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ABSTRACT

Recent advances in eye tracking have given birth to a new genre

of gaze-based context sensing applications, ranging from cogni-

tive load estimation to emotion recognition. To achieve state-of-

the-art recognition accuracy, a large-scale, labeled eye movement

dataset is needed to train deep learning-based classifiers. However,

due to the heterogeneity in human visual behavior, as well as the

labor-intensive and privacy-compromising data collection process,

datasets for gaze-based activity recognition are scarce and hard

to collect. To alleviate the sparse gaze data problem, we present

EyeSyn, a novel suite of psychology-inspired generative models that

leverages only publicly available images and videos to synthesize a

realistic and arbitrarily large eye movement dataset. Taking gaze-

based museum activity recognition as a case study, our evaluation

demonstrates that EyeSyn can not only replicate the distinct pat-

terns in the actual gaze signals that are captured by an eye tracking

device, but also simulate the signal diversity that results from dif-

ferent measurement setups and subject heterogeneity. Moreover,

in the few-shot learning scenario, EyeSyn can be readily incorpo-

rated with either transfer learning or meta-learning to achieve 90%

accuracy, without the need for a large-scale dataset for training.

CCS CONCEPTS

•Human-centered computing→Ubiquitous andmobile com-

puting theory, concepts andparadigms; •Computingmethod-

ologies→ Simulation types and techniques.

KEYWORDS

Eye tracking, eye movement synthesis, activity recognition.

1 INTRODUCTION

Eye tracking is on the verge of becoming pervasive due to recent

advances in mobile and embedded systems. A broad selection of

commercial products, such as Microsoft HoloLens 2 [1], Magic Leap

One [2], and VIVE Pro Eye [3], is already incorporating eye tracking

to enable novel gaze-based interaction and human context sensing.

Moreover, general-purpose RGB cameras, such as those embedded

in smartphones [4], tablets [5], and webcams [6], can also be used

to capture users’ eye movements. The accessibility of eye tracking-

enabled devices has given birth to a new genre of gaze-based sensing

applications, including cognitive load estimation [7], sedentary

activity recognition [8], reading comprehension analysis [9], and

emotion recognition [10].

Recent gaze-based sensing systems leverage learning-based tech-

niques, in particular deep neural networks (DNNs) [10–12], to

achieve state-of-the-art recognition performance. However, the

success of DNN-based methods depends on how well the training

dataset covers the inference data in deployment scenarios. Ideally,

one would like to collect a large-scale labeled eye movement dataset,

e.g., hundreds of instances for each subject and visual stimulus [10],

to derive robust DNN models that are generalized across different

deployment conditions. However, this is impractical for three rea-

sons. First, human visual behavior is highly heterogeneous across

subjects, visual stimuli, hardware interfaces, and environments. For

instance, eye movements involved in reading are diverse among

subjects [13], layouts of the reading materials [9], and text pre-

sentation formats [14]. Thus, the countless possible combinations

of the dependencies make the collection of a large-scale, labeled

dataset impractical. Second, since eye movement patterns can re-

veal users’ psychological and physiological contexts [15], a gaze

dataset that is collected from dozens or hundreds of users over mul-

tiple activity sessions is vulnerable to potential privacy threats [16].

Lastly, the collection of eye movement data is a labor-intensive and

time-consuming process, which typically involves the recruitment

of human subjects to perform a set of pre-designed activities. It

is even more challenging and problematic to perform large-scale

data collection when human interactions are restricted, such as

throughout the COVID-19 shelter-in-place orders.

These challenges make the collection of large-scale, labeled eye

movement datasets impractical, which further limits the perfor-

mance of existing gaze-based activity recognition systems. In fact,

previous work has shown that the lack of sufficient training data

can lead to a 60% accuracy deficiency [12]. While recent transfer

learning [17] and meta-learning-based methods [18] can be adopted

to mitigate the dependency of the DNN models on large-scale train-

ing datasets in the deployment stage, they still require a highly

diverse base dataset to pre-train the models.

To move beyond the current limitations, we present EyeSyn, a

comprehensive set of psychology-inspired generative models that can

synthesize realistic eye movement data for four common categories

of cognitive activity, including text reading, verbal communication,

and static and dynamic scene perception. Specifically, EyeSyn lever-

ages publicly available images and videos as the inputs, and consid-

ers them as the visual stimuli to generate the corresponding gaze

signals that would be captured by an eye tracking device when the

subject is performing a certain activity.

EyeSyn embraces three important features. First, distinct from

the Generative Adversarial Network (GAN)-based data augmen-

tation methods [19, 20], which require hundreds of data samples

for training [21], EyeSyn is training-free and does not require any

eye movement data for synthesis. Second, EyeSyn can readily use a

wide range of image and video datasets to generate an arbitrarily

large and highly diverse eye movement dataset. For instance, it can

leverage a public painting image dataset [22], which contains 7,937

images of famous paintings, to synthesize the potential eye move-
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ments when subjects are viewing these paintings. It can also exploit

a text image dataset [23], which consists of 600 images of scanned

documents, to generate the corresponding eye movements when

subjects are reading these texts. Third, in contrast to a conventional

data collection process that is usually confined to specific setups,

visual stimuli, or subjects, EyeSyn can simulate different eye track-

ing setups, including visual distance, rendering size of the visual

stimuli, sampling frequency, and subject diversity. These features

make EyeSyn an important first step towards the greater vision of

automatic eye movement synthesis that can alleviate the sparse

data problem in gaze-based activity recognition.

EyeSyn is made possible by a comprehensive suite of novel mod-

els devised in this work. First, we introduce the ReadGaze model

(Section 4.2) to simulate visual attention in text reading. Specifically,

we design a text recognition-based optimal viewing position detec-

tion module to identify the potential viewing points in a given text

stimulus. We also develop a skipping effect simulator to model the

visual behavior of skip reading [24]. Second, we develop the Verbal-

Gaze model (Section 4.3) which consists of a facial region tracking

module and a Markov chain-based attention model to simulate the

visual behaviors of fixating on and switching attention between

different facial regions [25] in verbal communication. Lastly, we

design the StaticScene and DynamicScene models (Section 4.4) to

synthesize eye movements in static and dynamic scene perception.

Specifically, we propose a saliency-based fixation estimation model

to identify potential fixation locations in the visual scene, and pro-

pose a centrality-focused saliency selection module to model the

effects of the central fixation bias [26] on fixation selection. Our

major contributions are summarized as follows:

• We propose EyeSyn, a novel set of psychology-inspired genera-

tive models that synthesize eye movement signals in reading, verbal

communication, and scene perception. Taking the actual gaze sig-

nals captured by an eye tracker as the ground-truth, we demonstrate

that EyeSyn can not only replicate the distinct trends and geometric

patterns in the gaze signal for each of the four activities, but can

also simulate the heterogeneity among different subjects.

• We demonstrate that EyeSyn can leverage a wide range of pub-

licly available images and videos to generate an arbitrarily large

and diverse eye movement dataset. As shown in Section 5.1, using

a small set of image and video stimuli we have prepared, EyeSyn

synthesizes over 180 hours of gaze signals, which is 18 to 45 times

larger than the existing gaze-based activity datasets [8, 12].

• Using gaze-basedmuseum activity recognition as a case study, we

demonstrate that a convolutional neural network (CNN)-based clas-

sifier, trained by the synthetic gaze signals generated by EyeSyn, can

achieve 90% accuracy which is as high as state-of-the-art solutions,

without the need for labor-intensive and privacy-compromising

data collection.

The rest of the paper is organized as follows. We review related

work in Section 2. We introduce the overall design, underlying

cognitive mechanisms, and the case study in Section 3. We present

the design details of the psychology-inspired generative models

in Section 4. Section 5 introduces the system design and dataset.

We evaluate our work in Section 6, and discuss the current limita-

tions and future directions in Section 7. We conclude the paper in

Section 8.

The research artifacts, including the implementation of the gen-

erative models and our own collected gaze dataset are publicly

available at https://github.com/EyeSyn/EyeSynResource.

