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A B S T R A C T   

Phytoremediation is one of the green technologies that is friendly to nature, utilizes fewer 
chemicals, and exhibits good performance. In this study, phytoremediation was used to treat 
diesel-contaminated sand using a local aquatic plant species, Scirpus mucronatus, by analyzing 
the amount of total petroleum hydrocarbons (TPHs). Optimization of diesel removal was per
formed according to Response Surface Methodology (RSM) using Box-Behnken Design (BBD) 
under pilot-scale conditions. The quadratic model showed the best fit to describe the obtained 
data. Actual vs. predicted values from BBD showed a total of 9.1 % error for the concentration of 
TPH in sand and 0 % error for the concentration of TPH in plants. Maximum TPH removal of 42.3 
± 2.1 % was obtained under optimized conditions at a diesel initial concentration of 50 mg/kg, an 
aeration rate of 0.48 L/min, and a retention time of 72 days. The addition of two species of 
rhizobacteria (Bacillus subtilis and Bacillus licheniformis) at optimum conditions increased the 
TPH removal to 51.9 ± 2.6 %. The obtained model and optimum condition can be adopted to 
treat diesel-contaminated sand within the same TPH range (50–3000 mg/kg) in sand.  
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1. Introduction 

Soil pollution is the mixing of compounds and the accumulation of unwanted particles in the soil matrix [1]. Several compounds 
may contaminate the soil, including organic [2] and inorganic pollutants [3]. Soil pollution may come from daily domestic activities 
[4] and from industrial activities [5]. Hydrocarbon pollution in soil is currently increasing due to increased fuel utilization and 
industrialization in many areas [6–9]. Diesel is one of the compounds commonly found to contaminate soil [10,11]. Diesel in soil was 
reported to reach 18,231 mg/kg in highly contaminated areas [12] and ranging within 50–500 mg/kg in non-severely contaminated 
areas [13]. 

Treatment of diesel-contaminated soil has been done using various techniques, including land excavation [14], burning [4], and 
soil washing [15]. The mentioned technologies are considered costly to be applied in such a large, contaminated area. The application 
of these techniques also requires skilled personnel to handle the operation and maintenance procedures [16]. The attention is currently 
shifted to the utilization of biological treatment or bioremediation to remove diesel from contaminated soil, which offers a consid
erably lower operation and maintenance cost [10,17–19]. One of the biological methods that have reliable performance to treat 
diesel-contaminated soil is phytoremediation [5,20]. 

Phytoremediation utilizes plants’ natural mechanisms to resist, adapt, and utilize organic compounds in soil to grow [5,21]. 
Various types of plants have been widely used in hydrocarbon removal, such as Glycine max [22], Festuca arundinacea [23], Scirpus 
grossus [24], and Medicago sativa [25]. Grass-type species have often been reserved as impressive plants for treating polluted soil 
hydrocarbons due to their fibrous root systems [26,27]. The rhizosphere area played an important role due to the interaction between 
plants and the rhizo-microbial community to degrade and remove organic pollutants from soil [28]. Bacteria is one of the most 
commonly mentioned rhizo-microbial species involved in phytoremediation processes [29]. The addition of certain bacteria species is 
also reported to enhance the hydrocarbon degradation process in soil [30]. 

Most of the reported studies utilize terrestrial plants as hydrocarbon treatment agents in phytoremediation [6,31,32]. The utili
zation of aquatic plants, especially native local plants, to treat diesel-contaminated soil is still limited. In addition, Response Surface 
Methodology (RSM) is currently gaining attention in terms of modeling an optimization for research; however, phytoremediation of 
diesel-contaminated soil optimization studies using native local plant species is still rare. This research was aimed to (i) optimize, via 
RSM, the condition of phytoremediation using native aquatic plant species of Scirpus mucronatus for maximum removal of diesel 
represented by Total Petroleum Hydrocarbons (TPHs) and (ii) analyze the effect of rhizobacteria addition to plant growth and diesel 
removal from sand. The presented result is expected to give a clear understanding of the optimum conditions for diesel removal from 
sand and also to give a direct view of the effect of rhizobacteria addition during the phytoremediation process. 

