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Flight Testing Reinforcement Learning based Online Adaptive
Flight Control Laws on CS-25 Class Aircraft

Ramesh Konatala∗, Daniel Milz†, Christian Weiser ‡, Gertjan Looye §, and E. van Kampen ¶

German Aerospace Center (DLR), 82234 Weßling, Germany
Delft University of Technology, P.O. Box 5058, 2626HS Delft, The Netherlands

Unforeseen failures during flight can lead to Loss of Control In-Flight, a significant cause
of fatal aircraft accidents worldwide. Current offline synthesized flight control methods have
limited capability to recover from failures, due to their limited adaptability. Incremental
Approximate Dynamic Programming (iADP) control is a model-agnostic online adaptive control
method, which integrates an online identified locally linearized incremental model, with a
Reinforcement Learning (RL) based optimization technique to minimize an infinite horizon
quadratic cost-to-go. A key challenge for adopting these self-learning flight control methods
is validation through flight testing. This paper presents the iADP flight control law design
for CS-25 class aircraft to achieve rate control. It outlines the controller evaluation strategy,
controller integration, verification & validation procedures, and a discussion on flight test
results. To the author’s understanding, this flight test marks the world’s first demonstration of
an online RL based automatic flight control system for this aircraft category, demonstrating
real-time learning and adaptation capabilities to aircraft configurations.

Nomenclature

•̂ = Measured Value
•̃ = Estimated Value
•𝑇 = Matrix Transform
•† = Matrix Pseudo Inverse
X, 𝑥 = Vector, Scalar
⊗ = Kronecker Product
�̃� = State Transition Matrix estimate
�̃� = Control Effectiveness Matrix estimate
Φ = Covariance Matrix
𝛾RLS = Forgetting factor of the RLS algorithm
𝑐𝑡 = One-step quadratic cost in error and control input
�̃� = Kernel Matrix
𝛾 = Discount factor in Bellman’s Equation
𝑉𝜋 = Bellman’s Value Function estimate
𝜋 = Control Policy
𝛿𝑎, 𝛿𝑒, 𝛿𝑟 = Aileron, Elevator and Rudder deflections, respectively
𝑝, 𝑞, 𝑟 = Roll, Pitch and Yaw Angular Rates
𝜙, 𝜃, 𝜓 = Roll, Pitch and Yaw Angles
𝛼, 𝛽 = Angle of attach and Sideslip Angle
𝑉𝑇𝐴𝑆 , ℎ = True Airspeed and Altitude
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I. Introduction

Loss of Control in-flight(LOC-I) is an off-nominal flying condition, where the aircraft deviates from the normal
flight envelope and is a leading cause of accidents in commercial aviation[1]. With the increasing trend towards

autonomous and complex systems, one can expect an increasing trend of such LOC-I incidents unless proactive
measures are taken. Developing an integrated fault-tolerant resilient Flight Control Law (FCL) is imperative to enhance
safety under off-nominal conditions, addressing parametric failures and abnormal flight scenarios. Main challenges
in designing such a controller include: low confidence on the aircraft model post failure, which degrades the model
dependent controller performance, non-linearities in the model post failure, and the need for rapid adaptation of the
controller to restore the aircraft within the safe flight envelope.

Fig. 1 Cessna Citation II (PH-LAB) Research Aircraft
Captured by Alan Wilson. Image licensed under CC BY-SA 2.0.

Nonlinear Dynamic Inversion(NDI) based
control design involves inverting the nonlinear
dynamics, rendering a system which can then
be controlled with a linear controller, thus ad-
dressing the non-linearity issue for flight control.
Incremental Nonlinear Dynamic Inversion(INDI)
is another popular method, which is less depen-
dent on a complete aerodynamic model, but needs
local control derivatives with feedback of acceler-
ations and actuator positions[2][3][4]. Adaptive
version of these dynamic inversion methods holds
promise in addressing fault recovery, but they are
limited during off-nominal conditions due to their
reliance on an accurate state model for inversion
and a control effectiveness model. These models
might be difficult to estimate with confidence dur-
ing off-nominal flight conditions, necessitating
a model agnostic approach. Self-learning Adap-
tive Flight Control System (FCS) algorithms were
initially tested in the 1960s on the X-15 research
aircraft[5]. Some of the open challenges in realizing adaptive FCS include sample efficiency and convergence, controller
robustness, interpretability of the controller’s adaptive mechanism[6].

RL, a bio-inspired machine learning approach, has been used for adaptive flight control since the early 2000s, e.g.,
the work from Enns and Si on helicopter control using Neuro-dynamic programming [7] or the work from Ferrari and
Stengel on applying RL for control of a business jet type of aircraft [8]. An advantage of RL is that it can be used as
model-free controller, meaning that no information about the plant that is to be controlled has to be known before the
start of training. Another advantage is that it is by definition an adaptive controller, and hence can be used when online
adaptation is required, for example after a fault or failure of a part of the aircraft. More recent applications of RL to
flight control can be seen in [9] and [10], where RL controllers are designed that make use of an incremental model of
the plant, which is identified online. A key challenge which limits the adoption of RL based methods for flight control is
validation through flight testing on a CS-25 class aircraft, which could aid in certification of RL based FCL for Fault
Tolerance [11].

Although several variants of RL based FCL’s were developed[12][10], practical Verification & Validation (V&V)
constraints guided the choice of this RL based FCL design. The following desirable features for the control method are
defined as follows: a simpler control design strategy with less and interpretable learning parameters, ability to adapt in
real-time to fast changing nonlinear dynamics of aircraft in case of a failure, an algorithm which is sample efficient [13]
[14] and fast to converge on the conventional Flight Control Computer (FCC). In this regard, iADP based FCS[15] is a
good choice amongst the RL based FCS with practical interests. This algorithm identifies a local linearized incremental
model online, to estimate and minimize an infinite horizon quadratic cost-to-go, exclusively using the collected aircraft
state data [16]. The iADP algorithm demonstrated effective online adaptation for a F-16 aircraft model, with good
tracking performance both in normal and failure conditions [17].

The main contributions of this paper are, RL based iADP FCS Design for a CS-25 Class aircraft and controller’s
validation through flight tests on the PH-LAB Research Aircraft shown in fig. 1. The outcome from the flight test
campaigns is detailed viz., the ability of the controller to capture pitch and roll rate tasks without a priori knowledge
of aircraft model or any pretraining of the controller, stable continuous learning of the controller, adaptability of the
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controller to aircraft configurations assessed by comparing the adapting parameters across different configurations, and
finally a discussion on observed challenges of some flight test trials. The technical scope of this study is limited to V&V
excluding the interaction of pilot with the adaptive system.

The structure of the paper is organized as follows: Section II briefly covers the background information on RL and the
methodology of iADP algorithm, and extensions of this algorithm for flight control. Section III contains the iADP FCL
Architecture Design for the Cessna Citation-II Aircraft, FCL Evaluation Strategy, Software and Hardware Integration
of the controller, and a summary of V&V procedures for the FCL Clearance for Flight tests. Section IV delves into
the validation of controller functionality, focusing extensively on the results obtained from the flight test campaign.
This section details the defined Experimental Objectives and Setup, a summary of the Control Law Flight Performance
followed by discussion on flight testing experience, challenges faced, features and limitations of the iADP FCL . Lastly,
section V includes concluding remarks, and a note on how this research could aid aviation safety.