2 RELATEDWORK

Gaze-based context sensing.Our work is related to recent efforts

in gaze-based context sensing, including sedentary activity recog-

nition [8, 12], reading behavior analysis [11], and emotion recogni-

tion [10, 27]. All these works require a large-scale gaze [8, 11, 12]

or eye image dataset [10, 27] to train DNN-based classifiers for

context recognition. Although recent transfer learning [17] and

meta-learning-based methods [12, 18] can be adopted to mitigate

the dependency of the DNNmodels on a large-scale training dataset

in the deployment stage, they still require a highly diverse base

dataset to pre-train the DNN models.

Gaze simulation. The problem of synthesizing realistic gaze

signals has been studied in computer graphics and eye tracking

literature [28]. For instance, Eyecatch [29] introduces a genera-

tive model that simulates the gaze of animated human characters

performing fast visually guided tasks, e.g., tracking a thrown ball.

Similarly, building on the statistics obtained from eye tracking data,

EyeAlive [30] simulates the gaze of avatars in face-to-face con-

versational interactions. More recently, Duchowski et al. [31, 32]

introduce a physiologically plausible model to synthesize realistic

saccades and fixation perturbations on a grid of nine calibration

points. Different from the existing efforts that rely solely on statis-

tical models for gaze simulation, EyeSyn can leverage a wide range

of images and videos to synthesize realistic gaze signals that would

be captured by eye tracking devices.

Fixations estimation.Ourwork is also related to existingworks

on visual attention estimation [33], which predict a subject’s fixa-

tion locations on images [34–37] and videos [38, 39]. Early works

in this field either leverage low-level image features extracted from

the image [34, 35], or combine image features with task-related

contexts [36–38] to estimate a subject’s visual attention. Recently,

data-driven approaches have achieved more advanced performance

in fixation estimation by taking advantage of deep learning mod-

els that are trained on large amounts of gaze data [40–42]. In this

work, we build the scene perception model of EyeSyn (Section 4.4)

on the image feature-based saliency detection model proposed by

Itti et al. [34] to ensure training-free attention estimation, and ad-

vance it with a centrality-focused fixation selection algorithm to

generate more realistic gaze signals. In addition, as shown in Sec-

tions 4.2 and 4.3, inspired by the research findings in cognitive

science [24, 25], EyeSyn also introduces two novel models to esti-

mate fixations in text reading and verbal communication.

3 OVERVIEW

3.1 Overall Design

An overview of EyeSyn is shown in Figure 1. It takes publicly avail-

able images and videos as the inputs to synthesize realistic eye

movements for four common categories of cognitive activity, in-

cluding: text reading, verbal communication, and static and dynamic

scene perception. As shown, EyeSyn incorporates three psychology-

inspired generative models to synthesize the corresponding visual

behaviors that would be captured by an eye tracker when a sub-
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Figure 1: Overview of EyeSyn.

ject is performing the activity. Moreover, to generate realistic gaze

signals, the fixation model is introduced to simulate gaze pertur-

bations that result from both microsaccades and the measurement

noise in eye tracking. EyeSyn opens up opportunities to generate

realistic, large-scale eye movement datasets that can facilitate the

training of gaze-based activity recognition applications [8, 9, 12],

and eliminate the need for expensive and privacy-compromising

data collection. Below, we introduce the underlying cognitive mech-

anism in eye movement control that motivates our design. For each

of the four activities, we describe how the human visual system

makes decisions about the fixation location and fixation duration

by answering the questions of: where and when will the eyes move?

and why do the eyes move in such a way?

3.2 Cognitive Mechanism and Motivation

3.2.1 Text reading. During reading, the human visual systemmakes

decisions about the fixation location and fixation duration in two

independent processes [24]. The fixation locations are largely de-

termined by the low-level visual information, such as the length

of the word and its distance to the prior fixation location [24]. It

is generally argued that readers attempt to land their fixations on

the center of the word, which is known as the optimal viewing

position (OVP) [43]. The OVP is the location in a word at which the

visual system needs the minimum amount of time to recognize the

word. The fixation durations are determined by the characteristics

of the word, in particular, the word length [24]. Moreover, words

are sometimes skipped in reading, which is known as the skipping

effect. In general, the probability of skipping a word decreases with

the word length [24, 44, 45].

Following this cognitive mechanism, we propose the ReadGaze

model (Section 4.2) to simulate visual attention in text reading. As

shown in Figure 1, ReadGaze consists of the text recognition-based

OVP detection module to identify the potential fixation points in a

given text stimulus, as well as the the skipping effect simulator to

simulate the visual behavior of skip reading.

3.2.2 Verbal communication. Research in cognitive neuroscience

has shown that participants in verbal communication direct most of

their visual attention at their communication partner. Specifically,

they tend to fixate on and scan different regions of the partner’s

face [25], even if the face occupies only a small portion of the visual

field. Among different facial regions, the eyes, nose, and mouth are

the three most salient fixation regions, as they provide many useful

cues for both speech and cognitive perception [46]. The underlying

motivation of this cognitive behavior is that listeners care about

where the speaker is focusing, and thus eye gaze is used as the cue

to track and follow the attention of the speaker [47]. Similarly, the

movements of the mouth provide additional linguistic information

and audiovisual speech cues for the listener [46]. Lastly, facial

expressions in the nose region help in the recognition of emotions

of the speaker [48].

We propose the VerbalGaze model (Section 4.3) to simulate

eye movement in verbal communication. As shown in Figure 1, it

leverages monologue videos that are widely available online as the

inputs to simulate the interactions in verbal communication. Specif-

ically, it models the eye movements of the people who are listening

to the speaker in the video. In fact, monologue videos are widely

used in cognitive science to study attention and eye movement

patterns in social interactions [25, 46], and have been proven to

have the same underlying cognitive mechanism as in-person verbal

communication [49]. In our design, we propose the facial region

tracking module and the Markov chain-based attention model to

simulate the visual behaviors of fixating on and switching attention

between different facial regions [25] in verbal communication.

3.2.3 Static and dynamic scene perception. When inspecting com-

plex visual scenes, the human visual system does not process every

part of the scene. Instead, it selects portions of the scene and di-

rects attention to each one of them in a serial fashion [50]. Such

selective visual attention can be explained by the feature integration

theory [51], which suggests that the visual system integrates low-

level features of the scene, such as color, orientation, and spatial

frequency, into a topographic saliency map in the early stages of

the process. Then, visual attention is directed serially to each of the

salient regions that locally stands out from their surroundings [50].

The selection of fixation locations is also affected by the central

fixation bias [26] which refers to the strong tendency in visual

perception for subjects to look at the center of the viewing scene.

Studies have shown that the center of the scene is an optimal loca-

tion for extracting global visual information, and is a convenient

starting point for the oculomotor system to explore the scene [52].

In this work, we design two generative models, StaticScene and

DyamicScene (Section 4.4), to simulate eye movements in static

and dynamic scene perception (subjects are viewing paintings or

watching videos), respectively. As shown in Figure 1, we propose the

saliency-based fixation estimation module to identify the potential

fixation locations in the image, and propose a centrality-focused

fixation selection module to model the effects of the central fixation

bias [26] on fixation selection.

3.2.4 Fixation model. Lastly, EyeSyn also incorporates a set of

statistical models that simulate the gaze perturbations in fixations

(Section 4.1). Specifically, we model both the microsaccades, the

subconscious microscopic eye movements produced by the human

oculomotor system during the fixations, and the measurement noise

in eye tracking to generate realistic fixation patterns.

3.3 Case Study

In this paper, we consider gaze-based museum activity recog-

nition for mobile augmented reality (AR) as a case study. We
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show how the synthesized eye movement data from EyeSyn can

improve the recognition accuracy of a DNN-based classifier without

the need for a large-scale gaze dataset for training.

Different from traditional museum exhibitions, mobile AR allows

augmenting physical exhibits with more vivid and informative con-

tent, which enhances visitors’ engagement and experience. There

are many practical deployments of AR-based museum exhibitions.

For instance, the Skin and Bones [53] application, deployed at the

Smithsonian National Museum of Natural History, provides visitors

with a new way to see what extinct species looked like and how

they moved.

