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The study of wave propagation and scattering
in time-dependent materials is a rapidly growing
field of research. Whereas for one-dimensional
applications, there is a simple relation between
the wave equations for space-dependent and
time-dependent materials, this relation is less
straightforward for multi-dimensional materials.
This article discusses fundamental aspects of
two-dimensional electromagnetic and acoustic wave
propagation and scattering in homogeneous,
time-dependent materials. This encompasses a
review of transmission and reflection at a single
time boundary, a discussion of the Green’s function
and its symmetry properties in a piecewise
continuous time-dependent material, a discussion
of propagation invariants (including the net field-
momentum density), general reciprocity theorems
and wave field representations. Analogous to the
well-known expression for Green’s function retrieval
by time-correlation of passive measurements in a
space-dependent material, an expression is derived
for Green’s function retrieval by space-correlation
of passive measurements in a time-dependent
material. This article concludes with the discussion
of the propagator matrix for a piecewise continuous
time-dependent material, its symmetry properties
and its relation with the Green’s function.
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1. Introduction
Temporal changes of material parameters have an effect on wave propagation and scattering,
comparable with, but not identical to, the effect of spatial changes. Since the initial work on
wave propagation and scattering in time-dependent materials [1,2], the research in this field has
recently gained significant momentum as a result of advances in the engineering of dynamic
metamaterials [3]. Most applications deal with electromagnetic waves [4–10], but mechanical
wave propagation and scattering in time-dependent materials is also a rapidly emerging
research area. It is proposed as an alternative way of doing ultrasonic time-reversal experiments
[11–15] and its potential use in seismic imaging and monitoring is being investigated [16,17].

Various authors discuss the analogy between the wave equations for time- and space-
dependent materials [18–24]. For one-dimensional applications, the roles of the time- and
space-coordinates are interchanged between the wave equations for both types of material
[21–24]. However, causality conditions apply to the time coordinate in both types of material
and hence they are not interchanged. As a consequence, solutions of the wave equation in
a time-dependent material are, in general, not one-to-one exchangeable with those in a space-
dependent material. In a recent paper [25], we systematically analyse the similarities and
differences of waves in one-dimensional space-dependent and time-dependent materials. In
multidimensional materials, the number of space dimensions (two or three) is different from the
number of time dimensions (one) and hence the analogy between the wave equations for both
types of material is less straightforward.

In the present article, we discuss fundamental aspects of wave propagation and scattering
in two-dimensional time-dependent materials. The discussion partly reviews work discussed in
the references mentioned above but also contains new results. Like in our paper on one-dimen-
sional materials [25], we use a unified notation which simultaneously captures electromagnetic,
acoustic and elastodynamic shear waves. We discuss transmission and reflection coefficients,
Green’s functions, propagation invariants, reciprocity theorems, wave field representations,
Green’s function retrieval, propagator matrices and the relation between the Green’s function
and the propagator matrix of a time-dependent material.

2. Unified wave equation
We consider two-dimensional wave propagation in the x, z-plane, assuming the material
parameters, the sources and the wave fields are independent of the y-coordinate. We denote
position in this plane by the Cartesian coordinate vector x = (x, z) and time by t. We capture
electromagnetic waves (transverse electric (TE) and transverse magnetic (TM)), acoustic waves
and horizontally polarized shear waves by the following unified equations [26–30]

(2.1)∂tU + ∇ ⋅Q = a,

(2.2)∂tV + ∇P = b,

where ∂t stands for the partial differential operator ∂∂t  and ∇ is the two-dimensional nabla
operator, defined as ∇ = (∂x, ∂z). Furthermore, U(x, t), V(x, t), P(x, t) and Q(x, t) are space- and
time-dependent wave-field quantities and a(x, t) and b(x, t) are space- and time-dependent
source quantities. The boldface quantities V, Q and b denote vectors with two components,
hence V = (Vx,Vz), etc. All quantities are further specified in table 1 for the different wave
phenomena considered in this article. For electromagnetic waves, equations (2.1) and (2.2) are
Maxwell’s equations in the x, z-plane [27,31]. For example, for TE waves (row 1 in table 1),
we have Q = (Hz, −Hx), hence, ∇ ⋅Q = ∂xHz − ∂zHx = −(∇ × H)y, which is minus the y-component
of the curl of the magnetic field vector H(x, t). Hence, equation (2.1) reads for this situation
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∂tDy − (∇ × H)y = − Jye. With some reordering, equation (2.2) can be shown to be the two-dimen-
sional version of ∂tB + ∇ × E = −Jm. In a similar way, it can be shown that for TM waves
(row 2 in table 1), equations (2.1) and (2.2) are again Maxwell’s equations in the x, z-plane,
but in reversed order. For acoustic waves (AC; row 3 in table 1), we have ∇ ⋅Q = ∂xvx + ∂zvz,
which is the divergence of the particle velocity vector v(x, t). Hence, for this situation equa-
tion (2.1) stands for −∂tΘ + ∇ ⋅ v = q, which is the acoustic deformation equation, and equation
(2.2) becomes ∂tm + ∇p = f , which quantifies equilibrium of momentum [22,27]. Similarly, for
horizontally polarized shear waves (SH; row 4 in table 1), equation (2.1) stands for equilibrium
of momentum and equation (2.2) is the two-dimensional elastic deformation equation.

The wave-field quantities are mutually related through the constitutive equations, as
follows:

(2.3)U = αP,

(2.4)V = βQ,

where α and β are material parameters. They are also specified in table 1 for the different wave
phenomena. We can use these equations to eliminate two of the four wave field quantities from
equations (2.1) and (2.2). We consider three cases.

(i) Inhomogeneous, time-dependent material, with parameters α(x, t) and β(x, t). Substitut-
ing equations (2.3) and (2.4) straightforwardly into equations (2.1) and (2.2) yields

(2.5)∂t(αP) + ∇ ⋅Q = a,

(2.6)∂t(βQ) + ∇P = b.

For example, for the special situation of acoustic waves (row 3 in table 1) this gives
∂t(κp) + ∇ ⋅ v = q and ∂t(ρv) + ∇p = f  [32].

(ii) Inhomogeneous, time-independent material, with parameters α(x) and β(x). For this
situation, we have ∂tU = ∂t(αP) = α∂tP and ∂tV = ∂t(βQ) = β∂tQ. Hence, we obtain from
equations (2.5) and (2.6)

(2.7)α∂tP + ∇ ⋅Q = a,

(2.8)β∂tQ + ∇P = b.

As an example, for acoustic waves these expressions become κ∂tp + ∇ ⋅ v = q andρ∂tv + ∇p = f .
The well-known system of equations (2.7) and (2.8) for the wave field quantities P
and Q underlies wave propagation in inhomogeneous, time-independent materials with
parameters α(x) and β(x), which may vary continuously with space. When the material
contains space boundaries with normal n(x), equations (2.7) and (2.8) are supplemented
with boundary conditions. The boundary conditions state that P and Q ⋅ n are continuous
over those space boundaries.

(iii) Homogeneous, time-dependent material, with parameters α(t) and β(t). For this situation,
we cannot use equations (2.7) and (2.8). Instead, using equations (2.3) and (2.4), we now
have ∇P = ∇( 1αU) = 1α∇U and ∇ ⋅Q = ∇ ⋅ ( 1βV) = 1β∇ ⋅ V. Hence, elimination of P and Q
from equations (2.1) and (2.2) yields

(2.9)∂tU + 1β∇ ⋅ V = a,

(2.10)∂tV + 1α∇U = b.

For example, for acoustic waves these expressions read −∂tΘ + 1ρ∇ ⋅m = q and
∂tm − 1κ∇Θ = f .
The system of equations (2.9) and (2.10) for the wave field quantities U and V under-
lies wave propagation in homogeneous, time-dependent materials with parameters α(t)
and β(t), which may vary continuously with time. When the material contains time
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boundaries, equations (2.9) and (2.10) are supplemented with boundary conditions. The
boundary conditions state that U and V are continuous over those time boundaries [1,18–
20,23].

Although equations (2.5) and (2.6) hold for materials that are simultaneously space- and
time-dependent, we restrict the discussion in this article to homogeneous time-dependent
materials, governed by equations (2.9) and (2.10), supplemented with boundary conditions
for U and V. This allows the translation of several fundamental concepts known for waves in
inhomogeneous time-independent materials (case ii) to waves in homogeneous time-dependent
materials (case iii). For aspects of wave propagation in materials that are simultaneously space-
and time-dependent (case i), see references [8,23,24,33]. For non-reciprocal wave propagation in
metamaterials, we refer to [32,34–41].

Next to the first-order equations (2.9) and (2.10), it is also useful to consider a second-order
wave equation for the scalar field U(x, t). This equation is obtained by eliminating V(x, t) from
equations (2.9) and (2.10), which yields

(2.11)∂t(β∂tU) − βc2∇2U = s,
with c(t) being the time-dependent propagation velocity, defined as

(2.12)c = 1αβ ,

s(x, t) being the source function, defined as

(2.13)s = ∂t(βa) − ∇ ⋅ b,

and ∇2 = ∇ ⋅ ∇ = ∂x2 + ∂z2. Note that, unlike in the wave equation for an inhomogeneous time-
independent material, in which a material parameter appears between the space-derivatives, in
equation (2.11) a material parameter appears between the time-derivatives [22,42]. Finally, we
define a time-dependent quantity η(t) as

(2.14)η = βα = βc = 1αc .

