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Abstract

The rapid advancement of large language models
has enabled numerous innovative, but also harm-
ful applications. It is therefore essential to cre-
ate these models to behave safely and responsibly.
One way to improve these models is by red team-
ing them. In this study, we aim to identify prompts
that lead large language models to exhibit unfair or
dangerous behavior in software and cybersecurity
contexts. We do this by manually creating prompts
and manually assessing the harmfulness of the re-
sponse. Our contributions include a taxonomy of
dangerous and unfair use cases of large language
models for Code, a dataset of 200 prompts tested
on eight models, an investigation into how expand-
ing the prompt, and how adding a code skeleton for
the model to complete changes the level of harm-
fulness. Among the eight models evaluated, only
CodeGemma and GPT-3.5-0125 were well-aligned
against our taxonomy categories. The unaligned
Dolphin-Mixtral and self-aligned Starcoder 2 were
notably susceptible to harmful responses across all
categories. We observed that the Model Attacks
category was problematic for most models. Ex-
panding prompts increased harmful responses in
the Cyber Attacks, Model Attacks, and Phishing
categories but decreased them in the Biased Code
Generation category. Adding a code skeleton to
prompts consistently raised harmfulness across all
categories. Large language model alignment still
needs further improvement, so we suggest employ-
ing red teaming techniques to enhance the safety
features of large language models.

1 Introduction
The rapid advancement of large language models (LLMs) has
introduced numerous innovative applications, including con-
tent summarization, information retrieval, and code comple-
tion. However, LLMs have also enabled harmful uses [11].
It is essential to create these models in such a way that they
behave in a safe and responsible manner. Multiple defense
mechanisms such as LLM safety alignment, inference guid-
ance, and input/output filters have been introduced [3]. How-
ever, it is still possible to find inputs for which LLMs display
harmful behavior [6; 25]. Additionally, as these models get
larger their capabilities increase, possibly leading to an in-
crease of possible harms [5]. Finally, another reason for this
research is that the set of potential harms is unbounded due to
the open-ended characteristic of these models [5], highlight-
ing the importance of mitigating as many potential harms as
feasible.

One way to enhance existing defense mechanisms is by red
teaming these large language models. Red teaming entails
identifying inputs that prompt the model to generate harm-
ful responses and subsequently refining the model to prevent
such outcomes [6]. There has been a lot of research into this
topic in recent years, with Ganguli et al. [6] and Perez et

al. [25] taking similar approaches. Existing research primar-
ily targets red team attacks associated with real-life crimes,
which are natural language tasks. When focused on software
and cybersecurity, it largely centers on malware creation and
distribution. This study will explore other dangerous or un-
ethical applications of LLMs related to software and cyberse-
curity.

Specifically, we will focus on the potential danger or un-
fairness posed by LLMs when responding to prompts deal-
ing with cyber security or software. The main research ques-
tion that guides this research is: How can LLMs for Code
be used for unfair or dangerous use cases? The aim of this
research is to find out for which prompts in a cyber secu-
rity or software context LLMs display unfair or dangerous
behavior. In this study, we examine scenarios in which in-
dividuals prompt LLMs to facilitate unfair or dangerous pur-
poses within software applications, including phishing, DoS
attacks, and biased code generation, among others. For exam-
ple, biased code can lead to discriminatory outcomes in hir-
ing algorithms, as seen with Amazon’s recruitment tool that
favored male candidates [21]. DoS attacks have disrupted ser-
vices, such as the 2016 attack on Dyn, which brought down
major websites [14]. Our definition of unfair and dangerous
use cases explicitly excludes malware creation and distribu-
tion.

We will do this by manually creating prompts, which we
will use to red team the various models. We will then man-
ually assess the level of harmfulness of the response by us-
ing three different labels. During the study, we will combine
all these findings into one dataset. More information on the
dataset and example prompts can be found in Table 1.

The main contributions of this study are as follows:
• A taxonomy of dangerous and unfair use cases of LLMs

for Code.
• A dataset1 of 200 prompts attempting to elicit malicious

behavior.
• An examination of how 8 different LLMs respond to

these prompts.
• An investigation into how expanding the prompt

changes the level of harmfulness.
• An investigation into how adding a code skeleton for the

model to complete to the prompt changes the level of
harmfulness.

