

Delft University of Technology

Language-Parametric Methods for Developing Interactive Programming Systems

Konat, Gabriël

DOI
10.4233/uuid:03d70c5d-596d-4c8c-92da-0398dd8221cb
Publication date
2019
Document Version
Final published version
Citation (APA)
Konat, G. (2019). Language-Parametric Methods for Developing Interactive Programming Systems.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:03d70c5d-596d-4c8c-
92da-0398dd8221cb

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:03d70c5d-596d-4c8c-92da-0398dd8221cb
https://doi.org/10.4233/uuid:03d70c5d-596d-4c8c-92da-0398dd8221cb
https://doi.org/10.4233/uuid:03d70c5d-596d-4c8c-92da-0398dd8221cb

Language-Param
etric M

ethods for D
eveloping Interactive Program

m
ing System

s
G

abriël Konat

Language-Parametric Methods for
Developing Interactive Programming Systems

Gabriël Konat

Gabriël Ditmar Primo Konat was born in The
Hague, the Netherlands. In 2009, he received his
BSc in Computer Science from the Institute of Ap-
plied Sciences in Rijswijk. In 2012, he received his
MSc in Computer Science from Delft University of
Technology (TUDelft). From 2012 to 2018, he was
a Ph.D. student with the Programming Languages
group at TUDelft, under supervision of Eelco Viss-
er and Sebastian Erdweg. His work focuses on lan-
guage workbenches and incremental build systems.

Invitation
Language-Parametric

Methods for Developing
Interactive Programming

Systems

You are cordially invited to
the public defense of my
dissertation on Monday,
November 18th, 2019 at

3pm.

At 2:30pm, I will give a brief
presentation summarizing

my dissertation.

The defense will take
place in the Senaatszaal
of the Delft University of
Technology Auditorium,

Mekelweg 5,
2628 CC Delft,
the Netherlands

Afterwards, there will be a
reception.

Gabriël Konat
gabrielkonat@gmail.com

Propositions

accompanying the dissertation

Language-Parametric Methods for Developing Interactive
Programming Systems

by

Gabriël Ditmar Primo Konat

1. Language-parametric methods for developing interactive programming sys-
tems are feasible and useful. (This dissertation)

2. Compilers of general-purpose languages must be bootstrapped with fixpoint
bootstrapping. (This dissertation)

3. Manually implementing an incremental system must be avoided. (This
dissertation)

4. Like chemists need lab assistants, computer scientists need software engineers
to support them in research, teaching, and application in industry.

5. Programming languages that evolve via public request for comments (RFCs)
attract a diverse range of people, and are therefore of higher quality.

6. Critical case studies are a valuable tool for providing evidence in research.

7. Developing an interactive video game is the most effective way to learn a
new programming language.

8. The publication process of conferences with a yearly deadline and unidirec-
tional feedback is not conducive to innovative and high-quality publications.

9. Rewriting a C or C++ program in Rust always increases code quality.

These propositions are regarded as opposable and defendable, and have been
approved as such by the promotors prof.dr. E. Visser and prof.dr. S.T. Erdweg.

Language-Parametric Methods
for Developing

Interactive Programming Systems

DISSERTATION

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen;
Chair of the Board for Doctorates

to be defended publicly on
Monday 18 November 2019 at 15:00 o’clock

by

Gabriël Ditmar Primo KONAT

MSc Computer Science, Delft University of Technology, the Netherlands
born in The Hague, the Netherlands

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof.dr. E. Visser Delft University of Technology, promotor
Prof.dr. S.T. Erdweg Johannes Gutenberg University Mainz, promotor

Independent members:

Prof.dr.ir. D.H.J. Epema Delft University of Technology
Prof.dr. M. Flatt University of Utah
Prof.dr. T. van der Storm University of Groningen / CWI
Dr. A. Mokhov Newcastle University
Dr. E. Dolstra Tweag I/O
Prof.dr. K.G. Langendoen Delft University of Technology, reserve member

The work in this dissertation has been carried out at the Delft University
of Technology, and was supported by NWO/EW Free Competition Project
612.001.114 (Deep Integration of Domain-Specific Languages).

Copyright © 2019 Gabriël Ditmar Primo Konat

Cover: Museum of Pop Culture - Photo © 2014 Gabriël Ditmar Primo Konat

Printed and bound by: Gildeprint - https://www.gildeprint.nl/

ISBN: 978-94-6366-210-9

https://www.gildeprint.nl/

Contents

Samenvatting ix

Summary xi

Preface xiii

1 Introduction 1
1.1 Programming Systems . 2

1.2 Interactive Programming Systems 3

1.3 Developing Interactive Programming Systems 4

1.4 Language-Parametric Methods 5

1.5 Contributions . 7

1.5.1 NaBL: Declarative Name Binding and Scope Rules . . . 7

1.5.2 A Task Engine for Incremental Name and Type Analysis 8

1.5.3 Bootstrapping Meta-DSLs in Language Workbenches . . 8

1.5.4 PIE: A Framework for Interactive Software Development
Pipelines . 9

1.5.5 Scalable Incremental Building with Dynamic Task De-
pendencies . 10

1.6 Research Methodology . 11

1.7 Structure . 12

2 NaBL: A Meta-DSL for Declarative Name Binding and Scope Rules 15
2.1 Introduction . 15

2.2 Declarative Name Binding and Scope Rules 17

2.2.1 Definitions and References 17

2.2.2 Namespaces . 19

2.2.3 Scopes . 20

2.2.4 Namespaces as Language Concepts 21

2.2.5 Imports . 21

2.2.6 Types . 22

2.3 Name Binding Patterns . 23

2.3.1 Unscoped Definition Sites 23

2.3.2 Definition Sites inside their Scopes 24

2.3.3 Definition Sites outside their Scopes 25

2.3.4 Contextual Use Sites . 25

2.4 Editor Services . 26

2.4.1 Reference Resolving . 27

2.4.2 Constraint Checking . 27

2.4.3 Code Completion . 28

2.5 Implementation . 28

iii

2.5.1 Persistence of Name Bindings 28

2.5.2 Resolving Names . 29

2.6 Integration into Spoofax . 30

2.6.1 Index API . 30

2.6.2 Reference resolution . 30

2.6.3 Constraint checking . 30

2.6.4 Code completion . 31

2.7 Evaluation and Discussion . 31

2.7.1 Limitations . 32

2.7.2 Coverage . 32

2.8 Related work . 32

2.8.1 Symbol Tables . 33

2.8.2 Attribute Grammars . 33

2.8.3 Visibility Predicates . 34

2.8.4 Dynamic Rewrite Rules 34

2.8.5 Textual Language Workbenches 34

3 A Language Independent Task Engine for Incremental Name and
Type Analysis 37
3.1 Introduction . 37

3.2 Name and Type Analysis . 38

3.2.1 Name Analysis . 38

3.2.2 Type Analysis . 39

3.2.3 Incremental Analysis . 40

3.3 Semantic Index . 41

3.3.1 URIs . 41

3.3.2 Index Entries . 41

3.3.3 Initial Collection . 42

3.3.4 Incremental Collection . 43

3.4 Deferred Analysis Tasks . 44

3.4.1 Instructions . 45

3.4.2 Combinators . 47

3.4.3 Initial Evaluation . 48

3.4.4 Incremental Evaluation 48

3.5 Implementation . 50

3.6 Evaluation . 50

3.6.1 Research method . 51

3.6.2 Results and interpretation 53

3.6.3 Threats to validity . 54

3.7 Related Work . 54

3.7.1 IDEs and Language Workbenches 55

3.7.2 Attribute Grammars . 55

3.7.3 Reference Attribute Grammars 55

3.7.4 Other Approaches . 56

3.8 Conclusion . 56

iv

4 Reflection: Incremental Name and Type Analysis, Bootstrapping, and
Spoofax Core 59

5 Bootstrapping Domain-Specific Meta-Languages in Language Work-
benches 63
5.1 Introduction . 63

5.2 Problem Analysis . 65

5.2.1 Bootstrapping Example 65

5.2.2 Requirements . 66

5.3 Sound Bootstrapping . 69

5.3.1 Language Definitions and Products 69

5.3.2 Compilation . 71

5.3.3 Fixpoint Bootstrapping 72

5.4 Interactive Bootstrapping . 72

5.5 Bootstrapping Breaking Changes 73

5.6 Evaluation . 74

5.6.1 Implementation . 74

5.6.2 Meta-languages . 74

5.6.3 Bootstrapping Changes 76

5.7 Related Work . 77

5.7.1 Bootstrapped General-Purpose Languages 77

5.7.2 Bootstrapping . 78

5.7.3 Language Workbenches 78

5.7.4 Staged Metaprogramming 79

5.8 Conclusion . 80

6 Reflection: Language Workbench Pipelines 81

7 PIE: A DSL, API, and Runtime for Interactive Software Development
Pipelines 83
7.1 Introduction . 84

7.2 Problem Analysis . 85

7.2.1 Requirements . 86

7.2.2 State of the Art . 86

7.2.3 Open Problems . 88

7.3 PIE by Example . 90

7.4 PIE API and Runtime . 93

7.4.1 Application Program Interface (API) 93

7.4.2 Runtime . 95

7.4.3 Reusing the Pluto Runtime 95

7.5 PIE Language . 96

7.5.1 Syntax . 96

7.5.2 Static Semantics . 96

7.5.3 Compilation . 97

7.6 Case Study: Spoofax Language Workbench 98

7.6.1 Pipeline Re-Implementation 99

7.6.2 Analysis . 101

CONTENTS v

7.7 Case Study: Live Performance Testing 102

7.7.1 Pipeline Re-Implementation 103

7.7.2 Analysis . 103

7.8 Related Work . 104

7.8.1 Partial Domain-Specific Build Abstractions 104

7.8.2 Software Development Pipelines as a Library 105

7.8.3 General-Purpose Languages 106

7.8.4 Reactive Programming . 107

7.8.5 Workflow Languages . 107

7.9 Future Work . 107

7.9.1 First-Class Functions and Closures 107

7.9.2 Live Pipelines . 108

7.10 Conclusion . 108

8 Scalable Incremental Building with Dynamic Task Dependencies 109
8.1 Introduction . 109

8.2 Background and Problem Statement 111

8.3 Key Idea and Challenges . 114

8.3.1 Bottom-Up Traversal . 114

8.3.2 Top-Down Initialization 115

8.3.3 Early Cut-Off . 115

8.3.4 Order of Recomputation 115

8.3.5 Dynamic Dependencies 116

8.3.6 Dependency Graph Validation 116

8.4 Change-Driven Incremental Building 118

8.4.1 Bottom-Up Building . 118

8.4.2 Execution, Requirement, and Validation 119

8.4.3 Properties . 120

8.5 Implementation . 120

8.6 Evaluation . 121

8.6.1 Experimental Setup . 121

8.6.2 Results and Interpretation 123

8.6.3 Threats to Validity . 126

8.7 Related Work . 126

8.8 Conclusion . 127

9 Conclusion 129
9.1 Interactive Programming Systems 129

9.2 Language-Parametric Methods 130

9.2.1 Incremental Name and Type Analysis 130

9.2.2 Bootstrapping meta-DSLs of Language Workbenches . . 131

9.2.3 Pipelining of Interactive Programming Systems 131

9.3 Future Work . 133

9.3.1 Incremental Name and Type Analysis 133

9.3.2 Bootstrapping of Meta-DSLs 134

9.3.3 Pipelining of Interactive Programming Systems 134

vi

Bibliography 137

Curriculum Vitae 153

List of Publications 155

CONTENTS vii

viii

Samenvatting

Op alle computers wordt software uitgevoerd, zoals besturingssystemen, web-
browsers, en videospellen, die door miljarden mensen over de wereld worden
gebruikt. Daarom is het belangrijk om software van hoge kwaliteit te bouwen,
wat alleen mogelijk is met interactive programmeringssysteemen die program-
meurs betrekken in de uitwisseling van correcte en responsieve feedback. Ge-
lukkig maken geïntegreerde software-ontwikkelingsomgevingen dit mogelijk
voor vele generieke programmeertalen, door middel van broncodebewerkers
met hulpmiddelen zoals syntaxiskleuring en automatische aanvulling.

Daarintegen zijn domeinspecifieke talen programmeertalen die gespecialiseerd
zijn voor een specifiek probleemdomein, en het daarom mogelijk maken
om betere software te schrijven door directe expressie van problemen en
oplossingen in termen van het domein. Echter, omdat domeinspecifieke talen
gespecialiseerd zijn voor een bepaald domein, en er veel probleemdomeinen
zijn, moeten we veel nieuwe domeinspecifieke talen ontwikkelen, inclusief
bijbehorende interactieve programmeringssysteemen!

Het ontwikkelen van een ad-hoc interactief programmeringssysteem voor
een domeinspecifieke taal is ondoenlijk, omdat dit een te grote ontwikkelings-
inspanning nodig heeft. Daarom is het onze visie om taalparametrische methodes
voor het ontwikkelen van interactieve programmeringssysteemen te gebruiken.
Een taalparametrische methode neemt als invoer een beschrijving van een do-
meinspecifieke taal, en implementeert automatisch (delen van) een interactief
programmeringssysteem, waardoor ontwikkelingsinspanning wordt vermin-
derd, en domeinspecifieke taalontwikkeling doenlijk wordt. In dit proefschrift
ontwikkelen we drie taalparametrische in de vijf kernhoofdstukken.

We ontwikkelen een taalparametrische methode voor incrementele naam-
en type-analyse, waarbij taalontwikkelaars de naam- en typeregels van hun
domeinspecifieke taal specificeren in metatalen (talen die gespecialiseerd zijn
in het domein van taalontwikkeling). Uit een dergelijke specificatie leiden we
automatisch een incrementele naam- en typeanalyse af, inclusief bewerkings-
hulpmiddelen zoals codeaanvulling en inline-foutmeldingen.

We ontwikkelen een taalparametrische methode voor het interactief boot-
strappen van de metataal compilers van taalwerkbanken. We beheren meerdere
versies van metataal compilers, geven expliciet de afhankelijkheden tussen
hen aan, en voeren fixpoint bootstrapping uit, waarbij we iteratief metataal
compilers op henzelf toepassen om nieuwe versies af te leiden totdat er geen
verandering plaatsvindt, of totdat een fout wordt gevonden. Deze bootstrap-
pingbewerkingen kunnen worden gestart en teruggedraaid (wanneer een fout
is gevonden) in het interactieve programmeringssysteem van de taalwerkbank.

