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A B S T R A C T

Humans and autonomous vehicles will jointly use the roads in smart cities. Therefore, it is
a requirement for autonomous vehicles to properly handle the information and uncertainties
that are introduced by humans (e.g., drivers, pedestrians, traffic managers) into the traffic, to
accordingly make proper decisions. Such information is commonly available as linguistic, fuzzy
(non-quantified) terms. Thus, we need mathematical modeling approaches that, at the same
time, handle mixed (i.e., quantified and non-quantified) data. For this, we introduce novel type-
2 sets and membership functions to translate such mixed traffic data into mathematical concepts
that handle different levels and types of uncertainties and that can undergo mathematical
operations. Next, we propose rule-based data processing and modeling approaches to exploit
the advantages of these sets. This is inspired by the rule-based reasoning of humans, which
has proven to be very effective and efficient in various applications, especially in traffic. The
resulting models, hence, handle more than one level and type of uncertainty, which results in
precise estimations of traffic dynamics that are comparable in accuracy with similar analyses
if only one level of uncertainty (either probabilistic or fuzzy) would exist in the dataset. This
will significantly improve the analysis, prediction, management, and safety of traffic in future
smart cities.

. Introduction

Autonomous vehicles are key elements of future transportation systems [1]. These vehicles must navigate efficiently and safely
n smart cities, interacting with pedestrians, cyclists, and other (autonomous or human-driven) vehicles. In fact, safety is crucial to
nsure that autonomous vehicles will be deployed, accepted, and used [2,3]. Understanding human users of the roads is essential
or safety of autonomous vehicles [4–6]. Humans introduce uncertainties to the traffic dynamics, especially based on their cognitive
tates [7]. Human drivers intuitively perceive and take into account such psychologically-driven variations in the behavior of other
rivers and pedestrians [8,9].

Model-based control methods [10] can potentially steer autonomous vehicles based on predictions of the behavior of other people
n the road, so that safety is guaranteed and various objectives (e.g., reduced congestion and emissions [11,12]) are obtained.

When reliable, large-scale statistical data from systems or processes is available, generating probability density functions and
mploying them in the modeling of those systems and processes have effectively been considered for a long time in different fields.
odeling based on statistically sound data, however, requires to perform a large number of controlled tests and to collect and

tatistically analyze the resulting large datasets [13]. Moreover, the resulting models may still suffer from lack of robustness to
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Table 1
Mathematical symbols and notations frequently used throughout the paper.

𝒖𝑠(𝑘) Vector of all control inputs to system 𝑠 for time step 𝑘
𝑢𝑠,𝑖(𝑘) Element 𝑖 of control input vector 𝒖𝑠(𝑘)

𝒙eval
𝑠 (𝑘) Vector of all evaluated (e.g., based on observations and/or measurements) state variables of system 𝑠 for time step 𝑘

𝑥eval
𝑠,𝑖 (𝑘) Element 𝑖 of the evaluated state variable vector 𝒙eval

𝑠 (𝑘)

𝒙est
𝑠 (𝑘) Vector of all state variables of system 𝑠 estimated (via a model) for time step 𝑘

𝑥est
𝑠,𝑖 (𝑘) Element 𝑖 of the estimated state variable vector 𝒙est

𝑠 (𝑘)

𝝂𝑠(𝑘) Vector of all uncontrolled inputs (i.e., external disturbances) to system 𝑠 for time step 𝑘

𝜈𝑠,𝑖(𝑘) Element 𝑖 of the uncontrolled input vector 𝝂𝑠(𝑘)

|𝒙𝑠| Size of the state variable vector for system 𝑠

|𝒖𝑠| Size of the control input vector for system 𝑠

K Set of all discrete time steps

Keval
𝑠 Set of all time steps when an evaluation of the state variable vector is available for system 𝑠

Kid
𝑠 Set of all identification time steps for system 𝑠

𝜋𝑠 (𝑘) The time step before time step 𝑘 when the most recent information about the evaluated state variable vector of system 𝑠 exists

uncertainties due to unmodeled scenarios. Crucially, such models may face the following issues: First, they are not capable of
interpreting newly received information/data that involves fuzziness and that has not been (extensively) calibrated or filtered yet,
i.e., is given in vague human terms. An example of this is: Driver A is very frustrated. Second, these models are not capable of
interpreting information/data that does not (in a probabilistic sense, where the likelihoods of complementary events add up to 1)
omply with complementary events. An example of this is: Pedestrian B reports that all vehicles in area C are driving high speed,
hereas driver D reports that some vehicles in area C drive with an average speed.

These excellently motivate the use of fuzzy logic, which has been proposed to handle such lack of precision and consistency in
he data that is collected from humans, and the integration of heuristic and statistical knowledge, especially for an application like
raffic, where a large number of effective heuristic rules for interpretation and modeling of the processes exists. Moreover, novel
pproaches that incorporate human-like (logical) reasoning into traffic contexts, especially those that have not been reproduced in
ontrolled test environments, are of significant value [14–16]. Fuzzy logic has proven to be one of the strongest mathematical tools
or modeling human perception, cognition, and decision making [17]. While fuzzy sets of type-1 and type-2 handle, respectively,
ne and two levels of fuzzy uncertainties, systematic incorporation of both probabilistic and fuzzy uncertainties in one model is
challenge. Thus, in this paper, we will close this gap by introducing type-2 sets that incorporate both probabilistic and fuzzy

ncertainties, and by introducing rule-based models that apply such combined sets for dynamical systems, e.g., for traffic.
This paper is organized as follows: The rest of this section covers the main contributions of the paper and provides a brief

reliminary discussion about fuzzy sets. Section 2 introduces the novel concepts of probabilistic-fuzzy and fuzzy-probabilistic sets
or representing data with multiple levels and types of uncertainties. Section 3 proposes a dynamic model that processes such data
o estimate and predict the dynamics of the system. We also explain an identification procedure for these type-2 models. Section 5
ives the results of a case study. Finally, Section 6 concludes the paper and suggests some topics for future research.

Table 1 gives the most frequently used mathematical symbols and notations used throughout the paper. Scalar variables have
een shown by a regular italic font, whereas for vector variables a bold italic font has been used. Indices of the variables (e.g., the
osition of that variable in a vector or the index of the system that the variable belongs to) have been indicated as subscripts
or those variables. Linguistic terms that may specify or distinguish these variables from one another have been included with a
on-italic font, as superscripts for the variables. For instance, the superscript ‘‘eval’’ and ‘‘est’’ have been used to distinguish the
valuated and estimated state variable vectors.

.1. Road-map and main contributions

To summarize the core findings of the previous section and to provide a clear road-map for the paper, note the following recapped
nformation:

tate-of-the-art of online traffic modeling. Analysis and modeling of traffic based on data that is received online is mainly based on
uantified data. In future smart cities, however, traffic control centers and connected users will receive various, heterogeneous data
rom different sources and with different representations. For instance, users of the roads may send a voice or text message about
heir perception (in vague linguistic terms) of the neighboring traffic, whereas historical data may be obtained from the cameras
nd other traffic sensors.

pen challenges. Data that is provided by humans in linguistic, fuzzy terms can provide valuable insights about the current and
xpected states of the traffic, and will thus contribute significantly to effective and efficient control of traffic and to safety in
utonomous driving. In most situations, received traffic data involves both quantified and qualified information and uncertainties,
2

hereas current mathematical tools handle one type of uncertainty at a time.
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Fig. 1. Type-2 membership function in a discrete domain (for a detailed definition of the mathematical notations see Table 2).

Main contributions. Accordingly, the main contributions of the current paper are:

• we propose a generalization of type-2 fuzzy sets and membership functions, via introducing probabilistic-fuzzy and fuzzy-
probabilistic sets and membership functions, for precise representation and analysis of real-life traffic data with both
probabilistic and human-based (fuzzy) uncertainties;

• we formulate type-2 rules for human-centered modeling of road traffic network, with (delayed and/or asynchronous) traffic
measurements and observations, where the resulting rule-based type-2 models can process such combined probabilistic and
human-based uncertainties;

• we provide an assessment of the proposed theoretical approaches via numerical simulations for an urban traffic network.

Expected impact. The resulting analysis and modeling approaches will allow to incorporate more than one level and type of
uncertainty, resulting in precise estimations that are comparable in accuracy with similar analyses if only one level of uncertainty
(either probabilistic or fuzzy) would exist in the dataset. This not only improves the analysis of traffic, but will significantly
contribute to safety and autonomous control of traffic systems in smart cities.

1.2. Background of human behavior modeling in autonomous driving

End-to-end learning-based control, including (fully) convolutional neural networks, with or without long-short-term memory [18–
21], has been used for autonomous driving. This approach, which receives an input image to generate a control signal for
autonomous driving, requires a large dataset for training its inner neural network.

In [22], a Bayesian neural network has been used that provides predictions about navigation and localization based on GPS and
image inputs. Bayesian neural networks generally work based on the concept of probabilistic safety, i.e., the probability that the
generated control signal from the Bayesian neural network keeps the vehicle safe [23–25]. Such predictions of safety, however,
are still prone to uncertainties, since autonomous driving occurs in highly dynamic environments that cannot comprehensively be
modeled according to only one level of quantified (i.e., probabilistic) uncertainties. In addition to noisy measurements and a priori
unknown scenarios, the mental states, particularly, intentions of human users of the road cannot be measured (directly) [26]. Thus,
various alternative approaches have been proposed, in order to incorporate such non-measurable or non-quantifiable human factors
into the decision making, thus traffic modeling, by autonomous vehicles. One of the most promising frameworks includes interaction
models based on fuzzy logic [27–29].