II. Theory of Incremental Approximate Dynamic Programming
Consider a nonlinear dynamical system, which obeys the memoryless Markov property, the concept that a future

state is independent of the preceding states given the current state. This system is represented in discrete general form as,

x𝑡+1 = 𝑓 (x𝑡 , 𝜹𝑡 )
y𝑡 = ℎ(x𝑡 )

(1)

Here, x𝑡 is the system state, 𝜹𝑡 is the control input, and y𝑡 represents output measurements. The behavior of the
system is determined by knowing the states and control inputs. The controller’s objective is to generate the control input
for any system state x𝑡 in a way that steers the system to a desired state. In other words, the controller aims to find the
mapping from the current state and a desired state to the control actions, where the desired state depends on the control
objective (e.g., 0 for regulation or a desired trajectory x𝑟𝑡 for tracking). This control objective can be formulated as a RL
problem, involving an agent interacting with an environment. The agent acts on the environment, and in return, the
environment provides feedback through observations or a state, along with a reward signal or cost. The objective of the
agent is to gradually improve its decision-making to maximize rewards or minimize costs over time. This mapping from
the system’s states to actions is denoted by 𝜋 as follows.

𝜹𝑡 = 𝜋(x𝑡 ) (2)

The RL agent’s goal is to find an optimal policy 𝜋∗, minimizing the expected future cost (or maximizing reward)
based on the underlying objective. The discounted infinite horizon cost or cost-to-go measures the sum of future costs
incurred by the dynamic system over time and is given by,

𝑉𝜋 (x𝑡 ) =
∞∑︁
𝑖=𝑡

𝛾𝑖−𝑡𝑐𝑖

= 𝑐𝑡 + 𝛾𝑉𝜋 (x𝑡+1)
(3)

Here, 𝑐𝑡 is the one-step cost observed from the environment, and 𝛾 ∈ (0, 1) is the discount factor that discounts
future costs. The Cost-to-go (𝑉𝜋 (x𝑡 )) is referred to as the value function, providing a measure of the value of being in
a state x𝑡 and the system choosing actions from 𝑡 → ∞ according to the control policy (𝜋) as per eq. (3). Bellman’s
Equation from Dynamic Programming[18] is used to evaluate this value function estimate in a step known as Policy
Evaluation. The policy is then improved with respect to this current value estimate, aiming to minimize this value
function. This improvement step is called Policy Improvement. The ultimate goal is to converge to the optimal value
function(𝑉∗) and an optimal policy (𝜋∗) using Dynamic Programming.

To address the "Curse of Dimensionality" issue [19], the approach involves generalizing the value function from a
restricted subset of visited states to an approximate value function applicable across a broader range. One method to
achieve this generalization is by considering the value function to be quadratic in the state, as outlined below,

𝑉𝜋 (x𝑡 ) = x𝑇𝑡 Px𝑡 (4)
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The kernel matrix 𝑃 is defined to be positive definite to ensure that the cost function remains convex and positive.
The one-step cost function 𝑐𝑡 can be defined based on the operational requirements of the system. For instance, it could
be a quadratic function in tracking error or a quadratic function in states for a regulation task [20]. Drawing inspiration
from optimal control theory, one might include a quadratic term in the control input to operate the system with minimal
cost expenditure. For tracking a reference command, the following one-step cost function is defined,

𝑐𝑡 = (y𝑡 − y𝑟𝑡 )𝑇Q (y𝑡 − y𝑟𝑡 )︸    ︷︷    ︸
e𝑡

+𝜹𝑇𝑡 R𝜹𝑡 (5)

where Q = Q𝑇 ≥ 0, R = R𝑇 ≥ 0 are respectively the state weighting matrix and input weighting matrix, and 𝜹𝑡 is the
control input, y𝑡 is the output and y𝑟𝑡 is a reference to be tracked by the system. For the value function to predict the cost
related to reference dynamics, the state vector x𝑡 is augmented with the state of reference dynamics as follows,

X𝑡 =

(
x𝑡
x𝑟𝑡

)
(6)

Using eq. (4), eq. (5), eq. (6), and eq. (3), the Bellman Equation for Linear Quadratic Tracking task is written as,

X𝑇
𝑡 PX𝑡 = (y𝑡 − y𝑟𝑡 )𝑇𝑄(y𝑡 − y𝑟𝑡 ) + 𝜹𝑇𝑡 𝑅𝜹𝑡 + 𝛾X𝑇

𝑡+1PX𝑡+1 (7)

The prediction of X𝑡+1 or the knowledge of the system and reference dynamics is necessary to estimate𝑉𝜋 (X𝑡+1) [21].
To maintain the model-free nature of the controller methods, one can estimate this prediction using an online Recursive
Least Squares (RLS) approach, thus enabling online adaptability [22] [23]. The discount factor 𝛾 in eq. (7) provides
regularization, by discounting costs incurred further in the future, accommodating uncertainty in the future and model
prediction. This makes the value function estimate less sensitive to errors in model estimates.

Equation (7) is valid for linear systems, making it less suitable for nonlinear flight control. The value function can
be modified to handle non-linearities using an incremental model representation of the original model. Linearizing the
nonlinear discrete system in eq. (1) around (X𝑡−1, 𝜹𝑡−1), by taking the first-order Taylor series expansion, the nonlinear
discretized system is expressed as eq. (8):

X𝑡+1 ≈

X𝑡︷           ︸︸           ︷
𝑓 (X𝑡−1, 𝜹𝑡−1) +

𝐹𝑡︷       ︸︸       ︷
𝜕 𝑓 (𝑋𝑡 , 𝛿𝑡 )

𝜕X𝑡

����
X𝑡−1 ,𝜹𝑡−1

(X𝑡 − X𝑡−1) +

𝐺𝑡︷       ︸︸       ︷
𝜕 𝑓 (𝑋𝑡 , 𝛿𝑡 )

𝜕𝜹𝑡

����
X𝑡−1 ,𝜹𝑡−1

(𝜹𝑡 − 𝜹𝑡−1) (8)

⇒ ΔX𝑡+1 ≈ 𝐹𝑡ΔX𝑡 + 𝐺𝑡Δ𝛿𝑡 (9)

𝐹𝑡 is the system transition matrix and 𝐺𝑡 is the control effectiveness matrix in incremental form. This regression
model represented by (�̃�𝑡 , �̃�𝑡 ) can be identified using RLS techniques, providing a Linear Time Variant(LTV) incremental
model approximation. An additional benefit of employing the incremental model is its reduced sensitivity to sensor
biases and trim values, compared to the linear model.

By combining the Incremental model in eq. (9) and the Bellman Equation using value function approximation in
eq. (7), the Bellman value function is rewritten as eq. (10) for nonlinear systems.