Ten slotte ontwikkelen we Pipelines for Interactive Environments (PIE), een
parametrische methode voor het ontwikkelen van interactieve pijplijnen voor
softwareontwikkeling, een superset van interactieve programmeeromgevingen.

ix

Met PIE kunnen pijplijnontwikkelaars bondig pijplijnprogramma’s schrijven
in termen van taken en afhankelijkheden tussen taken en bestanden, die PIE
vervolgens incrementeel uitvoert. PIE schaalt af naar vele veranderingen met
kleine impact, en schaalt op naar grote afhankelijkheidsgrafieken via een
incrementeel veranderingsgedreven algoritme.

x

Summary

All computers run software, such as operating systems, web browsers, and
video games, which are used by billions of people around the world. Therefore,
it is important to develop high-quality software, which is only possible through
interactive programming systems that involve programmers in the exchange of cor-
rect and responsive feedback. Fortunately, for many general-purpose program-
ming languages, integrated development environments provide interactive
programming systems through code editors and editor services.

On the other hand, Domain-Specific Languages (DSLs) are programming
languages that are specialized towards a specific problem domain, enabling
better software through direct expression of problems and solutions in terms
of the domain. However, because DSLs are specialized to a specific domain,
and there are many problem domains, we need to develop many new DSLs,
including their interactive programming systems!

Ad-hoc development of an interactive programming system for a DSL is
infeasible, as developing one requires a huge development effort. Therefore,
our vision is to create and improve language-parametric methods for developing
interactive programming systems. A language-parametric method takes as
input a description of a DSL, and automatically implements (parts of) an
interactive programming system, reducing development effort, thereby making
DSL development feasible. In this dissertation, we develop three language-
parametric methods throughout the five core chapters.

We develop a language-parametric method for incremental name and type
analysis, in which language developers specify the name and type rules of
their DSL in meta-languages (languages specialized towards the domain of
language development). From such a specification, we automatically derive an
incremental name and type analysis, including editor services such as code
completion and inline error messages.

We develop a language-parametric method for interactively bootstrapping
the meta-language compilers of language workbenches. We version meta-
language compilers, explicitly denote dependencies between them, and per-
form fixpoint bootstrapping, where we iteratively self-apply meta-language
compilers to derive new versions until no change occurs, or until a defect is
found. These bootstrapping operations can be started and rolled back (when
defect) in the interactive programming system of the language workbench.

Finally, we develop PIE, a parametric method for developing interactive
software development pipelines, a superset of interactive programming envi-
ronments. With PIE, pipeline developers can concisely write pipeline programs
in terms of tasks and dependencies between tasks and files, which the PIE
runtime then incrementally executes. PIE scales down to many low-impact
changes and up to large dependency graphs through a change-driven incre-
mental build algorithm.

xi

xii

Preface

My journey to this dissertation started when I was two years old. My grandpa,
who knew a lot about computers because he was a computer technician, would
regularly let me play on his computer when we visited. At first, he’d teach
me to play simple point and click games, painting programs, and colouring
book programs. Later on he’d teach me DOS commands, how to navigate in
Windows, and – more importantly – how to play SimCity 2000. I of course
did not fully understand SimCity at the time, but enjoyed it a lot nonetheless,
because it would let me create and destroy cities, and hear ’bzzt’ a million
times. I would usually run out of money pretty fast and have to take several
bonds, which quickly lead to bankruptcy. Eventually, I did manage to complete
a scenario which rewarded me the key of the city!

My grandpa was also one of the first to have cable internet in the Netherlands,
which had a fixed monthly cost in contrast to the by-minute cost of dialup
internet, making it a lot more affordable, even though the 64Kb/s speed was
horrible. The internet was really a magical experience back then, because it
enabled easily chatting with people, finding news, information, games, cheats,
jokes, or basically anything. Every day, you’d find something new and exiting.

When visiting my grandparents, I would quickly jump behind the computer
and go on the internet, usually playing free online games. One online game
that stood out is Graal Online, an MMORPG that plays like Zelda: A Link to
the Past, which is still alive as of writing this dissertation. While the online
mode of Graal Online is a lot of fun, it also features an offline mode with a
level editor, allowing you to create your own worlds. The level editor also
includes a script editor with a Java-like scripting language, which was my
first foray into programming. I was able to take the offline mode home by
compressing it and splitting it across 12 floppy disks, allowing me to build
worlds and program from my own computer, which I frequently did. Together
with a friend, we designed and programmed our own world and submitted
it to the creator of Graal Online, asking for it to be hosted as a ’playerworld’.
Unfortunately, we never got a response.

In 2005, I completed my secondary education at senior (Dutch: HAVO)
level. Because of my grandpa’s enthusiasm for computers, teaching me how
to use them, letting me regularly use his computer and internet, and learning
to program with Graal Online, programming computers became my voca-
tion. However, to be able to go to a university, I’d have to follow two more
years of university preparatory education (VWO). Instead I opted to do the
more practically-oriented higher professional education (hoger beroepsonder-
wijs/HBO) at the Institute of Applied (Computer) Sciences in Rijswijk, as I did
not want to spend two more years in secondary education, and instead wanted
to immediately specialise in software development. I’m very glad to have
chosen this option, as I got to meet many like-minded students, learn about

xiii

how computers work, learn to properly program in several real programming
languages, and learn how to develop software.

In my last year, I was still looking for a project to graduate on. As usual, I
was procrastinating to the very end and almost got into trouble for not having
a graduation project. Luckily, during one of the robotics labs, Martijn Wisse
from Delft University of Technology (TUDelft) visited and advertised one of his
graduation projects: building a vision system for their autonomous humanoid
football robot, which would compete in RoboCup 2009, Graz, Austria. Together
with fellow student Jonathan Staats, we of course agreed to do this awesome
graduation project. We’d work with the team in the basement of the TUDelft
3mE building (of course they put a robotics team in the basement) to build the
eyes of their robot TUlip, supervised by Boris Lenseigne.

The vision system consisted of two small Linux-based boards with cam-
eras, connected to the robot’s main computer to provide stereo information.
Jonathan worked on writing a Linux device driver for the camera, while I
worked on the software that uses the camera data to detect field lines (Hough
transform) and the ball. TUlip’s main computer would then integrate this data
to determine its position and the position of the ball.

TUlip competed in the Robocup and was able to defend the goal, walk short
distances, kick the ball, and track the ball through our vision system. However,
one of the challenges was to find the ball, dribble it, and then kick it to score,
which turned out to be really hard for our big and heavy bipedal robot with a
realistic humanoid gait. In any case, RoboCup was an awesome experience,
with lots of great football matches with smaller and wheeled robots, lots of like-
minded people, and a lot of fun with our team. In the end, despite not winning
RoboCup, we were able to graduate and receive the title of engineer (ing. in
Dutch). Besides graduating, this project gave me a very high appreciation of
TUDelft and the people working there. The university is far more practical
than I had imagined, and most students/staff are very kind, open-minded,
and motivated, convincing me to study for a master’s degree at TUDelft.

While studying for a master’s degree, I would regularly listen to podcasts
on my bus trip from The Hague to Delft. One of the podcasts I was listing
to at the time was the Software Engineering Radio (SE Radio), founded by
Markus Voelter. Episode 118 was on parsing, with an interview of Eelco
Visser, which surprised me because I recognised him as the lecturer of Delft’s
Compiler Construction course. I found the episode quite interesting, as I
really like programming, and building a parser for a (new?) programming
language had always interested me, but I never quite understood it or had the
time/motivation to dive into it. I thought it was also quite cool that a professor
at my university was being interviewed in my favourite podcast.

In the first semester of the second year, I did the compiler construction
course. I would have done it in the first year, but everyone I talked to at the
introductory week (even other teachers!) recommended me to not do it in
the first year, because it was a really hard course that required a lot of time
investment (a lot more than you’d get ECTS for). While this was definitely true,
I would have liked and be motivated by the course so much that it wouldn’t

xiv

have been a problem at all.
In any case, I followed the course, but was slightly discontented. Even though

Eelco was the responsible teacher, one of his postdocs, Guido Wachsmuth, was
actually teaching the course, so I’d never meet Eelco during the course. Note
that this is not a jab at Guido at all, because he did a great job teaching compiler
construction. He is very knowledgable, has great-looking slides with a lot of
information, and is very supportive of his students. That is, the students that
came to the lecture on time at least, as he would usually lock the door when
the lecture started to prevent annoyance by late students. I got locked out of
half a lecture once because of a flat tire on my bike, oh well. I particularly like
Guido’s teaching style of explaining algorithms by showing a lot of examples
and actually executing the algorithm step-by-step on the slides, which my
brain really appreciates. If you’d want to see the algorithm pseudocode, you
can just read the corresponding book or paper.

Besides the lectures, there is also a lab in which you build a compiler and IDE
from scratch for the MiniJava programming language. To achieve this, we use
the Spoofax Language Workbench, which is basically a set of tools to develop
programming languages and their interactive programming systems, which is
where part of this dissertation’s title comes from. Spoofax was first developed
by Karl Trygve Kalleberg as an Eclipse IDE for the Stratego language, but
was later developed into a Language Workbench by Lennart Kats, who would
sometimes visit the lab (in his cool leather jacket) to help us out. While Spoofax
was a bit janky sometimes, as many research tools are, it did enable us to
develop a compiler and editor for a programming language – starting without
any compiler construction knowledge – in a single semester, how cool is that?
This lab got me really enthusiastic about developing programming languages,
but also about creating meta-tools (i.e., language-parametric methods) for
developing interactive programming systems.

In the follow-up course, Model Driven Software Development, which was
actually taught by Eelco Visser, we used our knowledge from the compiler
construction course to develop our own domain-specific language (DSL). Again
together with Jonathan, we constructed a DSL for our 3D virtual world/game
engine, Diversia, which we developed during our time at Rijswijk. It was an
event-driven DSL that reacted to events in the game world, and compiled down
to LUA scripting code which interacted with the game engine. During the
course, there was a guest lecture by Markus Voelter, whose podcast sparked
my interest for programming languages in the first place, reminding me of
how small the world usually is. It was also quite cool to see Markus after
hearing him interview so many people.

The final programming languages related course was a seminar on meta-
programming, where we dived into program analysis with Datalog. After this
course, I was interested in doing my master’s thesis with the programming
languages group, and Eelco agreed to supervise me. Lennart and Karl got me
up to speed with Spoofax development in their office. I sat next to Karl for a
couple of days, which, now that I think of it, was probably quite annoying for
him since I took up half of his desk and invaded his privacy. I moved onto a

Chapter 0. Preface xv

separate table in their office after a while, which was still quite nice compared
to the separate master student room (Dutch: het master hok). Later on, Guido
became more heavily involved with my thesis, as the topic shifted to name
analysis, and I ended up doing my master’s thesis on "Language-Parametric
Incremental and Parallel Name Resolution".

Before graduating, Eelco asked if I wanted to do a PhD. I knew that doing a
PhD was an option, but never really gave it much thought, as I was planning
to take a couple of months off and then go into industry. However, after a
couple of days, I accepted his offer, and the work on this dissertation begun.

Acknowledgements. Before continuing, I would like to (try to) thank everyone
that made this work possible. First, I want to thank my supervisors.

I am grateful to Eelco Visser for giving me the opportunity to do a PhD,
and his supervision and kindness throughout it. Eelco is extremely good at
understanding the bigger picture. When approached with a problem, he will
effortlessly break it down into smaller more understandable parts, a path to
solving it, and how to present it to a larger audience. This was invaluable
during my PhD, as I learned how to structure my research, writing, and
presentations. Eelco is also very kind, understanding, and motivating, even
when things went wrong in research or real life, which would happen from
time to time. Besides that, we would regularly discuss ideas, research, and
applications that we would like to do. Since Eelco hired me as a Postdoctoral
researcher, we will try to complete more of that.

I would like to thank Guido Wachsmuth for his supervision, guidance, and
kindness in the first half of my PhD, in which we worked closely together to de-
velop declarative and incremental name and type analysis. Guido has a knack
for deeply understanding a topic and explaining it in a very approachable
manner, which was extremely useful at the start of my PhD. I learned many
things from Guido, including compiler construction, (meta-)domain-driven
design, Stratego programming, proper benchmarking, and academic writing.
Besides that, we always had a lot of interesting ideas and conversations, and
in general just had a lot of fun. Guido has found a new opportunity at Oracle
Labs as a member of the PGX team, but we still regularly talk and cooperate,
as some of our research is being applied at Oracle Labs.

I wish to thank Sebastian Erdweg for his supervision in the latter half of my
PhD, in which we worked on bootstrapping and incremental build systems.
Without Sebastian’s guidance, the research would have never finished on
time, or be of the quality that it is now. Sebastian always gave extremely
good feedback on my planning, writing, and research, which helped me to
improve those skills a lot, especially academic writing. One of Sebastian’s
superpowers is coming up with interesting examples (that may make or break
your approach) within seconds, which was extremely useful for developing
incremental build systems as it has many nasty corner cases.

I am grateful to Michael Steindorfer for his help on our interactive pipeline
research, moments after finishing his PhD on data structures. He was able to
quickly jump into our research and help out, and came up with the name PIE,
which stands for Pipelines for Interactive Environments, which we still use

xvi

today.
Hassan Chafi gave me the opportunity to do three summer traineeships at

Oracle Labs in California, for which I am grateful. I was able to learn a great
deal about practical application of my research in a more corporate setting, and
got to meet many like-minded people. Besides the great work environment,
having the opportunity to live in California and explore it during my free
time was wonderful. The weather in California, in contrast to the Netherlands,
was always sunny (except for the San Francisco fog) and dry, which made
exploring cities and nature delightful.

I would like to thank the members of the committee, Dick Epema, Matthew
Flatt, Tijs van der Storm, Andrey Mokhov, Eelco Dolstra, and Koen Langendoen
for reviewing my dissertation.

I have many past and current colleagues to thank for their help and hospi-
tality. Danny Groenewegen co-manages the servers that run our build farm
and artifact server that greatly increase the productivity of our group. He also
co-authored the task engine paper by helping us redefine the name binding
and type system of WebDSL, which we used as a subject in our evaluation.
Besides that, Danny is very open-hearted, always welcoming newcomers by
inviting them to activities. I got into Magic the Gathering and Factorio because
Danny invited me to his friend group, which I still play with to this day.

