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Understanding cooling of hot charge carriers
in semiconductor quantum dots (QDs) is of fundamental
interest and useful to enhance the performance of QDs in
photovoltaics. We study electron and hole cooling dynamics
in PbSe QDs up to high energies where carrier multi-
plication occurs. We characterize distinct cooling steps of
hot electrons and holes and build up a broadband cooling
spectrum for both charge carriers. Cooling of electrons is
slower than of holes. At energies near the band gap we find
cooling times between successive electronic energy levels in
the order of 0.5 ps. We argue that here the large spacing
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between successive electronic energy levels requires cooling to occur by energy transfer to vibrational modes of ligand
molecules or phonon modes associated with the QD surface. At high excess energy the energy loss rate of electrons is 1-5
eV/ps and exceeds 8 eV/ps for holes. Here charge carrier cooling can be understood in terms of emission of LO phonons
with a higher density-of-states in the valence band than the conduction band. The complete mapping of the broadband
cooling spectrum for both charge carriers in PbSe QDs is a big step toward understanding and controlling the cooling of

hot charge carriers in colloidal QDs.

quantum dot, nanocrystal, carrier cooling, transient absorption spectroscopy, electronic structure, carrier dynamics

olloidal semiconductor quantum dots (QDs) are of

interest because of the possibility of tuning their

optical and electronic properties by variation of
composition and size. In combination with their solution-
processability this offers promising prospects for application in
devices such as field-effect transistors, light-emitting diodes,
photodetectors, and solar cells.'" PbSe QDs receive much
attention due to their exceptionally strong quantum confine-
ment properties, and in particular because of the occurrence of
carrier multiplication (CM).>"® CM is a process in which one
sufficiently energetic photon excites two or more electrons
across the band gap. In this way the power conversion
efficiency of a solar cell can be enhanced above the Shockley—
Queisser limit. CM occurs in competition with cooling of
initially energetic electrons or holes via LO phonon emission or
other relaxation channels.”””

Until now, studies on charge carrier cooling in PbSe QDs
involved low photoexcitation energies close to the band
gap.'"~" Here, the distance between adjacent electronic energy
levels is typically several LO phonon energies, requiring
simultaneous emission of multiple phonons for a charge carrier
to cool from one level to the one below. This is referred to as
the “phonon bottleneck” and was originally suggested to
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increase the CM efficiency of nanocrystals over bulk.'*'
However, clear evidence of the phonon bottleneck has not been
found in PbSe QDs.'”'® Near the band edge other cooling
channels can become dominant, such as trapping at defects,
energy transfer to vibrational modes of ligand molecules, or
surface related phonon modes.”>'" > In agreement with this, it
was found that electron cooling near the band edge in CdSe
QDs is slowed down several orders of magnitude by decoupling
the electron from the surface, so that it could relax only through
emission of LO phonons.”>**

The competition between CM and other relaxation channels
takes place at higher energies where an electron or a hole has an
excess energy that is at least equal to the band gap. At such high
excess energy the electronic structure of PbSe QDs approaches
that of bulk PbSe and LO phonon emission will not be
restricted by the availability of electronic energy levels at a
spacing equal to the phonon energy. Currently, little is known
of cooling at high charge carrier excess energy, except that it is
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very fast.”*~** In addition, hot carrier cooling in QDs is usually energy (eV)
described as a single cooling time.'”** ™" We stress however 3 1.0 0.8
that each transition of a charge carrier from an energy level to a Tns 4 ]
level of lower energy is a discrete quantum mechanical 3
transition with its own characteristic time constant. Hence 100 ps
carrier cooling times are a function of energy and should ideally 10 E
be described by a cooling spectrum, separate for electrons and £ PS5
holes. = 2.0ps