For TE and acoustic (AC) waves (rows 1 and 3 in table 1), η stands for impedance, whereas it
stands for admittance for TM and horizontally polarized shear (SH) waves (rows 2 and 4 in
table 1).

Table 1. Specification of the quantities in equations (2.1)–(2.4). For TE (transverse electric) and TM (transverse magnetic)
waves, the quantities are electric and magnetic flux densities D and B, electric and magnetic field strengths E and H,
permittivity ε, permeability μ and external electric and magnetic current densities Je and Jm. For AC (acoustic) waves, they
are dilatation Θ, mechanical momentum density m, acoustic pressure p, particle velocity v, compressibility κ, mass densityρ, volume-injection rate density q and external force density f. For SH (horizontally polarised shear) waves, m, v, ρ and f
are defined the same as for acoustic waves, and the additional quantities are strain e, stress τ, shear modulus μ and external
deformation rate density ℎ.

U Vx Vz P Qx Qz α β a bx bz
1. TE Dy Bz −Bx Ey Hz −Hx ε μ −Jye −Jzm Jxm
2. TM By −Dz Dx Hy −Ez Ex μ ε −Jym Jze −Jxe
3. AC −Θ mx mz p vx vz κ ρ q fx fz
4. SH my −2eyx −2eyz vy −τyx −τyz ρ 1μ fy 2ℎyx 2ℎyz
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3. Transmission and reflection of plane waves at a time boundary
(a) Transmission and reflection coefficients
We review transmission and reflection coefficients for a monochromatic plane wave that is
incident on a time boundary [1,18,19,23]. For convenience, we define the time boundary at t = 0.
For this analysis, the medium parameters α(t) and β(t) are step functions of time, with a finite
jump at t = 0. For t < 0, we have time-independent parameters α1 and β1. Similarly, for t > 0, we
have time-independent parameters α2 and β2. For t < 0, the incident monochromatic plane wave
is described in complex notation by

(3.1)UI(x, t) = exp {i(k1 ⋅ x − ω1t)},
where subscript I stands for incident, i is the imaginary unit, ω1 is the angular frequency of
the incident wave and k1 is its wave vector, defined as k1 = (kx, 1, kz, 1). For convenience, we
consider a unit amplitude and zero phase at x = 0 and t = 0 (where 0 = (0,0)). The propagation
angle (relative to the z-axis) is equal to atan2(kx, 1, kz, 1). According to equation (2.11) for the
source-free situation (i.e. for s = 0), UI(x, t) should obey ∂t2UI = c1

2∇2UI, with c1 = 1/ α1β1. This
implies ω1

2 = c1
2|k1|2 or, choosing positive square-roots on both sides, ω1 = c1|k1|.

The boundary conditions state that U and V are continuous over the time boundary [1,18–
20,23], hence, we also need an expression for VI. From equation (2.10) (with b = 0) and (3.1) we
obtain

(3.2)VI(x, t) = η1
k1|k1|exp {i(k1 ⋅ x − ω1t)},

with η1 = 1/(α1c1). Unlike in the situation of scattering at a space boundary, where the reflec-
ted wave propagates in the same half-space as the incident wave, in the situation of a time
boundary, there is no reflected wave before the time boundary, since this would violate
causality. The reflected and transmitted waves both exist only after the time boundary. Fort > 0, the transmitted monochromatic plane wave is described by

(3.3)UT(x, t) = Tuexp {i(k2 ⋅ x − ω2t)},
(3.4)VT(x, t) = Tuη2

k2|k2|exp {i(k2 ⋅ x − ω2t)},
with Tu denoting the transmission coefficient for the wave-field quantity U. Furthermore, ω2

and k2 = (kx, 2, kz, 2) are the angular frequency and wave vector of the transmitted wave. They are
related through ω2 = c2|k2|, with c2 = 1/ α2β2. Finally, η2 = 1/(α2c2). The reflected wave for t > 0 is
described by

(3.5)UR(x, t) = Ruexp {i(k2 ⋅ x + ω2t)},
(3.6)VR(x, t) = −Ruη2

k2|k2|exp {i(k2 ⋅ x + ω2t)},
with Ru denoting the reflection coefficient for the wave-field quantity U. Note the opposite signs
in front of the terms ω2t for the transmitted and reflected waves, which implies these waves
propagate in opposite directions. Since U(x, t) and V(x, t) are continuous at t = 0, we have

(3.7)UI(x, 0) = UT(x, 0) + UR(x, 0),

(3.8)VI(x, 0) = VT(x, 0) + VR(x, 0).

These equations should hold for all x, which implies k1 = k2. From this, it follows that the
angular frequency of the transmitted and reflected waves is different from that of the incident
wave, according to ω2 = c2c1ω1 [8,18,23]. In other words, frequency conversion occurs at a time
boundary. Substituting the appropriate expressions into equations (3.7) and (3.8) yields
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(3.9)1 = Tu + Ru,
(3.10)η1 = η2(Tu − Ru).

From this, we obtain the following expressions for the transmission and reflection coefficients

(3.11)Tu =
η2 + η1

2η2
,

(3.12)Ru =
η2 − η1

2η2
.

Note that, unlike for the situation of a space boundary, these coefficients are independent of the
wave vector and hence of the propagation angle.

By multiplying the left- and right-hand sides of equation (3.9) with those of equation (3.10),
we obtain the following relation between the transmission and reflection coefficients

(3.13)η1 = η2(Tu2 − Ru2).

Finally, we define transmission and reflection coefficients Tp and Rp for the wave-field quantityP. Using equation (2.3), we obtain Tp = α1α2
Tu and Rp = α1α2

Ru, or

(3.14)Tp = 1
2
α1α2

+ c2c1
,

(3.15)Rp = 1
2
α1α2
− c2c1

.

These expressions are consistent with those given by reference [19].

(b) Conservation of net field-momentum density
For electromagnetic waves, we define the net power-flux density as j(x, t) = 1

2ℜ(E* × H) ⋅ n, withn = k/|k| being the normal vector in the direction of the wave vector k, the asterisk * denoting
complex conjugation and ℜ denoting the real part. For transverse electric waves (row 1 in table
1), this reduces to j(x, t) = 1

2ℜ(Ey*Hznx − Ey*Hxnz), and for transverse magnetic waves (row 2 in
table 1) to j(x, t) = 1

2ℜ(−Hy*Eznx + Hy*Exnz). Both cases are captured by the compact definition

(3.16)j(x, t) = 1
2ℜ(P*Q) ⋅ n.

This equation also captures the net power-flux density for acoustic and horizontally polarized
shear waves (rows 3 and 4 in table 1).

Next to the net power-flux density, we define the net field-momentum density for elec-
tromagnetic waves as M(x, t) = 1

2ℜ(D* × B) ⋅ n [30,43]. For transverse electric and transverse
magnetic waves this can be written as

(3.17)M(x, t) = 1
2ℜ(U*V) ⋅ n.

This equation also captures the net field-momentum density for acoustic and horizontally
polarized shear waves (which should not be confused with the mechanical momentum densitym mentioned in table 1).

We analyse the quantities j(x, t) and M(x, t) for monochromatic plane waves before and after
a time boundary (equations (3.1)–(3.6)). Substituting U = UI, V = VI for t < 0 and U = UT + UR,V = VT + VR for t > 0 into equation (3.17) we find, using equation (3.13), that M(x, t) is constant
for all x and t. Hence, the net field-momentum density is conserved when passing a time
boundary. Using equations (2.3),(2.4) and (2.12) it follows that j(x, t) and M(x, t) are mutually
related through j(x, t) = c2(t)M(x, t). Hence, j2 = c22c12j1, where j1 and j2 are the net power-flux
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densities before and after the time boundary. Hence, the net power-flux density is not conserved
when passing a time boundary. This is the result of energy being added to or extracted from the
wave field by the mechanism that modulates the material parameters [1,18,23].

