

Delft University of Technology

Systematic review on neural architecture search

Salmani Pour Avval, Sasan; Eskue, Nathan D.; Groves, Roger M.; Yaghoubi, Vahid

DOI
10.1007/s10462-024-11058-w
Publication date
2025
Document Version
Final published version
Published in
Artificial Intelligence Review

Citation (APA)
Salmani Pour Avval, S., Eskue, N. D., Groves, R. M., & Yaghoubi, V. (2025). Systematic review on neural
architecture search. Artificial Intelligence Review, 58(3), Article 73. https://doi.org/10.1007/s10462-024-
11058-w

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10462-024-11058-w
https://doi.org/10.1007/s10462-024-11058-w
https://doi.org/10.1007/s10462-024-11058-w

Accepted: 29 November 2024
© The Author(s) 2024

 Sasan Salmani Pour Avval
S.Salmanipouravval@tudelft.nl

1 Aerospace Structures and Materials, Faculty of Aerospace Engineering, Delft University of
Technology, Delft, Netherlands

2 Q-VAIbe group, Aerospace Structures and Materials, Faculty of Aerospace Engineering, Delft
University of Technology, Delft, Netherlands

Systematic review on neural architecture search

Sasan Salmani Pour Avval1,2 · Nathan D. Eskue1 · Roger M. Groves1 · Vahid Yaghoubi1,2

Artificial Intelligence Review (2025) 58:73
https://doi.org/10.1007/s10462-024-11058-w

Abstract
Machine Learning (ML) has revolutionized various fields, enabling the development of
intelligent systems capable of solving complex problems. However, the process of manu-
ally designing and optimizing ML models is often time-consuming, labor-intensive, and
requires specialized expertise. To address these challenges, Automatic Machine Learning
(AutoML) has emerged as a promising approach that automates the process of selecting
and optimizing ML models. Within the realm of AutoML, Neural Architecture Search
(NAS) has emerged as a powerful technique that automates the design of neural network
architectures, the core components of ML models. It has recently gained significant at-
traction due to its capability to discover novel and efficient architectures that surpass
human-designed counterparts. This manuscript aims to present a systematic review of the
literature on this topic published between 2017 and 2023 to identify, analyze, and classify
the different types of algorithms developed for NAS. The methodology follows the guide-
lines of Systematic Literature Review (SLR) methods. Consequently, this study identified
160 articles that provide a comprehensive overview of the field of NAS, encompassing
discussion on current works, their purposes, conclusions, and predictions of the direction
of this science branch in its main core pillars: Search Space (SSp), Search Strategy (SSt),
and Validation Strategy (VSt). Subsequently, the key milestones and advancements that
have shaped the field are highlighted. Moreover, we discuss the challenges and open is-
sues that remain in the field. We envision that NAS will continue to play a pivotal role in
the advancement of ML, enabling the development of more intelligent and efficient ML
models for a wide range of applications.

Keywords Neural architecture search (NAS) · Search space (SSp) · Search strategy
(SSt) · Validation strategy (VSt) · Systematic literature review (SLR)

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-024-11058-w&domain=pdf&date_stamp=2024-12-24

S. Salmani Pour Avval et al.

1 Introduction

Since the advent of Machine Learning (ML) and Artificial Intelligence (AI), several break-
throughs have been made in the software Targ et al. (2016); Zhu and Newsam (2017); Dil-
lon et al. (2017) and the hardware Barnell et al. (2022); Ditty (2022); Cook (2012). Along
with a wide range of application approaches in AI and optimization have been explored
across various engineering fields, including bio-medical engineering Giveki and Karami
(2020); Rastegar and Giveki (2023); Rastegar et al. (2024), mechanical engineering Hu
et al. (2021); Yaghoubi and Kumru (2024); Yaghoubi et al. (2022), process engineering
Salmanipour et al. (2023), material science Caglar et al. (2022), etc. All are pointed to
improve the performance of models in the sense of accuracy, training time, energy con-
sumption, etc., to allow the improvement of faster and cheaper AI models and hardware for
different applications. However, since different datasets (e.g. 1-D vibration dataset Mey et
al. (2020), 2-D MNIST LeCun et al. (2010), 3-D RGB images like CIFAR-10 Krizhevsky
and Hinton (2009), or 4-D RGBD images Silberman and Fergus (2011)) have different
dimensions and information types, neither method nor model can be used for all datasets;
therefore, one should alter either the method or the (hyper)parameters to be able to train on
a new dataset. Analyzing data, changing the architecture, and tuning the (hyper)parameters
can make a huge difference in the performance of the AI models. Therefore, the model’s
performance highly depends on the experience of the developer in AI to design the archi-
tecture, and the background knowledge in the applied field to understand the data Yaghoubi
et al. (2022). Furthermore, the developer needs to have a good knowledge of optimizing
the model to generate the optimized model for a dataset. To solve this problem, Automatic
Machine Learning (AutoML) was introduced as a new solution in ML to develop an opti-
mized model automatically. For this purpose, the whole hyperparameters associated with AI
models, e.g. learning, architecture, optimizer, operations in layers, data analysis, etc., during
the learning process will be optimized Zhao et al. (2021a). For instance, Lange et al. Lange
and Riedmiller (2010) used a reinforcement learning algorithm to change the numbers of
units in a Multilayer Perceptron (MLP) model to increase the performance and decrease the
validation error.

When convolutional neural networks became popular, researchers also tried to bring
auto-tuning algorithms to these models. The convolutional neural fabric Saxena and Ver-
beek (2016) was one of the first attempts in this area in which a 3D trellis of layers, scales,
and kernels was created as a search space for the algorithm to find the proper network. The
algorithm searched for the best pipeline in this 3D Search Space that eventually defines the
network. Fig. 1 demonstrates a simplified version of this method with a 2D search space
of scales and layers. In this figure, models A and B have been created using different paths
in the search space. The first layer of both models is appointed by “Input” during the opti-
mization each of them followed different paths to the “Output” which is the output of the
networks. The result of the procedure is two models shown in the right image.

As neural networks gained popularity for their ability to model complex patterns and
make accurate predictions, the need for optimized architectures became apparent. This led
to the development of Neural Architecture Search (NAS) Zoph and Le (2016), a specialized
branch of AutoML, dedicated to automating the process of finding the most effective neural
network architecture. It was initiated by the work of Zoph and Le Zoph and Le (2016) in
which a reinforcement learning algorithm was developed to make an architecture with the

1 3

 73 Page 2 of 38

Systematic review on neural architecture search

highest validation accuracy but with the expense of 800 Graphics Processing Unit (GPU)s
for an image classification dataset. This means the models designed by the NAS algorithm
can outperform models designed manually Zoph et al. (2018). In addition, NAS can be
adjusted to generate the most accurate, lightest, and/or fastest models for image classifica-
tion Real et al. (2019b), object detection Zoph et al. (2018), or semantic segmentation Liu
et al. (2019). Furthermore, the NAS algorithms can optimize models for Internet of Things
(IoT) devices as well as Microcontroller Unit (MCU)s Lin et al. (2020); Saha et al. (2022).
However, NAS requires a computing power that is not accessible to all industries and peo-
ple. Therefore, the main goal of NAS was pushed toward making it computationally cheaper
in the sense of time and memory usage.

The rest of the paper is outlined as follows: In section 2, the materials and methods used
in this study will be presented. In section 3, basic knowledge of the NAS algorithms will
be introduced. In Sect. 4, the improvements achieved by different researchers will be elabo-
rated on. In Sect. 5 a discussion and in Sect. 6 a conclusion is provided.

2 Materials and methods for systematic literature review

This paper aims to introduce a systematic review of NAS algorithms as well as a discus-
sion on current works, their purposes, conclusions, and predictions of the direction of this
science branch. In this study, we used the methodologies of Systematic Literature Review
(SLR) Keele (2007); García-Holgado et al. (2020). A SLR is a comprehensive and unbiased
review of the literature on a particular topic; it involves identifying, evaluating, and syn-
thesizing all relevant research on the topic. Within this section, you can find sources, tools,
review plans, research questions, and review processes that are used in this article.

2.1 Tools

For preparing a systematic literature review, we used Parsifal (https://parsif.al/) as a s y s t e m
a t i c review manager and Mendeley (https://www.mendeley.com/) as a reference manager.
Also, we used Overleaf (https://overleaf.com/) as a text editor, Inkscape (h t t p s : / / i n k s c a p e
. o r g /) for drawing figures, and RStudio (https://pos it.co/produ cts/open-so urce/rst udio/) for
plotting.

Fig. 1 Convolutional Neural Fabric Saxena and Verbeek (2016): on the left, there is the simplified search
space and on the right, there are two different models with different colors that are generated by the paths
which are illustrated in the search space

1 3

Page 3 of 38 73

https://parsif.al/
https://www.mendeley.com/
https://overleaf.com/
https://inkscape.org/
https://inkscape.org/
https://posit.co/products/open-source/rstudio/

S. Salmani Pour Avval et al.

2.2 Sources

The review process is illustrated in Fig. 2 using a PRISMA diagram Moher et al. (2009) to
show the searching process clearly. Both journal and conference papers are considered due
to the publishing culture in computer science. First of all, some digital libraries were selected
due to their popularity on NAS. As shown in the PRISMA diagram in Fig. 2, between 2017
and mid-2023, 3508 papers were found in the following digital libraries, 620 published in
Institute of Electrical and Electronics Engineers (IEEE), 551 published in Association for
Computing Machinery (ACM), 1011 published in Web of Science (WOS), 669 published
in ScienceDirect (SD), and 657 published in Scopus. The query string used for this search
was “Neural Architecture Search (NAS),” “architecture searching algorithm,” and “predict
performance.” After eliminating duplicated publications, pruning non-related papers, and
adding our pre-studied papers to this collection, 160 papers were accumulated.

Figure 3, shows how fast NAS algorithms are getting popular among researchers, with
more than 3000 papers between 2017 and mid-2023 in mentioned digital libraries. Further-
more, the geographical distribution of the NAS researchers worldwide, is shown in Fig. 4.
It indicates that the US and China are leading the field by contributing to more than half of
the relevant papers.

2.3 Research questions

The main research questions that we aimed to answer in this paper are (reasons that these
questions are being elaborated exist in section 3):

Fig. 2 PRISMA Diagram Moher et al. (2009) on NAS. The ’n’ indicates the number of papers for each
step. At the beginning of the process, various papers have been gathered from different digital libraries.
then, the gathered papers were filtered using different properties of them that were defined in every box.
In the end, 160 papers were selected and studied to satisfy the needs of this systematic review paper

1 3

 73 Page 4 of 38

Systematic review on neural architecture search

1. What specific improvements did each paper make in the NAS field to achieve better
performance?

2. How long does the developed NAS algorithm take to reach the optimized model?
3. How good is the NAS algorithm in finding the optimized architecture?

2.4 Criteria

After defining the research questions, we need to define the inclusion criteria as clearly as
possible and exclude otherwise. They are listed as follows,

(i) The papers advance the main NAS pillars, i.e. Search Space, Search Strategy, and Vali-
dation Strategy (elaborated in section 3), AND

(ii) The papers are available to download or review in full under the license from Delft
University of Technology (TU Delft) AND

(iii) The papers are written in English

Fig. 4 Geographical distribution of NAS
researchers around the world

Fig. 3 Conference and journal papers on
NAS till September of 2023

1 3

Page 5 of 38 73

S. Salmani Pour Avval et al.

3 Basic knowledge

Neural Architecture Search (NAS), as a subset of AutoML, is a framework for optimizing
hyperparameters related to the architecture of Neural Network (NN) models Del Valle et al.
(2023). It has three interconnected pillars as shown in Fig. 5:

Search Space (SSp): It is the space of all possible architectures, layers, hyperparameters,
etc. for making a model.

Search Strategy (SSt): It is an optimization problem determining how to explore the SSp
to make an architecture or model with the best performance. The choice of SSt can have a
significant impact on the efficiency and effectiveness of the search process.

Validation Strategy (VSt): It determines how to assess the performance of each archi-
tecture or model during the SSt. For this purpose, the dataset is divided into training and
validation sets to be used for training a model and evaluating its performance, respectively.
The results of the VSt can be directly fed into SSp and SSt for their modifications Zhang et
al. (2021a); Elsken et al. (2019).

To understand the NAS algorithm more in detail, the following subsections describe the
three main pillars and the methods that have been developed in each one. Figure 6 gives an
overview of these different methodologies.

3.1 Search space

Search Space (SSp) is a space containing all hyperparameters of a model, such as layer
types, layer connections, activation functions, kernel sizes, kernel numbers, etc. Such an
SSp ensures the presence of the optimized model, but can simply lead to an infinite space
that is impossible to make and explore. In practice, some constraints should be imposed
on the SSp to limit its size to reduce the searching time and push the SSt toward the near-
optimal architecture. In this regard, one commonly used approach is that instead of having
a single layer as a selection unit from SSp, a set of connected layers, called a cell, will be
chosen. This means the SSp will affect the architecture of the near-optimal model as well
as its performance. For instance, the type of numbers of operations, connections, and layers
can dictate the latency and accuracy of the optimized model Mao et al. (2021).

Layer-based Search Space (figure 7a):
In the layer-based architectures each layer, as the selection unit, can only be connected

to its immediate layers. In other words, the optimizer has to look for in-series architecture
in the SSp, as shown in (figure 7a). For instance, in FBNet Wu et al. (2019) the depth of the
model has been fixed to 22 layers and each layer type can be chosen from the nine specific

Fig. 5 Neural architecture search

1 3

 73 Page 6 of 38

Systematic review on neural architecture search

options, e.g. skip connections, convolutional layers with different kernel sizes, etc. Giving
limited options with fixed layer types reduced the searching time by reducing the SSp.

Hierarchical-based Search Space (figure 7b):
In the hierarchical-based architecture besides in-series connections, a model can have

parallel branches and skip connections, as shown in Fig. 7b. Therefore, this leads to a larger
SSp and thus, some techniques need to be employed to reduce it and in return, to speed up
the procedure Tan et al. (2019); Li et al. (202c0).

Cell-based Search Space (figure 7c):
In the cell-based architecture the selection unit is a cell that will be connected in series to

create models with different sizes. However, the layers in each cell are connected in a hier-
archical fashion (Fig. 7c). This means, in this approach, we have the benefits of hierarchical
connections but with smaller SSp because of the cell-based selection Liu et al. (2018b).