Vlad Vergu worked on several important parts of our infrastructure. At
the start of his PhD, he converted and moved the existing SVN repository to
GitHub, which greatly increased our productivity. Vlad bootstrapped the Java
version of the Stratego compiler, which was previously bootstrapped with a
fixed baseline C version of the Stratego compiler, enabling further development
on the Java version. He also built a command-line version of Spoofax, called
Sunshine, which was an inspiration for Spoofax Core, a platform-independent
version of Spoofax. Finally, he co-authored the task engine paper by performing
the majority of the benchmarking, which was invaluable to the evaluation in
that paper.

Lennart Kats and Karl Trygve Kallenberg got me started with Spoofax and
my PhD in general. They built Spoofax and several other related tools that
made this line of research possible. Lennart’s dissertation on Building Blocks
for Language Workbenches inspired parts of this dissertation. Karl came up
with the name Spoofax, which consists of Spoo (a food from Babylon 5) and
fax (as in a fax machine), for which the domain-name was free, and which is
easy to search for.

Maartje de Jonge had just finished her PhD on Language-Parametric Tech-
niques for Language-Specific editors, which also inspired parts of this disserta-
tion. Because Maartje just finished when I started, she was leaving Delft and
was able to transfer her apartment to me, finally giving me an affordable place
to stay in Delft.

Hendrik van Antwerpen started out as a programmer in our group, helping
immensely in getting Spoofax Core to work. He developed a Maven plugin,
implemented cross-language dependencies, bootstrapped the meta-languages,
and made several improvements make Spoofax more cross-platform. Later he

Chapter 0. Preface xvii

did his master thesis with us, and then started his PhD, taking over the name
and type analysis work. I admire Hendrik’s ability to deeply understand and
continuously improve large systems.

Luis Eduardo de Souza Amorim (Eduardo) started his PhD roughly the
same time as I did. He has worked on improved the parsing and editor
services side of Spoofax. Eduardo’s hard work, perseverance, and ability to
understand things is something I greatly admire. He was able to dive into the
existing parser generator and parser code, understand every interaction, and
make many very important improvements to it, all while publishing academic
papers.

Daco Harkes evaluated Spoofax during his PhD by developing his IceDust
DSL in it, which drove us to continuously improve Spoofax. We also always
had interesting conversations about our research and a whole range of other
(probably more geeky) topics. I admire Daco’s ability to go very broad, take in
all available information, come to a decision and explain it, and then forge his
own path forward.

Daniel Pelsmaeker evaluated Spoofax Core in his master thesis by building
an IntelliJ plugin for it, showing that it is indeed cross-platform. He made
several improvements to Spoofax Core to make it more platform-independent,
including a cross-platform configuration framework. He now started a PhD
with us on editor services. Daniel is always enthusiastic and optimistic, and
has a very fine attention to detail, which I appreciate a lot.

Jeff Smits developed FlowSpec, a new meta-DSL for Spoofax for declaratively
specifying dataflow analyses, and developed an incremental Stratego compiler,
which can speed up the compilation time of a Spoofax project almost by an
order of magnitude. He has also made several contributions to Spoofax and
PIE. I admire Jeff’s ability to absorb knowledge and to be able to easily explain
it to others, and his continuous drive to improve our tools and code.

Jasper Denkers engineered JSGLR2, a replacement for the parser of Spoofax,
with a modular architecture and better performance. He has also made several
improvements to the build system and modularity of Spoofax. In his PhD, he
is applying and evaluating Spoofax to real-world DSLs in industry. Jasper’s
ability to decompose a system into its constituents and improve it, and his
ability to connect our research to industry, is something I admire.

Martijn Dwars set up automated feedback and grading for the Compiler
Construction lab, which greatly reduced the workload for graders, while giving
students the opportunity to get feedback early and improve their grade. He
also contributed numerous small improvements to Spoofax. Martijn is one of
the best programmer and problem solver I know.

I wish to thank Elmer van Chastelet and Stepen van der Laan (along with
Danny) for managing our servers and keeping them working. I am grateful
to Roniet Sharabi, secretary of our group, who is always supportive, has
helped me understand the bureaucracy of the university numerous times,
and always made sure the academic process went smoothly. Last but not
least, I would like to thank Sven Keidel, Peter Mosses, Casper Bach Poulsen,
Robbert Krebbels, Arjen Rouvoet, Tamás Szabó, Paolo Giarrusso, Roelof Sol,

xviii

Volker Lanting, Oskar van Rest, Taico Aerts, and Chiel Bruin. We had many
interesting conversations and it was a pleasure working with you.

Finally, I would like to thank my friends and family. This work would not
have been possible without my parents, Helma and Rasit, who have always
been there for me and supported me my entire life. I would like to thank
my grandpa, Loe, for always being there for me and teaching me how to use
computers since I was two years old, which led to programming being my
vocation. Unfortunately, he passed away in 2013. While he cannot be here in
person, he will always be in my heart. I am grateful to Charlotte for always
being there for me to talk, keeping me (somewhat) sane through this PhD
adventure. Finally, I’d like to thank the rest of my friends and family, of which
there are too many to write down, for their support.

Chapter 0. Preface xix

xx

1
Introduction

My thesis is that language-parametric methods for developing interactive programming
systems are feasible and useful.

All computers run software, such as operating systems, web browsers, chat
applications, photo editors, and video games. Software is used on many
different computer systems by billions of people around the world, and has
become such a crucial part of our lives. Therefore, it is important that we
develop high-quality software.

Software consists of programs that control computers, which are developed
using programming languages. Typically, these programming languages are
General-Purpose Languages (GPLs), supporting the development of many dif-
ferent kinds of software, applicable across many problem domains. To develop
high-quality software, we do not only need good programming languages
and programmers, but also need high-quality interactive programming systems
that involve programmers in the exchange of correct and responsive feedback.
Fortunately, for many GPLs, Integrated Development Environments (IDEs)
provide correct and responsive interactive programming systems through code
editors, editor services, and inline feedback.

On the other hand, Domain-Specific Languages (DSLs) are programming
languages that are specialized towards a specific problem domain. DSLs allow
us to develop better software through linguistic abstraction for specific problem
domains, supporting direct expression of problems and solutions in terms
of the domain, and domain-specific constraint checking. However, because
DSLs are specialized towards a specific domain, and there are many problem
domains, we need to develop many new DSLs, including their interactive
programming systems!

Manually developing an interactive programming system for a DSL is not
feasible, as developing one requires a huge development effort [77]. Therefore,
our vision is to create and improve language-parametric methods for developing
interactive programming systems. A language-parametric method takes as
input a description of a language, and automatically implements (parts of)
an interactive programming system, reducing the development effort, thereby
making DSL development feasible.

We now explore this vision in detail in the rest of this introductory chapter.
We cover background information on programming languages, domain-specific
languages, and programming systems. We describe interactive programming
systems and the challenges in developing them. We describe our vision to
tackle these challenges: language-parametric methods for developing interac-
tive programming systems. We summarize our contributions, which show the
feasibility and usefulness with concrete instances of these language-parametric
methods. Finally, we describe our research methodology and the structure of

1

the rest of the dissertation.

1.1 Programming Systems

A programming language is a formal language for writing programs that control
computers. Programmers, or software developers, develop software that
consist of programs or source code written in one or more programming
languages. Therefore, programs are a mechanism to communicate the intent
of a programmer to a computer.

Programming languages such as C, Java, and Rust, are General-Purpose
Languages (GPLs), supporting the development of many different kinds of
software, applicable across many problem domains. New general-purpose
programming languages appear less often since developing, evolving, and
maintaining one is a large undertaking.

On the other hand, Domain-Specific Languages (DSLs) are programming lan-
guages that are specialized to a specific domain, supporting only the develop-
ment of solutions to the problem domain [27]. Examples of DSLs are Pic, a
language for specifying diagrams in terms of boxes and arrows [11]; Structured
Query Language (SQL) [23], a language to declaratively query, modify, and
compute data in relational databases; Make [133], a declarative language to
specify file-based build systems with incremental execution; and Backus–Naur
Form (BNF) [10, 82], a meta-DSL (i.e., a DSL specializing in the domain of
languages) to declaratively specify context-free grammars of programming
languages.

Domain-specific languages provide several advantages over their general-
purpose counterparts. Because a DSL is specialized towards a single domain, it
can support direct expression of problems and solutions in terms of the domain.
Furthermore, because DSL programs relate directly to the problem domain, a
DSL can provide domain-specific syntax and perform domain-specific error
checking, statically ruling out wrong programs that could not be restricted
by a GPL. Finally, because a DSL program is of a higher level than a GPL
program, it is possible to derive multiple semantics from a single DSL program
by different interpretations or compilation schemata. However, because DSLs
are specialized to a particular domain, and there are many problem domains,
we need many DSLs, and they need to be developed [102] and maintained [26].

A programming system is needed when developing a new language, consisting
at least of a compiler that validates programs and transforms them into an
executable form [2]. For example, the Java programming system consists of
the javac compiler which checks and transforms Java source files into Java
bytecode Intermediate Representation (IR). The Rust programming system has
the rustc compiler which compiles rust source files to machine code. Besides
a batch compiler, programming systems typically contain more tooling such as
package managers, build systems, interpreters, and debuggers. For example,
Rust has the cargo package manager. Java has the Java Virtual Machine (JVM)
which executes Java bytecode IR. However, we will focus on a compiler.

Programmers interact with programming systems through a command-line
terminal, manually running the batch compiler after they have made changes

2

to the source code, providing feedback to the programmer in the form of
compiler error messages and warnings for invalid programs, or lack thereof
for valid programs. While this is a flexible way to develop programs – a
programmer can choose to use any source code editor, and run the batch
compiler on any operating system in their favorite shell – this development
process suffers from several problems.

First of all, there is a disconnect between the programming system and the
source code editor: error messages from the batch compiler are not displayed
inline, and instead need to be manually traced from the text in the terminal
back to the source code, introducing a cognitive gap. Furthermore, batch
compilers are typically not responsive: the programmer needs to manually
run the batch compiler after making changes to the source code, and wait for
feedback, inducing a slow and tedious feedback cycle. Finally, there is a lack
of feedback: batch compilers only provide error/warning messages. Editor
services such as syntax highlighting, structure outlines, or code completion
are missing, because the command-line terminal is restricted to text.

These problems limit programmer productivity. We need an interactive
programming system that increases productivity by providing automatic, contin-
uous, and inline feedback to the programmer.

1.2 Interactive Programming Systems

An interactive programming system is a programming system that is designed
to involve the user in the exchange of information [68]. In an interactive
programming system, there is a continuous exchange of information between
the programmer and the system: a feedback cycle where the programmer edits
the source code of a program, the system sends back feedback, and so forth.

Integrated Development Environments (IDEs) such as Atom, Eclipse, emacs,
IntelliJ, MPS, NetBeans, Notepad++, vim, Visual Studio (Code), and XCode
are interactive programming systems for certain programming languages. For
example, IntelliJ IDEA is an interactive programming system including built-
in support for Java and Kotlin. Interactive programming systems increase
productivity by:

• Closing the cognitive gap by providing inline error/warning messages and
other interactions directly in terms of the source code through a code editor.
For example, regions in the source code with errors are highlighted, show
the error message when hovered with the mouse, and support application
of quick fixes which directly modify the source code.

• Automatically providing feedback when changes to the source code are
made, and providing this feedback in a timely manner.

• Providing better feedback in the form of editor services. For example, syntax
coloring provides typographical styling based on the syntactical and seman-
tic meaning of code, structure outlines provide browsable summaries of the
source code, reference resolution supports browsing between declarations
and references, and code completion provides context-dependent browsing

Chapter 1. Introduction 3

and automatic completion of unambiguous source code sentences [114].

However, for a programming system to be truly interactive, it must be
correct and responsive. An interactive programming system only provides
feedback that is correct, when the process providing that feedback is precise. A
responsive interactive programming system provides feedback automatically:
without explicit user interaction where possible, and more importantly, in a
timely manner.

When an interactive programming system lacks these qualities, productivity
is lost. For example, providing an incorrect code completion or quick fix to
the programmer, which leads to errors in the code after application, confuses
and annoys the programmer. Furthermore, explicitly having to ask for syntax
coloring, or waiting for five seconds to get a new structure outline, after
modifying the source code, is tedious.

A method to achieve responsiveness in interactive programming systems
is incrementality, where the response time is proportional to the impact of
a change to the source code. An incremental system achieves this by only
recomputing outputs that have been affected by a changed input, while reusing
previously computed outputs. For example, typing a character into a code
editor (most of the time) does not affect the syntax coloring of the text before
and after that new character, requiring only syntax coloring of the newly typed
character.

However, responsiveness is only achieved when incrementality is scalable,
where the programming system can scale down to many low-impact source
code changes, while scaling up to large programs. Since most source code
changes have a low impact, few outputs should be recomputed, and response
times should be fast, even though programs are large.

Finally, it is important that correctness is still guaranteed in the presence of
incrementality and scalability. Developing correct and responsive interactive
programming systems is a challenge, which we now review.

1.3 Developing Interactive Programming Systems

Developing interactive programming systems requires the implementation of
code editors and editor services for every programming language. Fortunately,
IDEs are extensible, supporting reuse of its code editor and editor services by
creating a plugin that connects the programming system of a programming
language to the editor and editor services of the IDE [114]. Therefore, in-
stead of developing an interactive programming system from scratch for each
programming language, we use the code editor and editor services from IDEs.

However, developing responsive and correct interactive programming sys-
tems is a challenge, as IDEs do not provide support for implementing pro-
gramming systems with these qualities, requiring manual application of the
incrementality and scalability methods. Manually implementing incremental-
ity is a challenge, as it requires the implementation of cross-cutting techniques
such as dependency tracking, caching, cache invalidation, change detection,
and persistence, which are complicated and error-prone to implement. Making

4

incrementality scale is even more challenging, as incrementality must scale up
to tracking large dependency graphs, cache large amounts of data, do cache
invalidation through these large graphs, and detect low-impact changes.