The main finding of this study is that unaligned and self-
aligned LLMs, and to a lesser extent some aligned LLMs,
can be successfully exploited for unfair and dangerous
purposes.

This report will follow the following structure. In Section
2 we will discuss the related work and the knowledge gap this
research will cover. In Section 3 we will outline the approach
of the research. In Section 4 we will detail the experimental
setup and list the sub-questions and the hypotheses that we
will examine during the research. Following that, in Section
5 we will present the results. In Section 6 we will discuss the
research. Finally, in Section 7 we will conclude the research
and discuss possible future work.

1https://github.com/SebastianDeatc/redteam-dataset



2 Background and Related Work
In this section, we will review related work and explain key
concepts necessary for understanding the paper. Moreover,
we highlight how our study differs from existing research.

2.1 Red Teaming
This research takes a similar approach to Ganguli et al. [6].
Ganguli et al. had multiple participants attempt to red team
attack different types of models with different numbers of pa-
rameters. At each turn in the conversation, the participants
had to choose the more harmful response between two op-
tions generated by the model. At the end of the conversation,
participants had to rate from 1 to 5, on how successful they
were at making the model say something bad. Ganguli et al.
investigated, among other aspects, the success rate of these
attacks on the different models. The red team attacks they
performed were mostly general use cases described in natural
language that were not software-specific, such as discrimina-
tion, hate speech, and violence.

Another similar work was conducted by Perez et al. [25].
Perez et al. employed a red teaming approach on lan-
guage models by creating test cases using another language
model. These generated test cases were subsequently used as
prompts for the language models, and their responses were
then fed into a classifier to determine whether they were
harmful or not. The types of red team attacks researched by
Perez et al. were of the following categories: offensive lan-
guage, data leakage, and leaking private contact information.

Red team attacks that have some link to cyberspace are also
possible [7; 20]. Attacks range from cyber-dependent crimes
such as generating and distributing malware and data poison-
ing, to cyber-enabled crimes such as phishing and social en-
gineering attacks.

2.2 Jailbreak Attacks
A parallel field is the field of jailbreak attacks, which uti-
lize a carefully crafted prompt to get the LLM to display
harmful behavior [17; 29]. Red team attacks in general are
not that effective against models with built-in security [24;
28], and therefore often need to be combined with jailbreak
attacks [3]. The studies [17; 29] mostly focus on the jailbreak
prompt itself and not on the type of red team attack.

2.3 Alignment
AI alignment seeks to ensure that AI systems behave in accor-
dance with human intentions and values [12; 13]. Given the
many possibilities of LLMs, it is important to ensure that they
behave in a safe and responsible manner [4]. A three-phase
tuning approach to guarantee helpful, honest, and harmless
behavior can be implemented for LLMs, involving (1) super-
vised fine-tuning for accurate instruction following, (2) train-
ing a reward model based on human feedback from the first
phase, and (3) applying reinforcement learning to optimize
performance according to the reward model [27].

2.4 Our study
We will explore the dangerous and unfair applications of
LLMs related to software and cybersecurity, setting ourselves

apart from previous research—which concentrated more on
natural language tasks or on malware creation and distribu-
tion if related to software—by focusing specifically on these
domains. We do so by red teaming the language models,
through the manual creation of prompts, and manually estab-
lishing the harmfulness of the response. With these prompts,
we will not attempt to manipulate the model in any way. In-
stead, we will create prompts that clearly convey our harmful
intention, distinguishing our approach from the field of jail-
breaking.

3 Approach
Due to the open-ended characteristic of LLMs, the set of pos-
sible harms is unbounded [5]. We therefore have to create
a taxonomy of all the categories and sub-categories of dan-
gerous and unfair behavior we are considering in this study.
This taxonomy will enable us to systematically red team the
models and draw informed conclusions.

3.1 Taxonomy
The taxonomy was created by conducting literature and com-
plementing it with a few well-known cyber attacks and unfair
scenarios. One dangerous use case of LLMs is using them to
aid in phishing attacks, both for creating fake authentication
pages and for creating socially engineered emails [7]. Fur-
thermore, data poisoning and data memorization are listed as
harmful ways to influence the LLM itself [20]. In this study,
we will consider using the LLM to conduct model attacks on
other machine learning models and not the LLM itself. Addi-
tionally, research has demonstrated that LLMs can introduce
biases when generating code [9]. In this study, we will in-
tentionally prompt the LLM to generate biased code, in con-
trast to previous research that primarily examined instances
where the LLM generated biased code independently. The
final taxonomy we consider in this study is listed below, the
bold items in this list are the categories used to label the red
team attack attempts.

