

Delft University of Technology

iPINNs: incremental learning for Physics-informed neural networks

Dekhovich, Aleksandr; Sluiter, Marcel H.F.; Tax, David M.J.; Bessa, Miguel A.

DOI
10.1007/s00366-024-02010-1
Publication date
2024
Document Version
Final published version
Published in
Engineering with Computers

Citation (APA)
Dekhovich, A., Sluiter, M. H. F., Tax, D. M. J., & Bessa, M. A. (2024). iPINNs: incremental learning for
Physics-informed neural networks. Engineering with Computers. https://doi.org/10.1007/s00366-024-02010-
1

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s00366-024-02010-1
https://doi.org/10.1007/s00366-024-02010-1
https://doi.org/10.1007/s00366-024-02010-1

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Vol.:(0123456789)

Engineering with Computers
https://doi.org/10.1007/s00366-024-02010-1

ORIGINAL ARTICLE

iPINNs: incremental learning for Physics‑informed neural networks

Aleksandr Dekhovich1 · Marcel H. F. Sluiter1 · David M. J. Tax2 · Miguel A. Bessa3

Received: 23 November 2023 / Accepted: 5 June 2024
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract
Physics-informed neural networks (PINNs) have recently become a powerful tool for solving partial differential equations
(PDEs). However, finding a set of neural network parameters that fulfill a PDE at the boundary and within the domain of
interest can be challenging and non-unique due to the complexity of the loss landscape that needs to be traversed. Although a
variety of multi-task learning and transfer learning approaches have been proposed to overcome these issues, no incremental
training procedure has been proposed for PINNs. As demonstrated herein, by developing incremental PINNs (iPINNs) we can
effectively mitigate such training challenges and learn multiple tasks (equations) sequentially without additional parameters
for new tasks. Interestingly, we show that this also improves performance for every equation in the sequence. Our approach
learns multiple PDEs starting from the simplest one by creating its own subnetwork for each PDE and allowing each subnet-
work to overlap with previously learned subnetworks. We demonstrate that previous subnetworks are a good initialization
for a new equation if PDEs share similarities. We also show that iPINNs achieve lower prediction error than regular PINNs
for two different scenarios: (1) learning a family of equations (e.g., 1-D convection PDE); and (2) learning PDEs resulting
from a combination of processes (e.g., 1-D reaction–diffusion PDE). The ability to learn all problems with a single network
together with learning more complex PDEs with better generalization than regular PINNs will open new avenues in this field.

Keywords Physic-informed neural networks (PINNs) · Scientific machine learning (SciML) · Incremental learning ·
Sparsity

1 Introduction

Deep neural networks (DNNs) play a central role in scien-
tific machine learning (SciML). Recent advances in neural
networks find applications in real-life problems in physics
[1–4], medicine [5–7], finance [8–11], and engineering
[12–15]. In particular, they are also applied to solve Ordi-
nary Differential Equations and Partial Differential Equa-
tions (ODEs/PDEs) [16–20]. Consider the following PDE,

where F is a differential operator, B is a boundary condi-
tion operator, h(�) is an initial condition, and Ω is a bounded
domain.

The first neural network-based approaches incorporated
a form of the equation into the loss function with initial
and boundary conditions included as hard constraints [21,
22]. However, these works used relatively small neural
networks with one or two hidden layers. On the contrary,
PINNs [20] encode initial and boundary conditions as soft
constraints into the loss function of a DNN. Subsequently,
PINNs and their extensions found applications in fluid
mechanics [23–25], inverse problems [26–28] and finance
[20, 29]. Later, the generalized version of PINNs, called
XPINNs [30], was proposed by decomposing the domain
into multiple subdomains. However, this method uses as

(1)F[u(�, t)] = f (�), � ∈ Ω, t ∈ (t0, T],

(2)B[u(�, t)] = b(�), � ∈ �Ω,

(3)u(�, t0) = h(�), � ∈ Ω,

 * Miguel A. Bessa
 miguel_bessa@brown.edu

1 Department of Materials Science and Engineering, Delft
University of Technology, Mekelweg 2, 2628 CD Delft,
The Netherlands

2 Pattern Recognition and Bioinformatics Laboratory, Delft
University of Technology, Van Mourik Broekmanweg 6,
2628 XE Delft, The Netherlands

3 School of Engineering, Brown University, 184 Hope St.,
Providence, RI 02912, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-024-02010-1&domain=pdf

 Engineering with Computers

many networks as the number of subdomains, increasing
the algorithm’s complexity. Almost simultaneously with
our work, Multi-head PINNs (MH-PINNs) [31] have been
proposed as a multi-task and meta-learning approach for
PINNs that is employed to learn stochastic processes,
synergistic learning of PDEs and uncertainty quantifica-
tion. MH-PINNs have a shared part of the network and
task-specific output heads for prediction. Therefore, it
uses additional parameters for every head, increasing the
model’s size with respect to the number of tasks, without
sharing knowledge between them. In addition, the param-
eters in MH-PINN are shared between all tasks in the non-
output layer, which is a limitation if the tasks are very
different as the authors noted [31]. Other meta-learning
approaches were also employed in the context of PINNs
[32, 33]. However, meta-learning literature focuses on
obtaining good initialization for a new task given some
tasks for pretraining. Unfortunately, once the network is
adapted to a new task, it loses the ability to solve the previ-
ous ones, i.e. it undergoes catastrophic forgetting of other
tasks. We take a different route inspired by the incremental
learning and continual (or lifelong) learning literature, as
discussed below.