Even though limiting the architecture’s layers and connections can decrease the search
time, some algorithms try to modify the SSp according to some restrictions (e.g. memory,
processing, latency, accuracy limitations) while optimizing the model Lin et al. (2021,
2020); Liu et al. (2018b); Huang et al. (2021). Lin et al. Lin et al. (2021) showed that layers’
size as well as their place or order in the network can change memory usage intensively. For
instance, Fast Probabilistic NAS or FP-NAS Yan et al. (2021) was proposed to explore the

Fig. 6 Different methodologies adopted in each pillar of the NAS algorithms and each will be elaborated
further

1 3

Page 7 of 38 73

S. Salmani Pour Avval et al.

Fig. 7 Different Search Space (SSp) connection possibilities: a Layers-based Wu et al. (2019): layers in
series (no parallel or skip), b Hierarchical-based Zhu and Newsam (2017): layers in series, parallel, or
skip, c Cell-based Liu et al. (2018b): connections within one cell are Hierarchical-based but between the
cells are in series (cells with same colors have the same structure – means that this architecture has two
types of cells)

1 3

 73 Page 8 of 38

Systematic review on neural architecture search

SSp adaptively using probabilistic learning together with an adaptive sampling algorithm
that could shrink down the SSp and thus speed up the optimization. As a result, the opti-
mized model needed less memory and fewer numbers of Floating Point Operations (FLOPs).
CP-NAS (Child-Parent NAS) Zhang et al. (2021a) and DARTS (differentiable architecture
search) Liu et al. (2018a) developed continuous variables for each connection between lay-
ers. The optimizer continuously changes the variables using gradient-based methods to find
the best suitable connections by emphasizing the important connections with higher values.
This method worked faster to find optimized connections in the dictated SSp. The problem
is that restricting options like the number of layers or the types of layers can be problematic
because it forces the algorithm to search for models with a specific level of complexity and
depth. This can make the optimization process more challenging, as can be seen in DARTS
Liu et al. (2018a). But some researchers believe that having complex cells and then pruning
the SSp can speed up the process of finding the best architecture by using less computing
power Liu et al. (2018b); Loni et al. (2020); Hong et al. (2021) instead of limiting the SSp.
On the other side of the coin, using the limited SSp for the NAS algorithm has some benefits
like helping the optimizer to find models for specific applications (like light models for dif-
ferent hardware) by defining some special operations like layers and connections Mao et al.
(2021) to reach models with specific properties such as memory usage.

3.2 Search strategy

Search Strategy (SSt) defines how to explore the SSp. Its main goal is to construct the
best model for a given dataset from a vast pool of models available in the SSp. To achieve
this goal, a well-designed SSp in conjunction with a proper optimizer as SSt should be
employed in NAS algorithms. Several popular SSts are available in the literature such as
Random Search, Bayesian Optimizer, Evolutionary Algorithms, Reinforcement learning,
Gradient-based optimizer, etc. that will be discussed in the following. As can be seen in
figure 8, the popularity of different optimizers is changing over time. Bayesian Optimizer
got popular because of their convergence speed but they need to reformulate the Search
Space which makes the problem more complex. Evolutionary Algorithms is one of the most
popular methods which uses a population-based optimization method and can ensure high
effectiveness. Gradient-based optimizers are getting more popular because of their Graphics
Processing Unit (GPU) friendly methodology. This method can be run on the GPU which
is faster than Central Processing Unit (CPU) when using large datasets and matrix calcula-
tions. Random Search is easy to use but not efficient. Reinforcement learning based methods
lost popularity because they need a lot of effort to find the best model for a dataset which
needs a lot of time for validation but, by introducing cheap and fast validation techniques,
it regained its position. Table 1 gives a high-level comparison between these techniques.

3.2.1 Random search

Random Search (RS) is a numerical method that is normally used on discrete problems
Li and Talwalkar (2020); Wen et al. (2020). This optimizer is easy to implement but is the
slowest one for the NAS algorithms, therefore, it found very limited applications in this
field. This method is mainly used when the goal is to develop a Validation Strategy and its
performance should be independent of SSt Abdelfattah et al. (2021).

1 3

Page 9 of 38 73

S. Salmani Pour Avval et al.

3.2.2 Gradient-based optimizer

Gradient-based optimizer (GO) algorithms rely on the derivate or gradient of the Objective
Function (OF) to update the parameters/hyperparameters iteratively in the direction of its
maximum or minimum Pham et al. (2018). This will contribute to a faster exploration of the
SSp for finding the optimal architecture by NAS. These methods can work well for differen-
tiable objective functions where gradients can be readily computed. Therefore, this type of
approach, such as DARTS Liu et al. (2018a), needs to compensate for the discrete nature of
the SSp in searching for the optimized model.

Due to the iterative nature of the GO methods, they are considered computationally
expensive algorithms. However, GPUs can be leveraged for solving this problem Dong and
Yang (2019). As a result, GO algorithms are becoming popular because they are faster on a
GPU than CPU.

Table 1 High-level comparison of different Search Strategies (D and C stand for Discrete and Continuous,
respectively)

Fig. 8 Percentage of different optimizers used in SSt of NAS algorithms

1 3

 73 Page 10 of 38

Systematic review on neural architecture search

3.2.3 Bayesian optimizer

The Bayesian Optimizer (BO) is a widely used optimization technique that utilizes prob-
abilistic models to approximate the OF and select the next set of hyperparameters. It is
particularly effective when the OF is not necessarily continuous and/or its evaluation is
computationally expensive as it is in NAS; since it minimizes the number of evaluations
needed to optimize the hyperparameters Jin et al. (2019).

3.2.4 Evolutionary algorithms

Evolutionary Algorithms (EA) are a class of optimizers inspired by principles from bio-
logical evolution and genetics. It was first used to obtain a proper architecture for neural
networks in Elsken et al. (2018). To adapt EA to the NAS algorithms to find the best archi-
tecture the following steps should be taken:

 ● Population generation: some architectures should be chosen as an initial population;
 ● Performance evaluation: the algorithm will evaluate the population’s performance based

on some metrics such as accuracy, complexity, and resource requirement;
 ● Population evolution: some models will be chosen based on selection techniques, such

as tournament selection Real et al. (2019b) or fitness proportionate selection Lopes and
Alexandre (2022), to evolve and make the next generations;

 ● Termination criteria: this evolutionary procedure continues until a termination criterion,
such as a predefined error or a maximum number of generations, is met.

3.2.5 Reinforcement learning

Reinforcement learning (RL) Kaelbling et al. (1996) algorithms work through the reward
and penalties from the feedback which in NAS is provided by the Validation Strategy. The
agent who is looking for the answer to the optimization problem tries to find the goal by
gaining the most possible rewards in an interaction with the environment. In the scope of
NAS, an RL agent interacts with the neural network environment in the SSp of the NAS
algorithm Real et al. (2019b); Zoph and Le (2016); Cassimon et al. (2020) and learns to find
the optimized architecture based on feedback that can be one of several or more evaluation
metrics, such as accuracy, complexity, latency, etc. For instance, in Zoph and Le (2016), the
problem was defined as an RL agent that tries to optimize a specific objective like accuracy
by selecting architectural components. The agent modifies its policy based on how created
architectures perform on VSt pillar. Due to the necessity of evaluating each generated archi-
tecture, RL-based NAS approaches demand a large amount of computational power. This
approach is enabled to progressively refine its decision-making abilities and uncover novel
architectural configurations that outperform existing models.

3.3 Validation strategy (or proxies)

The most time-consuming step in NAS algorithms is the Validation Strategy (VSt) pillar,
which assesses the performance of a model through the Objective Function (OF) and gives
it as feedback to SSt or SSp. This value indicates how good the architecture would perform

1 3

Page 11 of 38 73

S. Salmani Pour Avval et al.

on the data at hand from the perspective of the OF. Several methods have been proposed in
the literature as VSt. The most straightforward approach is to train each model from scratch
on the training dataset for a pre-determined iteration (n) and then assess the model’s perfor-
mance on the validation dataset. This approach which will be referred to as training-based
Zoph and Le (2016), is the most accurate one but computationally very expensive. There-
fore, the research trend here is to reduce the computational cost of this stage by approximat-
ing the performance of a model on the validation dataset. This is why it is sometimes called
proxies in the literature Mellor et al. (2021). The proposed methods can be categorized as
full training (training-based) Zoph and Le (2016), partial training Li et al. (2017); Zoph et
al. (2018); Zela et al. (2018); Falkner et al. (2018); Real et al. (2019a); Runge et al. (2018);
Trofimov et al. (2020); Elsken et al. (2019); Pham et al. (2018); Liu et al. (2018a); Xie et al.
(2018), adaptive training Swersky et al. (2014); Domhan et al. (2015); Klein et al. (2016);
Baker et al. (2017); Jeong et al. (2022) and no training (zero-shot) Gracheva (2021); Mellor
et al. (2021). Table 2 compares the required training iteration for these different methods
schematically. You can find a comparison of some proxies in White et al. (2021b).

In the following section, we will elaborate on different VSt techniques.

3.3.1 Full training

In this approach, every single architecture proposed by the SSt will be fully trained (for n
epochs as you can find in Table 2) before assessing its performance on the validation dataset.
Therefore, it compares the exact performance of the models but with the cost of an exhaus-
tively long training time Zoph and Le (2016).

3.3.2 Partial training

In this approach, the models will be trained for r < n iterations (Table 2). The r iterations
can be done for each model from scratch (type I) or the model could inherit its weights from
another model and then be trained for extra r iterations (type II). The former is also called
low fidelity and was introduced to reduce the computational burden and thus, speed up the
searching procedure. For instance, the performance of each model on the validation dataset
was assessed after its training for a few epochs in Zimmer et al. (2021); Trofimov et al.
(2020). The second type, Weight Sharing or Inheritance, aims to reduce the training time by
sharing the weights from one model to the next one, thus new models never need training
from scratch to be validated for the NAS algorithm Liu et al. (2018a). This category can be
implemented in four ways:

 ● One-time training of a huge architecture (SuperNet) and then using its different parts as

Table 2 Comparison of different Validation Strategy (VSt) methods from the training time perspective

1 3

 73 Page 12 of 38

Systematic review on neural architecture search

smaller models (SubNets) Liu et al. (2018a),
 ● Training small architectures (SubNets) and then sharing their weights with a bigger

architecture that contains all the small models (SuperNet) Chen et al. (2021a),
 ● Sharing weights just in the generation moment of a model by the saved models Wan et

al. (2020), and
 ● Transferring weights from one model to other ones which are more suitable with algo-

rithms like EA optimizers in which the optimizer uses some previous models to gener-
ate new ones Wan et al. (2020).One of the most famous pieces of literature is ENAS
Pham et al. (2018) which introduced a novel parameter-sharing technique. The proposed
search strategy seeks to identify an optimized SubNet within the SuperNet architecture.
By employing this method, connections can be shared among distinct SubNets, utilizing
a single directed acyclic graph (DAG) Li et al. (2022).

3.3.3 Adaptive training (processing learning curve)

In this approach, the model trains from scratch but the number of iterations depends on the
behavior of the learning curve. A learning curve is a curve that shows how the accuracy or
loss of the model changes over training iterations. Analyzing this curve can help us predict
whether the model is converging to a reasonable performance during the early stages of the
training step. For instance, Jeong et al. Jeong et al. (2022) introduced performance metrics
based on the depth and flatness of the loss value during the training step.

3.3.4 Zero-Shot (zero-cost)

All the VSt methods mentioned above require some level of training for a model. Since
NAS algorithms normally handle hundreds or even thousands of models, even some train-
ing iterations for each model could lead to an untractable search time. Therefore, research-
ers are looking for methods that can provide a score for each model as an indicator of the
model’s performance. These methods which are mostly based on mathematical algorithms
related to data and/or model architecture Mellor et al. (2021), can reduce the validation time
of the NAS algorithm to close to zero seconds Lin et al. (2021); Fan et al. (2023).

4 Literature

For shortlisting the papers for this section we used Systematic Literature Review (SLR)
because this method starts with wide open keywords in the field and filters papers step by
step by logical conditions and can eliminate the human preferences in the paper collecting.

Using NAS for finding an optimized model normally needs lots of time, memory, and
energy. Therefore, the recent trend is to minimize its cost by modifying at least one of its
three pillars (search space, search strategy, and validation strategy as shown in Fig. 5) to
increase its efficiency and effectiveness and decrease its computational demand. Also, these
improvements are heading to the point that hardware specifications are taken into account
such that one can optimize AI models by NAS algorithm for devices with limited computa-
tional power and memory size e.g. edge devices and microcontrollers.

1 3

Page 13 of 38 73

S. Salmani Pour Avval et al.

4.1 Comparing NAS algorithms

Over the years, several different algorithms have been developed in the field of NAS that
will be compared and discussed in this section. To compare their performance, some met-
rics and benchmarks need to be first defined. Performance metrics are essential tools for
evaluating the effectiveness of models. They provide quantitative measures of a model’s
ability to achieve its intended purpose, such as classification accuracy, prediction error, or
energy efficiency. The choice of performance metrics depends on the specific application
and the desired outcomes. Benchmarks are evaluation frameworks that provide a structured
and comparable basis for assessing NAS algorithm performance. They typically contain a
defined SSp, VSt information, and performance metrics; allowing researchers to compare
the performance of a model with any other model, systematically and objectively.

4.1.1 Performance metrics and menchmarks

Each benchmark provides several parameters that can be used as performance metrics. The
following is the definition of these metrics.

 ● Accuracy: The proportion of correct predictions made by a model.
 ● Loss: The difference between the predicted values and the actual values.
 ● Latency: the amount of time that takes for a model to process and react to an input;

lower latency indicates faster processing (it relates to real-time performance and re-
sponsiveness)

 ● FLOPs: number of Floating Point Operations that a model needs to process an input
 ● Energy: the required amount of energy needed to run a model on a specific hardware
 ● Training Time: the required time for training a model for a specific number of iterations
 ● Trained Parameters: the values of trained weights.These metrics can be considered as

some specifications of benchmarks in the NAS algorithms. Table 3 demonstrates some
NAS benchmarks available for image classification tasks. It also shows the metrics and
features included in each benchmark.

For instance, in table 3, we can see that Nas-Bench-101 Ying et al. (2019) has a SSp consist-
ing of 15 × 103 models with Cell-based architectures. These models are trained on CIFAR-
10 and CIFAR-100 datasets but not on ImageNet and the following metrics are reported:
1. accuracy on Validation data (Val. Acc.) 2. accuracy on test data (Test Acc.) 3. latency of
models 4. number of FLOPs 5. training time 6. number of training parameters 7. but the
energy consumption is not available. Also, in the hardware part, you can see that this bench-
mark is evaluated on just one single hardware (GPU), which means there are no measured
metrics of models on different hardware.