4. Green’s function
We consider a homogeneous, time-dependent material, with arbitrary piecewise continuous
parameters α(t) and β(t) (case iii in §2). We introduce the Green’s function G(x, x0, t, t0) as the
response to an impulsive point source at x = x0 at time instant t = t0, observed at position x
and time t. Hence, it obeys wave equation (2.11), with the source term on the right-hand side
replaced by an impulsive point source, according to

(4.1)∂t(β∂tG) − βc2∇2G = δ(x − x0)δ(t − t0),
where δ(t) is the Dirac delta function. Furthermore, the Green’s function obeys the causality
condition

(4.2)G(x,x0, t, t0) = 0 for t < t0.
Assuming that the material is time-independent beyond an arbitrary large but finite time,
this causality condition implies that G(x, x0, t, t0) is outward propagating for |x| ∞. Since the
material is homogeneous, the Green’s function is shift-invariant, hence

(4.3)G(x, x0, t, t0) = G(x − x0,0, t, t0).
We discuss a numerical example of G(x, x0, t, t0) for a piecewise constant material with a single
time boundary at t = 50 μs, with propagation velocities c1 = 1500 m s−1 for t < 50 μs and c2 = 2500
m s−1 for t > 50 μs (the parameter β is constant). The transmission and reflection coefficients
at the time boundary, as defined in equations (3.11) and (3.12), are Tu = 0.8 and Ru = 0.2,
respectively. We choose the source at x0 = 0 and t0 = 0. Figure 1 shows snapshots of G(x,0, t, 0)
(convolved with a two-dimensional spatial wavelet with a central wavenumber k0/2π = 100
m−1). The first three frames show an expanding circular wave front, up to the time boundary
at t = 50 μs. In the following frames, the wave field is split into a transmitted wave front,
which expands further, and a reflected wave front, which propagates back and collapses to a
focus at x = 0 and t = 79.75 μs. At exactly t = 80 μs the focused field is zero (not shown) and
changes its sign, after which it continues as an expanding circular wave front with opposite
amplitude, as shown in the last frame. Hence, the focus at x = 0 and t = 80 μs acts as a virtual
source for a wave field in a material with propagation velocity c2 = 2500 m s−1. Figure 2(a)
shows cross-sections at x = 0 of these snapshots in the form of a z, t-diagram (i.e. for x = (0, z),
as if receivers were placed along a vertical line in the middle of these snapshots, through
the source position). Left of the green line at t0 = 0 the field is zero, in accordance with the
causality condition of equation (4.2). Right of this green line, direct waves propagate away from
the source, in two directions (up and down), until they reach the time boundary at t = 50 μs,
indicated by the dashed blue line. Right of this blue line, transmitted and reflected waves can be
seen. Tracing the transmitted waves back in time along the purple dashed rays, they appear to
originate from a virtual source at z = 0 and tV = 20 μs. The reflected waves propagate back and
focus at the position of the original source at z = 0 and tF = 80 μs. This focus acts as a virtual
source for the reflected waves beyond tF = 80 μs. Figure 2(b) shows an amplitude cross-section
of figure 2(a), scaled such that the amplitude of the direct wave arriving at the time boundary att = 50 μs equals 1. The blue curve shows that the amplitudes of the direct and transmitted waves
gradually decay with time, and jump from 1 to Tu = 0.8 across the time boundary. The red curve
shows that the reflected wave starts directly after the time boundary with an amplitude ofRu = 0.2. Its amplitude initially increases during back propagation, changes sign at the focus and
decreases after the focus.
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Whereas the Green’s function G(x, x0, t, t0) is the response to an impulsive point sourceδ(x − x0)δ(t − t0) for arbitrary x0 and t0 (equation (4.1)), the wave field U(x, t) is the response to
a source distribution s(x, t) (equation (2.11)). We obtain a simple representation for the wave
field U in terms of G, assuming they both reside in the same medium and both are outward
propagating for |x| ∞. Since both equations are linear, we obtain the representation for U(x, t)
by applying Huygens’ superposition principle, according to [44,45]

(4.4)U(x, t) =
−∞

∞
dt0 ℝ2

G(x, x0, t, t0)s(x0, t0)dx0,

where x0 and t0 are variables and where ℝ is the set of real numbers. This is a special case of the
more general representation derived in §8. Using equation (4.3), we can rewrite equation (4.4) as

(4.5)U(x, t) =
−∞

∞
dt0 ℝ2

G(x − x0,0, t, t0)s(x0, t0)dx0.

Note that the space integral represents a two-dimensional space-convolution. Since the material
is time-dependent, the time integral cannot be rewritten as a genuine time-convolution.

Figure 1. Snapshots of the Green’s function G(x,0, t, 0) (convolved with a spatial wavelet) for a piecewise constant
time-dependent material, with a time boundary at t = 50.0 μs (see also electronic supplementary material, movie
Green.mp4 in the online material).

Figure 2. (a) Cross-sections at x = 0 of the Green's function of figure 1, i.e. G(x,0, t, 0)|x = 0. (b) Scaled amplitude
cross-sections of (a), measured along the direct and transmitted waves (blue) and along the reflected wave (red).
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Figure 3 is an illustration of equation (4.5) for a source distribution s(x, t) = s0(x)δ(t), i.e. for
a distributed source s0 as a function of x at t = 0 (this time the two-dimensional spatial wavelet
has a central wavenumber k0/2π = 200 m−1). The first frame shows the response at t = 0.25 μs
to this distributed source in the same time-dependent material as in the previous example.
The next frames show the evolution of this response over time. After the time boundary att = 50 μs, the transmitted field continues expanding, whereas the reflected field propagates back
and collapses to a reproduction of the distributed source at t = 79.75 μs. After this, the focused
field changes its sign (at t = 80 μs) and expands again. Results like this have been obtained with
physical experiments by references [11,12,14].

Finally, for the special case of a time-independent medium, the analytical solution of
equation (4.1), with causality condition (4.2), reads

(4.6)G(x, x0, t, t0) = 1
2πβc2

H t − t0 − |x − x0|c
(t − t0)2 − |x − x0|2c2

,

where H(t) is the Heaviside step function. The direct waves in figure 2(a) can be seen as an
illustration of this expression for G(x,0, t, 0)|x = 0, convolved with a spatial wavelet.

5. Unified wave equation and Green’s function in wave-vector time domain
(a) Unified wave equation in wave-vector time domain
We define the following two-dimensional Fourier transformation

(5.1)Ǔ(k, t) = ℝ2
U(x, t) exp (−ik ⋅ x)dx,

with wave vector k defined as k = (kx, kz). For the inverse two-dimensional Fourier transforma-
tion we obtain

(5.2)U(x, t) = 1
4π2 ℝ2

Ǔ(k, t) exp (ik ⋅ x)dk.

Equation (5.2) expresses U(x, t) as a superposition of ‘space-harmonic’ plane waves exp (ik ⋅ x)
with complex amplitudes Ǔ(k, t). Hence, equation (5.1) can be interpreted as a decomposition of
the field U(x, t) into space-harmonic plane waves.

Applying the nabla operator ∇ to both sides of equation (5.2) yields

(5.3)∇U(x, t) = 1
4π2 ℝ2

ikǓ(k, t) exp (ik ⋅ x)dk.

Hence, the operation ∇ in the space-time domain corresponds to multiplication by ik in
the wave-vector time domain. Using this property, we obtain for the Fourier transforms of
equations (2.9) and (2.10)

(5.4)∂tǓ + 1βik ⋅ V̌ = ǎ,

(5.5)∂tV̌ + 1αikǓ = b̌,

with time-dependent material parameters α(t) and β(t). When the material contains time
boundaries, the boundary conditions state that Ǔ(k, t) and V̌(k, t) are continuous over those
time boundaries. The second-order wave equation (2.11) transforms to

(5.6)∂t(β∂tǓ) + βc2|k|2Ǔ = š,
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with |k|2 = k ⋅ k = kx2 + kz2, and the source function š(k, t) defined as

(5.7)š = ∂t(βǎ) − ik ⋅ b̌.

(b) Green’s function in wave-vector time domain
The transformed Green’s function Ǧ(k, x0, t, t0) obeys

(5.8)∂t(β∂tǦ) + βc2|k|2Ǧ = exp (−ik ⋅ x0)δ(t − t0),
with causality condition

(5.9)Ǧ(k, x0, t, t0) = 0 for t < t0.
For the special case of a time-independent medium, we have

(5.10)Ǧ(k,x0, t, t0) = exp (−ik ⋅ x0)H(t − t0)sin (|k|c(t − t0))η|k| .

In Appendix A, it is shown that the inverse Fourier transform of equation (5.10) is the space-
time domain Green’s function of equation (4.6).

6. Propagation invariants for piecewise continuous materials
(a) Conservation of net field-momentum density
Analogous to equations (3.16) and (3.17), we define the net power-flux density and the net
field-momentum density in the k, t-domain as

(6.1)ȷ̌(k, t) = 1
2ℜ(P̌*Q̌) ⋅ n

and

(6.2)M̌(k, t) = 1
2ℜ(Ǔ*V̌) ⋅ n,

Figure 3. The wave field U(x, t) in response to a distributed source in the same piecewise constant time-dependent
material as in figure 1 (see also electronic supplementary material, movie TUD.mp4 in the online material).
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respectively, with n = k/|k| (but note that ȷ̌(k, t) and M̌(k, t) are not the spatial Fourier trans-
forms of j(x, t) and M(x, t)).

Propagation invariants in a time-dependent material are wave-field-related quantities that
remain constant over time. We start by showing that for a source-free, time-dependent material,
the net field-momentum density defined in equation (6.2) is a propagation invariant. To this
end, we analyse ∂tM̌(k, t) = 1

4∂t(Ǔ*V̌ + V̌*Ǔ) ⋅ n. Applying the product rule for differentiation,
using equations (5.4) and (5.5) for the source-free situation and the definition n = k/|k|, we
obtain

(6.3)

∂tM̌(k, t) = 1
4 (∂tǓ)∗V̌ + Ǔ∗∂tV̌ + (∂tV̌)∗Ǔ + V̌∗∂tǓ ⋅ k/ |k|

= 1
4

1βik ⋅ V̌∗ V̌ − Ǔ∗ 1αikǓ + 1αikǓ∗ Ǔ − V̌∗ 1βik ⋅ V̌ ⋅ k/ |k | = 0.