Finally, the programming system, and the incremental and scalable imple-
mentation of these parts, needs to be correct. However, since these methods are
complicated and error-prone to implement, they cause subtle incrementality
bugs that are hard to detect and reproduce, therefore reducing the correctness
of the programming system. In summary, manual implementation of correct
incremental and scalable interactive programming environments has a high
development and maintenance effort, preventing us from developing interac-
tive programming environments for the many DSLs that need to be developed
for many problem domains.

What we need is a systematic approach to make interactive programming
systems responsive and correct, without having to manually implement the
complicated methods to achieve these qualities for every programming lan-
guage. Therefore, we should use language-parametric methods for developing re-
sponsive and correct interactive programming systems. A language-parametric
method takes as input an implementation or description of a programming
language, and automatically produces an instance of that method, without
the developer having to know much about the method at all. For example,
a language-parametric incremental name and type analysis framework takes
as input a language description, and automatically produces a correct and
responsive name and type analysis, without the language developer having to
worry about incrementality and scalability, and correctness thereof. This en-
ables us to efficiently develop and maintain correct and responsive interactive
programming environments for many DSLs.

The idea of language-parametric methods is not new. Therefore, we first de-
scribe several existing language-parametric methods, describe open problems,
and then follow up with our contributions: language-parametric methods for
developing responsive and correct interactive programming systems.

1.4 Language-Parametric Methods

One way of developing a programming language, is to use several disjunct
but flexible compiler-compiler tools, which are tools that compile the compiler
of a programming language. For example, one can specify a lexical analyzer
(lexer) in tools such as Lex [19] or Flex [96], and then a context-free parser in
Yacc [19] or Bison [96]. From such specifications, programs implementing a
lexer and context-free analyzer are generated. A parser can then be created
by feeding the tokens from the lexer into the context-free parser. Therefore,
these tools are language-parametric methods for developing programming
systems. However, these tools do not support the development of interactive
programming systems, and are only available for a limited subset of the
language development domain, such as parsing.

On the other hand, a Language Workbench (LWB) is a set of unified tools for
developing (interactive) programming systems, with the goal of lowering the
cost of developing and maintaining the programming system of DSLs. Al-

Chapter 1. Introduction 5

though language workbenches have been around since the 1980s, the term was
coined by Martin Fowler only in 2005, in his blogpost "Language Workbenches:
The Killer-App for Domain Specific Languages?" [46].

An example of an early language workbench is the Synthesizer Genera-
tor [123], which is a tool for generating editors (program synthesizers) from
programming language descriptions, using incremental execution and inline
error messages for responsive feedback. The ASF + SDF Meta-Environment [80,
14] language workbench included support for specifying program transforma-
tions and generation of interactive programming systems.

Modern language workbenches have been studied in the Language Work-
bench Challenge series of workshops, of which the 2013 edition resulted
in a survey comparing language workbench features [39, 38]. For example,
MetaEdit+ [78] is a platform-independent graphic language workbench for
domain-specific modeling. MPS [159] is a projectional language workbench
supporting non-textual notations such as tables and diagrams. Rascal [81] is a
metaprogramming language and IDE for source code analysis and transforma-
tion. Finally, Spoofax [75] is a language workbench for specification of textual
domain-specific languages with full IDE support.

Language workbenches provide language-parametric methods through meta-
languages, which are programming languages that aid in the development
of programming languages. Typically, meta-languages are domain-specific
instead of general-purpose. For example, Spoofax provides SDF [153], a meta-
DSL for syntax specification, Stratego [18], a meta-DSL for program analysis
and transformation, and ESV [75], a meta-DSL for editor service specification.
The SDF compiler generates a parse table and pretty-printer from an SDF
syntax specification; the Stratego compiler generates an executable program
analyzer and transformer; and the ESV specification is interpreted to provide
editor services such as syntax highlighting and code completions. Therefore,
Spoofax provides language-parametric methods for developing interactive
programming systems.

There are three open problems with the language-parametric methods of
language workbenches that we tackle in this dissertation: missing support for
several sub-domains of language development, a lack of responsiveness, and a
lack of integration between language-parametric methods.

Several subdomains of language development, such as name analysis and
bootstrapping, have no domain-specific language-parametric methods, requir-
ing these problems to be solved by manual encoding in a general-purpose
method, reducing correctness and increasing the development and mainte-
nance effort. We want to move to more domain-specific language-parametric
methods, to benefit from the advantages of domain-specificity, such as direct
expression of problems and solutions in terms of the domain, domain-specific
consistency checking, and deriving multiple semantics from the same specifi-
cation.

Furthermore, several language-parametric methods are not truly responsive;
either requiring manual implementation of complicated methods such as
scalable incrementality, reducing correctness and increasing effort; or cannot

6

be made responsive at all, reducing iteration times and increasing tedium. We
want language-parametric methods for interactive programming environments
to be responsive without much effort by the language developer.

Finally, there is a lack of integration between the language-parametric meth-
ods of language workbenches. Language workbenches have many components,
such as multiple domain-specific meta-languages, their compilers or inter-
preters, generated artifacts of these compilers, compilers that may generate
compilers, editor services, and so forth. All these components must integrate
in a correct and responsive way, for the language workbench to be correct and
responsive. However, this integration is typically manually implemented in
an ad-hoc way, again increasing effort and reducing correctness and respon-
siveness. We need a systematic approach to integrate the language-parametric
methods and components of language workbenches.

This dissertation addresses these open problems with five contributions.

1.5 Contributions

We now summarize the five core contributions of this dissertation.

1.5.1 NaBL: A Meta-DSL for Declarative Name Binding and Scope Rules

Every programming language needs to deal with names, their declarations
and references, scopes, and importing of names into scopes. This is the name
analysis step of the compiler of a programming system, which is often imple-
mented manually with techniques such as nested environments maintained
by tree traversals, or imperative lookup operations. However, this requires the
language developer to think about how to develop name analysis, distracting
from what the name binding rules of their language should be. Therefore,
instead of manually implementing the name binding and scope rules of a
language, we have developed a language-parametric method for declaratively
specifying the name binding rules of a programming language with the Name
Binding Language (NaBL), a domain-specific, declarative, meta-language.

With NaBL, a language developer declaratively specifies the name binding
rules of their programming language in terms of definition and use sites of
names, properties of these names associated to language constructs, namespa-
ces for separating categories of names, scopes in which definitions are visible,
and imports between scopes. From such a specification, we automatically
derive a name analysis, and editor services for inline error checking, reference
resolution, and code completion. We evaluate NaBL by specifying many name
binding features of C# in NaBL, and by specifying common name binding
patterns such as scoped, non-unique, globally visible, and subsequently visible
definitions; and overloaded, type-directed, and nested references.

In conclusion, NaBL provides a language-parametric method for developing
correct name analyses and corresponding editor services.

Chapter 1. Introduction 7

1.5.2 A Language Independent Task Engine for Incremental Name and Type Analysis

While NaBL provides a language-parametric method for name analysis, it
does not support the definition of typing rules, and is not incremental, and
therefore does not truly provide editor services for a responsive interactive
programming environment. To mitigate this problem, we have developed a
language independent task engine for incremental name and type analysis. In
this approach, we specify naming rules in NaBL, and typing rules in TS – a
meta-DSL for simple type system specification – from which we automatically
derive a traversal that collects naming and typing tasks when given a program.
Then, we collect tasks for a program and send them to the task engine, which
incrementally executes changed tasks to incrementally execute name and type
analysis, updating data structures required for editor services such as code
completion, and responsively providing inline name and type error/warning
messages.

We experimentally evaluate the correctness and responsiveness of our ap-
proach by running the incremental name and type analysis against the changes
in the source code repository of a real-world application written in a real-world
DSL. The evaluation shows that incremental and non-incremental analysis pro-
duce the same solution, showing correctness, and that for single-file changes,
incremental analysis takes between 0.37 and 1.12 seconds, showing acceptable
response times for interactive settings.

In conclusion, NaBL, TS, and the incremental task engine provide a language-
parametric method for developing correct and responsive name and type
analyses with corresponding editor services.

1.5.3 Bootstrapping Domain-Specific Meta-Languages of Language Workbenches

A bootstrapped compiler can compile its own source code, because the compiler
is written in the compiled language itself. For example, the GCC compiler for
the C language is a bootstrapped compiler; its source code is written in C and
can compile itself. Bootstrapping yields several advantages:

• The compiler is written in the compiled high-level language.

• It provides a large-scale test case for detecting defects in the compiler and
the compiled language.

• It shows that the language’s coverage is sufficient to implement itself.

• Compiler improvements such as better static analysis or the generation of
faster code applies to all compiled programs, including the compiler itself.

A language workbench provides high-level meta-languages (e.g. NaBL and TS)
for developing DSLs and their compilers. Thus, users of a language workbench
(language developers) develop their DSL in meta-languages, and therefore
do not have to bootstrap their own language, which is good since DSLs
have limited expressiveness and are often ill-suited for compiler development.
What we desire instead, is bootstrapping the meta-language compilers of language
workbenches, inheriting the benefits of bootstrapping stated above.

However, bootstrapping a language workbench is complicated by the fact

8

that most provide multiple separate domain-specific meta-languages for describing
different language aspects such as syntax, name analysis, type analysis, code
generation, and so forth. Thus, in order to build a meta-language compiler,
multiple meta-language compilers need to be applied, entailing intricate de-
pendencies that sound language workbench bootstrapping needs to handle.
Furthermore, most language workbenches provide an interactive programming
system for their meta-languages, supporting interactive development of DSLs.
Therefore, bootstrapping operations must be available and observable in this
interactive environment.

Our solution to these problems is to do versioning and dependency tracking
between meta-languages, and perform fixpoint bootstrapping, where we iter-
atively self-apply meta-language compilers to derive new versions until no
change occurs. Fixpoint bootstrapping is correct: it either produces a new
baseline when it reaches a fixpoint, or stops and displays an error when it
finds a defect (i.e., applying a meta-language compiler in an iteration failed), as
long as meta-language compilers are deterministic and converge to a fixpoint.
Furthermore, bootstrapping operations can be started, cancelled (when diverg-
ing), and rolled back (when defect) interactively, supporting the interactive
programming system of the language workbench.

To evaluate our approach, we have implemented fixpoint bootstrapping
for the Spoofax language workbench, and used it to successfully bootstrap
eight meta-languages with seven changes. In conclusion, our approach pro-
vides a (meta)language-parametric method for correctly and interactively
bootstrapping the meta-languages of language workbenches, in an interactive
programming environment.

1.5.4 PIE: a DSL, API, and Runtime for Interactive Software Development Pipelines

A software development pipeline automates parts of the software engineering
process, such as building software via build scripts, continuous integration
testing and benchmarking on build farms, and automatic deployment of
software artifacts to production servers. An interactive software development
pipeline builds software artifacts, but also reacts immediately to changes in
input, and provides timely feedback to the user. An interactive programming
system is an instance of such a pipeline, where changes to programs are
immediately processed to provide timely feedback to programmers.

However, interactivity complicates the development of pipelines, if respon-
siveness and correctness become the responsibility of the pipeline programmer,
rather than being supported by the underlying system. Therefore, we need a
system that is expressive enough to describe interactive software development
pipelines, such as the interactive programming systems of LWBs, while still
being correct and responsive.

Most build systems are not expressive enough, as they only support static
dependencies, where all dependencies to files or build tasks have to be stated
statically and up-front in the build script, whereas in a software development
pipeline many dependencies only become evident during build execution. One
build system that is expressive enough, is Pluto [36], a sound and optimal

Chapter 1. Introduction 9

incremental build system with support for dynamic dependencies, enabling build
tasks to create dependencies to files and tasks during build execution, possibly
based on (dynamic) values produced by previous build tasks. However, Pluto
suffers from four open problems affecting ease of development: requiring
a lot of Java boilerplate to define build tasks; semi-automated persistence,
requiring pipeline programmers to manually reason about where to cache task
outputs; explicit dependency tracking where dependencies could be inferred;
and missing domain-specific software development pipeline features such as
file system paths and support for lists.

To solve these problems, we have developed Pipelines for Interactive Envi-
ronments (PIE), a DSL, Application Program Interface (API), and runtime for
developing correct and responsive interactive software development pipelines,
where ease of development is a focus. The PIE DSL serves as a front-end
for developing pipelines with minimal boilerplate in a functional language
with support for concepts from the interactive software development pipe-
line domain such as dependencies, filesystem paths and operations, and list
operations. The PIE API is a lower-level front-end for developing foreign
pipeline functions which cannot be modeled in the DSL, while having reduced
boilerplate compared to Pluto, and also serves as a compilation target for the
DSL. Finally, the runtime incrementally executes pipelines implemented in
the API using Pluto’s incremental build algorithm, while fully automating
persistence and inferring dependencies where possible.

We evaluate PIE with two case studies, one being the reimplementation of a
significant part of the interactive programming system of the Spoofax language
workbench in PIE. The existing pipeline of Spoofax’s interactive programming
system was scattered across four different formalisms, decreasing ease of
development; overapproximates dependencies, causing loss of incrementality;
and underapproximates dependencies, causing loss of correctness. However,
with PIE, we can easily integrate the different components of Spoofax; such
as its parser, analyzers, transformations, build scripts, editor services, meta-
languages, and dynamic language loading; into a single formalism. PIE ensures
that the pipeline is correct and responsive, without the pipeline programmer
having to implement techniques such as incrementality, or without having to
reason about correctness. In conclusion, PIE provides a language-parametric
method for developing interactive software development pipelines, a superset
of correct and responsive interactive programming environments.

1.5.5 Scalable Incremental Building with Dynamic Task Dependencies

Previous work on PIE builds forth on Pluto by improving its ease of use, but
essentially uses the same incremental build algorithm. To make a build up-to-
date after changes, the Pluto incremental build algorithm traverses the entire
dependency graph (produced in a previous build) from top to bottom, while
re-executing tasks affected by a change, and possibly executing new tasks. This
enables Pluto to detect changes to files and tasks without the user having to tell
Pluto what has actually changed, while also elegantly discovering changes to
dynamic dependencies by (re-)executing (new) tasks. However, the downside is

10

that this algorithm does not scale, because the traversal is dependent on the size
of the dependency graph, not the impact of the change. This quickly becomes
a problem in interactive programming systems, where there are many changes
and those changes have a low-impact (e.g., programmer typing characters
into an editor), while the program and its induced dependency graph is large.
For example, in the Spoofax language workbench pipeline, we observed ∼ 3
second build times even when nothing has changed. Therefore, we need a
new incremental build algorithm that scales down to many low-impact changes,
while scaling up to large dependency graphs, while still supporting dynamic
dependencies.