2. Materials and methods 

2.1. Optimization via response surface methodology (RSM) 

Optimization of phytoremediation conditions for maximum TPH removal in sand was conducted through Response Surface 
Methodology (RSM) using Design of Expert (Version 6, Stat-Ease, USA). The interaction between the relationship of key factors, 
namely diesel concentration in sand, retention time, and aeration, and TPH removal in contaminated sand and plants was analyzed 
using Box Behnken Design. The results obtained were then analyzed to develop an appropriate model for these factors. The optimum 
conditions obtained through RSM were then confirmed by comparing them with the experimental results. 

The response value used was TPH concentration data on sand and plants. While the independent factors included were diesel 

Table 1 
Run order based on Box Behnken Design.  

Run Order Factor 1 Factor 2 Factor 3 

A: Diesel Concentration (mg/kg) B: Retention Time (day) C: Aeration (L/min) 

1 50 39.5 2 
2 50 7 1 
3 3000 7 1 
4 1525 39.5 1 
5 50 39.5 0 
6 1525 39.5 1 
7 50 72 1 
8 1525 72 2 
9 3000 39.5 0 
10 3000 39.5 2 
11 1525 39.5 1 
12 1525 7 0 
13 1525 39.5 1 
14 3000 72 1 
15 1525 72 0 
16 1525 39.5 1 
17 1525 7 2  
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concentrations (50 and 3000 mg/kg), retention time (7 and 72 days), and aeration (0 and 2 L/min), The minimum concentration value 
(50 mg/kg) was determined based on soil quality standards for industrial areas containing benzene. While the maximum concentration 
(3000 mg/kg) was determined based on the ratio of mass to plant, the plant is still alive at the diesel concentration based on our earlier 
findings. The retention time in the plant site pilot plant used is from the 7th day until the 72nd day. The 7th day is determined because 
on that day the plants still look healthy and have not experienced whitening. The 72nd day is determined because on that day, some 
plants have suffered from lethargy and changed color from green to yellow or brown. Aeration was set at 0 and 2 L/min to analyze the 
effect of supplying aeration on the TPH removal performance, following the protocols by Al-Baldawi et al. [33] and Tangahu et al. 
[34]. 

Based on the variable factors used, the sampling that must be completed is 17 times with diesel concentrations of 50, 1,525, and 
3000 mg/kg and aeration of 0, 1, and 2 L/min. The concentration of 1525 mg/kg was the median value of the diesel concentration. 
Similarly, 1 L/min of aeration is the middle value of the ventilation factor. In determining the optimal condition of the pilot plant, 
sampling was conducted as shown in Table 1. In Table 1, the first column is the number of runs, and the next three columns are the 
experimental conditions compiled by Box-Behnken Design. An ANOVA test was performed on all three factors and the obtained 
response. Subsequently, the results obtained were used in the operation of the Scirpus mucronatus plant site pilot plant to treat diesel- 
containing sand. 

The optimum condition obtained from RSM was then verified by performing a validation run similar to the condition suggested by 
the model. The results obtained from the validation run and prediction were then compared to calculate the percentage error. 

2.2. Reactor set-up and operational condition 

A pilot plant study was conducted using 12 pilot tanks, as depicted in Fig. 1, each with dimensions of 1.18 m × 0.9 m x 0.9 m. Each 
tank was filled with coarse gravel media (⌀ 2 cm) with a thickness of 0.1 m, fine gravel (⌀ 0.5 cm) with a thickness of 0.1 m, and sand 
with a thickness of 0.3 m. In this optimization study, the mass of gravel and sand applied was 491 kg, and a total of 60 one-month-old 
healthy plants (Scirpus mucronatus) were used in each tank. The plants were obtained from a shallow lake in Bangi, Selangor, Malaysia, 
and propagated in a greenhouse until the first generation was produced. Sand and gravel were used in this study instead of soil to 
ensure plants only depend on pollutants for growth since no additional nutrients are available in sand or gravel. Referring to Fig. 1, the 
whole set-up consisted of three rows; each row was set at one aeration rate (0, 1, and 2 L/min). Each row comprised one control tank 
without contaminants and another three tanks representing vegetated reactors with different diesel concentrations (50, 1525, and 
3000 mg/kg). All the pilot reactors were operated batchwise for 72 days according to the experimental design by RSM, as listed in 
Table 1. 