X𝑇
𝑡 𝑃X𝑡 =(y𝑡 − y𝑟𝑡 )𝑇𝑄(y𝑡 − y𝑟𝑡 ) + (𝜹𝑡−1 + Δ𝜹𝑡 )𝑇𝑅(𝜹𝑡−1 + Δ𝜹𝑡 )

+ 𝛾(X𝑡 + �̃�𝑡ΔX𝑡 + �̃�𝑡Δ𝜹𝑡 )𝑇𝑃(X𝑡 + �̃�𝑡ΔX𝑡 + �̃�𝑡Δ𝜹𝑡 )
(10)

By Bellman’s optimality principle, an optimal control law or policy can be obtained by minimizing this cost-to-go
with respect to the incremental control input(Δ𝜹𝑡 ) as in eq. (11),

Δ𝜹𝑡 = −(𝑅 + 𝛾�̃�𝑇
𝑡 �̃�

𝑗+1�̃�𝑡 )−1 [𝑅𝜹𝑡−1 + 𝛾�̃�𝑇
𝑡 �̃�

𝑗+1X𝑡 + 𝛾�̃�𝑡 �̃�
𝑗+1�̃�𝑡ΔX𝑡 ] (11)

The Pseudo Code of the iADP method including the RLS algorithm for a full state feedback system is shown in
fig. 2. This algorithm is suitable for a nonlinear system with the availability of full states for feedback. The extensions
of iADP Control Algorithm for a nonlinear system, to follow time-varying references and handling system with partial
observability of full state can be found in [20] and [16].
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𝝐𝑡 = ΔX̂𝑡 − ΔX̃𝑡 ,

�̃�𝑡 = �̃�𝑡−1 +
𝚽𝑡−1W𝑡

𝛾RLS + W𝑇
𝑡 𝚽𝑡−1W𝑡

𝜖𝑡 ,

𝚽𝑡 =
1
𝛾RLS

(
𝚽𝑡−1 −

𝚽𝑡−1W𝑡W𝑇
𝑡 𝚽𝑡−1

𝛾RLS + W𝑇
𝑡 𝚽𝑡−1W𝑡

) ΔX̃𝑡+1 ≊
(
ΔX̂𝑡 Δ𝜹𝑡

)
︸        ︷︷        ︸

W𝑡

(
�̃�𝑡

�̃� 𝑡

)
︸︷︷︸
�̃�𝑡

𝑉𝜋 (X𝑡 )︷     ︸︸     ︷
X̂𝑇

𝑡 �̃�
𝑖+1X̂𝑡 =

V𝑡︷                             ︸︸                             ︷
𝑐𝑡 (𝑒𝑡 ,Δ𝜹𝑡) + 𝛾𝑋𝑇

𝑡+1�̃�
𝑖 𝑋𝑡+1︸︷︷︸
X̂𝑡+ΔX̃𝑡+1

⇓(
X̂𝑡 ⊗ X̂𝑡

)𝑇
P̃𝑖+1

= V𝑡

P̃𝑖+1
=

((
X̂𝑡 ⊗ X̂𝑡

)𝑇 )†
V𝑡

𝜕𝑉𝜋

𝜕Δ𝜹
= 0

⇓
𝜋(X𝑡 )︷︸︸︷
Δ𝜹𝑡 = −(𝑅 + 𝛾�̃�𝑇

𝑡 �̃�
𝑖+1�̃� 𝑡)−1[𝑅𝜹𝑡−1 + 𝛾�̃�𝑇

𝑡 �̃�
𝑖+1X̂𝑡 + 𝛾�̃� 𝑡 �̃�

𝑖+1�̃�𝑡ΔX̂𝑡]

Incremental Model Model Estimates Buffer

Policy Evaluation Kernel Matrix Buffer

Policy Improvement

Fig. 2 Pseudo Code for the iADP Algorithm. Refer to Nomenclature for the corresponding notation of the
symbols used.

III. iADP based Flight Control System Design

A. Control Law Architecture
The iADP algorithm is used to design the FCL for the inner loop, tracking desired pitch and roll rate commands

using three control surfaces: aileron, elevator, and rudder, as shown in fig. 3. As this FCL is solely sensor-based,
signal processing of sensor measurements is performed to reduce the impact of noisy sensor signals. Smooth
sensor measurements are obtained by low-pass filtering relevant aircraft states and actuator position measurements.
Aerodynamic angles, namely angle of attack and sideslip angle, are acquired through a boom with attached vanes
on the aircraft. Complementary filtering of these angles is executed by combining them with inertial-reference
sensors. The signal processing block does not contain any knowledge of the aircraft model, ensuring a model-free and
aircraft-independent inner loop control structure. The iADP controller computes the required incremental control input
at each timestep, with the total control input determined by adding the previous control surface measurement to the
evaluated control increment. Pilot-in-the-loop studies are excluded from this flight control design, and thus, the desired
pitch and roll rate commands are generated automatically. However, the iADP controller is not aware of these reference
commands a priori.

Direct control over the aircraft’s attitude angles is absent, as the cost function does not consider attitude angle errors,
as only the one step rate errors are fed back as the reward signal. Additionally, airspeed and altitude information is
excluded from the state vector due to slower local variations, which could impact incremental model identification and
subsequent value function approximation.

To mitigate the effect of airspeed and altitude variations, reference commands are chosen to restrict variations in
airspeed to smaller values. Decoupled longitudinal and lateral controllers are designed: the longitudinal control loop
tracks a pitch rate command using the elevator, while the lateral control loop tracks a roll rate command using the aileron
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Actuators Aircraft Sensors

Longitudinal

Lateral

System
Dynamics

iADP Rate
Controller

¤𝜃𝑟

¤𝜙𝑟

¤̂𝜃

¤̂𝜙

𝑒

𝑒

Δ𝛿𝑒

(
Δ𝛿𝑎

Δ𝛿𝑟

)
𝚫𝜹𝒕 𝜹 ŷ

𝜹𝒕−1

©«
𝑞

�̂�

𝛿𝑒

ª®®¬
©«

𝑝

𝑟

𝛽

𝛿𝑎

𝛿𝑟

ª®®®®®®®¬
Fig. 3 Incremental Approximate Dynamic Programming based Flight Control Law (FCL) Architecture for
Inner Loop Rate Tracking. Decoupled Longitudinal and Lateral Reinforcement Learning (RL) Controllers for
PH-LAB Aircraft.

and/or rudder. Only one axis is controlled during a maneuver, which means during the evaluation of the longitudinal
task, aileron and rudder maintain the trimmed control input and vice versa.

B. iADP Control Law Evaluation Strategy
The iADP controller operates in real-time through three phases: Model Learning, Controller Training, and Controller

Assessment, as illustrated in fig. 4.

Incremental
Model

Policy
Evaluation

Policy
Improvement

Δ𝑥

Δ𝜹

𝑦𝑟

�̂�

𝑒

𝑥

𝜹

𝑦𝑟

�̂�

𝑒

𝑥

𝜹

Δ𝜹𝑡 𝜹

𝜹𝑡−1

�̃�

(
�̃�𝑡

�̃�𝑡

)

Model
Learning(1000 Hz)

Controller
Training(20 Hz)

Controller
Assessment(1000 Hz)

�̃�𝜋

�̃�

Fig. 4 Structure of the Reinforcement Learning Agent of iADP Flight Control Law (FCL). Model Learning
provides the latest model estimates using the RLS algorithm. Controller Training evaluates(𝑉𝜋) the Control
Policy using incremental model estimates and one-step Cost. Controller Assessment takes actions and improves
Control Policy (𝜋) based on policy evaluation. The frequency at which each subsystem on the Flight Control
Computer runs is indicated below. Refer to Nomenclature for the corresponding notation of the symbols used.

During the Model Learning phase, the controller estimates incremental model parameters using the RLS approach.
These estimates are fed to the controller training phase, where, using the latest available model estimates and control
policy, the value function(cost-to-go) estimate is improved. This value function provides a measure of goodness of
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the underlying control policy. To enable smoothness in parameter update, the value function update is done batch
wise considering data over a window of ’x’ no of samples. The optimal window length is determined from offline
simulation analysis and based on how much of computational load could the FCC handle using HIL ground tests. The
Controller Assessment phase evaluates the controller against a commanded reference signal, using the converged control
parameters, obtained from the Controller Training phase.