Background and main challenges PINNs formulate the
PDE solution problem by including initial and boundary con-
ditions into the loss function of a neural network as soft con-
straints. Let us denote the output of the network N with learn-
able parameters � as û(𝜃, �, t) = N(𝜃;�, t) . Then sampling the
set of collocation points, i.e. a set of points in the domain,
CP = {(xi, ti) ∶ xi ∈ int Ω, ti ∈ (t0, T], i = 1, 2,…NF} , the
set of initial points IP = {(xj, t0) ∶ xj ∈ �Ω, j = 1, 2,… ,Nu0

}
a n d t h e s e t o f b o u n d a r y p o i n t s
BP = {(xk, tk) ∶ xk ∈ �Ω, tk ∈ (t0, T], k = 1, 2,… ,Nb} one
can write the optimization problem and loss function arising
from PINNs as follows:

(4)L(�) = LF(�) + Lu0
(�) + Lb(�) → min

�
,

However, sometimes PINNs struggle to learn the ODE/
PDE dynamics [34–37] (see Fig. 1). Wight and Zhao [38]
proposed several techniques to improve the optimiza-
tion process compared to the original formulation: mini-
batch optimization and adaptive sampling of collocation
points. Adaptive sampling in time, splits the time interval
[t0, T] = ∪K

k=0
[tk−1, tk], tK = T , and solves an equation on the

first interval [t0, t1] , then on [t0, t2] , and so on up to [t0, T] .
Thus, if a solution can be found on a domain Ω × [t0, tk−1] ,
then the network is pretrained well for the extended domain
Ω × [t0, tk] . Krishnapriyan et al. [35] proposed the seq2seq
approach that splits the domain into smaller subdomains in
time and learns the solution on each of the subdomains with
a separate network. Thus, both adaptive sampling in time
and seq2seq are based on the idea of splitting the domain
into multiple subdomains, on which solutions can be learned
more easily.

As explained in [36], improving PINN’s solutions by
considering small subdomains is possible because the loss
residuals (LF term) can be trivially minimized in the vicinity
of fixed points, despite corresponding to nonphysical system
dynamics that do not satisfy the initial conditions. Therefore,
the reduction of the domain improves the convergence of the
optimization problem (4) and helps to escape nonphysical
solutions.

Despite the popularity of DNNs, and PINNs in particular,
there are few incremental learning algorithms available in
SciML literature. Yet, incremental learning and continual

(5)

LF(𝜃) =
1

NF

NF∑

i=1

||||F[û(𝜃, x
i, ti)] − f (xi)||||

2
, (xi, ti) ∈ CP,

(6)Lu0
(𝜃) =

1

Nu0

Nu0∑

j=1

||||û(𝜃, x
j, t0) − h(xj)||||

2
, (xj, t0) ∈ IP,

(7)

Lb(𝜃) =
1

Nb

Nb∑

k=1

||||B[û(𝜃, x
k, tk)] − b(xk)||||

2
, (xk, tk) ∈ BP.

Fig. 1 1-D reaction equation
with parameter � = 5 (see P1.2)

Engineering with Computers

learning algorithms [39–41] are capable of handling tasks
sequentially, instead of altogether as in multi-task learning
and other strategies. Moreover, they are still capable of not
forgetting how to solve all of the previously learned tasks.
If tasks have some similarities with each other, new tasks
have the potential of being learned better (i.e., faster or with
lower testing error) with the help of previously learned ones.
The goal of this work is to propose an incremental learning
algorithm for PINNs such that similar symbiotic effects can
be obtained.

Our contribution We propose incremental PINNs (iPINNs)
and implement this strategy by creating one subnetwork per
task such that a complete neural network can learn multiple
tasks sequentially without forgetting of previous tasks. Each
subnetwork Ni has its own set of parameters 𝜃i ⊂ 𝜃 , and the
model is trained sequentially on different tasks. A subnet-
work for a new task can overlap with all previous subnet-
works, which helps to assimilate the new task. As a result,
the network consists of overlapping subnetworks, while the
free parameters can be used for future tasks. To illustrate the
benefits of the algorithm we consider two problem formula-
tions (Sect. 3). Firstly, we learn a family of equations (e.g.,
convection) starting from a simple one and incrementally
learning new equations from that family. Secondly, we learn
a dynamical system that consists of two processes (e.g., reac-
tion–diffusion) by first learning the individual components
of the process. Both scenarios demonstrate that the incre-
mental approach enables an iPINN network to learn for cases
where regular PINNs fail. To the best of our knowledge, this
is the first example where one network can sequentially learn
multiple equations without extending its architecture and be
able to provide solutions to all previously seen PDEs without
forgetting them, with the added benefit that performance is
significantly improved.

2 Related work

Our methodology is based on creating sparse network repre-
sentations and, similarly to other PINN research, is sensitive
to the choice of activation functions. We briefly highlight
key related work herein.

Sparse network representation Sparse architectures
are often advantageous compared to dense ones [42–45].
According to the lottery ticket hypothesis (LTH) [46], every
randomly initialized network contains a subnetwork that can
be trained in isolation to achieve comparable performance
as the original network. Based on this observation, the idea
of using subnetworks has been adopted in continual learn-
ing [47–49]. In this paradigm, every subnetwork created is
associated with a particular task and used only for this task

to make a prediction. One of the approaches to find these
tasks-related subnetworks is connections’ pruning [50–54]
that removes unimportant parameters while exhibiting simi-
lar performance.

Choice of the activation function There are several studies
that investigate how different activation functions affect the
performance of neural networks in classification and regres-
sion tasks [55, 56]. It was shown that ReLU [57] activation
function which can be powerful in classification tasks, in the
case of physics-informed machine learning (PIML) regres-
sion, may not be the optimal choice. Meanwhile, hyperbolic
tangent (tanh) or sine (sin) perform well for PIML. Sinu-
soidal representation networks (SIRENs) [58] tackle the
problem of modeling the signal with fine details. Special
weights initialization scheme combined with sin activation
function allows SIREN to learn complex natural signals.
Hence, we use sin activation function in our experiments.
In Sect. 6.1, we provide the comparison in results between
the discussed activation functions.

Curriculum and transfer learning One possible approach
for mitigating training difficulties in PINNs is transfer learn-
ing which is commonly used in computer vision and natural
language processing [59–62]. It tries to improve the optimi-
zation process by starting with better weight initialization. In
PINNs, transfer learning is also successfully used to acceler-
ate the loss convergence [63–66]. For instance, Chen et al.
[67] apply transfer learning to learn different PDEs faster by
creating tasks and changing coefficients or source terms in
equations. Analogously, curriculum regularization (similar
to curriculum learning [68]) is proposed in [35] to find good
initial weights. However, in all these scenarios the PINN
experiences forgetting, i.e. it loses the ability to generalize
on the tasks used in pretraining. The proposed iPINN does
not have this issue, maintaining the ability to remember solu-
tions for all given PDEs.

3 Problem formulation

We focus on two scenarios: (1) incremental PINNs learning,
where the network sequentially learns several equations from
the same family; and (2) learning a combination of multiple
equations that create another physical process. To illustrate
these cases, we consider one-dimensional convection, reac-
tion and reaction–diffusion problems with periodic boundary
conditions.