Fuzzy-logic-based modeling and control systems are capable of emulating, respectively, the cognitive procedure of humans
(including drivers and pedestrians) in processing the environmental data for analyzing the environmental states and changes, and the
heuristic knowledge processing and decision making of experts/experienced drivers. Therefore, fuzzy-logic-based methods are able
to steer autonomous vehicles similarly to experts/experienced humans [30–36]. A significant advantage of using fuzzy-logic-based
models in autonomous driving is the ability of accurately predicting the behavior of human drivers, e.g., in lane shifting [37–39].

1.3. Preliminary discussions

In fuzzy logic [40,41], the concept of sets is generalized. More specifically, while in classical logic an element either belongs to
or does not belong to a set, in fuzzy logic, partial membership to a set is allowed, i.e., the membership degree to a set can be a
value within [0, 1]. Thus, each fuzzy set is defined by a membership function. Fuzzy sets are the most proper mathematical tools for
representing human-inspired uncertain perceptions and for processing non-quantified (linguistic) data that has more than a unique
possible quantification.
3
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Fig. 2. Type-2 membership function in a continuous domain (for a detailed definition of the mathematical notations see Table 2).

Table 2
Mathematical notations used in Section 1.3.

𝑥 A (fuzzy) variable with domain X
𝑓 t1,p(⋅) A primary type-1 membership function defined on the domain X and returning a value from [0, 1]

𝑓 t1,s(⋅, ⋅) A secondary type-1 membership function defined on the domain X × [0, 1] and returning a value from [0, 1]

𝑥∗ A (fuzzy) element, i.e., a realization for 𝑥

𝜇𝑖,𝑗 Primary (𝑖 = 1) or secondary (𝑖 = 2) membership degree for element 𝑗

𝜇∗
𝑖,𝑗 A realization for 𝜇𝑖,𝑗

A fuzzy set that allows partial membership of elements, with certain degrees of (partial) membership, is a type-1 fuzzy set. Type-
2 fuzzy sets [42] additionally handle multiple levels of uncertainties, i.e., similarly to type-1 fuzzy sets there is uncertainty about
whether or not an element belongs to the type-2 fuzzy set (thus a primary membership degree in [0, 1] is assigned to each element)
and also this degree of membership is uncertain, i.e., there is a degree of certainty within [0, 1] about the primary membership degree.
Mathematically, with 𝑛 fuzzy type-2 sets defining the domain of element 𝑥∗, each primary membership degree 𝑓 t1,p

𝑖 (𝑥∗) ∈ [0, 1] for
element 𝑥∗, with 𝑖 ∈ {1,… , 𝑛}, corresponds to a secondary membership degree 𝑓 t1,s

𝑖

(

𝑥∗, 𝑓 t1,p
𝑖 (𝑥∗)

)

∈ [0, 1], which represents the
level of certainty about the primary membership degree.

Membership functions of type-2 fuzzy sets are represented in a 3D space: Fig. 1 shows a discrete-time type-2 membership
function, where three primary membership degrees 𝜇1,1, 𝜇1,2, and 𝜇1,3 are proposed for 𝑥∗, with secondary membership degrees
𝜇2,1, 𝜇2,2, and 𝜇2,3, respectively. An illustration of a continuous-domain type-2 membership function with its secondary type-1
membership functions 𝑓 t1,s(𝑥∗, ⋅) defined for an arbitrary value 𝑥∗ is provided in Fig. 2, where the secondary type-1 membership
function corresponds to the intersection of the given type-2 fuzzy membership function with the plane parallel to the 𝜇1–𝜇2 plane
through the point 𝑥∗.

In general, uncertainties may be probabilistic or fuzzy. When various possible realizations of an event or variable are
complementary, i.e., their degrees of certainty add up to 1, the uncertainty is probabilistic and these probabilities are represented
via probability density functions [43]. With fuzzy uncertainties, different realizations of an event or variable do not necessarily
add up to 1. In other words, fuzzy interpretation of data allows to carry the uncertainties through analyzing and processing a data,
without limiting the possible realization to a unique value. This is particularly important when associating a certain interpretation
to a human-based concept is either impossible or likely erroneous. Fuzzy logic, thus, allows analysis and mathematical operations
on such data, without the need to assign certainty to the realizations initially.

2. Probabilistic-fuzzy & fuzzy-probabilistic sets for traffic data

In this section, we expand the concept of type-2 fuzzy sets, in order to represent various traffic uncertainties that should
autonomously be processed and modeled in smart cities. In other words, we focus on data that involve both primary and secondary
uncertainties, due to combined probabilistic and human-based information that is involved in traffic phenomena.

Consider a vehicle at an intersection (see the red ellipse in Fig. 3), where the vehicle has a known destination (indicated by ‘‘D’’ in
Fig. 3), which is feasible both if the vehicle turns right at the intersection and if it moves straight ahead. An autonomous vehicle (see
the yellow ellipse in Fig. 3) behind this vehicle may assign a probability to each of these events, based on the historical observations
about the behavior of vehicles with the same destination (e.g., 75% to turning right and 25% to moving straight ahead). In case
4
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Fig. 3. Illustration of a part of a traffic network: The yellow ellipse represents an autonomous vehicle that should model the behavior of the front vehicle shown
via a red ellipse, where the front vehicle has destination ‘‘D’’. The front vehicle may choose to continue its trip in the direction of either of the black arrows
shown in the figure.

Fig. 4. Illustration of the discrete time steps, when the dynamics of the traffic network is updated using a discrete-time modeling approach. The small red
circles imply that information (based on measurements or observations) about the state variable vector is available at that time step. Note that collecting such
information is not necessarily done periodically.

such historical data is not available, or when incorporation of a human-centered approach is of interest (e.g., including the mental
states of the front driver in their decision making) an intuitive (i.e., quantitative) approach may be used: For instance, the driver is
likely to change the destination due to being tired, or is very unlikely to turn right due to the large number of traffic lights on its
way. While this data does not correspond to the historical observations, they reflect a more human-inspired and human-centered
interpretation. For efficient and safe route planning, autonomous vehicles should deal with both historical and human-inspired
interpretation of data.

In particular, representing the environmental data, such that they incorporate both levels of uncertainty, i.e., probabilistic and
fuzzy, and developing models that handle such data, allow for analysis and decision making that simultaneously benefit from both
historical knowledge and human-inspired intuition in traffic. For instance, the autonomous vehicle can use the following data to
analyze the behavior of the front vehicle: ‘‘54% of drivers are very likely to change their destination when traffic is slow’’, whereas
‘‘46% of drivers are likely to move straight ahead’’. In these statements, the primary uncertainty (expressed via very likely and
likely) is fuzzy (i.e., is based on a human-inspired approach), whereas the secondary uncertainty about the primary uncertainty
is probabilistic (i.e., is gathered via historical observations). This may be swapped by having a probabilistic (historically known)
primary uncertainty and a fuzzy (human-inspired) secondary uncertainty. For instance, ‘‘many observations indicate that 23% of the
drivers change their destination and the rest turn right’’, whereas ‘‘some observations indicate that 77% of the drivers go straight
ahead and the rest turn right’’. We mathematically represent such analyses of environmental data in smart cities via, respectively,
probabilistic-fuzzy (i.e., a primary type-1 membership function and a secondary probability density function) and fuzzy-probabilistic
(i.e., a primary probability density function and a secondary type-1 membership function) membership functions.

3. Type-2 knowledge-based dynamical models

Next, we formulate type-2 rules that can effectively be used as the basis of dynamic mathematical models, to autonomously
process uncertain (combined probabilistic and fuzzy) data in smart cities and to make decisions based on such data. We consider
discrete-time models throughout the paper, as such discretization is common in both collecting traffic data and modeling the evo-
lution of the traffic states (see, e.g., [11,44–46]). A discrete-time traffic model can also perfectly match and feed a decision-making
system for traffic that performs based on a discrete-time framework.

We will consider various types of traffic data that may be collected within smart cities, from both users and managers of the
roads and the sensor and measurement devices: for instance, historical and statistical data based on the cameras and traffic detectors
on the roads; fuzzy data and information that is provided by large groups of participants about their regular driving habits and their
culture of using the roads (this procedure is performed in advance and offline, and through, e.g., questionnaires and interviews);
5
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o

s
8
𝑘
f

online data and information (qualitative, quantitative, or combined) that sensors and humans send out (to, e.g., a central control
station) via their mobile phone, smartwatch, or any other (simple) device or app that may be installed in their cars.

To provide a more realistic modeling approach for traffic, nonlinear dynamics are modeled considering measurements and
bservations that are possibly delayed. In other words, at time step 𝑘 the state variable vector 𝒙eval

𝑠
(

𝜋𝑠 (𝑘)
)

that has been evaluated
(i.e., has been described quantitatively, qualitatively, or in a combined way) based on the most recent information captured at time
step 𝜋𝑠 (𝑘) is used for system 𝑠, with 𝜋𝑠 (𝑘) an integer, for which we have 𝜋𝑠 (𝑘) < 𝑘. In general, 𝜋𝑠 (𝑘) may change for each time
tep. For instance, if at time step 10 the most recent information about the evaluated state variable vector corresponds to time step
(i.e., 𝜋𝑠 (𝑘) = 𝑘 − 2 for 𝑘 = 10), and then at time step 11 no new information is received, then 𝜋𝑠 (11) = 8, i.e., 𝜋(𝑘) = 𝑘 − 3 for
= 11. Fig. 4 shows an example, where for various time steps, the time step when the most reliable measurement is available is the

ollowing: 𝜋𝑠 (𝑘 − 1) = 𝜋𝑠 (𝑘) = 𝜋𝑠 (𝑘 + 1) = 𝜋𝑠 (𝑘 + 2) = 𝑘−1, 𝜋𝑠 (𝑘 + 3) = 𝜋𝑠 (𝑘 + 4) = 𝑘+3, and 𝜋𝑠 (𝑘 + 5) = 𝜋𝑠 (𝑘 + 6) = 𝜋𝑠 (𝑘 + 7) = 𝑘+5.
For system 𝑠 with missing or delayed evaluations for the state variables at time step 𝑘, the dynamics at this time step may be

formulated as a function of the most recent evaluated state variable vector, i.e., 𝒙eval
𝑠

(

𝜋𝑠 (𝑘)
)

, and of all the control inputs that have
affected the dynamics of the system from time step 𝜋𝑠 (𝑘) until time step 𝑘 − 1.