To ensure accurate and timely virtual content delivery, it is es-

sential to have a context-aware system that can continuously track

and recognize the physical object the user is interacting with. Al-

though one can leverage the camera on the AR device to recognize

the object in the user’s view directly [54], one practical aspect that

has been largely overlooked is that having the object in view does

not always mean the user is interacting with it. This is especially

true in scenarios where head-mounted AR devices are used, for

which one cannot simply rely on the location and orientation of the

device as the indicators of potential user-object interaction. In fact,

state-of-the-art head-mounted AR solutions have incorporated eye

trackers to estimate the visual attention of the user [1, 2].

In this case study, we leverage the gaze signals captured by head-

mounted AR devices to recognize four interactive activities that

are performed by a visitor to a virtual museum:

• Read: reading text descriptions of an exhibit.

• Communicate: talking with someone in the museum or watch-

ing monologue videos of an artist.

• Browse: browsing paintings that are exhibited in the museum.

• Watch: watching a descriptive video about an exhibit.

To showcase how gaze-based activity recognition can be used to

benefit an AR user’s experience in this application, we develop a

demo on the Magic Leap One AR headset [2]. A short video of the

demo can be found at https://github.com/EyeSyn/EyeSynResource.

Specifically, leveraging the gaze signals that are captured by the

Magic Leap One, the context-aware system can recognize the inter-

active activity the user is performing. Then, based on the context,

the system adjusts the digital content displayed in the user’s view

to enhance her engagement and learning experience.

4 PSYCHOLOGY-INSPIRED GENERATIVE
MODELS

Below, we present the detailed design of EyeSyn. We first introduce

the fixation model, followed by three psychology-inspired models

that synthesize eye movements in text reading, verbal communica-

tion, and scene perception. While these models are designed based

on findings in psychology and cognitive science, to the best of

our knowledge, we are the first to develop generative models to

synthesize realistic eye movement signals for activity recognition.

4.1 Fixations Modeling

Gaze and fixation are the two most common eye movement be-

haviors. Gaze point refers to the instantaneous spatial location on

the stimulus where the subject’s visual attention lands, while fixa-

tion point refers to the spatial location where the subject tries to

Figure 2: Example of gaze perturbations in a fixation.

Figure 3: (a) Example of the gaze perturbation in terms of

gaze angle (𝜃 ) and the gaze offset (𝑙). (b) Decomposition of
the overall gaze perturbation.

maintain her gaze. When the eyes are fixating on the fixation point,

the gaze points captured by the eye tracker contain perturbations.

To illustrate, we use the Pupil Labs eye tracker [55] to record the

gaze points while a subject is fixating on a red calibration point dis-

played on a computer monitor. As shown in Figure 2, the recorded

gaze points contain many perturbations and fluctuate around the

calibration point. The two major sources of the perturbations are

the microsaccades and the noise in eye tracking. Below, we introduce

models that simulate the perturbations and generate realistic gaze

signals in fixations.

Metrics for modeling. To quantify the gaze perturbations, we

introduce gaze angle and gaze offset as the metrics. As shown in

Figure 3(a), the red dashed line is the direction from the eyes to the

fixation point, while the green dashed line is the link between the

eyes and the gaze measured by the eye tracker. The gaze angle 𝜃
measures the deviation in degrees between the two lines, while the

gaze offset 𝑙 captures the Euclidean distance between the measured
gaze and the fixation point on the visual scene. The height and

width (in the unit of meters) of the visual scene are denoted by ℎ
and 𝑤 , respectively. The line-of-sight distance between the eyes
and the fixation point is denoted by 𝑑 . Below, we model the gaze
perturbations in terms of the two metrics.

Modeling microsaccades. During fixations, the eyes make mi-

croscopic movements known as microsaccades, which are subcon-

scious movements that are produced by the human oculomotor

system to maximize visual acuity and visual perception during the

fixation. Recent studies in neurophysiology have shown that the

erratic fluctuations in fixations can be modeled by 1/𝑓 𝛼 noise [56],

where 𝑓 is the cyclic frequency of the signal and 𝛼 is the inverse fre-

quency power that ranges from 0 to 2. In this work, we simulate the

microsaccades-induced gaze perturbation by applying a 1/𝑓 𝛼 filter

on a stream of Gaussian white noise [57]. Specifically, we model the

perturbations in gaze angle, 𝜃micro, by 𝜃micro = F(𝑠, 𝛼), where 𝑠
is the input white noise that follows the Gaussian distribution of

N(0, 1/300) (in degrees) [31], and F(𝑠, 𝛼) is a 1/𝑓 𝛼 filter with the

inverse frequency power of 𝛼 . We set 𝛼 to 0.7 for generating more

realistic microsaccade patterns [31, 32].
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Figure 4: Example of simulated gaze points given different

visual scene sizes (𝑤 and ℎ) and distances 𝑑 .

Modeling noise in eye tracking.The noise in eye tracking also

contributes to the gaze perturbations. In practice, many factors can

influence eye tracking quality [58], including: the environment (e.g.,

different lighting conditions), the eye physiology of the subjects,

and the design of the eye tracker (e.g., resolution of the camera and

the eye tracking algorithm). Following the literature [32], we model

the gaze perturbations (in degrees) that result from eye tracking

noise, 𝜃track, by a Gaussian distribution 𝜃track ∼ N(0, 1.07).
Gaze simulator. To sum up, as shown in Figure 3(b), taking

the fixation point as the origin of the coordinate system, we can

further decompose the overall perturbation in the X and Y direc-

tions, in which we use notations 𝑙𝑥 , 𝑙𝑦 , 𝜃𝑥 , and 𝜃𝑦 to denote the

decomposed gaze offsets and gaze angles for the two directions,

respectively. Then, we can obtain 𝑙𝑥 and 𝑙𝑦 by 𝑙𝑥 = 2𝑑 · sin(𝜃𝑥/2)
and 𝑙𝑦 = 2𝑑 · sin(𝜃𝑦/2), respectively, where 𝑑 is the line-of-sight

distance between the eyes and the calibration point; 𝜃𝑥 and 𝜃𝑦 are
the decomposed gaze angles in X and Y, respectively, which are

modeled by 𝜃micro + 𝜃track.

After modeling the gaze offset, we use a sequence of𝑚 fixation

points, P = {p1, . . . , p𝑚}, as the input to simulate gaze points in
fixations. Each point p𝑖 = (𝑥𝑖 , 𝑦𝑖 ) represents a potential fixation
point on a normalized 2D plane, where 𝑥𝑖 and 𝑦𝑖 are the X and Y

coordinates, respectively. Moreover, given a𝑤 × ℎ visual scene, we

can transfer p𝑖 from the normalized plane to the coordinate of the

visual scene by: p′𝑖 = (𝑥𝑖 × 𝑤,𝑦𝑖 × ℎ), ∀p𝑖 = (𝑥𝑖 , 𝑦𝑖 ) ∈ P. This
transformation allows us to take the size of the visual scene into

account when simulating the gaze points.

Then, we use Gi = {𝑔𝑖,1, . . . , 𝑔𝑖,𝑛} to denote a sequence of 𝑛
gaze points that will be captured by the eye tracker when the

subject is fixating on p′𝑖 . The length of the sequence, 𝑛, is equal
to 𝑡𝑖 × 𝑓𝑠 , in which 𝑡𝑖 is the fixation duration on p′𝑖 , and 𝑓𝑠 is the
sampling frequency of the eye tracking device. The 𝑘th gaze point,
Gi (𝑘) = 𝑔𝑖,𝑘 , is obtained by adding a gaze offset to p

′
𝑖 :

Gi (𝑘) = p′𝑖 + Li (𝑘), (1)

where Li is a sequence of gaze offsets generated based on Equa-

tions (1)-(3), and Li (𝑘) =
(
𝑙𝑥 (𝑖), 𝑙𝑦 (𝑖)

)
is the 𝑘th gaze offset in the

sequence. As an example, Figure 4 shows the simulated gaze points

when taking a grid of nine fixation points as the inputs. Different

visual scene sizes𝑤 × ℎ and distances 𝑑 are used in the simulation.