To solve this scalability problem, we have developed a new incremental
build algorithm that performs change-driven rebuilding. It takes as input a
set of changed files, starts rebuilding directly affected tasks from the changed
leaves of the dependency graph, and rebuilds transitively affected tasks, while
also accounting for new task dependencies discovered during rebuilding. Our
algorithm scales with the impact of a change, and is independent from the size
of the dependency graph, because it only ever visits affected tasks.

We experimentally evaluate our change-driven bottom-up algorithm by
comparison against Pluto’s top-down algorithm. As a subject, we use the
Spoofax-PIE pipeline, a real-world build script for the interactive program-
ming system of the Spoofax language workbench. To measure incremental
performance an scalability, we synthesized a chain of 60 realistic changes of
varying types and impacts. Results show that for low-impact changes (i.e.,
changes that only cause a small number of tasks to be actually affected), our
change-driven algorithm is several orders of magnitude faster than Pluto’s
top-down algorithm, while not slower for high-impact changes.

In conclusion, our new algorithm makes PIE scalable, in addition to being
correct and responsive. This in turn makes the Spoofax PIE pipeline scalable,
providing a language-parametric method for developing truly correct and
responsive interactive programming systems.

1.6 Research Methodology

We now describe the research methodology used in the core contributions of
this dissertation.

Mary Shaw identified five types of research questions [128] based on the
submissions to the International Conference on Software Engineering (ICSE).
The type of question we answer in this dissertation is a "method or means of
development". That is, what is a better way to develop (or: how do we automate
the development of) correct and responsive interactive programming systems?
Answering this question requires designing new (language-parametric) methods
for developing interactive programming systems. In order to design these
methods systematically, we follow the iterative approach of the memorandum
on design-oriented information systems research [113], consisting of four
phases: analysis, design, evaluation, and diffusion.

In the analysis phase, we identify and describe open problems in the develop-
ment of interactive programming systems, and analyze the relation to existing

Chapter 1. Introduction 11

approaches. In the design phase, we design new methods for developing
interactive programming systems that solve open problems, and create tools
that implement those methods. These tools come in the form of meta-DSLs
and their compilers, APIs that can be programmed against, algorithms that
execute instances of a generic model, and systems that combine these artifacts.

In the evaluation phase, we evaluate to what degree our methods and tools
solve open problems. When the open problem is an ease of development
problem, we evaluate coverage of our method by application to real-world
case studies, show this application in a research paper or external artifact,
and discuss to what degree we improve ease of development. When the open
problem is a performance problem, we experimentally evaluate our approach
against real-world case studies and subjects, measure performance differences,
show the measurement results in a research paper, and discuss to what degree
we improve performance. We experimentally evaluate the correctness of our
approaches with the same case studies and subjects.

In the diffusion phase, we publish our findings as research papers to confer-
ences or journals and present our research at these conferences. Furthermore,
we try to apply our research in industry to gain further insights into applica-
bility and what can be improved, and apply our research to our own systems
(dogfooding), possibility spinning up new research projects.

1.7 Structure

We now discuss the rest of the structure of this dissertation. The main chapters
of this dissertation are based on five peer-reviewed publications. The author of
this dissertation is the main contributor of all publications, and the first author
for four of the publications. In the publication for chapter 3, Guido Wachsmuth
is the first author, since he did most of the writing, whereas the author of
this dissertation implemented the task engine, implemented the benchmark
subjects, helped with benchmarking, and wrote parts of the introduction and
evaluation sections, and the related work section.

Since each main chapter is based on a stand-alone publication with distinct
contributions, there is some redundancy, especially in the introduction sections.
However, we chose not to remove that redundancy, in order to ensure that each
chapter can be read independently. The main chapters and their corresponding
publication are as follows:

• Chapter 2 is an updated version of the SLE 2012 paper Declarative Name
Binding and Scope Rules [89].

• Chapter 3 is an updated version of the SLE 2013 paper A Language Indepen-
dent Task Engine for Incremental Name and Type Analysis [160].

• Chapter 5 is an updated version of the GPCE 2016 paper Bootstrapping
Domain-Specific Meta-Languages in Language Workbenches [86].

• Chapter 7 is an updated version of the Programming 2018 paper PIE: A
Domain-Specific Language for Interactive Software Development Pipelines [91].

• Chapter 8 is an updated version of the ASE 2018 paper Scalable Incremental

12

Building with Dynamic Task Dependencies [87].

We reflect on incremental name and type analysis, bootstrapping, and
our engineering work on Spoofax Core in chapter 4, and reflect on language
workbench pipelines in chapter 6. Finally, we end with a conclusion in chapter 9

where we summarize our work, discuss the work in relation to the thesis, and
discuss future work.

Chapter 1. Introduction 13

14

2
NaBL: A Meta-DSL for Declarative Name
Binding and Scope Rules

Abstract

In textual programming languages, names are used to reference elements like
variables, methods, classes, etc. Name resolution analyses these names in order
to establish references between definition and use sites of elements. In this
chapter, we identify recurring patterns for name bindings in programming
languages and introduce NaBL, a declarative metalanguage for the specifica-
tion of name bindings in terms of namespaces, definition sites, use sites, and
scopes. Based on such declarative name binding specifications, we provide a
language-parametric algorithm for static name resolution during compile-time.
We discuss the integration of the algorithm into the Spoofax Language Work-
bench and show how its results can be employed in semantic editor services
like reference resolution, constraint checking, and content completion.

2.1 Introduction

Software language engineering is concerned with linguistic abstraction, the
formalization of our understanding of domains of computation in higher-level
software languages. Such languages allow direct expression in terms of the
domain, instead of requiring encoding in a less specific language. They raise
the level of abstraction and reduce accidental complexity.

One of the key goals in the field of language engineering is to apply these
techniques to the discipline itself: high-level languages to specify all aspects of
software languages. Declarative languages are of particular interest since they
enable language engineers to focus on the What? instead of the How?.

Syntax definitions are a prominent example. With declarative formalisms
such as Extended Backus–Naur Form (EBNF), we can specify the syntactic
concepts of a language without specifying how they can be recognized pro-
grammatically. This declarativity is crucial for language engineering. Losing
it hampers evolution, maintainability, and compositionality of syntax defini-
tions [76].

Despite the success of declarative syntax formalisms, we tend to program-
matic specifications for other language aspects. Instead of specifying languages,
we build programmatic language processors, following implementation pat-
terns in rather general specification languages. These languages might still be
considered domain-specific, when they provide special means for program-
matic language processors. They also might be considered declarative, when
they abstract over computation order. However, they enable us only to imple-
ment language processors faster, but not to specify language aspects. They lack

15

domain concepts for these aspects and focus on the How?. That is a problem
since (1) it entails overhead in encoding concepts in a programming language
and (2) the encoding obscures the intention; understanding the definition
requires decoding.

Our goal is to extend the set of really declarative, domain-specific languages
for language specifications. In this paper, we are specifically concerned with
name binding and scope rules. Name binding is concerned with the relation
between definitions and references of identifiers in textual software languages,
including scope rules that govern these relations. In language processors, it
is crucial to make information about definitions available at the references.
Therefore, traditional language processing approaches provide programmatic
abstractions for name binding. These abstractions are centered around tree
traversal and information propagation from definitions to references. Typically,
they are not specifically addressing name binding, but can also be used for
other language processing tasks such as compilation and interpretation.

Name binding plays a role in multiple language engineering processes,
including editor services such as reference resolution, code completion, refac-
torings, type checking, and compilation. The different processes need different
information about definitions. For example, name resolution tries to find
one definition, while code completion needs to determine all possible refer-
ences in a certain place. The different requirements lead either to multiple
re-implementations of name binding rules for each of these purposes, or to
non-trivial, manual weaving into a single implementation supporting all pur-
poses. This results in code duplication with as result errors, inconsistencies,
and increased maintenance effort.

The traditional paradigm influences not only language processing, but also
language specification. For example, the Object Constraint Language (OCL)
standard [111] specifies name binding in terms of nested environments, which
are maintained in a tree traversal. The C# language specification [134] defines
name resolution as a sequence of imperative lookup operations. In this paper,
we abstract from the programmatic mechanics of name resolution. Instead,
we aim to declare the roles of language constructs in name binding and leave
the resolution mechanics to a generator and run-time engine. We introduce
the NaBL, a language with linguistic abstractions for declarative definition of
name binding and scope rules. NaBL supports the declaration of definition
and use sites of names, properties of these names associated with language
constructs, namespaces for separating categories of names, scopes in which
definitions are visible, and imports between scopes.

NaBL is integrated in the Spoofax Language Workbench [75], but can be
reused in other language processing environments. From definitions in the
name binding language, a compiler generates a language-specific name reso-
lution strategy in the Stratego rewriting language [151] by parametrizing an
underlying generic, language independent strategy. Name resolution results
in a persistent symbol table for use by semantic editor services such as refer-
ence resolution, consistency checking of definitions, type checking, refactoring,
and code generation. The implementation supports multiple file analysis by

16

default.
We proceed as follows. In sections 2.2 and 2.3 we introduce NaBL by

example, using a subset of the C# language. In section 2.4 we discuss the
derivation of editor services from a name binding specification. In section 2.5
we give a high-level description of the generic name resolution algorithm
underlying NaBL. In section 2.6 we discuss the integration of NaBL into the
Spoofax Language Workbench. In section 2.7 we discuss NaBL’s applicability
to different languages. Finally, section 2.8 discusses related work.

2.2 Declarative Name Binding and Scope Rules

In this section we introduce NaBL, illustrated with examples drawn from the
specification of name binding for a subset of C# [134]. Listing 2.1 defines the
syntax of the subset in Syntax Definition Formalism (SDF) [153]. The subset is
by no means complete; it has been selected to model representative features
of name binding rules in programming and domain-specific languages. In
the following subsections we discuss the following fundamental concepts of
name binding: definition and use sites, namespaces, scopes, and imports. For each
concept we give a general definition, illustrate it with an example in C#, and
then we show how the concept can be modeled in NaBL.

2.2.1 Definitions and References

The essence of name binding is establishing relations between a definition that
binds a name and a reference that uses that name. Name binding is typically
defined programmatically through a name resolution algorithm that connects
references to definitions. A definition site is the location of a definition in a
program.

In many cases, definition sites are required to be unique, that is, there should
be exactly one definition site for each name. However, there are cases where
definition sites are allowed to be non-unique.

Example. Listing 2.2a contains class definitions in C#. Each class definition
binds the name of a class. Thus, we have definition sites for A, B, and C. Base
class specifications are references to these definition sites. In the example, we
have references to A as the base class of B and B as the base class of C. (Thus, B
is a sub-class of, or inherits from A.) There is no reference to C.

The definition sites for A and B are unique. By contrast, there are two
definition sites for C, defining parts of the same class C. Thus, these definition
sites are non-unique. This is correct in C#, since regular class definitions
are required to be unique, while partial class definitions are allowed to be
non-unique.

Abstract Syntax Terms. In Spoofax, abstract syntax trees (ASTs) are repre-
sented using first-order terms. Terms consist of strings ("x"), lists of terms
(["x","y"]), and constructor applications (ClassType("A")) for labelled tree
nodes with a fixed number of children. Annotations in grammar produc-
tions (listing 2.1) define the constructors to be used in AST construction. For
example, Class(Partial(), "C", Base("B"), []) is the representation of the

Chapter 2. NaBL: Declarative Name Binding and Scope Rules 17

Using* NsMem* -> CompUnit {"Unit"}

"using" NsOrTypeName ";" -> Using {"Using"}
"using" ID "=" NsOrTypeName -> Using {"Alias"}
ID -> NsOrTypeName {"NsOrType"}
NsOrTypeName "." ID -> NsOrTypeName {"NsOrType"}

"namespace" ID "{" Using* NsMem* "}" -> NsMem {"Namespace"}
Partial "class" ID Base "{" ClassMem* "}" -> NsMem {"Class"}

-> Partial {"NonPartial"}
"partial" -> Partial {"Partial"}

-> Base {"NoBase"}
":" ID -> Base {"Base"}

Type ID ";" -> ClassMem {"Field"}
RetType ID "(" {Param ","}* ")" Block ";" -> ClassMem {"Method"}

ID -> Type {"ClassType"}
"int" -> Type {"IntType"}
"bool" -> Type {"BoolType"}
Type -> RetType
"void" -> RetType {"Void"}
Type ID -> Param {"Param"}

"{" Stmt* "}" -> Block {"Block"}
Decl -> Stmt
EmbStmt -> Stmt
"return" Exp ";" -> Stmt {"Return"}
Type ID ";" -> Decl {"Var"}
Type ID "=" Exp ";" -> Decl {"Var"}
Block -> EmbStmt
StmtExp ";" -> EmbStmt
"foreach" "(" Type ID "in" Exp ")" EmbStmt -> EmbStmt {"Foreach"}

INT -> Exp {"IntLit"}
"true" -> Exp {"True"}
"false" -> Exp {"False"}
ID -> Exp {"VarRef"}
StmtExp -> Exp
Exp "." ID -> StmtExp {"FieldAccess"}
Exp "." ID "(" {Exp ","}* ")" -> StmtExp {"Call"}
ID "(" {Exp ","}* ")" -> StmtExp {"Call"}

Listing 2.1: Syntax definition in SDF2 for a subset of C#. The names in the
annotations are abstract syntax tree constructors.

18

class A {}
class B:A {}
partial class C:B{
}
partial class C {}

(a) Class declarations
in C#.

rules
Class(NonPartial(), c, _, _): defines unique class c
Class(Partial(), c, _, _) : defines non-unique class c
Base(c) : refers to class c
ClassType(c) : refers to class c

(b) NaBL specification of definitions and references for C# class
names.

Listing 2.2: Definitions and references of names.

class x {
int x;

void x() {
int x;
x = x + 1;

}

}

(a) Homonym declarations in C#.

namespaces class field method variable
rules

Field(_, f) : defines unique field f
Method(_, m, _, _): defines unique method m
Call(m, _) : refers to method m

Var(_, v): defines unique variable v
VarRef(x): refers to variable x

otherwise to field x

(b) NaBL specification for different C# namespaces.

