Scheduling Strategies for Event-
Triggered Control Using Timed
Game Automata Over CAN Net-

works

Aniket Ashwin Samant

Delft
I D e I ft Uﬁiversity of
oooooooooo Delft Center for Systems and Control

Scheduling Strategies for
Event-Triggered Control Using Timed
Game Automata Over CAN Networks

MASTER OF SCIENCE THESIS

For the degree of Master of Science in Embedded Systems at Delft
University of Technology

Aniket Ashwin Samant

August 20, 2020

Faculty of Electrical Engineering, Mathematics, and Computer Science (EEMCS) - Delft
University of Technology

Delft
e t University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

Modern times have seen an increasing use of networked control systems, in which plants
and controllers may not necessarily have a direct link but instead be connected through a
network, thereby closing control loops over multiple nodes. The system may also be spread
out spatially over a large area, and thus the associated network delays could greatly hamper
control performance, potentially affecting the closed-loop stability of the system.

In such scenarios, event-triggered control approaches could greatly reduce network congestion
by allowing a means for the controllers to send control loop computation packets over the
network only when required, in an event-driven manner, rather than through periodic trans-
missions. However, in practice, the number of parallel channels is limited compared to the
number of controllers and hence the transmission of packets needs to be scheduled carefully
to avoid network conflicts.

This thesis explores using a network of timed (game) automata composed of models rep-
resenting a networked control system’s control loops and its communication network. This
reduces the scheduling problem of transmission of control loop computations to one of cre-
ating strategies using known algorithms, with the objective being to avoid network conflicts
brought about by simultaneous transmissions. Furthermore, the proposed automata models
also aim to reduce the conservatism of generated scheduling strategies by allowing the control
loops a bounded number of retransmission attempts to send packets over the network in case
it is already occupied. The concept is finally demonstrated in practice using simulated plants
and controllers distributed over multiple machines connected via a physical CAN network.

Master of Science Thesis Aniket Ashwin Samant

Aniket Ashwin Samant Master of Science Thesis

Table of Contents

Acknowledgements ix

1 Introduction 1
1-1 Notation 3
1-2 Organization e 3

2 Theoretical Preliminaries 5
2-1 Event-Triggered Control 5
2-1-1 Periodic Event-Triggered Control 7

2-2 Traffic Models 8
2-2-1 State Space Partitioningo 9

2-2-2 Inter-Event Time Bounds Construction 12

2-2-3 Transition Relations 12

2-3 Timed Automata for Constructing Abstractions 13
2-3-1 An Introduction to Timed Automata 13

2-3-2 Parallel Composition 16

2-3-3 Timed Game Automata 17

2-3-4 Runs and Strategies 18

2-4 Controller Area Network (CAN) Bus 19
2-4-1 Relevant Terminology 19

2-4-2 CAN Operation 19

3 Modelling through Abstractions and Scheduling Strategies 21
3-1 Abstraction of Control Systems 21
3-2 Modelling Using ETC Abstractions 22
3-2-1 Network TGA Model 24

3-2-2 Control Loop TGA Model 26

Master of Science Thesis Aniket Ashwin Samant

Aniket Ashwin Samant

iv Table of Contents
3-2-3 Modellingas NTGAs 30

3-2-4 Caveats 31

3-3 Scheduling Strategies 31
3-3-1 Safety Objective 32

3-3-2 Limiting Early Triggers 32

4 Hardware Setup and Software Toolchain 33
4-1 Hardware Setup and System Overview 33
4-1-1 Hardware Components 33

4-1-2 System Overview 34

4-2 Software Toolchain 34
4-2-1 Generating Abstractions and Strategies. 34

4-2-2 Simulation Environment and Strategy Parsing 36

4-3 Offline Software Flow 37
4-3-1 Region Maps and Transition Relations 37

4-3-2 Abstraction Models oL 38

4-3-3 Strategy Generationo 40

4-4 Simulation System 41
4-4-1 Plant and Controller Models 41

4-4-2 CAN Network Communication 41

4-4-3 State Space Region Determination 42

4-4-4 Scheduler 44

4-4-5 Online Simulation Loop 46

5 Experimental Results and Discussions 49
5-1 Plant Models 49
5-2 Simulation Results and Discussions 50
5-3 Scalability of Abstraction Models oL 52

6 Conclusions and Recommendations 55
6-1 Directions for Future Work 55

A Code snippets 57
Bibliography 61
Glossary 65
List of Acronyms 65

Master of Science Thesis

1-1

1-2

1-3

2-1

2-2

24

2-5

2-6

3-1
3-2
3-3

3-4

Master of Science Thesis

List of Figures

An illustration showing a comparison between a traditional control system (left)
and a networked control system (right) - in the latter, the control loops are closed
over the communication network [1] L.

An NCS arrangement involving a scheduler in the network loop. The scheduler
needs to have all the sensor data necessary for scheduling control actions [2] . . .

A top-level diagram of the flow of this thesis. The main contributions are repre-
sented by green blocks.

An ETC scheme - the held value of the control input u(t) is updated to Kx(t)
from K (t) if the event-triggering condition is satisfied [3]

Partitioning of a 2-D state space [4]

A simple state machine representing the behaviour of a turnstile - governed by
the actions of inserting a coin and pushing to transition between the Locked and
Unlocked states. An initial state needs to be specified in a finite automaton; in
this example, it is the Unlocked state [5]

A timed automaton modelling a lamp (left) and a user (right). Based on the
user's press action, the lamp responds synchronously depending on its timing; y
represents the clock variable [6]

A timed game automaton - dashed arrows represent uncontrollable edges and solid
arrows represent controllable edges [7]

An example of arbitration in two CAN devices [8]

A TA model of a ETC loop with two state space regions [2]

TGA model for the communication network

TGA model for a control loop with two regions. R1 is assumed to be the initial
location here, and uncontrollable edges for up! actions are represented by one edge
for simplicity of the diagram (but in the actual model, each to_region assignment
corresponds to itsown edge)

The control loop TGA model with an additional initial location Ry

10

14

14

17
20

22
25

28
31

Aniket Ashwin Samant

vi

List of Figures

41

4-2
4-3

4-4

5-4
5-5
5-6

A-2
A-3
A-4
A-5
A-6

Aniket Ashwin Samant

The system setup. The plants, scheduler, and controllers are hosted on 8880
modules, and CAN interfaces on 8512 modules. Note that the scheduler and two
controllers are on the same 8880 (represented by a dotted rectangle). Arrows in

red indicate flow of control input and arrows in blue indicate flow of state information 35

The physical setup, with all relevant components labelled

Flow of data in the offline computations part. The purple arrows indicate the data
that is eventually required for online simulation.

A simplified UML diagram representing the structure of the classes. The class
TimedAutomaton consists of a reference to PyUPPAAL and is used for converting
to an XML representation (basedon [9])

A snippet from a generated strategy
Simulink LTI plant model

The NCS simulation setup. Arrows in purple represent data from offline computa-
tions, and arrows in grey represent data over the CAN network.

State evolution and control input for plant 1 with a scheduling strategy involving
50 state space partitions

State evolution and control input for plant 2 with a scheduling strategy involving
40 state space partitions

State space regions of the plants over time. Note the difference in the "frequency"
based on plant dynamics.

State evolution of plant 1 with periodic triggering. (Period =200 ms)
State evolution of plant 2 with periodic triggering. (Period =100 ms)

Visualizing CAN network usage by showing triggering instances for the two control
loops in (i) event-triggered, and (ii) periodic control cases. The mean number of
triggering signals per unit time is computed as 0.0889 in the event-triggered case
and 0.109 in the periodiccase

Front panel of simulation loop
Running a plant model in LabVIEW,
Generating Q matrices for a region in LabVIEW
Code for determining the current region
Typedef of the scheduler’s held information
Typedef for scheduler strategy

36

38

39
40
41

46

50

o1

52
93
54

54

o8
99
99
99
60
60

Master of Science Thesis

List of Tables

5-1 Control loop information for the experiments 50

5-2 Memory footprint of scheduling strategies 53

Master of Science Thesis Aniket Ashwin Samant

viii List of Tables

Aniket Ashwin Samant Master of Science Thesis

Acknowledgements

I would like to thank my supervisor Dr. Manuel Mazo Jr. for his supervision during the
writing of this thesis. This period has seen some exceptionally testing times and it would
have been really difficult to make progress without his strong support and guidance. I would
like to thank his entire research group as well for their support and some really interesting
discussions on technical as well as non-technical topics. In particular, I would like to thank
ir. Gabriel Gleizer; though he wasn’t my official supervisor, I received a lot of timely help
and feedback from him and I really appreciate it.

I would like to thank all my friends and family for their continued support throughout my
study programme, and in particular during my thesis. It was a period of intense ups and
downs, but perhaps that is how it should be. The love and support offered by everyone was
much required for strength and it would have been very difficult to get through without their
involvement.

I would like to thank Dr. Peyman Mohajerin Esfahani and Dr. Mitra Nasri for being part of
my thesis committee and assessing my technical contributions. Critical feedback is essential
in any kind of research and I highly value their input.

Delft, University of Technology Aniket Ashwin Samant
August 20, 2020

Master of Science Thesis Aniket Ashwin Samant

X Acknowledgements

Aniket Ashwin Samant Master of Science Thesis

“In the future, airplanes will be flown by a dog and a pilot. And the dog’s job will
be to make sure that if the pilot tries to touch any of the buttons, the dog bites

him.’

— Scott Adams

Chapter 1

Introduction

The field of control engineering has evolved greatly over the past few decades, having seen a
gradual transition from the usage of classical control approaches involving frequency-domain
analyses, towards modern control theory employing state-space methods for system analysis
and control.[10]

Around the same time, a steep increase in computational processing power brought about by
the digital revolution was followed by the concept of a Networked Control System (NCS) being
studied and developed - a system involving a distributed arrangement of sensors, actuators,
and controllers over a network. As illustrated in Figure 1-1, NCSs essentially involve closing
control loops over a communication network between the plants and the controllers; control
actions computed by the controllers are transmitted to actuators via the network.[1]

Plant 1 > Plant2 [] Plant 1 Plant 2

Communication network

Controller 1 |]Controller 2[3| Controller 1 Controller 2

Figure 1-1: An illustration showing a comparison between a traditional control system (left)
and a networked control system (right) - in the latter, the control loops are closed over the
communication network [1]

Intuitively, having an additional component between a plant and a controller adds to delays
in applying control actions, brought about by the latency of the network. Moreover, in
most applications, it is very expensive to have a dedicated channel between each plant and
controller (which may be distributed over a large area), and thus we resort to a number
of bandwidth-limited common digital communication channels shared by the entire network.
Owing to varying network loads, information transmission between nodes in such a setup is

Master of Science Thesis Aniket Ashwin Samant

2 Introduction

non-deterministic; in a control context, this could even lead to instability [11]. This motivates
the need to

e use a control law that requires a reduced number of computations as compared with
the typical, periodic type of control, and

e schedule transmission of information packets over the network appropriately, to ensure
that control actions are applied to plants without being greatly affected by delays due
to network congestion.

In such a case, Event-Triggered Control (ETC) is greatly beneficial. It is a control approach
in which a triggering criterion (or criteria) based on sensor measurements decides when a
control computation needs to be performed for a certain actuator. Accordingly, the actuator
output gets updated and is maintained in a zero-order hold (ZOH) manner until the next
update. The control loops thus need not be updated periodically as in the traditional case
but based on the occurrence of the triggering events, and hence this scheme saves essential
bandwidth as a result of fewer computations.

Since the number of channels between the components is limited, we need to schedule these
computations based on various criteria - that is to say, we need to have a scheduler that
decides which control loop to update at a certain time instant based on its knowledge of
events received from various sensors. Figure 1-2 shows an NCS scheme with a scheduler
involved in the system.

‘ Sensor 1 H Plant 1 Hhctuatar l‘ .- ‘ Sensor n H Plant n HActuatar n‘ e

< Network Scheduler >

Controller 1 e Controller n

Figure 1-2: An NCS arrangement involving a scheduler in the network loop. The scheduler needs
to have all the sensor data necessary for scheduling control actions [2]

Several scheduling policies have been developed over time in the context of embedded systems
(such as FP, EDF, RR, etc.) that suit various applications and the interested reader can refer
to the literature for further understanding [12, 13]. In this thesis, we deal with a scheduler that
can be implemented on a distributed control system in which the components are connected
over a single CAN network for communication.

The scheduler is designed by making use of abstractions (formal logical representations) of
the control loops and the communication network created using the concept of timed au-
tomata [14], as will be introduced in the forthcoming chapters. The scheduling policy needs
to ensure that control actions are transmitted such that network conflicts are avoided and
the stability of the individual control loops is maintained. It is hence very important that the
physical control loops and the network are modelled correctly in this approach.

Aniket Ashwin Samant Master of Science Thesis

1-1 Notation 3

In [2], abstraction models representing the control loops and the network are created and
scheduling strategies are generated accordingly. However, with these models, there is no
possibility of a case in which a control loop attempts to access a busy network and waits
till it becomes free for use - that is to say, a control loop does not attempt to retransmit
its data over the network once it is free. The models treat simultaneous requests to access
the network as undesirable and are hence conservative; a modification of the models can be
made to address this concern. Additionally, [2] also raises a point about the suitability of
such models for an implementation on physical networks.

Based on this understanding, we introduce the two main objectives of this thesis - one theo-
retical and one practical:

e to create timed automata models that incorporate the concept of limited retransmission
of control actions over the communication channel in case it is already occupied; this is
a theoretical extension of models introduced in [2], and,

e to demonstrate that the scheduler functions as expected in an actual NCS environment
- one involving simulated control loops running on machines connected over a physical
network in the form of a common CAN network.

Through the chapters, we cover how the simple models introduced in [2] are built upon to
have new models that take into consideration retransmission of control actions for generating
scheduling strategies. We also implement these models on separate machines connected over
a common CAN network and perform scheduler synthesis [9], showing results obtained by
applying strategies generated using the new models.

1-1 Notation

R"™ refers to the n-dimensional Euclidean space. N denotes the set of all positive integers, and
Ny refers to the set of natural numbers including 0 (i.e. positive integers and 0). R denotes
positive reals. |A] refers to the 2-norm of a vector A € R"™. An empty set is represented by (.
The set of all closed intervals over R is represented by IR'. &, : RaL — R"™ is the solution
to the initial value problem with £,(0) = z, given an ODE of the form £(t) = f(£(t)). The
power set of a set A is the set of all its subsets, denoted by 24. The set of all real-valued
n X p matrices is given by M, x,, and of all n X n real-valued symmetric matrices by M,,.