This expression implies that M̌(k, t) is a propagation invariant, or in other words, the net
field-momentum density is a conserved quantity. The derivation above holds for continuously
varying material parameters. However, Ǔ and V̌ ⋅ n are continuous over a time boundary and
so is M̌(k, t). Combining these results, it follows that M̌(k, t) is a propagation invariant for a
time-dependent material with piecewise continuous parameters.

From equations (2.3),(2.4),(2.12),(6.1) and (6.2) we obtain

(6.4)ȷ̌(k, t) = c2(t)M̌(k, t),
which implies that for a time-dependent medium with piecewise continuous parameters the
net power-flux density is not a propagation invariant, similar as noted in §3(b) for j(x, t) over
a single time boundary. Reference [22] shows that amplitude amplification due to temporal
variations can be used to compensate for energy loss due to material dissipation.

(b) General propagation invariants
Next, we derive more general propagation invariants. We consider two mutually independent
states (i.e. two solutions of equations (5.4) and (5.5)), which we distinguish with subscripts A
and B. We analyse the quantities ∂t(ǓAV̌B − V̌AǓB) ⋅ (ik) and ∂t(ǓA* V̌B + V̌A* ǓB) ⋅ (ik). The latter
can be seen as a generalization of 4∂tM̌(k, t) = ∂t(Ǔ*V̌ + V̌*Ǔ) ⋅ n, with subscripts A and B added
and n = k/|k| replaced by ik (the latter replacement facilitates the inverse Fourier transforma-
tions in later sections). Applying the product rule for differentiation, using equations (5.4) and
(5.5) for states A and B, yields

(6.5)

∂t(ǓAV̌B − V̌AǓB) ⋅ (ik) = |k |2 (αB−1 − αA−1)ǓAǓB + (βB−1 − βA−1)V̌d, AV̌d, B
+ǎAV̌d, B − b̌d, AǓB − V̌d, AǎB + ǓAb̌d, B,

and

(6.6)

∂t(ǓA∗ V̌B + V̌A∗ ǓB) ⋅ (ik) = |k |2 (αB−1 − αA−1)ǓA∗ ǓB + (βB−1 − βA−1)V̌d, A∗ V̌d, B
+ǎA∗ V̌d, B − b̌d, A∗ ǓB − V̌d, A∗ ǎB + ǓA∗ b̌d, B,

respectively, with

(6.7)V̌d = ik ⋅ V̌,

(6.8)b̌d = ik ⋅ b̌,

for states A and B. The subscript d in V̌d and b̌d refers to ‘divergence’ (since ik ⋅ V̌ and ik ⋅ b̌
are the Fourier transforms of ∇ ⋅ V and ∇ ⋅ b). Following similar arguments as below equations
(6.3), equations (6.5) and (6.6) hold for a time-dependent material with piecewise continuous
parameters.
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Note that in equations (6.5) and (6.6) not only are the wave fields labelled with subscripts A
and B, but also the source terms and the material parameters (which may be different in the two
states). In the next section, we continue with the general expressions of equations (6.5) and (6.6).
Here, we consider the special case that sources are absent and the material parameters are the
same in both states, which implies that the right-hand sides of equations (6.5) and (6.6) vanish.
Hence, for this situation, it follows that (ǓAV̌B − V̌AǓB) ⋅ (ik) and (ǓA* V̌B + V̌A* ǓB) ⋅ (ik) are
propagation invariants for a homogeneous time-dependent material. They are the counterparts
of propagation invariants for an inhomogeneous time-independent material [46–50], which are
useful for the analysis of symmetry properties of transmission and reflection responses and for
the design of efficient numerical modelling schemes.

7. Reciprocity theorems
(a) General reciprocity theorems
Reciprocity theorems interrelate wave fields in two different states [51–54]. Here, we use
equations (6.5) and (6.6) to derive reciprocity theorems for a homogeneous time-dependent
material with piecewise continuous parameters α(t) and β(t). Integrating equations (6.5) and
(6.6) with respect to time, taking into account that Ǔ and V̌d = ik ⋅ V̌ are continuous at time
instants where α(t) and β(t) are discontinuous, we obtain

(7.1)

(ǓAV̌d, B − V̌d, AǓB) tbte = tb
te |k |2 (αB−1 − αA−1)ǓAǓB + (βB−1 − βA−1)V̌d, AV̌d, B

+ǎAV̌d, B − b̌d, AǓB − V̌d, AǎB + ǓAb̌d, B dt
and

(7.2)

(ǓA∗ V̌d, B − V̌d, A∗ ǓB) tbte = tb
te |k |2 (αB−1 − αA−1)ǓA∗ ǓB + (βB−1 − βA−1)V̌d, A∗ V̌d, B

+ǎA∗ V̌d, B − b̌d, A∗ ǓB − V̌d, A∗ ǎB + ǓA∗ b̌d, B dt,
respectively, with subscripts b and e standing for ‘begin’ and ‘end’. Products like ǓAǓB
in the k, t-domain correspond to spatial convolutions in the x, t-domain. Therefore, we call
equation (7.1) the reciprocity theorem of the space-convolution type. It is the counterpart of
the reciprocity theorem of the time-convolution type for an inhomogeneous time-independent
medium [27,55]. On the other hand, products like ǓA* ǓB in the k, t-domain correspond to spatial
correlations in the x, t-domain. Therefore, we call equation (7.2) the reciprocity theorem of the
space-correlation type. It is the counterpart of the reciprocity theorem of the time-correlation
type for an inhomogeneous time-independent medium [27,56].

We use equation (7.1) in §8 to derive a general wave field representation and in §9 we use
equation (7.2) to derive an expression for Green’s function retrieval, both for time-dependent
materials. Here, we discuss two special cases.

(b) Source-receiver reciprocity
First, we derive from equation (7.1) a reciprocity relation for the Green’s function Ǧ(k, xA, t, tA).
Table 2 lists the quantities for states A and B that we use in this derivation. The material
parameters are chosen the same in both states. For the wave field ǓA, we choose the acausal
Green’s function Ǧa(k, xA, t, tA). It obeys the same wave equation as the causal Green’s function
(equation (5.8)), but with the condition Ǧa(k, xA, t, tA) = 0 for t > tA. For the wave field ǓB, we
choose the causal Green’s function Ǧ(k, xB, t, tB), with Ǧ(k, xB, t, tB) = 0 for t < tB. The expressions
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in table 2 for the wave fields V̌d, A and V̌d, B follow from equations (5.4) and (6.7) for statesA and B (using ǎA = ǎB = 0). The expressions for the source terms b̌d, A and b̌d, B follow from
comparing the source term for a Green’s function (equation (5.8)) with that for a general wave
field (equations (5.7) and (6.8), using ǎA = ǎB = 0). Note that the source term for the acausal
Green’s function in state A actually represents a sink.

We substitute the quantities of table 2 into the reciprocity theorem of the space-convolution
type, formulated by equation (7.1). Let us assume that the time instants tA and tB lie both
between tb and te. Then the acausal Green’s function is zero at te and the causal Green’s function
is zero at tb. With this, the left-hand side of (7.1) vanishes. From the remaining terms on the
right-hand side of equation (7.1) we obtain

(7.3)exp (ik ⋅ xA)Ǧa(k,xA, tB, tA) = exp (ik ⋅ xB)Ǧ(k,xB, tA, tB).
This is the sought reciprocity relation for the Green’s function in the k, t-domain. We use the
inverse Fourier transformation defined in equation (5.2) to transform this expression to thex, t-domain. This yields

(7.4)Ga(x + xA,xA, tB, tA) = G(x + xB,xB, tA, tB),
or, since in a homogeneous medium the Green’s function is shift invariant,

(7.5)Ga(x,0, tB, tA) = G(x,0, tA, tB).
This is the counterpart of the well-known source-receiver reciprocity relation
G(xB, xA, t, 0) = G(xA,xB, t, 0) for an inhomogeneous time-independent medium, which states that
the Green’s function between a source at xB and a receiver at xA is identical to the Green’s
function between a source at xA and a receiver at xB [27,44]. Equation (7.5) states that for a
homogeneous time-dependent medium the causal Green’s function between a source at tB and
a receiver at tA is identical to the acausal Green’s function between a sink at tA and a receiver attB. In the derivation, we assumed that tA and tB lie both between tb and te. If we take tb −∞
and te ∞, then equations (7.3)–(7.5) hold for arbitrary tA and tB. Note that for tA < tB these
expressions reduce to the trivial relation 0 = 0.

(c) Field-momentum density balance
The next special case we consider is the field-momentum density balance, which we derive
from equation (7.2). We take identical states A and B and drop the subscripts. We thus obtain
from equation (7.2)

(7.6)(Ǔ*V̌d − V̌d*Ǔ) tb
te

= tb
te ǎ*V̌d − b̌d*Ǔ − V̌d*ǎ + Ǔ*b̌d dt,

or, using equation (6.2) and (6.7) and the definition n = k/|k|,
(7.7)M̌(k, t) tbte = 1

2ℜ tb
te ǎ*V̌ + b̌*Ǔ ⋅ ndt.