In this work, we determine cooling times of charge carriers in (1)8 Eﬁy)
PbSe QDs between discrete electronic states near the band 4o {
edge, and at higher excess energy where the electronic states " o4 06 _
form a quasi-continuum with a character close to that of bulk wavelength (um)
PbSe. We build up a broadband cooling spectrum for both _—
charge carriers and find that holes cool faster than electrons, in 1.0 0 1.0 2.0mOD
agreement with our earlier work.>? Strikingly, we can resolve energy (eV)
five discrete cooling steps (three for electrons and two for (b) 3 21816 14 12 1.0 0.8
holes) near the band edge before the onset of the quasi- 4 SR : : : [ 4
continuum. We argue that at lower energies charge carrier 27 £
cooling involves energy transfer to vibrational modes associated 8 O TRy [ 013
with the surface of the QD. At high carrier excess energy £ 27 +hate aboornt E
cooling can be explained in terms of emission of LO phonons, 4 ZZ 3510 ps TA spectrum F

. . . -6 - — 0.5-2.5ns TA spectrum e 0.01
which we verify by k-p calculations. We show that we expect an : - : i : : E

asymmetric density-of-states (DOS) with a denser valence band
than conduction band to account for the differences in cooling
times of electrons and holes.

RESULTS AND DISCUSSION

Measurements and Modeling of Electron and Hole
Cooling Dynamics. PbSe QDs with a diameter of 3.9 nm and
band gap of 0.93 eV were synthesized via the method by
Steckel et al,** washed twice, and dispersed in toluene (see
Methods). The QD dispersion was investigated using transient
absorption (TA) spectroscopy with a time resolution of ~0.15
ps and a probe spectral range of 375—1600 nm (see Methods).
In all measurements discussed below the pump laser fluence
was sufficiently low that on average much less than one photon
per QD was absorbed ((N,,) < 0.15). We show in Figure la
the hyperspectral TA image that results from photoexcitation
by a pump laser pulse with photon energy of 3.35 eV (370 nm),
which is high above the band gap. At this photoexcitation
energy CM takes place and Auger recombination of multi-
excitons can be observed in the first tens of picoseconds. After
that only single cold excitons are left and no further decay is
observed in the considered time window of 2.5 ns, since the
single exciton lifetime in PbSe QDs is several hundreds of
nanoseconds.'”** The main aim of this work is to study charge
carrier cooling, which can be observed in the first few
picoseconds after photoexcitation. To highlight the spectral
features of charge carrier cooling, we show spectral slices at
short (averaged 0.5—1.0 ps) and long (averaged 0.5—2.5 ns)
pump—probe delay in Figure 1b, together with the ground-state
absorption spectrum. Vertical dashed lines are added to indicate
the position of several optical transitions as identified in the
past (labeled S for the 1S,—1S,, transition, P for 1P,—1P,, D for
1D,—1D,, and X for quantum confined transitions around the
T-point in the bulk Brillouin Zone).*

The spectral features at long pump—probe delay in Figure 1b
are due to single cold 1S,—1S, excitons, as discussed in our
previous work.”” The negative TA signal near 1330 nm is due
to ground state bleaching and stimulated emission resulting
from 1S,—1S, excitons. The negative TA signal at 400—500 nm
results from blocking of transitions to the second conduction or
valence band by the presence of either a hole in the valence
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Figure 1. (a) Hyperspectral TA image for 3.9 nm PbSe QDs
photoexcited by a pump laser pulse with photon energy of 3.35 eV
(370 nm). The TA image is corrected for dispersion of the probe
light (see Methods). (b) Spectral slices taken at short (averaged
0.5—1.0 ps) and long (averaged 0.5—2.5 ns) pump—probe delay,
together with the ground-state absorption spectrum and vertical
dashed lines to indicate several optical transitions.

band (1S,) or an electron in the conduction band (1S,).*
Between these bleach features, the transient absorption
spectrum is caused by a red-shift of the ground-state absorption
spectrum due to biexciton interactions and possible intraband
absorption.*

The negative TA signals are very different at short pump—
probe delay when hot excitons are cooling down to the band
edge. The band edge bleach is already present, but
accompanied by a photoinduced absorption (PA) signal
below the band gap. Moreover, a PA contribution shifts the
TA signal at 400—500 nm toward positive values. These PA
signals result from biexciton interactions caused by hot excitons
and largely disappear when cooling has completed.””**