Two experimental approaches are considered for controller evaluation as shown in fig. 5a and fig. 5b:
1) Sequential Learning Approach (SLA): This approach runs each phase sequentially, starting with the Model

Learning phase, followed by the Controller Training and Controller Assessment phases. The Model Learning
phase is open loop and lasts for 20-25 seconds.

2) Continuous Learning Approach (CLA): In this approach, all three phases run concurrently. The Controller
updates its policy at every timestep using the latest model parameters from the Model Learning loop and
controller parameters from the Controller Training loop. The Controller Assessment loop runs concurrently,
allowing the controller to update the model and control along the commanded trajectory defined for the Controller
Assessment. To facilitate the learning process, the model learning phase operates in an open loop for the first
20-25 seconds of the trial. Subsequently, it adjusts the model parameters, taking into account the influence of the
controller in the loop.

𝑡𝑖𝑚𝑒

Model Learning

Controller Training

Controller Assessment

(a) Sequential Learning

𝑡𝑖𝑚𝑒

Model Learning

Controller Training

Controller Assessment

(b) Continuous Learning

Fig. 5 Comparison of Controller Learning Approaches

C. Controller Integration
Once the controller was designed, tuned, tested and validated in simulation, it is necessary to transfer the developed

algorithms to the aircraft for in-flight testing. Accordingly, the iADP controller is initially exported into compatible C
code to be embedded into the test framework and compiled on the test hardware. Subsequently, the generated code was
transferred and validated on the FCC.

1. Software
Prior to exporting the control functions, the controller interfaces were ensured to match with the ones from the

experimental FCC. Since the flight controller is developed in Simulink, the proprietary Mathworks tool Embedded
Coder was used to generate standalone C code according to given specifications. After revising the automatically
generated code to ensure correct export of the control functions, the code is embedded into the Delft University
Environment for Communication and Activation (DUECA) real-time framework. DUECA is a middle-ware layer
written in C++ and allows real-time implementation and communication of distributed systems [24]. It motivates
modular design and ensures real-time synchronization and exchange of signals.

The code for the controller is put into a separate DUECA module, which handles the needed interfaces. Other
connected modules include the servo position controller, sensor data acquisition, and the UDP sender. This last one is
crucial during flight tests, facilitating real-time access to aircraft data and auxiliary controller outputs. This enabled
direct evaluation of experiment results and changes to the flight test plan if needed.

DUECA ensures real-time synchronization through a master that controls all concurrently running modules at the
base frequency. During this flight test, the system ran at 1000 Hz. This means, the controller has a window of at most
1 ms for performing one step in order to stay synchronized. This was a challenge for the iADP FCL. Especially the
learning procedure, which includes large matrix operations, needed to be optimized to stay within this frame.
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2. Hardware
The Cessna Citation 550 PH-LAB aircraft (shown in fig. 1) is jointly operated by the TU Delft and the Dutch

Aerospace Center (NLR) and serves as a multi-functional research platform. The aircraft is certified in accordance with
the EASA CS-25 specifications for large aircraft. The nominal Cessna Citation comes with a reversible FCS realized
between the pilot’s joke and pedals and an asymmetrically deflecting pair of ailerons, a symmetrically deflecting pair
of elevators, and one rudder. Furthermore, an autopilot system is available which is realized by clutch-coupled servo
motors on the control surface cables.

For testing the experimental flight control functions, the airplane is equipped with an experimental fly-by-wire
(FBW) system, as detailed in [25], which has undergone exhaustive testing in order to be certified under EASA CS-25.
This FBW system ensures that the flight control surfaces follow the desired actuator commands through feedback signals
from actuator servos. The movements of the control surfaces are converted to electronic signals and the FCC determines
these signals based on expected actuator response. FCC provides these signals to the servo amplifiers of the actuators
that deflect the control surfaces. The experimental system runs on a dedicated computer, equipped with an Intel®
Core™ i5-3550S quad-core processor, and running Ubuntu 20.04 LTS with real-time kernel (PREEMPT_RT). More
details are given in [25, 26].

In addition to the experimental FBW, the research aircraft had an upgrade of several sensor systems. The Flight Test
Instrument System consists of a data acquisition computer and a signal conditioning unit for processing information
from sensors. For further details, the reader is advised to refer to [4, 25, 27]. The sensors used for the iADP testing are
shown in table 1.

Table 1 Sensors used for the iADP flight control testing, with values from [4, 28, 29]

Sensor Signal Sampling freq. [Hz] Est. Delay [ms]

AHRS 𝜙, 𝜃 52 90
Hall Sensor 𝛿𝑎, 𝛿𝑒, 𝛿𝑟 100 <1

Air data boom 𝛼, 𝛽 100 100
Air data sensor 𝑉TAS, 𝑉CAS, ℎ, ¤ℎ 16 300

IMU 𝑝, 𝑞, 𝑟, ¤𝜙, ¤𝜃, ¤𝜓 1000 15

Prior to conducting the flight tests, the generated code is examined through HIL testing, performed with the aircraft
and experimental system on ground. The flight testing procedure with the PH-LAB aircraft is detailed in [30]. During
these tests, both the aircraft hardware and FBW system are evaluated, along with the iADP controller code that is
generated. The flight tests of the iADP controller are conducted with solely automatically generated references and
without pilot commands.

D. Clearance of Control Laws through Verification & Validation (V&V)
Verification involves analyzing and testing processes to confirm that flight control algorithms operate as intended,

ensuring accurate implementation in both software and hardware. Validation assesses the performance of FCL’s against
defined requirements, utilizing a set of criteria. The V&V plan for iADP FCS is designed to ensure that control
design specifications are fulfilled. Verification primarily utilized offline simulation analysis, while validation involved
Hardware-in-the-loop (HIL) and flight testing methods.

The verification process employs the PH-LAB aircraft model, with the controller operating without any prior
knowledge of the model. It accomplishes tasks based solely on data observed from the aircraft model collected
along simulated system trajectories in offline desktop simulations. The PH-LAB aircraft model used is a high-fidelity
simulation model, considering relevant real-world phenomena and nonlinear effects, validated against flight test data
from previous works[31][32]. This high-fidelity model includes the effects of different aircraft configurations, such as
landing gear down and extended flaps. iADP flight controller adaptation to different aircraft configurations is verified
using these models through simulations, before validation through flight test experiments.

iADP hyper-parameter tuning(𝛾RLS, 𝛾, 𝑄, 𝑅) is conducted using DLR’s optimization tool Multi-Objective Parameter
Synthesis (MOPS), a Matlab-based software for solving general-purpose parameter optimization problems[33]. The
controller’s robustness to model uncertainties is assessed through an anti-optimization routine using MOPS. This
involves determining parameter combinations of model uncertainties leading to the worst-case performance (rate
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tracking error) of the iADP controller. Hyper-parameters are tuned against this worst-case model obtained from the
previous step, and this loop is run iteratively. Furthermore, several unit tests are done through offline desktop simulation
to ensure low sensitivity of the iADP controller to hyper-parameters, changes in operating conditions (velocity and
altitude changes), aircraft configuration changes, and sensitivity to sensor dynamics (bias, noise, and delays).

The validation of the controller is performed through HIL ground tests and finally flight tests. Validation tasks
include ensuring the FCC can handle the computational load of the recursive algorithms, verifying the signs of the
controller commands on the ground, and conducting controller logging and real-time monitoring tool chain tests.