3.1 Scenario 1: Equation incremental learning

We consider the problem of learning the sequence of equations
that belong to one family:

 Engineering with Computers

where Fk, k = 1, 2,… are differential operators from the
same family of equations.

In this case, every task k is associated with
Dk = {(x, t, k) ∶ x ∈ [0, 2�], t ∈ [t0, T], k ∈ ℕ} . Following
[35], we take h1(x) = sin x and h2(x) = e

−
(x−�)2

2(�∕4)2.

3.2 Scenario 2: Combination of multiple equations

We also consider the case when a dynamic process consists of
multiple components. Let us consider the reaction–diffusion
equation:

where t ∈ [0, 1], x ∈ [0, 2𝜋], 𝜈, 𝜌 > 0 . This process consists
of two parts: reaction term (� = 0) : −�u(1 − u) and diffusion
term (� = 0) : −� �2u

�x2
 . Therefore, we construct one task as the

reaction, another one as the diffusion, and the final one as the
reaction–diffusion. We can change the order of the reaction
tasks and diffusion tasks to show the robustness of incre-
mental learning. The reaction–diffusion task should be the
last one since our goal is first to learn the components of the
system and only then the full system.

Considering these two problems, we want to show that
better generalization can be achieved by pretraining the net-
work with simpler related problems rather than by dividing
the domain into smaller subdomains. In the following section,
we show how one network can incrementally learn different
equations without catastrophic forgetting.

4 Proposed method

The proposed method needs to be applicable to both types
of problems P1 and P2. However, these problems cannot be
solved by one network with the same output head for every

(P1)Fk[u(x, t)] = 0, x ∈ Ω, t ∈ [t0, T], k = 1, 2,… ,

1-D convection equation

∂u

∂t
+ βk

∂u

∂x
= 0, (P1.1)

u(x, 0) = h1(x),
u(0, t) = u(2π, t),

1-D reaction equation

∂u

∂t
− ρku(1− u) = 0, (P1.2)

u(x, 0) = h2(x),
u(0, t) = u(2π, t),

(P2)

�u

�t
− �

�2u

�x2
− �u(1 − u) = 0,

u(x, 0) = h2(x),

u(0, t) = u(2�, t),

different task, since Fi[u(x, t)] ≠ Fj[u(x, t)] for i ≠ j and
x ∈ Ω, t ∈ (t0, T] . Instead, the incremental learning algo-
rithm we propose (iPINNs) focuses on learning task-specific

subnetworks N1,N2, ...,Nk, ... for each task k. By creating
PDE-specific subnetworks we can encode multiple solution
in one network since not all parameters are shared between
PDEs, and as a result we parameterize a solution of equa-
tion k with its own subnetwork Nk . Moreover, we achieve
the ability to learn multiple PDEs without extension of the
underlying architecture or using multiple networks.

We start by creating the above-mentioned subnetworks
using an iterative pruning algorithm that we developed
called NNrelief [54]. Other pruning strategies could be con-
sidered, without loss of generality—see Remark 1.

Remark 1 In principle, any connections pruning algorithm or
any other approach that is able to find and train sparse net-
work representations is suitable for the iPINNs strategy we
propose herein. However, most pruning algorithms aim at
reducing memory requirements or reducing inference time,
instead of aiming at subnetwork creation with the smallest
number of neuron connections. NNrelief was developed with
this in mind, so it creates sparser subnetworks for a given
performance level when compared to state-of-the-art meth-
ods, as we showed in the original article [54] for multiple
datasets. This makes it particularly interesting for iPINNs, as
the subnetworks we generate are smaller and leave additional
free connections for subsequent incremental training.

NNrelief consists of three steps: (1) training the network
on the current task; (2) pruning unimportant connections
based on a proposed criterion (importance scores, as dis-
cussed next and also detailed in the original article); and (3)
retraining the network to obtain satisfactory performance.
Steps 2 and 3 (pruning and retraining) can be repeated more
than once, although in our experience it is not necessary
to repeat it more than 3 times for the network to achieve
similar or better performance than before pruning it [54].
NNrelief achieves the highest number of pruned parameters
(connections) reported to date for different state-of-the-art

Engineering with Computers

neural network architectures trained on MNIST [50],
CIFAR-10/100 [69] and Tiny-ImageNet [70]. The method
has the particular characteristic of using input data to esti-
mate the contribution of every connection to the neuron in
the pretrained network and then deleting the least important
connections.

For an output signal Y(l−1) = {�
(l−1)

1
, �

(l−1)

2
,… , �

(l−1)

N
} cor-

r e s p o n d i n g t o N s a m p l e s , w h e r e
�
(l−1)
n

= (y
(l−1)

n1
, y

(l−1)

n2
,… , y(l−1)

nm
)t ∈ ℝ

m and m is the number
of neurons in layer l − 1 , NNrelief computes the average
strength of a signal that passes through every connection.
Thus, the average signal strength between neuron i of layer
l − 1 and neuron j of layer l is computed as follows:
���w

(l)

ij
y
(l−1)

i

��� ∶=
1

N

∑N

n=1

���w
(l)

ij
y
(l−1)

ni

��� , where w(l)

ij
 is a weight

parameter for the corresponding connection. Then the
importance score for this connection is defined as:

(8)s
(l)

ij
=

���w
(l)

ij
y
(l−1)

i

���
∑m

k=1

���w
(l)

kj
y
(l−1)

k

��� +
���b

(l)

j

���

,

where b(l)
j

 is a bias parameter for neuron j of layer l. For
every neuron j, connections i∗ with the smallest value of the
importance score s(l)

i∗j
 are deleted. The fraction of pruned

parameters is defined with � ∈ (0, 1) , where the sum of the
remaining importance s(l)

ij
 is at least � . Therefore, the smaller

value of � results in a higher number of pruned parameters.
The pseudocode is shown in Algorithm 1.

Algorithm 1 Pseudocode for NNrelief

Require: network N , training dataset D = {yi = (xi, ti), i = 1, 2, . . . , N},
pruning hyperparameter α.

1: Y(0) ← D
2: for every layer l = 1, . . . , L do
3: Y(l) ← layer Y(l−1)

)

4: for every neuron j in layer l do
5: Compute importance scores s(l)ij for every incoming connection wij

and bias bj using Eq. 8.
6: ŝ

(l)
ij ← Sort(s(l)ij , order = descending).

7: Find p0 = min{p :
∑p

i=1 ŝ
(l)
ij ≥ α}.