In literature, charge carrier cooling is often studied by
considering single wavelength TA signals at the 1S,—1S, and
1P, —1P, transitions.'”'******* This however does not take
into account the PA signal caused by biexciton interactions near
these transitions.””**"" As cooling takes place, the PA signal
decreases and the band edge bleach increases, since fewer hot
excitons are present and more excitons have arrived at the band
edge. To quantitatively describe the band edge bleach while
correcting for biexciton interactions, one can either fit or
integrate.””*" We choose here to fit because it alleviates
problems with a coherent artifact and boundaries, but we show
in Figure S1 of the Supporting Information that identical results
can be obtained. We first fit a Gaussian function to the 1S,—1S,
transition peak in the ground-state absorption spectrum A as a
function of photon energy. We then assume that the bleach of
the transition is directly proportional to the number of 1S,—1S,
excitons present. The corresponding absorption peak of the
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excited state absorption spectrum A* at time t after the pump
laser pulse is then given by

A* = A+ AA = (1 — f(£))C e EE) /20

3~ —(E—(B=0E()) /20"
+ f(t)—Ce 0
Ul m

where the parameters C, E,, and ¢ are obtained from the
Gaussian fit to the ground-state absorption spectrum. The
function f(¢) is the sum of the fraction of QDs containing a hole
in the 1S, valence band state and the fraction of QDs
containing an electron in the 1S, conduction band state and is
therefore a measure of the bleach at the band edge. The
parameter SE(t) is the time-dependent shift in energy of the
1S, —18, transition of a photoexcited QD. As was discussed in
literature this shift in energy and the function f(f) can be
determined independently.””*° The shift SE(t) is largest for hot
excitons that are present on short time scales and decreases to a
constant when all excitons have cooled down to the band edge.
The factor */, brings into account the 8-fold degeneracy of the
1S, and 18, states and the fact that the bleach results from both
reduced absorption and stimulated emission.'”*”*>* Equation
1 can be rearranged to obtain the TA signal around the band
edge bleach, which is given by

AA = A% — A = —f(t)C e~ E-E)/2

3 —(E—(Ey,—E(1)))* /20>
+ =f(t)C 0
4f( )Ce @)

Fitting eq 2 to the TA spectrum at each pump—probe delay
yields the time-dependent function f(t). Note that when CM
occurs the presence of two or more excitons in some QDs is
included in the value of f(t).

Fits of eq 2 to the TA spectrum of Figure 1 around the 1S,—
1S, transition for short and long pump—probe delay are shown
in Figure 2a. The fits reproduce the bleach of the 1S,—1S,
transition and are truncated at the high-energy side to avoid
effects of higher energy transitions that are not included in eq 2.
The red curve in Figure 2b shows the time-dependent function
f(t) obtained from the fit, as well as exponential fits to describe
f(t) as discussed below. The uncertainty in the fit of eq 2 at a
particular pump—probe delay gives rise to noise in the function
f(t) of approximately 10%.

In previous studies a single exponential function (of the form
1 — e which is characteristic for a first order decay process)
has been used to describe cooling of hot charge carriers to the
band edge states."”*”>" As can be seen in Figure 2b, a fit of
such a single exponential function does not reproduce f(t). This
is not surprising, because we previously found that holes cool
much faster than electrons and therefore a sum of at least two
exponential functions would be needed.”” However, we show in
Figure 2b that a double exponential function does not
reproduce f(t) either. Rather, the “S-like” shape of f(t) indicates
that cooling of electrons and holes to the band edge states takes
place in several sequential steps. Thus, a model to describe f(t)
must include successive cooling steps of charge carriers from
higher energy levels to the band edge states.”” In the next
paragraph we discuss the analysis of our experimental data on
the basis of such a kinetic model for electron and hole cooling
in PbSe QDs.

Determination of Electron and Hole Cooling Times
between Successive Energy Levels. We can describe
charge carrier cooling as a sequence of steps between successive
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Figure 2. (a) TA spectrum around the band edge bleach for 3.9 nm
QDs excited by a pump laser pulse with photon energy of 3.35 eV
(370 nm) for short and long pump—probe delay, together with fits
of eq 2. (b) The function f(t) obtained from fitting eq 2 to the
experimental data, as well as exponential fits to describe f(t) as
discussed in the text.

electronic energy levels as schematically shown in Figure 3a.
The time-dependent population of the different electronic
states can be described by kinetic equations for relaxation of the
electron and the hole, given by

dn, (t) 1 1

= = ‘Z\]i+1,e(t) - _I\Ii,e(t)

dt Ti+1,e ie (32)
dN, (1) 1

- = Ni+1,h(t) - i,h(t)

dt Tt Lh Th (3b)

with N, the population of electrons in level e; and N}, the
population of holes in level h. The function f(t) as shown in
Figure 2b can then be described as

ft) = AeNO,e(t) + AhNO,h(t) (3¢)

with A, (A;) the relative contribution of electrons (holes) to
f(t) and therefore to the bleach at the band edge.