1-2 Organization

There are several concepts involved in achieving the thesis’s objectives, and they will be
introduced in a logical sequence over the following chapters:

e Chapter 2 covers the preliminary knowledge necessary for understanding relevent con-
cepts - ETC, abstractions, timed automata, and the Controller Area Network (CAN)
protocol,

Master of Science Thesis Aniket Ashwin Samant

4 Introduction

e Chapter 3 covers modelling of the network and the control loops as Timed Game
Automata (TGA) and their parallel composition as a Network of Timed Game Au-
tomata (NTGA), and how they are used for scheduling,

e Chapter 4 explains the software and hardware involved in the implementation of the
theoretical ideas, and the simulation environment in which the scheduler is tested,

e Chapter 5 shows some results obtained from running the NCS simulations and discusses
them, and also some implications of increasing the number of states involved in the
system, and,

e Chapter 6 provides conclusions and directions for future work based on this thesis.

Figure 1-3 shows an overview of the main parts involved in this thesis. The main contributions,
in line with the objectives, are highlighted in it.

Timed Abstractions 4>{Scheduler synthesis

Mathematical
models of control
loops

¥

State space Traffic models,
partitioning transition relations

Figure 1-3: A top-level diagram of the flow of this thesis. The main contributions are represented
by green blocks.

Physical
implementation

Aniket Ashwin Samant Master of Science Thesis

Chapter 2

Theoretical Preliminaries

This chapter covers the foundational concepts required for understanding the main objective
of this thesis. The preliminaries are broadly categorized into the following topics:

(Periodic) event-triggered control (ETC),

Traffic abstractions,

e Timed automata, and,

Controller Area Network (CAN) bus.

Each of these topics will be covered in the sections that follow, and the subsequent chapters
will build upon the concepts towards the main thesis objectives.

2-1 Event-Triggered Control

Event-triggered control can generally be applicable to any control system in principle, but in
this thesis we consider only Linear Time-Invariant (LTI) systems. In line with [2] we use the
following state space model for describing a typical LTI system:

&(t) = AE(t) + Bu(t), &(t) e R™, v(t) € R™. (2-1)

Here, the A and B matrices have the appropriate dimensions determined by the dimensions
of the state vector £ and the input vector v.

We consider a linear state-feedback law:
v(t) = K&(t). (2-2)

The gain, K, is calculated (using familiar methods like the LQR algorithm) to make the
overall closed-loop system asymptotically stable; K’s dimensions are determined as per A’s

Master of Science Thesis Aniket Ashwin Samant

6 Theoretical Preliminaries

and B’s. This feedback law is implemented in a zero-order-hold manner, and accordingly, in
terms of discrete time samples, it is given by

o(t) = K&(tg), t € [tg, tks1), k € No, (2-3)
such that tg,t1, ... is a divergent sequence of update times. Practically, there may be delays

involved due to various factors (for instance, delays in sensor readout), but we assume no
delays at this point. Interested readers may consult [15] for further reading.

u x
—> Plant
x
4[Controller }<—

Figure 2-1: An ETC scheme - the held value of the control input u(t) is updated to Kx(t) from
KZ7(t) if the event-triggering condition is satisfied [3]

- [Event-triggering }

condition

ETC involves making use of a control law for determining the next update instant (fxy1)
online, based on the current state of the plant. Knowing that the plant follows the dynamics
represented by Eq. (2-1), taking the current state to be {(t) and the last sampled state to be
&(tr), we define an auxiliary variable:

C(t) = f(t) — §(tk), te [tk,tk+1), k € Np. (2—4)

Intuitively, this variable represents how the state evolves from its last recorded sample. Based
on the event-triggering approach proposed in [15], it is used to calculate when the next
triggering should occur, as given by the following sampling triggering law:

teer = min{t|t > t;, and |e(t)]* > al€(1)]?}, (2-5)

where a € (0, 1) is an appropriately chosen triggering coefficient used to establish a tradeoff
between convergence rate and the rate of triggering [15].

Based on these equations and assumptions, we can formulate 7, (z), the inter-sample time of
a sampled state x as follows:

Ta(x) = min{t|le(t)]* > al¢(t)]* and £(0) = x} (2-6)

In [15], it is shown that for linear plants with state-feedback controllers, a minimum non-zero
inter-event time is always guaranteed to exist.

Following [16], we take £(t) as the solution of an LTI system in the sampling interval [ty, t;+0]
with = as the initial condition (that is, z = £(tx)), and e(t) from Eq. (2-4). Thus, we have

Aniket Ashwin Samant Master of Science Thesis

2-1 Event-Triggered Control 7

E(ty +0) = Ao)z, (2-7)
e(ty+) = [— A(o)]z, (2-8)

where
Ao) = [+ /O " A dr(A + BK)). (2-9)

Based on these formulations, we can express the inter-sample time introduced in Eq. (2-6) as:

To(z) =min{oc > 0|27 ®(c)z =0}, (2-10)

where
(o) :=[I — AT(0)][I — A(0)] — aAT (0)A(0). (2-11)

We can thus see that given an LTI plant’s current state, its inter-event time can be calculated
using a series of matrix operations formulated in Eq. (2-10). This information is essential for
partitioning the state-space of the plant, as will be covered in Section 2-2.

The method presented so far is one of several approaches to introduce the basic mathematical
concepts involved in formulating event-triggered control problems. Interested readers may
refer to [17, 18, 19, 20] for further reading on more ETC approaches in various scenarios, and
to also understand a similar concept called Self-Triggered Control.

In this thesis, we implement a special case of ETC, called PETC; it is introduced briefly in
the next section.

2-1-1 Periodic Event-Triggered Control

The ETC approach introduced thus far deals with monitoring a condition in continuous time
to determine whether triggering needs to take place, and is also referred to as continuous
ETC (CETC). In [3], a class of ETC called Periodic Event-Triggered Control (PETC) is
introduced - the basic principle being to sample the state measurements periodically, that is,
at tp = kh, k € N, where h > 0 is a carefully chosen sampling interval.

In LTT systems, the control law represented by Eq. (2-3) is applicable to PETC systems as
well, but with a slightly different representation for the control input,
o(t) = K&(t), t e RY (2-12)

where Z is a left-continuous signal given by

0
’ 2-13
. (213)

Master of Science Thesis Aniket Ashwin Samant

8 Theoretical Preliminaries

Here, t € (tx,tg+1], £ € N, and C(z(tx),Z(tx)) is a mathematical expression representing
the triggering condition based on the sampled state x(tx). Accordingly, Figure 2-1 is also
applicable to PETC systems.

The physical manifestation of a PETC scheme in an NCS can be interpreted as plants trans-
mitting their states over the network at a periodic rate (dictated by the sampling interval,
h), and the controllers updating their input to the plants based on the triggering condition
represented by Eq. (2-13). Thus, a PETC scheme is suitable for demonstration in a practical
implementation of an NCS.

2-2 Traffic Models

We formally define some basic concepts first. These definitions are used in the forthcoming
sections to model control systems.

Definition 2-2.1 (System [21]). A system is a sextuple (X, Xy, U,—, Y, H) consisting of

e a set of states X;

e q set of initial states Xog C X;

e a set of inputs U;

e a transition relation — C X x U x X;
e a set of outputs Y;

e an output map H: X — Y.

Definition 2-2.2 (Power Quotient System [22]). Let S = (X, Xy, U,—, Y, H) be a system

and R be an equivalence relation on X. The power quotient of S by R, denoted by S/g, is the
t X/p, X Up,— Y, H h

SYs em(/R»<*/R0»Y /R> /R 'y L/R> /R) wnere

X/R:X/R,

X/ro = {z/r € X/r| X0 N x/p # 0};

U/R =U;

o (z/r,u, T)p) 6/—R> if I@,u,a') €= in S with x € /g, &' € a)p;

Y'/R - 2Y7'

H/R(x/R) = Uxex/R H(.Z‘)

The interested reader may consult [22] for more mathematical details on the relationship
between a system and its power quotient systems.

Aniket Ashwin Samant Master of Science Thesis

2-2 Traffic Models 9

2-2-1 State Space Partitioning

We have seen that an ETC loop is mainly characterized by the triggering time (7(x)) for
the next event based on the current state (x) of the plant. This can be represented using a
system [16] from Definition 2-2.1:

S=(X,Xo,U —Y H) (2-14)

where

X =R";

Xo CR™;

U = 0, since there are no external inputs to the system;

—€ X x U x X such that Vz,2/ € X : (z,2') €— iff {x(7(x)) =

Y CRT;

e H:R"™ — R where H(z) = 7(x).

Given that there are infinitely many states in the system S, it is not possible to explicitly
define the inter-event time for each state. Instead, we follow the formulation proposed in [16]
- to construct a power quotient system S, (cf. Definition 2-2.2) of the original system such
that all possible sequences of inter-event times are captured:

S/r = (X/r, X R0, UyR; /—R>>Y/R7H/R) (2-15)
where

° X/R:R7R ={Ri,...,Ry};

X/po = {Ri| Xo N R; # 0};

Unr= (), since there are no external inputs to the system:;

o (m/R,x’/R) E/HR if 3z € x5, 32" € a;’/R such that &x (H(z)) = a/;

Y C 2 CIRY;

Hp(w/p) = [inf H(x), sup H(:L')‘| = [zw/R?x/R}, where the bounds of the set indi-

TET/R TET/R
cate lower and upper bounds on inter-event times for a given state.

Master of Science Thesis Aniket Ashwin Samant

10 Theoretical Preliminaries

Conceptually, the system S/r approximates the original system S by dividing the state-space
into ¢ regions and deriving relations between them, in terms of transitions that could lead
from one region to another; each state of the system is necessarily a member of one region.
Due to approximations (i.e. having a finite number of regions to represent the entire state
space), each region has its own range of inter-event times rather than an exact value, which
is the case for the exact system S.

Now we briefly cover a couple of approaches to divide the state-space into a number of regions
and construct power quotient systems with their equivalence relations.

Isotropic Partitioning
In [4], the authors propose a conic covering of the state space using generalized spherical
coordinates of the state in R™ : (r,61,...,0,_1), where n is the dimension of the state space.

There are n — 1 angular coordinates based on this covering, and each of these coordinates is
divided into m equal sectors (i.e. there are m™~! conic regions). An example of this process
for a two-dimensional state space is shown in Figure 2-2.

A

)

Figure 2-2: Partitioning of a 2-D state space [4]

Before proceeding to describe how this concept can be used to make a power quotient system,
an important proposition needs to be introduced.

Proposition 2-2.1 (from [4]). States lying on the same ray crossing the origin have the same
inter-sample time, i.e., T(x) = T(Ax), YA # 0, # 0.

Based on this idea, a union of an infinite numbers of these rays is represented using convex
polyhedral cones pointed at the origin, and a finite number of these cones together can

Aniket Ashwin Samant Master of Science Thesis

2-2 Traffic Models 11

constitute the entire state space; the limits on the angular coordinates of each cone being
determined by the number of cones, using the concept of isotropic covering. Furthermore, the
cones can be represented using a set of matrices [22]:

Re = {x e R?|2TQ,xz > 0}, ifn=2 (2.16)

Rs ={x € R"| Esz > 0}, ifn>3
for s € {1,...,q} and appropriately designed matrices Qs = QT € M3(R) or E5 € My,xp(R)
with p < 2n — 2.

Thus, through this process we get a set of regions {Ry,..., Ry} such that every state of the
system necessarily belongs to one region. More details and mathematical proofs can be found
in [4, 22].

Time-Based Partitioning

In [23], the authors introduce a time-based partitioning approach of the state space for PETC
systems, making use of the fact that triggering takes place only at certain instants of time
(i.e. kh, as stated in Section 2-1-1) without any timing uncertainty.

Using the standard formulation of a linear PETC system with quadratic event-triggering
conditions [3], the set of states that will certainly have triggered by time k is given by:

x apa x k
Kk:{];{neR | 2T N (k)z > 0}, Zi:, (217)
where
M) M) kh
N(k) = [;] Q[; 1 . M(k) :eA’fh+/0 eATdrBK (2-18)

I denotes the identity matrix, and @ (a symmetric matrix) is the triggering matriz. The
reader is referred to [3] for further reading; in short, N (k) represents a triggering condition
corresponding to k time steps, and it can be checked for any state except the origin.

Now, the minimum value of k that causes triggering can be calculated by removing the states
that would have triggered before:

k—1
K R, k>1,
o jL:Jl 7 (2-19)

K, k=1

Thus, using this recursive relation, the set {R1, Rq, ...} can be computed, and it also happens
to be a partition of the state space R".

Master of Science Thesis Aniket Ashwin Samant

12 Theoretical Preliminaries

2-2-2 Inter-Event Time Bounds Construction

We have thus seen how the state space can be partitioned into regions based on certain
methods, and how any arbitrary state’s membership of a particular region can be computed.

The next step for our approximate system is to construct the output map H, r(x / r) which
provides a set of bounds on the inter-event times for each region.

e In the case of isotropic partitioning, based on Eq. (2-11) for determining state evolution,
a set of LMIs can be formulated [22]. Solving those, a set of bounds [r,7] can be
computed for every region of the partitioned state space.

e Likewise, in the case of a PETC system with isotropic partitioning, the discrete analogue

of the regional bounds [k, k] can be computed [24].

e However, in the case of time-based partitioning, the regions are determined by when
triggering needs to necessarily take place for a state, and hence, inherently, the inter-
event times are exact, i.e. the lower and upper bounds are the same. By construction,
H(x) = k,Vx € Ry, (cf. Eq. (2-19)).

For brevity’s sake, mathematical details are not covered here, and the interested reader is
referred to [22] for bounds calculation in the isotropic partitioning case ([24] for the PETC
case) and [23] for time-based partitioning. Relevant proofs can be found in the same references.

2-2-3 Transition Relations

Once we have the bounds on inter-event times and the set of regions into which the state
space is divided, we need to compute the transition relations between the regions, i.e., how
triggering in a given region could lead to the state evolving as per its dynamics into another
region; on the abstraction, this may lead to nondeterminism, since the regional partitions
yield just an approximation of the original system.