Therefore, such systems possess an input-delayed dynamics formulation. A logical ‘‘If-then’’ rule for modeling the dynamics of
system 𝑠 for time step 𝑘 is, in general, formulated by:

If 𝒙eval
𝑠

(

𝜋𝑠 (𝑘)
)

is
(

�̃�1,… , �̃�
|𝒙𝑠|

)

and

𝒖𝑠
(

𝜋𝑠 (𝑘)
)

is
(

�̃�𝜋𝑠(𝑘),1,… , �̃�𝜋𝑠(𝑘),|𝒖𝑠|

)

and

… and

𝒖𝑠(𝑘 − 1) is
(

�̃�𝑘,1,… , �̃�𝑘,|𝒖𝑠|

)

,

then 𝒙est
𝑠 (𝑘) = 𝑓

(

𝜽con
𝑠 (𝑘),𝒙eval

𝑠
(

𝜋𝑠 (𝑘)
)

, 𝒖𝑠
(

𝜋𝑠 (𝑘)
)

,… , 𝒖𝑠(𝑘 − 1)
)

(1)

where the following definition holds in our mathematical notations:

𝒙eval
𝑠

(

𝜋𝑠 (𝑘)
)

is
(

�̃�1,… , �̃�
|𝒙𝑠|

)

⇔

𝑥eval
𝑠,1

(

𝜋𝑠 (𝑘)
)

is �̃�1 and … and 𝑥eval
𝑠,|𝒙𝑠|

(

𝜋𝑠 (𝑘)
)

is �̃�
|𝒙𝑠| (2)

and for 𝜅 = 𝜋𝑠 (𝑘) ,… , 𝑘 − 1:

𝒖𝑠(𝜅) is
(

�̃�𝜅,1,… , �̃�𝜅,|𝒖𝑠|

)

⇔

𝑢𝑠,1(𝜅) is �̃�𝜅,1 and … and 𝑢𝑠,|𝒖𝑠|(𝜅) is �̃�𝜅,|𝒖𝑠| (3)

Moreover, 𝑘 ∈ K and 𝜋𝑠 (𝑘) ∈ Keval
𝑠 , where Keval

𝑠 ⊆ K, and �̃�1,… , �̃�
|𝒙𝑠| and �̃�𝜅,1,… , �̃�𝜅,|𝒖𝑠| are type-2 sets (that may be described by

a probabilistic-fuzzy or fuzzy-probabilistic membership function) that represent the uncertain elements of, respectively, 𝒙eval
𝑠 and

𝒖𝑠.
For instance, suppose that the state variable vector has one element, driving aggression. Human users and managers of the road,

who are the main sources of evaluating this variable, usually consider no precise quantification for driving aggression, and instead,
perceive this variable based on their heuristics. Then, the evaluation that is represented via ‘‘𝑥eval

𝑠,1
(

𝜋𝑠 (𝑘)
)

is �̃�1’’ may correspond
to ‘‘recent observations imply with a certainty following a Gaussian probability density function that the driving aggression on
the roads has been high’’. Thus, �̃�1 in this case is a probabilistic-fuzzy type-2 set with primary fuzzy and secondary probabilistic
uncertainties.

In (1) and (3), the past control inputs may also be represented by type-2 sets, due to the source (e.g., human perception) of
reporting the information corresponding to these inputs, or due to limiting the storage requirements, where instead of recording
the exact values, the data is stored under a limited number of linguistic categories (e.g., small, average, large). For instance,
suppose that the control input vector has one element, the maximum preferred driving speed. The evaluation that is represented
via ‘‘𝑢𝑠,1(𝜅) is �̃�𝜅,1’’ may correspond to ‘‘based on most of the received reports, the vehicles on the road followed a symmetric
piece-wise linear probability density function, choosing a maximum preferred driving speed in the range of [8, 13] meter per second’’.
This implies that �̃�𝜅,1 is a fuzzy-probabilistic type-2 set with primary probabilistic and secondary fuzzy uncertainties.

Finally, in general 𝑓 (⋅) in (1) is a nonlinear function, and 𝜽con
𝑠 (𝑘) is a vector containing the design parameters for function 𝑓 (⋅)

for time step 𝑘. This parameter vector may in the course of running the model be re-identified for improving the model precision.

Remark 1. A type-2 model of the system dynamics is composed of a rule base with several logical rules of the form (1). Each
rule may generate a different value for an estimated state variable. The estimated value of that state variable can be obtained via
a linear combination of all the values produced by the various rules.

Remark 2. In (1) in addition to the parameters that identify the outputs of the rules, adaptive parameters 𝜽ant
𝑠 (𝑘) may also be

considered for the mathematical formulation of the type-2 sets in the antecedent of the rules. More specifically, the primary and
secondary membership functions may involve tuning parameters that will be fine-tuned whenever needed.

Remark 3. In general, each system 𝑠 is also prone to uncontrolled inputs (i.e., external disturbances) denoted by 𝝂𝑠(𝑘). Disturbances
in a traffic network could refer to the changes in the state variables due to accidents or unexpected inflow of vehicles to the network.
In such cases in (1), the uncontrolled inputs and their qualifications should be included similarly to the controlled inputs.
6
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Fig. 5. Identification of the parameters of the type-2 model for system 𝑠 via minimizing the estimation error of the model. The estimation error ‖

‖

𝒙eval
𝑠 − 𝒙est

𝑠
‖

‖

of
the type-2 model is denoted by 𝝐est

𝑠 and for the sake of simplicity time steps are not indicated. In fact the estimation error may be computed and accumulated
within a time window and the accumulated error will then be minimized. Moreover, the superscript ‘‘up’’ is used for the updated consequent parameter vector.

4. Parameter identification for type-2 models

For the type-2 model of system 𝑠 that involves a rule base composed of rules with formulation (1), the parameter vectors 𝜽ant
𝑠 (𝑘)

and 𝜽con
𝑠 (𝑘) per rule in the rule base are identified or re-identified at the time steps in the set Kid

𝑠 . The most recent element of Kid
𝑠

before the current identification time step 𝓁 is denoted by 𝜋id
𝑠 (𝓁). Therefore, in (1) for 𝜋id

𝑠 (𝓁) ≤ 𝑘 < 𝓁, we have 𝜽con
𝑠 (𝑘) = 𝜽ant

𝑠
(

𝜋id
𝑠 (𝓁)

)

and 𝜽ant
𝑠 (𝑘) = 𝜽con

𝑠
(

𝜋id
𝑠 (𝓁)

)

.

4.1. Re-identification of the antecedent parameters

Re-identification of 𝜽ant
𝑠 (𝜋id

𝑠 (𝓁)) at time step 𝓁 may be done through a mapping on the most recently identified vector 𝜽ant
𝑠

(

𝜋id
𝑠 (𝓁)

)

.
Moreover, we consider the set Lant

𝑠 (𝓁), which includes time step 𝓁 and a number of earlier time steps. For a certain number of these
time steps an evaluation of the state variable vector should exist, i.e., Keval

𝑠 ∩ Lant
𝑠 (𝓁) ≠ ∅. Then, the set Xeval

𝑠 (𝓁) including the
evaluated state variable vectors for all the time steps in Keval

𝑠 ∩ Lant
𝑠 (𝓁), and the set U𝑠(𝓁) consisting of control input vectors for all

these time steps are also included in the mapping. Note that if uncontrolled inputs also exist, they may also be included. We assume
that all these inputs can be recovered (possibly not as precise quantities, but via type-2 sets, as was explained in an example in the
third paragraph below (3)).

Then we have:

𝜽ant
𝑠 (𝓁) = O

(

𝜽ant
𝑠

(

𝜋id
𝑠 (𝓁)

)

,Xeval
𝑠 (𝓁),U𝑠(𝓁)

)

(4)

with O (⋅) a generally nonlinear mapping (see, e.g., [47]). The definition and parameters corresponding to the antecedent terms,
especially the fuzzy membership functions, are largely dependent on the perceptions of the humans who report this data. In practice,
after a long enough interaction with the system and collecting and analyzing such data, the identified parameters will remain
constant [48].