This is the net field-momentum density balance for a homogeneous time-dependent material
for the situation that there are sources between tb and te. It is the counterpart of the net
powerflux density balance for an inhomogeneous time-independent medium [27,55].
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8. Wave field representations
(a) General wave field representation
A wave field representation is obtained by replacing one of the states in a reciprocity theorem
by a Green’s state [57–60]. We derive a general wave field representation for a homogeneous
time-dependent material with piecewise continuous parameters α(t) and β(t). To this end,
consider the quantities listed in table 3. Note that state A is the same as that in table 2, except
that xA and tA are for convenience replaced by 0 and t′, respectively. State B is the actual field in
the actual medium, so the subscripts B are dropped.

Substitution of the quantities in table 3 into the reciprocity theorem of the space-convolution
type, formulated by equation (7.1), using reciprocity relation (7.3) for the Green’s function withxA = xB = 0, yields

(8.1)

χ(t′)Ǔ(k, t′) = Ǧ(k,0, t′, t)V̌d(k, t) + βA(t){∂tǦ(k,0, t′, t)}Ǔ(k, t) t = tbt = te
− tb

te |k |2 Ǧ(k,0, t′, t)Δα−1(t)Ǔ(k, t) − βA(t){∂tǦ(k,0, t′, t)}Δβ−1(t)V̌d(k, t) dt
− tb

te
{∂tǦ(k,0, t′, t)}βA(t)ǎ(k, t) + Ǧ(k,0, t′, t)b̌d(k, t) dt,

with the characteristic function χ(t′) defined as

(8.2)
χ(t′) =

1 for tb < t′ < te,
1
2 for t′ = tb or t′ = te,
0 for t′ < tb or t′ > te,

and with the material contrast parameters Δα−1(t) and Δβ−1(t) defined as

(8.3)Δα−1(t) = α−1(t) − αA−1(t),
(8.4)Δβ−1(t) = β−1(t) − βA−1(t) .

Equation (8.1) is the representation of the space-convolution type for a homogeneous time-
dependent medium in the k, t-domain. It is the counterpart of the representation of the
time-convolution type for an inhomogeneous time-independent medium [57–60]. The left-hand
side represents the wave field in the actual medium at time instant t′. The first term on the
right-hand side describes the contributions from the fields at tb and te (when t′ is between tb
and te then only the field at tb contributes). This term is the counterpart of the spatial Kirchh-
off–Helmholtz integral [44,61–64], which is an integral along an enclosing boundary (since time
is one-dimensional, here the ‘enclosing boundary’ only consists of the time instants tb and

Table 2. Quantities for deriving the reciprocity relation of equation (7.3).

state A state B
parameters αA = αA(t) αB = αA(t)βA = βA(t) βB = βA(t)
wave fields ǓA = Ǧa(k, xA, t, tA) ǓB = Ǧ(k, xB, t, tB)V̌ d, A = −βA(t)∂tǦa(k, xA, t, tA) V̌ d, B = −βA(t)∂tǦ(k, xB, t, tB)

sources ǎA = 0 ǎB = 0b̌d, A = −exp (−ik ⋅ xA)δ(t − tA) b̌d, B = −exp (−ik ⋅ xB)δ(t − tB)
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te). If there were no contrasts of material parameters and no sources between tb and te, then
this first term would give the complete solution (similar as to how the Kirchhoff–Helmholtz
integral would give the complete solution if there were no contrasts and no sources inside the
enclosing boundary). The second term on the right-hand side accounts for contrasts between
the material parameters of the actual medium and those of the medium in which the Green’s
function is defined. Hence, this integral describes wave scattering at parameter contrasts in
time-dependent materials. The third term on the right-hand side accounts for the contribution
of sources between tb and te.

We transform equation (8.1) to the x, t-domain, using the inverse Fourier transformation
defined in equation (5.2). Using equation (6.7) and (6.8) and the shift-invariance of the Green’s
functions, we obtain

(8.5)

χ(t′)U(x′, t′) = ℝ2
G(x′, x, t′, t)∇ ⋅ V(x, t) + βA(t){∂tG(x′, x, t′, t)}U(x, t) dx t = tb

t = te

+ tb
te

ℝ2
G(x′, x, t′, t)Δα−1(t)∇2U(x, t) + βA(t){∂tG(x′,x, t′, t)}Δβ−1(t)∇ ⋅ V(x, t) dxdt

− tb
te

ℝ2
{∂tG(x′, x, t′, t)}βA(t)a(x, t) + G(x′,x, t′, t)∇ ⋅ b(x, t) dxdt .

Equation (8.5) is the representation of the space-convolution type for a homogeneous time-
dependent medium in the x, t-domain. Note that equation (4.4), with the source function s
defined in equation (2.13), is obtained as a special case of this representation if we choose the
same material parameters in both states, replace tb and te by −∞ and ∞, respectively, and apply
integration by parts to replace −∫(∂tG)βadt by ∫G∂t(βa)dt. In its general form, equation (8.5)
provides a basis for the analysis of wave scattering problems in homogeneous time-dependent
media. We discuss an example in the next subsection.

(b) Wave field representation for the case of a single time boundary
We use the representation of equation (8.5) to analyse the wave field after a time boundary
between two time-independent slabs, as illustrated in the numerical example in §4. To this end,
we take tb equal to the time boundary (i.e. tb = 50 μs) and te ∞. Hence, the boundary t = te
in the first term on the right-hand side of equation (8.5) gives no contribution. The wave fieldU(x, t) is the response to a spatial source distribution s0(x) at t = 0 in a medium with velocityc1 = 1500 m s−1 for t < tb and velocity c2 = 2500 m s−1 for t > tb. The parameter β is constant in the
numerical example, but here we assume it has the values β1 and β2 before and after the time
boundary, respectively (and consequently α1 = 1/β1c1

2 and α2 = 1/β2c2
2 before and after the time

boundary). We define the Green’s function in equation (8.5) in a time-independent medium
with velocity cA = c2 and parameter βA = β2 (and αA = 1/β2c2

2) and call this G2(x′, x, t′, t). Note that

Table 3. Quantities for deriving the representation of equation (8.1).

state A state B
parameters αA = αA(t) αB = α(t)βA = βA(t) βB = β(t)
wave fields ǓA = Ǧa(k,0, t, t′) ǓB = Ǔ(k, t)V̌ d, A = −βA(t)∂tǦa(k,0, t, t′) V̌ d, B = V̌ d(k, t)
sources ǎA = 0 ǎB = ǎ(k, t)b̌d, A = −δ(t − t′) b̌d, B = b̌d(k, t)
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for all t > tb we thus have Δα−1(t) = Δβ−1(t) = 0, hence, the second term on the right-hand side of
equation (8.5) vanishes. Since the source distribution for U(x, t) exists only at t = 0 < tb, the third
term on the right-hand side of equation (8.5) also vanishes. Hence, for t′ > tb we are left with

(8.6)U(x′, t′) = − ℝ2
G2(x′,x, t′, t)∇ ⋅ V(x, t) + β2{∂tG2(x′, x, t′, t)}U(x, t) t = tbdx .

In the k, t-domain this becomes

(8.7)Ǔ(k, t′) = − Ǧ2(k,0, t′, t)V̌d(k, t) + β2{∂tǦ2(k,0, t′, t)}Ǔ(k, t) t = tb, for t′ > tb.
For t = tb and t′ > tb we have, according to equation (5.10),

(8.8)Ǧ2(k,0, t′, tb) = sin (|k|c2(t′ − tb))η2|k| ,

(8.9)β2∂tǦ2(k,0, t′, t)|t = tb = −cos (|k|c2(t′ − tb)),
with η2 = β2c2. From equations (4.5) and (5.1), we further obtain for t = tb

(8.10)Ǔ(k, tb) = sin (|k|c1tb)η1|k| š0(k),

with η1 = β1c1 and, using equations (6.7) and (5.4) with ǎ(k, tb) = 0,

(8.11)V̌d(k, tb) = −cos (|k|c1tb)š0(k).

Substituting these expressions into equation (8.7) yields

(8.12)Ǔ(k, t′) =
sin γ1cos γ2η1|k| +

cos γ1sin γ2η2|k| š0(k), for t′ > tb,
with

(8.13)γ1 = |k|c1tb,
(8.14)γ2 = |k|c2(t′ − tb).

Equation (8.12) can be rewritten as

(8.15)Ǔ(k, t′) = Tusin (γ1 + γ2)η1|k| + Rusin (γ1 − γ2)η1|k| š0(k), for t′ > tb,
with Tu and Ru defined in equations (3.11) and (3.12), respectively (this is verified by substi-
tuting sin (γ1 ± γ2) = sin γ1cos γ2 ± cos γ1sin γ2 into equation 8.15, and using equations (3.9) and
(3.10)). Let us write

(8.16)γ1 + γ2 = |k|c2(t′ − tV), with tV = 1 − c1c2
tb,

(8.17)γ1 − γ2 = |k|c2(tF − t′), with tF = 1 + c1c2
tb.

First, consider equation (8.16). Since t′ > tb and tV < tb, we have t′ > tV and, consequently,γ1 + γ2 > 0. Hence, for the first term between the large brackets in equation (8.15) we find, using
equation (5.10),

(8.18)Tusin (γ1 + γ2)η1|k| =
η2η1
Tusin (|k|c2(t′ − tV))η2|k| =

η2η1
TuǦ2(k,0, t′, tV), for t′ > tb.

