A and B, containing i occurrences of A and j occurrences of B. Then

U(n) = Fi+2j A(n) + Fi+2j−1 n− λU , for all n ≥ 1,

where Fk are the Fibonacci numbers and λU is a constant.

2.2. Generalized Beatty Sequences

Let α be an irrational number larger than 1. We call any sequence V with terms

of the form V (n) = pbnαc+ qn+ r, n ≥ 1 a generalized Beatty sequence. Here p, q

and r are integers, called the parameters of V .

Theorem 1 has a useful extension, given in the paper [1]. In its statement below,

as Lemma 1, a typo in its source is corrected.

Lemma 1 ([1]). Let V be a generalized Beatty sequence with parameters (p, q, r),

and α = ϕ. Then V A and V B are generalized Beatty sequences with parameters

(pVA, qVA, rVA) = (p+ q, p, r − p) and (pVB , qVB , rVB) = (2p+ q, p+ q, r).



INTEGERS: 21 (2021) 4

2.3. Main Theorem

To formulate our result for general digit blocks w, it is convenient to add 0’s to the

expansion of a number N in {0, . . . , Fn − 1} such that the total length of the word

Z(N) becomes n − 2. We denote this word as Z∗(N). For example, for n = 5, we

have

Z(0) = 0, Z(1) = 1, Z(2) = 10, Z(3) = 100, Z(4) = 101,

Z∗(0) = 000, Z∗(1) = 001, Z∗(2) = 010, Z∗(3) = 100, Z∗(4) = 101.

Note that Z∗(·) depends on the particular n that one considers, but we do not add

this to avoid burdening the notation. The appropriate n will always be clear from

the context.

In the following theorem, occurrences of a word w have to be interpreted in the

Z∗-sense.

Theorem 2. For any natural number m fix a word w of 0’s and 1’s, containing no

11. Then—except if w = 1, or w = 0m—the sequence Rw of occurrences of numbers

N such that the m lowest digits of the Zeckendorf expansion of N are equal to w,

i.e., dm−1 . . . d0 = w, is a compound Wythoff sequence Cw.

In the exceptional cases w = 1, we have Rw = B − 1; when w = 0m, we have

Rw = Am − 1.

The representation of Rw as a generalized Beatty sequence is given, without excep-

tion, by

Rw = FmA+ Fm−1Id + γw or by Rw = Fm+1A+ FmId + γw,

for some negative integer γw. The first representation holds for all w starting with

wm−1 = 0, the second for all w with wm−1 = 1.

Theorem 2 will be proved in Section 2.7.

The words w without 11 are naturally ordered in a tree, the Fibonacci tree (this

tree is different from the ‘Fibonacci tree’ considered in [2]). As an illustration of

Theorem 2, and the way its proof will work, we depict the first four levels of this

tree in Figure 1. The nodes are labeled with the w’s, the corresponding compound

Wythoff sequences Cw, and the Rw’s, expressed as generalized Beatty sequences.

2.4. The Basic Recursion

We partition the natural numbers in sets Λn, and consider sets Ψn given by

Λn := {Fn, . . . , Fn+1−1}, Ψn := {0, . . . , Fn−1}, n ≥ 2.

Note that the elements from Λn are exactly the numbers with n− 1 digits in their

Zeckendorf expansions, and that the elements of Ψn are the numbers with n − 2

digits, or less, in their Zeckendorf expansions.
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w = Λ
Cw = ∅
Rw = ∅

w = 0
Cw = A−1
Rw = A−1

w = 00
Cw = AA−1
Rw = A+Id−2

w = 000
Cw = AAA−1
Rw = 2A+Id−3

w=100
Cw =ABA
Rw =3A+2Id−2

w = 10
Cw = BA
Rw = 2A+Id−1

w = 010
Cw = BA
Rw = 2A+Id−1

w = 1
Cw = B−1 = AA
Rw = A+Id−1

w = 01
Cw = AA
Rw = A+Id−1

w = 001
Cw = AAA
Rw = 2A+Id−2

w = 101
Cw = AAB
Rw = 3A+2Id−1

Figure 1: Occurrence positions of digit blocks w.

Immediately from the definition of Z-expansions one obtains that the following

basic recursion holds.

Lemma 2. If N ∈ Λn, then Z(N) = 1Z∗(N− Fn).

For example, F6 = 8, Λ6 = {8, 9, 10, 11, 12}, and Z(11) = 10100 = 1Z∗(3).

2.5. The Role of the Infinite Fibonacci Word

Note that we index the elements of the digit blocks w in reverse order, to comply

with the order of the digits in Z(N), and with the order of the levels of the Fibonacci

tree.

Let w = wm−1 . . . w0 be a word with wm−1 = 0. The idea is to determine how the

occurrences of the numbers N with Z(N) = . . . 0w, and those with Z(N) = . . . 1w,

are intertwined.