4.2. Re-identification of the consequent parameters

Re-identification of 𝜽con
𝑠 (𝜋id

𝑠 (𝓁)) at time step 𝓁 is based on the information corresponding to the time steps in set Lcon
𝑠 (𝓁). This

set includes time step 𝓁 and a number of earlier time steps, where for a certain number of these time steps an evaluation of the
state variable vector exists. Therefore, we have Keval

𝑠 ∩ Lcon
𝑠 (𝓁) ≠ ∅. The parameter vector 𝜽con

𝑠 (𝜋id
𝑠 (𝓁)) of the consequent of the

type-2 rules for system 𝑠 may be updated at time step 𝓁, by minimizing, within time window Lcon
𝑠 (𝓁), the cumulative error of the

reported evaluations of the state variable vectors and these vectors when estimated by the type-2 model. For instance, the following
optimization problem may be solved to determine the consequent parameter vector 𝜽con

𝑠 (𝓁):

min
𝜽con
𝑠 (𝓁)

∑

𝜅∈
(

Keval
𝑠 ∩Lcon

𝑠 (𝓁)
)

‖

‖

‖

𝒙eval
𝑠 (𝜅) − 𝒙est

𝑠 (𝜅)‖‖
‖

(5)

where 𝒙eval
𝑠 (𝜅) is retrieved from Xeval

𝑠 (𝓁), and 𝒙est
𝑠 (𝜅) is estimated in the loop of the optimization problem using (1) with 𝜽ant

𝑠
(

𝜋id
𝑠 (𝓁)

)

for the antecedent parameters if (4) is not run (yet) or with the updated vector 𝜽ant
𝑠 (𝓁) otherwise. Moreover, the set U𝑠(𝓁) that

consists of control input vectors (recorded generally as type-2 sets) for all the time steps in the window of the optimization problem
is assumed to be available.

In general, (5) is a nonlinear constrained optimization problem, in case the state variable vector should be bounded. To prevent
the risk of infeasibility, one may make the optimization loop unconstrained by relaxing the implicit constraint that is defined on
the optimization variable in (5), and by instead constraining 𝑓 (⋅) in (1), e.g., by saturating the output of this function. Moreover,
since (5) is in general non-convex, a multi-start optimization solver, e.g., based on a genetic algorithm or pattern search, may be
considered.

The identification procedure explained above has been simplified and illustrated in Fig. 5: The difference between the state
7

variable vector estimated via the type-2 model for system 𝑠 and its evaluation (via qualified, quantified, or combined data) is shown
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Fig. 6. Detailed illustration of the identification procedure for type-2 models of system 𝑠. The signals indicated by blue solid lines are activated when an evaluation
either qualified, quantified, or a combination of both) of the state variable vectors is received. The signals indicated by blue dash-dotted lines are activated
hen the ones indicated by the blue solid signals are not activated. The signals indicated by dashed green lines correspond to the model (re-)identification
rocedure and they are also activated at specific pre-set time steps 𝑘 ∈ Kid

𝑠 or at any time step at which the model evaluator notices, based on the estimation
rror 𝝐est

𝑠 , that an identification threshold �̄� has been exceeded. In this figure, the superscripts ‘‘up’’ and ‘‘p’’ have been used for, respectively, ‘‘updated’’ and
‘past’’. The other notations follow the general notation rules of the paper, as given in Table 1, and also explained in detail in Section 1.

y 𝝐e
𝑠 . With more details, Fig. 6 shows the type-2 model of system 𝑠. Three storage modules for the past evaluated state variables and

xternal disturbances, as well as the previously injected control inputs (which are all distinguished in the figure via a superscript
‘p’’ for the word ‘‘past’’) are considered. These are needed, according to (1) and (5), to re-identify the parameters of the type-2

odel. Note that this data is in general recorded including the probabilistic and fuzzy uncertainties using type-2 sets introduced
n Section 2. The control input policy that generates vector 𝒖𝑠 is illustrated within a dashed red rectangle in Fig. 6. This controller
eceives the past evaluations of the state variable vector (indicated by 𝒙eval,p

𝑠 ) from the state evaluation storage, as well as the
urrent evaluated state variable vector, indicated by 𝒙eval

𝑠 , from the system. In case an evaluation is not available at the current
ime step, the current state variable vector estimated by the type-2 model, and indicated by 𝒙est

𝑠 , as well as the corresponding current
nd previous corresponding external disturbances (indicated, respectively, by 𝝂𝑠 and 𝝂p

𝑠 ) from the disturbance storage will be used.
ext, the resulting control input vector 𝒖𝑠 is injected into the system and into the control input storage.

In Fig. 6, the signals indicated by solid blue arrows correspond to the time steps for which an evaluation of the state variable
ector of the system is available. For the other time steps, the signals marked by dash-dotted blue arrows will be activated. The
ignals indicated by dashed green arrows in Fig. 6 will be activated only at identification time steps. For pre-specified identification
ime steps 𝑘 ∈ Kid

𝑠 or whenever the model assessor identifies that the type-2 model should be updated (i.e., when 𝝐est
𝑠 exceeds a

re-specified threshold �̄�), the identification module will be activated. This module will then receive the sequence (shown by
{

𝒙eval
𝑠

}

in Fig. 6) of all evaluated state variable vectors within time window Lant
𝑠 (𝓁) ∪ Lcon

𝑠 (𝓁) from the state evaluation storage, as well as
he most recent parameter vectors 𝜽ant

𝑠 and 𝜽con
𝑠 from the type-2 model, and updates these vectors using, respectively, (4) and (5).

. Case study: Traffic modeling

To illustrate and assess the proposed type-2 fuzzy modeling approaches for autonomous data analysis and modeling in smart
ities, when additional uncertainties are introduced into the data via humans, we now present a case study that involves an urban
raffic network. We estimate the accuracy of a type-1 fuzzy model that is used when only primary uncertainties exist in the traffic
ata. We then consider traffic data that includes a second level of uncertainty introduced by humans, and compare the estimations
ade by type-2 models that include fuzzy-probabilistic, probabilistic-fuzzy, and type-2 fuzzy sets with those estimated when data
as uncertain only in one level. The goal is to obtain insights about how effectively these type-2 models can handle the additional
8

evel of uncertainty in estimation of traffic states.
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Fig. 7. Urban traffic network used for the case study.

5.1. Setup

The traffic network shown in Fig. 7 is considered. The network consists of two intersections (indicated by the labels ‘‘L’’ and
‘‘R’’) and seven links, each of which two lanes. The lanes are indicated by the labels 1L, . . . , 7L, and 1R, . . . , 7R. Lanes 1L, 2L, 3L,
and 7L are the entrance lanes for intersection L, whereas lanes 4L, 5L, 6L, and 7R are the exit lanes of intersection L (in the figure
the direction in which the vehicles drive in a given lane is indicated by a red arrow). Likewise, 1R, 2R, 3R, and 7R are the entrance
lanes for intersection R, and 4R, 5R, 6R, and 7L are the exit lanes for intersection R.

In the remainder of the paper, lanes in links 1, . . . , 6 are referred to as ‘‘side lanes’’, and the two lanes in link 7 are called
‘‘connecting lanes’’. Turning, except for U-turns, is allowed at the intersections (as indicated by the black arrows in Fig. 7). Each
intersection has four traffic signals, each of which controls all the rights-of-way of the entrance lane at which the traffic signal is
located. The traffic signals at the opposite entrance lanes of an intersection are synchronized and the follow the same schedule
(i.e., in Fig. 7 the green and red phases of the northern and southern traffic signals coincide, and a similar statement holds for those
of the western and eastern ones). In the given traffic network, the length of the side lanes is 150 m, the length of the connecting
lane is 300 m, the average vehicle length (including the safety distances from and to the preceding and following vehicles) is 7.5 m,
and the cycle time of the traffic signals is 90 s.

5.2. Modeling

The given traffic network is divided into two sub-networks, called ‘‘sub-network 1’’ and ‘‘sub-network 2’’. In Fig. 7 these sub-
networks are indicated in, respectively, gray and pink. More specifically, sub-network 1 contains intersection L and lanes 1L, . . . ,
7L, while sub-network 2 consists of intersection R and lanes 1R, . . . , 7R. For each sub-network, one type-1 model and three different
classes of type-2 models with a formulation following (1) that describe the traffic behavior are developed:

• ‘‘class 0’’ involves type-1 fuzzy membership functions and is considered to compare the efficacy of type-2 models versus type-1
models;

• ‘‘class 1’’ involves type-2 fuzzy membership functions;
• ‘‘class 2’’ includes probabilistic-fuzzy membership functions, and
• ‘‘class 3’’ includes fuzzy-probabilistic membership functions.

The models involve two state variables, i.e., the total number of vehicles per link, 𝑛, and the number of vehicles in the queue on a
link, 𝑞. Note that defining the dynamics of urban traffic with 2 state variables is a common approach in literature (see, e.g., [45,49]).
The control input and external disturbances are, respectively, the green time of the traffic signals and the external inflow of the
vehicles.

For the sake of simplicity, we assume that the most recent evaluation of the state variables for each time step 𝑘, has been done
at time step 𝑘 − 1. Each type-2 rule indexed by 𝑟 is of the following from:

If 𝑥(𝑘 − 1) is �̃�𝑟 and 𝑢(𝑘 − 1) is �̃�𝑟 and 𝜈(𝑘 − 1) is �̃�𝑟, (6)
then 𝑥𝑟(𝑘) = 𝑎0,𝑟 + 𝑎1,𝑟𝑥(𝑘 − 1) + 𝑎2,𝑟𝑢(𝑘 − 1) + 𝑎3,𝑟𝜈(𝑘 − 1),
9
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where 𝑥 is a state variable of the traffic network (i.e., 𝑛 or 𝑞 for a particular lane) and the symbol 𝑥𝑟 in the consequent refers to
the estimated value of 𝑥 via rule 𝑟. For the traffic scenarios considered in this case study, the range of variations of the parameters
of the considered traffic network is limited. Therefore, the parameters of the type-2 sets �̃�𝑟, �̃�𝑟, and �̃�𝑟 in the antecedents are
assumed to be fixed, and only the parameter vectors

[

𝑎0,𝑟, 𝑎1,𝑟, 𝑎2,𝑟, 𝑎3,𝑟
]⊤ of the consequent are (re-)identified. The control input of

each sub-network is the green time of the northern and southern traffic signals (marked by the red dashed ovals in Fig. 7). These
traffic signals are synchronized. As a consequence, the green time of the other two traffic signals of each intersection (which are
also synchronized) is the difference between the fixed cycle time of the intersection and the control input. In this case study the
vehicle flows that enter the network via the source lanes (1L, 2L, 3L, 1R, 2R, 3R) are considered as the external disturbances.