Next, consider equation (8.17). Since t′ > tb and tF > tb, the term γ1 − γ2 can take positive as well
as negative values. For the second term between the large brackets in equation (8.15) we find,
using equation (5.10) and equation (7.3),
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(8.19)

Rusin(γ1 − γ2)η1 |k| =
η2η1
Ru H(tF − t′) + H(t′ − tF) sin( |k |c2(tF − t′))η2 |k|

=
η2η1
Ru Ǧ2

a(k,0, t′, tF) − Ǧ2(k,0, t′, tF) , for t′ > tb .

Substituting equation (8.18) and (8.19) into equation (8.15) and applying an inverse spatial
Fourier transform yields

(8.20)U(x′, t′) =
η2η1 ℝ2

TuG2(x′,x, t′, tV) + Ru G2
a(x′, x, t′, tF) − G2(x′,x, t′, tF) s0(x)dx,

for t′ > tb. The first Green’s function on the right-hand side describes the transmitted, outward
propagating wave in figures 1 and 2 for t′ > tb = 50 μs in a material with propagation velocity c2

and parameter β2. It originates from a virtual source at time instant tV, defined in equation
(8.16), hence, at tV = 20 μs. The amplitude of this transmitted wave is proportional to the
transmission coefficient Tu = 0.8 and a factor η2/η1 to account for the fact that the actual source
is situated in a material with propagation velocity c1 and parameter β1. The second Green’s
function is acausal and describes the reflected, inward propagating wave in figures 1 and 2
for tb < t′ < tF. It focuses at time instant tF, defined in equation (8.17), hence, at tF = 80 μs. The
amplitude of this reflected wave is proportional to the reflection coefficient Ru = 0.2 and the
factor η2/η1. The third Green’s function is causal and describes the continuation of the reflected
wave in figures 1 and 2 for t′ > tF = 80 μs, i.e. after focusing. It originates from a virtual source
at the focal time tF = 80 μs. The reflected wave undergoes a sign change at the focal time, hence,
its amplitude after focusing is proportional to −Ru = −0.2 and the factor η2/η1. The integration
over x in equation (8.20) describes the spatial convolution of the superposition of these three
Green’s functions with the spatial source distribution s0(x) at t = 0. This explains figure 3 fort′ > tb = 50 μs, and in particular the recovery of the source distribution s0(x) around the focal
time tF = 80 μs, where G2

a(x′, x, t′, tF) focuses.

9. Green’s function retrieval
For inhomogeneous time-independent media, it has been shown that, under specific circum-
stances, the time-correlation of passive wave measurements at two receivers converges to the
response at one of these receivers as if there were an impulsive source at the position of
the other [65–72]. In other words, the Green’s function between two receivers is retrieved
by time-correlating passive responses at these receivers. Using a reciprocity theorem of the
time-correlation type [73], it has been shown that this holds for arbitrary inhomogeneous
time-independent media. Here, we use the reciprocity theorem of the space-correlation type
of equation (7.2) to derive an expression for Green’s function retrieval in a homogeneous
time-dependent material with piecewise continuous parameters α(t) and β(t). To this end, we
start with acausal Green’s functions in both states, with unit sinks at tA and tB, both between tb
and te (here tb and te are again arbitrary and not related to a time boundary, such as tb in §8b).
Substituting the quantities of table 4 into the reciprocity theorem of the space-correlation type
(equation (7.2)), using the reciprocity relation of equation (7.3) for the Green’s functions withxA = xB = 0, yields

(9.1)

Ǧ(k,0, tB, tA) − {Ǧa(k,0, tB, tA)}∗ =β(tb) Ǧ∗(k,0, tA, t)∂tǦ(k,0, tB, t) − {∂tǦ∗(k,0, tA, t)}Ǧ(k,0, tB, t) t = tb .

Applying the inverse Fourier transform of equation (5.2) to both sides of this equation yields
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(9.2)

G(x′,0, tB, tA) − Ga( − x′,0, tB, tA) =β(tb) ℝ2
G(x,0, tA, t)∂tG(x′ + x,0, tB, t) − {∂tG(x,0, tA, t)}G(x′ + x,0, tB, t) t = tbdx .

The right-hand side consists of space-correlations of responses to an impulsive source at tb
and its derivative, observed by receivers at tA and tB. The left-hand side consists of a Green’s
function and its acausal version for a source or sink at tA, observed at tB. When tB is larger
than tA the causal Green’s function G(x′,0, tB, tA) is retrieved (since the acausal Green’s function
vanishes for this situation). On the other hand, the acausal Green’s function −Ga(−x′,0, tB, tA) is
retrieved when tB is smaller than tA. Note that equation (9.2) holds for any time instant tb of
the original source, as long as tA and tB are both larger than tb. Contrary to Green’s function
retrieval by time-correlation in space-dependent media, which requires sources on a boundary
enclosing the receivers, for Green’s function retrieval by space-correlation in time-dependent
media it suffices to have a single source at tb, prior to the receivers at tA and tB.

We confirm equation (9.1) for the situation of a time-independent medium. Assuming tA > tb
and tB > tb, the Green’s functions on the right-hand side for a time-independent medium read,
according to equation (5.10),

(9.3)Ǧ(k,0, tA, tb) = sin( |k |cΔtA)η |k| ,

(9.4)∂tǦ(k,0, tB, t)|t = tb = − 1βcos( |k |cΔtB)
and similar expressions for the other Green’s functions, with

(9.5)ΔtA = tA − tb,
(9.6)ΔtB = tB − tb .

Hence, for the right-hand side of equation (9.1) we obtain

(9.7)− sin( |k |cΔtA)cos( |k |cΔtB) − cos( |k |cΔtA)sin( |k |cΔtB)η |k| = sin |k |c(tB − tA)η |k| .

For tB > tA, this is equal to Ǧ(k,0, tB, tA), which is the left-hand side of equation (9.1), since
Ǧa(k,0, tB, tA) = 0 for this situation. On the other hand, for tB < tA, it is equal to −Ǧa(k,0, tB, tA).
This is again the left-hand side of equation (9.1), since Ǧa(k,0, tB, tA) is real-valued and
Ǧ(k,0, tB, tA) = 0 for this situation.

Table 4. Quantities for deriving the expression of equation (9.1) for Green’s function retrieval.

state A state B
parameters αA = α(t) αB = α(t)βA = β(t) βB = β(t)
wave fields ǓA = Ǧa(k,0, t, tA) ǓB = Ǧa(k,0, t, tB)V̌ d, A = −β(t)∂tǦa(k,0, t, tA) V̌ d, B = −β(t)∂tǦa(k,0, t, tB)

sources ǎA = 0 ǎB = 0b̌d, A = −δ(t − tA) b̌d, B = −δ(t − tB)
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10. Matrix-vector wave equation
Many authors use a matrix-vector formalism to conveniently analyse wave propagation and
scattering in time-dependent media [3,21,22,25,74]. Here, we recast equations (2.9) and (2.10)
into a matrix-vector wave equation in the x, t-domain. Unlike for the one-dimensional situation,
where equations similar to (2.9) and (2.10) govern the scalar wave fields U and V  [25], here
these equations govern U and V, where V is a vectorial quantity. Analogous to equation (6.7),
we define a scalar wave field Vd as

(10.1)Vd = ∇ ⋅ V,

where subscript d refers to ‘divergence’. Using this in equation (2.9) and applying the diver-
gence operator to both sides of equation (2.10) yields

(10.2)∂tU + 1βVd = a,

(10.3)∂tVd + 1α∇2U = bd,

where, analogous to equation (6.8),

(10.4)bd = ∇ ⋅ b.

Equations (10.2) and (10.3) for the scalar fields U and Vd can be combined into the following
matrix-vector wave equation

(10.5)∂tqd = Adqd + dd,

with wave field vector qd(x, t), matrix Ad(x, t) and source vector dd(x, t) defined as

(10.6)

qd =
UVd

, Ad =
0 − 1β

− 1α∇2 0
, dd =

abd
.

The subscript d in qd, Ad and dd is used to distinguish these quantities from those in the
one-dimensional situation where, for example, wave field vector q contains the scalar wave
fields U and V  [25]. Equation (10.5) holds for a homogeneous time-dependent medium with
continuous parameters α(t) and β(t). When the material contains time boundaries, the boundary
condition states that qd(x, t) is continuous over those time boundaries. Equation (10.5) is the
counterpart of a matrix-vector wave equation for an inhomogeneous time-independent material
[75–80].

Applying the two-dimensional Fourier transformation defined in equation (5.1) to equation
(10.5), we obtain the following matrix-vector wave equation in the k, t-domain

(10.7)∂tq̌d = Ǎdq̌d + ďd,

with wave field vector q̌d(k, t), matrix Ǎd(k, t) and source vector ďd(k, t) defined as

(10.8)

q̌d =
ǓV̌d

, Ǎd =
0 − 1β

1α |k|2 0
, ďd =

ǎb̌d
,

with V̌d and b̌d defined in equations (6.7) and (6.8), respectively. Note that Ǎd obeys the
symmetry property

(10.9)Ǎd
tN = −NǍd,

where superscript t denotes transposition and where
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(10.10)
N =

0 1
−1 0

.