We obtain the time constants (7, 7;;,) for the different
cooling steps by fitting eq 3 to experimental data for f(t), such
as those shown in Figure 2 and Figure 3, while increasing the
photoexcitation energy in small steps. For multiple photo-
excitation energies we find that the time constants for specific
transitions remain unchanged. Whenever the set of coupled rate
equations requires the time constants to change in order to
describe f(t) accurately, we fix the time constants obtained thus
far and add a next hole and electron level. We stop adding more
discrete energy levels in the case where the time constant
remains within the experimental time resolution of ~0.15 ps or
increases continuously with photoexcitation energy. From that
energy we consider the electronic structure of the PbSe QDs to
resemble a quasi-continuum. In Figure 3 panels b—e we show
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Figure 3. (a) Schematic model of the PbSe QD electronic structure with cooling time constants for transitions between successive energy
levels. (b—e) Fits of eq 3 to measured data for f(t) for photoexcitation energies and transitions as indicated, which are just above the threshold
at which a new level and cooling time had to be included in eq 3.

f(t) with fits for photoexcitation energies just above successive
thresholds at which a new energy level had to be included in eq
3. These photoexcitation energies coincide with the transitions
in the ground-state absorption spectrum in Figure 1.

When photoexciting at 1.15 eV (resonant with the 1P,—1P,
transition) we can reproduce the measured f(t) by including
one cooling step for the electron (from level e, to e;) and one
for the hole (from level h; to hy) in eq 3, see Figure 3b. This
results in a double exponential function of which one
exponential describes the first electron cooling step (with
cooling time 7, . from e, to e,) and the other the analogous first
hole cooling step. We distinguish between electron and hole, as
described in the next paragraph. The measured f(t) in Figure 3¢
for photoexcitation at 1.55 eV can only be reproduced by
adding a second cooling step for the electron and hole, while
the first cooling times 7, and 7,), are kept fixed to the value
obtained for lower photoexcitation energies. We continue with
this procedure until we no longer find discrete cooling steps
between energy levels. For electrons we find that 7, increases
continuously with photoexcitation energy. Instead of defining a
new energy level for each photoexcitation energy, we consider
the electronic structure above the fourth electronic energy level
(e,) to approach a quasi-continuum. For holes we find that 7;),
and higher are much smaller than our time resolution, and we
therefore consider the electronic structure for holes to
approach a quasi-continuum above the third electronic energy
level (h;). The cooling times determined from the procedure
described above are given between the corresponding energy
levels in Figure 3a. We note that in our data, we have a rise time
of f(t) due to the pulse width of our laser. In Figure S2 of the
Supporting Information we show f(t) for band edge excitation
where cooling is absent and determine an experimental time
resolution of 0.15 ps from the rise time. The cooling time
constants we list in Figure 3 are convolved with this time
resolution.

We attributed cooling times to electrons or holes by making
use of the high energy L, ¢ and L,_, transitions studied in our
previous work that are visible as bleach features at 400—500 nm
in Figure 1.”* These are transitions from the second valence
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band to the first conduction band (L,_¢, 2.7 €V) and from the
first valence band to the second conduction band (Ls_,, 2.5
eV). These transitions are selectively sensitive either to the 1S,
electron (L,_4) or the 1S, hole (L;_,) at the band edge, when
photoexciting with energy lower than these transition energies.
In Figure 4a we show f(t) for 1.77 eV (700 nm) photo-
excitation together with the fit of eq 3 to f(t). For the same
photoexcitation energy we show a separate electron and hole
bleach transient as determined from the L, ¢ and Lg_,
transitions in Figure 4b. The black curves in Figure 4b are