4.1.2 Methods

Historically, Zoph and Le Zoph and Le (2016) started Neural Architecture Search (NAS)
algorithms by implementing Reinforcement learning as their Search Strategy to find the
most accurate model for a specific dataset. Because their VSt was based on full training, it
needed a huge amount of GPU hours to find the optimized model. Since then, researchers

1 3

 73 Page 14 of 38

Systematic review on neural architecture search

Ta
bl

e
3

N
A

S
B

en
ch

m
ar

ks
 fo

r I
m

ag
e

C
la

ss
ifi

ca
tio

n
(C

el
l-b

as
ed

 (C
B

)/H
ie

ra
rc

hi
ca

l-b
as

ed
 (H

B
))

Fe
at

ur
es

B
en

ch
m

ar
ks

N
A

S-
be

nc
h-

10
1

Y
in

g
et

 a
l.

(2
01

9)
N

A
S-

be
nc

h-
20

1
D

on
g

an
d

Ya
ng

 (2
02

0)
N

AT
S-

B
en

ch
 D

on
g

et
 a

l.
(2

02
1b

)
N

A
S-

be
nc

h-
1s

ho
t1

Ze

la
 e

t a
l.

(2
02

0)
N

A
S-

be
nc

h-
30

1
Si

em
s e

t a
l.

(2
02

0)
H

W
-N

A
S-

B
EN

C
H

Li

 e
t a

l.
(2

02
1b

)
Se

ar
ch

 S
pa

ce
 S

iz
e

(×
10

3
)

42
3

15
15

36
3

10
15

10
18

Se
ar

ch
 S

pa
ce

 T
yp

e
C

B
C

B
C

B
C

B
H

B
C

B
D

at
as

et
C

IF
A

R
-1

0
✓

✓
✓

✓
✓

✓
C

IF
A

R
-1

00
✓

✓
✓

✓
✗

✓
Im

ag
eN

et
✗

✗
✓

✓
✗

✓
M

et
ric

s
Va

l.
A

cc
✓

✓
✓

✓
✓

✓
Te

st
 A

cc
✓

✓
✓

✓
✓

✓
La

te
nc

y
✗

✓
✓

✓
✓

✓
FL

O
Ps

✗
✓

✓
✗

✗
✓

En
er

gy
✗

✗
✗

✗
✗

✓
Tr

ai
ni

ng
 T

im
e

✓
✓

✓
✓

✓
✓

Tr
ai

n
Pa

ra
m

et
er

s
✓

✓
✓

✗
✗

✓
D

iff
er

en
t h

ar
dw

ar
e

✗
✗

✗
✗

✗
✓

1 3

Page 15 of 38 73

S. Salmani Pour Avval et al.

have been trying to improve the performance of the NAS algorithm from different perspec-
tives e.g. running time, energy efficiency, optimized model performance, etc. The rest of
this section introduces and compares the available literature based on their SSt. Table 4
summarizes all the different methods to compare next to each other.

Reinforcement learning: As mentioned, the first NAS algorithm is introduced using Rein-
forcement learning (RL) Zoph and Le (2016). Within this SSt, the RL algorithm searches
for the best architecture based on feedback such as accuracy. In general, RL enabled the
algorithm to find architecture that is optimized in the sense of accuracy and latency, etc., and
performed better than the human-designed models.

To dive into more detail, Zoph and Le Zoph and Le (2016) implemented a recurrent neu-
ral network (RNN) to find the best architecture. The RNN was trained with an RL algorithm
to maximize the performance of the generated architecture. This algorithm was iterative,
and in each iteration, the generated architecture was trained from scratch and then evalu-
ated on the validation dataset. The obtained validation accuracy was fed to the controller, as
the reward, to generate a new architecture for the next step. Although the process was very
costly, about 800 GPUs of hours, it could outperform human-designed models.

In Mills et al. (2021), the algorithm was improved to be faster and more accurate by
leveraging the concept of the SuperNet and SubNet. A SuperNet is a large, flexible network
that contains a large number of small models, known as SubNets. In this way, the NAS
algorithm can find the best model by evaluating the performance of different SubNets within
the SuperNet.

Since NAS algorithms are normally computationally demanding, the main focus of the
researchers shifted toward reducing the computational cost. In this regard, Zoph et al. Zoph
et al. (2018) tackled this issue by limiting the Search Space for the algorithm and introduc-
ing the Cell-based architecture. This leads to reducing the training cost from 800 to 500
GPUs. In this way, instead of searching for the entire network, the algorithm needs to search
for the layers and connections inside a cell. Two types of cells were created in this method:
Normal cells and reduction cells. Normal cells extract the features holding the input size but
the reduction cells reduce the output size while processing it. Later, they created a model
by connecting these cells multiple times. Using this method, they were able to find the best
cell with a smaller dataset, then transfer the cell to a larger and more extensive network, and
train it on a large dataset. As was proven in Wen et al. (2021), this approach was extremely
energy and time-efficient.

Ding et al. Ding et al. (2021) increased the speed of the NAS algorithm by implement-
ing RL optimizers and broader architecture with flexible hyperparameters; as a result, they
introduced BNAS to find a model that has less size and higher accuracy.

One of the known issues of BNAS Ding et al. (2021) was an unfair learning SubNet
meaning that during the training step of the SuperNet, some SubNets tend to be trained bet-
ter than others causing some problems at the end of the optimization process. The optimizer
tended to find models that were well-trained instead of choosing models that were more
suitable for the data. This issue was addressed in Ding et al. (2022) and led to BNAS-v2.
To reach the aim, they adjusted the learning rate based on the gradient to prevent aggressive
changes in architecture selection. To decrease the computation and memory consumption,
they implemented a method to select just the active part of each layer during the process.
Also, BNAS Chen et al. (2020) suffers from unstable training and over-fitting, therefore, a
normalization method for the active SubNets in the SuperNet was applied.

1 3

 73 Page 16 of 38

Systematic review on neural architecture search

Pa
pe

r
Ye

ar
SS

p
SS

t
V

St
A

.
c1

0
A

.
c1

00
A

.
Im

gN
#p

 c
10

#p

c1
00

#p

Im
gN

R
un

Ti

m
e

La
te

nc
y

G
PU

Zo
ph

 a
nd

 L
e

(2
01

6)
20

16
LB

R
L

TB
96

.3
5

_
_

37
.4

M
_

_
22

,4
00

_
K

40
Zo

ph
 e

t a
l.

(2
01

8)
20

18
C

B
R

L
TB

97
.6

_
82

.7
27

.6
M

_
88

.9
M

20
00

_
P1

00
D

in
g

et
 a

l.
(2

02
1)

20
21

C
B

R
L

on
e-

sh
ot

 T
B

97
.1

2
_

25
.7

4.
8M

_
8.

5M
4.

56
_

G
TX

 1
08

0T
i

Li
u

et
 a

l.
(2

01
8a

)
20

18
C

B
G

O
+

R
L

TB
97

.2
4

_
73

.3
3.

3M
_

4.
7M

96
_

G
TX

 1
08

0T
i

W
an

g
et

 a
l.

(2
02

2)
20

22
C

B
G

O
+

R
L

TB
97

.6
4

_
75

.8
3.

35
M

_
5.

1M
12

_
Te

sl
a-

V
10

0
Ph

am
 e

t a
l.

(2
01

8)
20

18
C

B
 +

 L
B

G
O

TB
97

.4
2

_
_

13
.1

M
_

_
11

_
G

TX
 1

08
0

Ti
W

u
et

 a
l.

(2
01

9)
20

19
LB

G
O

TB
_

_
74

.9
_

_
5.

5M
21

6
28

.1
m

s
_

W
an

 e
t a

l.
(2

02
0)

20
20

LB
G

O
W

-S
h

_
_

77
.2

_
_

32
5

M
60

0
_

Te
sl

a
V

10
0

H
ow

ar
d

et
 a

l.
(2

01
9)

20
19

LB
R

L
TB

_
_

75
.2

_
_

21
9

M
_

44
m

s
_

D
on

g
an

d
Ya

ng
 (2

01
9)

20
19

C
B

G
O

TB
97

.1
8

81
.8

7
72

.5
2.

5M
2.

5M
44

 M
4

_
Te

sl
a

V
10

0
C

he
n

et
 a

l.
(2

02
0)

20
20

C
B

R
L

TB
96

.5
3

_
71

.3
4.

6M
_

6.
2M

2.
5

_
G

TX
 T

IT
A

N
D

in
g

et
 a

l.
(2

02
2)

20
22

C
B

G
O

+
R

L
TB

97
.2

3
_

73
.5

2.
5M

_
4.

1M
2

_
G

TX
 1

08
0T

i
Yu

 e
t a

l.
(2

02
2)

20
22

C
B

G
O

+
cy

cl
ic

TB
97

.5
2

85
.9

2
76

.3
3.

9M
4

M
22

.5
M

7
41

.2
m

s
Te

sl
a

V
10

0
So

ng
 (2

02
1)

20
21

C
B

G
O

+
cl

us
te

rin
g

TB
97

.5
85

.9
76

.2
3.

3M
3.

9M
22

.4
M

4.
8

_
Te

sl
a

P1
00

Zh
en

g
et

 a
l.

(2
02

1)
20

21
N

B
20

1
G

O
_

98
.1

4
86

.2
4

_
3.

5M
3.

5M
_

14
.4

_
4?

 T
es

la

V
10

0
C

ai
 a

nd
 L

uo
 (2

02
1)

20
21

_
B

O
+

M
O

O
TB

95
.4

_
_

6.
99

_
_

48
_

G
TX

 2
08

0T
I

W
hi

te
 e

t a
l.

(2
02

1)
20

21
C

B
 (D

A
RT

S)
B

O
TB

97
.3

6
_

_
_

_
_

28
3

_
Te

sl
a

V
10

0
Sa

ha
 e

t a
l.

(2
02

2)
20

22
LB

B
O

TB
_

_
_

_
_

_
_

_
_

El
sk

en
 e

t a
l.

(2
01

8)
20

18
C

B
 +

 L
B

EA
Pr

ox
y

97
.4

2
_

_
13

.1
M

_
_

19
20

_
_

R
ea

l e
t a

l.
(2

01
9)

20
19

C
B

EA
TB

96
.6

6
_

83
.9

3.
2

M
_

46
9

M
_

_
45

0
K

40
Lo

pe
s e

t a
l.

(2
02

2)
20

22
N

B
10

1/
N

B
20

1
EA

Pr
ox

y
93

.9
9

72
.3

6
46

.0
4

_
_

_
7.

5
_

10
80

Ti
Lo

ua
ti

et
 a

l.
(2

02
2)

20
22

M
an

 M
ad

e
EA

Pr
ox

y
98

.2
4

88
.8

3
92

.8
3

1.
8M

1.
8M

2.
1M

74
4

_
20

80
Ti

C
he

n
et

 a
l.

(2
02

1)
20

21
LB

EA
+

SS
p

sh
rin

ki
ng

TB
80

_
77

.9
_

_
_

28
8

_
Te

sl
a

V
10

0

Sh
an

g
et

 a
l.

(2
02

2)
20

22
LB

EA
TB

95
.8

80
.7

5
75

.5
_

_
_

96
_

RT
X

20
80

Ti
Lu

o
et

 a
l.

(2
01

8)
20

18
C

B
R

S
TB

 +
 W

-S
h

96
.4

7
85

.2
5

_
2.

5M
12

8
M

_
7.

2
_

V
10

0
C

he
n

et
 a

l.
(2

02
1)

20
21

C
B

EA
Pr

ox
y

94
.1

9
82

.0
1

_
_

_
_

48
_

20
80

Ta
bl

e
4

N
A

S
M

et
ho

ds
, C

10
:C

IF
A

R
-1

0,
 C

10
0:

C
IF

A
R

-1
00

, I
m

gN
: I

m
ag

en
et

, A
.:

A
cc

ur
ac

y,
 #

p:
 n

um
be

r o
f p

ar
am

et
er

s,
RT

: G
PU

 h
ou

rs
 ru

nn
in

g
tim

e

1 3

Page 17 of 38 73

S. Salmani Pour Avval et al.

Pa
pe

r
Ye

ar
SS

p
SS

t
V

St
A

.
c1

0
A

.
c1

00
A

.
Im

gN
#p

 c
10

#p

c1
00

#p

Im
gN

R
un

Ti

m
e

La
te

nc
y

G
PU

Je
on

g
et

 a
l.

(2
02

2)
20

22
D

A
RT

S/
N

B
20

1
G

O
le

ar
ni

ng

cu
rv

e
76

.0
6

76
.0

5
_

5.
3M

5.
2M

_
_

_
V

10
0

M
el

lo
r e

t a
l.

(2
02

1)
20

21
N

B
10

1/
N

B
20

1
R

S
Ze

ro
93

.1
69

.1
45

.0
8

_
_

_
0.

06
_

G
TX

 1
08

0
Ti

W
u

et
 a

l.
(2

02
1)

20
21

N
B

20
1

EA
Ze

ro
93

.7
71

.5
7

45
.1

8
_

_
_

0.
03

_
RT

X
 3

06
0

C
he

n
et

 a
l.

(2
02

1)
20

21
N

B
20

2
G

O
Ze

ro
93

.9
71

.2
4

42
.3

8
3.

8M
_

5.
4M

0.
5

_
G

TX
 1

08
0T

i
M

ok
ht

ar
i e

t a
l.

(2
02

2)
20

22
N

B
20

3
G

O
ze

ro
93

.5
8

70
.2

7
44

.5
3

_
_

_
_

_
a

RT
X

A

30
00

Lu
o

et
 a

l.
(2

01
8)

20
18

C
B

G
O

Pr
ox

y
96

.4
7

85
.2

5
_

2.
5M

12
8

M
_

7.
2

_
V

10
0

Fr
an

ke
n

et
 a

l.
(2

02
2)

20
22

N
B

20
1

G
O

Pr
ox

y
_

_
_

_
_

_
0

_
N

O
N

E
Q

ia
n

et
 a

l.
(2

02
2)

20
22

N
B

20
1

tre
e

pr
ox

y
94

.3
7

73
.0

9
46

.3
3

_
_

_
3.

6
_

G
TX

20
80

Ti
Zh

an
g

et
 a

l.
(2

02
1)

20
21

N
B

20
1

G
O

pr
ox

y
93

.4
5

70
.7

1
43

.7
5.

5M
_

_
_

_
_

Zh
an

g
et

 a
l.

(2
02

2)
20

22
N

B
20

2
G

O
+

B
O

pr
ox

y
94

.3
3

72
.9

5
46

.5
4

_
_

_
14

.4
_

_
Zh

an
g

et
 a

l.
(2

02
1)

20
23

N
B

20
1

R
S

pr
ox

y
94

.0
3

72
.5

3
46

.1
8

3.
2M

_
_

1.
2

_
G

TX
20

80
Ti

Ta
bl

e
4

(c
on

tin
ue

d)

1 3

 73 Page 18 of 38

Systematic review on neural architecture search

In response to the increasing demand for more efficient NAS algorithms, Chen et al.
developed an efficient NAS algorithm called Binarized Neural Architecture Search Chen
et al. (2020). In this approach, the SSt explore only a portion of SSp that was randomly
sampled. Similar to Zoph et al. (2018), they produced two cells (normal and reduction cells)
to build up the main model. In this literature, along with channel sampling to reduce the
number of parameters that need to be searched over, another method has been introduced
called operation space reduction, which limits the search space in the sense of operations.
To solve the problem of not converging to a well-optimized model, they implemented a
performance-based SSt to ensure a high-performing architecture. Later, Zhang et al. Zhang
et al. (2021a) improved the binarized algorithm to achieve a faster NAS algorithm by shar-
ing trained weights from parents to child (generated) models during the optimization.