Definition 2-2.3 (Flow pipe [25]). The set of reachable states, or flow pipe, from Xo in the
time interval [t1,t2] is defined as:

R[tl,tz}(XO) = U Rt(X())

tE[tl,tQ]

Accordingly, in the case of state space partitioning with inter-event timing bounds, the flow
pipe that needs to be computed is (from [16]):

X[IsaFS](XO:S) = U {&EO (t) |l‘0 € XO,S}'

telr,,7s)

Computing the set of reachable states from any region thus yields transition relations between
regions for the isotropic partitioning case. This can be done first by deriving a polytopic outer

Aniket Ashwin Samant Master of Science Thesis

2-3 Timed Automata for Constructing Abstractions 13

approximation to the flow pipe by dividing the time interval [r,,7s] into [subintervals, so as
to get

/f/[zs,m] (Xo,s) = U) (Xos) Vf € {1,...,1}
!

with ¢t; = 7, and ¢;41 = 7s. Following this, by solving feasibility problems for each pair of
conic regions by computing the outer approximation of each flow pipe segment from an initial
conic region, the transitions from that region can be derived [22].

When time-based partitioning is involved, such transition relations can be computed by solv-
ing a non-convex quadratic constraint satisfaction problem [23]. Given two regions R; and
Rj, and the state x € R;, we have the following problem formulation:

3 zeR"™
s.t. TN('):U>0
N(i"Yz <0,vi' € {1,...,i—1}, (2-20)
TM)" ()M(J)x>0,

(J
tTMG)TNGYM)z <0,V € {1,...,i—1}.

The satisfaction of these conditions implies that there exists a transition relation between the
two regions. Furthermore, [23] further proposes a semi-definite relaxation on the problem to
fit the semi-definite programming formulation, and the interested reader is referred to the

paper for details.

2-3 Timed Automata for Constructing Abstractions

Some concepts from automata theory are employed in the modelling of control loops and the
communication network, and those need to be introduced for a better understanding of this
thesis’s objectives.

2-3-1 An Introduction to Timed Automata

The notion of a finite automaton (state machine) needs to be introduced first - it is essentially
a directed graph consisting of finitely many nodes (states) connected with finitely many
labelled edges. An example is used to illustrate the concept in Figure 2-3 - a finite automaton
representing a turnstile whose behaviour is determined by the user’s action of inserting a coin
and pushing a button.

On extending a finite automaton with certain real-valued variables (referred to as clocks), we
get a timed automaton, first introduced in [14]. As the name suggests, these clock variables are
used to model logical clocks, and are initialized to zero at the start of the system, increasing
synchronously at the same rate thereafter. Timed automata are used for capturing a system’s
behaviour taking into consideration the passage of time. Figure 2-4 shows a simple example [6]
involving a model in which a lamp changes its brightness depending on the timing of a user’s

Master of Science Thesis Aniket Ashwin Samant

14 Theoretical Preliminaries

Coin

Push /_\ Coin

Locked Unlocked

~_

Push

Figure 2-3: A simple state machine representing the behaviour of a turnstile - governed by the
actions of inserting a coin and pushing to transition between the Locked and Unlocked states.
An initial state needs to be specified in a finite automaton; in this example, it is the Unlocked
state [5]

Lamp User

press?

idle
press!

Figure 2-4: A timed automaton modelling a lamp (left) and a user (right). Based on the user's
press action, the lamp responds synchronously depending on its timing; y represents the clock
variable [6]

button press actions - when the lamp is off, if the user presses the button, the lamp turns on
and glows dimly. If the user presses the button again within a short time interval, the lamp
glows brightly, but if the interval between the two press actions is long, the lamp turns off.
Thus, the behaviour of the lamp differs because of timing even though the physical actions
performed are the same.

Now, before formally defining a timed automaton, we need to introduce the notion of clock
constraints. Defining C as the set of finitely many clocks, a clock constraint is a conjunctive
formula of atomic constraints, formed as x xxn or z — y > n where z,y € C and < € {<, <
,=,>,>} and n € Ny. Clock constraints are denoted by B(C).

Definition 2-3.1 (Timed (Safety) Automaton [2]). A Timed (Safety) Automaton is a sextu-
ple (L, 1y, Act, C, E, Inv) where

e L is a set of finitely many locations (also called nodes);
e [y € L is an initial location;
e Act is a set of finitely many actions;

o ('is a set of finitely many real-valued clocks;

Aniket Ashwin Samant Master of Science Thesis

2-3 Timed Automata for Constructing Abstractions 15

e ECLxB(C)x Act x 2¢ x L is a set of edges;

e Inv : L — B(C) assigns invariants to locations.

Location invariants here are restricted to downwards-closed constraints of the form: ¢ <n or
c < n where ¢ is a clock and n € Ng.

Edge transitions may also be represented by | 225 I for (I, g,a,7,1') € E where I,I' € L, g
represents the guards over clocks enabling the transition, a € Act, and r C C is the set of
clocks to be reset on the transition. We denote transitions with arbitrary labels as I — I’

Remark 2-3.1 (from [2]). When first introduced in [14], Biichi and Muller accepting con-
ditions were used to enforce progress properties in timed automata. However, in this thesis,
we focus on a simplified version called Timed Safety Automata (TSA) [26], which uses local
invariant conditions to specify progress properties. Along the lines of [2], we refer to TSA as
simply TA.

Based on Definition 2-3.1, the following notions can be used to understand behaviour mod-
elling using timed automata:

e Since timed automata capture the dimension of time (through logical clocks, in addition
to the states of finite automata), they are used in modelling real-time systems, which
involve monitoring the elapsing of time [14].

e States and Locations hold different meanings in the context of timed automata - a state
is defined by the current node a timed automaton is in, and the current clock values;
nodes (called states in finite automata) are referred to as locations in TA.

e A timed automaton’s timing behaviour is restricted by means of clock constraints.

e A timed automaton’s edge may be subject to guard conditions on the values of clocks
that determine whether that edge can be taken or not (i.e. if the conditions are satisfied,
the edge is said to be enabled); an edge transition can be taken only if the edge is enabled.

e Clocks can be individually reset to zero when an edge is taken.

In our TA models, clock constraints are specified in the following manner:

e While in a location, clocks may increase as long as the clock constraints on that location
hold, violating which it must be left via an edge. These constraints are referred to as
mnvariants.

e Only enabled edge transitions can be taken; constraints on edges determining whether
they are enabled or not are called guards.

The semantics of a TA are defined as a transition system where a state has the current
location and current value of clocks. In this system, two types of transitions are possible

between states:

Master of Science Thesis Aniket Ashwin Samant

16 Theoretical Preliminaries

1. a delay transition, wherein the automaton simply delays for some time, and,

2. a discrete transition, wherein the automaton takes an enabled edge.

To formalize this, we need some more notations. Clock assignments are functions that map
clocks to their current values, i.e. u: C — R>g. The notation u F ¢ indicates that the clock
values of u satisfy the guard g. In order to formally define operational semantics, we use these
notations as follows:

o Given d € R>q, u + d denotes the clock assignment mapping all ¢ € C to u(c) + d,

e Given a set of clocks ¢ C C, ulc] denotes the clock assignment mapping all clocks in ¢
to 0 and agreeing with u for the rest of the clocks, i.e. C'\ c.

Definition 2-3.2 (Operational Semantics [2]). The semantics of a timed automaton is a
(timed) transition system wherein states are pairs of location (1) and clock assignment (u),
and transitions are defined by the rules:

e Delay transition: (I, u) 4 (l,u+d) if u E Inu(l) and (u+d) E Inv(l) for a non-negative
real number d € R>g

e Discrete transition: (I,u) % (I',u) if | 2250, wk g, o' = ulr], and v’ E Inu(l)

Additionally, a run of a timed automaton is defined as a sequence of alternating delay and
discrete transitions in the transition system.

An action (denoted by Act in Definition 2-3.1) could be a synchronizing action (a pair of input
(act?) and output (act!) actions) or an internal action ("tau" or x). Sychronizing actions are
used as a means of handshake synchronization between two or more TA, and internal actions
are used for transitions within the same TA. Each transition (edge) may have only one action
associated with it.

2-3-2 Parallel Composition

Several TA representing individual (sub-)systems may be composed in a parallel fashion to
model a system involving all those subsystems running concurrently; in such a scenario,
synchronizing actions are used for modelling synchronous communication between two or
more subsystems. In the example from Figure 2-4, the lamp and the user are two TA, and
their parallel composition (represented using the "||" symbol) is also a TA.

Such a TA, involving a parallel composition of multiple TA, is called a network of timed
automata (NTA). This concept is particularly important for this thesis because models in
the forthcoming sections involve parallel compositions of TA representing various parts of the
NCS. Interested readers are referred to [27] for a more in-depth understanding of this topic.

Aniket Ashwin Samant Master of Science Thesis

2-3 Timed Automata for Constructing Abstractions 17

Figure 2-5: A timed game automaton - dashed arrows represent uncontrollable edges and solid
arrows represent controllable edges [7]

2-3-3 Timed Game Automata

In a physical system, a controller may be able to precisely control some variables (say, flow
rate) but not others (for instance, a temperature range may be known but a desired temper-
ature may not be precisely attainable) - and this uncertainty can be taken into consideration
while modelling TA.

A TA can be further extended by partitioning its set of actions into sets of controllable and
uncontrollable actions, such that the controller (player) can trigger only the former, and the
environment (opponent) can trigger only the latter. Figure 2-5 shows an example of a TGA.

Definition 2-3.3 (Timed Game Automaton [2]). A Timed Game Automaton is a septuple
(L, ly, Act., Acty, C, E, Inv) where

o (L,lp, Act. U Acty, C, E, Inv) is a timed automaton;
o Act. is the set of controllable actions;
e Act, is the set of uncontrollable actions;

o Act.N Act, = 0.

As with TA, a parallel composition of TGA is also possible, referred to as a Network of Timed
Game Automata (NTGA).

Definition 2-3.4 (Network of Timed Game Automata [2]). Let TGA® = (L%, I}, Act?, Act!,
C% E' Inv') be a TGA for i € {1,...,n}. The parallel composition of TGA;,..., TGA,,
denoted by TGAq|...|TGA,, is a timed game automaton TGA = (L, ly, Act., Act,, C, E, Inv)
where

o L=L"x...xL";

Master of Science Thesis Aniket Ashwin Samant

18 Theoretical Preliminaries

o lyp=(I},...,1%);

Act. = {x} UU ;{a € Act!|a is an internal action };

Act, = {®}yUU?L {a € Act! | a is an internal action };

e C=CluU...UC™;

E is defined as per the following couple of rules:

— a TA makes a move on its own via its internal action: an edge is controllable iff
the internal action is controllable;

— two TAs move simultaneously via a synchronizing action: an edge is controllable
iff both input and output actions are controllable (that is to say, the environment
has priority over the controller);

o Inv((ly,...,0p)) = Inv! () A ... A Inv™(1).

This timed game automaton, composed of a parallel composition of multiple timed game au-
tomata, is called a Network of Timed Game Automata (NTGA).

A point to note here is that in a parallel composition of TGA, a pair of input and output
actions is denoted by a single synchronizing action (i.e. semantically speaking, since the input
and output actions should occur simultaneously, it is as though a single action is performed).
In Definition 2-3.4, * refers to controllable internal actions, and ® to uncontrollable internal
actions.

2-3-4 Runs and Strategies

Following Definition 2-3.2, we define Runs(TA) as the set of runs of a TA starting from its
initial state (lp,up), lp being the set of initial locations and ug being a clock assignment
mapping all clocks to 0. last(p) is the last state of a run p, if the run is finite.

In general, a strategy is a function that defines what action a controller should perform to
win (or avoid losing) a game. Let us denote a delay action by A (which semantically means
that the controller should just wait) and use it to formally define a strategy in the context of

TGA [2].

Definition 2-3.5 (Strategy [2]). Let TGA = (L, ly, Act., Acty, C, E, Inv) be a timed game
automaton. We define TA = (L, 1y, Act. U Acty, C, E, Inv) as its derived timed automaton. A
strategy f over TGA is a partial function from Runs(TA) to Act. U {\} such that for every

finite run p, if f(p) € Act. then last (p) EION (", u") for some (I, w’).

In this thesis, having a strategy that avoids losing (i.e., avoids having runs ending in a certain
set of states) is particularly important, as will be presented in the forthcoming sections.

Aniket Ashwin Samant Master of Science Thesis

2-4 Controller Area Network (CAN) Bus 19

2-4 Controller Area Network (CAN) Bus

The Controller Area Network (CAN) standard is a vehicle bus standard (i.e. for a communi-
cation network used in connecting vehicular components like ECUs) developed by Bosch in
the 1980s. With increased usage, it was later standardized internationally as ISO 11898 [8].

There are several electronic devices involved in automotive applications, and having dedicated
signal lines between each device is expensive and difficult to maintain. CAN was developed as
a means to reduce the complexity involved in such applications by connecting various devices
over a common serial bus (CAN bus). The connection is such that any device on the CAN
network can communicate with any other device on the same network.

2-4-1 Relevant Terminology

There are several technical terms associated with a CAN bus, but only those relevant to the
scope of this thesis are covered here.

e CAN frame (message): A chunk of data in a predefined format (defined in the Bosch
specification!) transmitted by a CAN device is called a CAN frame, or a message.
Depending on the purpose, there are multiple types of frames, but in this thesis we
consider only data frames.

e CAN identifier: Each device on the common bus has a unique ID (also called the
arbitration ID). When a device transmits a message, all devices on the bus receive it -
the CAN ID precedes the data and is used by the receiving device to determine if the
received data is relevant to it (if not, it is ignored).

e Message priority: If two or more devices transmit messages simultaneously, the CAN
identifier is used for deciding the priority - lower numerical value implies higher priority,
and the device with the highest priority gets to transmit its message on the network.

e Collision: A situation in which two or more devices attempt to send a message. simul-
taneously is called a collision

e Data bytes: In CAN data frames, the data may be 0 to 8 bytes in length.

2-4-2 CAN Operation

CAN devices on a common network are loaded with a CAN database which consists of infor-
mation about signals and arbitration IDs. This is used decide if certain frames received by a
particular device are relevant to it, or are to be ignored (for instance, a vehicle’s RPM values
bear no meaning for its electronic mirror controller). Since a CAN bus is common across the
network, any outgoing message from a device is received by all devices on it; the receiving
device decides if the message is relevant or not [8].

If two or more devices attempt to use the bus to transmit data simultaneously, it leads to
a collision. In such a case, the device arbitration IDs are used to resolve the collision; the

'Robert Bosch GmbH, "CAN Specification 2.0", 1991.