When a fuzzy membership function is considered as the primary membership function of the type-2 sets �̃�𝑟 and �̃�𝑟, to which the
state variables and the external disturbances belong, we use two qualitative terms ‘‘low’’ and ‘‘high’’ to describe the sets. Moreover,
for the type-2 set �̃�𝑟, to which the control inputs belong, two qualitative terms ‘‘short’’ and ‘‘long’’ are considered for the fuzzy
primary membership function. For the secondary fuzzy membership functions, the qualitative terms ‘‘slightly likely’’, ‘‘moderately
likely’’, and ‘‘highly likely’’ are used. Therefore, the statement 𝑛(𝑘 − 1) is �̃�𝑟 in the antecedent, with �̃�𝑟 represented via a type-1
fuzzy set, a type-2 fuzzy set, a type-2 probabilistic-fuzzy set, and a type-2 fuzzy-probabilistic set, may, for instance, be respectively
given by:

• The number of vehicles on the lane is high
• It is very likely that the number of vehicles on the lane is high.
• There is a chance according to a Gaussian density function that the number of vehicles on the lane is high
• It is likely that the number of vehicles on the lane follows a Gaussian density function over the total range of the demand

ince in the first case, only one level of uncertainty (which is fuzzy) exists, a natural expectation is that the most precise results
re obtained based on such data, using the corresponding type-1 model, in comparison with all other cases where two levels of
ncertainties exists.

However, one important aspect to consider in addition to the number of uncertainty levels, is the type of the uncertainties.
n type-1 and class 1 type-2 models, the uncertainty is handled only after the linguistic terms have been translated into quantified
ncertainties (via fuzzy membership functions) and after the corresponding parameters have been identified. Analyzing probabilistic
ata requires one step less, i.e., the quantification is not needed. Thus, it is again expected to experience less imprecision when
ncertainties are already quantified (at least in one of the two uncertainty levels).

In combined fuzzy-probabilistic and probabilistic-fuzzy models, the fuzziness is accompanied by quantified statistical uncertain-
ies. Thus, it is not unexpected to observe a competitive trend in the accuracy of the results of these combined models and the type-1
odel.

In summary, we are in particular interested in seeking answers for the following questions, via our case studies and results:

Q1. Which model(s) will result in the most precise estimations of the traffic state variables in most case studies? Which model(s)
will result in the least cases with the least precise estimations of traffic states?

Q2. How complex/demanding the computations corresponding to type-2 sets and hence type-2 models are in general? What the
sources of these potential complexities are?

.2.1. Type-1 trapezoidal membership functions
For the models in class 0, type-1 trapezoidal membership functions are considered because of two main reasons: next to the

implicity and low computation time, both empirical evidence and theory show that, compared to more complicated membership
unctions, trapezoidal membership functions are very efficient in various engineering applications [50].

Fig. 8 shows the type-1 trapezoidal membership functions used for the class 0 models. The maximal number of type-1 fuzzy rules
ith 𝑛in inputs that can be constructed for a type-1 model within class 0 is ∏𝑛in

𝑖=1 𝜌𝑖, where 𝜌𝑖 is the number of possible linguistic/fuzzy
ealizations for the 𝑖th input variable. Note that this is based on the assumption that an initial filtering has been implemented, such
hat the best output realization for each combinations of the 𝑛in inputs has been selected.

Therefore, in this case the maximum number of type-1 fuzzy rules within class 0 is 23 = 8, i.e., the antecedent statements
oncerning the state variable and the external disturbance can each adopt 2 descriptions from the set {low,high} and the antecedent
tatement for the control input can also adopt either of the 2 descriptions within the set {short,long}. Hence, the total number of
arameters that should be identified for the type-1 fuzzy model is 4(8), i.e., 32 parameters, per state variable. Notice that rules of
he class 0 model follow (6) with 4 identification parameters in the consequent for each of the two state variables, where the sets
n the antecedent are type-1 fuzzy sets.

.2.2. Type-2 fuzzy membership functions
In the linguistic description of the rules of a type-2 class 1 model, we consider low or high for the state variable and also for

he external disturbance, short or long for the control input, and slightly likely, moderately likely, or very likely for the secondary
ncertainties. The corresponding mathematical representations are illustrated in Fig. 9, where three different interpretations per
erm low, high, short, and long are considered.

The maximum number of type-2 fuzzy rules that can be constructed for a type-2 model within class 1 is 63 = 216,
.e., the antecedent statements regarding the state variable and the external disturbance can adopt 6 descriptions within the set
slightly likely,moderately likely,very likely × low,high and the antecedent statement for the control input takes on either of
10
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Fig. 8. Class 0 type-1 model: Type-1 triangular membership functions for state variables, control inputs, and external disturbances.

he 6 descriptions within the set {slightly likely,moderately likely,very likely} × {short,long}. This implies that the total number of
arameters to be identified for the type-2 fuzzy model is 4 ⋅ 216, i.e., 864 parameters, per state variable.

Consider now a specific rule with the following antecedent: ‘‘if 𝑥 is very likely high and 𝑢 is moderately likely short and 𝜈
s slightly likely low’’. Then the three type-2 fuzzy events involved are denoted by 𝑒𝑥∶VL-high, 𝑒𝑢∶ML-short, and 𝑒𝜈∶SL-low, and their
rimary membership degrees are indicated by 𝜇𝑥∶high

1,𝑖 , 𝜇𝑢∶short
1,𝑗 , and 𝜇𝜈∶low

1,𝑘 for 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3} corresponding to the three various
nterpretations given for the fuzzy terms low, high, short, long in the antecedent. Likewise, 𝜇VL(𝑥∶high)𝑖

2 , 𝜇ML(𝑢∶short)𝑗
2 , and 𝜇SL(𝜈∶low)𝑘

2
enote the secondary membership degrees corresponding to each of these primary membership degrees. Normally to find the
embership degrees of the combination of these three type-2 fuzzy events in the antecedent, all possible combinations of the primary

nd secondary membership degrees should be considered. For the given antecedent, 33 = 27 combinations are possible, i.e., each
rimary membership degree can adopt 3 values, as there are three definitions per fuzzy term high, low, short, long. Moreover, the
econdary membership degree adopts 1 value depending on which fuzzy term, i.e., slightly likely, moderately likely, or very likely is
sed to formulate the rule. Hence, each variable in the antecedent adopts 3 possible combinations of the primary and secondary
embership degrees, and for all the three variables (state variable, control input, external disturbance) in the antecedent the possible

ombinations are 33. For each combination 𝑒𝑥∶VL-high ∧ 𝑒𝑢∶ML-short ∧ 𝑒𝜈∶SL-low, with ∧ representing ‘logical and’, the primary and
econdary membership degrees of the combined fuzzy-fuzzy event can be determined as follows:

𝜇1
(

𝑒𝑥∶VL-high ∧ 𝑒𝑢∶ML-short ∧ 𝑒𝜈∶SL-low, 𝑖, 𝑗, 𝑘
)

= min
{

𝜇𝑥∶high
1,𝑖 , 𝜇𝑢∶short

1,𝑗 , 𝜇𝜈∶low
1,𝑘

}

(7)

( 𝑥∶VL-high 𝑢∶ML-short 𝜈∶SL-low )
11

𝜇2 𝑒 ∧ 𝑒 ∧ 𝑒 , 𝑖, 𝑗, 𝑘 = (8)
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Fig. 9. Class 1 type-2 model: Type-2 fuzzy membership functions for state variables, control inputs, and external disturbances.

min
{

𝜇VL(𝑥∶high)𝑖
2 , 𝜇

ML(𝑢∶short)𝑗
2 , 𝜇SL(𝜈∶low)𝑘

2

}

f two combinations have the same primary membership degree, the combination with the largest secondary membership degree
s kept, while the rest of the equal primary membership degrees and their corresponding secondary membership degrees are then
xcluded when computing the output of the fuzzy inference engine (the interested reader is referred [51] for more details). The
pproach of [52] is then used to compute the output of the inference engine of the type-2 fuzzy-fuzzy rule.

In order to reduce the number of possible combinations and hence, the computational burden and computation time of class 1
ype-2 models, for both the identification procedure and the online computations, we have considered the following setup: as
12
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Fig. 10. Class 2 type-2 model: Probabilistic-fuzzy membership functions for state variables, control inputs, and external disturbances.

illustrated in Fig. 9, each fuzzy term used for the secondary membership degrees corresponds to only one of the three interpretations
for the fuzzy terms used for the primary membership degrees. More specifically, in Fig. 9, the term very likely (illustrated by dotted
blue curves) corresponds to those interpretations of the terms low, high, short, and long that are also represented by dotted blue
curves. Similarly, the terms moderately likely (solid red curves) and slightly likely (dash-dotted black curves) correspond to those
interpretations of low, high, short, and long that are represented by curves of a similar color and format.