2.3. Effect of rhizobacteria addition 

The optimum condition obtained from the DOE model was then validated in two conditions, namely without and with the addition 
of rhizobacteria. The rhizobacteria added were the combination of the two bacteria that provided the highest percentage of TPH 
removal for which this study had previously been carried out [35]. The bacterial species added were Bacillus subtilis and Bacillus 
licheniformis. The amount of bacterial mixture added to the reactor was 10 % (v/v) of the saturated sand [36,37]. The sand retention 
capacity is 26 mL in every 100 g of sand [38,39]. When the mass of sand in the reactor is 491 kg, the combined content of water in the 
reactor was 127.7 L. Thus, the combined content of bacteria added to the reactor was 12.7 L. The bacteria used were two species, so the 
combined content of each bacterial species was 6.5 L. In providing the added bacteria, the first step to be carried out was the culture of 
Bacillus subtilis and Bacillus licheniformis in TSA agar medium (R&M Chemicals, U.K.) for 24 h [40]. The next step is the culture of 

Fig. 1. Schematic diagram of reactor set-up for phytoremediation optimization study. All experiments were conducted in triplicate.  
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bacteria in TSB liquid medium (R&M Chemicals, U.K.) for 24 h [41]. The amount of mixture for the two bacteria was 13 L. 

2.4. Plant growth measurement 

During the validation run to compare the estimated results with the experimental data and also during the exposure to rhizo
bacteria, plant growth through dry mass measurement was also recorded. The plant’s weight was determined using the gravimetrical 
method [20,30]. One plant was taken from each reactor during a sampling period. The plant was rinsed using tap water and dried on 
filter paper (Whatman, U.K.). The dried plant was then weighed as a wet weight. The plant was then dried once again in a 70 ◦C oven 
(Memert+, Germany) for 72 h until a constant weight was achieved. The dry weight of the plant was weighed after 72 h in the oven. 

2.5. Analysis of TPH in sand and plant 

Throughout the optimization study, sampling was conducted in accordance with the results obtained on the selected optimization 
runs from the Design of Expert Application (detailed in Section 2.3). Samples of sand, water, and plants were taken from each pilot 
plant. Sand samples were taken compositely from three different points at a depth of about 5–10 cm. Sand samples were taken 
simultaneously at the same time. The sand sample was then placed in a 120-mL glass bottle. Water samples were also taken 
compositely from three different points. Plant samples were taken at the same time, and one plant was randomly taken per sampling 
point. Plants are uprooted from the sand, cleaned with tap water, and dried with a tissue before further analysis. 

Three samples of sand and plant samples were taken for TPH extraction in each sampling period. Approximately 10 g of sand or 
plant sample was placed in 100 mL glass bottles; sodium sulfate (Merck, Germany) and 50 mL dichloromethane (DCM) (R&M 
Chemicals, U.K.) were then added to the bottles. The sample mixture was stirred well. The sample mixture was extracted using an 
ultrasonic cleaner (Termo-10D, U.S.A.) for 30 min at 50 ◦C. The supernatant is filtered through a glass wool (Supelco, U.S.A.) into a 5 
mL glass bottle. The extract was left in the fume chamber for seven days to allow the solvent to evaporate. When the solvent had 
evaporated, 2 mL of DCM was added, and the sample was stored in a GC vial. Extracts were analyzed using GC FID (Agilent, Model 
7890 A, U.S.A.) with HP-5 5 % column phenyl methyl siloxane (30 m × 0.32 mm i. d. X 0.25 μm) with helium as carrier gas. The column 
temperature is programmed at 50 ◦C for 1 min, and then ramps at 15 ◦C per minute to 320 ◦C for 10 min. 