We observe that a longer visual distance 𝑑 or a smaller visual scene

leads to higher perturbations in the simulated gaze signal, which

matches the observations with practical eye trackers [59].

4.2 Eye Movement in Reading

Below, we introduce the details of the ReadingGaze model, which

incorporates both OVP theory and the skipping effect to simulate

the eye movements in text reading.

Figure 5: Example of detecting the optimal viewing posi-

tions on the input text image.

Table 1: Probability of fixation and mean fixation duration

(in ms) on the target word as a function of the word length

(in number of letters) [44, 45].
Word length Fixation probability Fixation duration

1 0.077 209

2 0.205 215

3 0.318 210

4 0.480 205

5 0.800 229

6 0.825 244

7 0.875 258

8 0.915 260

�9 0.940 276

4.2.1 Text recognition-based OVP detection. We introduce a text

recognition-based OVP detection module to identify the potential

fixation points in a given text stimulus. Specifically, we leverage the

Google Tesseract optical character recognition engine [60] to detect

the locations and lengths of the words in an input text image.We use

Tesseract because of its high efficiency and its support of more than

100 languages [61]. As shown in Figure 5, the words in the input

text image are detected and highlighted by blue bounding boxes.

The centers of the detected words are regarded as the OVPs. The

associated word lengths are shown above the bounding boxes. Note

that we are not interested in recognizing the exact text. Rather, we

leverage the coordinates of the detected bounding box to calculate

the OVP. Moreover, we obtain the length of the word (in number

of letters) and use it to simulate the skipping effect.

4.2.2 Skipping effect and fixation simulation. We leverage the eye

movement statistics reported in Rayner et al. [44, 45] as the inputs

to simulate the skipping effect and the fixation decision in text

reading. Specifically, Table 1 shows the probability of fixation and

the mean fixation duration on the target word as a function of the

word length (in number of letters). Note that the fixation durations

in Table 1 do not consider refixation (i.e., the behavior of fixating

on a given word more than once), because given the OVP as the

landing position for fixation, the probability of refixating is lower

than 6%, regardless of the word length [24].

4.2.3 The ReadingGaze model. Putting everything together, our

model takes the text image as the input and detects a sequence of

OVPs with the associated word lengths (as shown in Figure 5). Then,

leveraging the statistics given in Table 1, it simulates the skipping

effect on each of the detected OVPs based on its word length, and

assigns fixation durations to the selected OVPs (i.e., OVPs that

will be fixated on). The outputs of the ReadingGaze model are a

sequence of𝑚 fixation points P = {p1, . . . , p𝑚} and the associated
fixation durations T = {t1, . . . , t𝑚}, where each point p𝑖 = (𝑥𝑖 , 𝑦𝑖 )
is an OVP at which the subject will fixate on while reading, and 𝑡𝑖
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Figure 6: The pipeline of facial regions tracking.

Figure 7: The tracked coordinates of the three facial regions

in a 20-second video. The outliers in the time series are due

to the detection errors of the Viola-Jones algorithm.

is the associated fixation duration. Lastly, we take P and T as the

input of the gaze simulator in Equation 1.

4.3 Eye Movement in Verbal Communication

Below, we introduce the detailed design of VerbalGaze, which con-

sists of a facial regions tracking module and a Markov chain-based

attention model.

4.3.1 Facial region tracking. Taking the monologue video as input,

we leverage the resource-efficient Viola-Jones algorithm [62] to

detect the eyes, nose, and mouth of the speaker in the video frames.

The centers of the detected facial regions are considered as the

potential fixation locations. The processing pipeline of the facial

regions tracking is shown in Figure 6. The detected eyes, nose, and

mouth are bounded by red, yellow, and blue boxes, respectively,

with their centers marked by circles. We denote the time series of

the tracked coordinates of eyes, nose, and mouth, by C𝑒𝑦𝑒𝑠 , C𝑛𝑜𝑠𝑒 ,

and C𝑚𝑜𝑢𝑡ℎ , respectively.

Figure 7 is an example of tracking the facial regions for a 20-

second video with a 30fps frame rate (thus, 600 frames). The time

series of the tracked positions are normalized. We can see outliers

in the tracked positions, which result from the detection errors of

the Viola-Jones algorithm, and appear mostly when the eyes or the

mouth of the speaker are closed. We apply a scaled median absolute

deviation-based outlier detector on a sliding window of 60 points

to detect and remove these errors.

4.3.2 Markov chain-based attention model. We design a three-state

Markov chain to simulate the visual behaviors of fixating on and

switching attention between different facial regions in verbal commu-

nication. As shown in Figure 8(a), wemodel the behaviors of fixating

on the eyes, nose, and mouth regions as three states of a discrete-

Figure 8: (a) Diagram of the three-state Markov chain; the

three states EYES, NOSE, and MOUTH, represent the eye

movement behavior of fixating on the eyes, nose, andmouth

regions, respectively; the transitions model the attention

shift between facial regions. (b) the Gaussian distributions

of the ISI on the three states.

time Markov chain with state space X = {𝐸𝑌𝐸𝑆, 𝑁𝑂𝑆𝐸,𝑀𝑂𝑈𝑇𝐻 }.
We model the attention shift from one facial region to another by a

Markovian transition. For instance, the attention shift from eyes to

mouth is modeled by the transition from EYES to MOUTH. Lastly,

each transition is assigned a transition probability. In this work, the

transition probabilities are calculated based on the eye movement

statistics reported by Jiang et al. [25]. Note that we can easily adjust

the transition probabilities to fit the eye movement behaviors in

different scenarios. For instance, we can increase the probability

of fixating on eyes to simulate verbal communication in a face-to-

face scenario, in which listeners tend to look more at the speaker’s

eyes due to more frequent eye contact [49]. Then, to simulate the

attention shifts among the three facial regions, we perform a ran-

dom walk on the Markov chain to generate a sequence of states

𝑥1:𝑛 � (𝑥1, . . . , 𝑥𝑛), where 𝑥𝑡 : Ω → X and 𝑥𝑡 ∈ 𝑥1:𝑛 represents

the state at step 𝑡 . An example of the simulated state sequence is
shown in Figure 9(a), where the initial state 𝑥1 is 𝐸𝑌𝐸𝑆 .

4.3.3 Adding the ‘sense of time’. We use the inter-state interval (ISI)

to represent the duration of time (in seconds) that the attention will

stay in each state 𝑥𝑡 ∈ 𝑥1:𝑛 . Moreover, since the three facial regions
function differently in the cognitive process of verbal communi-

cation, they lead to different fixation durations [25, 46]. Thus, as

shown in Figure 8(b), we use three Gaussian distributions to model

the ISI of the three states. The mean, 𝜇, and standard deviation, 𝜎 ,
of the distributions are adopted from the statistics reported in [25].

For a video with𝑚 frames, we generate the attention sequence,

𝑎1:𝑚 � (𝑎1, . . . , 𝑎𝑚), to simulate the subject’s attention on each
of the video frames. Formally, attention shift is simulated to occur

at frame index 𝜏 ∈ 𝜏1:𝑛 � (𝜏1, . . . , 𝜏𝑛) of the video, where 𝜏1 =
𝑓𝑣×𝐼𝑆𝐼1, and 𝜏𝑖 = 𝜏𝑖−1+ 𝑓𝑣×𝐼𝑆𝐼𝑖 , ∀𝑥𝑖 ∈ 𝑥1:𝑛 . Notation 𝐼𝑆𝐼𝑖 denotes
the inter-state interval for attention state 𝑥𝑖 , and is sampled from
the corresponding Gaussian distribution defined in Figure 8(b);

𝑓𝑣 is the frame rate (in fps) of the video. Then, 𝑎1:𝑚 is generated

by assigning each of the image frames with the corresponding

attention state value |𝑥𝑖 |:

𝑎 (𝜏𝑖−1+1):𝜏𝑖 = |𝑥𝑖 |, ∀ 𝜏𝑖 ∈ 𝜏1:𝑛, (2)

where |𝑥𝑖 | ∈ {𝐸𝑌𝐸𝑆, 𝑁𝑂𝑆𝐸,𝑀𝑂𝑈𝑇𝐻 }. As an example, Figure 9(b)
shows the attention sequence 𝑎1:𝑚 for a 100-second video.

