
 
 

Delft University of Technology

Synergetic-informed deep reinforcement learning for sustainable management of
transportation networks with large action spaces

Lai, Li; Dong, You; Andriotis, Charalampos P.; Wang, Aijun; Lei, Xiaoming

DOI
10.1016/j.autcon.2024.105302
Publication date
2024
Document Version
Final published version
Published in
Automation in Construction

Citation (APA)
Lai, L., Dong, Y., Andriotis, C. P., Wang, A., & Lei, X. (2024). Synergetic-informed deep reinforcement
learning for sustainable management of transportation networks with large action spaces. Automation in
Construction, 160, Article 105302. https://doi.org/10.1016/j.autcon.2024.105302

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.autcon.2024.105302
https://doi.org/10.1016/j.autcon.2024.105302


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Automation in Construction 160 (2024) 105302

Available online 6 February 2024
0926-5805/© 2024 Elsevier B.V. All rights reserved.

Synergetic-informed deep reinforcement learning for sustainable 
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A B S T R A C T   

Effective transportation network management systems should consider safety and sustainability objectives. Existing research on large-scale transportation network 
management often employs the assumption that bridges can be considered individually under these objectives. However, this simplification misses accurate system- 
level representations, induced by multiple components, network topology, and global maintenance actions. To address these limitations, this paper presents a deep 
reinforcement learning (DRL) framework that draws inspiration from biological learning behaviors to determine optimal life-cycle management policies. It in-
corporates synergetic branches and hierarchical rewards, factorizing the action space and, thereby, diminishing system complexity from exponential to linear with 
respect to the number of bridges. Extensive experiments based on a realistic case study demonstrate that the proposed method outperforms expert maintenance 
strategies and state-of-the-art decision-making methods. Overall, the proposed DRL framework can assist engineers by offering adaptive solutions to maintenance 
planning. It also provides solutions that address large action spaces within complex systems.   
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1. Introduction 

Transportation networks are of utmost importance for economic 
development and population mobility. Nevertheless, the performance 
deterioration of transportation networks is inevitable due to external 
loads, material aging, and environmental corrosion, especially for 
bridges which are the most vulnerable and costly components of the 
system. In the USA, approximately a quarter of bridges are either 
structurally deficient or functionally obsolete [1]. The investment 
shortfall for the transportation network will be $549.5 billion in the next 
five years. Moreover, with the additional requirements in serviceability, 
transportation systems need to satisfy sustainable requirements, such as 
economic and societal [2,3]. Carbon neutrality is also becoming more 
important, and China aims at realizing the CO2 emission inflection point 
before 2035 [4,5]. Based on the results by [4], the total CO2 emission in 

2020 was approximately 34 billion tons, with vehicles occupying around 
10% ~ 15% of emissions. A considerable portion of emissions is 
generated by vehicle detours caused by bridge maintenance, which can 
be reduced through transportation network management strategies. 
These additional requirements make the existing transportation network 
management system, which only focuses on bridge safety [6–8], no 
longer suitable. Therefore, a future study in decision-making for trans-
portation network management has to explicitly include consideration 
of various constraints in the optimization to satisfy the sustainability 
goals, including reducing greenhouse gas emissions, promoting energy 
efficiency, and enhancing public transportation. In the transformative 
age of automation and artificial intelligence (AI), a dedicated AI-aided 
decision-making system should be developed to utmost extent address 
the complex transportation network management problem. This system 
would be invaluable in addressing the challenges of managing trans-
portation networks, especially considering the multifaceted sustain-
ability requirements, diverse information fusing, and the need for 
optimal operation under resource constraints. 

Effective management systems are essential for decision support and 
are used throughout the whole life-cycle of the transportation networks, 
from cradle to grave [9–11]. For this, many management algorithms 
have been developed to consider the reasonable timing, type, and extent 
of the interventions based on the inspection data, structural condition, 
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maintenance facility deployment, and geographical distribution 
[12–14]. In the early stage, the studies mainly focus on the optimal 
maintenance planning for individual bridges in transportation networks. 
Various reliability-based frameworks are developed to describe the 
bridge time-dependent deterioration process and quantify the uncer-
tainty in transportation network management [15]. Then, due to the 
highly self-adaptive capability, genetic algorithms (GAs) were employed 
to optimize on an annual basis the maintenance efforts for a concrete 
bridge over the life cycle [16,17]. However, the fundamental procedure 
of GAs involves encoding the state of the infrastructure as an ‘individual’ 
and constructing a ‘population’ [18], where each ‘individual’ is quan-
tified by a set of Genes represented in binary (i.e., 0 or 1). It indicates 
with the number of bridges in the system increasing, the number of 
genes that need to be defined will grow exponentially. To avoid the 
complicated encoding and large-scale state representations [19,20], for 
complex system management with GAs, certain simplifications and as-
sumptions are needed to design for transportation systems [3,21]. 

Another limitation of GAs is the optimized efficiency. GAs often find 
acceptable rather than optimal or near-optimal solutions. This is 
demonstrated in chess games, where players trained through Genetic 
Algorithms (GA) may attain a rating of 1600 [22], whereas, in compa-
rable time frames, those trained using Deep Reinforcement Learning 
(DRL) can achieve a significantly higher rating of 3500 [23]. In addition, 
DRL has been shown to outperform GAs in sequential decision-making 
problems [22] and in managing high uncertainty problems [23]. 
Based on the characteristics of transportation systems, such as large state 
and action spaces and high uncertainty in system evolution, we decide to 
use DRL to optimize maintenance policies. We primarily adopt the 
Markov model in DRL, as well as the bottlenecks that prevent DRL from 
being applied in complex infrastructure management. 

Markov Decision Processes (MDPs) are commonly employed in 
infrastructure management to quantitatively model the life-cycle 
behavior of a system, which consists of a set of states, actions, and re-
wards. It offers a robust mathematical framework for closed-loop con-
trol, particularly for optimal sequential decision-making in discrete-time 
and discrete-state scenarios. Partially observable Markov decision pro-
cesses (POMDPs) are an extension of MDPs that address the limitations 
of complete information by allowing for partial observability [24,25]. A 
key aspect contributing to the uncertainty consideration of POMDPs is 
their utilization of a belief state, representing the probability distribu-
tion over the possible states of the structure. As new observations (e.g., 
inspection and monitoring) are made, the belief state is updated using 
Bayes’ theorem, allowing the model to adapt to new information and 
make decisions based on the most up-to-date knowledge of the system’s 
state [26]. In addition, this framework allows the policy-making prob-
lem to scale flexibly with the number of decision steps, states, and ac-
tions [26]. The belief state provides a compact representation of the 
infrastructural uncertainty, allowing for efficient computation and 
decision-making by considering the probability distribution over states 
rather than exhaustively analyzing each state individually. This flexi-
bility enables POMDPs to quantify complex system management that 
involves multiple components as well as long planning horizons [27]. 

In this regard, there is growing interest in implementing POMDPs in 
condition control of infrastructure assets, for instance, the highway 
pavement [28], bridge components [29], and blades in a wind farm 
[30]. However, it is worth noting that the studies mentioned above are 
restricted to the component-level because the traditional solving algo-
rithms for POMDPs are point-based iterations [31]. These algorithms 
lose their edge when the system state and action combinations scale 
exponentially with the number of components considered in large-scale 
systems [32]. Therefore, other efficient methods are necessary to deal 
with the computational complexity that severely grows in large-scale 
infrastructure management. 

The large-scale state and action number in complex systems man-
agement has motivated the application of Deep Reinforcement Learning 
(DRL) techniques [33,34]. DRL can handle large-scale state value points 

by learning representations of the belief state (input) and state-value 
(output) through neural networks [35]. Additionally, DRL’s online 
learning capabilities allow it to adapt to changing conditions, continu-
ally improving its performance over time and addressing the challenges 
associated with large state and action spaces in evolving environments 
[35]. Moreover, DRL offers unprecedented capabilities in providing 
near-optimal solutions to a series of complex planning and decision- 
making tasks, outperforming humans in fields traditionally dominated 
by experts [36–38]. It has opened a novel path in how to model and 
control complicated systems with high-dimensional inputs and outputs, 
extract the characteristics from multifarious structural responses, and 
demystify the complex governing system or virtual entities (e.g., digital 
twins). DRL is essentially the process of learning the optimal policy by 
interacting between the agent and the MDPs-based and POMDPs-based 
environment. 

Deep Q-Network (DQN) in DRL, as a surrogate model of the value 
function, has been widely to keep the computational effort acceptable. 
DQN takes state information as input and outputs corresponding actions 
and state-action values, as shown in Fig. 1. The large-scale state-action 
pairs are approximated using neural networks which save a significant 
amount of memory space. This improvement motivates infrastructure 
management to develop from the component-level to the structural- 
level, such as from beams and piers to cable-stayed bridges [39], from 
pavement to highway [40], and other multi-component systems [41]. 

Although DQN can consider the states of inhomogeneous compo-
nents in a complex system, the neural network is required to output the 
Q-value of every possible maintenance action combination. Without any 
assumptions to simplify the synergy of different components’ action 
combinations, the number of nodes in the output layer would increase 
exponentially with the number of components considered. To avoid the 
sizable neural network, the synergy of maintenance actions often has to 
be neglected for DQN. However, this simplification is contrary to the 
requirements of transportation network management since a small 
maintenance change can induce cascading effects on the entire system. 
For instance, the interruption of an arterial road due to bridge rehabil-
itation will dramatically affect the traffic flows which increase the 
detour and reduce the mobility of adjacent lanes. 

Dealing with large-scale discrete action spaces is an important active 
area of research in DRL. Dulac-Arnold et al. [42] developed the Deep 
Deterministic Policy Gradient (DDPG) algorithm with the Wolpertinger 
architecture, which enables DDPG to be applied in large-scale discrete 
action control problems. The Wolpertinger architecture utilizes prior 
information about the discrete actions to embed them into the contin-
uous space. Tavakoli et al. [43] modified dueling DQN [44] with action 
branching architectures (BDQN) to consider the synergistic effect of 
different action dimensions. Chen et al. [45] provided a tree-structured 
policy gradient recommendation (TPGR) framework which uses the leaf 
to consider entire discrete actions and non-leaf nodes as the path-chosen 
unit. We reproduced all the methods above and applied them in trans-
portation network management, but the outcomes were unsatisfactory. 
Approaches like DDPG with Wolpertinger (DDPG-W), break the con-
sistency and differentiability of the neural network, potentially resulting 
in improper backpropagation of gradients and instabilities in training. 
For example, the continuous action of the control steering wheel and 
joint can be discretized into serval fixed rotation angles. Through 
interacting with the environment, positive or negative feedback can 
guide correct gradients to adjust the rotation angles. However, for 
bridge management in the transportation network, this feedback lacks 
intuitive physical significance for different maintenance scenarios and 
cannot direct the neural network to choose optimal actions. Other 
methods, such as BDQN and TPGR, using a single loss function cannot 
effectively deliver the complex information from the environment and 
readily converge to sub-optimal solutions. Therefore, existing research is 
not sufficiently competitive in managing complex transportation 
network, especially when considering the multi-feature of the system (e. 
g., bridge deterioration, road grade, and traffic flows), multiple 
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objectives optimization (e.g., safety, carbon neutrality, and mobility), 
and synergy effects between different bridge maintenance actions. But 
past and recent advances in the AI field have opened new paths in how 
we can learn to model and control complex systems from noisy and high- 
dimensional real-world or synthetic inputs and outputs and how we can 
quantify information from multiple data resources. This is to say that, in 
this stage, a dedicated AI-aided decision-making algorithm is possible 
and necessary to design which will perform competitively in complex 
transportation network management. 