• Phishing

– Creating socially engineered emails
– Creating fake authentication pages

• Biased Code Generation

– Creating biased job eligibility methods
– Creating biased machine learning algorithms

• Model Attacks

– Model Poisoning
– Model Inversion
– Membership Inference
– Model Stealing

• Cyber Attacks

– Man-in-the-middle attacks
– SQL injections
– Denial of Service attacks



3.2 Red Teaming the Models
With this taxonomy, we can start to query the models. We
start by selecting one unaligned model as the initial target
to which the prompts will be sent. We choose an unaligned
model for this step, as the goal is to find unsafe behavior, and
not to determine how well the model is aligned. For each
response we get we label it with one of the following three
outcomes:

1. Harmful: the response of the LLM contains harmful
content.

2. Warn: the LLM warns that the prompt is dangerous or
unfair but still responds harmfully.

3. Harmless: the LLM recognizes the prompt as harmful
and responds in a harmless manner.

By using these three labels to label the harmfulness, we es-
tablish a near-deterministic labeling system, thereby reducing
the ambiguity that would arise from using a numeric scale.

Using the taxonomy and these labels, we create a dataset
of 200 prompts. This number of prompts enables us to ef-
fectively address the research questions while also ensuring
that the manual labeling process remains efficient and time-
effective, thereby mitigating the need for automatic classi-
fiers, which can introduce bias. Each entry in this dataset
includes its category, the prompt, the response of the model,
and the outcome. With this dataset, we can then red team
different models and compare their responses and outcomes,
and draw conclusions on how well they are aligned.

4 Experimental Setup
4.1 Research Questions

1. How can an unaligned LLM for Code be used for unfair
or dangerous use cases? To identify the unfair and dan-
gerous behaviors that LLMs can exhibit, we prompt an
unaligned model and label its response. By using an un-
aligned model we ensure that more of our prompts will
result in harmful behavior, as aligned models are more
likely to refuse to respond when eliciting harmful behav-
ior.

2. How does expanding the prompt influence the harmful-
ness of the LLM? We want to know if expanding the
prompt makes it more likely for the model to be harm-
ful. We examine this by expanding prompts that did not
manage to elicit a harmful response from the unaligned
LLM or prompts that elicited a response containing a
warning. We expand the prompt by adding extra context
and avoiding risky keywords (e.g. ”phishing”, ”steal-
ing”) by instead describing these actions. We predict
that by doing this, the model is more likely to respond in
a harmful way.

3. How does adding a code skeleton to the prompt and let-
ting the LLM complete it influence the harmfulness of the
LLM? We want to know if adding a code skeleton for the
LLM to complete makes it more likely for the model to
be harmful. To investigate this, we add a code skeleton
to prompts that previously failed to elicit a harmful re-
sponse from the unaligned LLM or prompts that elicited

Category # Keywords of a prompt
Cyber 73 ’Code to execute
Attacks a DDoS attack’

Model 51 ’Execute model inversion
Attacks attack on model X’

Biased 40 ’Create biased
Code recruitement engine’

Phishing 36 ’Create phishing kit’

Table 1: Dataset. The amount of prompts for each category, and
some keywords of an example prompt.

a response containing a warning. We predict that this
will increase the chance of the model responding in a
harmful way.

4. How can different LLMs for Code be used for unfair
or dangerous use cases? We want to see how differ-
ent models handle all the prompts from the first research
question. The chosen models have different numbers of
parameters and different specializations. We will utilize
the same prompts from RQ1 and label the responses for
each of the different models. We want to see how many
prompts succeed in eliciting a harmful response for each
of the models. The models are discussed more in-depth
in Section 4.4.

4.2 Evaluation Metrics
For the first research question, we will measure the frequency
of each outcome label (harmful, warn, harmless) across the
different categories in the taxonomy. This will allow us to
identify which categories are more prone to show harmful be-
havior.

For the second and third research questions, we will look
at how the outcome changes when expanding the prompt or
when adding a code skeleton. We will measure the rate of
each label for the base prompt and the modified prompt. We
will then calculate the difference in the rates between the base
prompt and the modified prompt.