Listing 2.3: Namespaces of definitions and use sites.

first partial class in listing 2.2a. A term pattern is a term that may contain
variables (x) and wildcards (_).

Model. A specification in NaBL consists of a collection of rules of the form
pattern : clause*, where pattern is a term pattern and clause* is a list of
name binding declarations about the language construct that matches with
pattern.

Listing 2.2b shows a declaration of the definitions and references for class
names in C#. The first two rules declare class definition sites for class names.
Their patterns distinguish regular (non-partial) and partial class declarations.
While non-partial class declarations are unique definition sites, partial class
declarations are non-unique definition sites. The third rule declares that the
term pattern Base(c) is a reference to a class with name c. Thus, the ": A" in
listing 2.2a is a reference to class A. Similarly, the second rule declares a class
type as a reference to a class.

2.2.2 Namespaces

Definitions and references declare relations between named program elements
and their uses. Languages typically distinguish several namespaces, i.e. different
kinds of names, such that an occurrence of a name in one namespace is not
related to an occurrence of that same name in another.

Example. Listing 2.3a shows several definitions for the same name x, but of
different kinds, namely a class, a field, a method, and a variable. Each of these
kinds has its own namespace in C#, and each of these namespaces has its own

Chapter 2. NaBL: Declarative Name Binding and Scope Rules 19

class C {
void m() {

int x;
}

}

class D {
void m() {

int x;
int y;
{ int x; x = y + 1; }
x = y + 1;

}
}

(a) Scoped homonym method and variable
declarations in C#.

rules
Class(NonPartial(), c, _, _):

defines unique class c
scopes field, method

Class(Partial(), c, _, _):
defines non-unique class c
scopes field, method

Method(_, m, _, _):
defines unique method m
scopes variable

Block(_): scopes variable

(b) NaBL specification of scopes for different
C# namespaces.

Listing 2.4: Named and anonymous lexical scopes.

name x. This enables us to distinguish the definition sites of class x, field x,
method x, and variable x, which are all unique.

Model. We have declared definitions and references for the namespace class
already in the previous example. Listing 2.3b extends that declaration covering
also the namespaces field, method, and variable. Note that it is required to
declare namespaces to ensure the consistency of name binding rules. Definition
sites are bound to a single namespace (defines class c), but use sites are not.
For example, a variable in an expression might either refer to a variable, or
to a field, which is modeled in the last rule. In our example, this means that
variable declarations hide field declarations, because variables are resolved to
variables, if possible. Thus, both x in the assignment in listing 2.3a refer to the
variable x.

2.2.3 Scopes

Scopes restrict the visibility of definition sites. A named scope is the definition
site for a name which scopes other definition sites. By contrast, an anonymous
scope does not define a name. Scopes can be nested and name resolution
typically looks for definition sites from inner to outer scopes.

Example. Listing 2.4a includes two definition sites for a method m. These defi-
nition sites are not distinguishable by their namespace method and their name
m, but, they are distinguishable by the scope they are in. The first definition
site resides in class C, the second one in class D. In C#, class declarations scope
method declarations. They introduce named scopes, because class declarations
are definition sites for class names. The listing also contains three definition
sites for a variable x. Again, these are distinguishable by their scope.

In C#, method declarations and blocks scope variable declarations. Method
declarations are named scopes, blocks are anonymous scopes. The first defi-
nition site resides in method m in class C, the second one in method m in class

20

namespace N {
class N {}

namespace N { class N {} }
}

(a) Nested namespace declarations in C#.

namespaces namespace
rules

Namespace(n, _):
defines namespace n
scopes namespace, class

(b) NaBL specification for C# nested name-
space declarations.

Listing 2.5: Nested C# namespaces.

D, and the last one in a nameless block inside method m in class D. In the
assignment inside the block (line 9), x refers to the variable declaration in the
same block, while the x in the outer assignment (line 10) refers to the variable
declaration outside the block. In both assignments, y refers to the variable
declaration in the outer scope, because the block does not contain a definition
site for y.

Model. The scopes ns clause in NaBL declares a construct to be a scope for
namespace ns. Listing 2.4b declares scopes for fields, methods, and variables.
Named scopes are declared at definition sites. Anonymous scopes are declared
similarly, but lack a defines clause.

2.2.4 Namespaces as Language Concepts

C# has a notion of ‘namespaces’. It is important to distinguish these namespaces
as a language concept from namespaces as a naming concept, which group names of
different kinds of declarations. Specifically, in C#, namespace declarations are
top-level scopes for class declarations. Namespace declarations can be nested.

Example. Listing 2.5a declares a top-level namespace N, scoping a class declara-
tion N and an inner namespace declaration N. The inner namespace declaration
scopes another class declaration N. The definition sites of the namespace name
N and the class name N are distinguishable, because they belong to different
namespaces (as a naming concept). The two definition sites of namespace
name N are distinguishable by scope. The outer namespace declaration scopes
the inner one. Also, the definition sites of the class name N are distinguishable
by scope. The first one is scoped by the outer namespace declaration, while
the second one is scoped by both namespace declarations.

Model. The names of C# namespace declarations are distinguishable from
names of classes, fields, etc. As declared in listing 2.5b, their names belong to
the namespace namespace. The name binding rules for definition sites of names
of this namespace models the scoping nature of C# namespace declarations.

2.2.5 Imports

An import introduces into the current scope definitions from another scope,
either under the same name or under a new name. An import that imports all
definitions can be transitive.

Chapter 2. NaBL: Declarative Name Binding and Scope Rules 21

using N;

namespace M {
class C {

int f;
}

}

namespace O {
using D = M.C;
class E:D {

void m() {}
}
class F:E { }

}

(a) Various forms of imports in C#.

rules
Using(qname):

imports class from namespace ns
where qname refers to namespace ns

Alias(alias, qname):
imports namespace ns as alias
where qname refers to namespace ns
otherwise imports class c as alias
where qname refers to class c

Base(c):
imports field (transitive),

method (transitive)
from class c

(b) NaBL specification of C# import mechanisms.

Listing 2.6: Importing definitions from another scope.

Example. Listing 2.6a shows different kinds of imports in C#. First, a using
directive imports type declarations from namespace N. Second, another using
directive imports class C from namespace M into namespace O under a new
name D. Finally, classes E and F import fields and methods from their base
classes. These imports are transitive, that is, F imports fields and methods from
E and D.

Model. Listing 2.6b shows name binding rules for import mechanisms in C#.
The first rule handles using declarations, which import all classes from the
namespace to which the qualified name qname resolves to. The second rule
models aliases, which either import a namespace or a class under a new name,
depending on the resolution of qname. The last rule models inheritance, where
fields and methods are imported transitively from the base classes into the
current (parent class) scope.

2.2.6 Types

So far, we discussed names, namespaces, and scopes to distinguish definition
sites for the same name. Types also play a role in name resolution and can
be used to distinguish definition sites for a name or to find corresponding
definition sites for a use site.

Example. Listing 2.7a shows a number of overloaded method declarations.
These share the same name m, namespace method, and scope class C. But we can
distinguish them by the types of their parameters. Furthermore, all method
calls inside method x can be uniquely resolved to one of these methods by
taking the argument types of the calls into account.

Model. Listing 2.7b includes type information into name binding rules for
fields, methods, and variables. Definition sites might have types. In the
simplest case, the type is part of the declaration. In the example, this holds for
parameters. For method calls, the type of the definition site for a method name

22

class C {
void m() {}
void m(int x) {}
void m(bool x) {}
void m(int x, int y) {}
void m(bool x, bool y) {}
void x() {

m();
m(42);
m(true);
m(21, 21);
m(true, false);

}
}

(a) Overloaded method declarations in
C#.

rules
Method(t, m, p*, _):

defines unique method m
of type (t*, t)

where p* has type t*

Call(m, a*):
refers to method m

of type (t*, _)
where a* has type t*

Param(t, p):
defines unique variable p

of type t

(b) Types in name binding rules for C# overloaded
methods.

Listing 2.7: Types of definitions, and type-dependent use sites.

depends on the types of the parameters. A type system is needed to connect
the type of a single parameter, as declared in the rule for parameters, and
the type of a list of parameters, as required in the rule for methods. We will
discuss the influence of a type system and the interaction between name and
type analysis later. For now, we assume that the type of a list of parameters is
a list of types of these parameters.

Type information is also needed to resolve method calls to possibly over-
loaded methods. The refers clause for method calls therefore requires the
corresponding definition site to match the type of the arguments. Again, we
omit the details how this type can be determined. We also do not consider
subtyping here. Method calls and corresponding method declarations need to
have the same argument and parameter types.

2.3 Name Binding Patterns

We now identify typical name binding patterns. These patterns are formed
by scopes, definition sites and their visibility, and use sites referencing these
definition sites. We explain each pattern first and give an example in C# next.
Afterwards, we show how the example can be modeled with declarative name
binding rules.

2.3.1 Unscoped Definition Sites

In the simplest case, definition sites are not scoped and globally visible.

Example. In C#, namespace and class declarations (as well as any other type
declaration) can be unscoped. They are globally visible across file boundaries.
For example, the classes C1, C2, and C3 in Listing 2.2a are globally visible. In
listing 2.3a, only the outer namespace N is globally visible.

In contrast to C#, C++ has file scopes and all top-level declarations are
only visible in a file. To share global declarations, each file has to repeat the

Chapter 2. NaBL: Declarative Name Binding and Scope Rules 23

rules
CompilationUnit(_, _):

scopes namespace, class

(f, CompilationUnit(_, _)):
defines file f
scopes namespace, class

Listing 2.8: Two ways to model file scope for top-level syntax tree nodes in NaBL.

rules
Namespace(n, _):

defines non-unique namespace n in surrounding scope

Var(t, c):
defines unique variable of type t in subsequent scope

Listing 2.9: NaBL specification of the visibility of definition sites inside scopes.

declaration and mark it as extern. This is typically achieved by importing a
shared header file.

Model. We consider any definition site that is not scoped by another definition
site or by an anonymous scope to be in global scope. These definition sites are
visible over file boundaries. File scope can be modeled with a scoping rule in
two different ways. Both are illustrated in listing 2.8.

The first rule declares the top-level node of abstract syntax trees as a scope
for all namespaces which can have top-level declarations. This scope will be
anonymous, because the top-level node cannot be a definition site (otherwise
this definition site would be globally visible). The second rule declares a tuple
consisting of file name and the abstract syntax tree as a scope. This tuple will
be considered a definition site for the file name. Thus, the scope will be named
after the file.

2.3.2 Definition Sites inside their Scopes

Typically, definition sites reside inside the scopes where they are visible. Such
definition sites can either be visible only after their declaration, or everywhere
in their surrounding scope.

Example. In C#, namespace members such as nested namespace declarations
and class declarations are visible in their surrounding scope. The same holds
for class members. In contrast, variable declarations inside a method scope
become visible only after their declaration.

Model. Scoped definition sites are by default visible in the complete scope.
Optionally, this can be stated explicitly in defines clauses. Listing 2.9 illustrates
this for namespace declarations. The second rule in this listing shows how to
model definition sites which become visible only after their declaration.

24

class C {
void m(int[] x) {

foreach(int x in x)
System.Console.WriteLine(x);

}
}

(a) Loop with scoped iterator variable x in C#.

rules

Foreach(t, v, exp, body):
defines unique variable v

of type t
in body

(b) NaBL specification of C# foreach loops.

Listing 2.10: Definition sites outside of their scopes.

rules
Seq(Var(t, v), stmts): defines unique variable v of type t in stmts

[Var(t, v) | stmts] : defines unique variable v of type t in stmts

Listing 2.11: Two ways to model definition sites becoming visible after their declara-
tion.

2.3.3 Definition Sites outside their Scopes

Some declarations include not only the definition site for a name, but also the
scope for this definition site. In such declarations, the definition site resides
outside its scope.

Example. Let expressions are a classical example for definition sites outside
their scopes. In C#, foreach statements declare iterator variables, which are
visible in embedded statements. Listing 2.10a shows a method with a param-
eter x, followed by a foreach statement with an iterator variable of the same
name. This is considered incorrect in C#, because definition sites for variable
names in inner scopes collide with definition sites of the same name in outer
scopes. However, the use sites can still be resolved based on the scopes of the
definition sites. The use site for x inside the loop refers to the iterator variable,
while the x in the collection expression refers to the parameter.

Model. Listing 2.10b shows the name binding rule for foreach loops, stating
the scope of the variable explicitly. Note that definition sites which become
visible after their declaration are a special case of this pattern. Listing 2.11

illustrates how this can be modeled in the same way as the foreach loop. The
first rule assumes a nested representation of statement sequences, while the
second rule assumes a list of statements.

2.3.4 Contextual Use Sites

Definition sites can be referenced by use sites outside of their scopes. These
use sites appear in a context which determines the scope into which they refer.
This context can either be a direct reference to this scope, or has a type which
determines the scope.

Example. In C#, namespace members can be imported into other namespaces.
Listing 2.5a shows a class N in a nested namespace. In listing 2.12a, this class is

Chapter 2. NaBL: Declarative Name Binding and Scope Rules 25

using N.N.N;

namespace N' {
class C {

C f;
void m(C p) { }

}
class D {

void m(C p) {
p.m(p.f);

}
}

}

(a) Contextual use sites in C#.

rules
NsOrType(n1, n2):

refers to namespace n2 in ns
otherwise to class n2 in ns
where n1 refers to namespace ns

FieldAccess(e, f):
refers to field f in c
where e has type ClassType(c)

MethodCall(e, m, p*):
refers to method m of type (t*, _) in c
where e has type ClassType(c)
where p* has type t*

(b) NaBL specification of contextual use sites.

Listing 2.12: Contextual use sites.

imported. The using directive refers to the class with a qualified name. The
first part of this name refers to the outer namespace N. It is the context of the
second part, which refers to the inner namespace N. The second part is then
the context for the last part of the qualified name, which refers to the class N
inside the inner namespace.

Listing 2.12a also illustrates use sites in a type-based context. In method m
in class D, a field f is accessed. The corresponding definition site is outside
the scope of the method in class C. But this scope is given by the type of p,
which is the context for the field access. Similarly, the method call is resolved
to method m in class C because of the type of p.