5.2.3. Type-2 probabilistic-fuzzy membership functions
Fig. 10 illustrates the primary type-1 fuzzy membership functions and the secondary probability density functions of the

type-2 probabilistic-fuzzy membership functions. The maximally possible number of type-2 probabilistic-fuzzy rules for a type-
3

13

2 model within class 2 is 6 = 216, i.e., the antecedent statements regarding the state variable, control input, and external
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disturbance can each adopt 6 options from, respectively, the sets {sPF1,sPF2,sPF3} × {low,high}, {cPF1,cPF2,cPF3} × {short,long},
{dPF1,dPF2,dPF3} × {low,high}, where sPF1, sPF2, sPF3 are the state probability density functions illustrated in the 5th plot of
Fig. 10, cPF1, cPF2, cPF3 are the control probability density functions illustrated in the 7th plot of Fig. 10, and dPF1, dPF2, dPF3
are the disturbance probability density functions illustrated in the 9th plot of Fig. 10. As a result, total number of parameters to be
identified for the type-2 probabilistic-fuzzy model is 4(216), i.e., 864 parameters, per state variable.

Consider the antecedent of a type-2 probabilistic-fuzzy rule that is described by ‘‘if 𝑥 is 100 ⋅ 𝜋𝑥% (with 0 ≤ 𝜋𝑥 ≤ 1) low and
is 100 ⋅ 𝜋𝑢% (with 0 ≤ 𝜋𝑢 ≤ 1) long and 𝜈 is 100 ⋅ 𝜋𝜈% (with 0 ≤ 𝜋𝜈 ≤ 1) high’’. The corresponding three events, denoted by

𝑥∶𝜋𝑥-low, 𝑒𝑢∶𝜋𝑢-long, and 𝑒𝜈∶𝜋𝜈 -high, have to occur at the same time for this specific rule to be fired. The primary fuzzy membership
egree of the combined event 𝑒𝑥∶𝜋𝑥-low ∧ 𝑒𝑢∶𝜋𝑢-long ∧ 𝑒𝜈∶𝜋𝜈 -high can be determined by aggregating the corresponding primary type-1
uzzy membership functions using a t-norm (i.e., minimum or multiplication) of the primary fuzzy membership degrees of the three
vents, i.e., for 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3}:

𝜇1
(

𝑒𝑥∶𝜋𝑥-low∧ 𝑒𝑢∶𝜋𝑢-long ∧ 𝑒𝜈∶𝜋𝜈 -high, 𝑖, 𝑗, 𝑘
)

= min
{

𝜇𝑥∶low
1,𝑖 , 𝜇𝑢∶long

1,𝑗 , 𝜇𝜈∶high
1,𝑘

}

(9)

he probability of simultaneous occurrence of the three events and hence of activation of this type-2 probabilistic-fuzzy rule is

𝑝
(

𝑒𝑥∶𝜋𝑥-low ∧ 𝑒𝑢∶𝜋𝑢-long ∧ 𝑒𝜈∶𝜋𝜈 -high, 𝑖, 𝑗, 𝑘
)

=

𝑝
(

𝑒𝑥∶𝜋𝑥-low
| (𝑥 ∶ low)𝑖

)

⋅ 𝑝
(

𝑒𝑢∶𝜋𝑢-long
| (𝑢 ∶ long)𝑗

)

⋅ 𝑝
(

𝑒𝜈∶𝜋𝜈 -high
| (𝜈 ∶ high)

)

= 𝜋𝑥,𝑖 ⋅ 𝜋𝑢,𝑗 ⋅ 𝜋𝜈,𝑘 (10)

here 𝑝(⋅) denotes the probability density function. For the sake of simplicity, we have assumed the three events to be independent.
n case two different combinations have the same primary fuzzy membership degree, the combination with the highest secondary
robability is considered.

Here the secondary membership functions are probability density functions, which have been considered to have a fixed value
see Fig. 10). Similarly to the class 1 model, to decrease the computational burden and the computation time, we assume that each
robability density function corresponds to one of the interpretations given for the fuzzy terms low, high, short, and long. More
pecifically, the chances that the primary fuzzy membership degrees corresponding to the solid (red), dotted (blue), or dash-dotted
black) curves (see plots 1–4, 6, and 8 in Fig. 10) are realized, are the same for all primary fuzzy membership degrees that correspond
o each of these plots, and these chances correspond to the fixed-value functions illustrated by, respectively, the solid (red), dotted
blue), and dash-dotted (black) curves.

.2.4. Type-2 fuzzy-probabilistic membership functions
The primary membership functions in this case are probability density functions, meaning that the membership degrees

orresponding to a certain state variable and all the primary membership functions sum up to 1. For class 2 and class 3 models, we
onsidered two categories (i.e., low and high; short and long) for the state variables, control inputs, and external disturbances. For
lass 4 models we therefore also consider two categories/probability density functions per variable, supposing they form the world
et together (see Fig. 11). These two functions can be considered as the information deduced from two different experiments for
ounting the number of vehicles on various lanes and measuring the green time length of the traffic signals, and the probability
hat each provided data may be valid in each experiment. In probability theory, the uncertainty does not arise due to the use of
uzzy terms (taken from human language), but the uncertainty is about the likeliness that a random event is realized or a realization
s true. Therefore, in the class 4 model, there are not various interpretations per category, and the plots 1–4, 6, and 8 of Fig. 11
nclude two curves only. For the fuzzy secondary membership functions, we again consider the terms very likely, moderately likely,
nd slightly likely.

The maximal number of type-2 fuzzy-probabilistic rules one can construct for a type-2 model within class 3 is 63 = 216,
.e., the antecedent statements regarding the state variable, control input, and external disturbance can each adopt 6 options from,
espectively, the sets {slightly likely,moderately likely,very likely} × {sPF1,sPF2}, {slightly likely, moderately likely,very likely} ×
cPF1,cPF2}, {slightly likely, moderately likely, very likely}×{dPF1,dPF2}, with sPF1 and sPF2 any of the state probability density
unctions shown in the first four plots of Fig. 11, cPF1 and cPF2 the control probability density functions shown in the 6th plot of
ig. 11, and dPF1 and dPF2 the disturbance probability density functions shown in the 8th plot of Fig. 11. Hence, the total number
f parameters to be identified for the type-2 fuzzy-probabilistic model is 4(216), i.e., 864 parameters, per state variable.

Consider the antecedent of a type-2 fuzzy-probabilistic rule that is described by ‘‘if 𝑥 is slightly likely 5 veh and 𝑢 is very likely
5 s and 𝜈 is moderately likely 0.35 veh/s’’. The corresponding three fuzzy-probabilistic events are 𝑒𝑥∶SL-5, 𝑒𝑢∶VL-65, and 𝑒𝜈∶ML-0.35,
ith primary probability degrees 𝜋𝑥∶5

𝑖 , 𝜋𝑢∶65
𝑗 , 𝜋𝜈∶0.35

𝑘 , where 𝑖, 𝑗 ∈ {1, 2}, and with secondary fuzzy membership degrees 𝜇SL(𝑥∶5)𝑖
2 ,

VL(𝑢∶65)𝑗
2 , 𝜇SL(𝜈∶0.35)𝑘

2 . There are 23, i.e., 8, possible combinations for a rule. To reduce the number of combinations, one may make
setup similar to that made for models in class 1 and class 2. For instance, moderately likely only corresponds to the probability

ensity functions that are illustrated by the dotted blue curves and very likely and slightly likely only correspond to the solid red
urves. This way, the number of combinations per rule reduces to one, as we had for the models in class 1 and class 2. In this
articular case study, however, we did not impose these assumptions since the computation time for the class 3 model was still
easonable.

For a combined event 𝑒𝑥∶SL-5 ∧ 𝑒𝑢∶VL-65 ∧ 𝑒𝜈∶ML-0.35 the primary probability degree and the secondary fuzzy membership degree
re determined by:

( 𝑥∶SL-5 𝑢∶VL-65 𝜈∶ML-0.35 ) 𝑥∶5 𝑢∶65 𝜈∶0.35
14

𝑝 𝑒 ∧ 𝑒 ∧ 𝑒 , 𝑖, 𝑗, 𝑘 = 𝜋𝑖 ⋅ 𝜋𝑗 ⋅ 𝜋𝑘 , (11)
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Fig. 11. Class 3 type-2 model: Fuzzy-probabilistic membership functions for state variables, control inputs, and external disturbances.

𝜇2
(

𝑒𝑥∶SL-5 ∧ 𝑒𝑢∶VL-65 ∧ 𝑒𝜈∶ML-0.35, 𝑖, 𝑗, 𝑘
)

= (12)

min
{

𝜇SL(𝑥∶5)𝑖
2 , 𝜇

VL(𝑢∶65)𝑗
2 , 𝜇SL(𝜈∶0.35)𝑘

2

}

.

.2.5. Model identification
In this section, we explain the procedure of identifying the type-1 model in class 0 and the type-2 models within classes 1, 2,

nd 3.
15
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First, an extensive dataset was collected for the urban traffic network shown in Fig. 7 using micro-simulation. NetLogo [53] was
sed to develop the micro-simulator and Gipps’ car following model [54] was implemented into the overall model in order to ensure
more realistic simulation.

The resulting dataset included the realized values for the traffic state variables (i.e., the total number of vehicles on the lanes
nd the number of vehicles idling in the queues) for all the lanes of the traffic network for a long enough simulation, with varying
emands at the source links and varying green lights for the traffic signals.

It was made sure that many variations for these inputs were considered, so that different modes of traffic were simulated and
hat the corresponding dataset was sufficiently comprehensive. Next, as is standard in the field [55], the dataset was split into 2

parts: one used for training, and one for validation, and these sub-datasets were used to identify and validate the models. More
specifically, 80% of the collected data was used for the identification and the other 20% was used for the validation of the models.