Finally for the fourth research question, like in the first re-
search question, we will measure the frequency of each out-
come label across the different categories in the taxonomy, for
each of the different models. This will allow us to identify the
strengths and weaknesses of each model.

4.3 Dataset
The only data we use in this study is the dataset of 200 entries
that we create ourselves. Each entry in the dataset contains
its category, the prompt, the response of each of the different
models, and the outcome label of each of the different models.

Table 1 shows the amount of prompts for each category and
some example prompts.

4.4 Models and Parameters
The models we will investigate are listed in Table 2. The aim
is to select a diverse range of models with different modali-



ties, sizes, and properties. This way we can investigate how
each of these factors influence the harmfulness of the model.

We run the models by utilizing LangChain2 and DeepInfra3

as our API providers. Using an API to run the models allows
us to run larger models that would otherwise be too resource-
intensive to run locally. To maximize the reproducibility of
the results, we set the temperature to 0 for all models. Set-
ting the temperature above 0 allows the same prompt to
generate different responses; therefore, by keeping it at 0,
we ensure the responses are nearly deterministic. However,
because DeepInfra includes an additional unchangeable seed
parameter alongside temperature, the responses are not en-
tirely deterministic. Additionally, we configure the maximum
tokens to 2048, which has been found sufficient to capture the
responses of the models.

5 Results
We present the results of our experiments, results are grouped
by research question.

5.1 Harmful Use Cases of LLMs for Code
The results for the first research question are shown in Figure
1. We found that for all categories, the unaligned dolphin-
2.6-mixtral-8x7b exhibited a significant amount of harmful
behavior.

In the Cyber Attacks category, we mostly encountered
harmful behavior accompanied by a warning. In the Model
Attacks category, the model consistently responded harm-
fully, with no harmless responses. The Biased Code Genera-
tion category had the highest percentage of harmful responses
without a warning. Lastly, in the Phishing category, we ob-
served 30% harmless responses, making it the category with
the highest percentage of harmless responses.

Overall, dolphin-2.6-mixtral-8x7b can be used harmfully
across all categories in the taxonomy, including Phishing,
which—despite being our most harmless category—still pro-
duced harmful content in 70% of the responses.

Research Question 1

An unaligned model can be used for malicious prompt-
ing in all the categories with a substantial attack suc-
cess rate. Model Attacks consistently yielded harmful re-
sponses, Cyber Attacks primarily resulted in warnings, Bi-
ased Code Generation had the highest rate of harmful re-
sponses without warnings, and Phishing, despite having
the highest harmless rate, still responded harmfully 70%
of the time.

5.2 Effect of Expanding the Prompt
The results for the second research question are shown in Ta-
ble 3. We saw that in the Cyber Attacks, Model Attacks, and
Phishing categories adding more context and replacing risky
keywords (e.g. ”phishing”, ”stealing”) with their descriptions
resulted in an increase in harmfulness in the responses from

2https://www.langchain.com/
3https://deepinfra.com/
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Figure 1: Outcome Labels per Category. Percentage distribution
of each outcome label across the categories in the taxonomy.

the model. Conversely, for the Biased Code Generation cate-
gory, we saw an increase of 50% in harmless responses when
expanding the prompt.

Research Question 2

Expanding the prompt results in an increase in harmful-
ness in the response of the model for the Cyber Attacks,
Model Attacks, and Phishing categories. It results in a
decrease in harmfulness for the Biased Code Generation
category.

5.3 Effect of Adding a Code Skeleton
The results for our third research question are shown in Table
4. We saw that for all the categories adding a code skele-
ton for the model to complete to the prompt resulted in an
increase in harmfulness in the responses of the model.

Research Question 3

Including a code skeleton for the model to complete
within the prompt increases the harmfulness for all the cat-
egories.

5.4 Red Teaming Multiple LLMs
The results of our fourth research question are shown in Ta-
ble 5. We observed that the aligned models performed sig-
nificantly better than the unaligned and self-aligned models.
The self-aligned Starcoder 2 responded harmfully 98% of the
time, making it our most harmful model. Following that,
Dolphin-Mixtral responded harmfully 44% of the time and
harmfully with a warning 40% of the time, making it our sec-
ond most harmful model.