0.16 —! '
a) B L
0.12 —
£ 0.08 —
0.04 11?: photoexcitation |
4 /e equation (3) fit L
0.00 =% | | | | |
0 1 2 3 4 5
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Figure 4. (a) Fit of eq 3 to f(t) for 1.77 eV photoexcitation of 3.9
nm PbSe QDs. (b) Separate electron and hole bleach as determined
from the high energy L, ¢ (2.7 €V) and L,_, (2.5 eV) transitions
described by the electron (L, ) and hole (L;_,) contributions in
eq 3c.
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the separate contributions of eq 3c due to electrons (A.Nj(t))
or holes (A,N,;(t)) as obtained from the fit of eq 3 to () in
Figure 4a. As can be observed, the L, 4 bleach due to 1S,
electrons is very well described by one set of cooling times.
Likewise the Ls_, bleach due to 1S, holes is properly described
by the other set of cooling times. Therefore, we can safely
ascribe each set of cooling times to the corresponding charge
carrier. We observe that electrons cool slower than holes in
agreement with our previous work.*”

Equation 3c also yields the relative contribution A,/Aj, to f(t)
of electrons and holes. We show A./A, as a function of
photoexcitation energy in Figure S3 of the Supporting
Information. We find that A./Ay; is approximately 1.2 for all
photoexcitation energies up to 2.1 eV, comparable to the
relative contribution of electrons and holes to the band edge
bleach as determined in our previous work using an electron
scavenging molecule.”> For photoexcitation energies exceeding
2.1 eV however, A,./A; increases to values up to 3. We believe
that our model shown in Figure 3a is no longer valid at higher
photoexcitation energy due to additional relaxation pathways
for electrons and holes such as CM and the simultaneous
excitation of various electron and hole states at different points
in the band structure (e.g, with £ or W character). We
therefore no longer assign electrons and holes to the two
contributions, but rather realize that we have a slow and a fast
cooling component that consists of both electrons and holes.
We point out that this happens above 2.1 eV photoexcitation
energy where our results suggest that the electronic structures
of both electrons and holes approach a quasi-continuum. The
constant cooling times found between energy levels near the
band edge remain valid.

The procedure described above yields the time constants for
electron and hole cooling steps between successive discrete
energy levels, as well as the cooling times from energies in the
quasi-continuum to the highest discrete energy level that is
distinguished. Taken together this constitutes a broadband
cooling spectrum as shown in the upper panel of Figure 5. We
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also indicate the position of the optical transitions, as
determined from the absorption spectrum in the lower panel
of Figure 5 and include electron and hole cooling times as
obtained from the L, ¢ and Ls_, transitions, which agree with
the data resulting from fitting eq 3 to f(t).

Figure S shows that the 1P—1S cooling times for electrons
and holes are discrete and fully account for cooling up to hv =
1.4 eV. At that point discrete 1D—1P cooling channels become
available, followed by £—1D channels at hv = 1.9 eV. From
that point on the cooling times increase continuously as the
density-of-states (DOS) forms a quasi-continuum. Figure §
further shows that each individual hole cooling step is faster
than the corresponding step for an electron. This agrees with
our earlier finding that the total cooling time from high energy
down to the band edge is shorter for a hole than for an
electron.” A second finding is the decrease of both the electron
and hole cooling time constants on going from the lowest
energy transition to higher transitions. The electron cooling
time constants for transitions between discrete levels decrease
slightly with energy but remain in the same order of magnitude
of ~0.5 ps. The hole cooling time constant for the first
transition is slightly smaller than that for the electron.
Interestingly, the hole cooling time constants for the next
transitions are significantly shorter than the corresponding
electron cooling time constants and have values within the
~0.15 ps time resolution of our experiment.