Along these lines, firstly, to maximize the quantification of a large 
transportation network composed of multiple infrastructure compo-
nents, the POMDPs model simulates all infrastructure in the system 
without losing any features. These features include uncertainties of 
bridge deterioration processes, inspection errors, uncertainties in the 
improvement of structural performance through maintenance actions, 
traffic flow redistribution caused by bridge state and maintenance ac-
tions, and additional carbon emissions induced by detours. Unlike other 
models, this model does not consider bridges individually, but rather 
takes into account the interdependence between each maintenance ac-
tion. In addition, to consider multiple attributes of the transportation 
system such as safety, sustainability, mobility, and life-cycle cost, a 
multi-objective function is designed for this complex system manage-
ment. If each bridge’s available maintenance actions are regarded as a 
separate dimension, then the maintenance actions for the entire trans-
portation system would form discrete points in a high-dimensional 
space. To obtain the optimal maintenance policy, we leverage the 
expressive capability of BDQN in high-dimensional action space and 
develop a cutting-edge training algorithm, favorably tailored to finely 
control and management of large engineering systems associated with 
high uncertainty. The proposed training method is inspired by the 
learning process of creatures, starting from simple non-conditioned re-
flexes to complex conditioned reflexes. More specifically, the hierar-
chical multi-reward backpropagation learning mechanism is developed 
to thoroughly consider the individual-level and system-level feedback 
for the refined control in the complicated system. Through the 
comparative studies in real-world transportation system management, 
the proposed framework has outperformed other DRL methods, and the 
maintenance policy recommended by the framework has proven to be 
superior to those suggested by experienced engineers in infrastructure 
management. 

In summary, the following innovations and contributions are pro-
posed: 1) the complicated real-world transportation network manage-
ment problem is quantified as POMDPs which can consider high 
uncertainty in transportation network evolution and multiple objectives 
among stakeholders; 2) a versatile decision-making framework is con-
structed to deal with the large discrete action space in the complex en-
gineering system management; and 3) a novel neural network training 
method is proposed in which the training mechanism imitates the ani-
mal learning behavior from simple tasks to complex assignments. 
Overall, these contributions advance the state-of-the-art in trans-
portation network management and have significant implications for 
ensuring transportation networks’ safety, functionality, and 
sustainability. 

2. POMDPs-based deep reinforcement learning 

2.1. Partially observable Markov decision processes 

MDPs provide a mathematical framework to quantify sequential 
decision-making problems in stochastic environments. The agent in 
MDPs will interact with the defined environment in finite time steps 
with observations and actions. POMDPs additionally consider the un-
certainty in system condition assessment and error in observation. To 
visually illustrate these concepts, a definition graph of POMDPs asso-
ciated with transportation network is shown in Fig. 2. POMDPs can be 
quantified by 7-tuple parameters E = 〈S,A,O,T,Θ,R, γ〉. The first three 
hollow capital letters indicate the sets of bridge states (S), maintenance 
actions (A), and bridge inspection value (O), respectively. The corre-
sponding lowercase symbols represent the discrete elements in those 
sets, e.g., bridge states are defined as si ∈ S based on the standard JTG/T 
H21–2011 [46]. The number of elements in the set is denoted by scalar 
symbols, |S|, |A|, and |O|. In this paper, bold letters are used to represent 
matrices or vectors. Since the uncertainty of structural condition 
assessment is unavoidable, jth bridge condition is expressed as the 
probabilistic distribution over the possible states, bj =

(b(s1) , b(s2) ,…, b(sn) ), and entire system condition is represented by a 

vector, b =
(

b1, b2,…, bm
)

, where m is the number of bridges in the 

system and n is the state number. A three-dimensional state-transition 
matrix T (|S| × |S| × |A|) characterizes the state transition probability 

Fig. 1. Schematic diagram of DRL.  
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(p(st |st− 1, at− 1)) when maintenance action at− 1 is conducted at state st− 1. 
The state-dependent observation probability matrix Θ (|O| × |S| × |A|) 
defines the probability of inspected value p(ot |st , at− 1) after the main-
tenance action at− 1 is executed and a bridge state is transferred to st. 
Reward matrix R (|S| × |A|) defines the immediate cost r(at , st) when the 
agent conducts an action at at state st. Parameter γ quantifies the dis-
count factor over the time horizon. 

In Fig. 2, in an arbitrary time step t − 1, the state of the transportation 
network is expressed as bt− 1. After the agent executing a maintenance 
action at− 1 and receives an inspected value ot , the agent will obtain the 

posterior state distribution p
(

bj
t |ot , at− 1, bj

t− 1

)
of the jth bridge on the 

basis of a Bayesian updating [31]: 

bj
t(st) = p

(
st|ot, at− 1, bj

t− 1
)
=

p(ot|st, at− 1)

p
(
ot|at− 1, bj

t− 1
)
∑

st∈S

p(st|st− 1, at− 1)bj(st− 1) (1)  

where the denominator, p
(

ot |at− 1, bj
t− 1

)
, is the standard normalization 

coefficient, calculated by: 

p
(
ot|at− 1, bj

t− 1
)
=
∑

st∈S

p(ot|at− 1, st)
∑

st− 1∈S

p(st|st− 1, at− 1)bj(st− 1) (2) 

The black arrows in Fig. 2 correspond to Eq. (1) and (2), which un-
veils the bridge state transition path in POMDPs, given as: 

p
(
bj

t|at− 1, bj
t− 1
)
=
∑

ot∈O

p
(
ot|at− 1, bj

t− 1
)

(3) 

It is worth noting that there are two assumptions in POMDPs. The 
continuous deterioration processes are approximately represented by 
the finite discrete state changing. Another assumes that the current 
belief state (bt) and selected action (a) include sufficient information to 
determine the next belief state (bt+1), regardless of the historical states 
and action sequences. Once those two assumptions are acceptable, the 
performance of the transportation network is easily transformed into a 
Markovian process. 

The green arrows in Fig. 2 define how the agent chooses sequential 
actions to maximize the reward or minimize the maintenance cost in the 
life-cycle. The state-dependent parameter, policy π(at |bt), is introduced 
to guide the agent’s decision-making based on the current belief state. In 
each time step, the state will map to a specific action based on the policy: 

π(bt)→at , as shown the dashed green line in Fig. 2. Then, in the life-cycle 
of the transportation network, the total maintenance fee guided by this 
policy is calculated by: 

Vπ = E
π→a

[
∑L

t=1
γt− 1

(
∑m

j=1

∑n

i=1
rj(si, at)bj

t(si)+ rE(at, bt)

)]

= E
π→a

[
∑L

t=1
γt− 1r(at, bt)

]

(4)  

where L refers to the lifespan of the system. Similar to Eq. (1), bj
t(si) in 

Eq. (4) represents the probability of jth bridge condition belonging to 
state si at time step t. The total reward consists of the maintenance fee of 
individual bridge 

∑n
i=1rj(si, at)bj

t(si) and feedback (e.g., CO2 emission 
and mobility) from the entire transportation network rE(at , bt). To 
simplify the eq. (4), the entire value is abbreviated as r(at , bt). Value Eq. 
(4) plays a vital part in the decision-making of transportation network 
management. The objective of management is to plan sequential actions 
to maximize this value Vπ . 

To obtain the optimal policy π*(b)→a which can guide the agent to 
choose the best action in any belief state, Eq. (4) is rewritten compactly 
to a one-step forward pattern based on the current cost and expected 
future reward. This function is named the Bellman Eq. [47]: 

Vπ*
(bt) = max

at∈A

[

r(at, bt)+ γ
∑

ot+1∈O

p(ot+1|at, bt)Vπ*
(bt+1|ot+1, at, bt)

]

(5) 

In Eq. (5), the first item refers to the instantaneous reward which can 
directly get from parameter R. The second item is the expected belief 
point value Vπ*

(bt+1) after the bridge state is transferred. An important 
mathematical feature of the Vπ*

(b) in POMDPs is convex and piecewise 
linear, which Vπ*

(b) can be approximated by multiple linear polynomial 
functions [47] or neural networks [48]. For the previous one, the belief 
state value is calculated by the point-based algorithm, given as: 

Vπ*
(b) = max

α∈Γ

∑m

j=1

∑n

i=1
αj(si)bj(si) (6) 

To better understand Eq. (6), each parameter is explained with 
geometrical meaning. If a belief state (b) is regarded as a point in n × m 

Fig. 2. Probabilistic graphical model of POMDPs.  
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dimensional space, then the value coefficient (α) is the gradient of this 
point. Because of the property of piecewise linear, the adjacent belief 
points will share the same gradient (α). As a result, the entire belief state 
value can be precisely represented by finite hyperplanes which are 
calculated by the cluster of value coefficients Γ = {α1,α2,…,αi}. Since 
each vector (αi) is also associated with a specific maintenance action 
[49], thus, the computation of the optimal policy of POMDPs is to obtain 
a suitable cluster Γ which can be determined by point-based algorithms. 
A detailed description of the point-based method can be found in Shani 
et al. [50]. Herein, a brief introduction is given, and we will highlight 
the reason why this approach cannot tackle large-scale system man-
agement. In the point-based algorithms, a key step is to sample a set of 
representative belief points based on the value boundary method [51]. 
Then, the value coefficients (Γ) for belief points are calculated by iter-
ation of the Bellman function (5). However, due to the large number of 
state and action combinations in the transportation network, the num-
ber of belief points and computation of value-iteration exponentially 
increase with the bridge number. Thereby, point-based algorithms can 
only be implemented in small-to-medium-sized infrastructure 
management. 

To this end, DRL as a surrogate value model can alleviate the 
complexity of computation. It uses the transportation network states (b) 
as the input vector in neural networks and outputs the belief state value 
(V(b)). The point-based belief state is expressed as the input vector in 
neural networks which reduces the complexity from |S|m to |S| × m. In 
addition, the value coefficient vectors (Γ) for the belief state in the point- 
based algorithm are also simplified by output in neural networks. 
Therefore, transportation network management in conjunction with 
DRL is indispensable to accommodate the large state and action space. 