Model. Listing 2.12b illustrates how to model contextual use sites. The scope
of the declaration site corresponding to a use site can be modeled in refers
clauses. This scope needs to be determined from the context of the use site.
The first rule resolves the context of a qualified name part to a namespace
ns and declares the use site to refer either to a namespace or to a class in ns.
The remaining rules declare use sites for field access and method calls. They
determine the type of the context, which needs to be a class type. A field
access refers to a field in that class. Similarly, a method call refers to a method
with the right parameter types in that class.

2.4 Editor Services

Modern IDEs provide a wide range of editor services where name resolution
plays a large role. Traditionally, each of these services would be handcrafted
for each language supported by the IDE, requiring substantial effort. However,
by accurately modeling the relations between names in NaBL, it is possible to
generate a name resolution algorithm and editor services that are based on
that algorithm.

26

Figure 2.1: Reference resolution of name field reference to name field definition,
derived from a NaBL specification

Figure 2.2: Error checking derived from NaBL rules. posterName is declared twice,
and nam is not declared at all.

2.4.1 Reference Resolving

Name resolution is exposed directly in the IDE in the form of reference re-
solving: press and hold Control and hover the mouse cursor over an identifier
to reveal a blue hyperlink that leads to its definition side. This behavior is
illustrated in fig. 2.1.

2.4.2 Constraint Checking

Modern IDEs statically check programs against a wide range of constraints.
Constraint checking is done on the fly while typing and directly displayed in
the editor via error markers on the text and in the outline view. Error checking
constraints are generated from the NaBL for common name binding errors
such as unresolved references, duplicate definitions, use before definition and
unused definitions.

Figure 2.2 shows an editor with error markers. The message parameter in the
post method has a warning marker indicating that it is not used in the method
body. On the line that follows it, the posterName variable is assigned but has
not yet been declared, violating the visibility rules of listing 2.9. Other errors
in the method include a subsequent duplicate definition of posterName, which
violates the uniqueness constraint of the variable namespace of listing 2.3b,
and referencing a non-existent property nam.

Chapter 2. NaBL: Declarative Name Binding and Scope Rules 27

Figure 2.3: Code completion for fields and local variables.

2.4.3 Code Completion

With code completion, partial (or empty) identifiers can be completed to full
identifiers that are valid at the context where code completion is executed.
Figure 2.3 shows an example of code completion. In the left program code
completion is triggered on a field access expression on the user object. The
user object is of type User, so all fields of User are shown as candidates. On
the right, completion is triggered on a variable reference, so all variables in the
current scope are shown.

2.5 Implementation

To implement name resolution based on NaBL, we employ a name resolution
algorithm that relies on a symbol table data structure to persist name bindings
and lazy evaluation to resolve all references. In this section we give an overview
of the data structure, the name resolution algorithm, and their implementation.

2.5.1 Persistence of Name Bindings

To persist name bindings, each definition and reference is assigned a qualified
name in the form of a Uniform Resource Identifier (URI). The URI identifies
the occurrence across a project. Use sites share the URIs of their corresponding
definition sites.

A URI consists of the namespace, the path, and the name of a definition
site. As an example, the URI method://N/C/m is assigned to a method m in
a class C in a namespace N. Here, the segments represent the names of the
scopes. Anonymous scopes are represented by a special path segment anon(u),
where u is a unique string to distinguish different anonymous scopes. For
use in analyses and transformations, URIs can be represented in the form of
Abstract Syntax Trees (ASTs). For example, [method(),"N","C","m"] is the URI
for method m.

All name bindings are persisted in an in-memory data structure called the
semantic index. It consists of a symbol table that lists all URIs that exist in
a project, and can be efficiently implemented as a hash table. It maps each
URI to the file and offset of their occurrences in the project. It can also store
additional information, such as the type of a definition.

28

2.5.2 Resolving Names

Our algorithm is divided into three phases. First, in the annotation phase, all
definition and use sites are assigned a preliminary URI, and definition sites
are stored in the index. Second, definition sites are analyzed, and their types
are stored in the index. And third, any unresolved references are resolved and
stored in the index.

Annotation Phase. In the first phase, the AST of the input file is traversed in
top-down order. The logical nesting hierarchy of programs follows from the
AST, and is used to assign URIs to definition sites. For example, as the traversal
enters the outer namespace scope n, any definitions inside it are assigned a
URI that starts with ‘n.’. As a result of the annotation phase, all definition and
use sites are annotated with a URI. In the case of definition sites, this is the
definitive URI that identifies the definition across the project. For references, a
temporary URI is assigned that indicates its context, but the actual definition it
points to has to be resolved in a following phase. For reference by the following
phases, all definitions are also stored in the index.

Definition Site Analysis Phase. The second phase analyzes each definition site
in another top-down traversal. It determines any local information about the
definition, such as its type, and stores it in the index so it can be referenced
elsewhere. Types and other information that cannot be determined locally are
determined and stored in the index in the last phase.

Use Site Analysis Phase. When the last phase commences, all local information
about definitions has been stored in the index, and non-local information
about definitions and uses in other files is available. What remains is to resolve
references and to determine types that depend on non-local information (in
particular, inferred types). While providing a full description of the use site
analysis phase and the implementation of all name binding constructs is
outside the scope of this paper, the below steps sketch how each reference is
resolved:

1. Determine the temporary URI ns://path/n which was annotated in the first
analysis phase.

2. If an import exists in scope, expand the current URI for that import.

3. If the reference corresponds to a name-binding rule that depends on non-
local information such as types, retrieve that information.

4. Look for a definition in the index with namespace ns, path path, and name n.
If it does not exist, try again with a prefix of path that is one segment shorter.
If the no definition is found this way, store an error for the reference.

5. If the definition is an alias, resolve it.

An important part to highlight in the algorithm is the interaction between
name and type analysis that happens for example with the FieldAccess expres-
sion of listing 2.12b. For name binding rules that depend on types or other
non-local information, it is possible that determining the type recursively trig-

Chapter 2. NaBL: Declarative Name Binding and Scope Rules 29

gers name resolution. For this reason, we apply lazy evaluation, ensuring that
any reference can be resolved lazily as requested in this phase. By traversing
through the entire tree, we ensure that all use sites are eventually resolved and
persisted to the index.

2.6 Integration into Spoofax

NaBL, together with the index, is integrated into the Spoofax Language Work-
bench. Stratego rules are generated by the NaBL compiler that use the index
API to interface with Spoofax. In this section we will show the index API and
how the API is used to integrate the editor services seen in section 2.4.

2.6.1 Index API

Once all analysis phases have been completed, the index is filled with a
summary of every file. To use the summaries we provide the index API with a
number of lookups and queries. Lookups transform annotated identifiers into
definitions. Queries transform definitions (retrieved using a lookup) into other
data. The API is used for integrating editor services, but is also exposed to
Spoofax language developers for specifying additional editor services or other
transformations.

index-lookup-one looks for a definition of the given identifier in its owning
scope. The index-lookup lookup performs a lookup that tries to look for a
definition using index-lookup-one. If it cannot be found, the lookup is restarted
on the outer scope until the root scope is reached. If no definition is found at
the root scope, the lookup fails. There is also an index-lookup-all variant that
returns all found definitions instead of stopping at the first found definition.
Finally, index-lookup-all-levels is a special version of index-lookup-all that
supports partial identifiers.

To get data from the index, index-get-data is used. Given a definition and
a data kind, it will return all data values of that kind that is attached to the
definition. Uses are retrieved in the same way using index-get-uses-all.

2.6.2 Reference resolution

Resolving a reference to its definition is very straightforward when using
index-lookup, since it does all the work for us. The only thing that has to be
done when Spoofax requests a reference lookup is a simple transformation:
node -> <index-lookup> node. The resulting definition has location information
embedded into it which is used to navigate to the reference. If the lookup fails,
this is propagated back to Spoofax and no blue hyperlink will appear on the
node under the cursor.

2.6.3 Constraint checking

Constraint checking rules are called by Spoofax after analysis on every AST
node. If a constraint rule succeeds it will return the message and the node
where the error marker should be put on.

The duplicate definition constraint check that was shown earlier is defined

30

constraint-error:
node -> (key, "Duplicate definition")
where

<nam-unique> node ;
key := <nam-key> node ;
defs := <index-lookup-one> key ;
<gt> (<length> defs, 1)

Listing 2.13: Duplicate definitions constraint check written in Stratego, using gener-
ated code from the NaBL compiler and the index API.

editor-complete:
ast -> identifiers
where

node@COMPLETION(name) := <collect-one(?COMPLETION(_))> ast ;
proposals := <index-lookup-all-levels(|name)> node ;
identifiers := <map(index-uri-name)> proposals

Listing 2.14: Code completion.

in listing 2.13. First nam-unique (generated for unique definitions by the NaBL
compiler) is used to see if the node represents a unique definition; non-unique
definition such as partial classes should not get duplicate definition error
markers. The identifier is retrieved using nam-key and a lookup in the current
scope is done with index-lookup-one. If more than one definition is found, the
constraint check succeeds and an error marker is shown on the node.

2.6.4 Code completion

When code completion is requested in Spoofax, a completion node is sub-
stituted at the place where the cursor is. For example, if we request code
completion on VarRef("a"), it will be substituted by VarRef(COMPLETION("a"))
to indicate that the user wants to complete this identifier. See listing 2.14

for the code completion implementation. We first retrieve the completion
node and name using collect-one. Completion proposals are gathered by
index-lookup-all-levels since it can handle partial identifiers. Finally the
retrieved proposals are converted to names by mapping index-uri-name over
them.

2.7 Evaluation and Discussion

Our aim with this work has been to design high-level abstractions for name
resolution applicable to a wide range of programming languages. In this
section we discuss the limitations of our approach and evaluate its applicability
to different languages and other language features than those covered in the
preceding sections.

Chapter 2. NaBL: Declarative Name Binding and Scope Rules 31

2.7.1 Limitations

There are two areas of possible limitations of NaBL. One is in the provided
abstraction, the other is in the implementation algorithm that supports it. As
for the provided abstraction, as a definition language, NaBL is inherently
limited in the number of features it can support. While the feature space it
supports is extensive, ultimately there may always be language features or
variations that are not supported. For these cases, the definition of NaBL –
written in Stratego – can be extended, or it is possible to escape NaBL and
extend a specification using handwritten Stratego rules.

As for the implementation algorithm, NaBL’s current implementation strat-
egy relies on laziness, and does not provide much control over the traversal for
the computation of names or types. In particular, sophisticated type inference
schemes are not supported with the current algorithm. To implement such
schemes, the algorithm would have to be extended, preferably in a way that
maintains compatibility with the current NaBL definition language.

2.7.2 Coverage

During the design and construction of NaBL, we have performed a number
of studies on languages and language features to determine the extent of
the feature space that NaBL would support. In this paper we highlighted
many of the features by using C# as a running example, but other languages
that we studied include a subset of general-purpose programming languages
C, Java, and domain-specific languages WebDSL [59], the Hibernate Query
Language (HQL), and Mobl [61]. We also applied our approach to the Java
Bytecode stack machine language using the Jasmin [104] syntax.

For our studies we used earlier prototypes of NaBL, which led to the design
as it is now. Notable features that we studied and support in NaBL are
partial classes, inheritance, visibility, lexical scoping, imports, type-based name
resolution, and overloading; all of which have been discussed in section 2.3. In
addition, we studied aspect-oriented programming with intertype declarations
and pointcuts, file-based scopes in C, and other features.

Our design has also been influenced by past language definitions, such as
SDF and Stratego. Altogether, it is fair to say that NaBL supports a wide range
of language features and extensive variability, but can only support the full
range of possible programming languages by allowing language engineers
to escape the abstraction. In future work, we would like to enhance the
possibilities of extending NaBL and design a better interface for escapes.

2.8 Related work

We give an overview of other approaches for specifying and implementing
name resolution. The main distinguishing feature of our approach is the use
of linguistic abstractions for name bindings, thus hiding the low level details
of writing name analysis implementations.

32

2.8.1 Symbol Tables

In classic compiler construction, symbol tables are used to associate identi-
fiers with information about their definition sites, typically including type
information. Symbol tables are commonly implemented using hash tables
where the identifiers are indexed for fast lookup. Scoping of identifiers can be
implemented in a number of ways. For example, by using qualified identifiers
as index, nesting symbol tables, or destructively updating the table during
program analysis.

The type of symbol table influences the lookup strategy. When using quali-
fied identifiers the entire identifier can be looked up efficiently, but considering
outer scopes requires multiple lookups. Nesting symbol tables always requires
multiple lookups but is more memory efficient. When destructively updating
the symbol table, lookups for visible variables are very efficient, but the symbol
table is not available after program analysis.

The index we use is a symbol table that uses qualified identifiers. We map
qualified identifiers (URIs) to information such as definitions, types and uses.

2.8.2 Attribute Grammars

Attribute Grammars (AGs) [83] are a formal way of declaratively specifying
and evaluating attributes for productions in formal grammars. Attribute values
are associated with nodes and calculated in one or more tree traversals, where
the order of computations is determined by dependencies between attributes.

Eli [74] provides an attribute grammar specification language for modular
and reusable attribute computations. Abstract, language-independent compu-
tations can be reused in many languages by letting symbols from a concrete
language inherit these computations. For example, computations Range, IdDef,
and IdUse would calculate a scope, definitions, and references. A method
definition can then inherit from Range and IdDef, because it defines a function
and opens a scope. A method call inherits from IdUse because it references a
function.

These abstract computations are reflected by naming concepts of NaBL and
the underlying generic resolution algorithm. However, NaBL is less expressive,
but more domain-specific. Where Eli can be used to specify general (and
reusable) computations on trees, NaBL is restricted to name binding concepts,
helping to understand and specify name bindings more easily.

Silver [163] is an extensible attribute grammar specification language which
can be extended with general-purpose and domain-specific features. Typical
examples are auto-copying, pattern matching, collection attributes, and support
for data-flow analysis. However, name analysis is performed the traditional
way: an environment with bindings is passed down the tree using inherited
properties.

Reference Attribute Grammars (RAGs) extend AGs by introducing attributes
that can reference nodes, substantially simplifying name resolution implemen-
tations.

JastAdd [53] is a meta-compilation system for generating language proces-
sors relying on RAGs and object orientation. It also supports parametrized

Chapter 2. NaBL: Declarative Name Binding and Scope Rules 33

attributes to act as functions where the value depends on the given parameters.
A typical name resolution as seen in [32, 53, 3] is implemented in lookup at-
tributes parameterized by an identifier of use sites, such as variable references.
All nodes that can have a variable reference as a child node, such as a method
body, then have to provide an equation for performing the lookup. These
equations implement scoping and ordering using Java code.