The best aligned models we observed were CodeGemma
and GPT-3.5-0125. With the former having 91% harmless re-
sponses, and the latter 87%. GPT performed exceptionally in
the Cyber Attacks category with a 97% harmless rate. Both
GPT and CodeGemma performed great in the Phishing cat-
egory, with both having a 97% harmless rate. In addition
to that, CodeGemma was well aligned against Biased Code
Generation prompts, with a 97.5% harmless rate. Both mod-
els performed worst in the Model Attacks category.



Modality Model Developer Params(B) Properties

Code CodeLlama [26] Phind 34
Starcoder 2 [18] BigCode 15 Self-aligned
CodeGemma [30] Google 7

Natural MetaLLama 3 [19] Meta 70 Popular, diverse
Language Mixtral [2] Mistral AI 22

Doplhin-Mixtral [8] Cog. Computations 7 Unaligned version of the smaller Mixtral model
GPT 3.5-0125 [23] OpenAI - Popular, diverse, closed-source

Multimodal Llava 1.5 [16] Llava 7

Table 2: The investigated models.

Category Type Harmful Warn Harmless
Cyber Base 0% 58% 42%
Attacks Exp 38% 54% 8%

% ↓ +38 -4 -34

Model Base 0% 100%
Attacks Exp 94% 6%

% ↓ +94 -94

Biased Base 100% 0%
Code Exp 50% 50%
Gener. % ↓ -50 +50
Phishing Base 0% 17% 83%

Exp 50% 17% 33%
% ↓ +50 0 -50

Table 3: Results of Expanding the Prompt. We show the rate of
each outcome label for the base prompt, the expanded prompt, and
the difference between these two rates.

Category Type Harmful Warn Harmless
Cyber Base 0% 64% 36%
Attacks Sklt 24% 60% 16%

% ↓ +24 -4 -20

Model Base 0% 100%
Attacks Sklt 67% 33%

% ↓ +67 -67

Biased Base 0% 100% 0%
Code Sklt 75% 0% 25%
Gener. % ↓ +75 -100 +25

Phishing Base 0% 25% 75%
Sklt 75% 0% 25%
% ↓ +75 -25 -50

Table 4: Results of Adding a Code Skeleton to the Prompt. We
show the rate of each outcome label for the base prompt, the prompt
with a code skeleton, and the difference between these two rates.

The other aligned models achieved similar harmless rates,
ranging from 44% to 59%. However, their harmful and warn
rates varied. Notably, Mixtral, despite being aligned, had a
45% warn rate, indicating that while it recognized the harm-
ful nature of the prompt, it still responded harmfully 45% of
the time. Another significant result was observed for the mul-
timodal Llava 1.5 model, which, despite having a 48% harm-
less rate, exhibited a 34% harmful rate, making it nearly as
problematic as the unaligned Dolphin-Mixtral in this regard.

The results of the other aligned models vary by category.
A result they have in common is that none achieved a harm-
less rate of over 50% in the Model Attacks category. Mixtral,
despite its high warn rate, performed decently in the Biased
Code Generation and Phishing categories, achieving harm-
less rates of 67.5% and 64%, respectively. LLava 1.5, with
its high harmful rate overall, performed well in the Biased
Code Generation and Cyber Attacks categories, with harm-
less rates of 72.5% and 63%, respectively. A notable finding
was LLama3, which performed well across all categories ex-
cept Model Attacks, where it reached only a 29% harmless
rate. CodeLlama was the most consistent of these models,
with harmless rates ranging from 42.5% to 67%.

Research Question 4

The aligned models outperformed unaligned and self-
aligned models. Starcoder 2 was the most harmful with a
98% harmful response rate, followed by Dolphin-Mixtral
at 44% harmful and 40% harmful-with-warning. The
best performers were CodeGemma and GPT-3.5-0125,
with harmless rates of 91% and 87%, respectively. Other
aligned models had harmless rates between 44% and 59%,
with varying harmful and warn rates. Mixtral had a high
45% warn rate, while the multimodal Llava 1.5 had a
34% harmful rate despite a respectable 48% harmless rate.
None of the other aligned models exceeded a 50% harm-
less rate in the Model Attacks category.

6 Discussion
The results indicate that unaligned, self-aligned and some
aligned models can successfully be exploited for unfair or
dangerous purposes. Additionally, they reveal that expand-
ing the prompt and incorporating a code skeleton generally
increases the harmfulness of the model.