Gradient-based optimizer: Knowing that continuous optimizers, like Gradient-based
optimizer (GO), are faster than discrete ones on GPUs, bringing them to a NAS algorithm
as a SSt can speed it up and make it more applicable to the AI world. However, the main
challenge would then be how to deal with the discrete nature of the Search Space.

This issue in NAS was first addressed by Differentiable Architecture Search (DARTS)
Liu et al. (2018a) in which the search for the optimal architecture was performed on GPU.
In this approach, a cell-based SSp was used that consisted of several types of layers such as
convolution, skip, or pooling that were connected to each other. The SSt was a reinforce-
ment agent that implemented the GO method to optimize the architecture of a model. In
order to have continuous SSp and enable GO, all connections in architecture are assigned
a variable. Then, the SSt optimizes the performance of the architecture by changing those
variables that define the state of the connection (appearance in the network or not) at the end
of the optimization Xue et al. (2022); Wan et al. (2022). As was shown in Fig. 9, only the
connections with the highest values were retained, and the others were removed.

DARTS Liu et al. (2018a) could be unstable, and thus the search procedure could lead to
sub-optimal solutions. Regularized Differentiable Architecture Search (RDARTS) Wang et

Fig. 9 A simplified SSp of differentiable architecture search (DARTS) Xue et
al. (2022): non-faded connections (or layers) are selected for the architecture,
blocks are different data stages, and different colors show different types of
layers like CNN, skip, etc

1 3

Page 19 of 38 73

S. Salmani Pour Avval et al.

al. (2022b) overcomes this problem by utilizing regularization to encourage the RL agent to
choose architectures that are capable of being more generalized and less overfitted. ENAS
(Efficient NAS Pham et al. (2018)) introduced a method that lets the computer find the best
architecture only using a single GPU in less than a day. In this method, sharing parameters
played an important role in minimizing the optimization time. Further, they implemented
Long short-term memory (LSTM) to find the hyperparameters of the model. In this method,
the whole search space is defined as SuperNet and Subnets. The controller (which is the SSt
in this approach) selects a suitable SubNet through the search space. As a result, they found
out that using SubNet during training enhances the performance of the optimized model at
the end of the process by preventing it from being trapped in local minima.

Dong and Yang addressed the issue of converting the discrete SSp to a continuous by
introducing Gradient-based search using Differentiable Architecture Sampler or GDAS-
Dong and Yang (2019). In this approach, they represented the SSp as a Directed Acyclic
Graph (DAG) in which, each sub-graph can be sampled to be an architecture for the neural
network. To limit the number of sub-graphs and speed up the search process, a differen-
tiable sampler was developed. In this way, they were able to search for the optimized model
efficiently benefiting the SSt presented in GDAS which was faster when using DAG SSp.
GDAS guided the search toward architectures with lower validation loss.

Addressing the problem that NAS algorithms are computationally inefficient, CDARTS,
which stands for a Cyclic Differentiable Architecture Search Yu et al. (2022), developed
a two-step optimization to solve the problem. In every iteration of the algorithm, both the
architecture and weights of the model are being trained: first, the weights of the model are
trained; and then, the hyperparameters are evaluated to optimize the architecture. Until the
evaluation method does not change the architecture, the iterations go on. CDARTS achieved
the optimized architecture in less than 24 GPU hours for different datasets with a competi-
tive accuracy.

Wu et al. developed a differentiable NAS technique in which besides optimizing the
accuracy of the model, they considered hardware constraints to find an optimized network
architecture for a mobile device. It is called FBnet: Facebook-Berkeley-Nets Wu et al.
(2019). In this approach, layer-wise SSp with a predefined number of layers was imple-
mented, i.e. 22 layers. The functions of each layer can be selected among 9 operations. This
technique was applied to find a proper model on the ImageNet dataset. They managed to
achieve 74.9% top-1 accuracy with 28.1ms latency. Also, the fastest architecture (for mobile
devices) has 73% top-1 accuracy with 19.8ms latency on Samsung Galaxy S8.

In 2020, they introduced FBnetV2 Wan et al. (2020) which can perform NAS in a more
efficient way on a larger SSp than FBnet Wu et al. (2019). In this method, to search for the
most accurate architecture, first, a SuperNet was made and trained for one time. Then, the
best SubNet is chosen as the optimized architecture. There were some issues like incom-
patible dimensions of weights, and increased memory consumption while sharing weights
between different models. To solve them, they used a new zero padding method to make the
kernels shareable between different models even with different sizes.

Some other approaches for NAS benefited GO optimizers and other improvements. For
instance, Song et al. Song (2021) implemented a GO algorithm together with a cluster-
ing method to minimize the Search Space and speed up the search time; In Zheng et al.
(2021); Wan et al. (2022), authors solved the challenge of achieving more accurate models
by implementing a probabilistic GO method; Wu et al.Wu et al. (2021a) solve the limitation

1 3

 73 Page 20 of 38

Systematic review on neural architecture search

of DARTS SSp by adding a Gradient-based searching algorithm and a Gradient-based prun-
ing technique to decrease the running time as well as extending the SSp; Wei et al.Wei et al.
(2022a) implemented multi-objective GO to optimize hardware-friendly models according
to different metrics.

Bayesian optimizer: Evaluating models with different architecture in the NAS algorithm
increases the search time. Bayesian Optimizer (BO) can find the optimized architecture by
evaluating fewer models than the other SSts. BOs achieve this by building a probabilistic
model of the OF, which allows them to estimate the performance of an architecture without
actually evaluating it. They then use this probabilistic model to select the next architecture,
focusing on the most promising regions of the SSp. This iterative process allows BOs to
converge to the optimal architecture with fewer evaluations, significantly reducing the com-
putational cost of NAS.

In essence, BOs work by modeling the relationship between the hyperparameters of an
architecture and its performance. BO starts with an initial model, which could be a simple
or a complex architecture. As they evaluate more architectures, BO updates its model to
capture the most accurate and reliable relationship between the hyperparameters and the
architectures’ performance. This allows BOs to make more accurate predictions about the
performance of the new one, guiding the SSt towards the optimal architecture. It should be
bear in mind that, the complexity of BOs brings up three more complicated challenges in
solving the NAS problem:

1. How to speed up the performance – Zhou et al. Zhou et al. (2019) solved this problem
using DARTS SSp and Laplace Approximation,

2. How to quantify the posterior and likelihood to optimize the parameters or hyperparam-
eters – this problem is solved by Shaw et al. Shaw et al. (2019) by introducing Bayesian
neural networks (BNNs) and utilizing stochastic gradient descent to the probability
distribution of neural network weights, and

3. How to explore the SSp to find the optimized architecture – Li et al. Li et al. (2020b)
solve this problem by enabling direct performance prediction and exploring according
to the estimated metrics.Kandasamy et al. Kandasamy et al. (2018) introduced BO in
the NAS field, called NASBOT. This approach performed competitively with the other
optimizers such as RS and EA. It was shown that BO makes more informed decisions
about which architectures to evaluate and BO is less likely to get stuck in local optima.
Further, They showed that BO are better at handling noisy objective functions.

BANANAS White et al. (2021a), Bayesian Optimization with Neural Architectures for Neu-
ral Architecture Search, introduced a specific encoding-decoding method between the SSps
of the NAS and the BO SSt. Further, they implemented a NN based proxy to accelerate the
VSt by skipping the time-consuming part of the validation step (training every architecture).
As a result, this algorithm converged to the near-optimized architecture faster than other
NAS methods. Later, to improve this approach, multi-objective BOs Yang et al. (2020a);
Cai and Luo (2021) was introduced to search for the best algorithm while satisfying con-
straints like inference time, memory usage, etc. which are all hardware-related limitations.

It is easy to find BOs that are being used for different hardware and (IoT) devices for
instance robotic and navigation applications Saha et al. (2022). They implemented BO and

1 3

Page 21 of 38 73

S. Salmani Pour Avval et al.

a temporal convolutional network (TCN) backbone to satisfy their goal of finding a model
for an edge device with lower latency compared to man-made models.

Evolutionary algorithms: One of the most important aspects of the EA algorithms is that
they have the potential to find a model with high performance during the optimization. As
mentioned previously, in every iteration of this optimization, the algorithm validates the
population and keeps the best ones. Then, it generates offspring from the kept population.
This way, the algorithm keeps the obtained performance of the found model or optimizes
the model to a better architecture. At the end of the search, the close-to-optimal models are
listed in the population.

LEMONADE (Lamarckian Evolutionary algorithm for Multi-Objective Neural Archi-
tecture DEsign) Elsken et al. (2018) is the first EA based NAS method. They developed a
multi-objective EA optimizer (same as Lu et al. (2019)) to search for a model with better
performance but with a small architecture size. They managed to speed up the algorithm
benefiting a warm start method for the off-spring. As a result, this method achieved models
with the same accuracy in comparison with MobileNet-V2 Sandler et al. (2018) but with
fewer operations and less latency.

Like any other optimization algorithm, still there are chances for EA algorithm to stuck
in local minima. Real et al. Real et al. (201b) introduced a new tournament selection in EA
to favor the younger architecture in the population. The results showed that this algorithm
found a model with better accuracy and lower computational cost using EA-based SSt in
comparison with RL and RS methods.

Developing a zero-cost estimator in conjunction with the guided EA makes the NAS
algorithm converge to the best architecture faster Lopes et al. (2022). The Jacobian covari-
ance of the weights in the network is used to evaluate the accuracy of the network at the
initial moment. As a result, this method found a model with a competitive accuracy within
NAS-BENCH-101 and NAS-BENCH-201 SSps.

Searching for different architectures one by one was slow and there was a high chance of
finding local optimal architecture. To solve these issues, NEAS, One-Shot Neural Ensemble
Architecture Search Chen et al. (2021a), proposed K-path EA to find multiple best models
instead of one single model. In this method, a SuperNet is defined as different paths of
architecture instead of defining it as a giant architecture and SubNet was a path in the Super-
Net. In this way, it became possible to implement a new weight-sharing technique (called
layer-sharing technique) to merge different parts of architectures with each other to decrease
memory consumption. This led to reduced search and training time.

Shang et al. addressed the issue of the inefficiency of the NAS algorithms and also the
challenge of sharing trained weight with off-springs; as a result, they introduced EF-ENAS
Shang et al. (2022), which is an improved method of a EA optimization algorithm. In this
method, different off-spring generation methods were implemented to find the best architec-
ture. This algorithm contains two parts: first, it defines some blocks that were more effective
with previous models, and second, uses them as pre-defined blocks in the generation of
offspring. These steps contribute to keeping the valuable and trained parts of the models for
the off-springs. The proposed EA algorithm is called correction-based which is suitable for
decreasing computational time in comparison with traditional EA algorithms.

Sometimes, the NAS algorithms tend to find complex and large-scale architectures with
high accuracy which are not efficient for industrial or real-world applications. To solve this
problem, Louati et al. Louati et al. (2022) used EA optimizer together with a pruning method

1 3

 73 Page 22 of 38

Systematic review on neural architecture search

to make the network fit the hardware requirements like suitable memory size for health-care
applications. This method works in two-step sequences: the low-level pruning action and a
high-level design process, by implementing a co-evolutionary migration-based algorithm.

There are different methods for EA Zhu et al. (2019); Xue et al. (2021); Wen et al. (2021);
Gottapu and Dagli (2020); He et al. (2021), like cartesian genetic programming (as a multi-
objective NAS method) Pinos et al. (2022); Park and Yi (2022) focusing on the performance
of the optimized architecture, genetic-based multi-objective optimizer Geraeinejad et al.
(2021) focusing on not only the robustness of the model but also the memory efficiency,
Aquila optimization together with a genetic algorithm to overcome more complex SSp
Wang et al. (2022a), continuous evolutionary algorithm Chen and Xu (2022); Yang et al.
(2020b) focusing on converge faster using weight sharing during searching on the Search
Space, and a multi-objective EA method together with an online surrogate model to predict
the performance Chen et al. (2022) focusing on solving the problem of having non-efficient
NAS algorithms.

Random search: This approach has been mainly used in the NAS literature that focused
on Validation Strategy (VSt). The reason is that their methodologies can be introduced and
compared with the others independent of employed Search Strategy. Therefore, in the fol-
lowing, we sort the literature based on their VSt.

Partial training - type I: Low Fidelity In NAS algorithms, low-fidelity evaluation was
used to reduce computational costs. However, these shallow evaluations can lead to subopti-
mal architectures due to their limited understanding of the true performance of architectures
on the full dataset and with sufficient training. Addressing this issue, Trofimov et al. Trofi-
mov et al. (2020) introduce knowledge distillation into the low-fidelity evaluation process.
By transferring knowledge from a pre-trained model to a smaller newly generated network,
they can obtain a more accurate estimate of the model’s performance on the full dataset.
This approach enhances the effectiveness of the NAS, leading to improved performance.

Partial training - type II: Weight Sharing or Inheritance
Neural Architecture Optimization Network (NAONet) Luo et al. (2018) used a weight-

sharing method together with a proxy method to solve the NAS problem to find a lighter
model on CIFAR-10. In this approach, they converted the discrete SSp to a continuous
one by using an encoder-decoder algorithm. In every iteration, the algorithm encodes the
architecture to the continuous space (SSp) that provides suitable space for predicting the
performance. Later, SSt optimizes the architecture according to the predicted performance.
The chosen architecture is decoded into an architecture as in original SSp.

LEMONADE Elsken et al. (2018) developed a technique to share parents’ weights with
the offspring by mapping the weights from one network to another. This sharing caused the
model to inherit performances like accuracy, resource requirements, or other metrics from
the old models before training.

Knowledge-Inherited Neural Architecture Search or ModuleNet Chen et al. (2021b)
introduced a new technique to share trained parameters. In this method, knowledge of every
trained model is transferred to the newly generated model by decomposing the trained
model into parts and using them in the architecture generation process. This showed better
performance in comparison with the SuperNet weight-sharing technique because of using
well-trained parts instead of sharing every single weight in different optimizing iterations.

Some techniques have been developed to improve the performance of the weight-sharing
method on a SuperNet. For instance, randomly activating some SubNets or connections on

1 3

Page 23 of 38 73

S. Salmani Pour Avval et al.

the SuperNet can prevent the SuperNet from dictating the specific weight to some weights
during the search Zhang et al. (2022a).