Factors Governing Electron and Hole Cooling Times.
According to calculations in the literature, emission of LO
phonons mediates charge carrier cooling in PbSe QDs at high
excess energy.'”'®*® The energy of LO phonons in PbSe is
~17 meV and the typical time of one LO phonon emission
event in bulk PbSe is ~25 fs.*’ For large charge carrier excess
energy, the quasi-continuum of electronic states will contain
levels with spacing (nearly) equal to an LO phonon energy and
charge cooling via LO phonon emission can be efficient.
However, for the lowest cooling steps near the band gap the
energy difference between the discrete electronic states (>100
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Figure 6. PbSe bulk band structure (left) and schematic PbSe QD electronic structure (right) including our experimental cooling time

constants.

meV) is much larger than the LO phonon energy. To overcome
these large electronic energy differences, each cooling step
would require simultaneous emission of multiple LO phonons.
Theoretical calculations show that this is very unlikely and
would lead to cooling times in the order of nanoseconds, which
is orders of magnitude longer than our findings."*

In addition to LO phonon emission, charge carrier cooling
can be facilitated by energy transfer to vibrational modes of the
oleate ligands. In agreement with the latter it was found for
CdSe QDs that ligands have a large influence on charge carrier
cooling.””** In Figure S4 of the Supporting Information we
show an FTIR spectrum of our PbSe QDs with oleate ligands,
revealing oleate vibrational modes in the energy range of 100—
200 meV and near 350 meV (corresponding to the carbonyl
stretch vibration and CH stretch vibrations in the aliphatic
chain, respectively). We also show electronic transition energies
as obtained from the optical absorption spectrum that overlap
with the ligand vibration energies. Hence, energy transfer to
ligand vibrational modes can facilitate charge carrier cooling
near the band edge. Beside ligand vibrational modes, the surface
of QDs also enables other stron§ phonon interactions that
could assist charge carrier cooling."”

The above considerations do not explain why holes cool
much faster than electrons. To gain more insight into carrier
relaxation by LO phonon emission we calculate the PbSe bulk
band structure and QD electronic structure using a k-p
Hamiltonian with states around both the L-point and the X-
point in the first Brillouin Zone of the rock-salt lattice.*~** We
parametrize this Hamiltonian using ab initio DFT to solve the
Kohn—Sham equation for bulk PbSe in the CASTEP plane
waves based parallel DFT code.”””” We use the TB-mB]J
exchange potential with treatment of spin—orbit interactions at
the scalar (or vector, see Supporting Information) relativistic
level (see Methods).”’ We show the calculated bulk band
structure including a schematic QD electronic structure to
incorporate our experimental cooling time constants in Figure
6. In Figure SS of the Supporting Information we include a
comparison of the calculated QD electronic structure with
treatment of spin—orbit interactions both at the scalar and
vector relativistic level showing the same qualitative behavior.

From Figure 6 and Figure S5 of the Supporting Information
we observe that the first electronic energy levels in the QDs in
the conduction band arise predominantly from the bulk L-
point, followed by energy levels that also have X-point
character. This gives rise to a quasi-continuum. In the valence
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band the X-point is mixed into the QD electronic structure at
much lower energy, resulting in a much lower onset of the
quasi-continuum. As first suggested by Zunger et al,>” this is
caused by the smaller energy difference between the L and X
extrema in the valence band than in the conduction band,
which is also evident in Figure 6. The result is a higher DOS in
the valence band than in the conduction band, in line with
previous results from Zunger’” and Liljeroth,> resulting in
faster hole cooling rates. These observations agree very well
with the experimental cooling time constants and correspond-
ing optical transitions in Figure S.

To describe charge carrier cooling in the quasi-continuum,
the energy loss rate y of electrons and holes at high excess
energy above the first Z-point level can be obtained from the

experiments using
-1
] (4)

T
where 7 is the cooling time and hv is the photoexcitation
energy. If it is assumed that the photon energy in excess of the
band gap is equally distributed over the electron and the hole
(admittedly a strong simplification considering the discussion
above), the data in Figure S yield an energy loss rate for the
electron of 1 eV/ps at low energy, increasing to S eV/ps at high
energy. This seems reasonable considering previous calcula-
tions. "'*** The hole cooling time is faster than the ~0.15 ps
experimental time resolution, leading to an energy loss rate of
at least 8 eV/ps even near the bottom of the quasi-continuum.
This very high energy loss rate for holes could be due to
additional relaxation pathways such as CM not considered in eq
3. In addition, an asymmetric division of the energy between
electron and hole due to the difference in DOS puts most
energy in the electron, enhancing the apparent difference in
energy loss rates. When photoexcitation occurs via the L, ¢ or
the Ls_, transition,” all excess energy is transferred either to
the hole or the electron and a very asymmetric division of
energy is achieved. These effects occur above the X-point
transition in the quasi-continuum and do not affect the cooling
time constants we find between discrete energy levels near the
band edge.