2.2. Deep reinforcement learning 

In neural network training, the difference between the objective and 
the output, which is called the error or loss value, is used as the back-
propagation. The kernel of DRL is an ‘evolving’ model in that this dif-
ference dynamically changes with interaction with the environment. 
Compared to other neural network training methods or network types, 
the construction of temporal difference learning is a central part of DRL. 
Those approaches can be generally categorized into two major groups: 
on-policy learning and off-policy learning [52]. The on-policy indicates 
that the agent will successively improve the current policy when inter-
acting with the defined POMDPs in a given environment, e.g., the Actor- 
Critic algorithm in [53]. Such networks will generate the probabilistic 
distribution of executing each maintenance action. Compared to DQN, 
where maintenance actions are determined deterministically, theoreti-
cally, Actor-Critic methods are more suitable for constrained POMDPs 
and other more complex environments where the optimal action can 
often be a probability distribution. Training networks in the form of 
Actor-Critic for problems with large action spaces can invoke similar 
issues with DQN in relation to large action spaces, unless multi-agent 
assumptions are employed [54]. The off-policy refers to the agent 
updating the current policy while executing a different policy in the 
environment, e.g., DQN and DDPG. Off-policy algorithms store their 
experiences 〈bt , at , rt , bt+1〉 in the replay buffer U(D) and keep policy 
consistency (π(b)→a) in the next few time steps. Then, the neural 
network is updated every fixed number of time steps. Due to the 
randomness in state transition and error in observation, the replay buffer 
in off-policy learning can serve training stability and robustness [36]. 
Therefore, this study concentrates on off-policy learning algorithms. 

2.3. Deep Q-networks 

Since the proposed framework is developed from DQN, the pertinent 
algorithmic and mathematical formulations will be primarily discussed. 
To accommodate the structure of the neural networks, the Bellman 
optimality Eq. (5) in POMDP is adjusted. The parameter state-action 

value (Q(b, a)) is introduced [55], given as: 

Q(bt, at) = r(bt, at)+ γ • max
a∈A

Q(bt+1, at+1) (7) 

Where Q is defined as the value when the agent adopts action at at 
belief state bt. Herein, a single bridge maintenance problem is adopted 
as a paradigm to introduce DQN. The structure of DQN is shown in 
Fig. 3, in which the belief state (bj

t) is introduced as input, with an 
appropriate number of hidden layers, and finally output the state-action 

value Q
(

bj
t , at+1; θ

)
where θ is the parameters of neural networks. The 

optimal action for the current belief state is determined by selecting the 
node in the output layer which gives the maximum Q-value. To train the 
neural networks (θ), the difference between feedback from the envi-
ronment and DQN estimation is utilized as loss value in the back-
propagation process, given as [55]: 

L(θ) = E〈bj
t ,at ,rt ,bj

t+1〉∼U(D)

[

rt + γ • max
at+1

Q
(
bj

t+1, at+1; θ
)
− Q

(
bj

t, at; θ
)
]2

(8) 

However, due to the maximization value step in eq. (7), the over- 
estimated state-action value is a popular problem in Q-learning algo-
rithms [56]. This unrealistically over-estimated value will mislead the 
DQN to explore in non-optimal maintenance action space and asymp-
totically fall into sub-optimal policy [57]. To obtain the unbiased esti-
mation of state-action value and stable training processes, double DQN 
decomposes the maximization operation in Eq. (8) into maintenance 
action selection and state-action value evaluation [56]. Keeping main-
tenance policy constant in defined training steps to construct a relatively 
stable environment, and update state-action value evaluation to obtain 
the low biased estimation. This method not only yields precise Q value 
estimation but brings better results in practical problems. The specific 
approach of double DQN is using two asynchronous updating networks 
in training. One is named target networks (θ− ), and another as main 
networks (θ). As mentioned, the double DQN decouples the action se-
lection and Q-value estimation, the action is decided by the main net-
works, but value estimates are calculated by immediate reward and 
target networks’ state-action value. As a result, Eq. (8) is adjusted to: 

L(θ) = E〈bj
t ,at ,rt ,bj

t+1〉∼U(D)

[

rt + γ • max
at+1

Q
(
bj

t+1, at+1; θ−
)
− Q

(
bj

t, at; θ
)
]2

(9) 

In the learning process, the parameters of the main networks (θ) are 
updated in every time step, whereas the target networks (θ− ) follow the 
main networks in a slower fashion, substituting parameters θ− = θ with 
an appropriate delay. 

For small- to medium-scale systems, double DQN is competitive in 
challenging decision-making problems with immense input spaces that 
were unthinkable a few years back. Nevertheless, for policy-making in 
systems with multiple dissimilar and interdependent constituents, the 
scale of the combination of actions will exponential growth with the 
number of components |A| = |a|m. Since the output layer needs to 
produce a Q-value for every available action combination, a sizable 
neural network is unavoidable in the refinement management of trans-
portation networks. Apparently, the structure of DQN is intractable to 
tackle the large discrete action spaces problem. To alleviate the curse of 
dimensionality in the action domain, the bionic neural networks for 
large-scale action spaces are proposed without using simplified, less 
accurate modeling approaches to reduce complexity. 

3. BDQN with hierarchical multi-reward backpropagation 
method 

This section will comprehensively introduce the concept of branch-
ing dueling Q-networks (BDQN) proposed by Tavakoli et al. [43]. 
However, several replicated results have demonstrated that this method 
is prone to get trapped in local optima, even when given massive 
training. Then, an explanation from a theoretical perspective will be 
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given as to why relying solely on BDQN cannot achieve satisfactory 
results. To this end, a hierarchical multi-reward backpropagation 
method comprehensively updating different parts parameters of the 
neural networks is proposed, which is the main contribution of the al-
gorithm in this study. 

3.1. Synergetic-informed branching dueling Q-networks 

The concept of BDQN comes from bionics which simulate the 
behavior of Cephalopoda, such as octopus [58]. A significant number of 
neurons in this creature are distributed throughout its body, particularly 
in the arms [59]. This feature is due to the multiple arms with unlimited 
degrees of freedom that need to be controlled simultaneously. To alle-
viate the burden of the neural center, the partial delegation of control to 
the arms is necessary, which can decrease the response time to external 
impacts. The neural center is mainly responsible for coordinating the 
independent arm motion across its several networks. Therefore, the ar-
chitecture of BDQN is designed as in Fig. 4. This neural network is 
divided into two parts based on functions, shared architecture simu-
lating the ‘brain’ and branching architecture representing the ‘arm’. 
When belief states are transferred into the input, the shared part layers 
(brain) compute a latent representation used to evaluate the state value. 
The branching neural network (arm) is not a fully connected layer, it 
factorizes belief-state-action advantages on the subsequent independent 
branches. Each branch manages a specific bridge in the transportation 
network. The number of output nodes in each branching equals avail-
able maintenance actions for the corresponding bridge. Finally, an in-
tegrated layer aggregates the state value and the factorized advantages, 
to output Q-value for each branching. 

The scale of each branching neural network is enough to address the 
nonlinear for individual bridge life-cycle management. If not consid-
ering the interactive effect between maintenance actions in a trans-
portation network, this management problem can be represented by 
multiple DQNs. However, the naive distribution of large multi- 
component systems across different independent function approx-
imators will lead to distortion results [60]. Hence, the shared decision 
module with more complex hidden layers is designed to coordinate the 
semi-independent branches and consider the optimal solution at the 
system level. The shared network layers function as a ‘brain’ and encode 
the bridge’s belief state information into a shared representation layer. 

In order to better control the parallel branching network, the struc-
ture of dueling DQN [44] is resorted to affect the Q-value as Fig. 4 shows. 
The important concept in dueling DQN, named advantage function, is 
introduced to evaluate how advantageous an action is to the system in its 
current state, as defined [44]: 

A(bt, at) = Q(bt, at) − V(bt) (10) 

The dueling architecture can sensitively identify the action utility 
and generalize more efficiently because the advantage function can 
distinguish between positive and negative values in mathematics. The 
positive value directly indicates that this action benefits the system, 
which guides the gradient direction in updating. To establish the dueling 
structure in BDQN, a particular branch is designed to estimate the cur-
rent state value V(bt). Each advantage item A(bt , ai) is subtracted from 
the mean value to highlight the positive and negative. An aggregating 
layer is embedded before the output layer as follows: 

Fig. 3. Schematic diagram of DQN.  

Fig. 4. Architecture of BDQN.  
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Qj( bt, aj; θs, θj
)
= V(bt)+

⎡

⎣A
(
bt, aj; θs, θj

)
−

1
⃒
⃒Aj
⃒
⃒

∑|Aj|

d=1
A
(
bt, ad; θs, θj

)

⎤

⎦

(11) 

In Eq. (11), the superscript of the letter j is designed for peculiarities 
of BDQN, which are consistence with the definitions in POMDPs (Section 
2). Formally, for jth bridge, the individual branch’s output value Qj at the 
current belief state bt is expressed in terms of the common state value 
V(bt) and the corresponding (state-dependent) sub-action advantage 
A(bt , at). 

⃒
⃒Aj
⃒
⃒ is the number of available maintenance actions in jth 

bridge. θs denotes the parameters in the shared neural network, and θj 

refers to the parameters in a branching network. 
It should note the slight difference in Q value between the BDQN and 

conventional DQN. The individual branch Qj value is not consistent with 
the global state-action value Q in Eq. (7). In order to use global reward to 
update the loss function, branching Q value is summed, defined as: 

Q
(
bt, aj; θ

)
= r(bt, at)+

γ
m

∑m

j=1

(

max
at+1

Qj( bt+1, at+1; θs, θj
)
)

(12) 

In Eq. (12), the second item is divided by the number of branches m 
as the state value V(b) is a duplicate considered. Moreover, each branch 
selects the action which can maximize its Qj value and contributes 1/m 
to the total system Q value. For this, the loss function can be defined as 
the difference of each branching output, given as:  

where the asynchronous updating method in double DQN is also utilized 
in BDQN. The parameter θ− denotes the target networks which copy 
values to the main network (θ− = θ) with an appropriate delay. 
Although BDQN has factorized the complex system action into the semi- 
independent branches action and the centralized neural network has the 
capability to coordinate the action across the branches, a single loss 
function (Eq. (13)) without considering differentiation among branches 
always leads to the final results far from the optimal solution. Relying on 
a single loss function could make it difficult to explicitly capture changes 
induced by multiple constraints in complex systems. For example, high 
maintenance costs, excessive CO2 emissions, or traffic congestion can all 
result in negative feedback to the neural network. If all such feedback is 
simply fused into one loss function, the network may struggle to develop 
the ability to handle different situations with appropriate treatments. To 
combat this problem, hierarchical reward function incentives and 
adaptive learning rates are proposed to train the neural network. 