4.3.4 The VerbalGaze model. We combine the simulated attention

sequence, 𝑎1:𝑚 , with the location time series, i.e.,C𝑒𝑦𝑒𝑠 ,C𝑛𝑜𝑠𝑒 , and

C𝑚𝑜𝑢𝑡ℎ , obtained from the facial region tracking module, to gener-

ate a sequence of𝑚 fixation points P = {p1, . . . , p𝑚}. Each fixation
point p𝑖 = (𝑥𝑖 , 𝑦𝑖 ) represents the location of the corresponding
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Figure 9: (a) Simulated discrete state sequence 𝑥1:𝑛 with 𝑛 =
62 and 𝑥1 = 𝐸𝑌𝐸𝑆 ; (b) the corresponding attention sequence
𝑎1:𝑚 on 3000 video frames (with 𝑓𝑣 = 30); (c) simulated fixa-
tion sequence P; (d) simulated gaze time series.

facial region the subject will fixate on:

p𝑖 =

⎧⎪⎪⎨
⎪⎪⎩

C𝑒𝑦𝑒𝑠 (𝑖) if 𝑎𝑖 = 𝐸𝑌𝐸𝑆 ,
C𝑛𝑜𝑠𝑒 (𝑖) if 𝑎𝑖 = 𝑁𝑂𝑆𝐸,

C𝑚𝑜𝑢𝑡ℎ (𝑖) if 𝑎𝑖 = 𝑀𝑂𝑈𝑇𝐻 ,
∀p𝑖 ∈ P. (3)

As 𝑎1:𝑚 simulates the visual attention for all the video frames, the

associated set of fixation durations T = {t1, . . . , t𝑚} is obtained by:
ti = 1/𝑓𝑠 , ∀ti ∈ T. An example of P is shown in Figure 9(c), which

is generated by taking the tracked facial region locations (shown

in Figure 7) and the attention sequence (shown in Figure 9(b)) as

the inputs. Finally, P and T are fed into the gaze simulator (in

Equation 1) to synthesize the gaze signal shown in Figure 9(d).

4.4 Eye Movement in Scene Perception

Below, we introduce two generative models, StaticScene and Dy-

namicScene, to synthesize eye movements in static and dynamic

scene perception, respectively. Specifically, we design the image

feature-based saliency detection model to identify the potential

fixation locations in the scene, and develop a centrality-focused

saliency selection algorithm to simulate the effects of the central

fixation bias on the selection of fixation location.

4.4.1 Saliency-based fixation estimation. We leverage the widely

used bottom-up saliency model proposed by Itti et al. [34, 35] to

identify the saliency of an input image. In brief, the saliency estima-

tion model first extracts low-level vision features to construct the

intensity, color, and orientation feature maps, respectively. Then,

the three feature maps are normalized and combined into the final

saliency map [35]. Taking the saliency map S as the input, we

simulate the serial and selective visual attention behavior in scene

perception. Specifically, for each of the salient regions in S, we first

identify the location of its local maxima, which indicates the point

to which attention will most likely be directed. Then, we generate a

set of𝑚 fixation pointsP = {p1, . . . , p𝑚}, in which𝑚 is the number

of salient regions in S, and each fixation point p𝑖 = (𝑥𝑖 , 𝑦𝑖 ) ∈ P
corresponds to the location of one local maxima. As shown in Fig-

ure 10(a), six salient regions and their local maxima are identified

Figure 10: (a) Original saliency map S with the associated

fixation sequence P = {p1, p2, p3, p4, p5, p6} overlaid on it.

(b) The weighted saliency map S̄ with the new fixation se-

quence P̄ = {p2, p6, p1, p3, p4, p5} overlaid on it. (c) The sim-
ulated gaze points overlaid on the input image.

in S, which correspond to six potential fixation locations. Finally,

we simulate the serial attention behavior by connecting the iden-

tified fixation locations in order of their local maxima. As shown,

a fixation sequence P = {p1, p2, p3, p4, p5, p6} is generated, in
which p1 and p6 correspond to the fixation points that have the
highest and the lowest local maxima in S, respectively.

4.4.2 Centrality-focused fixation selection. To simulate the central

fixation bias effect, we further weight each of the fixation points

inP by its distance to the image center. Specifically, we use notation

S(p𝑖 ) to denote the saliency value of p𝑖 inS. The weighted saliency
value S̄(p𝑖 ) is obtained by:

S̄(p𝑖 ) = S(p𝑖 ) · 𝑒
−‖pi−A‖ ,∀p𝑖 ∈ P, (4)

whereA denotes the center of the saliency map, and ‖pi−A‖ is the
Euclidean distance between pi and A. This distance metric gives
more weight to fixation points that are closer to the image center.

Then, by sorting the weighted fixation points, we generate a new

fixation sequence P̄. An example is shown in Figure 10, in which
the original saliency map S is compared with the weighted saliency

map S̄. The fixation point p6, which is closer to the image center,
has a higher saliency value after the weighting, and is selected as

the second attention location in the weighted fixation sequence P̄.
Below, we introduce two generative models we developed to syn-

thesize gazes in static and dynamic scene perception.

4.4.3 Static scene perception. A static scene refers to the scenar-

ios in which the salient regions of the scene do not change over

time (e.g., paintings). In this case, the input for the eye move-

ments simulation is simply the image of the static visual scene.

We introduce the StaticScene model which leverages the afore-

mentioned image saliency-based and centrality-focused fixation

estimation algorithm to generate a sequence of fixation points,

P̄ = {p1, . . . , p𝑛}, to simulate visual attention when a subject is
viewing the static scene. We further model the fixation durations,

T = {t1, . . . , t𝑛}, in static scene perception by aGamma distribution
T ∼ Γ(𝛼 = 2.55, 𝛽 = 71.25). The values of the shape parameter 𝛼
and the rate parameter 𝛽 are estimated based on 16,300 fixation

duration instances extracted from the DesktopActivity [12] and the

SedentaryActivity [8] eye tracking datasets. Specifically, we lever-

age the dispersion-based fixation detection algorithm [63] to detect

fixations from the raw gaze signal, and fit a Gamma distribution on

the calculated fixation durations. Finally, for gaze signal simulation,

we use P and T as the inputs of the gaze simulator in Equation 1.

As an example, Figure 10(c) shows the gaze points synthesized by

the StaticGaze model when a subject is viewing the painting.
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Figure 11: Example of generating the fixation sequence in a

dynamic scene: figures in the first row are three continuous

video frames; figures in the second row are the correspond-

ing weighted saliency maps.

4.4.4 Dynamic scene perception. In dynamic scene perception (e.g.,

a subject watching videos or performing visual search in free space),

the salient objects of the visual scene change over time. We intro-

duce the DynamicScene model which takes a stream of video

frames as the input for gaze simulation. According to the literature,

the mean fixation duration in scene perception and visual search

is around 180-330ms [64]. Thus, when the frame rate of the input

video is higher than 5.4fps, i.e., with a frame duration shorter than

180ms, there will be only one fixation point in each video frame. In

the current design, we assume the frame rate of the input video is

higher than 5.4fps, and thus, instead of considering the local max-

ima of all the salient regions as fixation points, for each of the video

frames we only select the location with the highest saliency value

as the fixation point. As shown in Figure 11, a fixation sequence

P = {p1, p2, p3} is generated by selecting the salient region with
the highest saliency in each of the three continuous frames. The

fixation durationsT = {t1, . . . , t𝑛} in dynamic scene perception are
determined by the frame rate 𝑓𝑣 of the video: t𝑖 = 1/𝑓𝑣, ∀ti ∈ T.
P and T are used as the inputs of Equation 1 to synthesize eye

movement signals.