Adaptive training
GeNAS, Generalization-aware NAS Jeong et al. (2022), introduced a new metric for

the NAS algorithms by processing the learning curve. In this method, the authors analyzed
the flatness of the loss function during training. They realized that models with flatter loss
curves have more generalization ability. Additionally, for more improvements, they mixed
conventional cross-entropy loss metrics with flatness metrics, which led to architectures
with better performance. This technique contributed to optimizing the architecture on a
small dataset and training it on a large dataset (called transferability).

Zero-shot (zero-cost)
Zero-cost VSts or proxies can estimate the performance of the models before training

them Zheng et al. (2020); Dai et al. (2021); Lu and Lyu (2021); Xu et al. (2021a); Gracheva
(2021); Phan and Luong (2021); Hu et al. (2021). They can be divided into two classes:
theory-driven methods that predict the performance of the models at the initial point of the
optimizer without knowing about the performance of any model; and data-driven methods
that predict the performance of the models using previous knowledge which is gained dur-
ing the optimization process (they learn from the previous models’ performance and later,
predict the upcoming models’ performance). In simple words, theory-driven methods can
predict the performance of the model at any time without needing information from other
models but the data-driven models need the performance of several models to learn the
prediction and apply it to the new coming models. In the following paragraphs, we dive into
more detail about these methods.

Formulating a VSt in the NAS algorithm in a way that does not need to train a model can
improve the running time significantly so that the algorithm can be considered a zero pro-
cessing cost method. NASWOT Mellor et al. (2021) managed to find an architecture with
92% testing accuracy on CIFAR-10 only in 3.05 seconds (using a single Nvidia GTX 1080
Ti) which, in comparison, takes more than 13,000 s for the ENAS Pham et al. (2018). The
most important feature of this algorithm is that it works as a training-free algorithm that can
be run on a single GPU. They implemented an estimation method to predict the validation
accuracy at the initialization level. The scoring formula calculated an estimation value for
the accuracy of the network without training using:

s = log

∣∣∣∣∣∣

NA − dH(c1, c1) . . . NA − dH(c1, cN)
...

. . .
...

NA − dH(cN , c1) . . . NA − dH(cN , cN)

∣∣∣∣∣∣
 (1)

In this equation, NA is the number of ReLu functions in the model, ci is a binarized code of
the model for the ith image in the mini-batch, and dH is Hamming distance between cis.
The equation shows how the model can split different input data in a mini-batch from each
other in the linear space of the features using ReLUs.
Genetic algorithm and noise immunity for neural architecture search without training or
GA-NINASWOT Wu et al. (2021b) improved the efficiency and generalization of NAS-
WOT Mellor et al. (2021) such that the optimized model has 0.6% higher test accuracy and
47% less time consumption. They used NASWOT’s scoring algorithm together with a EA-
based Search Strategy. Also, they introduced a look-up table for the validated networks to

1 3

 73 Page 24 of 38

Systematic review on neural architecture search

store the parameters and validation metrics of the chosen model by the SSt to reduce mem-
ory consumption and improve computational efficiency. GA-NINASWOT outperformed
NASWOT on all datasets including CIFAR-10, CIFAT-100, and ImageNet16–120 using
NAS-BENCH-201 Search Space.

Training-free neural architecture search (TE-NAS) Chen et al. (2021c) introduced a NAS
method that is train-free and label-free. This method uses analysis of the architecture in
the spectrum of the neural tangent kernel (NTK) Jacot et al. (2018) and the number of
linear regions to rank it. In this way, TE-NAS could measure the trainability and expres-
sivity, which are heavily correlated with the test accuracy of the architecture. Trainability
measures how much a model can be trained to learn from data. Expressivity is a metric that
measures the ability of a model to represent a wide range of functions (complexity of the
architecture). Also, this algorithm used a pruning mechanism called pruning-by-importance.
This approach can enormously decrease the Search Space, to improve the trainability and
lets the algorithm completely fine-tune the architecture without sacrificing expressivity.
This method was able to find the best architecture on CIFAR-10 and ImageNet only in 0.5
and 4 GPU hours, respectively.

In the FAM method Mokhtari et al. (2022), the performance of the network was esti-
mated by the Intra-Cluster Distance (ICD) score and a EA-based SSt was used. To convert
the discrete SSp into a continuous one, they used an encoder to translate the layer types,
kernel sizes, etc. into continuous parameters that are easier for the SSt to optimize.

Neural Architecture Optimization (NAO) Luo et al. (2018) is a 3-step NAS algorithm: I)
Encoding discrete architecture to continuous space, II) Predicting accuracy and optimizing
the architecture in the continuous space, III) Decoding the chosen continuous architecture to
a model. Thus, they create a performance prediction function and a continuous SSp, instead
of searching the SSp and training the generated model at each step. Similar to NAO Luo et
al. (2018), EmProx Franken et al. (2022) developed an encoder-decoder method to map the
architecture space to continuous SSp; the difference is that instead of Multilayer Perceptron
(MLP), they used weighted k-nearest neighbors for the prediction. This strategy contains
two sets of architectures: known and unknown. In this method, the accuracy is given for
the first set. Then, the algorithm can learn from the given data to predict the accuracy for
the second set of architectures using the kNN algorithm. Compared with other methods like
NAO, SemiNAS, XGB, BANANAS, and MLP, this method works faster.

To find the best scoring methods and improve them, Abdelfatteh et al. Abdelfattah et al.
(2021) used five more zero-cost metrics (Snip Lee et al. (2018), GraspWang et al. (2020a),
SynapticFlow Tanaka et al. (2020), Fisher Turner et al. (2019), and Grad − normMellor
et al. (2021)) to predict the performance of the models. After calculating these metrics,
they used the Spearman Rank correlation coefficient (Spearman’s ρ) to compare the cor-
relation of these metrics with the validation accuracy of the models. Between the above-
mentioned metrics, SynapticFlow showed the highest correlation between all investigated
datasets (CIFAR-10, CIFAR-100, ImageNet16–120). They introduced a new metric called
vote, which takes the majority vote between the three metrics: SynpeticFlow, Snip, and
Grad − norm. they showed that vote performed better than each individual metric. Spear-
man’s ρ was consistently above 0.8 on NAS-Bench-201. Also, the vote was able to predict
the accuracy using just 3 mini-batches.

To introduce other proxy methods briefly, we can mention the following literature: NPE-
NAS Wei et al. (2022b) used two different estimators: a BO acquisition function, which is

1 3

Page 25 of 38 73

S. Salmani Pour Avval et al.

used as a graph-based uncertainty estimation network; and a graph-based neural network for
predicting the performance of the architecture. Using a meta-learning framework, the NAS
algorithm learned from a small number of samples in the SSp without probing the whole
space Zhao et al. (2021b). Using few-shot NAS, they found more accurate models in com-
parison with one-shot models Bender et al. (2018). Fang et al. Fang et al. (2020) optimized
the architecture for specific hardware with respect to accuracy and FLOPs/latency. Li et al.
Li et al. (2020a) reformulated the validation step in a way to estimate the loss using weights
of the model.

In the literature, there are some other methods to predict the performance of models
without traditional training, such as the Firefly Algorithm method (FAM) Mokhtari et al.
(2022) that predicts the weights for the model, EPE-NAS Lopes et al. (2021) that predicted
the accuracy using Jacobian of weights of the model, and KNAS Xu et al. (2021b) that used
the gradient of weights to estimate the performance.

Other methods: Besides the methods mentioned above, some other optimizers can be
found in the literature that have been used to improve the performance of the NAS algo-
rithms. Having known that searching for an optimized model on a SuperNet or in a big
Search Space needs tons of processing power, it is more efficient to add layers one after
another to the structure till converging to a model with acceptable performance. This opti-
mization method is called growth-based strategy and has been implemented in the NAS
algorithm Millán et al. (2018). Further, a Biology Inspired version of the Growth optimizer
LaKemper et al. (2022) has been developed as a method for modifying the artificial neural
network’s structure. Introducing DensEMANN Garcia-Diaz and Bersini (2021) brought this
opportunity to build architectures layer-by-layer and kernel-by-kernel during training with
better performance. In this algorithm, it was possible to prune or add layers/kernels simul-
taneously during the optimization.

HotNAS Jiang et al. (2020a) developed a NAS algorithm for optimizing the pre-trained
architectures instead of starting the algorithm from scratch. This method tried to improve
the available models’ performance and not generate a new model. In this way, they managed
to reduce the searching time to 3 GPU hours on ImageNet and only 20 min on CIFAR-10
even without a proxy. They created a model library named ’Model Zoo’ with 24 human-
designed models for ImageNet among which only 4 models could satisfy the computational
limitation of the chosen hardware. Later, they used this pre-trained model zoo considering
some constraints like a range of 5ms latency on Xilinx ZCU 102 FPGA which came up with
a model that reached the 87.50% accuracy. By changing these constraints the algorithm
optimized a model with 90% accuracy with latency of 5 − 10ms.

One other SSt for the NAS algorithms is the graph-based search algorithm Su et al.
(2021); Wang et al. (2020b). This method brings a good balance between exploration and
refinement to the SSt and speeds up the algorithm in comparison with RS and greedy search
methods. Further, by introducing TNAS (NAS with trees) Qian et al. (2022), authors were
able to prune the SSp, which can improve the search time extremely.

Knowing that during the training of a neural network, the most influential weights are
subjected to bigger changes in comparison with the other weights, searching with Random
Labels NAS or RLNAS Zhang et al. (2021b) developed an algorithm to find the optimized
model by analyzing the changes. For this purpose, the SuperNet was trained with random
labels. Then, by selecting the most changed weights in the network, they managed to choose

1 3

 73 Page 26 of 38

Systematic review on neural architecture search

the SubNet. It was shown that the optimized model had better accuracy in comparison with
previous methods.

Quantum-inspired NAS, or Q-NAS Szwarcman et al. (2019), tried to optimize the opera-
tions on fixed layer numbers. The quantum-inspired optimizer chooses a layer operation
from a small SSp by quantum probabilities. Later, they improved their algorithm even fur-
ther to touch the +90% accuracy on CIFAR-10 Szwarcman et al. (2022). The downside of
this algorithm is its running time; it takes more than 50 GPU days to optimize the model.

Moreover, there are different methods, except the mentioned algorithm, in the literature
like binarized neural networks Shen et al. (2019), swarm intelligence Byla and Pang (2019),
greedy optimizers You et al. (2020); Li et al. (2020c), novelty search strategy Zhang et al.
(2020a), attention-based search Nakai et al. (2021), slow-fast learning Tan et al. (2021),
enhanced RL mixed with a new reward function Cassimon et al. (2020), etc.

Hybrid methods: Some methods mix different optimizers to increase the accuracy or the
search speed. For instance, the Bayesian Learning rule to the architecture optimization in
differentiable NAS (BaLeNAS) Zhang et al. (2022b) introduced to improve the baseline of
the architectures to solve the issue that the DARTS Chen and Hsieh (2020) algorithm tends
to find complex architecture because of shared weights from SuperNet. As a result, BaLe-
NAS reached a better accuracy in comparison with DARTSLiu et al. (2018a), and Zero-cost
NAS Abdelfattah et al. (2021), etc. BaLeNAS-TF (train-free) achieved even better results
with 94.33% test accuracy on CIFAR-10. Furthermore, to list hybrid methods briefly, we
can mention: Fast Evolutionary NAS (FENAS) Shi et al. (2021) and Adaptive scalable NAS
Zhang et al. (2021c). Also, there are some methods that are mixed of different optimization
techniques and SSp structures for example Jing et al. Jing et al. (2022) used DAG and intro-
duced a Neural Architecture Generator (NAG) to optimize the model. In this method, they
utilized a generative adversarial network (GAN) framework to effectively explore the vast
architecture space. GAN algorithms consist of two components: a generator that produces
DAGs a.k.a model, and a discriminator that assesses the quality of the generated model, the
discriminator compares the metrics of the generated model with models from the metrics
dataset. Both of these networks benefited Gradient-based optimizer to be optimized; but,
we classified this approach in this category, not in GO methods, knowing that the model
searching process was a RS technique to generate noise as an input for the generator. In this
approach, the algorithm needs to be trained once and used several times which can increase
the efficiency of the NAS algorithm.

4.2 NAS for specific hardware

These days, NAS algorithms are finding their way to the edge and Internet of Things (IoT)
devices, to bring neural networks close to the sensors. This allows (IoT) devices to have
better performance and less latency. Before diving into the details, the following hardware-
related terminologies should be introduced:

1. SRAM (Static Random-Access Memory): is a type of memory that stores data as long
as power is applied and loses all the data when the power is off.

2. FLASH memory: is a type of memory that can store data even when power is lost.
3. Model size: is the amount of memory required to store a neural network model. The size

of a model is determined by the number of parameters in the model.

1 3

Page 27 of 38 73

S. Salmani Pour Avval et al.

4. Inference time: is the time it takes for a model to process an input and produce an output
which can affect the latency.

5. Uptime: is the percentage of time that the device is ready to process the new
data.Knowing that microcontroller units (MCUs) are cheap and self-contained, using
the NAS algorithm will help (IoT) devices to work as stand-alone devices with accept-
able inference time. Also, due to MCUs’ low power consumption and ability to be an
always-on system, they have been getting more attention recently in different applica-
tions like healthcare systems or low-cost Non-Destructive Testing (NDT)/Structural
health monitoring (SHM) systems.

Sparse Architecture Search, so-called SpArSe Fedorov et al. (2019), introduced a method
that is able to search for a network with small working memory, less model size, and better
accuracy, which is able to be run on an MCU. They used BO-based multi-objective optimi-
zation to optimize the architecture with respect to 3 objectives: performance, model size,
and inference time. They applied their method to MNIST, CIFAT-10, CUReT Dana et al.
(1999), and Chars4k de Campos et al. (2009) and managed to find optimized models with
a testing accuracy of 98.64%, 73.84%, 80.68%, and 77.78%, respectively. All the models
needed less than 2KB RAM and had less than 2KB model size of an MCU. The algorithm
requires 4 GPU days on average to find the best model.

Due to the importance of knowing the real-world latency of models on specific hardware
for the NAS algorithms, using actual latency to calculate the OF of the NAS algorithm.
For instance, MnasNet Tan et al. (2019) used a mobile phone to feed the exact real-world
latency to the SSt. It was argued in this paper that the number of parameters and FLOPs are
not accurate metrics to predict the latency on the actual device. This is mainly due to the
difference in the running effort of different processing units even with the same number and
type of operations. To generate and optimize models that are faster on the mobile device
in comparison with other hardware, they defined a SSp using convolution layers, different
kernels shape, two squeeze-and-excitation levels, skip connections, and so on. This helped
them to maximize the accuracy while keeping the latency low. The SSt was a RL algorithm.
In the end, they managed to find 3 architectures with 78 − 103ms latency in 4.5 days on
64 TPUv2. Moreover, it was able to achieve 75.2% top-1 accuracy with 78ms latency on a
Google Pixel 1 phone, which is 2.3 times faster and 1.2% more accurate than NASnetQin
and Wang (2019) and 1.8 times faster and 0.5% more accurate than MobileNetV2 Sandler
et al. (2018).