3.2. Hierarchical multi-reward backpropagation method 

The hierarchical multi-reward backpropagation BDQN (H-BDQN) is 
inspired by the biological learning behavior which commences with an 
unconditioned reflex for the simple task, then is followed by conditioned 
responses for complex assignments. In the early learning stages, the 
neural network is not fully converged. In this phase, if the neural 
network directly tackles the complex tasks, it will randomly attempt 
various action combinations. Once a combination brings positive feed-
back to the agent, the neural network parameters are adjusted so that 
this combination is favored in the corresponding belief state. However, 
this learning pattern difficulty distinguishes the actual effective actions 
in this combination. The experimental results demonstrate that the 
BDQN in this training method will fall into the conservative sub-optimal 

solution and lose the generalization ability to the new belief state. 
Therefore, the hierarchical multi-reward backpropagation approach is 
designed to take into account both individual-level and network-level 
feedback, which allows for precise control in complex systems. For 
transportation network management, the reward parameter, or main-
tenance fee in POMDPs can be divided into two parts, given as: 

r(bt, at) =
∑m

j=1
rj
(
bj

t, a
j
t

)
+ rE(bt, at) (14)  

where the first part (rj) is the maintenance cost for individual bridges, 
and the second part (rE) considers the effects of the action combination 
for the entire system. Obviously, if only the first reward component (rj) 
is used to train the branching neural network, it would result in inde-
pendent optimal policies for individual bridge management. This is 
because the loss value of one bridge’s reward does not rely on the re-
wards of others. This learning process can be seen as analogous to a limb 
developing an instantaneous unconditioned reflex to external stimuli 
without central nervous control. While this may be the optimal response 
for a limb, it is not necessarily the best approach for the entire creature. 
Another reward parameter rE incorporated with various sustainability- 
based constraints and mobility requirements is obtained after the 
agent interacts with the environment. Since the total reward r is the 
result of the synergy of many factors, the agent needs to sufficiently 
explore large discrete action spaces to understand complicated feedback 
mechanisms. After each branching network has developed the ability to 

deal with bridge maintenance, then, the central network can learn how 
to coordinate the conflicts between actions in different situations. 
Finally, the ‘brain’ of the neural network develops conditioned reflexes 
on the basis of the fundamental decision-making ability to accommodate 
the complicated environment. 

The aforementioned contents are the theoretical backbone of the 
hierarchical multi-reward back-propagation method, and below we 
show the mathematical details. As Fig. 5 shows, there are two training 
mechanisms in H-BDQN, wherein the parameters of layers marked with 
black are updated in the training process. One uses the total reward (r in 
Eq. (14)) to train the entire network parameters (θ) with loss function 
Eq. (13). Another training mechanism uses the maintenance reward (rj) 
to train the corresponding branching network parameters (θj) without 
updating the shared network (θs). The loss function L

(
θj
)

for branching 
is calculated based on the individual maintenance cost: 

L
(
θj
)
=

(

rj
(
bj

t, a
j
t

)
+ γmax

at+1
Q−

j

(
bt+1, at+1; θ−

s , θ−
j

)
− Qj

(
bt, at; θs, θj

)
)2

(15) 

It is worth noting that the magnitude of reward rj

(
bj

t , a
j
t

)
used to train 

the branching networks is inconsistent with the magnitude of r(bt , at) for 
the entire networks. This magnitude discrepancy will induce distortion 
to the Q value produced by the neural network and will hardly converge. 

Hence, the normalization for parameters rj

(
bj

t , a
j
t

)
and r(bt , at) is 

necessary. 
Another key argument in the training process is the dynamic learning 

rate (ηj) which controls the branching networks (θj) updating speed. The 
dynamic learning rate plays a vital role in simulating a creature’s 
learning process, and it also determines whether the proposed method 
can effectively improve the performance of neural networks. In the early 

L(θ) = E〈bj
t ,at ,rt ,bj

t+1〉∼U(D)

{
1
m

∑m

j=1

[

rt + γmax
at+1

Q−
(

bt+1, at+1; θ−
s , θ−

j

)
− Qj( bt, aj; θs, θj

)
]2
}

(13)   
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stage, a high branching learning rate (ηj) is necessary to ensure the 
priority of network learning in dealing with individual bridge manage-
ment. After the branching networks develop their ability in dealing with 
single bridge maintenance, the learning rate (ηj) will gradually decrease 
to 0 through timing a discounting coefficient (ϕ) because the final 
objective is to manage the large transportation network. This process 
simulates biological forgetting which allows the branching to forget the 
established habit and accept new knowledge for complex assignments 
[61]. Apart from this, because of uncertainty and randomness in the 
environment, each branching network experiences a different learning 
process. In the practical training process, this difference may continually 
accumulate and significantly affect the final performance of branching 
networks. To address this problem, the concept of adaptive learning rate 

is introduced to encourage the poor-performance branching networks to 
have a higher learning capacity during the next iteration. The approach 
reflected in mathematical formulas is as follows: 

As mentioned before, the maintenance cost rj

(
bj

t , a
j
t

)
and entire 

system feedback (r(bt , at)) are normalized as 0 ~ 1. Through comparing 
the branch accumulative reward and system feedback in the life-cycle, 
each learning rate of the branching network is adjusted to: 

ηk = 0.01
∑L

t=1rj
(
bj

t, aj
t
)

∑L
t=1r(bt, at)

+ 0.99ηk− 1 (16)  

ηj = η0ηkϕk (17) 

Fig. 5. Hierarchical multi-reward backpropagation method.  

Fig. 6. Geographic information (left) and traffic information (right) for the investigated transportation network.  

Table 1 
Parameters of different vehicles [64].  

Vehicle classification Average fuel consumption (L/km) Average CO2 emissions (g/km) Conversion ratio Proportion 

Motorcycle 3.5 80.5 1 6.00% 
Tractor 6 157.5 4 1.66% 

Car 20 252 1 22.38% 
Medium bus 12 276 1 5.53% 

Large bus 28 644 1.5 2.90% 
Medium-duty truck 23 450 1.5 3.76% 
Heavy-duty truck 33 867.9 3 3.36% 

Extreme-duty truck 47 1236.1 4 7.25% 
Extreme trailer 50 1315 4 2.60%  
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where η0 is the initial learning rate (η0 = 1e− 5), ϕ denotes the learning 
decreasing rate (0– 1) which determines the forgetting rate, k is the 
iterative number in training, and the ηk is the adaptive learning rate. In 
summary, the essential theory for large multi-component systems 
management is discussed in detail in this section. Other well-known 
techniques used in DRL, such as prioritized experience replay and the 
Adam optimizer, can be found in [62,63]. For numerical comparison and 
validation purposes, the comprehensive parameters of the neural 
network and training parameters are presented in Appendix A. The 
proposed algorithm is programmed in Python and detailed pseudocode 
is described in Algorithm 1 below for reproduction. The code can be 
found in https://github.com/Laili-engineering/Branch-deep-reinforce 
ment-learning 

4. Case study: real-world transportation system 

4.1. Investigated transportation network 

To demonstrate the applicability of the proposed framework in a 
large multi-component system and to prove superior performance over 
other methods, a case study based on a real-world transportation system 
in a city in northern China is analyzed. Fig. 6 displays a digital twin 
transportation system between the main city (Node A) and its adjacent 
cities. The geographic information system (GIS) from BigMap software is 
displayed in Fig. 6 (left), which highlights the city positions, bridge lo-
cations, river locations, and length (km) of traffic lanes. The component 
information in Fig. 6 (right) includes bridge conditions from the in-
spection database, road grade from GIS, and traffic volume from the 
Department of Transportation collection. It is important to note that the 
traffic flow in Fig. 6 is obtained after converting all different types of 
vehicles into equivalent standard vehicles. The necessary information on 
sustainable management is given as (i) the detailed traffic volume, 
which is refined to vehicles with different emissions, and (ii) the 

database of bridge condition data in Hebei province. 
The essential traffic data is presented in Table 1 and Table 2. The per- 

kilometer fuel consumption and carbon emissions for various vehicle 
types, as shown in Table 1 [64]. Based on Document No. 205 from the 
Ministry of Transport of China, vehicles of different sizes have distinct 
impacts on traffic flow, the traffic volume for different vehicle types 
needs to be converted into equivalent standard vehicles. Using the 
conversion ratio and proportion in Table 1, the actual number of 
different types of vehicles in the system can be calculated. For instance, 
the actual number of heavy-duty trucks is calculated as 4008 =

119353× 10.08%∕3. To simplify the calculation, the proportion of 
different types of vehicles is divided by the conversion ratio. Hence, the 
number of heavy-duty trucks is given as 4008 = 119353× 3.36%. The 

traffic flow values (after conversion to standard car) between each city 
in the transportation network are obtained from actual observational 
data collected by its stakeholders, as depicted in Table 2. The funda-
mental information of bridges is listed in Table 3. 

Table 2 
Parameters of traffic volume.  

Traffic Line Average vehicles (day) Traffic Line Average vehicles (day) 

A ↔ C 6133 D ↔ E 1034 
A ↔ D 18,503 D ↔ F 3014 
A ↔ E 15,235 D ↔ H 1439 
A ↔ F 2102 D ↔ I 12,219 
A ↔ H 6214 E ↔ F 3985 
A ↔ I 11,365 E ↔ H 2971 
C ↔ D 1002 E ↔ I 3649 
C ↔ E 612 F ↔ H 12,006 
C ↔ F 1342 F ↔ I 8604 
C ↔ H 1757 H ↔ I 3806 
C ↔ I 2361    

Algorithm 1: Hierarchical multi-reward backpropagation algorithm for BDQN

Input: Initial belief state ;

Initialize replay buffer ⟨ , , , , ⟩ ∼ ( );

Initialize BDQN main network and target network weights , ;

Constructed the interacted environment (POMDPs and transportation network) ;

Output: Trained network weights ;

for =1, do
Reset the initial belief state ;

for =1, do
Calculate exploration rate ϵ which successively decreases in training process;

With probability ϵ select a random action ;

Otherwise select action = argmax ( , ; , );

Execute action in environment and collect reward , , by Equation (14);

Compute the belief state transition through Equation (1);

Store experience ⟨ , , , , ⟩ in replay buffer ( );

Sample minibatch from ( ) based on prioritized experience;

Calculate the system loss ( ) by Equation (13) and branching loss ( ) by Equation (15);

if mod(4) = 0 then
Update entire main network parameters:;

= + ( ) ( , ; );

Update branching network parameters with Equation (17):;

= + ( ) ( , ; );

Set =

end
end

end
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4.2. POMDPs-based bridge modeling 

To construct the POMDP, the parameters of the 7-tuple E =

〈S,A,O,T,Θ,R, γ〉 should be defined for each bridge [54], in conjunc-
tion with the bridge inspection database in Hebei province. Each bridge 
condition (S) is classified into 1 ~ 5 based on the Chinese standard 
(JTG/T H21–2011) which 1 denotes the intact state and 5 indicates 
failure. Accordingly, the total combination of the state is 5m = 6.10e9, 
where m = 14 is the bridge number in the transportation network. 