Master of Science Thesis Aniket Ashwin Samant

20 Theoretical Preliminaries

device with the highest priority continues transmitting, while the lower priority devices stop.
Figure 2-6 shows an example for two devices.

Device A

ID = 11001000111 (647 hex) | S []
Device B
Do 01111111 @FFhex) 18] |] T

S = Start Frame Bit

Device B Loses Arbitration
Device A Wins Arbitration and Proceeds

Figure 2-6: An example of arbitration in two CAN devices [8]

Additionally, the CAN protocol provides error detection and confinement mechanisms. A
receiving device transmits an error flag if it detects an error in the received frame, and the
transmitting device can accordingly retransmit the same frame on the network to correct
the error. Based on the number of errors generated, certain devices may be labelled as
malfunctioning and accordingly they may be made passive or completely disabled depending
on the error counter value. This error confinement mechanism is to handle malfunctioning
devices so as to not cause a disturbance in network traffic.

Aniket Ashwin Samant Master of Science Thesis

Chapter 3

Modelling through Abstractions and
Scheduling Strategies

The fundamentals of event-triggered control and timed automata theory have been introduced
in Chapter 2; now we link those concepts to make abstractions of control loops and the
network.

In a nutshell, each component of the system (comprising the control loops and the connecting
network) is modelled as a timed game automaton, and an NTGA of these components is an
abstract representation of the overall system - it is thus used for appropriate scheduling of
actions as required by the physical system.

3-1 Abstraction of Control Systems

The outcome of partitioning the state space of a system into regions based on inter-event
times, and constructing transition relations between them based on a reachability analysis, is
semantically equivalent to a TA - with locations corresponding to regions, and edges corre-
sponding to their transition relations.

Based on this notion, considering a control system given by Eq. (2-1), partitioning its state
space and constructing its power quotient system (cf. Eq. (2-15)), we can represent its control
loop with a TA along the lines of [22] and [2].

TAcr = (L, 1y, Act, C, E, Inv) where:
[] L:X/R = {RJ,...,Rq},
e |y = R, such that £(0) € R,
o Act = {x}, a set of internal actions for labelling edge transitions,

e C = {c}, a set containing a single clock,

Master of Science Thesis Aniket Ashwin Samant

22 Modelling through Abstractions and Scheduling Strategies

o (Rs,1y < ¢ <7y, %,{c}, Ry) € E such that the flow pipe, X[, =](Rs) N R # 0, and,
o Inv(Rs) ={0<c<T7,},Vse{l,...,q}.

This is a simple representation to link the two concepts of ETC and TA - the main idea is
that all possible states of a control system can be abstracted into a finite number of locations;
each location R, having its inter-event time bounds 7, and 7. The clock variable is used
to keep track of time elapsed since the last transition to a location, and thus to check if the
corresponding inter-event time constraints are satisfied - based on which the next transition
occurs. Invariants on locations guarantee that they are left as soon as the clock value exceeds
the upper bound. The clock is reset on a transition to a new location to track elapsed time
specific to that location, and so on and so forth. Figure 3-1 shows an example of a control
loop’s TA model.

(@)
o IN
1o

Figure 3-1: A TA model of a ETC loop with two state space regions [2]

Triggering in this context means that the control input to the plant is updated based on the
state the plant is currently in; in terms of TA, when the plant is in region Rs (correspond-
ing to its state {(¢t) = x) and the clock value is between 7, and T, the input is updated.
Subsequently, the region the plant enters (Ry) is determined by the state (¢ + 7(z)), where
T(z) € [14,Ts| is the time at which triggering occurs. A flow pipe for Rg is accordingly
constructed to determine the set of all possible target regions [2].

3-2 Modelling Using ETC Abstractions

In [28], some examples of using timed automata for scheduling tasks are provided. Following
this concept, we make use of TGA models for scheduling control tasks.

In this thesis, we consider a NCS in which control loops are distributed over a common
communication channel. Each control loop involves a plant with a sensor, a feedback controller
(cf. Eq. (2-2)), and an actuator, distributed over the network, which is physically manifested
in the form of a CAN network connecting the loops, as will be explained in the next chapter.

Following [2], the network is such that it can be used by at most one control loop at a time,
otherwise a conflict arises - in physical terms, network occupancy translates the period of time
used for data transmission between a control loop’s controller and actuator over the network.

Aniket Ashwin Samant Master of Science Thesis

3-2 Modelling Using ETC Abstractions 23

Given these constraints, we can see that the goal translates to scheduling of triggering actions
in an appropriate manner to avoid network conflicts. Accordingly, we synthesize a scheduler
for this problem with certain objectives in mind.

In this context, scheduling from the scheduler’s perspective refers to actions it can perform
- it can (i) force a control loop to trigger by transmitting its control action data before the
control loop enters a state ready for triggering (i.e., the control loop is in a region for less
than 7, units of time, 7, being the lower IET bound for that region), or (ii) simply wait for a
control loop to enter a state in which it triggers automatically (i.e., wherein the control loop
is in a region for an amount of time within the IET bounds for that region).

Based on this idea of scheduling, the scheduler’s objectives can be stated more specifically:

e to force the control loops to trigger early or let them trigger automatically, in such a
fashion that only one control loop occupies the network at a given time,

e in line with the thesis’s objectives to reduce conservatism, to allow each control loop
a finite number of retransmission attempts on using the network - that is to say, if a
control loop has to trigger, it needs to request access to the network; if it is already in
use, the control loop has to wait to trigger till it becomes available again, and,

e to prevent the number of retransmission attempts for any loop from exceeding a prede-
fined, loop-specific upper bound - this is to ensure that the reduced conservatism does
not lead to instability of the control loops.

These objectives can be achieved by:

1. modelling TGA abstractions of the control loops and the networks,
2. composing them in parallel to yield an NTGA,

3. defining objectives for this NTGA that translate semantically to the aforementioned
scheduling objectives. Though such objectives can generally be of multiple types, based
on our desired goals, we define a safety objective:

e Safety objective: As a minimum objective, none of the control loops should enter a
Bad location as a result of exceeding their limit on retransmission attempts while
in the same region, i.e., triggering must necessarily occur within a certain number
of attempts,

4. generating strategies to be followed for achieving the NTGA’s objectives.

Based on [2] with some modifications suited for use on a CAN network, the generated strate-
gies can use the following actions to be taken by the scheduler (the game player in a TGA
context):

e while the NTGA is currently in a location corresponding to a region, not doing anything
and letting the control loop trigger by itself,

Master of Science Thesis Aniket Ashwin Samant

24 Modelling through Abstractions and Scheduling Strategies

e forcing an early trigger (i.e., forcing a control loop to trigger before the clock value
crosses the lower IET bound for that region),

e sending an acknowledgement (ACK) synchronizing action from the network to a control
loop if the latter requests the former for use while free, and,

e sending a negative acknowledgement (NACK) to a control loop if the network is occupied
when the control loop makes a request to it for occupying it.

In this context, controllable edges represent actions that are deterministic from the scheduler’s
perspective (i.e. the scheduler can control precisely when to take such edges) and uncontrol-
lable edges represent actions that are taken based on environmental conditions that enable
them (such that the scheduler cannot precisely control them).

Considering this information, we proceed with the formal modelling of TGA for the network
and the control loops conforming to our requirements.

Legend: In the following models, the convention used is as follows:

e - - ->: Dashed arrows represent uncontrollable edges;
e —>: Solid arrows represent controllable edges;
e guards: Text in red is for edge guards;

e resets: Text in blue is for "resets" (clock and other variable assignments on taking the
corresponding edge transitions);

e invariants: Text in magenta is for invariants on locations.

We also define urgent locations as these serve an important purpose in the TA models.

Definition 3-2.1 (Urgent locations [6]). Urgent locations are locations in which time cannot
elapse, i.e. such locations have to be left via an outgoing edge transition as soon as they are
entered. Semantically speaking, there is an additional clock variable = which gets reset on
every incoming edge with an implicit invariant of x < 0.

In the models that follow, urgent locations are coloured , absorbing (Bad) locations are
red, and usual locations are blue.

3-2-1 Network TGA Model

The network’s TGA model is modelled such that the network can be used by only one control
loop at a time, and other control loops need to wait until it becomes idle. This reflects network
protocols in which one common bus connects all devices, such as in the CAN protocol.

Note: The ack and nack actions introduced henceforth do not refer to protocol-specific signals
of the same names; the actions have been named such owing to similar roles of acknowledge-
ment in the TGA models.

Aniket Ashwin Samant Master of Science Thesis

3-2 Modelling Using ETC Abstractions 25

When a control loop requests access (via an up? synchronizing action), the network performs
an ack! synchronizing action to indicate that it can indeed be occupied by the client control
loop, if it is idle. But in case the network is already in use by a control loop (i.e., it is in
the InUse location) and another control loop requests access, it performs a nack! action
to indicate to that control loop that it needs to wait and try accessing the network again
later. Each of these synchronizing actions is performed via an outgoing edge from urgent
locations ACK_loc and NACK_loc as seen in Figure 3-2. Additionally, the control loop using
the network signals that it is done transmitting relevant data via a down! synchronizing
action, after which the network returns to the Idle location.

ACK_loc
Ly
up?
ack!
up?
e - a4
down? { Y nack!
—»{| ldle | InUse |« NACK_loc
timeout?)
timeout?
¥
| Bad |

Figure 3-2: TGA model for the communication network

If any of the control loops enters an undesirable location (because of its exceeding its number
of retransmission attempts), the network is accordingly informed via a timeout synchronizing
action by that control loop (this timeout action will be introduced in the control loop TGA
model) - this leads to the network entering the Bad location. This is a scenario to be avoided,
and if it occurs, it indicates that the strategy followed by the scheduler led to this loss and
hence is not to be taken. The Bad location is an absorbing location, which means that it
cannot be left via any action once entered.

Definition 3-2.2 (Network TGA Model). The TGA model for the network is represented by
TGA™ = (L€ [7et Act™®, Act?®, Ot E™et Iny"et) where:

o " = {[dle, InUse, ACK_loc, NACK _loc, Bad };

Master of Science Thesis Aniket Ashwin Samant

26 Modelling through Abstractions and Scheduling Strategies

et = Idle;

Act™ = {ack!, nack!, down?, timeout?};

Act?® = {up?};

Cnet — @,‘

o E"t = q set comprising the following edges:

— (Idle, true, up?,), ACK__loc),

— (ACK _loc, true, ack!, 0, InUse),

— (InUse, true, up?,), NACK__loc),

— (NACK _loc, true, nack!, 0, InUse),
— (NACK _loc, true, timeout?, (), Bad),
— (InUse, true, timeout?, (), Bad);

o Inv™ = () for all locations, since there are no clocks.

A point to note is that this network model does not make use of any clocks. Additionally, a
guard of true on an edge indicates that there are no constraints on taking that edge.

3-2-2 Control Loop TGA Model

In the control loop model, each state space region has an eponymous location (i.e., for region
R1 there is a location R; and so on) from which to trigger naturally, and an additional
location for early triggering while in that region (for instance, Ear;). That is to say, in each
control loop:

e triggering can occur naturally, i.e. non-deterministically when the clock value is between
the lower and upper bounds for a region, or,

e triggering can be forced to be earlier than that, i.e. when the clock value is lower than
the calculated lower bound for a region.

This distinction of triggering approaches is to provide a certain sense of flexibility in terms
of what the scheduler can control, and hence to avoid network conflicts.

For keeping track of transitions to be taken (based on the control loop’s reachability analysis)
and the number of retransmissions performed by the control loop, we make use of the following
state variables (all being integer values):

e to_region: index number of the target region from a given region (i.e. if the loop is to
enter R, to_region = 2);

e from_region: index number of the source region;

e rt_count: number of retransmission attempts made by the loop without getting access
to the network.

Aniket Ashwin Samant Master of Science Thesis

3-2 Modelling Using ETC Abstractions 27

We also define some integer constants:

e RT_MAX: the limit on the number of consecutive retransmission attempts by the control
loop from the same region;

® Ny..: the maximum number of clock ticks allowed as a relaxation on the regional upper
bound to account for retransmissions;

e A: The channel occupancy time in terms of clock ticks.

The model is illustrated for a control loop with two regions in Figure 3-3. The flow of logic
is explained with reference to this figure, as follows:

e We begin with the assumption that the loop is currently in region R; and the variable
from_region is set to the index number of that region (i.e., from_ region = 1).

e While in region R; the loop can either stay there or move to its corresponding early
location Fary depending on the clock value.

e In case the loop does not take an edge to the early location, triggering occurs when the
clock value is between the triggering bounds. Network access is requested by means of
an up! synchronizing action.

e All early locations are urgent - so when an edge is taken to an early location, access to
the network needs to be requested immediately for triggering, via an up! action.

e On requesting network access, the loop enters an urgent location Transition_loc via
one of the enabled edges with an up! action; as part of this incoming edge’s reset
assignment, the variable to_region is set to the index number of the trigger’s target
region. The target region is determined beforehand by reachability analysis using flow
pipes originating from the corresponding source regions and timing bounds (i.e. [r,7],

or [d,d] in early locations).

e While in Transition_loc, time cannot elapse; the location is merely an intermediate
one to instantly get information about the network’s availability. The network TA
performs either an ack! action to indicate that it is idle and can be used by the
loop, or a nack! action to indicate that it is already in use and the loop cannot have
access yet. The corresponding input actions for the control loop are ack? and nack?
respectively:

— nack? edge: If the network is already in use, the control loop has to wait until it
becomes free; the from_region variable determines the nack? edge that is enabled
in this case (i.e. if the loop was in region Rg or Eary prior to the up? transition
to Transition_loc, only the nack? edge with the guard from region == 2 is
enabled). Additionally, a guard of rt_ count < RT_MAX ensures that the loop can
have at most RT__MAX consecutive attempts at retransmitting data via the network.
rt_count := rt_ count + 1 on the nack? edge’s reset assignment is to keep track
of the number of consecutive such attempts;

Master of Science Thesis Aniket Ashwin Samant

Modelling through Abstractions and Scheduling Strategies

Aniket Ashwin Samant

c:=0]
from_region :=1 timeout!
rt_count = RT_MAX

Eszfdz
*

C<Ta+ Nm.;i

Ear2 '.

i up! B up! |
' to_region =1 or 2 “. / to_region :=1or2 '
' up! ' : up! :
" to_region:=1or2 to_region := 1 or 2 J

“I;SC=T1+ N max T, < T+ Nmax,/

. vl .

| Transition I"‘

_loc
nack?
nack?
rt_cou nt{lF{T_M.&?{ rt_count < RT_MAX
from_region == from_region ==
ri_count :=ri_count +1 rt_count := rt_count + 1
ack?
ri_count < RTMAX
c:=0
from_region := tg_region
ri_count :50
down! down!
to_region == to_region ==
C== ==
c=0 ¥ c:=0
| CLK_wait |

Figure 3-3: TGA model for a control loop with two regions. R1 is assumed to be the initial
location here, and uncontrollable edges for up! actions are represented by one edge for simplicity

of the diagram (but in the actual model, each to_region assignment corresponds to its own
edge)

— ack? edge: Taking this enabled edge implies that the network has provided access
to the control loop immediately for triggering, and hence the control loop TA enters
a location CLK_wait; this being a successful triggering action, the reset assignment
has rt_ count := 0 to indicate that the retranmission attempts were eventually

Master of Science Thesis

3-2 Modelling Using ETC Abstractions 29

successful. Additionally, the clock is reset to 0 as it is needed in the CLK_wait
location for keeping track of time. Finally, to indicate that the target region of the
triggering transition is the new source region for future transitions after successful
triggering, from region := to_region is also included in the reset assignment on
the ack? edge.

e The CLK_wait location is to indicate that the control loop is currently using the network
for transmitting relevant data. We make use of a predefined amount of time (defined in
the TA in terms of clock units, A) as the channel time, i.e., a fixed period of time within
which data transmission is expected to complete. Thus, the guards on the outgoing
edges (with the synchronizing action down!) include ¢ == A to enable them after the
channel time has elapsed, i.e., all relevant data has been transmitted. Additionally,
an invariant ¢ < A ensures that the location is left as soon as A clock units elapse.
The updated from_region variable (whose value is assigned on the ack? edge’s reset
assignment) determines the region location to enter after leaving CLK_wait.

e From Transition_loc, an outgoing edge labelled with the action timeout! is enabled
when rt_ count > RT_MAX. This is the only enabled edge when the number of retrans-
mission attempts exceeds the predefined limit, and it leads to a location Bad, which
is an absorbing location; this scenario needs to be avoided as a safety objective, as it
indicates a loss on part of the scheduler in the game involving following a strategy that
avoids this location.