During flight tests, different subsystems of the iADP FCL are validated one after the other. The open-loop model
learning phase is first validated by running only the RLS algorithm during preliminary flight test trials. The identified
incremental model parameters are then validated against the model through post-flight data analysis. Once the model
learning subsystem is validated, the controller training subsystem is validated by running model learning and controller
training phases during another flight test trial. The converged controller parameters are verified through post-flight
test data analysis. After clearing the model learning and controller training subsystems, the final control assessment
validation took place. The V&V of the iADP FCL for this flight test campaign is detailed in [34]. This step-by-step
clearance of different subsystems of iADP FCL ensured the analysis and rectification of any issues found with individual
subsystems. This procedure ensured that the learning process can be interpretable for post-flight critical analysis, crucial
for V&V of online adaptive FCL’s.

IV. Flight Tests
Controller validation involves assessing the performance of the FCL’s against predefined criteria. iADP FCL

validation occurred through flight tests on the PH-LAB research Aircraft, conducted in November 2022 and August
2023, departing from Rotterdam The Hague Airport.

A. Experimental Objectives and Setup
Flight Control Design specifications act as a guide for control engineers, directing them in the design process to

verify that the controller meets specific criteria [35]. For iADP FCL validation, the following FCS design specifications
are formulated:

1) Minimize Attitude Rate Tracking error - Ensure the controller commands the aircraft to follow pitch and roll
rates.

2) Low Sensitivity to changes in Operating Conditions - Ensure rate tracking in different operating conditions
(Altitude and Velocity changes).

3) Reproducible Results - Ensure consistent controller behavior under similar conditions.
4) Continuous Learning - Ensure stable continuous learning over longer maneuvers.
5) Adaptability to Aircraft Configurations - Ensure rate tracking in different aircraft configurations.

Several factors influenced how the flight trial could be conducted. The dimensions of the available airspace for
the tests were decided preflight, in consultation with pilots. Operating conditions for which the aircraft equipment is
certified, in consultation with technicians, provided estimates on the boundaries of the flight envelope. These factors
determined the higher limit on the trial’s duration. The lower limit on trial duration was determined by the minimum
time/samples required for the iADP algorithm to converge, determined through offline desktop simulations and HIL
tests. To test adaptability, a set of feasible aircraft configurations were decided preflight. These configurations should be
observable by the iADP controller and sufficiently alter the aircraft’s dynamics to assess FCL’s adaptability. For these
tests, the higher limit on the airspeed is imposed by the fact that landing gear and flap maximum extension configurations
can be deployed only below a certain airspeed.

Subsequently, flight test cards were prepared to facilitate in-flight communication. The command control station
laptop served as an interface for communication with the FCC, enabling tasks like switching between controllers,
engaging/disengaging, resetting, and changing tunable controller parameters. Another control station laptop monitored
real-time controller performance by reading data from the FCC, enabling critical analysis and intervention if abnormalities
were observed. The Interface Control Document (ICD) was updated to include parameters requiring tuning during
flight, essential controller switches, signals to be logged onto the FCC.
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B. iADP based Control Law Flight Performance
The table 2 provides a summary of all the flight test trials, offering a concise overview of the outcomes along with

the operating condition at which the aircraft is trimmed before the beginning of the flight trial.

Table 2 Overview of the iADP Controller Flight Testing Campaigns. The trials are listed chronologically, and
the trial ID follows the notation: N22 for November 2022, A23 for August 2023, F# indicates the flight test day,
and T# indicates the trial number. The Axis indicates the actively controlled channel of the aircraft via the FBW
during the trial. 𝑉𝑇𝐴𝑆 represents True Airspeed, and ℎ represents altitude. The Outcome column reflects whether
the controller response aligned with the design specifications. Config. denotes Aircraft Configuration.

Trial ID Axis 𝑉𝑇𝐴𝑆

[m/s]
ℎ

[m] Brief Description Outcome

N22-F2-T1 Pitch 101 3600 Oscillatory response; Convergence in Model prediction ✓

N22-F2-T2 Pitch 106 3650 Off-nominal Flight; Inverted Incremental Model Parameters ✕

N22-F2-T3 Pitch 104 3650 First Success; Decent tracking; Slight Elevator oscillations ✓

N22-F2-T4 Pitch 105 3550 Inverted Controller Commands; Inverted Model Parameters ✕

N22-F2-T5 Pitch 94 3500 Better tracking; Increased Elevator oscillations ✓

N22-F3-T1 Pitch 102 2100 Decent tracking; High Model Prediction error ✓

N22-F3-T2 Roll 91 2150 Oscillatory response; High Model Prediction error ✕

N22-F3-T3 Roll 96 2000 Aircraft deviated from level flight post Model Learning phase ✕

A23-F1-T1 Pitch 99 2750 Oscillatory response; Model Learning duration too short ✓

A23-F1-T2 Roll 101 2800 Deviated from level flight; Model Learning duration too short ✕

A23-F1-T3 Pitch 102 2750 First success with Continuous Learning; Decent tracking ✓

A23-F1-T4 Pitch 101 2800 Reproducible Continuous Learning; Better tracking ✓

A23-F1-T5 Roll 100 2800 First success in Lateral with Continuous Learning ✓

A23-F1-T6 Roll 101 2800 Reproducible Continuous Learning; Good tracking response ✓

A23-F2-T1 Pitch 97 3050 Stable Continuous Learning; Decent tracking response ✓

A23-F2-T2 Roll 101 3050 Nominal Config.; Reproducible Continuous Learning ✓

A23-F2-T3 Roll 95 3100 Nominal Config.; Reproducible Continuous Learning ✓

A23-F2-T4 Roll 97 3100 Nominal Config.; Reproducible Continuous Learning ✓

A23-F2-T5 Roll 97 3050 Landing Gear Down Config. ; Stable Continuous Learning ✓

A23-F2-T6 Roll 97 3050 Flaps 15◦ Config. ; Stable Continuous Learning ✓

A23-F2-T7 Roll 98 3100 Flaps 40◦ Config. ; Slightly Oscillatory tracking ✓

SLA is adopted from trial ’N22-F2-T1’ to ’A23-F1-T2’ and all subsequent trials have adopted CLA. SLA takes
precedence to identify and assess converged parameters, addressing issues such as the ideal open-loop aircraft
identification input signal, determining acceptable phase durations for parameter convergence, refining the reference
signals to ensure the aircraft stays within airspace limits. The controller parameters, including model parameters, are
reset after each trial. Consequently, no information about the aircraft model or controller parameters from previous
flight tests is retained or transferred to subsequent attempts. For stable parameter convergence in the RLS algorithm, we
combine frequency-rich persistently exciting signals, with the calculated control input as shown in eq. (12). The need
for the persistent excitation is further explained in [36] [37]. The selected persistent excitation signal for the iADP FCL
is a sinusoidal signal with a small amplitude.

(Δ𝛿𝑡 )𝑐𝑚𝑑 = Δ𝛿𝑡 + 𝑃𝐸 (12)

Longitudinal Controller Assessment - Sequential Learning Approach
The first successful trial of the iADP algorithm for longitudinal rate control is presented in fig. 6. The left-aligned

plots illustrate the model learning phase, an open-loop period where a 3211 maneuver is commanded by the elevator.
The online RLS algorithm updates model parameters at each time step during this 20 second phase, with fixed parameters
subsequently passed to the controller training phase. The choice of the 3211 signal is based on its proven effectiveness
in previous system identification flight tests on the Citation aircraft. Control over the system’s excited frequency can be
achieved by adjusting the duration of individual step commands in the 3211 signal. The 3211 signal also serves the
functionality of persistently exciting signal as mentioned in eq. (12). The forgetting factor (𝛾RLS) is tuned using the
Multi-Objective Parameter Synthesis tool (MOPS). Results comparing measured longitudinal states against predictions
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from the RLS algorithm show a good fit. Although model parameters seem to converge quickly, some fluctuations are
observed, which are discussed later in this paper.
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Fig. 6 Flight Test Data(Trial ID : N22-F2-T3), PH-LAB performing a Longitudinal maneuver: iADP Flight
Control Law (FCL) designed for Pitch Rate Capture. Sequential Learning Approach (SLA) with fixed parameters
post Model Learning and Controller Training.