8: Prune connections with importance score s
(l)
ij < ŝ

(l)
p0j

.
9: end for

10: end for

Fig. 2 An example of iPINNs with two PDEs: every subnetwork
corresponds to only one task (PDE). Colors represent belonging of
connections to different tasks (PDEs): red for task 1, blue for task 2,
magenta for both tasks, and black for not assigned connections (col-
our figure online)

 Engineering with Computers

An important concept in the proposed iPINN strategy is
that the pruning method is used to train task-specific subnet-
works, but allowing the subnetworks to naturally overlap on
some connections (see Fig. 2). This way the method provides
knowledge sharing between the subnetworks. These overlaps
are updated with respect to all tasks that are assigned to a
particular connection. Let us denote the loss of each task Dj
as Lj = L(�j;Dj) , where �j is the parameter vector for task Dj ,
1 ≤ j ≤ k . Then the total loss and its gradient with respect to
a parameter w can be written as:

because if w ∉ Nj , then �Lj

�w
= 0.

(9)L =

k∑

j=1

Lj,

(10)
�L

�w
=

k∑

j=1

�Lj

�w
=

∑

j∶ w∈Nj

�Lj

�w
,

Algorithm 2 includes the pseudocode for iPINNs. For
every new task k that enters the network, we first find a cor-
responding subnetwork Nk with NNrelief (line 4 of Algo-
rithm 2), then adapt the overlaps between previous subnet-
works N1,N2,… ,Nk−1 and a new one Nk (line 5 of the
Algorithm 2). We can prune a (sub)network multiple times
(hyperparameter num_iters) to achieve a lower sparsity level,
however, this is computationally expensive. Therefore we
prune every network only once and control the sparsity level
with parameter �.

Algorithm 2 PINN incremental learning: adding new task k

Require: neural network N , training datasets D1,D2, . . . ,Dk−1 and Dk,
training hyperparameters, pruning hyperparameters (num iters, α).

1: Nk ← N � set full network as a subnetwork
2: Train N1,N2, . . . ,Nk on tasks D1,D2, . . . ,Dk using Eq. 10. � training

step
3: for it = 1, 2, . . . , num iters do � repeat pruning
4: Nk ← NNrelief(Nk,Dk, α) � pruning step: Algorithm 1
5: Retrain subnetworksN1,N2, . . . ,Nk on tasks D1,D2, . . . ,Dk using Eq.

10. � retraining step
6: end for

Remark 2 The pruning strategy allows us to have more flexi-
ble variation in parameter sharing because we can keep task-
specific parameters within a subnewtork that are not shared
with other subnetworks, but we can also keep parameters
that are shared among different subnetworks. Task-specific
parameters are shown by the red and blue connections in
Fig. 2, and they result from pruning the entire network and
training free connections (in black) that are unused. The
magenta connections in Fig. 2 highlight cases where their
parameters are being shared across different tasks, and they
result from the pruning algorithm not removing those con-
nections when training for a new task.

The main advantage of the proposed approach is that a
neural network learns all tasks (equations) that were given
during training and not only the last one. This is achieved
by constantly replaying old data. Data for previous tasks
is easily available by sampling collocation points, which

eliminates all issues of data replaying for continual learning
problems in computer vision and natural language process-
ing tasks and makes the algorithm well-suited in the con-
text of PINNs. We want to emphasize that iPINN does not
need to know how many tasks will be handled overall, and it
accesses only those that were considered up to task k inclu-
sive, which distinguishes it from multi-task learning. In the
next section, we experimentally show that pretrained parts
of the network help to improve the convergence process.

5 Numerical experiments

Our findings illustrate the advantage of Algorithm 2 over
regular PINNs [20]. The Algorithm allows the network to
learn multiple equations (P1) from the same family. Fur-
thermore, by starting with simpler tasks, the network can

Engineering with Computers

subsequently learn more complex ones that cannot be
learned in isolation.

Experiments setup Let us start by examining the proposed
algorithms on the convection and reaction equations with
periodic boundary conditions (P1). Following the setup in
[35], we use a four-layer neural network with 50 neurons
per layer. We use 1000 randomly selected collocation points
on every time interval between 0 and 1 for LF . Adam is
used as the optimizer [71] with a learning rate of 0.01 and

20,000 epochs to train the model before and after pruning.
We divide the learning rate by 3 every 500 epochs in which
the loss does not decrease. We repeat our experiments multi-
ple times with different random initializations of the network
parameters and show the average values of error. We also
compare our approach with curriculum training [35] and use
the same total number of training epochs for both curriculum
regularization and iPINNs.

To evaluate the performance of the algorithms we com-
pare the final error after the last task. In addition, following
continual learning literature [72], we compare backward
and forward transfer metrics. Let us denote the test set as
Dtest = {(xi, ti, l) ∶ xi ∈ [0, 2�], ti ∈ [0, 1], l is the task-ID}
and N = #Dtest , the solution of the equation at the point
(xi, ti, l) as �i

l,k
= ui

l,k
(xi, ti) , and �̂i

l,k
 is a prediction of the

model at point (xi, ti, l) after task Dk is learned. Relative and
absolute errors are denoted as rl,k and �l,k , respectively, as
they are calculated for task l after task k is learned (l ≤ k).

(11)Relative error: rl,k =
||�l − �̂l,k||2

||�l||2
× 100%,

(12)Absolute error: 𝜀l,k =
1

N

N∑

i=1

|�i
l
− �̂

i
l,k
|,

(13)Backward Transfer: BWT =
1

k − 1

k−1∑

l=1

�l,k − �l,l or

(14)BWT =
1

k − 1

k−1∑

l=1

rl,k − rl,l

Table 1 Final error and forgetting after all reaction equations are
learned

Bold values indicate better performance

Regular PINN [20] Curriculum
training [35]

iPINN (ours)

� = 1

 abs. err 1.09 × 10−3 1.09 × 10−3 �.� × ��
−�

 rel. err 0.263% 0.263% �.���%
� = 2

 abs. err 1.97 × 10−3 6.13 × 10−4 �.� × ��
−�

 rel. err 0.479% 0.154% �.���%

� = 3

 abs. err 6.72 × 10−3 1.5 × 10−3 �.� × ��
−�

 rel. err 2.05% 0.467% �.���%

� = 4

 abs. err 1.13 × 10−2 2.89 × 10−3 �.�� × ��
−�

 rel. err 3.68% 0.98% �.���%

� = 5

 abs. err 5.04 × 10−2 4.54 × 10−3 �.�� × ��
−�

 rel. err 12.19% 1.62% �.���%

BWT
 abs. err N/A N/A −3.8 × 10−4

 rel. err N/A N/A −0.112%

Fig. 3 Relative error history
for reaction equations (a) and
convection equations (b). Every
row shows the error after a new
task is learned

(a) (b)

 Engineering with Computers

5.1 Results

Table 1 presents the results after all reaction equations are
learned varying � from 1 to 5. Figure 3a shows the error his-
tory for every equation after incremental steps. The Table
summarizes the performance improvement of iPINNs com-
pared to regular PINNs and curriculum learning [35], exhib-
iting negligible error for all values of � , which is especially

relevant for cases when � is larger. We believe by learning
the given PDEs together, we achieve better generalization
capabilities due to the synergistic effect of sharing subnet-
work parameters. Moreover, iPINNs provide negative BWT
which means that previous subnetworks help to learn the
following ones.