Based on this understanding, the TGA model for the control loop is formally defined.
Definition 3-2.3 (Control Loop TGA Model). Based on the general TA representation of
a control loop TAcr, = (L, lp, Act, C, E, Inv) (cf. Section 3-1), and considering a set of early
triggering time parameters {d,,d1, . .. ,dq,aq} such that

Vse{l,...,q} : ds < 74,
integer variables

to__region, from__region, and rt_count,

and integer constants
Npaz, RT _MAX, and, A,

the TGA model for a control loop, TGAC, is represented by:
TGACL = (LOF 15T, ActCr, ActSt, O, ECL) Inv®) where:
o LO = {Transition_loc, CLK _wait, Bad} UL ,{R;, Ear;};
o IS = R; such that £(0) € R;;

o ActCt = {ack?, nack?, down!, timeout!} U {*};

Master of Science Thesis Aniket Ashwin Samant

30 Modelling through Abstractions and Scheduling Strategies

o ActCl = {up'};

o O ={c};

o ECL = g set comprising the following edges:
— UL, (R, d; < ¢ < dy, %, 0, Eary),

— U s Usee, (Eary, true, up!, to_region := t, Transition__loc),

- UL Uymri—=ry e y(Ris 73 < ¢ < Ti+ Ninag, upl,
to__region := t, Transition__loc),

— UL, (Transition__loc, {rt__count < RT _MAX, from__region == i},

nack?, rt__count := rt__count + 1, R;),

— (Transition__loc, true, ack?,

{c:= 0, rt__count := 0, from__region := to_region}, CLK__wait),
— UL, (CLK_wait, { to__region == i,c == A}, down!, ¢ := 0, R;),

— (Transition__loc, rt__count > RT__MAX, timeout!,), Bad);

o Inv°E(R;) ={c|lc<7i+ N_maz}, nv°“(CLK_ wait) = {c|c < A}
(additionally, implicit invariants apply on all urgent locations (cf. Definition 3-2.1)).

In the definition, e; refers to the set of reachable regions from a location on early triggering
based on the flow pipe, i.e., such that {t]X[dEd(Ri) N Ry # (0}. E is the set of edges as
defined in the general control loop TA definition in Section 3-1.

Along the lines of [2], we define an additional initial location R from which there are outgoing
uncontrollable edges to each region location (i.e. {R1,...,R,}) and an invariant ¢ = 0 so that
the location is left immediately and the control loop is in one of the actual region locations.
This is done because the physical control loop could be in any region based on its initial
conditions and it is desirable to generate strategies (as will be shown later) for any case; the
edges are uncontrollable to signify that the scheduler cannot control the loop’s initial state’s
region. Figure 3-4 shows the relevant additions to be made to the control loop TGA model
from Figure 3-3 to include this concept.

3-2-3 Modelling as NTGAs
The communication network and control loops operate in parallel, i.e., they are entities that
perform their functions individually at the same time, but with occasional interactions (like

requesting network access). Thus, from a TA perspective, we model the system as a parallel
composition of the network TA and the control loop TAs, giving us an NTGA:

Sys_NTGA = Network | Control_Loop_1|...|Control_ Loop_n. (3-1)

Aniket Ashwin Samant Master of Science Thesis

3-3 Scheduling Strategies 31

-4l RO~
from_region:=1 _ -~ e T from_region := q

- £

-
- - - .
-

- « “from region := 2 -

. R1 | Rz | | Rq |

Figure 3-4: The control loop TGA model with an additional initial location R

3-2-4 Caveats

There are some caveats to be made with regards to the TGA models introduced. They include
the following:

e For simplicity, a single triggering coefficient («/) is assumed in the control loop TGA
model. The model can be extended to have an controllable action for selecting a trig-
gering coefficient along the lines of [2];

e All synchronizing actions are assumed to be binary synchronizations, i.e., an input
action corresponds to exactly one output action - for instance, if multiple edges with an
up? action are enabled, and an edge with a up! action is also enabled, only one edge
from those with up? can be taken along with the up! edge. Moreover, an edge with
up! necessarily needs a corresponding edge with up? to be enabled;

e The channel occupation time, A is assumed to be small enough that it does not affect
the transition relations, i.e., the locations resulting from an ack? action aren’t expected
to change based on the additional time spent in the CLK_wait location.

e The concept of retransmission of data is only used in the modelling of the system,
and may not necessarily have a physical manifestation (i.e., as will be seen in the
forthcoming sections, data is not transmitted over the CAN network when a nack?
action is performed; based on the TGA model, such actions only inform the scheduler
that a retransmission is needed, but eventually data transmission occurs only when an
ack? action is performed).

3-3 Scheduling Strategies

In this section we cover how the TGA models from the previous section are used for generating
scheduling strategies by defining the formal objectives of the system.

Master of Science Thesis Aniket Ashwin Samant

32 Modelling through Abstractions and Scheduling Strategies

3-3-1 Safety Objective

We propose a safety objective - the strategy followed by the scheduler should be such that
none of the control loops ends up reaching its Bad location as a result of any run (cf. Section 2-
3-4) of the NTGA. Since our TGA model definitions are such that any control loop ending up
in the Bad location also causes the network’s TA to end up in its Bad location, a sufficient
safety objective is defined as avoiding a set of states (say, Avoid) such that the network TA
is in the Bad location, akin to [2]:

Avoid = {lnet, 11y -+ lny Unet, Uty - - -, Up | lnet = Bad}. (3-2)

Based on the dynamics of the control loops and their ETC implementations, satisfying this
objective should guarantee stability of the overall system. However, the scheduler may end
up triggering early too often as a result of following this strategy "as is", thereby increasing
network usage (in other terms, behaving conservatively).

To reduce the number of early triggers, we make slight modifications to the existing NTGA
by defining additional global variables to be used for the purpose.

3-3-2 Limiting Early Triggers

We follow the modification proposed in [2] for limiting the number of consecutive early triggers,
applying it to the system NTGA model defined in Section 3-2-3. Since early triggering is in
the context of control loops, we create a modified version of the control loop TGA model.
The following changes are made to the TGA’s set of edges from Definition 3-2.3:

e Edges going to early locations have an additional guard and a reset assignment:
UL (Ry, (d; < ¢ < d;) A (earlyCount < earlyMaz), *,
earlyCount := earlyCount + 1, Ear)

e Outgoing edges from all R; locations have an additional reset assignment:

Uiz 1 U rimsry e By (Bis 7 < ¢ < Ti+ Ninag, up),
(to__region :=t) A (earlyCount := 0), Transition__loc)

In semantic terms, we impose a limit on the number of consecutive early triggers, earlyMax,
and maintain a global count variable earlyCount to keep track of the current number of
consecutive early triggers. When an early transition is taken, earlyCount is incremented by
1, and when a natural trigger occurs, earlyCount := 0 to indicate that the scheduler allowed
the ETC mechanism to trigger on its own without forcing it.

By adding a guard on an early edge as earlyCount < earlyMax, we impose a condition that
the scheduler should not force the loops to trigger beyond a certain number, consecutively; it
should let them trigger naturally. This effectively reduces the number of early, forced triggers,
thereby lowering the usage of the network. However, this could also leave the NTGA more
prone to not finding a strategy that can avoid the Bad location; it is a matter of adjusting
the earlyMax value appropriately to see if finding a satisfying strategy is possible or not.

Aniket Ashwin Samant Master of Science Thesis

Chapter 4

Hardware Setup and Software
Toolchain

After introducing the preliminaries and building upon them to have theoretical abstraction
models defined in the preceding chapters, now we move towards their implementation in
two senses - first, translating the models into software to generate scheduling strategies, and
then using them for scheduling control actions in a physical setup with simulated plants and
state-feedback controllers connected to the scheduler via a CAN bus.

In this chapter, we first describe the hardware setup hosting the plants, controllers, scheduler,
and the network, and subsequently introduce the software tools involved in the process. We
finally proceed towards a detailed description of all modules, drawing a link between the
software and hardware involved in achieving the objectives of this thesis.

4-1 Hardware Setup and System Overview

We first describe the hardware components involved, and then briefly state how the overall
system is composed with an arrangement of these components.

4-1-1 Hardware Components

The theoretical abstraction models from the previous chapters are physically modelled and
implemented as mathematical representations on hardware intended for the purpose; the
hardware is briefly described in this section.

Note: A controller in this context refers to a PXI I/O controller module! from National
Instruments, and not a controller from the control loop. Moreover, we refer to the devices by
their product numbers for simplicity.

The following hardware is involved in implementing the theoretical models:

! National Instruments, "PXI Express: NI PXI 8880-e User Manual", March 2015.

Master of Science Thesis Aniket Ashwin Samant

34 Hardware Setup and Software Toolchain

o NI PXIe-8880: It is an embedded controller module running the Phar Lap ETS RTOS.
All compiled code representing the plants, controllers, and the scheduler resides in these
controller modules.

o NI-PXI 8512: It is a CAN interface module used for transferring data between the 8880
controllers over a CAN bus using the CAN protocol.

e NI PXIe-1071: It is a PXI chassis from National Instruments with slots for hosting one
controller module, and multiple other modules; in this case, for hosting a 8880 controller

and an 8512 module. The modules can communicate via an internal bus present in the
PXIT chassis.

e NI No-termination CAN cables: Cables for connecting CAN devices; in this case, for
connecting 8512 modules.

4-1-2 System Overview

The physical system involves three PXI chassis, each hosting an 8880 controller and an 8512
module. A set of CAN cables is used to connect the 8512 modules such that one 8512 module
is connected to each of the other two 8512 modules (this setup is a physical implementation
of a controller machine connected to two plants via a CAN network).

Figure 4-1 shows a block diagram of this setup, and what the individual components and
interfaces represent at the system level. Figure 4-2 shows the physical setup from a hardware
perspective.

4-2 Software Toolchain

Several software programs are used to implement the various modules involved in the pro-
cesses of modelling, strategy generation, plant and controller simulation, and inter-module
communication. Broadly, the toolchain can be divided into two categories - (i) software for
creating abstraction models and generating strategies, and (ii) software for creating a simu-
lation environment in which to apply and test the generated strategies.

4-2-1 Generating Abstractions and Strategies

The tools in this section are used solely for defining TGA models and generating strategies
with a safety objective:

e UPPAAL: It is an integrated tool environment used for modelling, verification, and
validation of systems modelled as NTAs. In this thesis, an extension of UPPAAL,
UPPAAL Stratego, is used for generating strategies from the system NTGA, and also
for debugging the generated strategies using the UPPAAL built-in simulator. The
NTGA itself is generated using Python, as is explained in the forthcoming points;

Aniket Ashwin Samant Master of Science Thesis

http://uppaal.org/

4-2 Software Toolchain 35

PXI Machine 1 PXI Machine 2

Plant 1 Plant 2

f CAN network f
CAN1 CAN1

CAN1 CAN 2
el o e, e
I Scheduler I

v+ r 3y

Controller 1) (Controller 2

PXI Machine 3

Figure 4-1: The system setup. The plants, scheduler, and controllers are hosted on 8880
modules, and CAN interfaces on 8512 modules. Note that the scheduler and two controllers are
on the same 8880 (represented by a dotted rectangle). Arrows in red indicate flow of control
input and arrows in blue indicate flow of state information

e Python: The programming language Python is used for defining the dynamics of the
LTT plants, reachability analysis, and generating TGA models. Specifically, in addition
to the Python standard library, the following packages are used:

— Python Control Systems Library: For defining LTI plants with state-feedback con-
trollers for which to generate TGA models;

— SciPy: For linear algebraic operations (mainly matrix operations) and appropriate
data structures (for instance, NumPy arrays);

— PyUPPAAL: For generating TGA models that can be conveniently defined in
Python and parsed by UPPAAL. A key point to note is that UPPAAL model
files are XML files with a specific format, and hence the process of defining the
NTGA models can be performed using string-based data structures in Python for
convenience. The last step of generating UPPA AL-parseable XML files is delegated
to PyUPPAAL;

— Pickle: For saving and loading Python objects; a lot of the code being modular
and spread across scripts, this package makes it convenient to transfer information
between different Python scripts.

Master of Science Thesis Aniket Ashwin Samant

https://www.python.org/
https://python-control.readthedocs.io/en/0.8.3/
https://www.scipy.org/
https://launchpad.net/pyuppaal
https://docs.python.org/3/library/pickle.html

36 Hardware Setup and Software Toolchain

NI PXI-8512

'.‘ . -

T T -
AL

NI PXI- |_
8880 R

....... ¥ NI PX1-1071 (1)
....... _ i - .