11. Propagator matrix
(a) Propagator matrix in space-time domain
We define the propagator matrix Wd(x, t, t0) as the solution of equation (10.5) without the source
term, hence

(11.1)∂tWd = AdWd,

with initial condition

(11.2)Wd(x, t0, t0) = Iδ(x),

where I is the identity matrix [21,22,74]. We obtain a simple representation for qd(x, t) in terms
of Wd(x, t, t0), assuming they both reside in the same medium and assuming there are no
sources for qd(x, t) between t0 and t. Whereas qd(x, t) can have any space-dependency at t = t0,Wd(x, t, t0) collapses to Iδ(x) at t = t0. Hence, we obtain the following representation for qd(x, t)
by applying Huygens’ superposition principle, according to

(11.3)qd(x, t) = ℝ2
Wd(x − x0, t, t0)qd(x0, t0)dx0,

where x0 is a variable. According to this equation, Wd(x, t, t0) propagates the wave field vectorqd from t0 to t (where t can be larger or smaller than t0). The subscript d in Wd denotes that this
propagator matrix acts on a wave field vector containing U and Vd, which is different from the
one-dimensional version of the propagator matrix, which acts on a wave field vector containingU and V  [25]. The propagator matrix Wd(x, t, t0) for a homogeneous time-dependent material
is the counterpart of a propagator matrix for an inhomogeneous time-independent material
[81–86].

We partition Wd(x, t, t0) as follows:

(11.4)
Wd(x, t, t0) =

Wd
U ,U Wd

U ,V
Wd

V ,U Wd
V ,V (x, t, t0).

The first superscript refers to the wave field quantities in qd(x, t) in equation (11.3) and the
second superscript to those in qd(x0, t0) (with superscript V  referring to wave field quantity Vd).

By applying equation (11.3) recursively, we find the following recursive expression for Wd

(11.5)Wd(x, tN, t0) = Wd(x, tN, tN − 1) ∗x⋯ ∗xWd(x, tn, tn − 1) ∗x⋯ ∗xWd(x, t1, t0),
where ∗x denotes a two-dimensional spatial convolution, similar to that in equation (11.3),
and where t1⋯tn⋯tN − 1 are time instants where the medium parameters α(t) and β(t) may be
discontinuous. Between these time instants, the parameters α(t) and β(t) can, in general, be
continuous functions of t. In Appendix B, we give an explicit expression for Wd(x, tn, tn − 1),
assuming a time-independent slab between tn − 1 and tn.

As an illustration, we consider a piecewise constant material consisting of five time-inde-
pendent slabs, with propagation velocities of 2000, 2000, 1200, 2500 and 1400 m s−1, respectively.
The parameter β is taken constant. The duration of each time slab is 25 μs. We choose t0 between
the first and second time slab, i.e. t0 = 25 μs. Figure 4(a) shows a z, t-diagram of the propagator
element Wd

U ,V(x, t, t0) (convolved with a spatial wavelet with a central wavenumber k0/2π = 100
m−1) for x = 0 and t0 = 25 μs. The green line at t0 = 25 μs indicates the initial condition of equation
(11.2), which for the considered off-diagonal element implies Wd

U ,V(x, t0, t0) = 0. In the first time
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slab right of this green line, the propagator consists (for x = 0) of upward and downward
propagating direct waves. At each time boundary (indicated by the dashed blue lines), these
waves split into upward and downward propagating transmitted and reflected waves. This is a
manifestation of the recursive character of the propagator, as formulated by equation (11.5).

(b) Propagator matrix in wave-vector time domain
Applying the two-dimensional Fourier transformation defined in equation (5.1) to equations
(11.1)–(11.3) we obtain

(11.6)∂tW̌d = ǍdW̌d,

with initial condition

(11.7)W̌d(k, t0, t0) = I
and representation

(11.8)q̌d(k, t) = W̌d(k, t, t0)q̌d(k, t0).
Analogous to equation (11.4), we partition W̌d(k, t, t0) as

(11.9)
W̌d(k, t, t0) =

W̌d
U ,U W̌d

U ,V
W̌d

V ,U W̌d
V ,V (k, t, t0).

By applying equation (11.8) recursively, we find the following recursive expression for W̌d

(11.10)W̌d(k, tN, t0) = W̌d(k, tN, tN − 1)⋯W̌d(k, tn, tn − 1)⋯W̌d(k, t1, t0),
where t1⋯tn⋯tN − 1 are time instants where the medium parameters α(t) and β(t) may be
discontinuous. Between these time instants, the parameters α(t) and β(t) can, in general, be
continuous functions of t. In Appendix B, we give an explicit expression for W̌d(k, tn, tn − 1),
assuming a time-independent slab between tn − 1 and tn.
(c) Symmetry properties of the propagator matrix
To derive symmetry properties of the propagator matrix, we first show that the quantityW̌d

t (k, t, tA)NW̌d(k, t, tB) is a propagation invariant, i.e. that it is independent of t. Taking the
time derivative, applying the product rule for differentiation, using equation (11.6) and (10.9),
we obtain

(11.11)

∂t{W̌d
t (k, t, tA)NW̌d(k, t, tB)}

= {∂tW̌d(k, t, tA)}tNW̌d(k, t, tB) + W̌d
t (k, t, tA)N{∂tW̌d(k, t, tB)}

= W̌d
t (k, t, tA){Ǎd

tN + NǍd}W̌d(k, t, tB) = O,

where O is the null-matrix. This expression confirms that W̌d
t (k, t, tA)NW̌d(k, t, tB) is independ-

ent of t. This derivation holds for continuously varying medium parameters. However, since
the components of the propagator matrix are continuous over a time-boundary, it follows thatW̌d

t (k, t, tA)NW̌d(k, t, tB) is a propagation invariant for a time-dependent medium with piecewise
continuous parameters. Taking t = tA and subsequently t = tB, we obtain

(11.12)W̌d
t (k, tA, tA)NW̌d(k, tA, tB) = W̌d

t (k, tB, tA)NW̌d(k, tB, tB),
or, using equation (11.7),
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(11.13)NW̌d(k, tA, tB) = W̌d
t (k, tB, tA)N,

or, applying the inverse two-dimensional Fourier transformation defined in equation (5.2),

(11.14)NWd(x, tA, tB) = Wd
t (x, tB, tA)N.

Equations (11.13) and (11.14) formulate symmetry properties of the propagator matrix in thek, t- and x, t-domain, respectively. Substituting equations (10.10) and (11.4) into equation (11.14)
we find the following symmetry properties for the components of the propagator matrix

(11.15)Wd
U ,V(x, tA, tB) = −Wd

U ,V(x, tB, tA),

(11.16)Wd
V ,U(x, tA, tB) = −Wd

V ,U(x, tB, tA),

(11.17)Wd
V ,V(x, tA, tB) = Wd

U ,U(x, tB, tA).

Next we show that three of the four components of the propagator matrix can be expressed
in terms of the upper-right component Wd

U ,V(x, t, t0). From equations (10.6),(11.1) and (11.4) we
find

(11.18)Wd
V ,V(x, t, t0) = −β(t)∂tWd

U ,V(x, t, t0),
(11.19)Wd

V ,U(x, t, t0) = −β(t)∂tWd
U ,U(x, t, t0).

From equations (11.17),(11.18) and (11.15) we find

(11.20)Wd
U ,U(x, t, t0) = β(t0)∂t0Wd

U ,V(x, t, t0).
Substitution into equation (11.19) yields

(11.21)Wd
V ,U(x, t, t0) = −β(t)β(t0)∂t∂t0Wd

U ,V(x, t, t0).
Hence, equations (11.18), (11.20) and (11.21) are the sought relations.

(d) Relations between the Green’s function and the propagator matrix
We show that the Green’s function G(x,0, t, t0), obeying wave equation (4.1) for x0 = 0 with the
causality condition of equation (4.2), can be expressed in terms of the upper-right component of
the propagator matrix, according to

Figure 4. Cross-sections at x = 0 of (a) the propagator element Wd
U ,V(x, t, t0) and (b) the Green's function G(x,0, t, t0)

(both convolved with a spatial wavelet) for a piecewise constant time-dependent material (for (a), see also electronic
supplementary material, movie Wuv.mp4 in the online material).
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(11.22)G(x,0, t, t0) = −H(t − t0)Wd
U ,V(x, t, t0).

Note that this relation is different from that for the one-dimensional situation (which includes a
spatial derivative on the left-hand side [25]) because of the deviating definition of the wave field
vector qd and consequently of the propagator matrix Wd, see §10 and §11(a).

Due to the Heaviside function in equation (11.22), the causality condition is fulfilled. In the
following, we show that H(t − t0)Wd

U ,V(x, t, t0) obeys the same wave equation as −G(x,0, t, t0). For
the first time derivative we have

(11.23)∂t{H(t − t0)Wd
U ,V(x, t, t0)} = δ(t − t0)Wd

U ,V(x, t, t0) + H(t − t0)∂tWd
U ,V(x, t, t0).

From equations (11.2) and (11.4) we have Wd
U ,V(x, t0, t0) = 0. Using this and equation (11.18) in

equation (11.23), we obtain

(11.24)∂t{H(t − t0)Wd
U ,V(x, t, t0)} = − 1β(t)H(t − t0)Wd

V ,V(x, t, t0).
From equation (10.6),(11.1),(11.2) and (11.4) we have ∂tWd

V ,V(x, t, t0) = − 1α(t) ∇2Wd
U ,V(x, t, t0) andWd

V ,V(x, t0, t0) = δ(x). Using this, we find for the second time derivative

(11.25)

∂t β(t)∂t{H(t − t0)Wd
U ,V(x, t, t0)} = − ∂t{H(t − t0)Wd

V ,V(x, t, t0)}
= − δ(t − t0)δ(x) + 1α(t)∇2{H(t − t0)Wd

U ,V(x, t, t0)} .