The observation value (O ∈ 1 ∼ 5) corresponds to the bridge state, 
obtained through bridge inspection. For the action space (A), bridge 
inspection is necessary to be conducted at every time step since periodic 
inspections are essential according to Chinese standard (JTG/T 
H21–2011) [46]. Therefore, ‘inspection’ is not performed as a separate 
maintenance action. The prevalent maintenance actions (A) could be 
approximately classified as ‘Do nothing’, ‘Repair’, and ‘Rehabilitation’ 
for each bridge. Similarly, the total action combinations are 314 =

4.78e6. 
The state transition matrix (T) captures the stochastic nature of the 

deterioration process and it needs to be able to provide accurate pre-
dictions of future state. Although bridge deterioration is determined by 
multi-factors, such as material, age, traffic volume, span, bridge struc-
tural pattern, environmental factors, and so on. However, the excessive 
categorization of bridges will result in an insufficient number of bridges 
available for statistical analysis of degradation patterns related to a 
specific factor [65]. Through the comparative study of deterioration 
models [66], it is evident that the magnitudes of prediction errors based 
on homogeneous Markov chains are much higher compared to those in 
models using non-homogeneous state transition matrix based on struc-
tural style and material. For reinforced concrete (RC) bridges, the pro-
portion of bridge condition rating is counted based on the data sourced 
by directly exporting records from the bridge inspection database, as 
shown in Fig. 7. Data post-processing is conducted to search the indi-
vidual bridge records to filter the non-maintenance bridge during the 
period 2004–2021. As recommended by Wellalage [67], the represen-
tative state-transition matrix conforms to the unit-jump upper triangular 
form as follows: 

T =

⎛

⎜
⎜
⎜
⎜
⎝

p(1) 1 − p(1) 0 0 … 0
0 p(2) 1 − p(2) 0 … 0
0 … p(i) 1 − p(i) … 0
0 0 0 … p(n − 1) 1 − p(n − 1)
0 0 0 0 … 1

⎞

⎟
⎟
⎟
⎟
⎠

n×n

(18) 

n is bridge state number. The p(i) refers to the probability that 
structure maintain the current state after servicing a year. If the current 
belief state is b0. Then state distribution bt after t years is: 

bt = b0⋅Tt (19) 

Using the inspection database, the expected state E(t) in time t is 
obtained. The p(i) undetermined coefficient in state-transition matrix 
can be calculated by least square method: 

min
∑L

t=1
|E(t) − bt |, subjected to 0 ≤ p(i) ≤ 1, for i = 1, 2,…, n − 1

(20) 

L is the time considered (2004–2021). Based on the statistical data in 
Fig. 7, the state transition probability of RC bridge in the natural dete-
rioration is fitted, given by Eq. (21). 

TRC =

⎛

⎜
⎜
⎜
⎜
⎝

0.922 0.078 0.000 0.000 0.000

0.000 0.931 0.069 0.000 0.000

0.000 0.000 0.940 0.060 0.000

0.000 0.000 0.000 0.950 0.050

0.000 0.000 0.000 0.000 1.000

⎞

⎟
⎟
⎟
⎟
⎠

(21) 

Because the bridge in poor condition (e.g., states 3 and 4) will be 
strengthened, this leads to a premature interruption of the natural 
deterioration processes. Therefore, the actual duration of poor condition 
for the structure is not fully observed and is only known to be as long as 
or longer than the observed duration, making it a right-censored 
observation. To complement the data deficiency, the remainder state 
transition probability is assumed based on the designed bridge lifespan. 
Similarly, the state transition matrix of the prestressed concrete bridge is 

Table 3 
Parameters of bridges.  

Bridge number Span /width(m) Structural style Construction time Condition 

(1) 16/11 Simple supported bridge 1997 1 
(2) 12/11 Multi-span simple supported bridge 1997 1 
(3) 41.4/11 Multi-span hollow slab bridge 1997 1 
(4) 36/10.5 Multi-span hollow slab bridge 1995 1 
(5) 96/12 Multi-span hollow slab bridge 1997 2 
(6) 40/13 Multi-span hollow slab bridge 2001 1 
(7) 66.4/13.4 Prestressed concrete girder bridge 2020 1 
(8) 51.5/11.2 Multi-span hollow slab bridge 2000 2 
(9) 52.5/11.5 Multi-span hollow slab bridge 2009 1 
(10) 106.8/12.4 Multi-span hollow slab bridge 1994 2 
(11) 39/11.4 Multi-span hollow slab bridge 1998 1 
(12) 484/12 Continuous T-girder bridge 1994 1 
(13) 55/12 Multi-span hollow slab bridge 1994 2 
(14) 40/11.4 Multi-span hollow slab bridge 1996 1  

Fig. 7. Estimate state transition matrix with the inspected database by least 
square method. 
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obtained in a similar way, given as: 

TPC =

⎛

⎜
⎜
⎜
⎜
⎝

0.906 0.094 0.000 0.000 0.000

0.000 0.957 0.043 0.000 0.000

0.000 0.000 0.950 0.050 0.000

0.000 0.000 0.000 0.960 0.040

0.000 0.000 0.000 0.000 1.000

⎞

⎟
⎟
⎟
⎟
⎠

(22) 

Eq. (21) and (22) cover all bridge deterioration patterns in Table 3. 
For the ‘Repair’ maintenance, it should at least improve the performance 
of the structure, so the state transition probability should ensure a 
transition to a better state. The state transition matrix should be defined 
lower triangular matrix. The specific transition probabilities refer to 
assumptions from other papers [34,39]. assumed as [33]: 

Trp =

⎛

⎜
⎜
⎜
⎜
⎝

1.000 0.000 0.000 0.000 0.000

1.000 0.000 0.000 0.000 0.000

0.050 0.950 0.000 0.000 0.000

0.050 0.100 0.850 0.000 0.000

0.000 0.050 0.150 0.800 0.000

⎞

⎟
⎟
⎟
⎟
⎠

(23) 

Due to advanced techniques [68], the ‘Repair’ action could be con-
ducted without interrupting the traffic. The effect of ‘Rehabilitation’ is 
to restore the structure to its initial state, with the following state 
transition matrix: 

Te =

⎛

⎜
⎜
⎜
⎜
⎝

1.000 0.000 0.000 0.000 0.000

1.000 0.000 0.000 0.000 0.000

1.000 0.000 0.000 0.000 0.000

1.000 0.000 0.000 0.000 0.000

1.000 0.000 0.000 0.000 0.000

⎞

⎟
⎟
⎟
⎟
⎠

(24) 

The adverse effect of ‘Rehabilitation’ is that the traffic line needs to 
be interrupted for an extended period, which is assumed to be 1 year in 
this study. The state-dependent observation matrix (Θ) is related to the 
periodical inspection in the bridge network. As expected, the bridge 
condition uncertainty decreases when inspections are taken, and the 
extent of reduction is proportional to the accuracy of the inspection. 
Assuming inspection can detect the correct state with probability (p), the 
state-dependent observation matrix is given in Eq. (25) [30]. The ac-
curacy of inspection directly affects the ability to detect the state of the 
bridge, which in turn influences the choice of maintenance actions. 
Ideally, the accuracy is assumed as 1, maintenance actions are carried 
out based on the actual state of the bridge, eliminating any additional 
costs due to inspection errors. With observation errors increasing, the 
additional maintenance costs grow exponentially [29]. In this study, we 
do not focus on the sensitivity of inspected accuracy, but on the H- 
BDQN’s superior performance in complex infrastructure management. 
The accuracy level of inspection is assumed to be at an acceptable level 
of p = 0.9. 

Θ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p 1 − P 0.0 0.0 0.0
1 − p

2
P 1 − p

2
0.0 0.0

0.0
1 − p

2 P
1 − p

2
0.0

0.0 0.0 1 − p
2

p
1 − p

2
0.0 0.0 0.0 1 − p p

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(25) 

The reward matrix (R) is influenced by a variety of factors, including 
the condition of the component, damage pattern, bridge pattern, span 
length, width, material, maintenance technology, and more. Even for 
components in the same condition, the same maintenance costs can vary 

greatly according to different standards (such as GB50500–2013 [69] 
and the USA Bridge Rehabilitation and Strengthening Manual PART-2 
Cost Estimate). Therefore, it is not feasible to accurately determine the 
cost of a specific maintenance action, especially since the maintenance 
actions defined in this study are general for bridges and do not detail 
specific components or damage. For this reason, reference reward pa-
rameters (rj(s, a)) are evaluated based on the USA standard. Given that 
all the bridges (Table 3) in the transportation system are made of con-
crete, it is assumed that the maintenance cost for each bridge is calcu-
lated by multiplying the unit price per square meter by the length and 
width of the damaged area, listed in Table 4. The negative value in-
dicates each action is associated with a payment and the target of 
management is to minimize the cumulative cost in the life-cycle. To 
account for the effects of the condition of the bridge, it is assumed that 
maintenance costs increase exponentially at a rate of 1.02 with respect 
to the state. The discounting factor (γ) is assumed 0.99. 

4.3. System-level sustainability cost and reward 

The previous section introduces how the POMDPs are established for 
individual bridges, which has been widely studied [39,70]. However, 
the optimal solution at a single-component level cannot guarantee 
optimality at the system level because the interactions of different 
maintenance actions may reduce the sustainability indexes (e.g., social, 
and environmental) which are parameterized by mobility, and CO2 
emissions. In addition, as a result of traffic line dependence, the 
simplification that manually partitions the transportation into different 
regions will result in a large sub-optimal solution. 

In this case study, the traffic is affected by two factors: maintenance 
and bridge condition. If the bridge is detected as state 3, the heavy truck, 
extreme duty truck, trailer, and tractor will be restricted from the pas-
sage. When the bridge is inspected as state 4 or executed ‘Rehabilitation’ 
action, the corresponding traffic line is restricted to all vehicles. The 
traffic control reshapes the interconnectivity of the network which in-
duces detours for vehicles. 

To reshape the traffic flow with lane interruption, Dijkstra’s algo-
rithm [72] is implemented to find the shortest paths between cities in 
the network. For instance, if the traffic lane B → D disruption, the traffic 
flow (18,503 in Table 2) between cities A ↔ D changes from A → B → D 
to A → B → E → C → D based on Dijkstra’s algorithm. These detours 
induce two negative effects: On one side, the additional distance ag-
gravates the CO2 emissions from vehicles. On the other side, the 
excessive shutdown of bridges in the transportation network may in-
crease the traffic volume larger than the designed maximum in the open 
roads. As mentioned in section 3.2 (Eq. (14)), the very important dif-
ference between single-component management and large-scale multi- 
component engineering systems is the multi-objective functions. 
System-level interdependence among components is reflected in the 
multi-objective function, with additional penalty mechanisms added to 
the environment at different system state configurations and action 
combinations. 

The multi-objective function in this context comprises three reward 
functions: bridge safety as a risk factor, CO2 emissions as a sustainability 
factor, and mobility as a traffic factor. However, these three reward 
functions represent the performance of the transportation system in 
three different units: bridge safety in k$, CO2 emissions in tons/year, and 

Table 4 
Reward matrix table (unit: k$/m2).  