2.6. Statistical data analysis 

In this optimization study, the parameters that need to be analyzed using statistics to obtain the significance of the data are changes 
in plant physics to diesel concentration and TPH concentration in sand and plants. Statistical analysis using two-way ANOVA Statistics 
SPSS 16.0 (IBM, U.S.A.) at a 95 % confidence level or p ≤ 0.05 [42,43]. 

3. Results and discussion 

3.1. Optimization using response surface methodology 

The result of TPH concentrations in sand and plants based on the run order provided by RSM as well as the predicted value by BBD 

Table 2 
Result of TPH concentration in sand and in plants (actual vs. predicted concentration via Box-Benken Design).  

Run 
Order 

Initial Diesel Concentration 
(mg/kg) 

Retention Time 
(days) 

Aeration (L/ 
min) 

TPH concentration in sand (mg/ 
kg) 

TPH concentration in plants (mg/ 
kg) 

Actual Predicted Error 
(%) 

Actual Predicted Error 
(%) 

1 50 39.5 2 12.41 12.41 0.00 139.97 139.97 0.00 
2 50 7 1 29.83 29.83 0.00 342.50 342.50 0.00 
3 3000 7 1 317.00 317.00 0.00 272.09 272.09 0.00 
4 1525 39.5 1 66.38 64.50 2.83 288.04 288.04 0.00 
5 50 39.5 0 5.81 5.81 0.00 162.87 162.87 0.00 
6 1525 39.5 1 60.18 64.50 − 7.18 288.04 288.04 0.00 
7 50 72 1 29.43 29.43 0.00 416.60 416.60 0.00 
8 1525 72 2 34.92 34.92 0.00 233.38 233.38 0.00 
9 3000 39.5 0 120.58 120.58 0.00 161.05 161.05 0.00 
10 3000 39.5 2 199.64 199.64 0.00 290.75 290.75 0.00 
11 1525 39.5 1 76.28 64.50 15.43 288.04 288.04 0.00 
12 1525 7 0 86.32 86.32 0.00 259.56 259.56 0.00 
13 1525 39.5 1 64.17 64.50 − 0.52 288.04 288.04 0.00 
14 3000 72 1 104.08 149.28 − 43.43 408.43 408.43 0.00 
15 1525 72 0 39.02 75.88 − 94.49 140.79 140.79 0.00 
16 1525 39.5 1 55.50 22.84 58.85 288.04 288.04 0.00 
17 1525 7 2 41.99 0.72 98.29 156.77 156.77 0.00  
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(calculated by the model) are tabulated in Table 2. Based on the Box-Behnken design method, it is found that the quadratic model is 
suitable for both factors. The quadratic models obtained are as shown in Equations (1) and (2). The model was used in determining the 
concentration of TPH on sand and plants during plant site pilot plant operation at optimal conditions. 

y1= 11.31384+(0.014121 ∗ A)+ (6.73179E − 003 ∗ B)+ (42.19012 ∗ C)+
(
2.73896E − 005∗A2)

−
(
4.44663E − 003∗B2)–

(
24.70798∗C2) − (1.52430E − 004 ∗ A ∗ B)–0.034716 ∗ A ∗ C

)
+ (0.30949 ∗ B ∗ C)

−
(
5.62031E − 007∗A2∗B

)
+
(
1.54092E − 005∗A2∗C

)
+
(
9.59880E − 006 ∗ A∗B2) Equation (1)  

y2= 319.31290+(0.034103 ∗ A)–(7.66664 ∗ B)+ (191.56701 ∗ C)–
(
3.42649E − 005∗A2)+

(
0.093943∗B2)

−
(
130.82931∗C2)+(4.84993E − 004 ∗ A ∗ B)–(0.015137 ∗ A ∗ C)+ (1.50288 ∗ B ∗ C)+

(
8.93128E − 007∗A2∗B

)

+
(
1.34430E − 005∗A2∗C

)
–
(
3.65124E − 005 ∗ A∗B2) Equation (2)  

with, y1 = TPH concentration in sand (mg/kg), y2 = TPH concentration in plant (mg/kg), A = TPH initial concentration (mg/kg), B =
retention time (day) and C = aeration (L/min). 