—

|’I|II

. NI PXI-1071 (3)

NI PXI-1071 (2)

Figure 4-2: The physical setup, with all relevant components labelled

4-2-2 Simulation Environment and Strategy Parsing

The tools introduced hence are for creating a simulation environment in which to test the
UPPAAL Stratego-generated strategies. The strategies themselves are in a format that needs
to be parsed to obtain the necessary information for scheduling.

e Mathworks Simulink: It is a graphical programming environment for model-based
design and simulation. In this thesis, it is used for defining LTI plant models with ports
of appropriate dimensions for inputs and outputs, i.e. the control input vector u(t) and
the state output vector z(%);

e Simulink Coder: It is a plugin for Simulink used for generating C/C++ code and
compiled modules (DLLs) representing the models created in Simulink. We use it for
generating C++ code representing the LTI plants;

e NI LabVIEW: It is a graphical programming environment in which code is represented
using graphical elements; it is mainly used for applications involving multiple parallel
modules. Given it is the case in this thesis, the bulk of the implementation is in

Aniket Ashwin Samant Master of Science Thesis

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink-coder.html
https://www.ni.com/en-us/shop/labview.html

4-3 Offline Software Flow 37

LabVIEW, as will be explained in the forthcoming sections. The version used for this
thesis is NI LabVIEW 2016;

e NI Veristand Model Framework: It is a group of files (a framework) used with
Simulink Coder to generate C/C++ code and DLLs that can be loaded as modules in
LabVIEW;

e NI Model Interface Toolkit: It is a plugin to load DLLs generated using NI Veristand
Model Framework in the LabVIEW environment; Inports and Outports defined in the
source Simulink model are treated as input and output arrays in LabVIEW;

e NI-XNET: It is an instrument driver that provides APIs for interfacing with CAN,
LIN, and FlexRay network hardware from National Instruments. We use the X-NET
APIs for communication over the CAN network in this thesis;

e JSON: It is a general data-interchange format; it is used for loading Python-generated
data in the LabVIEW environment in the scope of this thesis. The data includes certain
matrices for region determination, and also strings with a defined format for interpreting

UPPAAL-generated strategies in LabVIEW.

4-3 Offline Software Flow

Certain software routines need to be run before involving the control loop simulations over
the physical CAN network, i.e., some computations need to be offline. Broadly, this offline
software flow can be divided into multiple phases:

e Generation of control loops’ region maps and transition relations as Python data struc-
tures;

e Generation of abstraction models in Python and their translation to an UPPAAL-
parseable XML;

e Generation of strategies in UPPAAL and their parsing into JSON strings to be inter-
preted in LabVIEW.

The top-level flow of data is represented in Figure 4-3. We describe these phases in detail in
their specific sections.

4-3-1 Region Maps and Transition Relations

Note: The code used for creating region maps and transition relations described in this section
is taken from the authors of [23].

In this thesis, a PETC scheme involving time-based state space partitioning (cf. Section 2-2-
1) is followed and accordingly the state space of each LTI plant is partitioned into regions.
Thus, transition relations are in terms of numbers of steps, each step being separated by the
sampling interval h.

Master of Science Thesis Aniket Ashwin Samant

https://www.ni.com/pdf/manuals/375380n.html
https://www.ni.com/en-us/shop/software/products/labview-model-interface-toolkit.html
https://www.ni.com/en-us/innovations/white-papers/09/ni-xnet-can--lin--and-flexray-platform-overview.html
https://www.json.org/json-en.html

38 Hardware Setup and Software Toolchain

Plant dynamics a > Control loop TGA > Strategy
and controller] creation 3 generation
design W 'E
: !
4' = ¥ E’
——— 1 State space 5 System NTGA £
partitioning ; creation § Strategy parsing
] ©
(=]
v g) S y
Transition map =] UPPAAL XML > Exporting strategy
creation generation as sets
Q matrix JSON files Strategy JSON files

Figure 4-3: Flow of data in the offline computations part. The purple arrows indicate the data
that is eventually required for online simulation.

The output of this phase is a Python dictionary in which the key is a set of (source region,
k) pairs, and the corresponding value is a set of (target region) depending on which target
regions are possibly reached from the source region on triggering after k steps.

Specifically, the following steps are performed:

1. LTI plants are defined and appropriate feedback controllers are designed (say, following
the LQR algorithm) using the Python Control Systems package.

2. Following [23], @ matrices for each region are computed. In a nutshell, for a list of
regions sorted in increasing order of their index numbers, for each region Ry, a list of
matrices is computed such that: for a list of Q matrices, VQ in the list, if 27.Q.z < 0,
x € Ry. This information is essential for region determination, as will be seen during
the section on simulation.

3. Based on the dynamics of the plants and triggering times, a transition map is computed,
i.e., for each region, the possible target regions resulting due to triggering after k steps
are recorded in a dictionary.

4. A dictionary is created for each control loop (its traffic model), and a list of these
dictionaries is saved in a Pickle file for use in the abstraction models.

4-3-2 Abstraction Models

Note: The code for implementing abstraction modelling described in this section is based
on publicly available code® used in [9]. The TGA models used for reference in the original
source code are from [2]; the code is appropriately modified to suit the TGA models introduced
in Chapter 3 of this thesis.

2Schalkwijk, P (2019) Python2Uppaal [Source code].
https://github.com/pschalkwijk/Python2Uppaal.

Aniket Ashwin Samant Master of Science Thesis

4-3 Offline Software Flow 39

TimedAutomaton GameAutomaton

«{+TA_base + Actions_controliable

TA_base

+ Actions_uncontroliable

+ Locations

+L 0

+ Actions

+ Edges

+ Clocks

+ Invariants

NetworkTimedAutomata

TimedGameAutomaton

e } NetworkTimedGameAutomata }

Figure 4-4: A simplified UML diagram representing the structure of the classes. The class
TimedAutomaton consists of a reference to PyUPPAAL and is used for converting to an XML
representation (based on [9])

An object-oriented approach is followed for defining classes of timed automata and timed game
automata in Python, along the lines of [9]. The following steps are performed to eventually
get an XML that can be correctly interpreted as an NTGA model in UPPAAL:

1. Python classes are defined for the network TA and the control loop TA. These classes
consist of data structures containing all the necessary information as per the TA defi-
nitions (cf. Definitions 3-2.2 and 3-2.3) like regions, invariants, etc.

2. The network TA is defined with locations and guards as in Figure 3-2. It does not
require any additional information.

3. The traffic model objects created in Section 4-3-1 are loaded using Pickle, and the data
required for the control loop TA is collected, i.e., information about all regions and their
transition relations.

4. In the control loop TA, locations for the regions (including early locations) are created,
and the inter-region transition relations are translated to their corresponding edges
along with the guards (represented using strings).

5. The remaining locations are added to the loop TA class (for instance, Transition_loc)
and invariants are defined for all locations as applicable.

6. An NTGA class is defined for parallel compositions. An object of this class is instantiated
with the network and control loops’ models’ objects used for the parallel composition,

and this defines the system NTGA.

7. PyUPPAAL is used for translating the system NTGA object to an XML file to be inter-
preted in UPPAAL.

Master of Science Thesis Aniket Ashwin Samant

40 Hardware Setup and Software Toolchain

State: (cl1PHDvPH.R27 cl2ExQmKf.Trans loc NetworkRDmWHa.InUse ack)
EarNum=1 EarMax=4 cl1PHDVPH.to region=27 cl1PHDVPH.from region=27
cl1PHDVPH.count=0 cl2ExQmKf.to region=27 cl2ExQmKf.from region=10
c12ExQmKf. count=1

When you are in (cl1PHDvPH.c-cl2ExQmKT.c<=-8 && cl2ExQmKf.c<10), take
transition NetworkRDmWHa.InUse ack->NetworkRDmWHa.InUse { true, ack!, 1}
cl2ExQmKf.Trans loc->cl2ExQmKf.Clk wait { true, ack?, c := 0,

from region := to region, count :=0 }

Figure 4-5: A snippet from a generated strategy

4-3-3 Strategy Generation

The NTGA XML generated from the previous phase can be verified for its syntax using UP-
PAAL. It is then used for generating a scheduling strategy by providing a formal specification
for the safety objective. The steps followed are:

1. The scheduling objective is stated formally in UPPAAL as:
control: A[] not Network.Bad

which semantically means that the scheduling objective is a pure safety objective such
that it should avoid reaching the network’s Bad location (Network.Bad) [7].

2. Using this objective and UPPAAL’s command-line interface with the appropriate input
arguments, a strategy file is generated which consists of several if-then conditions involv-
ing clock value comparisons, and the actions (edges) that the game player (scheduler)
needs to take such that Network.Bad is always avoided.

3. Since the output strategy has a definite structure (as seen in Figure 4-5), it can be trans-
lated into a more useful format for extracting the information required for scheduling
triggering actions. Regular expressions (regezps) are defined based on this structure,
and the following information is extracted only for cases in which successful triggering
occurs (i.e. text blocks in the strategy file in which the ack? action is present) using
Python:

e Control loops’ source regions;

e Clock conditions;

e Control loop to trigger.
The remaining text blocks are not relevant to the scheduler (i.e., they consist of actions
in which the scheduler has to wait) and are hence not considered as useful information;

no data is extracted from these blocks. The regexp and exact data structure generated
can be found in Appendix A.

4. The extracted information is converted to a JSON string and exported to a file, which
is to be loaded and used in the simulation environment by the scheduler, as will be
explained in the next section.

Aniket Ashwin Samant Master of Science Thesis

4-4 Simulation System 41

4-4 Simulation System

We cover various aspects involved in simulating the NCS and how the strategy resulting from
the offline computation phase is used for scheduling control actions.

4-4-1 Plant and Controller Models

e Plants are defined as LTI systems using the appropriate blocks in Simulink, with inports
representing the control input vector u(%) and outports representing the state vector x(t).
Figure 4-6 shows a plant model created in Simulink.

i=Ax+ Bu
1 > e 1
D, S CetDu (1)
Input (u) Out {y)
Plant

Figure 4-6: Simulink LTI plant model

e Using Simulink Coder and NI VeriStand Model Framework, DLLs corresponding to
these plant models are generated. These DLLs have entry points that are recognized
by the NI Model Interface Toolkit, and using the appropriate LabVIEW APIs, they
can be loaded as blocks and ticked (that is, the model can be run for one time-step
as defined in Simulink) - the input array to the block being the input to the inport of
the Simulink model, and the output array from the block being the output from the
Simulink model’s outport. By ticking the loaded model continuously in a loop with the
appropriate time-step, the dynamics can be simulated in LabVIEW.

e State feedback controllers are used for closing the control loop and stabilizing the plants;
feedback gain is calculated using a known algorithm (such as LQR). The control loop,
however, is closed over the network - the controller block is not present on the same
machine as the corresponding plant.

e The control input value to the plant is provided in a zero-order hold fashion, and updated
only when the control loop is triggered. The zero-order hold input is provided via an
input array to the plant block, and the current state of the plant is obtained from the
output array of the plant block.

4-4-2 CAN Network Communication

NI-XNET uses a FIBEX database [29] to describe a cluster connected over a CAN bus.
Accordingly, we create one to describe the various communicating interfaces involved in this
NCS. We assume for the scope of this thesis that the state is two-dimensional and the control
input is a scalar.

Master of Science Thesis Aniket Ashwin Samant

42 Hardware Setup and Software Toolchain

Each control loop has the following CAN frames:

e Control input frame: This frame consists of a signal representing the control input as
an IEEE floating point number;

e State vector frame: Since CAN frames can hold a maximum of 8 bytes of data, we use 4
bytes for each dimension of the state to be represented as an IEEE floating number, i.e.
the state vector [X1 Xo| = [Fp 31 F32,63] where F,, ,, denotes the decimal value represented
by the bits between positions and y of the CAN frame data.

The NI-XNET Read API is such that it buffers the last frame value transmitted over the
CAN bus, and returns the same value unless a new value for that frame is written to the bus
using the NI-XNET Write API [8]. Hence, this allows an inherent ZOH implementation of
the control input, which is obtained from the Read API and provided to the plant model.
Accordingly, the updated control input value is written to the network via the Write API
only when triggering needs to take place, as dictated by the scheduler.

Remark 4-4.1. After applying the ETC mechanism, we can see that some plants require
triggering more frequently (based on the IET bounds) and hence need to be prioritized for
triggering. Accordingly, each plant is assigned an arbitration ID - plants that need to be
prioritized are assigned lower values to indicate that they get a higher priority in the CAN
network for data transmission. However, this is not a strict relation between CAN priorities
and plant dynamics; appropriate abstraction modelling and strategy gemeration ensure that
communication conflicts do not arise.

4-4-3 State Space Region Determination

Earlier, we introduced the notion of @ matrices (cf. Section 4-3-1) for determining which
region a given state belongs to. Now we describe how it is used and translated to the ap-
propriate LabVIEW data structures for determining the current region of the control loop
during the NCS simulation.

All of the Q matrices can be computed offline prior to starting the NCS simulation, but their
values need to be stored since they are used during the simulation for region determination.
Each Q matrix is in the form of an n x n NumPy array, where n is the dimension of the
plant’s state vector. Through Python, a JSON file consisting of key-value pairs with the
following format is created:

"region_index": (list of Q matrices for that region)

for each region in the partitioned state space. The keys are sorted in increasing order for
speed optimization; additionally, each Q matrix is stored as a list of its constituent rows for
JSON compatibility. The JSON file is loaded in LabVIEW to get the values of all Q matrices
computed for all regions.

Thus, the goal of this section is to have a single r X Q_max X n X n matrix per control loop
loaded in LabVIEW, such that:

Aniket Ashwin Samant Master of Science Thesis

4-4 Simulation System 43

e r = number of regions;
e (_max = maximum length among all lists of Q matrices, across all regions;

e n = dimension of state space.

This 4-D matrix can then be used to get the appropriate lists of () matrices and determine
the region online during the NCS simulation.