The right-aligned plots depict results from the controller training and assessment phase. Parameters for this phase,
including the discount factor (𝛾) and weighting matrices (𝑄 and 𝑅), are tuned using MOPS tool [33]. The controller
training phase lasted for 40 seconds(from 20 to 60 seconds), during which the controller loop is closed and internally a
pitch rate reference command to evaluate the policy is generated. The controller along with model parameters estimated
from model learning phase and observed one step error in pitch rate tracking, has to improve its estimates of cost-to-go
function. Controller parameters are updated during a brief 5 second phase (55 to 60 seconds). This computationally
intensive phase updates kernel matrix parameters, using data collected over a 20 second window(data from 35-55
seconds is used for the update from 55th second onwards). This loop is running at a much lower 20 Hz due to real-time
constraints. After the controller training phase concludes, the parameters are fixed and passed to the subsequent
Controller Assessment phase.

During the Controller Assessment phase, an internal pitch rate command is generated, and the controller’s objective
is to track this reference command. The results, from 60 to 100 seconds, show the aircraft effectively tracking a pitch
rate command, which can also be interpreted as a reduction in the cost-to-go plot. The tracking performance improved
with higher values of 𝑄, but this made the controller response more oscillatory(from flight trial N22-F2-T5 in table 2).
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Lateral Controller Assessment - Sequential Learning Approach
A similar strategy is planned to validate the lateral controller, to achieve roll rate captures using aileron and/or rudder

control surfaces. Initially, a SLA is planned for validation. However, both trials N22-F3-T2 and N22-F3-T3, using a SLA
to achieve roll rate capture, were unsuccessful. Post-flight test analysis revealed that the 3211 maneuver commanded by
the aileron during the model learning phase did not yield a symmetric lateral response, causing the aircraft to deviate
from level flight before controller parameters could converge. To mitigate this, the 3211 maneuver is replaced with
doublets at the aileron, and the duration of the model learning and controller training phases were reduced. Another
SLA was planned for trial A23-F1-T2 considering these changes. During this trial, although symmetric commands
helped aircraft to maintain level flight post the model learning phase, the controller parameters could not converge
during the controller training phase. This lead to the aircraft steering away from level flight, after the controller training
phase. Although the model learning phase yielded good model predictions, a shorter controller training duration meant
the controller parameters were fixed before they converged, affecting the controller’s performance. No successful lateral
controller validation tests were conducted with SLA, and all subsequent lateral controller tests were conducted only
with CLA.

Lateral Controller Assessment - Continuous Learning Approach
Figure 7 and fig. 8 depict the flight test results from trial A23-F2-T2, focusing on achieving a roll rate tracking task

with a CLA.
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Fig. 7 Flight Test Data(Trial ID : A23-F2-T2), PH-LAB performing a Lateral maneuver: Plots compare the
predictions from the Incremental model to the measured states. iADP Flight Control Law (FCL) designed for
Roll Rate Capture. Continuous Learning Approach (CLA) with real-time parameter adaptation.
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The controller’s objective is to command the aircraft to follow a roll rate reference and demonstrate stable continuous
learning capability. Figure 7 illustrates the performance of the incremental model identification stage. Doublets are
initially commanded at the Aileron and Rudder to aid the identification process. A sinusoidal signal is superimposed on
commanded aileron and rudder, to ensure RLS parameter convergence. When comparing the measured state variable
with the prediction, the RLS algorithm appears to offer a good fit in state prediction throughout the maneuver. However,
after 30 seconds, error in predicting certain states was observed to have an increasing trend, likely attributed to sharp
control inputs occurring around the moment the control loop was closed at 20 seconds.

The performance of the controller training and assessment stage is presented in fig. 8. Comparing the reference to
the measured roll rate output in the first row, a good tracking response is observed. The bottom two plots show the
reduction in the cost-to-go estimate and the evolution of the controller parameters respectively.
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Fig. 8 Flight Test Data(Trial ID : A23-F2-T2), PH-LAB performing a Lateral maneuver: Plots show performance
from Controller Training and Assessment Phase. iADP Flight Control Law (FCL) designed for Roll Rate Capture.
Continuous Learning Approach (CLA) with real-time parameter adaptation.

Adaptability to different Aircraft Configurations
To assess the adaptability of the iADP controller, five flight test trials were conducted, with varying aircraft

configurations. The controller’s objective is to track roll rate commands using a CLA. The operating conditions (trimmed
aircraft velocity and altitude) are consistent across all trials. The controller objective, approach, operating conditions,
and hyper-parameters of the iADP controller are kept constant, enabling an evaluation of controller performance solely
against changes in aircraft configuration. Four aircraft configurations are considered:

1) Nominal(N): Landing gear up, flaps completely retracted (0◦ extension), similar to a normal cruise flight.
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2) Landing Gear Down(G-D): Landing gear down, flaps completely retracted (0◦ extension).
3) Flaps 15◦ Extension(F-15): Landing gear up, flaps extended to 15◦.
4) Flaps 40◦ Extension(F-40): Landing gear up, flaps extended to 40◦.
Each configuration change is introduced one at a time, allowing an assessment of adaptability to individual changes.

Pilots change the aircraft configuration by deploying landing gear or extending flaps first, and the aircraft is trimmed in
each configuration before engaging the iADP controller. Following each configuration change, the iADP FCL undergoes
three phases: model learning, controller training, and controller assessment phase.
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Fig. 9 Flight Test Data(Trial ID : A23-F2-T3 to A23-F2-T7), PH-LAB performing Lateral maneuvers: Experi-
mental setup to test the controller adaptability to change in aircraft configurations. Plots show performance
from Controller Training and Assessment Phase across different aircraft configurations. iADP Flight Control
Law (FCL) designed for Roll Rate Capture. Continuous Learning Approach (CLA) with real-time parameter
adaptation.

Two trials, designated as N-1 and N-2, were conducted in the nominal configuration, followed by the deployment
of landing gear (G-D) and flap extensions (F-15 and F-40). The adaptability test aims to evaluate differences in
model/controller parameters with respect to configuration changes. Figure 9 illustrates the controller’s performance
across these configurations. Model and controller parameters undergo continuous updates at each time step, i.e., CLA.
When comparing Nominal-1 configuration with others, the tracking performance exhibits the most significant difference
with landing gear and 40◦ flaps extension, while showing similar performance with Nominal-2 and 15◦ Flaps extension
configurations. The controller response appears oscillatory when flaps are at their maximum (40◦) extension, likely
due to the substantial alteration in the aircraft’s aerodynamic properties. Flap deployment modifies the aerodynamic
forces on the wings, influencing the rolling moment of the aircraft. The landing gear-down configuration also results in

14

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

10
, 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
24

02
 



a different controller response, possibly due to the changes in the moment of inertia about the roll axis due to mass
redistribution, consequently affecting the lateral stability characteristics of the aircraft. Aileron effectiveness is expected
to be impacted by both flap extension and landing gear down configurations.