MCUNet Lin et al. (2020) introduced a NAS algorithm that first, modifies and optimizes
the SSp, then starts to search for the proper architecture in the modified SSp. As a result,
MCUNet was able to find an architecture to achieve more than 70% top-1 accuracy on
ImageNet for an MCU. This architecture used 3.5 times less SRAM and 5.7 times less flash
memory compared to quantized MobileNetV2 Sandler et al. (2018). Also, their network was
2.4 − 3.4 times faster with 3.7 − 4.1 times smaller peak SRAM than MobileNetV2 Sandler
et al. (2018). Later, MCUNetV2 Lin et al. (2021) is introduced to improve the efficiency and
time consumption of MCUNet Lin et al. (2020). MCUNetV2 is 4 − 8 times more efficient
than MCUNet in peak memory usage and achieved 71.8% accuracy on ImageNet.

To optimize the model for Raspberry Pi 3 (RPi3), an RL optimizer has been used as well
as a look-up table for the processing time that helps the algorithm to estimate the latency
of the executing operations on the RPi3 Cassimon et al. (2020). They improved the ENAS

1 3

 73 Page 28 of 38

Systematic review on neural architecture search

Pham et al. (2018) algorithm by defining two sets of constraints: hard constraints such as
memory usage and latency, and soft constraints such as compression, cache usage, and
network performance.

EdgeNAS Luo et al. (2020) developed a latency estimator and used a GO-based SSt to
find the fastest model (model with lowest latency) for edge devices. Like MnasNet Tan et
al. (2019), they provide some measurements that show how the latency and FLOPs are not
perfectly correlated; therefore, they improved the latency estimation algorithm that is more
correlated with the latency by which the NAS algorithm can find models with better perfor-
mance and lower latency.

MicroNets Banbury et al. (2021) considered the opposite approach and decided to trust
the number of operations as a metric for latency and energy consumption. A differentiable
neural architecture search algorithm (DNAS), together with the number of operations as a
OF was used to find suitable models with less latency and better performance/accuracy for
MCUs. MCUs’ hardware-related performance like the latency of the layers, the latency of
the models, and the models’ energy consumption were taken into account to define the hard-
ware constraints for the optimizer. They also showed that energy consumption and latency
have an acceptable linear relationship with the number of operations. Having the same
amount of latency, MicroNets was able to reach better accuracy than MobileNetV2 Sandler
et al. (2018). Furthermore, generated networks need less FLASH and SRAM memory in
comparison with MobileNetV2.

There are other papers on the NAS algorithms for (IoT) and edge devices that we can
mention briefly with: different optimization methods Zhao et al. (2020); Zhang et al.
(2020b); Yang et al. (2021); Luo et al. (2021); different metrics Jiang et al. (2020b); Dong
et al. (2021a); different Hardware Ipenburg et al. (2021); Li et al. (2021a); Dong et al.
(2021a); Cardoso-Pereira et al. (2021); Liberis et al. (2021); and so on so forth. For finding
more information about hardware-aware NAS, you can read Benmeziane et al. (2021). They
gather valuable knowledge of the NAS using a hardware-aware perspective by considering
two main challenges, the variety of data and the variety of hardware.

5 Discussion

This systematic literature review reveals that existing research is dominated by a few
research questions:

1. Why NAS is beneficial and What are the underlying motivations for every transition in
the field?

2. What is the current situation?
3. What are the benefits and the opportunities of NAS?In this section, we analyze and dis-

cuss present research in order to identify knowledge gaps and opportunities for future
research.

5.1 Introduction and motivations in the NAS

Hoping to automate the AI models design and optimization led to the NAS algorithms. The
NAS algorithm contains three pillars that contribute to bringing the automatic architecture

1 3

Page 29 of 38 73

S. Salmani Pour Avval et al.

design into the practical world. In this journey, three different transitions happened: working
on optimizing the whole architecture for a dataset, finding proper SSt for the algorithm that
can lead to an optimized model, and focusing on predicting the performance of architectures.

The main goal of AI users was to find an architecture with the best performance for a
dataset. This goal pushes the researchers to develop NAS framework to let everyone find
the most accurate model without diving deep into the AI structures. Later, researchers used
high-performance computational units to train and validate different architectures. How-
ever, the main lack in the process was the knowledge of choosing proper architecture and
improving it. Therefore, researchers started to develop different SSts which head to the next
barrier, time limitation. At this stage, the algorithms needed several days to find the opti-
mized architecture. To solve this problem, they started to develop some algorithms to find
the validation data faster. This trend led to the point that zero-cost VSts take the helm of the
NAS algorithms and bring today’s state-of-the-art performances.

5.2 Current status analysis

In this subsection, the main challenges and open issues in each of mentioned three pillars
will be discussed.

The first pillar of the NAS algorithm is Search Space. Some defined spaces can be used
for optimizing models for specific hardware or as benchmarks, but it is not possible to find
a Search Space that is suitable for all types of data and scenarios because a general Search
Space should contain all possible operations, layers, connections, etc. which make the space
indefinite. On one side of the coin, the large size of the Search Space increases the searching
time; but on the other side, larger Search Space guarantees more optimized architecture with
better performance. Therefore, selecting the Search Space is kind of a trade-off between
how much time needs to be spent and how accurate models we expect the NAS algorithm to
find. Additionally, for optimizing models for specific hardware like edge devices, we need
to limit the Search Space with some options that consume less time and energy on these
devices.

The second pillar, Search Strategy, is an optimizer that works as a human in the NAS
algorithm to choose the most efficient and most accurate architecture to overcome human-
designed architectures. The Search Strategy can control the time consumption of the algo-
rithm indirectly. The SSt, optimizer, uses a small portion of time and energy in comparison
with training but the number of generated models that need to be validated during the pro-
cess can make a huge difference at the end of the day. Therefore, researchers are looking
for a Search Strategy that does not need a lot of iterations to find the optimized architecture.
These days, Gradient-based optimizer (GO) and Bayesian Optimizer (BO) have become
popular because they can satisfy the mentioned demand.

The last pillar is the Validation Strategy, which dictates the amount of time the NAS
algorithm needs to validate a model. Many methods are introduced to decrease time con-
sumption to have faster NAS algorithms like low fidelity or processing learning curve. That
is true that some methods like weight sharing Pham et al. (2018) managed to increase the
efficiency and speed of the algorithm but proxies/estimators are acting faster than any other
methods that are based on training, no matter if it needs to train the model from scratch or
not. The most important breakthrough in VSts is Neural Architecture Search without train-
ing method which is introduced as NASWOT Mellor et al. (2021).

1 3

 73 Page 30 of 38

Systematic review on neural architecture search

5.3 Benefits and future direction

It should be mentioned that the astonishing performance of the architectures which are
designed by NAS algorithms showed the benefits of this field. Continuously, better and
more efficient techniques are being introduced and they are making the ground ready for the
low-performance hardware to catch up with others, especially by increasing the popularity
of edge and mobile devices. Focusing on the model latency on edge devices Lin et al. (2020)
opens a new sub-field that combines both different hardware specifics and NAS techniques
to create more efficient models with better performance.

The trend of the NAS algorithms going toward the improvement of the VSts that can
predict the performance of the model on different datasets without training. The biggest
challenge here is the variety of different architectures and also the variety in spaces and
types of data.

6 Conclusion

In this study, we have systematically reviewed research articles on Neural Architecture
Search (NAS). We analyzed the contributions with respect to specific research questions.
This article contributes to research in several ways. First, it provides a systematic overview
of existing research from 2017 to mid-2023. We have identified 160 significant contributions
including journal articles and articles on conference proceedings. The contributions have
been systematically introduced, analyzed, classified, and predicted the future of this emer-
gent research field and will ease researchers’ search for relevant studies. Second, through
a thorough analysis, we have proposed potential areas and approaches for future studies.

The review concludes that the motives for every transition in NAS field, current status
analysis, outcomes, benefits, research opportunities, and field direction are the most domi-
nant topics in current research.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
You do not have permission under this licence to share adapted material derived from this article or parts of it.
The images or other third party material in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
http: //creativecommo ns. org/lice ns es / b y -nc-nd/4.0/.

References

Abdelfattah M.S, Mehrotra A, Dudziak Ł, Lane N.D. (2021). Zero-cost proxies for lightweight NAS. arXiv
preprint arXiv:2101.08134

Baker B, Gupta O, Raskar R, Naik N: (2017). Accelerating neural architecture search using performance
prediction. arXiv preprint arXiv:1705.10823

Banbury C, Zhou C, Fedorov I, Matas R, Thakker U, Gope D, Janapa Reddi V, Mattina M, Whatmough
P (2021) Micronets: Neural network architectures for deploying tinyml applications on commodity
microcontrollers. Proc Machine Learn Syst 3:517–532

1 3

Page 31 of 38 73

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://arxiv.org/abs/2101.08134
http://arxiv.org/abs/1705.10823

S. Salmani Pour Avval et al.

Barnell M, Raymond C, Smiley S, Isereau D, Brown D. (2022). Ultra low-power deep learning applications
at the edge with Jetson Orin AGX hardware. In: 2022 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1–4 IEEE

Bender G, Kindermans P.-J, Zoph B, Vasudevan V, Le Q. (2018). Understanding and simplifying one-shot
architecture search. In: International Conference on Machine Learning, pp. 550–559. PMLR

Benmeziane H, Maghraoui KE, Ouarnoughi H, Niar S, Wistuba M, Wang N (2021) A comprehensive survey
on hardware-aware neural architecture search. arXiv preprint arXiv:2101.09336

Byla E, Pang W: Deepswarm: (2019). Optimising convolutional neural networks using swarm intelligence.
In: UK Workshop on Computational Intelligence, pp. 119–130 . Springer

Caglar B, Broggi G, Ali MA, Orgéas L, Michaud V (2022) Deep learning accelerated prediction of the per-
meability of fibrous microstructures. Composites Part Appl Sci Manufact 158:106973

Cai R, Luo J: (2021). Multi-task learning for multi-objective evolutionary neural architecture search. In: 2021
IEEE Congress on Evolutionary Computation (CEC), pp. 1680–1687. IEEE

Campos TE, Babu BR, Varma M (2009) Character recognition in natural images. Int Conf Computer Vision
Theory Appl 1:273–280

Cardoso-Pereira I, Lobo-Pappa G, Ramos HS (2021) Neural architecture search for resource-constrained
internet of things devices. In: 2021 IEEE Symposium on Computers and Communications (ISCC), pp.
1–6. IEEE

Cassimon T, Vanneste S, Bosmans S, Mercelis S, Hellinckx P (2020) Designing resource-constrained neural
networks using neural architecture search targeting embedded devices. Int Things 12:100234

Chen X, Hsieh C-J (2020). Stabilizing differentiable architecture search via perturbation-based regulariza-
tion. In: International Conference on Machine Learning, pp. 1554–1565. PMLR

Chen L, Xu H (2022) Mfenas: multifactorial evolution for neural architecture search. Proc Genet Evol Com-
put Conf Companion 10:631–634

Chen H, Zhang B, Zheng X, Liu J, Doermann D, Ji R (2020). Binarized neural architecture search. Proc
AAAI Conf Artif Intell 34:10526–10533

Chen M, Fu J, Ling H (2021a) One-shot neural ensemble architecture search by diversity-guided search space
shrinking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 16530–16539

Chen Y, Gao R, Liu F, Zhao D (2021b) Modulenet: Knowledge-inherited neural architecture search. IEEE
Transactions on Cybernetics

Chen W, Gong X, Wang Z (2021c). Neural architecture search on ImageNet in four GPU hours: A theoreti-
cally inspired perspective. arXiv preprint arXiv:2102.11535

Chen H, Huang H, Zuo X, Zhao X (2022) Robustness enhancement of neural networks via architecture
search with multi-objective evolutionary optimization. Mathematics 10(15):2724

Cook S. (2012). CUDA Programming: a Developer’s Guide to Parallel Computing with GPUs. Newnes .
Dai X, Wan A, Zhang P, Wu B, He Z, Wei Z, Chen K, Tian Y, Yu M, Vajda P: (2021). FBNetV3: Joint

architecture-recipe search using predictor pretraining. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16276–16285

Dana KJ, Van Ginneken B, Nayar SK, Koenderink JJ (1999). Reflectance and texture of real-world surfaces.
ACM Trans Graph (TOG) 18(1):1–34

Del Valle AM, Mantovani RG Cerri R. (2023). A systematic literature review on automl for multi-target
learning tasks. Artif Intell Rev 10:1–40

Dillon J.V, Langmore I, Tran D, Brevdo E, Vasudevan S, Moore D, Patton B, Alemi A, Hoffman M, Saurous
R.A. (2017). Tensorflow distributions. arXiv preprint arXiv:1711.10604

Ding Z, Chen Y, Li N, Zhao D, Sun Z, Chen CP (2021) BNAS: Efficient neural architecture search using
broad scalable architecture. IEEE Trans Neural Netw Learn Syst 10:12

Ding Z, Chen Y, Li N, Zhao D: BNAS-v2, (2022) Memory-efficient and performance-collapse-prevented
broad neural architecture search. IEEE Trans Syst Man Cyber Syst 10:15

Ditty M: NVIDIA ORIN system-on-chip. In: 2022 IEEE Hot Chips 34 Symposium (HCS), pp. 1–17 (2022).
IEEE Computer Society

Domhan T, Springenberg J.T, Hutter F. (2015). Speeding up automatic hyperparameter optimization of deep
neural networks by extrapolation of learning curves. In: Twenty-fourth International Joint Conference
on Artificial Intelligence

Dong X, Yang Y (2019) Searching for a robust neural architecture in four GPU hours. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1761–1770

Dong X, Yang Y: NAS-bench-201: (2020). Extending the scope of reproducible neural architecture search.
arXiv preprint arXiv:2001.00326

Dong Z, Gao Y, Huang Q, Wawrzynek J, So H.K, Keutzer K (2021a). Hao: Hardware-aware neural archi-
tecture optimization for efficient inference. In: 2021 IEEE 29th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 50–59. IEEE

1 3

 73 Page 32 of 38

http://arxiv.org/abs/2101.09336
http://arxiv.org/abs/2102.11535
http://arxiv.org/abs/1711.10604
http://arxiv.org/abs/2001.00326