We considered the shape and parameters of the type-1 and type-2 sets in the antecedent of the rules of the models to be fixed
in our case studies (for the details and motivation of this choice see Section 4.1), whereas the consequent parameters in (6) were
identified using the minimization approach explained in Section 4.2.

5.3. Results and discussions

We have assessed the accuracy of the different type-1 and type-2 models, based on their level of precision in estimating the two
state variables (i.e., total number of vehicles and the number of vehicles idling in the queues per lane) for the two sub-networks of
the urban traffic network that is shown in Fig. 7. The comparison is based on the relative validation errors of these models, after
the parameters of each model have been identified. The relative error reflects how accurate the estimation of the state variables is,
with respect to the ground truth values, that have been generated by a NetLogo micro-simulation model [56]. Moreover, we have
run the Wilcoxon signed rank test for the identified models for various datasets, in order to rank the models based on their relative
precision.

The average relative validation errors of the type-1 and type-2 models, after being trained, have been shown in Fig. 12. Note
that since no restraining boundary conditions have been defined for the sink nodes of the urban traffic network, all the vehicles
on the sink lanes (4L, 5L, 6L, 4R, 5R, 6R) can freely leave all the time. Therefore, there is no queue on these lanes, and hence the
errors corresponding to the queue lengths of these lanes have not been shown. Overall, out of the 22 results shown in Fig. 12:

• In 12 (almost 55% of the) cases, the type-1 model results in the most accurate estimations, whereas in 5 (almost 23% of the)
cases, it results in the least accurate estimations.

• In 5 (almost 23% of the) cases, the type-2 probabilistic-fuzzy model results in the most accurate estimations, while only in 1
case (i.e., less than 5% of the cases) it results in the least accurate estimation, jointly with the type-2 fuzzy model.

• In 3 (almost 14% of the) cases, and all jointly with the type-2 probabilistic-fuzzy model, the type-2 fuzzy membership function
results in the most accurate estimations, whereas in 7 (almost 32% of the) cases, it results in the least accurate estimations.

• In 5 (almost 23% of the) cases, the type-2 fuzzy-probabilistic model results in the most accurate estimations, whereas in 10
(almost 45% of the) cases, it results in the least accurate estimations.

The main observations and deductions from these results are the following. The estimation error for none of these models exceeds
1%. More accurately, for the state variable 𝑛, for lanes 1L-7L the maximum error realized is almost 0.75% (which corresponds to
the class 1 type-2 membership function) and for lanes 1R-7R it is 0.6% (which corresponds to the type-1 trapezoidal membership
function). For the state variable 𝑞, for lanes 1L, 2L, 3L, and 7L the maximum estimation error is almost 0.93% (which corresponds
to the class 1 type-2 membership function) and for lanes 1R, 2R, 3R, and 7R it is 0.9% (which corresponds to the fuzzy-probabilistic
membership function). It is crucial to consider that these very low errors are likely due to the simplicity of the considered traffic
network compared to a large-scale real-life traffic network that, e.g., covers a metropolitan. However, at this stage of the research,
we are mainly interested in a comparative analysis for the newly introduced concepts and in finding answers for questions Q1 and
Q2, rather than being interested in analysis of real-life traffic data.

In reply to question Q1, these results confirm our initial assumption that a model that runs based on data with one level of
uncertainty (i.e., a type-1 model) is in general more accurate in more than half of the case studies (to be more precise, for almost
55% of the performed simulations), than the other models that perform on data with two levels of uncertainties. Next come the
combined probabilistic-fuzzy and fuzzy-probabilistic models with outperforming in about a quarter (almost 23%) of the case studies.
When we look at the worst performances, however, from the type-1 model and type-2 probabilistic-fuzzy and fuzzy-probabilistic
models, the probabilistic-fuzzy model shows the worst performance for only less than 5% of the cases, whereas the type-1 model
and the fuzzy-probabilistic model under-perform in their estimations in, respectively, 23% and 45% of the cases.

This, in the first place, may sound counter-intuitive, because probabilistic uncertainties, which are already quantified, are
expected to be less prone to inaccuracies than fuzzy uncertainties, which are interpreted and quantified based on human perceptions.
Accordingly, when the primary uncertainty is probabilistic (i.e., for a fuzzy-probabilistic model), since the fuzziness gets involved
only in the secondary computations, the results are expected to be less erroneous than for a probabilistic-fuzzy model, where a
primary fuzzy uncertainty is also involved in and affects the computations regarding the secondary uncertainties. The results of
the case study, however, show the opposite, which may very likely be because of the flexibility of fuzzy membership functions,
compared to probabilistic density functions, in being fine-tuned. In fact, fuzzy membership functions for various fuzzy events are
not constrained to add up to 1 for the same input values, whereas the probabilities of various random events must satisfy that
condition.
16
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Fig. 12. Comparison of the relative validation errors (as percentages) for estimation of the state variables by the fuzzy models, for sub-network 1 (top row) and
sub-network 2 (bottom row), where the ground truth values are taken from a microscopic urban traffic simulation model developed in NetLogo. The blue bars
correspond to the type-1 model [40] and the yellow bars correspond to the type-2 fuzzy model [42], whereas the purple and the red bars correspond to type-2
models with a, respectively, fuzzy-probabilistic and probabilistic-fuzzy membership function, which have been introduced in Section 2 of the current paper. Note
that a shorter bar corresponds to a better performance for that particular estimation. In other words, from the 4 bars in each cluster of bars, the one
with the least height corresponds to the best performing model and the one with the largest height corresponds to the worst performing model.

These results, in summary, imply the effectiveness of incorporating fuzzy information and data into the analysis and modeling
of traffic dynamics, as well as the significance of the identification procedure.

Finally, the worst-performing model, as was expected, is the class 1 type-2 model, which deals with fuzziness on both levels
of uncertainties. Despite the positive aspects that were just mentioned regarding the flexibility of fuzzy membership functions,
when such functions exist on two (or more) levels, the complexity in running the identification and later on model computations
on the multiple fuzzy levels will rise significantly. Thus, simplifications (e.g., reducing the number of the rules) is inevitable for
identifying the model in a reasonable time and for running it online. Therefore, the compensation of the performance for obtaining
a computationally affordable model is inevitable for type-2 fuzzy models.

Note that when running the Wilcoxon signed rank test, the most accurate model for various datasets was the type-2 probabilistic-
fuzzy model, followed by the type-2 fuzzy-probabilistic model.

In reply to question Q2, note that the computation time for identification and running a type-1 model was very reasonable for
the performed case studies, because the total number of parameters that needed to be identified was only 32 and the number of
rules that were involved in the online computations was at most 8.
17
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The computational burden for the class 1 type-2 model, however, was generally very high and grew rapidly when adding extra
ules. In particular, the iterative Karnik–Mendel algorithms [57] that are commonly used in type-reduction when interval class 1
ype-2 fuzzy systems are considered, or the required discretization level (for achieving the desired accuracy) via 𝛼-planes [58]

when general class 1 type-2 fuzzy systems are considered, are the main sources of this high computational cost. Due to these
reasons, in our case studies, we have reduced the number of possible verbal interpretations for the fuzzy uncertainties and hence,
reduced the computational burden and computation time accordingly. This, however, compensates the precision and the impact of
(re-)identification of the model .

The same conditions hold for the type-2 probabilistic-fuzzy sets, where due to the high computation time experienced during
the simulations, we had to reduce the number of linguistic interpretations for the fuzzy uncertainties. Although this compensates
the precision of the model, our results showed that the resulting type-2 probabilistic-fuzzy model still outperformed, in terms of
precision, the other type-2 models, and in some cases even the type-1 model. Therefore, based on our results, we foresee the highest
potential for such type-2 models, although for a more general conclusion further case studies and designed scenarios will be needed.

In general, when two levels of uncertainties exist in the traffic data, type-2 models are preferred, in particular, those with a
probabilistic-fuzzy membership function, when accuracy is crucial, and those with a fuzzy-probabilistic membership function, when
a trade-off between accuracy, computational efficiency, and ease of implementation is desired. While the accuracy and computational
efficiency of type-2 models were discussed earlier, regarding the ease of implementation, note that while statistical data may be
collected and stored in advance for later use, the fuzzy uncertainty that is included to the data due to the perception and varying
mental states of human users of the road is provided only in real time. An example for a rule that is formulated according to the
historical observations for regular, off-peak traffic is ‘‘75% of the drivers avoid a detour in traffic area A’’. In case of heavy congestion
in area A, due to road construction or an accident, the varying mental states of the road users will impact this rule, i.e., while in
a normal situation there is certainty about 75% of the traffic flow not selecting a detour, this certainty is affected and should best
be represented as a fuzzy term, which properly represents the direct feedback of humans. In other words, the rule will become ‘‘It
is quite likely that 75% of the drivers avoid a detour in traffic area A’’. This natural way of adapting the rules when a secondary
uncertainty is introduced to the dataset generates a type-2 model with a fuzzy-probabilistic membership function. Note that building
a rule base with probabilistic-fuzzy membership functions, however, is not similarly straightforward (since the existing statistical
information by nature corresponds to the primary uncertainties, not the secondary).

In addition to the above discussions, observing the variations of the accuracy for different models across different estimations in
Fig. 12 of the results section, yields the following specific insights about the strong and weak points of each model.

First, all models are in general more accurate in estimating the first traffic state, i.e., the total number of vehicles per lane,
compared to the second traffic state, i.e., the queue length per lane. This is not unexpected, since the dynamics of traffic queues
is in general more complex and prone to variations at the microscopic level. Hence, when a macroscopic representation of the
evolution of the queues is used, as is the case in (6), such microscopic dynamics are ignored and this will normally impact the
estimations of the queue lengths more than the estimations of the total number of vehicles (also see [45,49]).