Despite the variations in aircraft configurations, it is interesting to observe that the controller, despite being unaware
of these model changes, effectively guides the aircraft in the lateral axis throughout the entire maneuver. Additionally,
the controller parameter updates exhibit stability throughout the entire maneuver across all four configurations.

To quantify the adaptability of the controller further, time-evolving parameters are compared against different
configurations. Four different metrics are considered for comparison,

1) Tracking Error: Evaluates controller tracking performance, assessing the control objective.
2) Incremental Model State Matrix (�̃�𝑡 ): Measures identified incremental model parameters related to state

transitions, containing state derivatives.
3) Incremental Model Control Effectiveness Matrix (�̃�𝑡 ): Measures identified incremental model parameters

related to control effectiveness, containing control derivatives.
4) Kernel Matrix (�̃�): Measures learned control policy parameters.

N-1 N-2 G-D F-15

N-2

G-D

F-15

F-40

N-1 N-2 G-D F-15

N-2

G-D

F-15

F-40

N-1 N-2 G-D F-15

N-2

G-D

F-15

F-40

N-1 N-2 G-D F-15

N-2

G-D

F-15

F-40

Fig. 10 Quantifying similarity index of Adaptive control parameters using Frobenius Norm across Aircraft
Configurations. Tracking error is less sensitive to aircraft configuration changes in Continuous Learning
Approach (CLA). Kernel Matrix Parameters �̃� are correlated to Aircraft Configurations, indicating adaptation of
control policy by the Reinforcement Learning agent. State transition matrix parameters(�̃�𝑡 ) from the Incremental
Model are correlated to configurations, high sensitivity to Flaps 40◦ Extension. High variance in control
effectiveness matrix parameters(�̃�𝑡 ) of the Incremental Model. Configuration labels: N-1 (1st trial in Nominal
Configuration), N-2 (2nd trial in Nominal Configuration), G-D (Landing Gear Down), F-15 (Flaps 15◦ Extension),
F-40 (Flaps 40◦ Extension)

For an accurate comparison, flight test data is aligned, and values are smoothed using a Gaussian-weighted moving
average filter to remove noise artifacts. Additionally, only data from 35 to 100 seconds is utilized in this analysis to
mitigate the impact of transients. The Frobenius norm of the difference in matrices is selected to assess the similarity of
these values. Although nuclear and spectral norms are considered as alternatives for comparison, the results appear
insensitive to the choice of the norm, and only Frobenius norm based evaluation is presented. For example, the norm for
comparing N-1 configuration data with Flap 15 configuration is defined as follows:

∥Δ𝑃∥𝐹 = ∥𝑃𝑁1 − 𝑃𝐹15∥𝐹
The evolving matrix ∥Δ𝑃∥𝐹 , sized according to each trial’s duration, represents a time-dependent parameter. A

cumulative sum of this value serves as a metric indicating the similarity between 𝑃𝑁1 and 𝑃𝐹15 parameters. This
similarity measure is depicted for various values and compared across different aircraft configurations in fig. 10.
Comparing the first column of all four plots, i.e., comparing N-1 to {N-2, G-D, F-15, and F-40}, the difference in the
tracking error seems to be minimum between N-1 and N-2. However, examining the ∥Δ�̃�∥𝐹 plot indicates that the
similarity is least between N-1 and F-40, contrasting with the N-1 and N-2 comparison. This observation suggests that
controller parameters undergo updates to accommodate aircraft configuration alterations. The ∥�̃�𝑡 ∥𝐹 plot indicates the
greatest difference in the state derivative matrix during the F-40 configuration, as expected due to significant changes in
the aircraft’s aerodynamic properties during maximum flap extension. The variability of the control effectiveness matrix
�̃�𝑡 appears high, making comparisons challenging. But ∥�̃�𝑡 ∥𝐹 plot indicates lowest similarity when comparing {N-1,
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N-2} with F-40, and G-D. This suggests the model learning phase adapting to identify the control derivative parameters
specific to F-40 and G-D configurations.

C. Discussion

Controller Effectiveness Matrix parameter estimation Issues
During one of the iADP pitch rate tracking controller validation experiments, an abnormal elevator command by

the controller led to the aircraft entering an off-nominal flight condition(trials N22-F2-T2 and N22-F2-T4). Upon
investigation, it was observed that the model parameters are not stable post 3211 phase, specifically the identified
parameters of the controller effectiveness matrix had the wrong signs. These erroneously frozen parameters were used
in the subsequent controller training phase. The kernel matrix �̃�, which provides a measure of how good the policy is,
failed to retain positive symmetric definiteness properties, due to inaccurate Incremental Model parameters. The pitch
rate tracking response indicated that the controller initially attempted to command in the wrong direction relative to the
reference, a result of the sign inversion in the model parameters.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4
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0.6

0.7

0.8
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-0.1 0 0.1 0.2 0.3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 11 Flight Test Data across different Trials: Sensitivity Assessment of iADP Controller Tracking Error to
Converged Incremental Model Parameters. The normalized integral tracking error is correlated with variance
in control effectiveness matrix parameters estimates, provided by RLS algorithm. PH-LAB performing a
Longitudinal maneuver. iADP Flight Control Law (FCL) designed for Pitch Rate Capture. Sequential Learning
Approach (SLA) with fixed parameters post Model Learning and Controller Training.

To further investigate this issue, the fixed incremental model parameters i.e., both state transition matrix and control
effectiveness matrix entries, along with integral tracking error from different longitudinal control flight test trials are
considered. Only the fixed parameters at the end of model learning phase are considered. The data from successful and
off-nominal flight test trials is compared in fig. 11. The error shown in y-axis is an integral error, normalized across
different flight test trials. Only the flight trials for longitudinal pitch rate tracking task with SLA are considered for this
analysis. The scatter plot denotes an element in 𝐹𝑡 or 𝐺𝑡 from a flight trial, and these are compared against the observed
tracking error from this flight trial. Comparing 𝐺𝑡 value from trials (N22-F2-T2 and N22-F2-T4) with other trials, we
see that the high tracking error was linked to the large deviation in 𝐺𝑡 estimates. Hence, the positive correlation between
normalized tracking error and variability in the control effectiveness estimates is evident. Additionally, the tracking
error is also correlated with sign inversion of the control effectiveness matrices, which ideally should have negative
values. These experiments offered important insights, highlighting the need to design controller validation experiments
to maximize the interpretability of parameters for online adaptive FCL’s.

Significant variability in estimating the controller effectiveness parameters of the Incremental model through the
RLS algorithm is evident. Flight trial data indicates incorrect sign estimation, a physically implausible scenario(e.g.,
a positive elevator deflection should induce a negative pitch rate). The Incremental model is running at 1000 Hz,
making it prone to noise. The noise and delays from the sensors, including actuator position measurements needs to be
investigated and filtering of these measurements should be reevaluated. Unavailability of accurate sensor models of
PH-LAB led to difficulty in verifying the sensitivity of the algorithm to sensor dynamics through desktop simulations.
However, the flight test data from CLA is interesting, which indicate that the controller could compensate for this error
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in estimating the control effectiveness matrix parameters and was still able to control aircraft. Potential solutions to
address variance in estimating control effectiveness matrix parameters include: running the incremental model at a
lower frequency or introducing L1 constraints in the optimization routine to penalize sign inversion.