Similarly, we observe for the convection equation the
same learning behaviour. By learning incrementally the
sequence of convection equations, we achieve much lower
absolute and relative errors for the equations that are more
difficult to learn (� = 30, 40). In Table 2 we show final errors
at the end of the training, and Fig. 3b shows the absolute
error history for each equation. In this case, we observe
some level of forgetting, however, it is insignificant com-
pared to the error values.

In Figs. 4 and 5, we illustrate the error of iPINNs on
convection and reaction equations and the exact solutions
for every value of parameter � or � that were considered.
Overall, we see that the neural network learns more com-
plicated tasks more accurately if parts of the network are
pretrained with easier tasks. At the same time, iPINNs replay
the training data for previous PDEs during training for the
new one. There are no additional costs to store or generate
input points (x, t) for previous tasks since they can be easily
sampled when necessary.

Remark 3 The proposed iPINNs may require more training
epochs than standard PINNs for one PDE because of the
subnetwork creation strategy. However, the algorithm pur-
sues a different goal: provide the ability to learn the solu-
tions sequentially sharing previously learned knowledge.

We also illustrate the effectiveness of the iPINN method
by addressing problem P2. We consider the values of � and
� for which a PINN does not have difficulties when learning

Table 2 Final error and forgetting after all convection equations are
learned

Bold values indicate better performance

Regular PINN [20] Curriculum
training [35]

iPINN (ours)

� = 1

 abs. err �.� × ��
−�

�.� × ��
−� 4.2 × 10−4

 rel. err �.���% �.���% 0.074%
� = 10

 abs. err 1.3 × 10−3 1.25 × 10−3 �.� × ��
−�

 rel. err 0.222% 0.211% �.���%

� = 20

 abs. err 1.9 × 10−3 �.�� × ��
−�

�.�� × ��
−�

 rel. err 0.339% 0.298% �.���%

� = 30

 abs. err 2.2 × 10−1 3.7 × 10−3 �.�� × ��
−�

 rel. err 3.957% 0.690% �.���%

� = 40

 abs. err 2.3 × 10−1 2.0 × 10−2 �.�� × ��
−�

 rel. err 37.4% 3.513% �.���%

BWT
 abs. err N/A N/A 1.8 × 10−4

 rel. err N/A N/A 0.0280%

Fig. 4 iPINNs on 1-D reaction
equation

Engineering with Computers

each component of the reaction–diffusion separately. Results
obtained when first learning the reaction part (or vice-versa,
the diffusion part) are shown in Table 3 (Table 4). The main
finding is that the network can learn every equation at least
as well as when it is learned independently. In fact, for the
reaction equation, the neural network improves significantly
the prediction error. Another interesting observation is that
the model learns the reaction–diffusion equation with almost
the same error, regardless of the order of the tasks. This
gives us a hint about the robustness of the algorithm to dif-
ferent task orders in terms of prediction error. In Sect. 6.2,
we analyze the percentages of parameters assigned to every

subnetwork to illustrate the same conclusion in terms of the
number of allocated parameters.

Remark 4 In contrast to meta-learning strategies, iPINNs do
not need to adapt weights for a new task during testing. One
can use the learned model and make a prediction with it.

Fig. 5 iPINNs on 1-D convec-
tion equation

Table 3 Final error and
forgetting for reaction →
diffusion → reaction–diffusion

Bold values indicate better performance

Parameters Equation Regular PINN [20] iPINN (ours)

� = 3, � = 5 Reaction abs. err 6.72 × 10−3 �.�� × ��
−�

rel. err 2.05% �.��%

Diffusion abs. err �.�� × ��
−� 1.85 × 10−4

rel. err �.��% 0.06%
Reaction–diffusion abs. err 4.89 × 10−3 �.�� × ��

−�

rel. err 0.80% �.��%

� = 4, � = 4 Reaction abs. err 1.13 × 10−2 �.�� × ��
−�

rel. err 3.68% �.��%

Diffusion abs. err �.�� × ��
−� 5.84 × 10−4

rel. err �.��% 0.19%
Reaction–diffusion abs. err 4.58 × 10−3 �.�� × ��

−�

rel. err 0.70% �.��%

� = 4, � = 5 Reaction abs. err 5.04 × 10−2 �.�� × ��
−�

rel. err 12.19% �.��%

Diffusion abs. err 5.18 × 10−4 �.�� × ��
−�

rel. err 0.18% �.��%

Reaction–diffusion abs. err 4.61 × 10−3 �.�� × ��
−�

rel. err 0.69% �.��%

 Engineering with Computers

Table 4 Final error and
forgetting for diffusion →
reaction → reaction–diffusion

Bold values indicate better performance

Parameters Equation Regular PINN [20] iPINN (ours)

� = 3, � = 5 Diffusion abs. err �.�� × ��
−� 8.64 × 10−4

rel. err �.��% 0.28%
Reaction abs. err 6.72 × 10−3 �.�� × ��

−�

rel. err 2.05% �.��%

Reaction–diffusion abs. err 4.89 × 10−3 �.�� × ��
−�

rel. err 0.80% �.��%

� = 4, � = 4 Diffusion abs. err 4.35 × 10−4 �.�� × ��
−�

rel. err 0.16% �.��%

Reaction abs. err 1.13 × 10−2 �.�� × ��
−�

rel. err 3.68% �.��%

Reaction–diffusion abs. err 4.58 × 10−3 �.�� × ��
−�

rel. err 0.70% �.��%

� = 4, � = 5 Diffusion abs. err �.�� × ��
−� 1.05 × 10−3

rel. err �.��% 0.33%
Reaction abs. err 5.04 × 10−2 �.�� × ��

−�

rel. err 12.19% �.��%

Reaction–diffusion abs. err 4.61 × 10−3 �.�� × ��
−�

rel. err 0.69% �.��%

Fig. 6 Influence of weight
decay on the results for reaction
(left) and convection (right)
equations after all tasks are
learned

(a) (b)

Fig. 7 Influence of activation
function on the results when the
reaction learned first (left) and
diffusion learned first (right)

Engineering with Computers

6 Additional study

In this section, we provide additional information about the
learning procedure of iPINNs . We highlight some important
training details such as the presence of regularization and the
choice of activation functions. Also, we explore the subnet-
works that our approach produces showing the proportion
of parameters allocated to each task.