The results of the ANOVA analysis of the two quadratic models are shown in Table 3. Based on Table 3, the F-values for both models 
(TPH in sand and in plants) were 129.87 and 63, 660, 000, respectively. This value indicates that the quadratic model obtained was 
significant (p < 0.05). An adequate level of precision is needed to measure the noise-to-noise ratio, for which a ratio exceeding 4 is 
required [44]. From the quadratic model obtained, the noise-to-noise ratio value is 45.76 for the concentration of TPH in sand. As for 
the concentration of TPH in plants, there is no value for the signal-noise ratio. This is due to the values of R2 = 1 and R2adj = 1, 
indicating that each model was sufficient for use and in accordance with the experimental design of a plant site pilot plant. Moreover, 
the p value of the second model was less than 0.05, which indicates that the model was significant, and the quadratic equations formed 
can be applied to determine the concentration of TPH in sand and plants [11]. The F-value of the lack of fit obtained from Equation (1) 
was 32.3, while Equation (2) does not have a lack of fit value due to the total congruency. 

The results obtained through experiments and estimated by the model are shown in Table 2. In Table 2, run 5 gives the lowest TPH 
concentration in the sand (5.8 mg/kg), while the TPH concentration in the plant is 162.9 mg/kg under the condition of 50 mg/kg diesel 

Table 3 
Result of ANOVA analysis for a quadratic model for TPH in sand and plants.  

TPH in sand 

Source Sum of square DF Mean Square F-value Prob > F Remark 

Model 94237.64 12 7853.14 129.87 0.0001 Significant 
A 22800.94 1 22800.94 377.06 <0.0001  
B 738.84 1 738.84 12.22 0.0250  
C 586.28 1 586.28 9.70 0.0357  
A2 8456.28 1 8456.28 139.84 0.0003  
B2 487.92 1 487.92 8.07 0.0468  
C2 2570.46 1 2570.46 42.51 0.0029  
AB 11291.21 1 11291.21 186.72 0.0002  
AC 1312.82 1 1312.82 21.71 0.0096  
BC 404.68 1 404.68 6.69 0.0609  
A2B 3158.53 1 3158.53 52.23 0.0019  
A2C 2247.81 1 2247.81 37.17 0.0037  
AB2 447.28 1 447.28 7.40 0.0530  
Pure Error 241.88 4 60.47    
Cor Total 94479.52 16     
R2 = 0.9974 R2 adj = 0.9898 Lack of fit = 45.762   

TPH in plants 
Source Sum of square DF Mean Square F-value Prob > F Remark 

Model 117589.68 12 9799.14 63,660,000 <0.0001 Significant 
A 5547.27 1 5547.27 63,660,000 <0.0001  
B 444.57 1 444.57 63,660,000 <0.0001  
C 25.97 1 25.97 63,660,000 <0.0001  
A2 4165.22 1 4165.22 63,660,000 <0.0001  
B2 6877.01 1 6877.01 63,660,000 <0.0001  
C2 72068.66 1 72068.66 63,660,000 <0.0001  
AB 968.21 1 968.21 63,660,000 <0.0001  
AC 5821.69 1 5821.69 63,660,000 <0.0001  
BC 9542.82 1 9542.82 63,660,000 <0.0001  
A2B 7976.12 1 7976.12 63,660,000 <0.0001  
A2C 1710.77 1 1710.77 63,660,000 <0.0001  
AB2 6471.86 1 6471.86 63,660,000 <0.0001  
Pure Error 0.00 4 0.00    
Cor Total 117589.68 16     
R2 = 1.000 R2 adj = 1.0000 Lack of fit = −
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concentration and a retention time of 39.5 days without aeration. The highest TPH concentrations in plants (416.6 mg/kg) were 
achieved on run 7, at 50 mg/kg diesel concentration, 72 days of retention time, and 1 L/min of aeration. 