Condition level S1 S2 S3 S4 S5 

Inspection + Do noting − 1 − 1 − 1 − 1 − 60 
Inspection + Repair − 16 − 16 ×

1.02 
− 16 ×
1.022 

− 16 ×
1.023 

− 60 

Inspection +
Rehabilitation 

− 20 − 20 ×
1.02 

− 20 ×
1.022 

− 20 ×
1.023 

− 60  
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mobility in numbers/day. Both multi-objective optimization functions 
and the training of neural networks require the dimensionless processing 
of physical quantities to prevent one physical quantity from dominating 
and rendering other physical quantities ineffective due to large magni-
tudes. To uniformly consider different physical quantities, three reward 
parameters are normalized and combined with the weighting factor in 
Table 5, Eq. (14) is rewritten as: 

rt(bt, at) = wf
1
m

∑m

j=1
rj
(
bj

t, a
j
t

)
+wcrc +wm

1
l

∑

1
rm (26) 

In Eq. (26), the first item (rj) is the normalized maintenance fee for 
each bridge, and m is the bridge number in the transportation system. w 
is the weighting factor. The second item (rc) is the normalized carbon 
emissions of whole transport vehicles. The third item (rm) normalizes the 
traffic volume of the entire transportation network. l is the number of 
traffic lines. 

rj
(
bj

t, a
j
t

)
= −

∑m

j=1

rj
(
bj

t, aj
t
)

rj
max

(27)  

rc = −
CO2 − CO2min

CO2max − CO2min
(28)  

rm,p =

⎧
⎪⎨

⎪⎩

0 for V ≤ V3

− 1/3 for V3 ≤ V ≤ V4

− 2/3 for V4 ≤ V ≤ V5

− 1 for V5 ≤ V

(29)  

rm,s =

⎧
⎨

⎩

0 for V ≤ V4

− 1/2 for V4 ≤ V ≤ V5

− 1 for V5 ≤ V

(30) 

For maintenance fee normalization, the minimum maintenance cost 
is 0 (refers to ‘Do nothing’). The dimensionless process uses the main-
tenance fee dividing the maximum action cost, calculated by Eq. (27). 
Since each bridge has different widths and lengths, the maximum 
maintenance cost (rj

max) is determined by multiplying the unit cost of 
‘Rehabilitation’ actions with the bridge’s span and width. 

In the case of carbon emissions, given that vehicles travelling the 
road network will inevitably produce CO2, there will be a minimum and 
maximum value for these emissions. Hence, to dimensionally normalize 
the carbon emission values, the linear normalization method is 
employed. The low-bound and high-bound calculations are as follows. 
When the whole of the bridges in the transportation system are in good 
condition (state 1 or state 2), vehicles in the system do not need to 
detour and can take the shortest path to reach their destination. Based 
on the distance (Fig. 6) traveled by vehicles (Table 2), the minimum 
carbon dioxide emissions (Table 5) can be calculated. Similarly, if all 
vehicles take the longest distance detour to reach their destination, the 
maximum carbon dioxide emissions are obtained. Using the maximum 
value as the upper bound (CO2 max) and the minimum value as the 
bottom bound (CO2 min), the carbon emissions of transport vehicles can 

be normalized in any situation, given by Eq. (28). 
Regarding mobility, according to the highway design standards [73], 

the service level of a highway is reflected in its traffic flow and 
congestion. Each service level corresponds to a maximum daily traffic 
volume. This traffic volume is determined by factors such as driving 
speed, intersections, and the proportion of different types of vehicles. It 
can be calculated based on the JTG D20–2006 standard [71]. The ser-
vice capacities of primary and secondary highways are listed in Table 5. 
The subscript of Vi in Eqs. (29) and (30) means the grade of highway 
service. For instance, the V3 in primary highway is the threshold of 
service grade which means the traffic volume <24,000 per day satisfies 
level-3 requirements. The normalized reward of mobility (rm) in each 
traffic line (l) is obtained based on different service grades, given in Eq. 
(29) for the primary highway and Eq. (30) for the secondary highway. 

Finally, the weighting factors (w) are determined by the Analytic 
Hierarchy Process (AHP) method [74]. It includes three major steps, 
decomposition, comparative judgment, and synthesis of priorities. 
Decomposition involves breaking down the objective function into its 
constituent parts which are maintenance, carbon emissions, and 
mobility. Comparative judgment involves assessing the relative impor-
tance of three parts. Herein, the important ratio between maintenance 
and carbon emissions is 5, between maintenance and mobility is 5, and 
between carbon emissions and mobility is 1. Combining the AHP matrix 
[74], the synthesis of priorities for weighting factors are given in 
Table 5. It should be noted that the weighting factor will determine the 
final value of multiple objective function (26) and significantly affect the 
optimal management policy. The sensitivity of weighting factors will be 
discussed in Appendix B. 

Using the weight factor, the multiple reward parameters are defined 
as Eq. (26) and update the entire neural networks through Eq. (13). The 
reward parameters should also highlight the particular situation that the 
excessive traffic lines are interrupted which paralyzes the transportation 
system. For instance, if bridges in A ↔ B and A ↔ F simultaneously 
deteriorate to state 3, the truck is impassable due to the risk control. 
Since the transportation network is severely disrupted, a punishment 
rt = − 0.7 is set to avoid exploring action combinations that might lead 
to traffic paralysis during training. After establishing the environment, 
algorithm 1 is implemented to train the neural network. In the 
remainder of this study, the outlined contributions are introduced in 
detail along with the large-scale multi-component control problem and a 
comprehensive discussion of results. 

5. Results and discussion 

5.1. Comparative study 

In this section, the improvement of the proposed framework on the 
above challenging control problem with high action dimensionality and 
complexity is demonstrated. Four maintenance policies are compared, of 
which the first three are developed by neural networks using different 
algorithms: DDPG with Wolpertinger architecture (DDPG-W), BDQN, 
and H-BDQN. The fourth policy is a routine maintenance strategy 
designed to maintain the bridge condition without interrupting traffic. 
The cumulative reward in the life-cycle (100 years) is regarded as a 

Table 5 
Normalized parameters for hierarchical reward function.  

Baseline Value (unit) Weighting Coefficient 

Max CO2 emission 2.262e6 (tons/year) Maintenance fee wf = 0.7 
Min CO2 emission 1.131e6 (tons/year) CO2 emission wc = 0.15   

Mobility wm = 0.15 
Highway grade Service level (/day) [71] Highway grade Service level (/day) 
Secondary highway V4 = 22,000 Primary highway V3 = 24,000 

V5 = 37,000 V4 = 31,000  
V5 = 35,000 

traffic paralysis rt= − 0.7    
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criterion to evaluate the improvement of the policy during the training 
process. The training details are as follows: an episode is the trans-
portation network experiencing 100-time steps. For DDPG-W, the 
updating happens in each time step. For BDQN, every 2-time steps, and 
For H-BDQN, every 4-time steps. As controlling the random seed method 
is not applicable for TensorFlow GPU training, to mitigate the impact of 
randomness on the final results, all models were trained 100 times, with 
the best result subsequently selected. The performances are summarized 
in Fig. 8. This study first compares the performance of the BDQN against 
DDPG-W on the large-scale multi-component transportation system 
control problem. The better cumulative reward curve demonstrates that 
BDQN outperforms the DDPG-W method. To clearly exhibit the behavior 
developed in different learning methods, the video of the entire training 
process can be viewed at https://www.bilibili.com/. It can be readily 
noted that the inconsistency between the continuous action represen-
tation and actual discrete action spaces makes DDPG-W challenging to 
converge. The superior performance of BDQN in comparison to DDPG-W 

also verifies the effectiveness of the shared network module in coordi-
nating individual bridge maintenance and entire transportation system 
management. 

Additionally, the cumulative reward discrepancy between the H- 
BDQN and BDQN models indicates their different learning capabilities 
during the training process. Fig. 8 displays the cumulative reward 
improvement during the training process and 2000 Monte Carlo simu-
lations after training. It can be concluded from Fig. 8 that the H-BDQN 
model enables the efficient improvement of policy, as the mean slope of 
the green line is larger than that of the violet line, and the final policy 
has the best performance. In fact, these two neural networks develop 
distinct transportation network management strategies during the 
training process. Two representative policy realizations are visualized in 
Figs. 9 and 10, highlighting different maintenance behaviors. To account 
for random factors, each maintenance policy is executed with 2000 
Monte Carlo simulations, and the box plot of cost is shown in Fig. 11. 

Continuing the discussion in relation to the difference between H- 
BDQN, BDQN, and routine maintenance strategy, these three mainte-
nance policies are further contrasted. In the studied case, 14 bridge 
maintenance strategies are displayed with ‘Do nothing’, ‘Repair’ (△), 
and ‘Rehabilitation’ (⊡) actions in Fig. 9 and Fig. 10. The blue line 
depicts the actual state development (bt→bt+1) in the life-cycle. Due to 
the uncertainty in inspection, the observed state (ot→ot+1) is slightly 
different from the actual state (90% accuracy) which is described by the 
green line. Two maintenance actions (‘Repair’ and ‘Rehabilitation’) 
improve the bridge’s performance and avoid failure. The ‘Repair’ action 
can enhance the bridge condition without affecting the transportation 
system, but the action has low cost-performance. On the other hand, the 
‘Rehabilitation’ action has high cost-performance in maintenance, but it 
may induce a detour, additional CO2 emissions, and traffic congestion. 
The purpose of transportation network management is to implement 
appropriate maintenance actions to maximize the value of the multi- 
objective function (27). In the following contents, the maintenance 
policies will be evaluated in two aspects, intuitive reasonability and 
value function (27), based on Figs. 9, 10, and Fig. 11. 

Under the BDQN method, considering the randomness of neural 
network training, we train 100 groups of neural networks separately and 
take the group with the best performance. However, even with this 
approach, the maintenance policy still falls into sub-optimal solutions. 

Fig. 8. Cumulative reward during the training process.  

Fig. 9. Transportation networks management by BDQN.  
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The most straightforward criterion for judging the reasonableness of the 
management policies is whether the maintenance action is taken when 
the bridge is in poor condition. However, as shown in Fig. 9, the dashed 
line indicates that a blind maintenance action is adopted for all bridges 
when parts of the bridge degrade to poor conditions. This blindness 
leads to the implementation of maintenance actions on intact bridges 
and induces additional maintenance costs. Furthermore, the policy 
developed by BDQN does not fully recognize the environmental con-
straints that can induce traffic paralysis. This is evident in Fig. 9, where 
the maintenance actions are shown in the third dashed line. The un-
reasonable action combinations are implemented, which simultaneously 
adopted ‘Rehabilitation’ in bridges (1) and (6), interrupting the traffic 
flow at traffic lanes A ↔ B and A ↔ F. The entire transportation system is 
paralyzed. Lastly, as the worst life-cycle performance (− 16.5) shown in 
Fig. 11, the sub-optimal solution dramatically increases the cost of CO2 
emissions (− 10.9) and mobility (− 9.8). 