If charge carrier cooling in the quasi-continuum occurs solely
due to emission of LO phonons with an energy of ~17
meV,“’m’43 the energy loss rate for electrons of 1-5 eV/ps
leads to a net LO phonon emission time of 3.4—17 fs. Likewise

dr
d(hv)
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the energy loss rate for holes of at least 8 eV/ps leads to a net
LO phonon emission time <2.1 fs. Using the calculated
electronic states from Figure S5, we can describe carrier
relaxation in PbSe QDs through emission of LO phonons with
the Wigner—Weisskopf description in the strong coupling
regime (see Methods).”* We assume LO phonon decay
through the Ridley LO — TO + TA channel due to the
large anharmonicitiy of LO phonons in the rock-salt structure
(see Methods).”™>” We find the shortest LO phonon emission
time for resonance of the transition energy with the LO
phonon energy of 17 meV. This emission time is 3.6 fs and
agrees well with our experimental energy loss rates mentioned
above.

CONCLUSIONS

We identify five discrete cooling steps (three for electrons and
two for holes) before the onset of a continuously increasing
cooling time in PbSe QDs. The cooling time constants for both
electrons and holes between discrete electronic states close to
the band edge are of the order of 0.5 ps and require energy
transfer to surface ligand vibrational modes or surface phonon
modes. At high excess energy electrons and holes cool via
emission of LO phonons due to the convergence of the
electronic structure to a quasi-continuum. There the exper-
imental energy loss rate is 1—5 eV/ps for electrons and at least
8 eV/ps for holes. These results agree well with theoretical
carrier relaxation results. We find the start of the quasi-
continuum for holes much closer to the band edge than for
electrons and therefore confirm an asymmetric density-of-states
for PbSe QDs. The results constitute the first broadband
cooling spectrum for electrons and holes in colloidal nano-
crystals.

METHODS

Synthesis of PbSe QDs. PbSe QDs with a diameter of 3.9 nm
were synthesized using the method described by Steckel et al.** In
brief, 4.77 g of lead acetate trihydrate (99.999%, Aldrich), 3.42 g of
oleic acid (90%, Aldrich) and 13.14 g of 1-octadecene (90%, Aldrich)
were placed into a flask and dried and reacted under vacuum for at
least 2 h at 120 °C. A second mixture containing 1.12 g of selenium
(99.999%, Alfa Aesar), 0.13 mL of diphenylphospine (98%, Aldrich),
and 14.87 mL of trioctylphosphine (90%, Fluka) was prepared.
Subsequently, the lead mixture was heated to 180 °C under nitrogen
and the selenium mixture was injected. The reaction was allowed to
proceed for 10 s at 150 °C after which the reaction was quenched
using 15 mL of butanol (99.8 anhydrous, Aldrich). The crude
synthesis mixtures were washed twice by precipitating with methanol,
centrifugation, and redispersion of the sediment in toluene. This
resulted in particles with a diameter of 3.9 & 0.3 nm as determined by
TEM.

Hyperspectral TA Spectroscopy. We studied charge carrier
cooling in PbSe QDs using broadband optical pump—probe
spectroscopy. The QD samples were dispersed in toluene in a 2
mm stirred quartz cuvette at a typical optical density of 0.05 at the
band gap. The QD dispersion was stirred during TA experiments to
prevent photocharging.