However, due to limitations of the LabVIEW JSON API and lack of native support for
dictionaries in LabVIEW 2016, the JSON file with Q matrices cannot be used "as is". Thus,
a supporting JSON file with the following fields is created:

"regions": <list of regions into which state space is partitioned>
"regionl": ki
"region2": k2

"regionN": kN

The regions field consists of a list of regions into which the state space is partitioned, say [15,
16, 17, 18]. Accordingly, for each region, its corresponding field consists of the number of
@ matrices for that region. In this example, the supporting JSON file would look like

"regions": [15, 16, 17, 18], "15": 20, ..., "18": 30

where region 15 has 20 Q matrices, and region 18 has 30. (Note that this is only a generic
example to demonstrate the concept).

The LabVIEW JSON API provides a means to access a JSON file’s data by means of paths -
that is to say, for nested JSON data®, index numbers are used to access specific elements. In
this case, since the number of Q matrices is not the same for all regions, we make use of the
supporting JSON file to get the range of indexes per region (i.e. if there are 20 Q matrices
for a region, the index range is [0, 19]).

Additionally, the regions may not be in a fixed sequence (for instance, the regions could be 18,
20, 27, etc.) and hence we need an additional index array which has entries corresponding to
the index of the region in the LabVIEW matrix. (i.e., if region 20’s Q matrices are at index
4 in the single matrix in LabVIEW, the index array will have the value "4" at index 20. It
will have 0’s at indexes not corresponding to a region).

The algorithm for generating the single matrix in LabVIEW is presented formally in Algo 1.
The output is the matrix itself and the corresponding index array.

Once this single Q matrix and index array are loaded before the simulation (offline), they are
used during the simulation (online) to detect the region by following Alg. 2.

3An example of nested JSON data: {"xy": "z", "ab": {"cd" : 2, "ef" : 3}, "gh" : 4}. The
path "ab/cd" yields the value 2, and "ab/ef" yields 3.

Master of Science Thesis Aniket Ashwin Samant

44 Hardware Setup and Software Toolchain

Algorithm 1: Generating single 4-D Q matrix and index array in LabVIEW

Data:

Q_data = QQ matrices data loaded from JSON file using LabVIEW JSON API;
Q_info = Supporting information loaded from JSON file using LabVIEW JSON API;

Result: LV 4-D Q matrix, Index array (integer array)
begin
Q_max = Maximum length of list of Q matrices among regions;
n = Dimension of state space;
r = Number of partitions;
region_max = Highest index among regions;
Initialize an array idx_arr = int[region max];
Initialize a matrix @ _CL =r X Q_max X n X n;
for i <~ 0 to r do
region current = Q info [’regions”|[i];
num_Q mats = Q_info[region_ current|;
idx_arr[region_current| = i;
for j <~ 0 to num_ @ mats do
for k< 0 ton do
row_path = "region_current/j/k”;
Q CL[4, j, k, :] =Q_data[row_path]
end

end
end

end

4-4-4 Scheduler

In Section 4-3-3, the relevant information to be gleaned from the generated UPPA AL strategy
was introduced. Now we describe how this information is used to translate the strategy to be
interpreted as LabVIEW code, i.e., as a scheduler block.

An approach similar to the one for determining the current region is followed for loading
data structures from Python to LabVIEW. The main difference in the case of loading the
scheduler block is that instead of a matrix, an array of clusters is used. A description of this
data structure is included in Appendix A.

The scheduler is run once per iteration of the simulation loop, and maintains the following
information:
e For each control loop:

— Current clock value

— Current region
e Whether triggering needs to take place in the current iteration

e The control loop that needs to be triggered

Aniket Ashwin Samant Master of Science Thesis

4-4 Simulation System 45

Algorithm 2: Determining region of a given state

Data:

Q_CL = 4-D Q matrix containing all the information about a control loop’s @ matrices;
idx_arr = Index array;

regions = List of regions;

x = current state vector

Result: Current region (an integer)
begin
r = length (regions);
Q_dim2 = Number of columns in Q_CL (Q_maz from Alg 1);
for ¢ < 0 to r do
region test = regions [i];
region_idx = idx_arr[region_test];
flag = true;
for j < 0 to @ _dim2 do

Q =Q_CL[region_idx, j, :, :;

if x".Q.x < 0 then

‘ continue;
end
flag = false;

end

if flag then

‘ break;

end

end

return region_test
end

Using regular expressions, the strategy is parsed such that only the if-then condition blocks
which result in an ack? action are considered for triggering, i.e., ack? indicates successful
network access, and hence a successful triggering attempt.

Thus, for each control loop,

e for each region, the following data is parsed:

— the clock value range which satisfies the triggering condition;

— the control loop to trigger.

When the control loops’ current clock and region conditions satisfy the strategy’s conditions
for triggering, the scheduler accordingly sets the triggering flag to true, and the index of the
control loop that needs to be triggered.

Master of Science Thesis Aniket Ashwin Samant

46 Hardware Setup and Software Toolchain

4-4-5 Online Simulation Loop

For simulating the NCS, the system is arranged as stated in Section 4-1-2. In this thesis, two
LTI plants are simulated and connected to their feedback controllers and the scheduler via a
CAN bus. Figure 4-7 shows an overview of the NCS simulation setup.

Q matrices JSON files

Strategy JSON files

Initialization
Simulation loop
Information Scheduler Controller Data logger
Triggering > Control loop n
RIEnEStaigs ‘ condition check triggering BEE AT
Region 9 .
et atinn Clock operations CAN operation Plots
./'. -1\.
- Control input ‘
Plant model DLLs [.
L reading | Stop simulation
Model ticking

AN y State transmission

o A

Figure 4-7: The NCS simulation setup. Arrows in purple represent data from offline computa-
tions, and arrows in grey represent data over the CAN network.

The plants run independently of each other and the network, and the control input to them is
provided via the CAN bus. As stated previously in Section 4-4-2, the input read by the plant
is the ZOH wvalue for that control loop’s input written to the CAN bus by the scheduler; it
is updated appropriately when that control loop is triggered. On every iteration of the plant
model tick (cf. Section 4-4-1), the current states of the plants are transmitted through the
CAN bus in the corresponding CAN frames.

Prior to initiating the continuously running simulation loop, the following operations are
performed:

Loading of the Q matrices from JSON files into a single matrix;

Loading of the UPPA AL strategy as described in Section 4-4-4;

Sending signals to the PXI controllers hosting the plant simulation models to initialize
them and begin running;

Initializing data structures for scheduling (clock variables) and logging relevant data.

Aniket Ashwin Samant Master of Science Thesis

4-4 Simulation System 47

Once these operations are performed, the scheduler simulation loop is initiated - a fixed series
of operations being performed on every iteration in one machine. With the plant models
running independently in different machines, and being connected to their controllers via a
network, the setup simulates an NCS.

Each iteration of the simulation loop consists of the following steps, performed successively
(refer to Figure 4-7 for a graphical overview):

1. Reading current states of the plants: The CAN frames corresponding to the plant
states are read to get the current output (states) of the plants.

2. Region determination: Based on the Q matrices computed and loaded prior to
running the simulation (cf. Section 4-4-3), and after reading the states of the plants,
the current region of each control loop is determined.

3. Scheduler action: Knowing the regions of the control loops and the current clock
values, the scheduler can either determine that triggering needs to take place or not;

o [f triggering needs to take place as per the strategy, the control loop that needs to
be triggered is recorded, and the corresponding clock variable is reset.

e If triggering does not need to occur, i.e., the scheduler has to do nothing, the clock
variables are incremented by 1 to indicate passage of time.

4. Triggering: If triggering has to occur, the feedback input is calculated based on the
current state of the plant to be triggered, and the value is written using the appropriate
CAN frame to the CAN bus.

5. Data logging: Relevant information (such as the current states of the plants and the
scheduler) is written to appropriate variables.

On terminating the simulation loop, the accumulated data is logged to a file. Terminating
the simulation loop also triggers a remote routine in the PXI controllers hosting the plant
models that terminates their loops, thus bringing the overall system to an idle state.

Master of Science Thesis Aniket Ashwin Samant

48 Hardware Setup and Software Toolchain

Aniket Ashwin Samant Master of Science Thesis

Chapter 5

Experimental Results and Discussions

In this chapter we cover results obtained from simulating an NCS involving two plants and
applying scheduling strategies generated using UPPAAL. We also show results obtained using
periodic sampling instead of event triggering as a basis for comparison between the two
approaches.

Additionally, to demonstrate the limitations of using TGA models for this application, we
present the results obtained on increasing the number of partitions, in terms of increased
memory footprint.

5-1 Plant Models

We use the LTI plant models and controllers defined in [2] in the NCS simulation.
Control loop 1:

T = 0 1 T+ 0 v,
v = [1 —4} x
Control loop 2:
i -0.5 0 o4 1 v

v = [1.02 —5.62} :c

The control loop in both cases is closed over the network, and the input v is provided in
a ZOH fashion using the PETC mechanism. The state space is partitioned using the time-
based approach, and the triggering condition is determined by a continuous-time Lyapunov
equation as in [23], setting the design parameter o = 0.08.

Master of Science Thesis Aniket Ashwin Samant

50 Experimental Results and Discussions

Table 5-1: Control loop information for the experiments

Parameter Control Loop 1 Control Loop 2
Number of partitions 50 40
Sampling time, seconds (h) 0.01 0.01
Feedback gain [1-4] [1.02 -5.62]
Arbitration ID 2 1

Table 5-1 shows the necessary information related to the control loops used in the experiments.

5-2 Simulation Results and Discussions

State evolution - Plant 1

6 - — x1
— x2

States
o

Plant 1 Input

Figure 5-1: State evolution and control input for plant 1 with a scheduling strategy involving 50
state space partitions

The NCS simulation is run till the norm of the state vector is below a threshold € = 10~7 for
both plants. Figure 5-1 and Figure 5-2 show: (i) the evolution of the states for the plants, and
(ii) the ZOH input provided to the plants over time. The control input plots show varying
time intervals between triggers (noticeable through the held values) indicating an event-driven

approach.

Figure 5-3 shows the region map of the plants, i.e., the computed state space regions over
time. We can clearly see how plant dynamics affect the rate at which the plants enter different

regions.

Additionally, Figure 5-4 and Figure 5-5 show the state evolution and control inputs for the

Aniket Ashwin Samant Master of Science Thesis

5-2 Simulation Results and Discussions 51

State evolution - Plant 2

— x1
—_— X2

States

Plant 2 Input

Figure 5-2: State evolution and control input for plant 2 with a scheduling strategy involving 40
state space partitions

plants in the case of periodic sampling - plant 1 being sampled once every 200 ms and plant
2 every 100 ms. Control actions are thus transmitted at a periodic rate and not scheduled as
in the previous case.

We can further discuss the results of these experiments by observing the gathered data:

e On comparing the temporal evolution of the states between the ETC and periodic con-
trol approaches qualitatively, we can clearly see that the trajectories are much smoother
in the latter, with faster settling times and fewer oscillations. However, this comes at
the cost of additional network usage, as seen in Figure 5-6; in applications where per-
formance is not critical and bandwidth is constrained, ETC can be useful. The tradeoff
between network usage and performance is a design choice in such applications;

e Depending on the dynamics of the plants, some plants need a lot more triggering and
may require more state space partitions than others to account for more accurate control.
Figure 5-6 shows that in an ETC scheme, the second plant needs more triggers than
the first one;

e The CAN protocol allows a maximum of 8 bytes of data per frame, and hence for plants
involving more than two states (with floating point representations), a single frame may
not provide enough resolution for transferring state information accurately. Multiple
frames are required, which would increase network usage, and therefore ETC becomes
even more relevant in such cases.

Master of Science Thesis Aniket Ashwin Samant

52 Experimental Results and Discussions

State space regions

55 -

Plant 1 Region
w
o

N

&

[}
LR

]
1
.l
Il

-

8
.l

i

1

[}

-
35 - ' i

w
G
.

.

w
=

Plant 2 Region
.
L
L]

N
o

o
S

H
I3

l..
'

14

Figure 5-3: State space regions of the plants over time. Note the difference in the "frequency"
based on plant dynamics.

5-3 Scalability of Abstraction Models

Since the traffic model involves computing transitions and tracking clock values for each case,
we record the number of states generated by the strategy for increasing numbers of state space
partitions, since this has a direct implication in terms of the scheduler’s memory footprint.

Table 5-2 shows that the number of states stored grows almost ten-fold as we move from 40
partitions for each loop to 50 partitions. Accordingly, the amount of memory consumed while
generating the strategies also increases from ~750 MiB to almost 5.5 GiB. Another point to
note is that the number of states increases by different amounts depending on the control
loop which is partitioned further (for instance, in the two cases wherein the total number of
states is 85, the number of states for one case is more than twice the other).

Timed automata being defined around clock comparisons, each additional clock adds to the
number of states exponentially, and hence the approach is not scalable used as is. Interested
readers may consult [9] for more results on scalability of TGA model-based approaches.

Aniket Ashwin Samant Master of Science Thesis

5-3 Scalability of Abstraction Models 53

State evolution - Plant 1

— x1

States

Plant 1 Input

Figure 5-4: State evolution of plant 1 with periodic triggering. (Period = 200 ms)

Table 5-2: Memory footprint of scheduling strategies

CL 1 partitions CL 2 partitions States stored Virtual memory (KiB)

40 40 186325 750844
40 45 236235 963412
40 50 272242 1102044
45 40 561079 1997540
45 45 702682 2577756
45 50 821923 2978768
50 40 1091524 3621396
50 45 1360620 4688048
50 50 1613242 5478480

Master of Science Thesis Aniket Ashwin Samant

54

Experimental Results and Discussions

4

States

Plant 2 Input

2-
0-
-
4-
0 2 4
0 2 4

State evolution - Plant 2

— x1
— X2

8 10 12 14
Time (s)

Figure 5-5: State evolution of plant 2 with periodic triggering. (Period = 100 ms)

Triggering events

—
o
£
w
0 2 4 6 8 10 12 14
&}
|9
E
w
[' I B [1
0 2 4 6 8 10 12 14
—
v
o
o
=
Q
a
0 2 4 6 8 10 12 14
o~
v
h=]
o
2
[
o
0 2 4 6 8 10 12 14

Time (s)

Figure 5-6: Visualizing CAN network usage by showing triggering instances for the two control
loops in (i) event-triggered, and (ii) periodic control cases. The mean number of triggering signals
per unit time is computed as 0.0889 in the event-triggered case and 0.109 in the periodic case

Aniket Ashwin Samant

Master of Science Thesis

Chapter 6

Conclusions and Recommendations

The main goals of this thesis were: (i) to create TGA models that can be used for generating
scheduling strategies while considering retransmission of data over the network if it is already
in use, and (ii) to demonstrate ETC in a practical setup involving a CAN network and
simulated control loops.