5 SYSTEM DESIGN AND DATASET

5.1 Synthetic Eye Movement Dataset

We implement EyeSyn inMATLAB, and use it to construct amassive

synthetic eye movement dataset, denoted as SynGaze. The details

of SynGaze are summarized in Table 2. Specifically, we use the

following image and video data as the inputs to simulate gaze

signals for the four activities:

• Read: we extract 100 text images from each of the three digital

books, “Rich Dad Poor Dad”, “Discrete Calculus”, and “Adler’s

Physiology of the Eye”. The three books differ in both text layout

and font size. The extracted text images are used as the inputs to

the ReadingGaze model.

• Communicate: we extract 100 monologue video clips from the

online interview series of the “ACM Turing Award Laureate

Interview” as the inputs to the VerbalGaze model. Each video clip

lasts 5 to 7 minutes with a frame rate of 30fps.

• Browse: we leverage a public dataset with 7,937 images of famous

paintings [22] as the input to the StaticScene model.

• Watch: we extract 50 short videos from the “National Geographic

Animals 101” online documentary video series as the input to

Table 2: Summary of the synthetic eye movement dataset.
Activity Simulation inputs Simulated data length

Read 300 text images from three books 9.9 hours

Communicate 100 video clips of monologue interview 30.9 hours

Browse 7,937 images of paintings 132.3 hours

Watch 50 video clips of documentary videos 11.7 hours

Figure 12: (a) The scatter plots of the aggregated gaze signals;

and (b) the gaze heatmap generated from the gaze signal.

the DynamicScene model. Each video lasts 2 to 6 minutes.

When modeling the microsaccades and the eye tracking noise in

fixations (Section 4.1), we consider different settings of the scale

parameters to simulate various rendering sizes of the visual stimuli

(𝑤 = ℎ = 0.5 and 𝑤 = ℎ = 1𝑚), and viewing distances (𝑑 = 0.5𝑚,

𝑑 = 1𝑚, and 𝑑 = 2𝑚). The sampling frequency for the simulation is

set to 30Hz.

Extension feasibility. Note that SynGaze can easily be ex-

tended by using a variety of simulation settings, and by taking

different datasets as the inputs. For instance, EyeSyn can be read-

ily applied to the visual saliency dataset [39] which contains 431

video clips of six different genres, the iMet Collection dataset [65]

which contains over 200K images of artwork, and the text image

dataset [23] which consists of 600 images of scanned documents,

to synthesize realistic gaze signals on new sets of visual stimuli.

5.2 Gaze-based Activity Recognition

Gaze heatmap.We propose the gaze heatmap as the data repre-

sentation for gaze-based activity recognition. A gaze heatmap is a

spatial representation of an aggregation of gaze points over a certain

window of time. It provides an overview of the eye movements and

indicates the regions in the visual scene at which subject’s attention

is located. As an example, Figure 12 shows the gaze heatmaps that

are generated from the aggregated gaze points captured by the

eye tracker. The color of the heatmap indicates the density of the

subject’s visual attention on the normalized 2D scene. To generate

a gaze heatmap, we take the gaze points aggregated in each sensing

window as the inputs, and create the 2D histogram of the gaze

points based on their normalized coordinates. Then, we perform a

2D convolution operation with a Gaussian kernel on the histogram

to generate the gaze heatmap. In our implementation, the resolution

of the histogram is 128, and the width of the Gaussian kernel is 1.

The final gaze heatmap has a size of 128×128.

CNN-based classifier.We design a convolutional neural net-

work (CNN)-based classifier for gaze-based activity recognition.

Table 3 shows the network architecture of the classifier. We choose

this shallow design over deeper models (e.g., ResNet and VGGNet)

to prevent overfitting when a small-scale dataset is used for model

training [18]. The input to the classifier is a 128×128 gaze heatmap.
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Table 3: The network design of the CNN-based classifier.
Layer Size In Size Out Filter

conv1 128 × 128 × 1 128 × 128 × 32 3 × 3, 1

pool1 128 × 128 × 32 64 × 64 × 32 2 × 2, 2

conv2 64 × 64 × 32 64 × 64 × 32 3 × 3, 1

pool2 64 × 64 × 32 32 × 32 × 32 2 × 2, 2

conv3 32 × 32 × 32 32 × 32 × 32 3 × 3, 1

pool3 32 × 32 × 32 16 × 16 × 32 2 × 2, 2

flatten 16 × 16 × 32 8192

fc 8192 128

fc 182 4

Note that while conventional hand-crafted feature-based classi-

fiers [8, 9] may also benefit from the synthesized data generated

by EyeSyn, we choose the CNN-based design due to its superior

ability in extracting spatial features from the gaze signal [12].

6 EVALUATION

In this section, we first perform a signal level evaluation to assess

the similarity between the actual and the synthesized gaze signals.

Then, we investigate how the synthesized signals can be used to

improve the performance of gaze-based activity recognition.

6.1 Data Collection

We collect a gaze dataset, denoted as VisualProcessingActivity,

for the evaluation. The study is approved by our institution’s In-

stitutional Review Board. Two different eye tracking devices, the

Pupil Labs [55] and the Magic Leap One [2], are used in the data

collection, which allows us to evaluate our work with real gaze

signals captured by heterogeneous devices. Eight subjects partici-

pate in the study: four subjects leverage the onboard eye tracker

in the Magic Leap One, while the others use the Pupil Labs for eye

movement collection. Both devices capture eye movements with a

sampling frequency of 30Hz. The subjects can move freely during

the experiment. Specifically, the subjects who are wearing the Pupil

Labs are sitting in front of a 34-inch computer monitor at a distance

of 50cm. The visual stimulus for each of the activities is displayed

on the monitor. The resolution of the display is 800×600. We con-

duct the manufacturer’s default on-screen five-points calibration

for each of the subjects. For the Magic Leap One, the stimuli are

rendered as virtual objects placed on blank white walls around a

room at head height. The virtual objects are 50cm×50cm in size,

and their distances to the subjects are 1 to 1.5m. We perform the

built-in visual calibration on the Magic Leap One for each subject.

For both devices, we ask the subjects to perform each of the

four activities, i.e., Read, Communicate, Browse, andWatch, for five

minutes. They can freely choose the stimuli that we have prepared:

• Read: we create three sets of text images from three digital

reading materials that differ in both text layout and font size:

a transcription of Richard Hamming’s talk on “You and Your

Research”; a chapter from the book “Rich Dad Poor Dad”; and a

chapter from the book “Discrete Calculus”.

• Communicate: seven monologue videos are prepared, includ-

ing: three video clips extracted from an online interview with

Anthony Fauci; two video clips extracted from the ACM Tur-

ing Award Laureate interview with Raj Reddy; and two online

YouTube videos in which the speaker is giving advice on career

Figure 13: Comparison between the actual (left) and the sim-

ulated (right) gaze signals for the four activities. The four

rows from top to bottom correspond to the four different

activities: Read, Communicate, Browse, and Watch.

development. All videos have only one speaker.

• Browse: we randomly select a subset of 200 images from a public

painting image dataset [22] that contains 7,937 images of famous

paintings. During the data collection, for each of the subjects, we

randomly select 30 images from the subset and show each of the

selected images to the subject for 10 seconds.

• Watch: we randomly pick six short documentary videos from

the online video series “National Geographic Animals 101”. Each

video lasts 5 to 6 minutes.

The details of the stimuli used in the data collection can be found

at https://github.com/EyeSyn/EyeSynResource.

6.2 Signal Level Evaluation

6.2.1 Setup. In this evaluation we leverage the Pupil Labs eye

tracker to collect gaze signals from two subjects when they are

performing the four activities. For each of the activities, we give

the same visual stimuli to the two subjects, and ask them to per-

form each of the activities for 30 seconds. The stimuli used in this

experiment are: (1) a page of text in the book “Rich Dad Poor Dad”

for Read; (2) an interview video with Anthony Fauci for Communi-

cate; (3) an image of a Paul Cezanne painting for Browse; and (4) a

documentary video from the National Geographic series for Watch.