Let f be the Fibonacci morphism on the alphabet {a, b} given by f(a) = ab, f(b) =

a. This morphism generates an infinite word xF = abaababaaba . . . by iteration, see

e.g., the monograph [11], Proposition 1.2.8 and Example 1.2.10.

Proposition 1. For any natural number m > 1 fix a word w = wm−1 . . . w0 of

0’s and 1’s, containing no 11, with wm−1 = 0. Code any occurrence of 0w at the

end of a Z(N) by a, and any occurrence of 1w at the end of a Z(N) by b, in the

order of these occurrences in Ψm+n. Then the resulting word is equal to fn−2(a),

for n = 3, 4, . . . .
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Proof. We prove this by induction on n.

Because the length of 0w and 1w is m+ 1, there is a single occurrence of 0w in

Ψm+3, and a single occurrence of 1w in Ψm+3, in that order. The corresponding

coding is ab = f(a). This deals with the case n = 3.

All the numbers N in Ψm+4, but not in Ψm+3, have an expansion Z(N) starting

with 1. This means that from the three possible left extensions of 0w and 1w, only

10w will occur as a Z(N), with N in Ψm+4, obviously after the occurrences of 0w

and 1w. So the coding of the occurrences in Ψm+4 equals aba = f2(a). This was

the case n = 4.

Now consider Ψm+n for n ≥ 5. By Lemma 2 this set can be written as

Ψm+n = Ψm+n−1 ∪
(
Ψm+n−2 + Fm+n−1

)
.

Here we write for a set E and a number x, E + x := {e+ x : e ∈ E}.
Note that the occurrences of 0w and 1w as end blocks of Zeckendorf expansions

of numbers in Ψm+n−2 + Fm+n−1 are the same as for those in Ψm+n−2. From the

induction hypothesis it then follows that the sequence of occurrences of 0w and 1w

as end blocks is coded by the word

fn−3(a)fn−4(a) = fn−3(a)fn−3(b) = fn−3(ab) = fn−2(a).

This finishes the induction proof.

The main part of Theorem 2 is a consequence of the following result.

Proposition 2. For any natural number m > 1 fix a word w = wm−1 . . . w0 of 0’s

and 1’s, containing no 11, with wm−1 = 0. Let Cw be the Wythoff-coding of the

sequence of occurrences of the numbers N whose Z∗-expansion ends with w. Then

C0w = CwA, and C1w = CwB.

Proof. One recalls (see, e.g., [11]) that the letters a in the infinite Fibonacci word

xF, which has the fn(a) as prefix, occur at positions given by the lower Wythoff

sequence A, and the letters b occur at positions given by B. Now the proposition

follows directly from Proposition 1.

2.6. Two Particular Cases of Digit Blocks

The digit block w = 0m behaves exceptionally in Theorem 2, and also the digit

block w = 10m needs special care.

Lemma 3. Let A be the lower Wythoff sequence, and B the upper Wythoff sequence.

Then

(Am−1)A = Am+1−1, (A2m−1−1)B = BmA, (A2m−1)B = ABmA, for m ≥ 1.
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Proof. From Theorem 1, filling in Am(1) = 1, we obtain for all m

Am(n)−1 = FmA(n) + Fm−1 n− Fm+1.

Applying Lemma 1, this yields

Am(A(n)−1) = (Fm+Fm−1)A(n)+Fm n−Fm−Fm+1 = Fm+1A(n)+Fm n−Fm+2.

This is indeed equal to Am+1−1.

Applying Lemma 1, now to (A2m−1−1)B, we obtain

A2m−1(B(n))− 1 = (2F2m−1 + F2m−2)A(n) + (F2m−1 + F2m−2)n− F2m

= F2m+1A(n) + F2mn− F2m.

On the other hand, we find with Theorem 1, and by using Lemma 1 appropriately,

that

Bm(A(n)) = F2m+1A(n) + F2mn− λBmA = F2m+1A(n) + F2m n− F2m.

This establishes the second equation.

For the last equation we compute

A(Bm(A(n)) = F2m+2A(n) + F2m+1n− λABmA = F2m+2A(n) + F2m+1n− F2m+1,

which establishes the third equation.

2.7. Proof of Theorem 2

The proof is by induction on the length m of the digit block w. For m = 1, we have

R0 = A− 1 and R1 = A+ Id− 1, since B = A+ Id (see Equations (1) and (2)).

Suppose we know the result for all words w of length m. We prove that it holds

for all words w of length m + 1. It holds for w = 0m+1, by Proposition 2, Lemma

3, and Lemma 1. For w = 10m we also apply these three results, distinguishing

between odd and even m. For the other words w of length m, we distinguish between

w = 0u or w = 1u, where u is a word of length m− 1.