6.1 Sensitivity to hyperparameters

Here we illustrate the influence of different training hyper-
parameters on the performance of iPINNs. First, we com-
pare the results with and without regularization param-
eter (weight decay). In Fig. 6, it can be observed that the
presence of weight decay worsens the prediction error.
However, looking at the result it is clear that iPINNs still
work if weight decay is present. We can explain the lack
of need for weight decay with the fact that many param-
eters are assigned to multiple tasks and cannot overfit to a
particular one. Each subnetwork is also less parameterized
than the original network and therefore does not tend to
overfit. Thus, weight decay is not necessary and its pres-
ence only worsens the result due to the complication of the
optimization procedure.

Furthermore, we compare the performance when using
sin and tanh activation functions for two task order-
ings in Fig. 7. We observe that sin works significantly
better in both cases. Also, we test ReLU activation but

it exhibits poor performance in both PDE orderings, as
expected. If the reaction is learned first, the absolute errors
are 0.4959, 0.2369 and 0.1493. If we start with the diffu-
sion equation and then learn reaction and reaction–diffu-
sion PDEs, the errors are 0.2399, 0.2977 and 0.3003.

In addition, we present how different values of pruning
parameter � affect the results. The higher the value of � is,
the less the network is pruned. Therefore, if � = 0.95 the
task-specific subnetworks are sparser than with � = 0.99
but less sparse if � = 0.9 . In Fig. 8, we observe that for
the reaction equation, we can prune less and achieve bet-
ter performance which can be explained by the fact that
PDEs in the reaction family are quite similar. Therefore,
we can allow the network to have more overlaps to share
knowledge between subnetworks. For the case of learning
within the same family of convection PDEs, the value of
� = 0.95 was revealed to be a better option for constructing
a sufficiently expressive task-specific subnetwork and frees
space for future tasks. Notwithstanding, the performance
is good with any reasonable choice of pruning parameter.

6.2 Subnetworks analysis

In Fig. 9, we present the portions of the subnetworks that are
occupied by each task. We will illustrate this by consider-
ing both orders – when the model learns the reaction equa-
tion first (Fig. 9a), and when diffusion comes first (Fig. 9b).
These results are averaged over 3 different runs for each of
the orderings. It is noteworthy that the percentage of param-
eters occupied by all tasks is very similar for both orderings

Fig. 8 iPINNs with different
values of pruning parameter �

Fig. 9 Percentage of parameters
used for every equation with
� = 4, � = 4

 Engineering with Computers

(31.8% and 31.5% respectively of all network parameters).
On the other hand, the percentages of used parameters for
both cases are 79.5% and 79.3%. This means that the total
number of trained parameters for the two incremental proce-
dures is the same for both cases, which shows the robustness
of the method. Moreover, the network has about 20% of free
connections to learn new tasks.

7 Conclusion

In this work, we propose an incremental learning approach
for PINNs where every task is presented as a new PDE. Our
algorithm is based on task-related subnetworks for every task
obtained by iterative pruning. To illustrate our idea, we con-
sider two cases when incremental learning is applicable to a
sequence of PDEs. In the first case, we consider the family
of convection/reaction PDEs, learning them sequentially. In
the second example, we consider the reaction–diffusion equa-
tion and learn firstly the components of the process, namely
reaction and diffusion, and only then the reaction–diffusion
equation. Our main goal is to show the possibility of incre-
mental learning for PINNs without significantly forgetting pre-
vious tasks. From our numerical experiments, the proposed
algorithm can learn all the given tasks, which is not possible
with standard PINNs. Importantly, we also show that future
tasks are learned better because they can share connections
trained from previous tasks, leading to significantly better per-
formance than if these tasks were learned independently. We
demonstrate that this stems from the transfer of knowledge
occurring between subnetworks that are associated with each
task. Interestingly, the model’s performance on previous tasks
is also improved by learning the following tasks. In essence,
iPINNs demonstrate symbiotic training effects between past
and future tasks by learning them with a single network com-
posed of dedicated subnetworks for each task that share rel-
evant neuronal connections.

Author contributions A.D. wrote the main manuscript text and pre-
pared the figures, A.D. and M.A.B. designed the research, and all
authors reviewed the manuscript.

Data availability There is no need for sharing data, as the code is made
freely available and all results can be replicated using that code.

Code availability The code implementation is available at: https://
github. com/ adekh ovich/ incre mental_ PINNs.

Declarations

Conflict of interest The authors have no conflict of interest to declare.

References

 1. Madrazo CF, Heredia I, Lloret L, Lucas JM (2019) Application
of a convolutional neural network for image classification for
the analysis of collisions in high energy physics. In: EPJ Web
of Conferences, vol 214. EDP Sciences, p 06017

 2. Bogatskiy A, Anderson B, Offermann J, Roussi M, Miller D,
Kondor R (2020) Lorentz group equivariant neural network for
particle physics. In: International conference on machine learn-
ing. PMLR, pp 992–1002

 3. Shlomi J, Battaglia P, Vlimant J-R (2020) Graph neural net-
works in particle physics. Mach Learn Sci Technol 2(2):021001

 4. Khatib O, Ren S, Malof J, Padilla WJ (2022) Learning the phys-
ics of all-dielectric metamaterials with deep Lorentz neural net-
works. Adv Opt Mater 10:2200097

 5. Marques G, Agarwal D, Torre Díez I (2020) Automated medical
diagnosis of covid-19 through efficientnet convolutional neural
network. Appl Soft Comput 96:106691

 6. Si T, Bagchi J, Miranda PB (2022) Artificial neural network
training using metaheuristics for medical data classification: an
experimental study. Expert Syst Appl 193:116423