For gaze simulation, the scale parameters 𝑑 ,𝑤 , and ℎ (defined in

Figure 3) are set to 50cm, 40cm, and 30cm, respectively. Identical

visual stimuli are also used as the inputs for gaze synthesis.

6.2.2 Signal Comparison. The scatter plots in Figure 13 compare

the real gaze signals with the synthetic signals. The dots in each

of the images are the 900 gaze points displayed in a normalized

2D plane (with X and Y coordinates ranging from 0 to 1). The four

rows from top to bottom correspond to the gaze signals for Read,

Communicate, Browse, and Watch, respectively. The two columns

on the left correspond to the actual gaze signals of the two subjects;

the two columns on the right are the synthesized signals generated

in two simulation sessions.

First, the difference between the gaze signals of the two subjects
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demonstrates the heterogeneity in human visual behavior, even in

the case where the same visual stimuli and the same eye tracker were

used in the data collection. For instance, the gaze points shown in

Figure 13(a) cover a wider range in the Y direction than the gaze

points shown in Figure 13(b). This indicates that Subject 1 reads

faster than Subject 2 (i.e., Subject 1 reads more lines in 30 seconds).

Similarly, the gaze points in Figure 13(e) are clustered in a single

area, which indicates that Subject 1 fixates his visual attention on

a single facial region of the speaker in the monologue video. By

contrast, the three clusters in Figure 13(f) indicate that Subject 2

switches her attention among the three facial regions of the speaker.

Second, by comparing the synthesized signal with the real gaze

signal, we make the following observations for each of the activities:

• Read: Figures 13(a-d) show that the distinct “left-to-right" read-

ing pattern [13, 14] in the actual gaze signals is well reproduced

in the simulated signals. Figures 13(c,d) show that the diversity

in reading speed is also well captured in the simulated signals.

• Communicate: As shown in Figures 13(g,h), similar to the real

gaze signal, the synthesized gaze points are clustered in three ar-

eas that correspond to the three facial regions of the speaker. The

results show that the VerbalGaze model introduced in Section 4.3

can effectively replicate the actual visual behaviors of “fixating

on and switching attention between different facial regions” [25].

• Browse: Figures 13(i-l) indicate that the geometric patterns of

the gaze signals when subjects are browsing the painting are well

reproduced by the StaticScene model introduced in Section 4.4.

Specifically, in both real and synthesized signals, the gaze points

are clustered at different saliency regions of the painting.

• Watch: In the stimuli used for theWatch activity, themost salient

object appears frequently at locations that are close to the center

of the scene. Thus, for both real and synthesized eye movement

signals, the gaze points are densely located around the center

of the 2D plane. As shown in Figures 13(m-p), this geometrical

pattern is well simulated by the DynamicScene model.

Overall, our results demonstrate the feasibility of using EyeSyn

in synthesizing realistic eye movement signals that closely resemble

the real ones. More specifically, our models can not only replicate

the distinct trends and geometric patterns in the eye movement signal

for each of the four activities, but can also simulate the heterogeneity

among subjects. The latter is important as a synthesized training

dataset that captures the heterogeneity in eye movements can po-

tentially overcome the domain shift problem in gaze-based activity

recognition and ensure better classification accuracy [12].

6.3 Performance in Activity Recognition

Below, we leverage the synthetic and real gaze datasets, SynGaze

and VisualProcessingActivity, to investigate how EyeSyn can be

used to improve the performance of gaze-based activity recognition.

Specifically, we consider the few-shot learning scenario, where we

aim to train the CNN-based classifier (Section 5.2) such that it

can quickly adapt to new subjects with only 𝐾 training instances

(𝐾 ∈ {1, 2, 3, 5, 10} is a small number) for each of the four activities.
We perform the evaluation on the VisualProcessingActivity dataset

in the leave-one-subject-out manner, which has been used in previ-

ous studies [9, 12]. Specifically, we regard the data collected from

one subject as the target set and the data collected from the remain-

ing subjects as the source set. The single subject in the target set

simulates the scenario where the system is deployed to a new sub-

ject with limited real gaze samples available for training (𝐾 samples

per class). We denote the simulated gaze dataset SynGaze as the

synthetic training set in our evaluation. The sensing window size is

30s with 50% overlap between consecutive windows.

6.3.1 Methods. We consider five strategies to train the CNN-based

classifier for the few-shot learning scenario:

(S1) Real data + Image-based data augmentation: we use the

few-shot samples, i.e., 4×𝐾 samples, from the target set to train the

classifier and test it using the remaining data in the target set. This

represents the scenario where we only have the data collected from

the target subject. Moreover, we apply the ImageDataGenerator [66]

in Keras to perform standard image-based data augmentation tech-

niques during the training. Specifically, we apply horizontal and

vertical shifts with the range of (-0.3, 0.3) to the input gaze heatmaps

to simulate shifts of the gaze signal in both X and Y directions; we

apply rotation augmentation with the range of (-10, 10) degrees to

simulate variance in the gaze signal due to different head orienta-

tions; finally, we leverage the zoom augmentation with the range

of (0.5, 1.5) to simulate the effects of different viewing distances.

(S2) Real data +Transfer learning: we first train the CNN-based

classifier on the source set. Then, we employ transfer learning [67]

to transfer the trained model to the target set. In brief, we freeze

the pre-trained weights of all the convolutional layers in the DNN

architecture (shown in Table 3), and fine-tune the fully connected

layers using the few-shot samples from the target set. This strat-

egy represents the scenario where we have the access to the gaze

samples collected from the other subjects during training. This

method has been widely used for domain adaptation with few-shot

instances [10, 17].

(S3) Real data +MAML: we apply the model-agnostic meta learn-

ing (MAML) [68] to train the classifier on the VisualProcessingAc-

tivity dataset. Specifically, we use the source set to train the classi-

fier in the meta-training phase, and fine-tune it with the few-shot

instances from the target set in the adaptation phase [68]. The

MAML-based strategy is the state-of-the-art solution for few-shot

gaze-based activity recognition [12]. Similar to strategy S2, this

strategy also assumes the availability of the source set during the

training.

(S4) Synthetic data + Transfer learning: we train the classifier

on the synthetic training set, and leverage transfer learning to fine-

tune the fully connected layers of the classifier using the few-shot

samples from the target set. In contrast to strategies S2 and S3, it

requires only the synthesized gaze data for training, and only the

few-shot real gaze samples are needed during the fine-tuning stage.

(S5) Synthetic data +MAML: we apply MAML on the synthetic

training set during the meta-training phase. Then, in the adaptation

phase, we fine-tune all layers of the classifier by using the few-shot

samples from the target set. Similar to strategy S4, we do not need

any real gaze samples in the pre-training stage.

6.3.2 Overall result. The performance of the five learning strate-

gies with different numbers of shots (𝐾) is shown in Figure 14.

Figures 14 (a) and (b) are the averaged accuracy over all the sub-

jects who use the Magic Leap One and the Pupil Labs in the data
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(a) Magic Leap One

(b) Pupil Labs

Figure 14: Accuracy of different training strategies in the

few-shot learning scenario with gaze data collected from (a)

Magic Leap One and (b) Pupil Labs.

collection, respectively. The error bar is the standard deviation

across the subjects. We make the following observations.

First, strategy S1 achieves the worst accuracy in all examined

cases, as the limited training samples lead to overfitting, which indi-

cates that standard image-based data augmentation cannot simulate

the diversity in gaze signals even for the same subject. By contrast, us-

ing the synthetic gaze signals for training, the transfer learning and

MAML-based strategies, i.e., S4 and S5, improve upon the accuracy

of S1 by 17.9% and 19.5% on average, respectively.

Second, leveraging the synthetic gaze dataset for training, S4 and

S5 achieve good accuracy on datasets collected from both the Magic

Leap One and the Pupil Labs. Moreover, since the two datasets are

collected from different subjects in different environments, the

results demonstrate the capability of the proposed models in cap-

turing such diversity and improve the robustness of the classifier

in heterogeneous sensing conditions.