Femtosecond laser pulses were generated in a Yb:KGW oscillator
(Light Conversion, Pharos SP) at 1028 nm and amplified. A small
fraction of the 1028 nm fundamental beam was split off to generate the
broadband probe spectrum in a sapphire (500—1600 nm) or CaF,
(375—600 nm) crystal. The probe pulse was delayed up to 2.5 ns using
an automated delay stage. The majority of the 1028 nm fundamental
beam was used as a pump pulse after nonlinear frequency mixing in an
OPA and second harmonics module (Light Conversion, Orpheus) to
achieve wavelengths of 310—1330 nm. The pump and probe pulses
overlap on the sample position under an angle of ~8 degrees, after

6292

which the pump pulse is dumped and the probe light is led to a
detector suitable for the probe spectrum selected (Ultrafast Systems,
Helios). We calculate the pump-induced change in absorption
according to

I I I
A=A, —Ays= log(—o] - log(—OJ = log[°—ff)
Ion Ioff Ion (5)

with I, the intensity of the probe beam incident on the sample and I,
and I g the intensity of the probe beam transmitted through the
sample with the pump beam either on or off. All shown data is
corrected for dispersion by fitting a polynomial function to the solvent
response. The time resolution of the TA measurements is determined
by the rise time of the TA signal at band edge excitation as shown in
Figure S2 of the Supporting Information and is 0.15 ps.

In all experiments the laser pump fluence was taken sufficiently low
to prevent multiple photons being absorbed in a single QD. Assuming
Poissonian statistics for photoexcitation, the probability Py for a QD to
absorb N photons is given by

& Nabs) (N, bs)N

By = N!

(6)
with the average number of photons absorbed per QD equal to (N,)
= Jo where ] is the laser pump fluence and ¢ is the photon absorption
cross section. During the measurements we take ] low enough, so that
Py, is negligible, that is, (Ny,) < 0.15, and Pys, = 1 — Py — P, = 0.01.

Electronic Structure Calculations. We calculate the electronic
structure of PbSe QDs using a k-p Hamiltonian with states around the
L-point in the first Brillouin zone of the rock-salt lattice,*™*
augmented with states around the X-point. This Hamiltonian is
parametrized using ab initio DFT (without fitting the band structure)
to solve the Kohn—Sham equation in the CASTEP plane waves based
parallel DFT code.*”*® Many electron effects are approximated using
the Tran-Blaha (TB-mBJ) exchange correlation functional as
implemented in CASTEP.*”' Spin—orbit effects are taken into
account at the scalar (vector) relativistic level. For parametrization of
the k-p Hamiltonian we use the room temperature value of the
effective masses at the L-point, while at the Z-point we use those
obtained from DFT.*® This leads to good agreement between the
experimental (~110 meV if assumed equal for electron and hole) and
theoretical (147 meV) 1P,—1S, transition. We find that the energetic
difference between the top of the valence band at the X-point and the
top of the valence band at the L-point is much smaller than the
energetic difference between the corresponding band extrema in the
conduction band. This results in a higher density-of-states in the
valence band. Energy gaps and effective masses are given in the
Supporting Information.

Electron—Phonon Scattering Calculations. To describe charge
carrier cooling by the emission of LO phonons, we follow the
Wigner—Weisskopf description in the strong coupling regime. This
allows us to couple electrons to the LO phonon when the energy
between electronic energy levels is not resonant with the LO phonon
energy. We can then calculate the phonon emission rate by™*

2 1/2
U || (s, A (W) (A
ph PR | 2 4 2
T
1/2
g; Aizf - (hIA/ph)z
n 4

(7)

Here Ay = E; — E; + hw, is the detuning of the LO phonon energy
hwyo from the difference in energy between the initial and final
electronic energy levels E; and E; W), is the phenomenological rate of
LO phonon decay into two less energetic phonons due to
anharmonicity and g is the coupling strength of an electron to the
LO phonon. Assuming the Frohlich interaction for coupling between

electrons and LO phonons g is given by
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& = ?("LO + 2 + 2)' (@FIE(q)! ©

where 7, is the phonon occupation number, Fi(q) = (ile®lf) is the
electron—phonon coupling matrix element, and g is the phonon
momentum vector. We take care of momentum conservation through
q— q+ L3 with L3 = (3/242)(n/a;) ~ 0544 A~ while
calculating 78" according to eqs 7 and 8. We assume that the Ridley
LO — TO + TA channel is the most dominant LO phonon decay
channel, significantly faster than any other channel such as Klemens or
Vallee-Bogani,”> > due to the large Griineisen parameter of the TO
mode in PbSe, y(TO) = 15.%° For this channel we estimate Wy, ~ 277
ps_] at room temperature.
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