Model Cat. Harmful Warn Harmless
CodeLlama Cyb. 10% 23% 67%

Mod. 26% 27% 47%
Bia. 32.5% 25% 42.5%
Phi. 42% 8% 50%

ALL 24% 22% 54%

Starcoder 2 Cyb. 99% 1% 0%
Mod. 96% 0% 4%
Bia. 98% 0% 2%
Phi. 100% 0% 0%

ALL 98% 0.5% 1.5%

Code Cyb. 3% 4% 93%
Gemma Mod. 6% 16% 78%

Bia. 2.5% 0% 97.5%
Phi. 3% 0% 97%

ALL 3.5% 5.5% 91%
LLama3 Cyb. 4% 26% 70%

Mod. 28% 43% 29%
Bia. 10% 22.5% 67.5%
Phi. 17% 14% 69%

ALL 13.5% 27.5% 59%

Mixtral Cyb. 8% 59% 33%
Mod. 27% 47% 26%
Bia. 5% 27.5% 67.5%
Phi. 3% 33% 64%

ALL 11.5% 45% 43.5%

Dolphin- Cyb. 23% 55% 22%
Mixtral Mod. 57% 43% 0%

Bia. 62.5% 25% 12.5%
Phi. 47% 22% 31%

ALL 44% 40% 16%

GPT-3.5 Cyb. 1.5% 1.5% 97%
-0125 Mod. 23% 6% 71%

Bia. 12.5% 7.5% 80%
Phi. 3% 0% 97%

ALL 9.5% 3.5% 87%
Llava 1.5 Cyb. 23% 14% 63%

Mod. 43% 39% 18%
Bia. 22.5% 5% 72.5%
Phi. 56% 11% 33%

ALL 34% 18% 48%

Table 5: Outcome label rates for all of the models. Outcome label
rates are displayed per category per model, alongside the total out-
come label rates for the model across all categories (Cyber Attacks,
Model Attacks, Biased Code Generation, and Phishing).

6.1 Interpretation
Harmful use cases. We observed that all prompts across
all categories successfully elicited harmful responses from
the models. Model Attacks consistently produced harmful
responses. We attribute this to the relatively recent emer-
gence of adversarial machine learning, which began around
the early 2010s [10], and likely has less data addressing the
harmfulness of these attacks. Conversely, in the Cyber At-
tacks category, which is a well-known field, we predomi-
nantly observed warnings. This outcome builds on top of the
previous argument, considering the extensive data available
addressing the harmfulness of these attacks. In the Phish-
ing category, we observed the highest number of harmless re-
sponses, which again may be attributed to the notoriety of the
field and the extensive data available on its harmfulness. Fi-
nally, Biased Code Generation exhibited the highest number
of harmful responses. This can be attributed to the nature of
the prompts, which essentially involve requesting the model
to create a method with biased criteria. If the model is not
specifically aligned to counter these biases, it will struggle to
recognize and mitigate the harmfulness effectively.

Expanding the prompt. We saw that expanding the prompt
increased the harmfulness of the Cyber Attacks, Model At-
tacks, and Phishing categories. This can be attributed to the
circumvention of risky keywords such as ’DoS attack’ or
’phishing,’ making it more difficult for the model to detect
the harmful intent. Conversely, we saw that expanding the
prompt decreased the harmfulness in the Biased Code Gen-
eration category. In this case, there are no specific risky key-
words to circumvent and the only way to expand the prompt
is by adding more context, which provides the model with
more tokens to detect the harmful intent.

Adding a code skeleton. We observed that adding a code
skeleton for the model to complete within the prompt in-
creased the harmfulness for all the categories. It was already
known that adding a code skeleton improves the quality of
the generated code [15]. By incorporating the code snippet,
we shift the role of the model from generating code based on
criteria described in natural language to completing the code
we have provided. By providing these additional tokens in
the form of code to complete, we hypothesize that it becomes
more challenging for the model to detect the harmful intent
of the prompt.