Lastly, we compare the accuracy of the strategies that use real

(S2 and S3) and synthetic (S4 and S5) gaze signals for training. The

accuracy differences are further summarized in Table 4. As shown,

for all examined cases, we see a negligible accuracy drop when

using synthetic data for training. Specifically, for the data collected

from the Magic Leap One and the Pupil Labs, we see only 0.8% to

4.2%, and 0.3% to 4.0% accuracy drop, respectively. Moreover, when

the number of shots 𝐾 ≥ 5, the accuracy deficiency for transfer
learning and MAML are less than 2% and 3%, respectively.

Note that the small accuracy gains achieved by S2 and S3 rely

on a labor-intensive process to collect eye movement data from the

other subjects. Based on our own experience, due to the calibra-

tion, experiment setup, instruction, and device failure, it takes more

than 40 minutes to collect 20 minutes of gaze data with satisfac-

Table 4: The accuracy difference (in %) between the use of

real and synthetic gaze signals for classifier training.

Eye tracker Method
Number of shots (𝐾)
10 5 3 2 1

Magic Leap One
Transfer learning (S2-S4) 1.5 1.6 4.2 3.8 0.8

MAML (S3-S5) 2.0 3.0 2.4 3.5 1.2

Pupil Labs
Transfer learning (S2-S4) 0.3 1.2 3.7 3.3 4.0

MAML (S3-S5) 2.2 2.3 2.1 2.4 2.4

Figure 15: Accuracy with different sizes of synthetic data

used in the training. The classifier is tested on the data col-

lected from: (a) Magic Leap One and (b) Pupil Labs.

tory quality from a single subject. Indeed, the labor-intensive and

privacy-compromising [16] process has prohibited the collection

of large-scale eye movement datasets, which is evidenced by the

fact that the sizes of current public gaze-based activity datasets are

on the order of a couple of hours [8, 9, 12]. By contrast, leveraging

the massive gaze data simulated from the already-available images

and videos for training, S4 and S5 eliminate the labor-intensive

data collection and require only few-shot instances from the target

subject for fine-tuning the classifier.

6.3.3 Impact of synthetic data size and sensing window size. Below,

we examine how the amount of synthetic data used in training and

the sensing window size will affect the recognition accuracy. We

use strategy S4 as the training method in this evaluation.

First, we evaluate the recognition accuracy given different sizes

of synthetic data used in training. Specifically, we use one-fifth,

one-third, and all of the synthetic signals in SynGaze (in Section 5.1)

to train the CNN-based classifier. Then, for each of the subjects, we

apply transfer learning to fine-tune the classifier using few-shot (𝐾 )
gaze samples from the corresponding target set. The results are

shown in Figure 15. We observe that the accuracy increases with the

size of synthetic data used in training. Note that, since we are using

diverse image and video stimuli as the inputs for gaze simulation, a

larger synthetic dataset indicates a higher diversity of input stimuli.

Thus, the results indicate that the scalability of EyeSyn to diverse

visual stimuli is crucial for the final recognition accuracy: taking the

ready-to-use public image and video datasets as the inputs, EyeSyn

can readily simulate a massive amount of diverse gaze signals, i.e.,

the 185 hours of data generated in the current work, to ensure good

recognition accuracy.

Finally, we examine the impact of sensing window size on the

recognition performance. As shown in Figure 16, for all the exam-

ined few-shot scenarios, the accuracy increases with the window

size, as a larger sensing window contains more information about
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Figure 16: Accuracy with different sensing window sizes.

The classifier is tested on the data collected from: (a) Magic

Leap One and (b) Pupil Labs.

eye movements. Moreover, with a window size of five seconds, the

accuracy drops significantly. This is because the five-second win-

dow is too short to contain enough distinct eye movement patterns.

In fact, based on the statistics shown previously in Table 1 and

Figure 8(b), a five-second window may contain only two fixation

points, which is insufficient for activity recognition.

Overview: Our results demonstrate that the synthetic data can

be incorporated with either transfer learning or MAML to achieve

good recognition accuracy with only few-shot gaze instances re-

quired from the target sensing scenario (i.e., a new subject). More

importantly, without sacrificing the recognition accuracy, the pro-

posed work eliminates the need for the expensive and privacy-

compromising large-scale eye movement dataset that is required

by current state-of-the-art solutions [8, 12] for classifier training.

7 DISCUSSION

7.1 Limitations

Although EyeSyn embodies several psychology findings in the lit-

erature, its current design cannot fully replicate the complex mech-

anisms of human visual processing to synthesize eye movements

for all subject groups. For instance, people with neurodevelopmen-

tal or mental disorders, such as autism spectrum disorder [69],

schizophrenia [70], or social anxiety disorder [71], may exhibit

atypical eye movement patterns in social interactions, e.g., avoid-

ing direct eye contact with the communication partner. Moreover,

decision making in visual attention is affected by many cognitive

factors, such as the mental workload of the subject [7], the reward

of different visual saliency [72], and the current cognitive task [73].

These cognitive factors have highly diverse impacts on eye move-

ments [33]. The current design of the proposed generative models

did not take these factors into account. In fact, the implementation

of a generalized model is still an open challenge in visual behavior

modeling research [28, 74], as it is difficult to have a one size fits

all model that can synthesize visual attention for all subject groups

and possible cognitive cases. Solving this problem requires future

endeavors to integrate knowledge from various disciplines, such as

psychology, neuroscience, and the social sciences.

7.2 Future Directions

EyeSyn can be readily extended to cover more complex scenarios by

embodying the atypical eye movement characteristics of different

subject groups in its design. For instance, current works in the

neuropsychology literature [75, 76] have shown that individuals

with autism spectrum disorder exhibit reduced visual attention to

social and semantic stimuli, e.g., faces, but focus more on non-social

and low-level stimuli, e.g., vehicles. To model this behavior, we can

extend the current saliency-based fixation estimation method by

taking the social and semantic properties of the underlying stimuli

into account, e.g., we can assign a higher weight to fixation points

that are associated with non-social and low-level stimuli, and vice

versa. Similarly, subjects with schizophrenia are known to have

strikingly different eyemovement patterns during smooth pursuit (a

type of eye movement in which the eyes remain fixated on a moving

object) and visual search [77, 78]. For instance, when conducting

smooth pursuit to track a moving stimulus using their eyes, the

gaze positions for subjects with schizophrenia often lag behind the

moving stimulus, as the speed of their eye movements cannot keep

up with that of the moving visual target [78] due to the lesions

in the superior temporal sulcus [79]. Thus, to model this atypical

eye movement pattern in scene perception, we can introduce a lag

when associating the coordinates of the selected salient location

with the simulated gaze points. Overall, we believe the current

design of EyeSyn can serve as an important first step towards a

more comprehensive suite of models for eye movement synthesis.

7.3 Potential Applications

EyeSyn can also benefit applications that feature animated charac-

ters or avatars [80], such as video games [29, 30], social conversa-

tional agents [28], and photo-realistic facial animation for virtual

reality [81–83]. In these applications, the virtual avatars should

have realistic eye movements that are consistent with the ongo-

ing activity and the visual stimuli. The gaze signals synthesized

by EyeSyn can be used as the inputs of the avatar model to pro-

duce realistic eye movements for the facial animation. EyeSyn can

also be used to estimate spatial-temporal attention when a user

is viewing different visual stimuli [84, 85]. The estimated fixation

locations and saccade trajectories can further serve as the inputs for

attention-adaptive systems to improve user perceived quality in ser-

vices such as webpage loading [86], gaze-contingent rendering [87],

and foveated rendering in virtual and augmented reality [88, 89].

8 CONCLUSION

In this work we present EyeSyn, a novel suite of psychology-inspired

generative models that leverage only publicly available images and

videos to synthesize a realistic and arbitrarily large eye movement

dataset for DNN training. Our evaluation demonstrates the efficacy

of EyeSyn in replicating the distinct patterns in actual gaze signals,

as well as in simulating the gaze diversity that results from different

measurement setups and subject heterogeneity. Using gaze-based

museum activity recognition as a case study, we show that a CNN-

based classifier trained by the synthetic gaze signals can achieve

90% accuracy, without the need for labor-intensive and privacy-

compromising data collection.
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