Fine-Tuning Controller Performance
The current iADP controller cannot handle large deviations in operating conditions, due to the absence of velocity

and altitude information in the cost. Notably, the controller leaves a residual attitude angle at the end of maneuvers,
as it is designed exclusively to track the rate commands, and lacks integral error information. The errors in attitude
and position can be embedded into the iADP controller cost function. Including attitude angle/position error and/or
airspeed/altitude in the cost function could increase the state space size in cost-to-go approximation, requiring more
computations, and necessitating the exploration of these new states during maneuvers.

Alternatively, the control structure could be redesigned by augmenting the inner rate control loop with a middle
attitude loop and subsequently position loops, following a cascaded controller architecture[38]. This can be achieved
through an NDI-based attitude loop. As this is purely a kinematic inversion, an NDI based attitude loop could be
designed to convert attitude commands to rate commands, which serve as reference signals to the iADP controller [38].
This provides a solution that retains the advantages of handling non-linearities and being model-free.

Controlling Stable and Unstable dynamics
Validation tests of the iADP FCL demonstrate its ability to handle both stable longitudinal dynamics through pitch

rate capture, and also unstable lateral dynamics through roll rate captures. The aircraft is unstable in lateral spiral mode,
and without corrective control input, the aircraft slowly deviates from wings level flight. The instability in the lateral
axis imposed limitations on the open-loop model identification duration, as the aircraft deviates from level flight, and by
the time the controller took the corrective action, the error is too large. The controller training needs to be sufficiently
fast to have an acceptable transient response, before errors become too significant.

It is worth noting that the controller being less dependent on the model, resulted in quicker controller design
adoption for lateral axis, from the one which was initially designed for longitudinal rate control. Being model agnostic
meant, there are fewer variables to consider during controller design process and integration, saving time and effort—an
advantage, difficult to achieve with conventional non-adaptive control methods.

Sequential Learning vs. Continuous Learning Approach
Observed issues with sequential learning include, the choice of when to fix the model parameters was found to be a

key parameter. Fixing parameters assumes consistent aircraft and operating conditions, potentially causing mismatches
when deviations occur. Any deviation from this assumption means that the learned controller parameters may not
accurately represent the current state of the aircraft being controlled. CLA overcame this issue by continuously adjusting
both the model and the controller parameters. This might be the reason for CLA producing better results compared to
SLA. Nevertheless, SLA aided in validating each subsystems of the iADP Controller, as it runs only one loop at a time.

Curiosity vs. Sensitivity Trade-off
The control input acting on the system serves dual purposes: firstly, to stimulate the system for improved identification,

and secondly, to ensure a stable control action [39] [40]. Consequently, the policy must exhibit a curiosity for acquiring
novel information while maintaining a resistance to disturbances or noise in the loop, as these can impact steady-state
control performance. This dual requirement presents a trade-off between exploration and exploitation, in the context
of RL. Various factors contribute to shaping this trade-off: including the forgetting factor in the RLS algorithm, the
discount factor in the Bellman equation, sensor sampling frequency, update frequency of controller learning phases,
and parameters of sensor filters. Techniques such as variable forgetting factors [41] can effectively strike a balance,
allowing the policy to remain curious about new information while not being reactive to turbulence or sensor noise.

Tools for Monitoring Real-time Critical Parameters During Online Adaptation
Real-time monitoring of key adaptive parameters is found to be key during the conducting the flight test trials. An

incremental model watchdog is implemented, which provided a real time monitoring of predicted aircraft states by the
Incremental model and the measured aircraft states. This served as a tool to intervene in the middle of the flight, in case
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the health of this incremental model degrades. A comparable approach could be applied to monitor the health of the
covariance matrix of the RLS algorithm, Kernel matrix P, and other critical adaptive control indicators.

On the Complexity of the Cost Function Approximation
The iADP algorithm takes advantage of the fact that, when the state space of the controlled system is confined

to a region near a nominal optimum path, the Dynamic Programming problem can often be well approximated by
a linear-quadratic (LQ) problem, i.e., a problem with linear(time-varying) dynamics and a quadratic performance
index with respect to the states and the controls [42] [43]. Alternatively, if a quadratic value function approximation
proves inadequate for representing the cost-to-go, neural network-based function approximations for value and/or policy
functions can be chosen, leading to an actor-critic like structure [8] [44] [45]. However, this choice involves a trade-off,
as neural networks demand more computational effort and are less sample efficient compared to the iADP algorithm.

The iADP algorithm can be modified to include actuator constraints as detailed in [46]. High frequency inputs
could be reduced through inclusion of cost (Δ𝛿𝑇𝑡 𝑅ΔΔ𝛿𝑡 ) in the one-step cost function. The control input command
could be rate limited by including rate limits on the calculated Δ𝛿𝑡 .

Handling Non-linearities
The iADP algorithm addresses nonlinear dynamics using a first-order Taylor series approximation of the local

time-varying model. This approximation remains valid when the sensors, used in recursive model identification, are
sampled at a high frequency. While the incremental model is not directly used in control design, it aids in estimating
the infinite horizon cost-to-go through policy evaluation, making the controller less sensitive to incremental model
estimation inaccuracies. While the Taylor series approximation holds true only within its convergence radius, the iADP
algorithm relies on the concept that, if the controller can respond quickly enough to keep the system on the expected
optimal path, this approximation holds true for the entire nonlinear dynamics landscape.

The predominantly linear behavior of the PH-LAB aircraft model in a significant part of its flight envelope makes
assessing the nonlinear control capability of the FCL challenging. Nevertheless, the iADP FCL is designed and
successfully verified on a nonlinear F-16 aircraft model, including tests for online adaptation following a control surface
failure [17].

Model Free Controller Adaptation for Fault Tolerance
A controller, which can control the aircraft without a priori knowledge of the aircraft, in theory, could be tolerant to

aircraft failures, provided the aircraft remains controllable, and states are observable. iADP FCL’s model agnostic
property was validated in flight tests, demonstrating its ability to track commands across various aircraft configurations,
without hyper-parameter adjustments or awareness of configuration changes. Currently, configuration changes occurred
before the controller is engaged. It would be interesting to assess the controllers adaptability to handle these changes
occurring while the controller is learning. For a direct fault tolerance assessment, scenarios like engine failure or stuck
control surfaces could be introduced during flight to evaluate failure recovery capability of the FCL. Another advantage
of iADP FCL is that it is tolerant to sensor signal mismatches or signs, enabled by the model free control structure,
making it less sensitive to these type of sensor failures. The algorithm only fails in case of complete sensor breakdown,
a concern addressable through hardware redundancy.

V. Conclusion
This paper presented the RL based iADP FCL design for a CS-25 class aircraft and reported the findings from the

maiden flight test campaign of this controller. The methodology of the iADP controller was detailed, including an
assessment of its features and limitations, along with a concise overview of the FCL ’s V&V process. The controller
demonstrated its capability to control the aircraft without prior knowledge of the aircraft model or any offline pre-training,
relying solely on the data collected along the system trajectories of the aircraft, with real-time parameter adaptation.
The flight tests validated the FCL for the stable longitudinal axis, through pitch rate captures and unstable lateral axis,
through roll rate captures. Post-flight comparison of adaptive parameters indicated, the capability of the controller to
adapt to different configurations, while retaining parameter interpretability. The outcome of flight tests was reviewed,
encompassing discussions on challenges faced, potential improvements to the FCL and scenarios for future fault
tolerance validation through flight tests. This model free and adaptive FCS could work as a potential lifeline in flight
emergencies, complementing traditional FCS and aiding aircraft in fault recovery when facing controllable failures.
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