Fig. 2 demonstrates a comparative analysis between the concentration of TPH in sand and plants for each run obtained through 
experiments and that estimated by Box-Behnken. Based on the diagram, the concentration of TPH on sand estimated by Box-Behnken 
was obtained according to the removal pattern obtained from the experiments. However, there was a slight pattern difference in runs 
14 to 17 (Fig. 2(a)). TPH concentrations in plants do not indicate a pattern of difference between actual and predicted data. This was 
because the value of R2 = 1. A greater R2 indicated that the obtained data were more closely matching the prediction; in this case, it 
means that the experiment was indeed equal to the prediction [45,46]. An illustration of the actual value of the response obtained 
through the experiments arranged by Box-Behnken and the estimated value obtained through Equations (1) and (2) are also shown in 
Fig. 2. The values of coefficients R2 and R2adj for the estimated concentration of TPH in sand are 0.9974 and 0.9898. While the 
estimated concentration of TPH in plants has a value coefficient of 1 for both R2 and R2 adj. The R2 and R2adj were also used as in
dicators to show satisfactory development between simulated data; values higher than 0.95 indicated a good fit [47]. In addition, Sidek 
et al. [48] mentioned that a significant p-value (<0.05), an R2 above 0.9, and adequate precision >4 indicated the good soundness of 
the model with a surface contour plot. 

3.2. Model desirability for the optimization study 

Determining the optimal factor conditions carried out was to minimize the concentration of TPH in sand and maximize the 

Fig. 2. Comparison of TPH concentrations obtained through experiments with those estimated by Box-Behnken in (a) sand and (b) plants.  
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concentration of TPH in plants. The required goal for operating conditions is that the initial concentration of diesel in the sand was set 
in the range of 50–3000 mg/kg, the retention time was set in the range of 7–72 days, and the aeration supply was set to a minimum to 
reduce electricity consumption. The response of TPH concentrations in sand was minimized (i.e., targeting maximum removal of diesel 
from sand), and TPH concentrations in plants were maximized. Through the optimization program, the likelihood of each factor and 
response was combined, and then the search for the maximum model (Equation (1) and (2)) was performed. The optimization results 
are shown in Fig. 3, where the optimum conditions at the predetermined goal are selected at a desirability of 0.82 with a diesel 
concentration of 50.0 mg/kg, a retention time of 72.0 days, and an aeration rate of 0.59 L/min. A desire value higher than 0.8 is 
considered a good scenario to be implemented for a specific objective function [49], with a higher value (closer to 1) indicating a better 
solution for optimization [49,50]. 

The desirability of the optimum operating conditions is shown in Fig. 4(a). Experiments were conducted to confirm the optimum 
conditions obtained from the model estimation to eliminate the concentration of TPH in sand and increase the concentration of TPH in 
plants [51,52]. Fig. 4(b) and (c) show that the optimal diesel concentration in the operation of this plant site is 50.0 mg/kg, with a sand 
retention time of 72 days at the plant site and an aeration supply of 0.6 (approximated from 0.59) L/min. Based on the optimal 
conditions obtained, sampling of sand, water, and plants was done from day 0 to day 72 to obtain the concentration of TPH on sand and 
plants. At this optimum condition, the estimated concentration of TPH in sand using Equation (1) was 17.11 mg/L (Fig. 4(b)), while the 
estimated concentration of TPH in plants using Equation (2) is 325.62 mg/kg (Fig. 4(c)). 