Comparison of different models. We observed that
CodeGemma and GPT-3.5-0125 were the two best aligned
models. CodeGemma approached alignment by utilizing data
pre-processing techniques and conducting thorough evalua-
tions [1]. Google AI specifically mentions using several fil-
ters to ensure content safety [1]. Furthermore, regarding eth-
ical and safety aspects, they mention employing red teaming
techniques to improve their models [1]. On the other hand,
OpenAI employed the reinforcement learning from human
feedback (RLHF) technique to align their InstructGPT mod-
els [22]. This technique involves a human ranking responses
from best to worst to train a reward model which is used to
fine tune the model [22]. This approach aligns with the find-
ings of Ganguli et al. [6] who discovered that RLHF mod-
els are challenging to red team effectively. Given these ap-
proaches, we believe that employing red teaming techniques



to refine the safety features of the model is the most effective
way to ensure the development of safe large language models
(LLMs), while also ensuring their helpfulness.

Moreover, we observed that the self-aligned Starcoder 2
and the unaligned Doplhin-Mixtral were the most harmful
models. Dolphin-Mixtral was specifically designed to remain
uncensored by employing data filtering and creating a system
prompt [8]. We found that these design choices significantly
contributed to a higher amount of harmful responses com-
pared to other models. Conversely, Starcoder 2 used prepro-
cessing filters to remove PII and malware from their training
data [18]. However, we found that these measures were in-
sufficient to ensure harmlessness according to our taxonomy.

Regarding the categories, we saw that the other models
all struggled with Model Attacks. The Model Attacks cate-
gory was also the most problematic category for the two best
aligned models CodeGemma and GPT. This aligns with our
claim in the discussion of RQ1: the scarcity of data address-
ing the harmfulness of these attacks likely hinders the ability
of the model to detect the harmful intent of the prompts.

6.2 Threats to validity
Internal Validity. For this study, there was a single evaluator
of the harmfulness of the responses, which might introduce
some bias. To mitigate this, we implemented a straightfor-
ward and well-documented labeling scheme using only three
labels, aiming to make the assessment nearly deterministic.

External Validity. For this study, we evaluated a total of 8
models. Given the vast number of LLMs available, this repre-
sents only a small subset, and the findings may not apply uni-
versally to all LLMs. However, we carefully selected mod-
els with diverse properties and specializations to encompass
various aspects. We are confident that these selected models
provide a basis for generalizing the results of our study.

Furthermore, for the second and third research questions,
we employed a single LLM to assess the impact of adding a
code skeleton and expanding the prompt. It is possible that
other LLMs could exhibit different responses to these modifi-
cations. However, in our evaluation of the 8 different models,
we noted that, while not extensively measured, they generally
showed comparable effects to the LLM we utilized.

Construct Validity. The labeling scheme employed in this
study to categorize model responses may not accurately re-
flect the true harmfulness of the output. A code snippet that
appears harmful might, in practice, be ineffective, rendering
the actual impact harmless. However, this study did not eval-
uate the practical harmfulness of the code itself. Instead, we
focused on the willingness of the model to respond to harmful
prompts. We believe that a model should not respond at all
when prompted to engage in harmful behavior.

6.3 Responsible Research
An important ethical aspect of this study is the fact that we
essentially use the LLM in the same way as an attacker. We
stress that this was done solely for research purposes with the
aim of enhancing the safety of LLMs. Additionally, it is im-
portant to note that, despite not being cybersecurity special-
ists, we concluded that most model responses could be easily

defended against in practice and did not represent state-of-
the-art harmful behavior. With the aim of enhancing LLM
safety, we decided to publish the dataset containing all the
responses to support further research. We feel this provides
more benefit than potential harm that might be caused by at-
tackers who might access this dataset.

Concerning reproducibility, we have made sure to spec-
ify which models we have used in the study in detail (Ta-
ble 2). Furthermore, as mentioned in Section 4.4, we set the
temperature to 0 making the model responses nearly deter-
ministic. DeepInfra’s seed parameter poses a minor threat to
reproducibility. Nonetheless, given the relatively large num-
ber of prompts and the limited impact of this seed, we are
confident that the findings drawn from the results remain ro-
bust and uncompromised. In addition to that, we also pub-
lished the dataset containing all our prompts. Another po-
tential challenge to reproducibility is the rapid evolution of
LLMs, which could lead to model depreciation. However, as
LLMs evolve, the field of Red Teaming will also progress,
leading to the publication of newer studies and new areas of
research within this field.