In the various chapters, new TGA models suited for the retransmission requirement were
described for generating scheduling strategies, a LabVIEW framework was created to imple-
ment ETC over a CAN network, and simulation results were shown to demonstrate the idea
as a physical implementation.

A comparison was performed to demonstrate the performance-bandwidth tradeoff between
ETC and periodic control in an NCS environment, especially when implemented over a phys-
ical network. The suitability of CAN was also shown for such applications, while at the same
time the limitations of the new TGA models were shown by recording the memory footprint
for a small increase in complexity.

In this thesis, though a certain approach was followed in terms of the traffic model and the
triggering condition used, the physical implementation is also applicable to other combinations
(for instance, with isotropic partitioning of the state space).

6-1 Directions for Future Work

There are clear directions in which further research can be extended from this thesis, either
in the form of theoretical modifications or practical implementations.

e In the abstraction models used in this thesis, a fundamental assumption is that channel
occupation time (A) does not interfere with the reachability analysis, i.e., it is small
enough to be neglected. But for more accurate representations (and possibly slow
networks), it should be taken into consideration.

Master of Science Thesis Aniket Ashwin Samant

56

Conclusions and Recommendations

The relaxation provided through retransmission of data is considered to be sufficiently
small in terms of the number of attempts and thus not affecting the transition rela-
tions, but in principle it requires a transition map of its own (with additional LMI
computations to gauge the maximum relaxation in terms of clock ticks).

Since this thesis showed an implementation of TGA models on a CAN network involving
LTT systems, the concept can in principle be extended to nonlinear systems as well
(depending on their modelling) [30].

The triggering condition from [23] was not modified in this thesis, but the TGA mod-
els introduced can be combined with different traffic models (such as with a relaxed
triggering condition introduced in [31]).

The CAN protocol was used for implementing the connecting network between the
control loops. There are several other industrial protocols (such as FlexRay, LIN, and
EtherCAT) which can be considered for implementation.

One fundamental assumption that is made in the CAN implementation in this thesis is
that in case of failure to send packets over the network, the CAN driver handles retries
and ensures that packets are sent eventually. However, in wireless ETC implementa-
tions, it may not be guaranteed (depending on the protocol), and implementation of
approaches from [19] can be a direction to follow.

In this thesis, a simple safety objective was considered to generate strategies, and hence
the outcome may be quite conservative in terms of network usage. Pricing (using UP-
PAAL Stratego, for instance) may yield less conservative strategies and incorporating
weights on edges in the TGA models may provide interesting results.

Aniket Ashwin Samant Master of Science Thesis

Appendix A

Code snippets

This appendix consists of relevant code snippets and some implementation details from various
sections of the thesis.

e Regular expression for extracting strategy from raw strings to sets of relevant data
(cf. Section 4-4-4):

{’\nState: \(.*\).*cl[A-z0-9]+\.

from_region=([0-9]+) .*c1[A-z0-9]+\.from_region=([0-9]+) .*\n.x*’
> [\n]*When you are in \((.*)\).*[\n]+([A-z0-9]+)\.Trans.*,
from_region := to_region.*}\n’

e The front panel of simulation loop in LabVIEW is shown in Figure A-1;

e The plants are loaded in LabVIEW from their DLLs and run in a continuous loops as
seen in Figure A-2;

e The code for generating a region’s Q matrices from JSON files in LabVIEW is shown
in Figure A-3;

e Figure A-4 shows how a region can be determined from a given state and the QQ matrices;

e Some type definitions are shown in Figure A-5 and Figure A-6. In Figure A-5, the values
stored by the scheduler across simulation loop iterations are shown - each control loop’s
last determined region, clock value, and ZOH input value;

e Figure A-6 shows the data structure for the generated strategy. Based on the regular
expression, the following information is stored per control loop, per region as a list of
sets:

Master of Science Thesis Aniket Ashwin Samant

58

Code snippets

Note that the "V1 paths” for the plants refer to
paths in the contest of the respective PXI
machines. not on this machine

IMPORTANT! Deploy all files on the PXI
machines in which the plants reside
(Right-click on the target in the project

> Deploy All) before starting this VT

Plant1 V1 path
% Cni-t\startup\Plantl.vi =

Machine1 IP Address
193002

Plant1

Amplitude

-0,00035-§
28

Time.

Plant 1 region

50—

Time

stop main
sToP
rpioto IR
Plot1 IR
pot2 M Plent2
£
E
g

pioto ¥ Plant 2 region

network sceupation time.
oh

CLK absolute upper imit
) 40

Plant 21 path
4 Caniemistartup\Plant2vi 2

Machine 21P address
193004

Time.

Time.

Figure A-1: Front panel of simulation loop

— Lower and upper clock bounds,
— If the clock values of the control loops need to be equal,

— If the clock values are related by an inequality (for instance, CLK1—-CLK2 < 22),

— The control loop to be triggered as per the strategy;

piot0 IR

Given a region, its list of such sets is retrieved from the strategy JSON file loaded
before the simulation loop begins execution. For each control loop, these conditions are
checked - if all conditions are met, and the resulting loop to be triggered has the same
value from both control loops’ conditions, that loop is triggered over the CAN network.

Aniket Ashwin Samant

Master of Science Thesis

59

Model Period (s)

[The plant s an LTI system implemented a5 a Simulink model,
it s invoked in this loop using NI Model Interface Toolkit

Pericd for scheduler loop (ms) me
eriod for scheduler loop (ms)
B b L
= & Bus data
=] Waveform Chart
2 =]
[i; Plant1_state.
f 7
[3.\plant1_start 23 dIl ;i XNET Session (]
i e
L Plant]_input |-
ertorin (no error) i Plntt_inp

$| fEeenorout
Signal Single-point |
i stop[FeF - [@)
-
Blant aodd [This timed loop is to simulate the dynamics of the plant,
ot mode [The controller resides in another machine and updates the control input
(K0 when triggered, and updates the corresponding signal on the CAN bus.
|Until then, computer control action value is used as the plant input.
Figure A-2: Running a plant model in LabVIEW
Q matrix JSON string
| abe : num) matrices
r{#DEL
Region
I DELH
() Matrices
T
I roeree o ioeL]

I I 4 FDEL]

Q]

b fDBL]
—'Usu"} error out
W(J =
=

; TisoN
error in (no error) H

= 3 3

Figure A-3: Generating Q matrices for a region in LabVIEW

[terate over all Q) matrices asseciated with each region and check if
for all Q-matrices, x"T.Q x <= 0. f so, that's the region we're in

e
(] [l

Q Matrices@ i

...... L "‘ib

State@m

Regionsl [13‘}:

Index Array

=]

A #i6L] Region

Figure A-4: Code for determining the current region

Master of Science Thesis Aniket Ashwin Samant

60 Code snippets

iegional cluster

Figure A-6: Typedef for

Figure A-5: Typedef of th
igu ypeder or the scheduler strategy

scheduler’s held information

Aniket Ashwin Samant Master of Science Thesis

1]

[10]

[11]

[12]

Bibliography

J. Lunze and L. Griine, Introduction to Networked Control Systems, pp. 1-30. Heidelberg:
Springer International Publishing, 2014.

D. Adzkiya and J. Mazo, Manuel, “Scheduling of Event-Triggered Networked Control
Systems using Timed Game Automata,” arXiv e-prints, p. arXiv:1610.03729, Oct 2016.

W. P. M. H. Heemels, M. C. F. Donkers, and A. R. Teel, “Periodic event-triggered control
for linear systems,” IEEE Transactions on Automatic Control, vol. 58, pp. 847-861, April
2013.

C. Fiter, L. Hetel, W. Perruquetti, and J.-P. Richard, “A state dependent sampling for
linear state feedback,” Automatica, vol. 48, no. 8, pp. 1860 — 1867, 2012.

T. Koshy, “Chapter 11 - formal languages and finite-state machines,” in Discrete Math-
ematics with Applications (T. Koshy, ed.), pp. 733 — 802, Burlington: Academic Press,
2004.

A. David and K. Larsen, “A tutorial on uppaal 4.0,” 01 2006.

G. Behrmann, A. Cougnard, R. David, E. Fleury, K. G. Larsen, and D. Lime, “Uppaal
tiga user-manual.”

National Instruments, NI-XNET Hardware and Software Manual, 7 2014.

P. Schalkwijk, “Automating scheduler design for networked control systems with event-
based control,” Master’s thesis, 2019.

S. Bennett, “A brief history of automatic control,” IEEE Control Systems Magazine,
vol. 16, no. 3, pp. 17-25, 1996.

W. P. M. H. Heemels and N. van de Wouw, Stability and Stabilization of Networked
Control Systems, pp. 203-253. London: Springer London, 2010.

K. G. Shin and P. Ramanathan, “Real-time computing: a new discipline of computer
science and engineering,” Proceedings of the IEEE, vol. 82, pp. 6—24, Jan 1994.

Master of Science Thesis Aniket Ashwin Samant

62

Bibliography

[13]

[14]

[15]

[16]

23]

[24]

[25]

[26]

[27]

[28]

G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications. USA: Kluwer Academic Publishers, 1997.

R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer Science,
vol. 126, no. 2, pp. 183 — 235, 1994.

P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks,” IEEE
Transactions on Automatic Control, vol. 52, pp. 16801685, Sep. 2007.

M. Mazo Jr., A. Sharifi-Kolarijani, D. Adzkiya, and C. Hop, Abstracted Models for
Scheduling of Event-Triggered Control Data Traffic, pp. 197-217. Cham: Springer Inter-
national Publishing, 2018.

W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to event-
triggered and self-triggered control,” in 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC), pp. 3270-3285, Dec 2012.

A. Girard, “Dynamic triggering mechanisms for event-triggered control,” IEEE Trans-
actions on Automatic Control, vol. 60, pp. 1992-1997, July 2015.

X. Wang and M. D. Lemmon, “Event-triggering in distributed networked systems with
data dropouts and delays,” in Hybrid Systems: Computation and Control (R. Majumdar
and P. Tabuada, eds.), (Berlin, Heidelberg), pp. 366-380, Springer Berlin Heidelberg,
2009.

G. de A. Gleizer and M. Mazo, “Self-triggered output feedback control for perturbed
linear systems,” IFAC-PapersOnLine, vol. 51, no. 23, pp. 248 — 253, 2018. 7th IFAC
Workshop on Distributed Estimation and Control in Networked Systems NECSYS 2018.

P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach. 06 2009.

A. Sharifi Kolarijani and M. Mazo, “Formal traffic characterization of 1ti event-triggered
control systems,” IEEE Transactions on Control of Network Systems, vol. b, pp. 274-283,
March 2018.

G. de Albuquerque Gleizer and M. M. Jr, “Scalable traffic models for scheduling of linear
periodic event-triggered controllers,” 2020.

A. Fu and M. Mazo, “Traffic models of periodic event-triggered control systems,” IEEE
Transactions on Automatic Control, vol. 64, pp. 3453—-3460, Aug 2019.

A. Chutinan and B. H. Krogh, “Computing polyhedral approximations to dynamic flow
pipes,” 1998.

T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic model checking for real-
time systems,” Information and Computation, vol. 111, no. 2, pp. 193 — 244, 1994.

J. Bengtsson and W. Yi, Timed Automata: Semantics, Algorithms and Tools, pp. 87-124.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

Y. Abdeddaim, E. Asarin, and O. Maler, “Scheduling with timed automata,” Theoretical
Computer Science, vol. 354, no. 2, pp. 272 — 300, 2006. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2003).

Aniket Ashwin Samant Master of Science Thesis

63

[29] J. Krammer, P. Bornat, G. Dengel, S. Kuttenkeuler, R. Lukas, K. Oberhofer, J. Ruh,
J. Stroop, and H. Quecke, “FIBEX — An Exchange Format for Networks Based on Field
Busses,” in 2nd Embedded Real Time Software Congress (ERTS’04), (Toulouse, France),
2004.

[30] G. Delimpaltadakis and M. Mazo, “Isochronous partitions for region-based self-triggered
control,” IEEE Transactions on Automatic Control, pp. 1-1, 2020.

[31] A. Szymanek, G. Gleizer, and M. Mazo Jr, “Periodic event-triggered control with a
relaxed triggering condition,” pp. 1656-1661, 12 2019.

Master of Science Thesis Aniket Ashwin Samant

64 Bibliography

Aniket Ashwin Samant Master of Science Thesis

List of Acronyms

RR
EDF
FP
CAN
NCS
LTI
ETC
PETC
LMI
TGA
NTGA
ECU
IET
RTOS
Z0H

Round-robin

Earliest deadling first
Fixed-priority

Controller Area Network
Networked Control System
Linear Time-Invariant
Event-Triggered Control
Periodic Event-Triggered Control
Linear Matrix Inequality

Timed Game Automata

Network of Timed Game Automata
Engine Control Unit

Inter-Event Time

Real-Time Operating System

Zero-Order Hold

Master of Science Thesis

Glossary

Aniket Ashwin Samant

66 Glossary

Aniket Ashwin Samant Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Notation
	Organization

	Theoretical Preliminaries
	Event-Triggered Control
	Periodic Event-Triggered Control

	Traffic Models
	State Space Partitioning
	Inter-Event Time Bounds Construction
	Transition Relations

	Timed Automata for Constructing Abstractions
	An Introduction to Timed Automata
	Parallel Composition
	Timed Game Automata
	Runs and Strategies

	Controller Area Network (CAN) Bus
	Relevant Terminology
	CAN Operation

	Modelling through Abstractions and Scheduling Strategies
	Abstraction of Control Systems
	Modelling Using ETC Abstractions
	Network TGA Model
	Control Loop TGA Model
	Modelling as NTGAs
	Caveats

	Scheduling Strategies
	Safety Objective
	Limiting Early Triggers

	Hardware Setup and Software Toolchain
	Hardware Setup and System Overview
	Hardware Components
	System Overview

	Software Toolchain
	Generating Abstractions and Strategies
	Simulation Environment and Strategy Parsing

	Offline Software Flow
	Region Maps and Transition Relations
	Abstraction Models
	Strategy Generation

	Simulation System
	Plant and Controller Models
	CAN Network Communication
	State Space Region Determination
	Scheduler
	Online Simulation Loop

	Experimental Results and Discussions
	Plant Models
	Simulation Results and Discussions
	Scalability of Abstraction Models

	Conclusions and Recommendations
	Directions for Future Work

	Appendices
	Code snippets

	Back Matter
	Bibliography
	Glossary
	List of Acronyms