3.3. Validation run at optimal conditions 

In this section, the results obtained during the operation of the optimum-condition pilot plant will be compared with the results 
from the DOE model. This validation run was performed to confirm the validation of the results obtained from the DOE optimization 
[51]. Validation runs can be carried out using various methods, including t-tests and further runs using suggested conditions [53,54]. 
This research validation was conducted using further runs on the suggested condition, with the parameters analyzed being TPH 
concentrations in sand and plants. Table 4 summarizes the results of the confirmation run on the optimal condition of the plant site 
pilot plant compared to the results from DOE. The results given by the DOE model for TPH concentrations in sand and plants were 17.1 
(↓32.9 %) and 325.6 mg/kg, respectively. Meanwhile, through the confirmation run conducted, the results for TPH concentrations in 
sand and plants were 18.7 ± 0.94 (↓31.3 %) and 325.2 ± 16.28 mg/kg, respectively. With this, the percentage of errors given is 9.1 % 
and 0.1 % for TPH on sand and plants, respectively. This RSM model can also be used for large-scale plant modeling, as long as the 
hydrocarbon concentrations used are still in the range of 50–3000 mg/kg. Previous research mentioned that Scirpus grossus was able to 
remove up to 81.5 % TPH, with the maximum extraction of diesel reaching 223.5 mg/kg [55]. Other plant species, Festuca arundinacea 
and Lathyrus sativus, achieved 54 % and 46 % of diesel removal from contaminated soil, respectively [56]. Diesel removal performance 
in phytoremediation is highly related to plant species and initial concentrations, which affect the degradation mechanisms and plant 
metabolism [16,57,58]. 

Fig. 3. Optimized Condition of TPH treatment in various operational parameters.  
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3.4. Effect of rhizobacterial addition 

Growth changes expressed in wet and dry weight throughout the optimization study are depicted in Fig. 4. During the optimization 
study, the wet and dry weight of plants in the treatment with the addition of rhizobacteria was significantly higher than without the 
addition of rhizobacteria. This result indicated that the addition of rhizobacteria may support the growth of plants, as indicated by the 

Fig. 4. (A) Desirability for optimized conditions during TPH removal; (b) TPH concentration in sand under optimized conditions; and (c) TPH 
concentration in plants under optimized conditions. 
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significant increment in not only wet but also dry weight [5,24,28]. The increase in dry weight is clear evidence of cell growth, while 
the increase in wet weight might be biased due to the higher water uptake by plants [59–61]. Based on Fig. 4, at the end of the 
optimization period (Day 72), it was found that the wet and dry weight of plants given the addition of rhizobacteria was significantly 
higher than without the addition of rhizobacteria. Rhizobacteria may promote the growth of plants via several interactions, including 
phytostimulation, biofertilization, and biocontrol [62–64]. Phytostimulation is a phenomenon in which rhizobacteria release growth 
hormones, benefiting the host plant [65]. Biofertilization is a mechanism related to nitrogen fixation that converts nitrogen gas into 
ammonium, which is easier to uptake by plants [62]. In addition to that, rhizobacteria may also produce antibiotics and siderophores, 
which protect the host plant from phytopathogens and abiotic stress [62]. 

In general, the TPH concentration in the sand decreased with both treatments. In the treatment without the addition of rhizo
bacteria, the TPH concentration ranged between 18.7 ± 0.94 and 74.1 ± 3.7 mg/kg (Fig. 5). The TPH concentration in the sand at the 
beginning of the study was compared to that at the end of the study period, and the percentage of TPH removal in the sand was 42.3 ±
2.1 %. The TPH concentration range in sand on treatment with the addition of rhizobacteria was 16.2 ± 0.81 to 43.3 ± 2.2 mg/kg. The 
percentage of TPH removal achieved on day 72 under rhizobacteria addition was 51.9 ± 2.6 % with an increment of 9.6 % (p > 0.05) 
compared to the non-rhizobacteria addition. Based on statistical analysis, the addition of rhizobacteria made a not-significant dif
ference in the TPH concentration in the sand. This result might have occurred since the measurement of compounds was TPH. The non- 
complete degradation of hydrocarbon compounds by rhizobacteria may still be counted during the TPH measurement in soil, thus 
resulting in no significant difference in the TPH concentration after treatment [8,11]. In this case, TPH removal can also indicate the 
complete degradation or bioconcentration of hydrocarbon compounds in plants [66] (see Fig. 6). 