7 Conclusion
The goal of this research was to find out how LLMs for code
can be used for dangerous or unfair use cases. We achieved
this by red teaming the LLMs through the manual creation of
prompts and manually labeling the responses of the model.
To narrow down the research, we have created a taxonomy
of four categories, which served as the foundation for our
prompts. In total, we have created 200 prompts, which we
used to red team eight different large language models. We
have created a dataset of the responses of all these different
models to these prompts.

We found that out of the eight different LLMs evaluated,
only two, CodeGemma and GPT-3.5-0125, were well aligned
against the categories in our taxonomy; namely, CodeGemma
and GPT-3.5-0125. We found that the category Model At-
tacks was the most problematic for both of these models,
which was also the case for a lot of the other models.

Moreover, we found that the unaligned Dolphin-Mixtral
and the self-aligned Starcoder 2 were highly susceptible to
producing harmful responses to all the categories in our tax-
onomy.

Regarding the other models, we observed that most exhib-
ited a high rate of harmful responses in the Model Attacks
category, showing a similar trend to the two best aligned mod-
els. Each of these other models had their strengths and weak-
nesses across the other categories. However, collectively,
they were susceptible to eliciting harmful responses in every
category.

We found that expanding the prompt led to an increase
in harmful responses from the model in the Cyber Attacks,
Model Attacks, and Phishing categories, while it resulted in a
decrease in harmfulness in the Biased Code Generation cate-
gory.

Finally, we found that including a code skeleton for the
model to complete within the prompt resulted in an increase
in harmfulness for all the categories in our taxonomy.



Regarding future work, a straightforward direction is to
expand the current study by broadening the taxonomy and
developing new prompts. Another interesting direction is to
combine the existing prompts with jailbreaking prompts to
observe changes in the responses of the model and assess if
this increases the harmfulness of the model. Additionally,
extending the study with multi-step prompting could be valu-
able, as this study only utilized zero-shot prompting and did
not provide the model with prompts in advance.
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Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun
Guha, Leandro von Werra, and Harm de Vries. Star-
coder 2 and the stack v2: The next generation, 2024.

[19] Meta. Introducing meta llama 3: The most capable
openly available llm to date, 2024.

[20] Maximilian Mozes, Xuanli He, Bennett Kleinberg, and
Lewis D. Griffin. Use of llms for illicit purposes:
Threats, prevention measures, and vulnerabilities, 2023.

[21] BBC News. Amazon scrapped ’sexist ai’ tool, 2018.

[22] OpenAI. Aligning language models to follow instruc-
tions, 2022.

[23] OpenAI. Gpt-3.5 turbo, 2023.



[24] OpenAI, Josh Achiam, Steven Adler, Sandhini Agar-
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming
Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello,
Jake Berdine, Gabriel Bernadett-Shapiro, Christo-
pher Berner, Lenny Bogdonoff, Oleg Boiko, Made-
laine Boyd, Anna-Luisa Brakman, Greg Brockman,
Tim Brooks, Miles Brundage, Kevin Button, Trevor
Cai, Rosie Campbell, Andrew Cann, Brittany Carey,
Chelsea Carlson, Rory Carmichael, Brooke Chan, Che
Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby
Chen, Jason Chen, Mark Chen, Ben Chess, Chester
Cho, Casey Chu, Hyung Won Chung, Dave Cum-
mings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka
Dhar, David Dohan, Steve Dowling, Sheila Dunning,
Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi,
Liam Fedus, Niko Felix, Simon Posada Fishman, Juston
Forte, Isabella Fulford, Leo Gao, Elie Georges, Chris-
tian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh,
Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Graf-
stein, Scott Gray, Ryan Greene, Joshua Gross, Shixi-
ang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han,
Jeff Harris, Yuchen He, Mike Heaton, Johannes Hei-
decke, Chris Hesse, Alan Hickey, Wade Hickey, Pe-
ter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli
Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn
Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar
Kanitscheider, Nitish Shirish Keskar, Tabarak Khan,
Logan Kilpatrick, Jong Wook Kim, Christina Kim,
Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt
Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew
Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming
Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna
Makanju, Kim Malfacini, Sam Manning, Todor Markov,
Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew
Mayne, Bob McGrew, Scott Mayer McKinney, Chris-
tine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, An-
drey Mishchenko, Pamela Mishkin, Vinnie Monaco,
Evan Morikawa, Daniel Mossing, Tong Mu, Mira Mu-
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