Second, in 4 out of the 8 cases, i.e., for lanes 1L, 2L, 3L, 1R, which are all source lanes (i.e., the traffic flow to the traffic
network enters the network via these lanes) the type-1 model shows the best performance for estimation of the queue lengths. The
best performing type-2 model for estimating the queue lengths on the source lanes is the one with a probabilistic-fuzzy membership
function. A similar trend is observed for the estimation of the total number of vehicles on the source lanes, i.e., the type-1 model
and the type-2 model with a probabilistic-fuzzy membership function show the highest accuracies.

Third, the most challenging lanes for a traffic model to estimate or predict the states of, include the sink lanes (i.e., lanes through
which traffic leaves the traffic network), which in this case include lanes 4L, 5L, 6L, 4R, 5R, 6R in Fig. 7, and the connecting lanes
(i.e., lanes that are neither a source nor a sink lane), which are lanes 7L and 7R in Fig. 7. In fact, while the inflow to the source lanes
1L, 2L, 3L, 1R, 2R, 3R is given or measured per simulation time step, for the sink lanes (numbered 4, 5, 6) and the connecting lane
(numbered 7) the inflow and outflow are both estimated. Due to this, a larger cumulative error is expected for the states estimated
by a model for these lanes. For 5 out of the 8 sink and connecting lanes, the type-1 model shows the highest accuracy in estimation
of the total number of vehicles.

However, in case of lane 6, the type-1 model not only under-performs with respect to the other models in estimating the
total number of vehicles, but also the estimation error of this model is relatively significant. The next best performing model in
estimating the total number of vehicles on the sink and connecting lanes is the type-2 model with a probabilistic-fuzzy membership
function, which shows a stable behavior for all the lanes. Thus, the best choice for estimation of the total number of vehicles
for complex (i.e., sink and connecting) lanes, based on these results, is the type-2 model with a probabilistic-fuzzy membership
function. Although, as discussed above, the type-1 model and the type-2 model with a probabilistic-fuzzy membership function
show the highest accuracy for estimating the queue lengths of the source lanes, for neither of the complex lanes (i.e., 7L and
7R) does the type-1 model or the type-2 model with a probabilistic-fuzzy membership function perform the best. In fact, for
both of these connecting lanes, the type-1 model under-performs compared to the other models, whereas the type-2 model with
a fuzzy-probabilistic membership function shows the highest accuracy in estimating the queue lengths.

Generally speaking, type-1 models are the easiest to design [59,60]. However, they are not always the best choice considering the
accuracy and efficiency of the computations, as confirmed by our results and by other comparisons run in the literature (see [61,62]).
Our observations based on the results presented in this paper, in summary, imply that when larger cumulative errors are expected
(e.g., because the lane is a sink or a connecting lane) modeling the traffic dynamics incorporating two levels of uncertainties is
in general preferred over considering one level of uncertainty only. Moreover, when the primary and secondary uncertainties are
18

represented via, respectively, probabilistic and fuzzy data, the type-2 model shows the best overall performance. Moreover, such a
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model is also preferred due to its ease of implementation in real-time, since the implementation simply requires including the newly
received fuzzy information, as the secondary uncertainty, on top of the existing statistical information that exhibits the primary
uncertainty about the traffic dynamics (this has been explained earlier in detail via an example above).

Note that in a realistic urban traffic network that is larger than that shown in Fig. 7, there are many more connecting lanes. In
uch cases, a wise choice for estimation of the queue lengths is, thus, again a type-2 model with a fuzzy-probabilistic membership
unction.

Finally, our case studies showed a reasonable time for identification and computations for the type-2 fuzzy-probabilistic model,
hich eliminated the need for shrinking the linguistic interpretation sets. However, as indicated before, by swapping the primary
nd secondary membership functions, i.e., for a probabilistic-fuzzy counter-part model, the precision of the estimations is still higher
han the other type-2 models.

In summary, these results indicate that by using the proposed concepts of probabilistic-fuzzy and fuzzy-probabilistic membership
unctions (possibly depending on the type of the traffic scenarios and the data available), one can obtain estimations for traffic states
ith the introduced human-inspired models that are comparable to the estimations of a type-1 fuzzy model when data is prone to
nly one level of uncertainty. This implies that the type-2 sets and models introduced in this paper can properly handle the additional
ncertainty that is introduced to traffic data via humans. In the design of such type-2 models, one may consider (to the level that the
ature of the data allows) symmetrical type-2 membership functions. Such a symmetry, for instance, will translate into a trapezoidal
rimary and a triangular secondary membership function (more details can be deduced from [58]), and is expected to reduce the
omputational burden of these models.

Moreover, due to the large number of identification parameters for each type-2 model (i.e., 864 parameters per state variable)
ompared to the type-1 model (i.e., 32 parameters per state variable), and considering the fact that the identification procedure
nvolves a non-convex optimization procedure, which is performed several times using multiple starting points, it is possible that
he type-1 model is more accurately identified compared to the type-2 models.

. Conclusions and future research

This paper has addressed an important challenge of autonomous driving in smart cities: Handling various levels and types of
ncertainties in traffic, including both quantified and non-quantified data, in analysis and prediction of the traffic dynamics via
athematical modeling. Via the introduction of novel type-2 sets, called probabilistic-fuzzy and fuzzy-probabilistic sets, and by

xploiting these sets through human-inspired rule-based models, the following major impact is expected for smart cities: Improved,
n terms of performance and safety, autonomous control of traffic, incorporating both statistical and human factors within the
ecision making procedure.

In a case study, we used a type-1 model and the different type-2 models to mathematically represent the dynamics of an urban
raffic network using extensive data collected from this traffic network, using NetLogo for micro-simulations. The case study was
erformed to show-case the potentials of these type-2 models. We noticed that for data-sets that already include uncertainties of
uzzy, probabilistic, or both types, the added value of using type-2 models is more prominent. In particular, type-2 probabilistic-fuzzy
odels provide a balanced trade-off between accuracy and efficiency of the computations. This is likely because of the presence of

uzzy membership functions in the primary level that handles the uncertainties and the higher flexibility of such functions in being
uned compared to probabilistic density functions.

In general, when data collected from the traffic network involves multiple levels of uncertainty, in particular both fuzzy and
robabilistic, type-2 models are the most effective tools to capture and represent the dynamics of traffic. This is commonly the
ase when traffic dynamics is (significantly) impacted by the dynamics of the cognition and mental states of humans. For instance,
n regular, ideal traffic conditions, such as during the off-peak hours when traffic flows freely, historical data that provides the
attern of traffic dynamics as a function of the time of day may be used to estimate and predict the upcoming traffic states. Such
istorical data, stored as probabilistic values or fuzzy terms, can properly be modeled via a type-1 model. However, when drivers
nd other road users are emotionally impacted (e.g., are angry, frustrated, stressed-out, or anxious due to a blocked road, slow
raffic, or bad weather conditions), a second level of uncertainty will impact the traffic dynamics that is due to the dynamics of the
ental states of the road users. This uncertainty, due to its nature, is interpreted and mathematically represented via fuzzy variables.

or such examples, type-2 models (including type-2 fuzzy, fuzzy-probabilistic, and probabilistic-fuzzy models) outperform type-1
odels in representing and predicting the traffic dynamics. Moreover, since road users send out such data about their mental states

ndividually, and the data is thus perceived or received asynchronously and/or delayed, the general formulation of type-2 models
rovided by (1)–(3), which capture this asynchrony/delay, is particularly suited.

Future research should investigate how the choice of the probability density functions, when aligned with specific interpretations
f fuzzy terms, may positively impact the computational burden of type-2 models. Moreover, further investigation about the impacts
n the precision and computation time when the type of the primary and secondary membership functions are swapped for modeling
he same phenomena for various traffic scenarios is required. Analysis of these aspects is relevant, specially for cases where the type
nd shape of these functions can be designed, noting that in the context of the current paper, we assume that data has already been
ollected in a combined way and we represent and model it according to the available dataset.

For future research, comparison with other validated traffic models that can handle uncertain data will be performed.
dditionally, we propose to combine the proposed rule-based modeling methods with a supervisory optimization-based control
ystem, in order to coordinate different traffic sub-networks, while optimizing global performance criteria, including total travel
19

ime and total emissions of the vehicles. Moreover, further research on collection, filtering, and calibration of heterogeneous data
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from human users and managers of the roads is a highly relevant and essential step for using the proposed models in real-life smart
cities. These may require novel data fusion and/or soft sensing techniques based on machine learning or other relevant (combined)
methods.

Various fields and applications that involve humans in the system will also benefit from the novel approaches of this paper.
ccordingly, it is recommended to implement the proposed modeling approaches for the analysis and control of search-and-rescue
obots (which should process data from dynamic environments and from firefighters and trapped victims), and for steering social
obots that should understand and interact with humans. In such cases both statistical and fuzzy-logic-based models are relevant
nd thus such novel integration of probability theory and fuzzy logic, as proposed in this paper, will be of high relevance.

Finally, extensive analysis (based on traffic micro-simulation or real-life data) is needed to provide insights about traffic scenarios
nd datasets where type-2 models will exceptionally improve the accuracy of the estimations, thus the safety of traffic when a control
ystem has been designed and is performing upon these estimations. Running statistical tests (e.g., the Wilcoxon signed-rank test)
s a logical next step in validating the proposed models for larger scale, real-life traffic networks.
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