Systematic review on neural architecture search

Dong X, Liu L, Musial K, Gabrys B (2021b) NATS-Bench: Benchmarking nas algorithms for architecture
topology and size. IEEE transactions on pattern analysis and machine intelligence

Efficient architecture search for deep neural networks (2020) Gottapu R.D., Dagli C.H. Proc Computer Sci
168:19–25

Elsken T, Metzen J.H, Hutter F (2018) Efficient multi-objective neural architecture search via Lamarckian
evolution. arXiv preprint arXiv:1804.09081

Elsken T, Metzen JH, Hutter F (2019). Neural architecture search: a survey. J Machine Learn Res
20(1):1997–2017

Falkner S, Klein A, Hutter F: Bohb: (2018). Robust and efficient hyperparameter optimization at scale. In:
International Conference on Machine Learning, pp. 1437–1446 . PMLR

Fan Y, Niu Z.-H, Yang Y.-B. (2023). Data-aware zero-shot neural architecture search for image recognition.
In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5. IEEE

Fang J, Sun Y, Zhang Q, Li Y, Liu W, Wang X. (2020). Densely connected search space for more flexible
neural architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 10628–10637

Fedorov I, Adams RP, Mattina M, Whatmough P (2019) Sparse: Sparse architecture search for cnns on
resource-constrained microcontrollers. Adv Neural Inform Process Syst 32:210

Franken G, Singh P, Vanschoren J: Emprox. (2022). Neural network performance estimation for neural archi-
tecture search. arXiv preprint arXiv:2206.05972

Garcia-Diaz A, Bersini H (2021) Densemann: Building a densenet from scratch, layer by layer and kernel by
kernel. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–10 . IEEE

García-Holgado A, Marcos-Pablos S, García-Peñalvo F (2020) Guidelines for performing systematic
research projects reviews

Geraeinejad V, Sinaei S, Modarressi M, Daneshtalab M: RoCo-NAS, (2021) Robust and compact neural
architecture search. Int Joint Conf Neural Netw (IJCNN) 10:1–8

Giveki D, Karami M (2020) Scene classification using a new radial basis function classifier and integrated
sift-lbp features. Pattern Anal Appl 23(3):1071–1084

Gracheva E (2021) Trainless model performance estimation based on random weights initialisations for neu-
ral architecture search. Array 12:100082

He C, Tan H, Huang S, Cheng R (2021) Efficient evolutionary neural architecture search by modular inherit-
able crossover. Swarm Evol Comput 64:100894

Hong M.-F, Chen H.-Y, Chen M.-H, Xu Y.-S, Kuo H.-K, Tsai Y.-M, Chen H.-J, Jou K. (2021). Network space
search for pareto-efficient spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3053–3062

Howard A, Sandler M, Chu G, Chen L.-C, Chen B, Tan M, Wang W, Zhu Y, Pang R, Vasudevan V: (2019).
Searching for MobileNetV3. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1314–1324

Hu S, Cheng R, He C, Lu Z, Wang J, Zhang M (2021) Accelerating multi-objective neural architecture search
by random-weight evaluation. Complex Intell Syst 10:1–10

Hu M, Pour Avval S.S, He J, Yue N, Groves RM (2024) Explainable artificial intelligence study on bolt
loosening detection using lamb waves. Jian and Yue, Nan and Groves, Roger M., Explainable Artificial
Intelligence Study on Bolt Loosening Detection Using Lamb Waves

Huang H, Ma X, Erfani SM, Bailey J (2021) Neural architecture search via combinatorial multi-armed ban-
dit. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 . IEEE

Ipenburg Iv, Sapra D, Pimentel AD (2021) Exploring cell-based neural architectures for embedded systems.
In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 363–
374. Springer

Jacot A, Gabriel F, Hongler C (2018) Neural tangent kernel: Convergence and generalization in neural net-
works. Adv Neural Inform Process Syst 31:225

Jeong J, Yu J, Han D, Yoo Y (2022) Neural architecture search with loss flatness-aware measure
Jiang W, Yang L, Dasgupta S, Hu J, Shi Y (2020a) Standing on the shoulders of giants: Hardware and

neural architecture co-search with hot start. IEEE Trans Computer-Aided Design Integr Circuits Syst
39(11):4154–4165

Jiang W, Yang L, Sha EH-M, Zhuge Q, Gu S, Dasgupta S, Shi Y, Hu J (2020b) Hardware/software co-explora-
tion of neural architectures. IEEE Trans Computer-Aided Design Integr Circuits Syst 39(12):4805–4815

Jin H, Song Q, Hu X (2019) Auto-Keras: An efficient neural architecture search system. In: Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
1946–1956

Jing K, Xu J, Zhang Z (2022) A neural architecture generator for efficient search space. Neurocomputing
486:189–199

1 3

Page 33 of 38 73

http://arxiv.org/abs/1804.09081
http://arxiv.org/abs/2206.05972

S. Salmani Pour Avval et al.

Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: a survey. J Artif Intell Res 4:237–285
Kandasamy K, Neiswanger W, Schneider J, Poczos B, Xing EP (2018) Neural architecture search with bayes-

ian optimisation and optimal transport. Adv Neural Inform Process Syst 31:210
Keele S (2007) Guidelines for performing systematic literature reviews in software engineering. Technical

report, Technical report, ver. 2.3 ebse technical report. ebse
Klein A, Falkner S, Springenberg JT, Hutter F (2016) Learning curve prediction with Bayesian neural

networks
Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images
LaKemper C.A, Wang C, Yoder J.A: (2022). Biology inspired growth in meta-learning. In: Proceedings of the

Genetic and Evolutionary Computation Conference Companion, pp. 63–64
Lange S, Riedmiller M: Deep auto-encoder neural networks in reinforcement learning. In: The 2010 Interna-

tional Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2010). IEEE
LeCun Y, Cortes C, Burges C: MNIST handwritten digit database. ATT Labs. h t t p : / / y a n n . l e c u n . c o m / e x d b /

m n i s t 2
Lee N, Ajanthan T, Torr P.H. (2018). Snip: Single-shot network pruning based on connection sensitivity.

arXiv preprint arXiv:1810.02340
Li L, Talwalkar A (2020) Random search and reproducibility for neural architecture search. In: Uncertainty

in Artificial Intelligence, pp. 367–377. PMLR
Li L, Jamieson K.G, DeSalvo G, Rostamizadeh A, Talwalkar A (2017) Hyperband: Bandit-based configura-

tion evaluation for hyperparameter optimization. In: ICLR (Poster)
Li Y, Dong M, Wang Y, Xu C (2020a) Neural architecture search in a proxy validation loss landscape. In:

International Conference on Machine Learning, pp. 5853–5862. PMLR
Li Z, Xi T, Deng J, Zhang G, Wen S, He R: Gp-nas (2020b) Gaussian process based neural architecture

search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 11933–11942

Li G, Qian G, Delgadillo I.C, Muller M, Thabet A, Ghanem B (2020c) SGAS: Sequential greedy architecture
search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1620–1630

Li G, Mandal SK, Ogras UY, Marculescu R (2021a) Flash: Fast neural architecture search with hardware
optimization. ACM Trans Embedded Comput Syst (TECS) 20(5s):1–26

Li C, Yu Z, Fu Y, Zhang Y, Zhao Y, You H, Yu Q, Wang Y, Lin Y (2021b) HW-NAS-Bench: Hardware-aware
neural architecture search benchmark. arXiv preprint arXiv:2103.10584

Li S, Mao Y, Zhang F, Wang D, Zhong G (2022) DLW-NAS: Differentiable light-weight neural architecture
search. Cognitive Computation, 1–11

Liberis E, Dudziak Ł, Lane ND (2021) µnas: Constrained neural architecture search for microcontrollers. In:
Proceedings of the 1st Workshop on Machine Learning and Systems, pp. 70–79

Lin J, Chen W-M, Lin Y, Gan C, Han S (2020) MCUNET: Tiny deep learning on IoT devices. Adv Neural
Inform Process Syst 33:11711–11722

Lin J, Chen W-M, Cai H, Gan C, Han S (2021a) Memory-efficient patch-based inference for tiny deep learn-
ing. Adv Neural Inform Process Syst 34:2346–2358

Lin M, Wang P, Sun Z, Chen H, Sun X, Qian Q, Li H, Jin R (2021b) Zen-NAS: A zero-shot NAS for high-
performance image recognition. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 347–356

Liu H, Simonyan K, Yang Y (2018a) DARTS: Differentiable architecture search. arXiv preprint
arXiv:1806.09055

Liu C, Zoph B, Neumann M, Shlens J, Hua W, Li L-J, Fei-Fei L, Yuille A, Huang J, Murphy K (2018b) Pro-
gressive neural architecture search. In: Proceedings of the European Conference on Computer Vision
(ECCV), pp. 19–34

Liu C, Chen L-C, Schroff F, Adam H, Hua W, Yuille A.L, Fei-Fei L (2019) Auto-deeplab: Hierarchical neural
architecture search for semantic image segmentation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 82–92

Loni M, Sinaei S, Zoljodi A, Daneshtalab M, Sjödin M (2020) Deepmaker: a multi-objective optimization
framework for deep neural networks in embedded systems. Microproc Microsyst 73:102989

Lopes V, Alexandre LA (2022) Towards less constrained macro-neural architecture search. arXiv preprint
arXiv:2203.05508

Lopes V, Alirezazadeh S, Alexandre LA (2021) EPE-NAS:Efficient performance estimation without training
for neural architecture search. In: International Conference on Artificial Neural Networks, Springer, pp.
552–563

1 3

 73 Page 34 of 38

http://arxiv.org/abs/1810.02340
http://arxiv.org/abs/2103.10584
http://arxiv.org/abs/1806.09055
http://arxiv.org/abs/2203.05508

Systematic review on neural architecture search

Lopes V, Santos M, Degardin B, Alexandre LA (2022) Efficient guided evolution for neural architecture
search. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion. GECCO
’22, pp. 655–658. Association for Computing Machinery New York, NY, USA h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5
/ 3 5 2 0 3 0 4 . 3 5 2 8 9 3 6

Louati H, Bechikh S, Louati A, Aldaej A, Said LB (2022) Joint design and compression of convolutional
neural networks as a bi-level optimization problem. Neural Comput Appl 10:1–23

Lu L, Lyu B (2021) Reducing energy consumption of neural architecture search: an inference latency predic-
tion framework. Sustain Cities Soc 67:102747

Lu Z, Whalen I, Boddeti V, Dhebar Y, Deb K, Goodman E, Banzhaf W (2019) NSGA-Net: neural architecture
search using multi-objective genetic algorithm. Proc Genet Evol Comput Conf 10:419–427

Luo R, Tian F, Qin T, Chen E, Liu T-Y (2018) Neural architecture optimization. Adv Neural Inform Process
Syst 31:210

Luo X, Liu D, Kong H, Liu W (2020) Edgenas: Discovering efficient neural architectures for edge systems.
In: 2020 IEEE 38th International Conference on Computer Design (ICCD), pp. 288–295. IEEE

Luo X, Liu D, Huai S, Liu W (2021) Hsconas: Hardware-software co-design of efficient dnns via neural
architecture search. In: 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 418–421 . IEEE

Mao Y, Zhong G, Wang Y, Deng Z: Differentiable light-weight architecture search. In: 2021 IEEE Interna-
tional Conference on Multimedia and Expo (ICME), pp. 1–6 (2021). IEEE

Mellor J, Turner J, Storkey A, Crowley E.J: (2021). Neural architecture search without training. In: Interna-
tional Conference on Machine Learning, pp. 7588–7598. PMLR

Mey O, Neudeck W, Schneider A, Enge-Rosenblatt O: Machine learning-based unbalance detection of a
rotating shaft using vibration data. In: 2020 25th IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA), vol. 1, pp. 1610–1617 (2020). IEEE

Millán A.P, Torres J, Johnson S, Marro J: (2018). Growth strategy determines network performance. arXiv
preprint arXiv:1806.01878

Mills K.G, Salameh M, Niu D, Han F.X, Rezaei S.S.C, Yao H, Lu W, Lian S, Jui S. (2021). Exploring neural
architecture search space via deep deterministic sampling. IEEE Access 9 110962–110974

Moher D, Liberati A, Tetzlaff J, Altman DG (2009) the PRISMA Group: Preferred reporting items for system-
atic reviews and meta-analyses: the prisma statement. Ann int Med 151(4):264–269

Mokhtari N, Nédélec A, Gilles M, De Loor P. (2022). Improving neural architecture search by mixing a firefly
algorithm with a training free evaluation

Nakai K, Matsubara T, Uehara K (2021) Neural architecture search for convolutional neural networks with
attention. IEICE Trans Inform Syst 104(2):312–321

Niu S, Wu J, Zhang Y, Guo Y, Zhao P, Huang J, Tan M (2021) Disturbance-immune weight sharing for neural
architecture search. Neural Netw 144:553–564

Park G, Yi Y (2022) Condnas: Neural architecture search for conditional cnns. Electronics 11(7):1101
Phan QM, Luong NH (2021) Efficiency enhancement of evolutionary neural architecture search via training-

free initialization. In: 2021 8th NAFOSTED Conference on Information and Computer Science (NICS),
pp. 138–143 . IEEE

Pham H, Guan M, Zoph B, Le Q, Dean J (2018) Efficient neural architecture search via parameters sharing.
In: International Conference on Machine Learning, pp. 4095–4104 . PMLR

Pinos M, Mrazek V, Sekanina L (2022) Evolutionary approximation and neural architecture search. Genet
Program Evol Machines 12:1–24

Qian G, Zhang X, Li G, Zhao C, Chen Y, Zhang X, Ghanem B, Sun J: (2022). When NAS meets trees: An
efficient algorithm for neural architecture search. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2782–2787

Qin X, Wang Z: Nasnet: (2019). A neuron attention stage-by-stage net for single image deraining. arXiv
preprint arXiv:1912.03151

Rastegar H, Giveki D (2023) Designing a new deep convolutional neural network for content-based image
retrieval with relevance feedback. Computers Electr Eng 106:108593

Rastegar H, Giveki D, Choubin M (2024) Eeg signals classification using a new radial basis function neural
network and jellyfish meta-heuristic algorithm. Evol Intell 17(2):1197–1208

Real E, Aggarwal A, Huang Y, Le QV (2019a) Aging evolution for image classifier architecture search. AAAI
Conf Artif Intell 2:2

Real E, Aggarwal A, Huang Y, Le QV (2019b) Regularized evolution for image classifier architecture search.
In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 4780–4789

Runge F, Stoll D, Falkner S, Hutter F: (2018) Learning to design rna. arXiv preprint arXiv:1812.11951
Saha SS, Sandha SS, Garcia LA (2022) Srivastava M: Tinyodom: Hardware-aware efficient neural inertial

navigation. Proc ACM Interactive Mobile Wearable Ubiquitous Technol 6(2):1–32

1 3

Page 35 of 38 73

https://doi.org/10.1145/3520304.3528936
https://doi.org/10.1145/3520304.3528936
http://arxiv.org/abs/1806.01878
http://arxiv.org/abs/1912.03151
http://arxiv.org/abs/1812.11951

S. Salmani Pour Avval et al.

Salmanipour S, Aghdami A, Abdoli SM, Sokhansanj A (2023) Separation of a two binary-azeotrope acetoni-
trile-cyclohexane-toluene ternary mixture via continuous triple column extractive distillation with heat
integration: design, simulation, and multi-objective genetic-algorithm (moga) optimization. Separation
Sci Technol 58(14):2539–2555

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2018) MobileNetV2: Inverted residuals and linear
bottlenecks. Proc IEEE Conf Computer Vision Pattern Recognition. 10:4510–4520

Saxena S, Verbeek J (2016) Convolutional neural fabrics. Adv Neural Inform Process Syst 20:10
Shang R, Zhu S, Ren J, Liu H, Jiao L (2022) Evolutionary neural architecture search based on evaluation

correction and functional units. Knowledge-Based Syst 10:109206
Shaw A, Wei W, Liu W, Song L, Dai B (2019) Meta architecture search. Adv Neural Inform Process Syst

23:10
Shen M, Han K, Xu C, Wang Y: (2019). Searching for accurate binary neural architectures. In: Proceedings

of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0
Shi R, Luo J, Liu Q: (2021). Fast evolutionary neural architecture search based on Bayesian surrogate model.