The word 1u just generates the single word w = 01u, which has Cw = C1u, and

Rw = R1u = Fm+1A + FmId + γ1u, which is correct as announced, since w starts

with 0.

The word 0u generates the two words w = 00u and 10u, which by Proposition

2 are compound Wythoff. Also, the induction hypothesis is that R0u = FmA +

Fm−1Id + γ0u. By Lemma 3 this implies that R00u = Fm+1A + FmId + γ00u and

R10u = Fm+2A+ Fm+1Id + γ10u. This is exactly what had to be proved. 2

The value of γw in the representation Rw = FmA + Fm−1Id + γw or Rw =

Fm+1A+ FmId + γw in Theorem 2 can be easily computed.
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Proposition 3. For any natural number m > 1 fix a word w = wm−1 . . . w0 of 0’s

and 1’s, containing no 11. Let T00 := {0 < k < m : wkwk−1 = 00}. Then

−γw = 1 +
∑

k∈T00

Fk.

Proof. This is implied directly by γ0 = γ1 = −1, and Lemma 1, following the steps

in the proof of Theorem 2.

2.8. Digit Blocks at Arbitrary Positions

The general question is: what is the sequence R
(k)
w of occurrences of numbers N

such that the length m digit block w ends at position k in the Zeckendorf expansion

of N? For k = 0 the answer is given by Theorem 2.

When (an) and (bn) are two increasing sequences, indexed by N, then we mean by

the union of (an) and (bn) the increasing sequence whose terms go through the set

{an, bn : n ∈ N}. By iteration, we also consider arbitrary finite unions of increasing

sequences.

Theorem 3. For any natural number m fix a word w of 0’s and 1’s, containing

no 11. Let k be a positive integer. Let v be the word v = w 0k. Then the sequence

R
(k)
w of occurrences of numbers N with expansion Z(N) = . . . dk . . . d1d0 such that

dk+m−1 . . . dk = w = wm−1 . . . w0, is a union of Fk+2−w0 generalized Beatty se-

quences, given by

Fk+m+wm−1
A+Fk+m−1+wm−1

Id +γv, . . . , Fk+m+1A+Fk+mId +γv +Fk+2−w0
−1.

Proof. There are Fk+2 words of length k, containing no 11. So this theorem is im-

plied directly by Theorem 2: a digit block w = dk+m−1 . . . dk+1 0 extends to Fk+2

digit blocks dk+m−1 . . . dk+1 0 dk−1 . . . d0, whereas a digit block w = dk+m−1 . . . dk+1 1

extends to Fk+1 digit blocks dk+m−1 . . . dk+1 10 dk−2 . . . d0. The corresponding N ’s

are consecutive, with the smallest such N equal to v = w 0k.

Example. Let w = 00, and k = 2. Then d3d2 = 00 if and only if d3d2d1d0 =

0000, or 0001, or 0010. So the sequence R
(2)
00 is the union of the three sequences

3A+ 2Id− 5, 3A+ 2Id− 4, and 3A+ 2Id− 3.

2.9. Densities

For a natural number m let w be a word of 0’s and 1’s, containing no 11. By

Theorem 2 we know that the sequence Rw of occurrences of numbers N such that

the m lowest digits of the Zeckendorf expansion of N are equal to w, is a generalized

Beatty sequence given by

Rw = Fm+wm−1
A+ Fm−1+wm−1

Id + γw,
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for some negative integer γw.

As a result of this, given any word w of length m, the numbers with a Zeckendorf

expansion that ends with w have a density fw of occurrence in the set of natural

numbers. For respectively wm−1 = 0, and wm−1 = 1:

fw =
1

Fmϕ+ Fm−1
= ϕ−m or fw =

1

Fm+1ϕ+ Fm
= ϕ−m−1. (6)

Here the equality

ϕm = Fmϕ+ Fm−1 (7)

is easily proved by induction.

Proposition 4. For any natural number m, fix a word w = wm−1 . . . w0 of 0’s and

1’s, containing no 11. Let k ≥ 0 be an integer. Let f
(k)
w be the density of R

(k)
w in N.

Then

f (k)w = Fk+2−w0ϕ
−k−m−wm−1 .

Proof. For k = 0 this is Equation (6), since F1 = F2 = 1. For k > 0, this follows

directly from Theorem 3, with Equation (7).

Remark. There are Fm words w = 0 . . . 0, Fm−1 words w = 0 . . . 1 or w = 1 . . . 0,

and Fm−2 words w = 1 . . . 1. So the total density of all words of length m is equal

to

FmFk+2ϕ
−k−m + Fm−1Fk+1ϕ

−k−m + Fm−1Fk+2ϕ
−k−m−1 + Fm−2Fk+1ϕ

−k−m−1.

That this is equal to 1 follows from three instances of Equation (7), and from the

well-known Fibonacci number relation FmFn + Fm+1Fn+1 = Fm+n+1.
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