Comparing this with equation (4.1) for x0 = 0, with c(t) defined in equation (2.12), we con-
clude that H(t − t0)Wd

U ,V(x, t, t0) indeed obeys the same wave equation as −G(x,0, t, t0). This
completes the proof of equation (11.22). Figure 4(b) shows a z, t-diagram of the Green’s function
G(x,0, t, t0) (convolved with a spatial wavelet) for x = 0 and t0 = 25 μs. It has been obtained fromWd

U ,V(x, t, t0) in figure 4(a) through equation (11.22). The green line at t0 = 25 μs indicates the
causality condition of equation (4.2).

In a similar way to above we can show that the acausal Green’s function Ga(x,0, t, t0), with
condition Ga(x,0, t, t0) = 0 for t > t0, can be expressed as

(11.26)Ga(x,0, t, t0) = H(t0 − t)Wd
U ,V(x, t, t0).

Vice versa, by combining equations (11.22) and (11.26), we can express Wd
U ,V(x, t, t0) in terms of

the Green’s function and its acausal version, according to

(11.27)Wd
U ,V(x, t, t0) = Ga(x,0, t, t0) − G(x,0, t, t0).

Using equations (11.18), (11.20) and (11.21), the other components of the propagator matrixWd(x, t, t0) can also be expressed in terms of the Green’s function and its acausal version.
Note that the simple relations between the Green’s function and the propagator matrix

derived here are specific for a homogeneous time-dependent medium. They cannot be
translated to the situation of an inhomogeneous time-independent medium by an exchange
of space- and time-coordinates because the causality conditions for the Green’s function are the
same for both types of medium [25].

12. Conclusions
We discussed fundamental aspects of wave propagation and scattering in two-dimensional
homogeneous time-dependent materials, using a unified notation which simultaneously
captures electromagnetic, acoustic and elastodynamic shear waves. We reviewed transmission
and reflection of a plane wave that is incident on a time boundary. Due to causality, the
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transmitted and reflected waves both exist only after the time boundary. The net field-momen-
tum density is conserved over a time boundary, but the net power-flux density is not.

We reviewed the Green’s function of a time-dependent material, being the causal response to
an impulsive point source. For the special case of a single time boundary, the reflected part of
the Green’s function after the time boundary propagates back and focuses at the position of the
original source. Subsequently, the focus acts as a virtual source for a wave field with opposite
amplitude.

We discussed propagation invariants (i.e. time-independent quantities) for homogeneous,
piecewise continuous time-dependent materials. The net field-momentum density is a special
case of a propagation invariant: it is conserved not only over time boundaries (as mentioned
above), but also in the continuously varying material between the time boundaries. More
general propagation invariants have been formulated for specific combinations of wave fields
in two mutually independent states. These propagation invariants form the basis for general
reciprocity theorems of the space-convolution type and of the space-correlation type for
homogeneous, piecewise continuous time-dependent materials.

We used the reciprocity theorem of the space-convolution type to derive a source-receiver
reciprocity relation for the Green’s function of a time-dependent material: the causal Green’s
function between a source at tB and a receiver at tA is identical to the acausal Green’s function
between a sink at tA and a receiver at tB. We also used the reciprocity theorem of the space-con-
volution type to derive a general wave-field representation for a homogeneous time-depend-
ent material. Similar to its counterpart for an inhomogeneous time-independent material, it
forms the basis for the analysis of wave scattering problems. As an example, we used this
representation to quantitatively explain the behaviour of the Green’s function after a single time
boundary. We used the reciprocity theorem of the space-correlation type to derive a representa-
tion for Green’s function retrieval from passive measurements in a homogeneous, piecewise
continuous time-dependent material. Finally, we formulated a matrix-vector wave equation
for time-dependent materials and used this as a basis for deriving a propagator matrix, its
symmetry properties and its relation with the causal and acausal Green’s functions.

We restricted the analysis in this article to two-dimensional homogeneous time-dependent
materials. For acoustic waves (row 3 in table 1), almost all expressions in this article remain
valid for three-dimensional homogeneous time-dependent materials when the vectors V, Q,b, x, k and ∇ are extended with a y-component and all integrals over ℝ2 are replaced
by integrals over ℝ3. Only the right-hand side of equation (4.6) needs to be replaced byαδ t − t0 − |x − x0|/c /4π|x − x0| (and similar replacements should be made in equation (B3)). For
electromagnetic and elastodynamic waves the extension to three dimensions is more involved
and should be derived from multicomponent equations, such as those given by references
[20,21]. This is left for future research.

The analysis of wave propagation and scattering in materials that are simultaneously space-
and time-dependent is not straightforward. Whereas effective medium theory can be used
for periodic small-scale space-time variations [32,37,39–41], the treatment of general piecewise
continuous materials with mixed space-time boundaries and arbitrary varying space-time
materials between these boundaries is more complex. One of the reasons is that P and Q are
the preferred wave field quantities to be analysed at space boundaries and in space-dependent
regions (case ii in §2), whereas U and V are the preferred quantities at time boundaries and in
time-dependent regions (case iii in §2). Many special situations are discussed in the literature.
For example, reference [23] discusses how to model scattering at a mixed space-time boundary,
reference [8] shows how multiple distinct space and time boundaries can be used to control
frequency conversion and reference [24] discusses the design of an acoustic space-time material
(with distinct space and time boundaries) which computes its own inverse. A fundamental
treatment of wave propagation and scattering in arbitrary space-time materials remains subject
to further research.
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Appendix A. Inverse Fourier transform of wave-vector time domain
Green’s function
We evaluate the inverse Fourier transform of Ǧ(k, x0, t, t0), defined in equation (5.10). Using
equation (5.2), we write

(A 1)

G(x,x0, t, t0) = 1
4π2 ℝ2

Ǧ(k, x0, t, t0)exp(ik ⋅ x)dk
= H(Δt)

4π2η ℝ2

sin(krcΔt)kr exp(ik ⋅ Δx)dk,

with Δt = t − t0, kr = |k| and Δx = x − x0. Defining polar coordinates k = kr(cos θ, sin θ) andΔx = r(cosϕ, sinϕ), with r = |Δx|, we have k ⋅ Δx = krrcos(θ − ϕ) and dk = krdkrdθ, hence

(A 2)G(x, x0, t, t0) = H(Δt)
2πη 0

∞
dkrsin(krcΔt) 1

2π 0

2π
exp(ikrrcos(θ − ϕ))dθ .

The integral over θ is independent of ϕ, so we may choose ϕ = 0. Furthermore, this integral
from 0 to 2π is twice the real part of the integral from 0 to π. Hence,

(A 3)G(x,x0, t, t0) = H(Δt)
2πη 0

∞
dkrsin(krcΔt) 1

π 0

π
cos(krrcos θ)dθ .

Using the definition of the Bessel function J0 in equation (9.1.18) of [88], we obtain

(A 4)G(x,x0, t, t0) = H(Δt)
2πη 0

∞
sin(krcΔt)J0(krr)dkr .

Finally, using equation (6.671−7) of [89] and the definitions of Δt and r given below equation (A
1) yields

(A 5)G(x, x0, t, t0) = 1
2πβc2

H t − t0 − |x − x0|c
(t − t0)2 − |x − x0|2c2

.

Appendix B. Propagator matrix for a time-independent slab
For the special case of a time-independent slab between tn − 1 and tn, with parameters αn and βn,
the solution of equation (11.6), with initial condition (11.7) (with t0 replaced by tn − 1 and t by tn),
reads

(B 1)
W̌d(k, tn, tn − 1) =

cos( |k |cnΔtn) − 1ηn |k|sin( |k |cnΔtn)ηn |k |sin( |k |cnΔtn) cos( |k |cnΔtn) ,
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with cn = 1/ αnβn, ηn = βncn and Δtn = tn − tn − 1. Note that the upper-right component can,
according to the Fourier transform of equation (11.27), be expressed as

(B 2)W̌d
U ,V(k, tn, tn − 1) = Ǧa(k,0, tn, tn − 1) − Ǧ(k,0, tn, tn − 1), (B 2)

with Ǧ(k,0, tn, tn − 1) given in equation (5.10) for x0 = 0, t0 = tn − 1 and t = tn. Similarly, we obtain an
explicit expression for Wd

U ,V(x, tn, tn − 1) in the space-time domain by substituting equation (A 5)
for x0 = 0 into equation (11.27), using equation (7.5). This gives

(B 3)

Wd
U ,V(x, tn, tn − 1) = G(x,0, tn − 1, tn) − G(x,0, tn, tn − 1)

= 1
2πβncn2 H( − Δtn − |x | /cn) − H(Δtn − |x | /c)Δtn2 − |x |2 /cn2 .

Explicit expressions for the other components of Wd(x, tn, tn − 1) follow by substituting equation
(B 3) into equations (11.18), (11.20) and (11.21), with t0 and t replaced by tn − 1 and tn, respec-
tively.
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