The concentration of TPH in plants treated without the addition of rhizobacteria increased from day 0 to day 14. After that, the TPH 
concentration decreased and increased again until the 42nd day and decreased so that it reached a concentration of 325.2 ± 16.3 mg/ 
kg at the end of the study period (72 days). The TPH concentration in plants at the start of the study was 207.5 ± 10.4 mg/kg (Fig. 5), 
resulting in an increase of 56.8 % for the TPH concentration in plants. The TPH concentration in plants treated with the addition of 
rhizobacteria shows the same trend. The TPH concentration in plants increased from day 0 to day 14 and decreased on day 28. On day 
42, the TPH concentration in plants increased and decreased at the end of the study period (day 72). The TPH concentration in plants 
on that day was 414 ± 20.7 mg/kg. If the TPH concentration in plants at the end of the study period was compared to the beginning of 
the study period, it shows that there is an increase in the concentration of 117.4 % with a significant difference of 60.6 % (p < 0.05). 
The concentration of TPH in plants for treatment with the addition of rhizobacteria is mostly located in the roots of plants, and the 
addition of rhizobacteria can increase TPH and polycyclic aromatic hydrocarbons (PAH) uptake by plants significantly. A similar result 
was obtained by Al-Baldawi et al. [24], which stated that the addition of three rhizobacterial strains (mostly Bacillus) during TPH 
degradation from soil increased the performance by up to 18 %. As previously mentioned, rhizobacteria assisted in the removal of TPH 
from soil by promoting the degradation of petroleum-related hydrocarbons into simpler compounds that can be absorbed more easily 
by plants. In addition, plants may provide a good environment for bacterial growth by excreting exudates, which promote rhizo
bacterial growth, resulting in the higher degradation of TPH in the rhizosphere area [9,59,67]. This is also indicated by the higher wet 

Table 4 
Result of Confirmation run at optimum conditions.  

Parameter Predicted value by RSM model (mg/kg) Experimental results from validation run (mg/kg) Error (%) 

TPH concentration in sand 17.1 18.7 9.1 
TPH concentration in plants 325.6 325.2 0.1  

Fig. 5. Effect of rhizobacterial addition on plant growth. The asterisk (*) symbol indicates a significant difference (p < 0.05) in weight between 
without and with rhizobacterial addition. 

I.F. Purwanti et al.                                                                                                                                                                                                     



Heliyon 9 (2023) e21737

10

and dry weight of plants in the treatment with the addition of rhizobacteria versus without the addition of rhizobacteria [68–70]. 
However, based on statistical analysis, the addition of bacteria did not make a significant difference in the TPH concentration in plants. 

4. Conclusions 

Optimization of diesel-contaminated sand phytoremediation using Response Surface Methodology (RSM) showed that Scirpus 
mucronatus was feasible to use as a treatment agent. Under optimized conditions of an initial diesel concentration of 50 mg/kg, an 
aeration rate of 0.6 L/min, and a retention time of 72 days, a total of 42.3 ± 2.1 % total petroleum hydrocarbon (TPH) removal can be 
achieved. The model generated from the Box Behnken Design (BBD) showed a total 9.1 % error for TPH concentration in sand, while 
showing 0 % error for TPH concentration in plants when compared to the experimental data. The addition of rhizobacteria (Bacillus 
subtilis and Bacillus licheniformis) had no significant effect on the plant’s growth parameter while giving a significant increment to the 
TPH removal from sand. A total of 9.6 % increment in TPH removal was obtained in the reactor with rhizobacteria addition. The 
obtained model and data were suggested to be adaptable to be scaled up with criteria of initial diesel concentration ranged between 50 
and 3000 mg/kg. 
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