Compared with BDQN, the routine maintenance strategy attempts to 
avoid situations that affect the traffic flows in the transportation system. 
Therefore, the ‘Rehabilitation’ and state over 3 are not allowed in this 
strategy. The ‘Repair’ action is implemented when inspecting the cor-
responding bridge state deteriorates to state 3. Nevertheless, the routine 
maintenance strategy is excessively conservative. As shown in Fig. 11, 
frequent and uneconomical ‘Repair’ actions can lead to the highest cost 
(− 21.4) among the three maintenance strategies. 

The metric to evaluate a good DRL method is to testify whether the 
trained policy can surpass the general level of experts, and in turn, guide 
the management of the transportation network. As the information in 
Fig. 10, all maintenance actions (‘Repair’ and ‘Rehabilitation’) are 
implemented when the bridge’s state is observed to be in poor condition 
(state 3). Hence, the policy from H-BDQN at least satisfies optimal 
maintenance requirements for the bridge individually. For system-level 
management, H-BDQN obtains the best performance (− 14.6) among 
different models in a defined environment according to Fig. 11. The 
maintenance policy finds the trade-off to adopt the ‘Repair’ action and 
‘Rehabilitation’ action without paralyzing the traffic system and saving 
the budget as much as possible, as shown in Fig. 10. Similar to other DRL 
methods [75] that introduce innovative problem-solving approaches or 
new knowledge, H-BDQN also enhances management capabilities 
through interaction with the environment, providing guidance for 
managers in complex system management. Since the bridge’s condition 
will affect the passage of lanes, traffic lanes with multiple bridges can be 
more frequently interrupted compared with traffic lanes with a single 
bridge. Therefore, a relatively higher budget needs to be spent if the 
agent maintains the passage of lanes with multiple bridges. Obviously, 
the agent discovers this property and utilizes it to minimize the cost with 
the required performance. The vulnerable traffic lanes with multiple 
bridges, such as A ↔ B, E ↔ H, G ↔ I, and A ↔ F, are marked as the 
candidates which may adopt the’Rehabilitation’ to minimize the 
maintenance fee and allow temporary interruption. Simultaneously, to 
maintain the entire transportation system operation, the agent needs to 
reserve one of the lanes, A ↔ B or A ↔ F, with the ‘Repair’ action. 

Another important notable performance of H-BDQN is that it trades 
off millions of situations and discovers the most economical mainte-
nance mode, which keeps the passage of traffic lane A ↔ F. Since no 
bridge is located at the traffic lane D ↔ E and no city in B point, to 

Fig. 10. Transportation networks management by H-BDQN.  

Fig. 11. Comparison of cost among different maintenance policies.  
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further cut cost, the lane B ↔ D and B ↔ E allow temporary interruption. 
The agent maintenance behavior provides a new way of thinking for 
managers, compared with the conservative routine maintenance 
strategy. 

5.2. Decision-making network learning mechanism 

Herein, a detailed explanation is provided for the reasons behind the 
differences in maintenance policies resulting from various training 
methods. When the bridges in the transportation network deteriorate to 
state 3, or when the ‘Rehabilitation’ action is taken, it can affect vehicle 
passage, potentially leading to traffic paralysis and punishments. To 
gain insight into how the condition of the bridges affects the mainte-
nance action combinations, assuming the bridges in the transportation 
network deteriorate to state 3 in the order of bridge serial number in 
Fig. 6. The upper half of Fig. 12 displays how the available action 
combinations without paralyzing traffic decrease as the bridges deteri-
orate. In the lower half of Fig. 12, the available action combinations that 
do not violate the environmental constraints are visualized using blue 
contour lines. The low percentage of available action combinations 
occupied in total action spaces indicates large action spaces are worth-
less to explore, as the gray lines (useless action combinations) marked in 
Fig. 12. In the early stages of training, as shown in the video https: 
//www.bilibili.com/, the large stochastic exploration factor ensures 
that parts of the available action combinations can be discovered, as 
shown by the black lines in Fig. 12. In the medium-term training stage, 
the goal of training is to find the optimal maintenance action (repre-
sented by the red line) to substitute the sub-optimal one in any state. 
Therefore, how to filter or avoid the exploration in useless action space 
determines the effectiveness of the training method. 

For conventional BDQN with a single feedback mechanism, infor-
mation loss occurs during the fusion process of environmental feedback 
rewards. This oversimplified reward feedback cannot offer insight into 
the influence of different actions. For instance, the neural network will 
learn from the feedback that the ‘Repair’ action will always improve 
transportation networks, but the ‘Rehabilitation’ action affects the 
performance randomly because substantial combinations of ‘Rehabili-
tation’ actions will paralyze traffic. However, the information that 
‘Rehabilitation’ action can improve the corresponding bridge condition 
is lost during training. Random exploration with unfiltered action 
combinations may result innumerous attempts that yield negative 
feedback, causing the neural networks to maintain the current policy. 
This training behavior is reflected in Fig. 8, the unchanged policy leads 
to a low reward fluctuation. In the late training, the generalization 

ability of the neural network decreased and finally fall into the sub- 
optimal solution. 

For the H-BDQN, the reward feedback from the environment is dis-
assembled into two parts: the maintenance cost for individual bridges 
and the global reward of the transportation network. Through multi- 
reward Eq. (16), the branching network updates parameters to accom-
modate the safety management for the individual bridges in the early 
training phase. This targeted adjusting facilitates the neural networks to 
find maintenance action combinations for bridges in poor conditions. 
Specifically, the useless action combinations are filtered. Afterward, 
with the forgetting coefficient increasing during the medium term, the 
learning rate for branching networks successively decreases, and 
simultaneously, entire network parameters are updated by the global 
loss function. This synergetic multi-reward training mode preserves a 
certain extent autonomy of the branching, which allows the branching 
network to attempt different maintenance actions for the corresponding 
bridge. Then, the unreasonable combinations of maintenance may 
induce punishment from the environment, which is passed through 
neural networks through global loss function. The negative feedback 
helps the agent to recognize the constraints and continually coordinate 
the maintenance policy in each branching. Once the virtuous circle is 
developed, the competitively self-adjusting capacity motivates the agent 
to sufficiently explore the environment and converge to an efficient 
near-optimal solution. This learning feature is demonstrated in Fig. 8 
which has more drastic fluctuation and a larger convergence rate. 

5.3. Discussion 

This study has two main contributions. First, we embed various 
sustainability metrics in the transportation network management using 
POMDPs, including structural safety, carbon emissions, and mobility 
considerations. Unlike common management practices that may 
simplify the effects among different actions or just manage bridges 
individually, a DRL method named H-BDQN is developed to consider the 
effects of every action combination. The second contribution is the 
development of a novel learning method that simulates biological 
learning behavior, from unconditioned reflex to conditioned reflex. The 
results show that the network trained by this method performs better in 
complex system control problems than the traditional DBQN, by 
searching global optimal solutions better and avoiding falling into sub- 
optimal policy regions. These two properties contribute to the proposed 
framework performing adequately well in network-level multi-compo-
nent systems management. 

However, for network-level management, when the number of 
bridges is in the order of hundreds or thousands, H-BDQN also faces 
difficulty in achieving good near-optimal results. For managing trans-
portation networks of this scale, it becomes crucial to leverage known 
road network information to simplify the model. Some effective 
methods include employing graph neural networks to quantify the 
connectivity and length of traffic lanes. Another approach involves using 
a dataset to pre-train the neural network. In fact, a large number of state- 
action combinations that could lead to the paralysis of the entire road 
network can be utilized to compile such a dataset. Further in-depth 
research is needed in this area. 

6. Conclusions 

A versatile deep reinforcement learning model for tackling the 
important problem of scheduling comprehensive maintenance in large- 
scale multi-component engineering systems is developed in this paper. 
The real-world transportation network is quantified as the environment 
in deep reinforcement learning, the connections of roads are established 
by Dijkstra’s algorithm, and maintenance decision-making for bridges is 
formulated as POMDPs. Additionally, hierarchical reward functions 
were designed to meet sustainable requirements (e.g., economic, social, 
and environmental), which facilitate stakeholder management. 

Fig. 12. Solution space in different bridge deteriorated conditions.  
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However, the lossless information quantification induces the curse of 
dimensionality in state and action expression. To address this issue, 
using the Branching Dueling Q-Networks, the large complex action 
space is factorized, making the nodes of the output layer grow linearly 
with the number of bridges. Preventing the solution from falling into 
local optima is another problem of complexity in large-scale system 
control. This study designs a hierarchical multi-reward backpropagation 
method for optimal policy training to facilitate the neural networks to 
accommodate decision-making in a complex environment gradually. 
The training process simulates the biological learning behavior, from 
simple disassembling tasks to integrated complex assignments. Through 
comparing results between state-of-art methods in large discrete action 
spaces, the H-BDQN trained with the proposed method displays 
strengths related to stability in training, exploration of optimal policies, 
and convergence speed. 

The study yielded the following insights into maintenance behaviors: 
(a) Routine maintenance strategy, only adopting ‘Repair’ actions, can 
minimize negative effects on traffic flows (e.g., detours and mobility), 
but it is not an economical maintenance strategy for bridge perfor-
mance. A good maintenance strategy should consider the vulnerable 
traffic lane with multiple bridges, the passage of the transportation 
network, and the utility of different maintenance actions, as inspired by 
the policy developed by the proposed method. (b) Based on the main-
tenance policies in the study case, a reasonable maintenance strategy for 
transportation system management should include the following steps: 
1) calculating the maintenance cost of each traffic lane without inter-
ruption; 2) ranking the high-cost lanes and implementing ‘rehabilita-
tion’ actions with temporary interruption; 3) identifying available 
combinations of traffic lane interruption that will not significantly 
impact the transportation network; and 4) determining the most 
economical and optimized scheme. 
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Appendix A. Appendix 

The network implementations in this work are fully described in this appendix, including input, hidden layer, output, activation function, 
connection, and training process. The entire program (algorithm 1) is coded by Python libraries of TensorFlow. H-BDQN does not employ the fully 
connected structure and one gradient updating entire network parameters. In the input layer, every five nodes represent a bridge condition from state 
1 to state 5. The input vector (state number × bridge number) is real numbers describing a probability distribution over all bridge damage states, 
shown in Fig. 4. The following is a shared part with two fully connected ReLU layers, 70 × 256 and 256 × 128, respectively. Then, the branching part 
adopts a relatively independent structure in which the internal of the branching network is fully connected (128 × 64 × 3) but each branching network 
is isolated. To reduce the repercussion of isolation and simplify the learning process, the dueling architectures are employed to express the state-action 
value (Q) into state value (V) and the state-dependent action advantage (A). As Fig. 4 shows, the final branching is a fully connected layer (128 × 1) to 
estimate state values. For bootstrapping-based algorithms, this separation increases the stability of the optimization and learning rate. The updating of 
action advantages can change as fast as the mean, instead of having to compensate for any change to the optimal action’s advantage. Finally, each 
action advantage is aggregated with state value to produce the Q function. The output of each branching network is the state-action value Qj of the 
current bridge for the entire system 