In: 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 1217–1224. IEEE
Siems J, Zimmer L, Zela A, Lukasik J, Keuper M, Hutter F: (2020). NAS-bench-301 and the case for sur-

rogate benchmarks for neural architecture search. arXiv preprint arXiv:2008.09777
Silberman N, Fergus R: NYU Depth V2 dataset. NYU Depth V2 Dataset (2011)
Song HY (2021) A method for gradient differentiable network architecture search by selecting and clustering

candidate operations. Appl Sci 11(23):11436
Su X, Huang T, Li Y, You S, Wang F, Qian C, Zhang C, Xu C: (2021). Prioritized architecture sampling with

monto-carlo tree search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10968–10977

Swersky K, Snoek J, Adams R.P. (2014). Freeze-thaw Bayesian optimization. arXiv preprint arXiv:1406.3896
Szwarcman D, Civitarese D, Vellasco M (2019) Quantum-inspired neural architecture search. In: 2019 Inter-

national Joint Conference on Neural Networks (IJCNN), pp. 1–8 . IEEE
Szwarcman D, Civitarese D, Vellasco M (2022) Quantum-inspired evolutionary algorithm applied to neural

architecture search. Appl Soft Computing 120:108674
Tan M, Chen B, Pang R, Vasudevan V, Sandler M, Howard A, Le QV (2019) MnasNet: Platform-aware neu-

ral architecture search for mobile. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2820–2828

Tan H, Cheng R, Huang S, He C, Qiu C, Yang F, Luo P (2021) Relativenas: relative neural architecture search
via slow-fast learning. IEEE Trans Neural Netw Learn Syst 10:210

Tanaka H, Kunin D, Yamins DL, Ganguli S (2020) Pruning neural networks without any data by iteratively
conserving synaptic flow. Adv Neural Inform Process Syst 33:6377–6389

Targ S, Almeida D, Lyman K: Resnets in resnets: Generalizing residual architectures. arXiv preprint
arXiv:1603.08029 (2016)

Trofimov I, Klyuchnikov N, Salnikov M, Filippov A, Burnaev E. (2020). Multi-fidelity neural architecture
search with knowledge distillation. arXiv preprint arXiv:2006.08341

Turner J, Crowley E.J, O’Boyle M, Storkey A, Gray G. (2019). Blockswap: Fisher-guided block substitution
for network compression on a budget. arXiv preprint arXiv:1906.04113

Wan A, Dai X, Zhang P, He Z, Tian Y, Xie S, Wu B, Yu M, Xu T, Chen K: (2020) Fbnetv2: Differentiable
neural architecture search for spatial and channel dimensions. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 12965–12974

Wan X, Ru B, Esparança P.M, Carlucci F.M. (2022). Approximate neural architecture search via operation
distribution learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pp. 2377–2386

Wang C, Zhang G, Grosse R: (2020a). Picking winning tickets before training by preserving gradient flow.
arXiv preprint arXiv:2002.07376

Wang L, Zhao Y, Jinnai Y, Tian Y, Fonseca R: (2020b). Neural architecture search using deep neural networks
and monte carlo tree search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 9983–9991

Wang T-T, Chu S-C, Hu C-C, Jia H-D, Pan J-S (2022a) Efficient network architecture search using hybrid
optimizer. Entropy 24(5):656

Wang L, Xie L, Zhao K, Guo J, Tian Q (2022b) Regularized differentiable architecture search. IEEE Embed-
ded Syst Lett 15:210

Wei H, Lee F, Hu C, Chen Q (2022a) Moo-dnas: Efficient neural network design via differentiable architec-
ture search based on multi-objective optimization. IEEE Access 10:14195–14207

Wei C, Niu C, Tang Y, Wang Y, Hu H, Liang J: NPENAS. (2022b). Neural predictor guided evolution for
neural architecture search. IEEE Transactions on Neural Networks and Learning Systems

1 3

 73 Page 36 of 38

http://arxiv.org/abs/2008.09777
http://arxiv.org/abs/1406.3896
http://arxiv.org/abs/1603.08029
http://arxiv.org/abs/2006.08341
http://arxiv.org/abs/1906.04113
http://arxiv.org/abs/2002.07376

Systematic review on neural architecture search

Wen W, Liu H, Chen Y, Li H, Bender G, Kindermans P.-J: (2020) Neural predictor for neural architecture
search. In: European Conference on Computer Vision, pp. 660–676. Springer

Wen Y-W, Peng S-H, Ting C-K (2021) Two-stage evolutionary neural architecture search for transfer learn-
ing. IEEE Trans Evol Comput 25(5):928–940

White C, Neiswanger W, Savani Y (2021a) BANANAS: Bayesian optimization with neural architectures for
neural architecture search. Proc AAAI Conf Artif Intell 35:10293–10301

White C, Zela A, Ru R, Liu Y, Hutter F (2021b) How powerful are performance predictors in neural architec-
ture search? Adv Neural Inform Process Syst 34:28454–28469

Wu B, Dai X, Zhang P, Wang Y, Sun F, Wu Y, Tian Y, Vajda P, Jia Y, Keutzer K. (2019). Fbnet: Hardware-
aware efficient convnet design via differentiable neural architecture search. In: Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition, pp. 10734–10742

Wu Y, Liu A, Huang Z, Zhang S, Van Gool L (2021a) Neural architecture search as sparse supernet. Proc
AAAI Conf Artif Intell 35:10379–10387

Wu M.-T, Lin H.-I, Tsai C.-W: (2021b). A training-free genetic neural architecture search. In: Proceedings
of the 2021 ACM International Conference on Intelligent Computing and Its Emerging Applications,
pp. 65–70

Xie S, Zheng H, Liu C, Lin L: Snas: (2018) stochastic neural architecture search. arXiv preprint
arXiv:1812.09926

Xu Y, Wang Y, Han K, Tang Y, Jui S, Xu C, Xu C: ReNAS: (2021a) Relativistic evaluation of neural architec-
ture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 4411–4420

Xu J, Zhao L, Lin J, Gao R, Sun X, Yang H: (2021b). KNAS: green neural architecture search. In: Interna-
tional Conference on Machine Learning, pp. 11613–11625 PMLR

Xue Y, Wang Y, Liang J, Slowik A (2021) A self-adaptive mutation neural architecture search algorithm based
on blocks. IEEE Computational Intell Magazine 16(3):67–78

Xue F, Qi Y, Xin J (2022) Rarts: An efficient first-order relaxed architecture search method. IEEE Access
10:65901–65912

Yaghoubi V, Kumru B (2024) Retrosynthetic life cycle assessment: a short perspective on the sustainabil-
ity of integrating thermoplastics and artificial intelligence into composite systems. Adv Sustain Syst
10:2300543

Yaghoubi V, Cheng L, Van Paepegem W, Kersemans M (2022) An ensemble classifier for vibration-based
quality monitoring. Mechan Syst Signal Process 165:108341

Yan Z, Dai X, Zhang P, Tian Y, Wu B, Feiszli M. (2021). FP-NAS: Fast probabilistic neural architecture
search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 15139–15148

Yang Y, Nam A, Nasr-Azadani M, Tung T: (2020a). Resource-aware pareto-optimal automated machine
learning platform. In: 2020 3rd International Seminar on Research of Information Technology and Intel-
ligent Systems (ISRITI), pp. 1–6. IEEE

Yang Z, Wang Y, Chen X, Shi B, Xu C, Xu C, Tian Q, Xu C: (2020b). Cars: Continuous evolution for efficient
neural architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 1829–1838

Yang Z, Zhang S, Li R, Li C, Wang M, Wang D, Zhang M (2021) Efficient resource-aware convolutional
neural architecture search for edge computing with pareto-bayesian optimization. Sensors 21(2):444

Ying C, Klein A, Christiansen E, Real E, Murphy K, Hutter F. (2019). NAS-bench-101: Towards reproducible
neural architecture search. In: International Conference on Machine Learning, pp. 7105–7114 . PMLR

You S, Huang T, Yang M, Wang F, Qian C, Zhang C: Greedynas: (2020). Towards fast one-shot nas with
greedy supernet. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition, pp. 1999–2008

Yu H, Peng H, Huang Y, Fu J, Du H, Wang L, Ling H (2022) Cyclic differentiable architecture search. IEEE
Trans Pattern Anal Machine Intell 13:210

Zela A, Klein A, Falkner S, Hutter F: (2018). Towards automated deep learning: Efficient joint neural archi-
tecture and hyperparameter search. arXiv preprint arXiv:1807.06906

Zela A, Siems J, Hutter F. (2020). NAS-bench-1shot1: Benchmarking and dissecting one-shot neural archi-
tecture search. arXiv preprint arXiv:2001.10422

Zhang M, Li H, Pan S, Liu T, Su S.W: (2020a). One-shot neural architecture search via novelty driven sam-
pling. In: IJCAI, pp. 3188–3194

Zhang L.L, Yang Y, Jiang Y, Zhu W, Liu Y: (2020b). Fast hardware-aware neural architecture search. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
pp. 692–693

1 3

Page 37 of 38 73

http://arxiv.org/abs/1812.09926
http://arxiv.org/abs/1807.06906
http://arxiv.org/abs/2001.10422

S. Salmani Pour Avval et al.

Zhang B, Chen H, Yang L, Chen C, Zhu Y, Doermann D. (2021a). Cp-nas: Child-parent neural architecture
search for 1-bit cnns. In: Proceedings of the Twenty-Ninth International Conference on International
Joint Conferences on Artificial Intelligence, pp. 1033–1039

Zhang X, Hou P, Zhang X, Sun J: (2021b). Neural architecture search with random labels. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10907–10916

Zhang T, Lei C, Zhang Z, Meng X.-B, Chen C.P:(2021c). AS-NAS Adaptive scalable neural architecture
search with reinforced evolutionary algorithm for deep learning. IEEE Transactions on Evolutionary
Computation 25(5), 830–841

Zhang H, Jin Y, Hao K (2022a) Evolutionary search for complete neural network architectures with partial
weight sharing. IEEE Trans Evol Comput 4:12

Zhang M, Pan S, Chang X, Su S, Hu J, Haffari G.R, Yang B: BaLeNAS: (2022b). Differentiable architec-
ture search via the Bayesian learning rule. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11871–11880

Zhao Z, Zhang G.-e, Jiang M, Feng L, Tan K.C: (2020). Ednas: An efficient neural architecture design based
on distribution estimation. In: 2020 2nd International Conference on Industrial Artificial Intelligence
(IAI), pp. 1–6. IEEE

Zhao J, Lv W, Du B, Ye J, Sun L, Xiong G (2021a) Deep multi-task learning with flexible and compact archi-
tecture search. Int J Data Sci Anal 10:1–13

Zhao Y, Wang L, Tian Y, Fonseca R, Guo T. (2021b). Few-shot neural architecture search. In: International
Conference on Machine Learning, pp. 12707–12718. PMLR

Zheng X, Ji R, Wang Q, Ye Q, Li Z, Tian Y, Tian Q. (2020). Rethinking performance estimation in neural
architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11356–11365

Zheng X, Ji R, Chen Y, Wang Q, Zhang B, Chen J, Ye Q, Huang F, Tian Y (2021) MIGO-NAS: towards fast
and generalizable neural architecture search. IEEE Trans Pattern Anal Machine Intell 43(9):2936–2952

Zhou H, Yang M, Wang J, Pan W: BayesNAS: (2019) A Bayesian approach for neural architecture search. In:
International Conference on Machine Learning, pp. 7603–7613. PMLR

Zhu Y, Newsam S (2017) Densenet for dense flow. In: 2017 IEEE International Conference on Image Pro-
cessing (ICIP), pp. 790–794. IEEE

Zhu H, An Z, Yang C, Xu K, Zhao E, Xu Y: (2019) Eena: efficient evolution of neural architecture. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0

Zimmer L, Lindauer M, Hutter F (2021) Auto-Pytorch: multi-fidelity metalearning for efficient and robust
autodl. IEEE Trans Pattern Anal Machine Intell 43(9):3079–3090

Zoph B, Le QV (2016) Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578

Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transferable architectures for scalable image rec-
ognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
8697–8710

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

1 3

 73 Page 38 of 38

http://arxiv.org/abs/1611.01578

	Systematic review on neural architecture search
	Abstract
	1 Introduction
	2 Materials and methods for systematic literature review
	2.1 Tools
	2.2 Sources
	2.3 Research questions
	2.4 Criteria

	3 Basic knowledge
	3.1 Search space
	3.2 Search strategy
	3.2.1 Random search
	3.2.2 Gradient-based optimizer
	3.2.3 Bayesian optimizer
	3.2.4 Evolutionary algorithms
	3.2.5 Reinforcement learning

	3.3 Validation strategy (or proxies)
	3.3.1 Full training
	3.3.2 Partial training
	3.3.3 Adaptive training (processing learning curve)
	3.3.4 Zero-Shot (zero-cost)

	4 Literature
	4.1 Comparing NAS algorithms
	4.1.1 Performance metrics and menchmarks
	4.1.2 Methods

	4.2 NAS for specific hardware
	5 Discussion
	5.1 Introduction and motivations in the NAS
	5.2 Current status analysis
	5.3 Benefits and future direction

	6 Conclusion
	References