 7. Sarvamangala D, Kulkarni RV (2022) Convolutional neural
networks in medical image understanding: a survey. Evol Intel
15(1):1–22

 8. Hosaka T (2019) Bankruptcy prediction using imaged finan-
cial ratios and convolutional neural networks. Expert Syst Appl
117:287–299

 9. Yu P, Yan X (2020) Stock price prediction based on deep neural
networks. Neural Comput Appl 32(6):1609–1628

 10. Gogas P, Papadimitriou T (2021) Machine learning in econom-
ics and finance. Comput Econ 57(1):1–4

 11. Wang J, Gan X (2023) Neurodynamics-driven portfolio opti-
mization with targeted performance criteria. Neural Netw
157:404–421

 12. Bessa MA, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C,
Chen W, Liu WK (2017) A framework for data-driven analysis
of materials under uncertainty: countering the curse of dimen-
sionality. Comput Methods Appl Mech Eng 320:633–667

 13. Sosnovik I, Oseledets I (2019) Neural networks for topology
optimization. Russ J Numer Anal Math Model 34(4):215–223

 14. Chandrasekhar A, Suresh K (2021) Tounn: topology optimization
using neural networks. Struct Multidisci Optim 63(3):1135–1149

 15. Juan NP, Valdecantos VN (2022) Review of the application
of artificial neural networks in ocean engineering. Ocean Eng
259:111947

 16. Lee H, Kang IS (1990) Neural algorithm for solving differential
equations. J Comput Phys 91(1):110–131

 17. Dissanayake M, Phan-Thien N (1994) Neural-network-based
approximations for solving partial differential equations. Com-
mun Numer Methods Eng 10(3):195–201

 18. Meade AJ Jr, Fernandez AA (1994) Solution of nonlinear ordi-
nary differential equations by feedforward neural networks. Math
Comput Model 20(9):19–44

 19. Yentis R, Zaghloul M (1996) VLSI implementation of locally
connected neural network for solving partial differential equations.
IEEE Trans Circuits Syst I Fundam Theory Appl 43(8):687–690

 20. Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed
neural networks: a deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equa-
tions. J Comput Phys 378:686–707

 21. Lagaris IE, Likas A, Fotiadis DI (1997) Artificial neural net-
work methods in quantum mechanics. Comput Phys Commun
104(1–3):1–14

https://github.com/adekhovich/incremental_PINNs
https://github.com/adekhovich/incremental_PINNs

Engineering with Computers

 22. Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks
for solving ordinary and partial differential equations. IEEE Trans
Neural Netw 9(5):987–1000

 23. Mao Z, Jagtap AD, Karniadakis GE (2020) Physics-informed neu-
ral networks for high-speed flows. Comput Methods Appl Mech
Eng 360:112789

 24. Wessels H, Weißenfels C, Wriggers P (2020) The neural particle
method—an updated Lagrangian physics informed neural network
for computational fluid dynamics. Comput Methods Appl Mech
Eng 368:113127

 25. Cai S, Mao Z, Wang Z, Yin M, Karniadakis GE (2022) Physics-
informed neural networks (PINNs) for fluid mechanics: a review.
Acta Mech Sin 37:1727–1738

 26. Chen Y, Lu L, Karniadakis GE, Dal Negro L (2020) Physics-
informed neural networks for inverse problems in nano-optics and
metamaterials. Opt Express 28(8):11618–11633

 27. Lu L, Pestourie R, Yao W, Wang Z, Verdugo F, Johnson SG
(2021) Physics-informed neural networks with hard constraints
for inverse design. SIAM J Sci Comput 43(6):1105–1132

 28. Wiecha PR, Arbouet A, Girard C, Muskens OL (2021) Deep
learning in nano-photonics: inverse design and beyond. Photon-
ics Res 9(5):182–200

 29. Bai Y, Chaolu T, Bilige S (2022) The application of improved
physics-informed neural network (IPINN) method in finance.
Nonlinear Dyn 107(4):3655–3667

 30. Jagtap AD, Karniadakis GE (2021) Extended physics-informed
neural networks (XPINNs): a generalized space-time domain
decomposition based deep learning framework for nonlinear par-
tial differential equations. In: AAAI Spring Symposium: MLPS

 31. Zou Z, Karniadakis GE (2023) L-hydra: multi-head physics-
informed neural networks. arXiv preprint arXiv: 2301. 02152

 32. Liu X, Zhang X, Peng W, Zhou W, Yao W (2022) A novel meta-
learning initialization method for physics-informed neural net-
works. Neural Comput Appl 34(17):14511–14534

 33. Penwarden M, Zhe S, Narayan A, Kirby RM (2023) A metalearn-
ing approach for physics-informed neural networks (PINNs):
application to parameterized pdes. J Comput Phys 477:111912

 34. Wang S, Teng Y, Perdikaris P (2021) Understanding and miti-
gating gradient flow pathologies in physics-informed neural net-
works. SIAM J Sci Comput 43(5):3055–3081

 35. Krishnapriyan A, Gholami A, Zhe S, Kirby R, Mahoney MW
(2021) Characterizing possible failure modes in physics-informed
neural networks. Adv Neural Inf Process Syst 34:26548–26560

 36. Rohrhofer FM, Posch S, Gößnitzer C, Geiger BC (2022) Under-
standing the difficulty of training physics-informed neural net-
works on dynamical systems. arXiv preprint arXiv: 2203. 13648

 37. Mojgani R, Balajewicz M, Hassanzadeh P (2022) Lagrangian
pinns: a causality-conforming solution to failure modes of phys-
ics-informed neural networks. arXiv preprint arXiv: 2205. 02902

 38. Wight CL, Zhao J (2020) Solving Allen-Cahn and Cahn-Hilliard
equations using the adaptive physics informed neural networks.
arXiv preprint arXiv: 2007. 04542

 39. Castro FM, Marín-Jiménez MJ, Guil N, Schmid C, Alahari K
(2018) End-to-end incremental learning. In: Proceedings of the
European Conference on Computer Vision (ECCV), pp 233–248

 40. Cermelli F, Geraci A, Fontanel D, Caputo B (2022) Modeling
missing annotations for incremental learning in object detection.
In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp 3700–3710

 41. Kang M, Park J, Han B (2022) Class-incremental learning by
knowledge distillation with adaptive feature consolidation. In:

Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp 16071–16080

 42. Guo Y, Zhang C, Zhang C, Chen Y (2018) Sparse dnns with
improved adversarial robustness. In: Advances in neural infor-
mation processing systems, vol 31

 43. Ahmad S, Scheinkman L (2019) How can we be so dense? The
benefits of using highly sparse representations. arXiv preprint
arXiv: 1903. 11257

 44. Ye S, Xu K, Liu S, Cheng H, Lambrechts J-H, Zhang H, Zhou A,
Ma K, Wang Y, Lin X (2019) Adversarial robustness vs. model
compression, or both? In: Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp 111–120

 45. Liao N, Wang S, Xiang L, Ye N, Shao S, Chu P (2022) Achieving
adversarial robustness via sparsity. Mach Learn 111(2):685–711

 46. Frankle J, Carbin M (2018) The lottery ticket hypothesis: find-
ing sparse, trainable neural networks. arXiv preprint arXiv: 1803.
03635

 47. Mallya A, Lazebnik S (2018) Packnet: adding multiple tasks
to a single network by iterative pruning. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp
7765–7773

 48. Sokar G, Mocanu DC, Pechenizkiy M (2021) Spacenet: make free
space for continual learning. Neurocomputing 439:1–11

 49. Sokar G, Mocanu DC, Pechenizkiy M (2022) Avoiding forget-
ting and allowing forward transfer in continual learning via sparse
networks. In: Joint European conference on machine learning and
knowledge discovery in databases. Springer

 50. LeCun Y, Denker J, Solla S (1989) Optimal brain damage. In:
Advances in neural information processing systems, vol 2

 51. Hassibi B, Stork D (1992) Second order derivatives for network
pruning: optimal brain surgeon. In: Advances in neural informa-
tion processing system, vol 5

 52. Han S, Pool J, Tran J, Dally W (2015) Learning both weights and
connections for efficient neural network. In: Advances in neural
information processing systems, vol 28

 53. Dong X, Chen S, Pan S (2017) Learning to prune deep neural
networks via layer-wise optimal brain surgeon. In: Advances in
neural information processing systems, vol 30

 54. Dekhovich A, Tax DM, Sluiter MH, Bessa MA (2021) Neural
network relief: a pruning algorithm based on neural activity. arXiv
preprint arXiv: 2109. 10795

 55. Szandała T (2021) In: Bhoi AK, Mallick PK, Liu C-M, Balas VE
(eds) Review and comparison of commonly used activation func-
tions for deep neural networks. Springer, Singapore, pp 203–224

 56. Jagtap AD, Karniadakis GE (2022) How important are activation
functions in regression and classification? A survey, performance
comparison, and future directions. arXiv preprint arXiv: 2209.
02681

 57. Nair V, Hinton GE (2010) Rectified linear units improve restricted
Boltzmann machines. In: International Conference on Machine
Learning

 58. Sitzmann V, Martel J, Bergman A, Lindell D, Wetzstein G (2020)
Implicit neural representations with periodic activation functions.
Adv Neural Inf Process Syst 33:7462–7473

 59. Bengio Y (2012) Deep learning of representations for unsuper-
vised and transfer learning. In: Proceedings of ICML workshop on
unsupervised and transfer learning. JMLR Workshop and Confer-
ence Proceedings, pp 17–36

 60. Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C (2018) A survey
on deep transfer learning. In: International conference on artificial
neural networks. Springer, pp 270–279

http://arxiv.org/abs/2301.02152
http://arxiv.org/abs/2203.13648
http://arxiv.org/abs/2205.02902
http://arxiv.org/abs/2007.04542
http://arxiv.org/abs/1903.11257
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/2109.10795
http://arxiv.org/abs/2209.02681
http://arxiv.org/abs/2209.02681

 Engineering with Computers

 61. Ruder S, Peters ME, Swayamdipta S, Wolf T (2019) Transfer
learning in natural language processing. In: Proceedings of the
2019 conference of the North American Chapter of the Associa-
tion for Computational Linguistics: tutorials, pp 15–18

 62. Houlsby N, Giurgiu A, Jastrzebski S, Morrone B, De Laroussilhe
Q, Gesmundo A, Attariyan M, Gelly S (2019) Parameter-efficient
transfer learning for nlp. In: International conference on machine
learning. PMLR, pp 2790–2799

 63. Goswami S, Anitescu C, Chakraborty S, Rabczuk T (2020) Trans-
fer learning enhanced physics informed neural network for phase-
field modeling of fracture. Theor Appl Fract Mech 106:102447

 64. Niaki SA, Haghighat E, Campbell T, Poursartip A, Vaziri R (2021)
Physics-informed neural network for modelling the thermochemi-
cal curing process of composite-tool systems during manufacture.
Comput Methods Appl Mech Eng 384:113959

 65. Chakraborty S (2021) Transfer learning based multi-fidelity phys-
ics informed deep neural network. J Comput Phys 426:109942

 66. Xu C, Cao BT, Yuan Y, Meschke G (2023) Transfer learning
based physics-informed neural networks for solving inverse prob-
lems in engineering structures under different loading scenarios.
Comput Methods Appl Mech Eng 405:115852

 67. Chen X, Gong C, Wan Q, Deng L, Wan Y, Liu Y, Chen B, Liu
J (2021) Transfer learning for deep neural network-based partial
differential equations solving. Adv Aerodyn 3(1):1–14

 68. Bengio Y, Louradour J, Collobert R, Weston J (2009) Curriculum
learning. In: Proceedings of the 26th annual international confer-
ence on machine learning, pp 41–48

 69. Krizhevsky A (2009) Learning multiple layers of features from
tiny images. Master’s thesis, University of Tront

 70. Le Y, Yang X (2015) Tiny imagenet visual recognition challenge.
CS 231N 7(7):3

 71. Kingma DP, Ba J (2014) Adam: a method for stochastic optimiza-
tion. arXiv preprint arXiv: 1412. 6980

 72. Lopez-Paz D, Ranzato M (2017) Gradient episodic memory for
continual learning. In: Advances in neural information processing
systems, vol 30

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/1412.6980

	iPINNs: incremental learning for Physics-informed neural networks
	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	3.1 Scenario 1: Equation incremental learning
	3.2 Scenario 2: Combination of multiple equations

	4 Proposed method
	5 Numerical experiments
	5.1 Results

	6 Additional study
	6.1 Sensitivity to hyperparameters
	6.2 Subnetworks analysis

	7 Conclusion
	References