A number of training techniques are utilized to enhance stability, generalization ability, exploration ability, and to avoid overfitting. Parametric 
updates are executed through mini-batch gradient descent with a size of 32, as it facilitates training speed and simultaneously maintains satisfactory 
convergence properties. The batch sampling is based on the prioritized experience replay [63] which increases the sampling probability of experience 
that has a larger difference between the target network and the main network. Compared with the uniform experience replay, prioritizing experience 
can sample important experiences more frequently, and learn more efficiently. The Adam optimizer is used for the entire network and branching 
networks. For the entire network, the initial learning rate is 10− 5 and keeps constant in training progress. For branching networks, the synergetic 
multi-reward learning method in Eq. (16) is utilized to dynamically adjust the learning rate. The delay factor (φ) is set as 0.99997 to accommodate the 
30,000-episode training processes. The parametric updates of target networks are executed every 4 action steps, whereas an exploration rate starting 
from 100% linearly decreases to 10% in the first 3000 episodes, and continually decreases to 1% at the end of training. A self-evaluation mechanism is 
incorporated into the network training process. Specifically, after every 5000 training iterations, the network’s performance is evaluated using 2000 
Monte Carlo simulations. If there is an improvement of >5% in performance compared to the previous neural network, the current network is pre-
served. If not, the network is discarded and the parameters from the preceding network are reinstated. 
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Appendix B. Appendix 

Two types of objective functions are set in this work, the first type is related to the individual bridge, such as the maintenance fee (rf ), while the 
second type is associated with the entire transportation system, such as CO2 emissions (rc) and mobility (rm). The weighting factors (wf , wc, and wm) in 
the multi-objective function determine which type of objective is prioritized in the management policy. In this transportation system management, ‘Do 
nothing’ action and two maintenance actions (e.g., ‘Repair’ and ‘Rehabilitation’) are needed to be selected by the policy. ‘Repair’ induces a high 
maintenance fee and has no impact on effects on CO2 emissions and mobility. ‘Rehabilitation’ is a cost-effective action but may induce CO2 emissions 
and congestion. As the bridge deterioration also influences traffic flow, maintenance actions are inevitable. The optimal policy is a trade-off to use 
‘Repair’ and ‘Rehabilitation’ at the appropriate bridge and time 

Therefore, the weighting factor will directly decide the optimal maintenance policy. To gain insight into the influence of these weighting factors, an 
additional case is provided. A new weighting factor (wf = 0.5, wc = 0.25, and wm = 0.25) is assumed. Through H-BDQN, the optimal maintenance 
policy of the new weighting factor is shown in Fig. 13. The corresponding objective function value (r, rf , rc, and rm) is evaluated by 2000 Monte Carlo 
simulations, given in Fig. 14. The results indicate that the interruption of traffic lanes B⟷E and G⟷H will not significantly contribute to an increase 
in CO2 emissions and traffic congestion. 

Herein, the optimal maintenance policies with different weighting factors are compared. H-BDQN with weighting factor (wf = 0.7, wc = 0.15, and 
wm = 0.15) are defined as model 1, H-BDQN with weighting factor (wf = 0.5, wc = 0.25, and wm = 0.25) are defined as model 2. Additionally, we 
assume another model, denoted as Model 3, with a special weighting factor (wf = 0, wc = 0.5, wm = 0.5). Although we do not train H-BDQN of model 
3, it can still infer the optimal maintenance policy. As maintenance cost is not considered (wf = 0), the optimal maintenance policy is to prevent traffic 
interruption. The most effective policy would be to use the ‘Repair’ action to improve the state of the bridge and prevent it from deteriorating to state 
3. In this situation, the optimal maintenance policy is identical with the routine maintenance strategy.

Fig. 13 Transportation networks management by H-BDQN with weighting factor (wf = 0.5, wc = 0.25, wm = 0.25).  

The right side of Fig. 14 shows that under certain weighting factors, all three models reach their optimal solutions. The left side of Fig. 14 displays 
the maintenance behavior of different policies. For the weighting factor (wf = 0.7, wc = 0.15, and wm = 0.15), H-BDQN in model 1 ensures the 
transportation network’s operation while saving maintenance costs (rf = − 19.8) as much as possible. With the weighting factor (wf = 0.5, wc =

0.25, wm = 0.25), H-BDQN in model 2 shift policy to adopt cost-effective maintenance actions while minimizing the impact on traffic flow (rc = − 1 
and rm = − 0.3) as much as possible. In summary, H-BDQN is an effective method to find the optimal maintenance policy and can sensitively adjust 
the policy with the weighting factor changing. 
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Fig. 14 Monte Carlo results of various maintenance policies under different weighting factors. The figure illustrates how the optimal maintenance policy changes with 
the variation in weighting factors. It provides a visual representation of the effectiveness of different maintenance policies under different scenarios, demonstrating 
the flexibility and adaptability of the H-BDQN model in finding the optimal maintenance policy. 

References 

[1] R. Victor, G. Baskir, J. Bennett, J. Camp, R. Capka, S. Curtis, G. Davids, L. Frevert, 
H. Hatch, A. Herrmann, Report Card for America’s Infrastructure, American 
Society of Civil Engineers, 2013. https://infrastructurereportcard.org/cat-item/bri 
dges-infrastructure. 

[2] A.O. Acheampong, J. Dzator, M. Dzator, R. Salim, Unveiling the effect of transport 
infrastructure and technological innovation on economic growth, energy 
consumption and CO2 emissions, Technol. Forecast. Soc. Chang. 182 (2022) 
121843, https://doi.org/10.1016/j.techfore.2022.121843. 

[3] P. Bocchini, D.M. Frangopol, A probabilistic computational framework for bridge 
network optimal maintenance scheduling, Reliab. Eng. Syst. Saf. 96 (2011) 
332–349, https://doi.org/10.1016/j.ress.2010.09.001. 

[4] X. Zhao, X. Ma, B. Chen, Y. Shang, M. Song, Challenges toward carbon neutrality in 
China: strategies and countermeasures, Resour. Conserv. Recycl. 176 (2022) 
105959, https://doi.org/10.1016/j.resconrec.2021.105959. 

[5] X. Lei, Y. Dong, D.M. Frangopol, Sustainable life-cycle maintenance policymaking 
for network-level deteriorating bridges with a convolutional 
autoencoder–structured reinforcement learning agent, J. Bridg. Eng. 28 (2023) 
04023063, https://doi.org/10.1061/jbenf2.Beeng-6159. 

[6] H. Zhang, G.A. Keoleian, M.D. Lepech, Network-level pavement asset management 
system integrated with life-cycle analysis and life-cycle optimization, J. Infrastruct. 
Syst. 19 (2013) 99–107, https://doi.org/10.1061/(asce)is.1943-555x.0000093. 

[7] D.M. Frangopol, M. Liu, Maintenance and management of civil infrastructure based 
on condition, safety, optimization, and life-cycle cost, Struct. Infrastruct. Eng. 3 
(2007) 29–41, https://doi.org/10.1080/15732470500253164. 

[8] X.M. Lei, L.M. Sun, Y. Xia, Lost data reconstruction for structural health monitoring 
using deep convolutional generative adversarial networks, Struct. Health Monitor.- 
Int. J. 20 (2021) 2069–2087, https://doi.org/10.1177/1475921720959226. 

[9] M. Xu, M. Ouyang, L. Hong, Z.J. Mao, X.L. Xu, Resilience-driven repair sequencing 
decision under uncertainty for critical infrastructure systems, Reliab. Eng. Syst. Saf. 
221 (2022) 108378, https://doi.org/10.1016/j.ress.2022.108378. 

[10] X.M. Lei, D.M. Siringoringo, Y. Dong, Z. Sun, Interpretable machine learning 
methods for clarification of load-displacement effects on cable-stayed bridge, 
Measurement 220 (2023), https://doi.org/10.1016/j.measurement.2023.113390. 

[11] C. Wu, P. Wu, J. Wang, R. Jiang, M. Chen, X. Wang, Critical review of data-driven 
decision-making in bridge operation and maintenance, Struct. Infrastruct. Eng. 
(2020) 1–24, https://doi.org/10.1080/15732479.2020.1833946. 

[12] E.M. Abdelkader, O. Moselhi, M. Marzouk, T. Zayed, An exponential chaotic 
differential evolution algorithm for optimizing bridge maintenance plans, Autom. 
Constr. 134 (2022), https://doi.org/10.1016/j.autcon.2021.104107. 

[13] Z. Sun, J.D. Xing, P.B. Tang, N.J. Cooke, R.L. Boring, Human reliability for safe and 
efficient civil infrastructure operation and maintenance - a review, Develop. Built 
Environ. 4 (2020), https://doi.org/10.1016/j.dibe.2020.100028. 

[14] A.K. Ji, X.L. Xue, Q.P. Ha, X.W. Luo, M.G. Zhang, Game theory-based bilevel model 
for multiplayer pavement maintenance management, Autom. Constr. 129 (2021) 
103763, https://doi.org/10.1016/j.autcon.2021.103763. 

[15] J.S. Kong, D.M. Frangopol, Life-cycle reliability-based maintenance cost 
optimization of deteriorating structures with emphasis on bridges, J. Struct. Eng.- 
Asce 129 (2003) 818–828, https://doi.org/10.1061/(Asce)0733-9445(2003)129:6 
(818). 

[16] M. Liu, D.M. Frangopol, Balancing connectivity of deteriorating bridge networks 
and long-term maintenance cost through optimization, J. Bridg. Eng. 10 (2005) 
468–481, https://doi.org/10.1061/(Asce)1084-0702(2005)10:4(468). 

[17] M.H. Nili, H. Taghaddos, B. Zahraie, Integrating discrete event simulation and 
genetic algorithm optimization for bridge maintenance planning, Autom. Constr. 
122 (2021), https://doi.org/10.1016/j.autcon.2020.103513. 

[18] K. Deb, An introduction to genetic algorithms, Springer 24 (1999) 293–315, 
https://doi.org/10.1007/bf02823145. 

[19] X.M. Lei, Y. Xia, Y. Dong, L.M. Sun, Multi-level time-variant vulnerability 
assessment of deteriorating bridge networks with structural condition records, Eng. 
Struct. 266 (2022), https://doi.org/10.1016/j.engstruct.2022.114581. 

[20] X. Lei, R. Feng, Y. Dong, C. Zhai, Bayesian-optimized interpretable surrogate model 
for seismic demand prediction of urban highway bridges, Eng. Struct. 301 (2024) 
117307, https://doi.org/10.1016/j.engstruct.2023.117307. 

[21] M. Liu, D.M. Frangopol, Optimizing bridge network maintenance management 
under uncertainty with conflicting criteria: life-cycle maintenance, failure, and 
user costs, J. Struct. Eng.-Asce 132 (2006) 1835–1845, https://doi.org/10.1061/ 
(Asce)0733-9445(2006)132:11(1835). 
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