JastAdd implementations have much more low level details than NaBL
declarations. This provides flexibility, but entails overhead on encoding and
requires decoding for understanding. For example, scopes for certain program
elements are encoded within a set of equations, usually implemented by early
or late returns.

2.8.3 Visibility Predicates

CADET [112] is a notation for predicates and functions over abstract syntax
tree nodes. Similar to attribute grammar formalisms, it allows to specify
general computations in trees but lacks reusable concepts for name binding.
Poetsch-Heffter proposes dedicated name binding predicates [119], which can
be translated into efficient name resolution functions [118]. In contrast to NaBL,
scopes are expressed in terms of start and end points and multi-file analyses
are not supported.

2.8.4 Dynamic Rewrite Rules

In term rewriting, an environment passing style does not compose well with
generic traversals. As an alternative, Stratego allows rewrite rules to create
dynamic rewrite rules at run-time [17]. The generated rules can access variables
available from their definition context. Rules generated within a rule scope are
automatically retracted at the end of that scope.

Hemel et al. [60] describe idioms for applying dynamic rules and generic
traversals for composing definitions of name analysis, type analysis, and
transformations without explicitly staging them into different phases. Our
current work builds on the same principles, but applies an external index and
provides a specialized language for name binding declarations.

Name analysis with scoped dynamic rules is based on consistent renaming,
where all names in a program are renamed such that they are unequal to
all other names that do not correspond to the same definition site. Instead
of changing the names directly in the tree, annotations can be added which
ensure uniqueness. This way, the abstract syntax tree remains the same modulo
annotations. Furthermore, unscoped dynamic rewrite rules can be used for
persistent mappings [75].

2.8.5 Textual Language Workbenches

Xtext [12] is a framework for developing textual software languages. The Xtext
Grammar Language is used to specify abstract and concrete syntax, but also
name bindings by using cross-references in the grammar. Use sites are then
automatically resolved by a simplistic resolution algorithm.

Scoping or visibility cannot be defined in the Grammar Language, but have

34

to be implemented in Java with help of a scoping API with some default
resolvers. For example field access, method calls, and block scopes would
all need custom Java implementations. Only package imports have special
support and can be specified directly in the Grammar Language. Common
constraint checks such as duplicate definitions, use before definition, and
unused definitions also have to be specified manually. This increases the
amount of boilerplate code that has to be rewritten for every language.

In contrast to Xtext’s Grammar Language, NaBL definitions are separated
from syntax definitions in Spoofax. This separation allows us to specify more
advanced name binding concepts without cluttering the grammar with these
concepts. It also preserves language modularity. When syntax definitions are
reused in different contexts, different name bindings can be defined for these
contexts, without changing the grammar. From an infrastructure perspective,
Spoofax and Xtext work similarly, using a global index to store summaries of
files and URIs to identify program elements.

EMFText [57] is another framework for developing textual software lan-
guages. Like Xtext, it is based on the Eclipse Modeling Framework [135] and
relies on metamodels to capture the abstract syntax of a language. While in
Xtext this metamodel is generated from a concrete syntax definition, EMFText
takes the opposite approach and generates a default syntax definition based
on the UML Human-Usable Textual Notation [65] from the metamodel. Lan-
guage designers can then customize the syntax definition by adding their own
grammar rules.

In the default setup, reference resolution needs to be implemented in Java.
Only simple cases are supported by default implementations [58]. JastEMF [20]
allows to specify the semantics of EMF metamodels using JastAdd RAGs by
integrating generated code from JastAdd and EMF.

Chapter 2. NaBL: Declarative Name Binding and Scope Rules 35

36

3
A Language Independent Task Engine for
Incremental Name and Type Analysis

Abstract

Interactive programming systems such as IDEs depend on incremental name
and type analysis to provide responsive feedback for large programs. In this
chapter, we present a language-independent approach to incremental name
and type analysis. Analysis consists of two phases. The first phase analyzes
lexical scopes and binding instances and creates deferred analysis tasks. A task
captures a single name resolution or type analysis step. Tasks might depend on
other tasks and are evaluated in the second phase. Incrementality is supported
on file and task level. When a file changes, only this file is recollected and only
those tasks are reevaluated, which are affected by the changes in the collected
data. The analysis neither re-parses nor re-traverses unchanged files, even if
they are affected by changes in other files. We implement the approach as
part of the Spoofax Language Workbench and evaluate it for the WebDSL web
programming language.

3.1 Introduction

IDEs provide a wide variety of language-specific editor services such as syntax
highlighting, error marking, code navigation, content completion, and outline
views in real-time, while a program is edited. These services require syntactic
and semantic analyses of the edited program. Thereby, timely availability of
analysis results is essential for IDE responsiveness. Whole-program analyses
do not scale because the size of the program determines the performance of
such analyses.

An incremental analysis reuses previous analysis results of unchanged pro-
gram parts and reanalyses only parts affected by changes. The granularity of
the incremental analysis directly impacts the performance of the analysis. A
more fine-grained incremental analysis is able to reanalyze smaller units of
change, but requires a more complex change and dependency analysis. At pro-
gram level, any change requires reanalysis of the entire program, which might
consider the results of the previous analysis. At file level, a file change requires
reanalysis of the entire file and all dependent files. At program element level,
changes to an element within a file require reanalysis of that element and
dependent elements, but typically not of entire files.

Incremental analyses are typically implemented manually. Thereby, change
detection and dependency tracking are cross-cutting the implementation of the
actual analysis. This raises complexity of the implementation and negatively
affects maintenance, reusability, and modularity.

37

In this paper, we focus on incremental name and type analysis. We present
a language-independent approach which consists of two phases. The first
phase analyzes lexical scopes, collects information about binding instances,
and creates deferred analysis tasks in a top-down traversal. An analysis task
captures a single name resolution or type analysis step. Tasks might depend on
other tasks and are evaluated in the second phase. Incrementality is supported
on file level by the collection phase and on task level by the evaluation phase.
When a file changes, only this file is recollected and only those tasks are
reevaluated, which are affected by the changes in the collected data. As a
consequence, the analysis does neither re-parse nor re-traverse unchanged files,
even if they are affected by changes in other files. Only the affected analysis
tasks are reevaluated.

Our approach enables language engineers to abstract over incrementality.
When applied directly, language engineers need to parametrize the collection
phase, where they have full freedom to create and combine low-level analysis
tasks. Thereby, they can focus solely on the name binding and typing rules of
their language while the generic evaluation phase provides the incrementality.
The approach can also form the basis for more high-level meta-languages for
specifying the static semantics of programming languages. We use the task
engine to implement incremental name analysis for name binding and scope
rules expressed in NaBL, Spoofax’s declarative name binding language [89].

We have implemented the approach as part of the Spoofax language work-
bench [75] and evaluated it for WebDSL, a domain-specific language for the
implementation of dynamic web applications [49], designed specifically to
enable static analysis and cross-aspect consistency checking in mind [59]. We
used real change-sets from the histories of two WebDSL applications to drive
experiments for the evaluation of the correctness, performance and scalability
of the obtained incremental static analysis. Experiment input data and the
obtained results are publicly available.

We proceed as follows. In section 3.2 we introduce the basics of name and
type analysis and introduce the running example of the paper. In sections 3.3
and 3.4, we discuss the two analysis phases of our approach, collection and
evaluation. In section 3.5, we discuss the implementation and its integration
into the Spoofax language workbench. In section 3.6, we discuss the evaluation
of our approach. Finally, we discuss related work in section 3.7 and conclude
in section 3.8.

3.2 Name and Type Analysis

In this section, we discuss name and type analysis in the context of the running
example of the paper, a multi-file C# program shown in listing 3.1.

3.2.1 Name Analysis

In textual programming languages, an identifier is a name given to program
elements such as variables, methods, classes, and packages. The same identifier
can have multiple instances in different places in a program. Name analysis
establishes relations between a binding instance that defines a name and a

38

class A {
B b; int m;
float m() {

return 1 + b.f; }}

class B {
int i; float f;
int m() {

return 0; }}

class C:A {

int n() {
return m(); }}

(a) Files before editing. The underlined expression causes a type error.

class A {
B b; int m;
int m(B b) {
return 1 + b.i; }}

class B {
int i; float f;
int m() {

return 1; }}

namespace N {
class C:B {

int n() {
return m(); }}}

(b) Files after editing. Changes w.r.t. listing 3.1a are highlighted.

Listing 3.1: C# class declarations in separate files with cross-file references.

bound instance that uses that name [92]. Name analysis is typically defined
programmatically through a name resolution algorithm that connects binding
prospects to binding instances. When a prospect is successfully connected, it
becomes a bound instance. Otherwise, it is a free instance.

The C# class declarations in listing 3.1a contain several references, some of
which cross file boundaries. The declared type of field b in class A refers to
class B in a separate file. Also, the return expression of method m in class A
accesses field f in class B. The parent of class C refers to class A in a separate file
and the return expression of method n in class C is a call to method m in class A.

Languages typically distinguish several namespaces, i.e. different kinds of
names, such that an occurrence of a name in one namespace is not related to
an occurrence of that same name in another. In the example, class A contains a
field and a homonym method m, but C# distinguishes field and method names.

Scopes restrict the visibility of binding instances. They can be nested and
name analysis typically looks for binding instances from inner to outer scopes.
In the example, b is resolved by first looking for a variable b in method A.m,
before looking for a field b in class A. A named scope is the context for a binding
instance, and scopes other binding instances. In the example, class A is a named
scope. It is the context for a class name and a scope for method and field
names.

An alias introduces a new binding instance for an already existing one. An
import introduces binding instances from one scope into another one. In the
example, class C imports fields and methods from its parent class A.

3.2.2 Type Analysis

In statically typed programming languages, a type classifies program elements
such as expressions according to the kind of values they compute [117]. List-
ing 3.1a declares method C.n of type int, meaning that this method is expected
to compute signed 32-bit integer values. Type analysis assigns types to pro-
gram elements. Types are typically calculated compositionally, with the type
of a program element depending only on the types of its sub-elements [117].

Type checking compares expected with actual types of program elements. A

Chapter 3. A Task Engine for Incremental Name and Type Analysis 39

type error occurs if actual and expected type are incompatible. Type errors
reveal at compile-time certain kinds of program misbehavior at run-time. In
the example, the return expression in method C.n causes a type error. The
expression is of type float, since the called method m returns values of this
type. But the declaration of C.n states that it evaluates to values of type int.
This will cause run-time errors, when a floating point value is returned by C.n,
while an integer value is expected. Type analysis reveals this error early at
compile-time.

In some cases, type analysis depends on name analysis. In the example of
the return expression in C.n, m needs to be resolved in order to calculate the
type of the return expression. In other cases, name analysis depends on type
analysis. For example, the type of b needs to be calculated in order to resolve
f in the return expression of A.m. In general, name resolution cannot only
depend on types, but on a variety of properties of binding and bound instances.

3.2.3 Incremental Analysis

When a program changes, it needs to be reanalyzed. Different kinds of changes
influence name and type analysis.

First, adding a binding instance may introduce bindings for free instances, or
rebind bound instances. Removing a binding instance influences all its bound
instances, which are either rebound to other binding instances or become free
instances. Changing a binding instance combines the effects of removing and
adding.

Second, adding a binding prospect requires resolution, while removing it
makes a binding obsolete. Changing a binding prospect requires re-binding,
resulting either in a new binding or a free instance.

Third, addition, removal, or change of scopes or imports influence bound
instances in the affected scopes, which might be rebound to different binding
instances or become free instances. Similarly, they influence bound instances
which are bound to binding instances in the affected scopes.

Finally, addition of a typed element requires type analysis, while removing
it makes a type calculation obsolete. Changing a typed element requires
reanalysis.

Furthermore, changes propagate along dependencies. When bound instances
are rebound to different binding instances or become free instances, this
influences bindings in the context of these bound instances, the type of these
instances, the type of enclosing program elements, and bindings in the context
of such types. Consider listing 3.1b for an example. It shows edited versions
of the C# class declarations from listing 3.1a. We assume the following editing
sequence:

1. The return type of method A.m is changed from float to int. This affects
the type of the return expression of method C.n and solves the type error,
but raises a new type error in the return expression of A.m.

2. The return expression of method A.m is changed to b.i. This requires
resolution of i and affects the type of the expression, solving the type error.

40

3. Parameter B b is added to method A.m. This might affect the resolution and
by this the type of b and i in the return expression, the type of the return
expression, the resolution of m in method C.n, and the type of its return
expression. Actually, only the resolution of b and m and the type of the
return expression in C.n are affected. The latter resolution fails, causing a
resolution error and leaving the return expression untyped.

4. The parent of class C is changed from A to B. This affects the resolution of m
in method C.n and the type of its return expression. It fixes the resolution
error and the return expression becomes typed again.

5. Class C is enclosed in a new namespace N. This might affect the resolution
of parent class B, the resolution of m in N.C.n, and the type of the return
expression in N.C.n. Actually, it does not affect any of those.

6. The return expression of method m in class B is changed. This might affect
the type of this expression, but actually it does not.

We discuss incremental analysis in the next sections. We start with the
collection phase in section 3.3, and continue with the evaluation phase in
section 3.4.

3.3 Semantic Index

We collect name binding information for all units in a project into a semantic
index, a central data structure that is persisted across invocations of the analysis
and across editing sessions. For the purpose of this paper, we model this data
structure as binary relations over keys and values. As keys, we use URIs, which
identify bindings uniquely across a project. As values, we use either URIs or
terms. We use U and T to denote the set of all URIs and terms, respectively.

3.3.1 URIs

We assign a URI to each binding instance, bound instance, and free instance.
A bound instance shares the URI with its corresponding binding instance. A
URI consists of a language name, a list of scope segments, the namespace of
the instance, its name, and an optional unique qualifier. This qualifier helps
to distinguish unique binding instances by numbering them consecutively.
A segment for a named scope consists of the namespace, the name, and the
qualifier of the scoping binding instance. Anonymous scopes are represented
by a segment anon(u), where u is a unique string to distinguish different scopes.
For example, C#://Class.A.1/Method.m.1 identifies method m in class A in the
C# program in listing 3.1a. The qualifier 1 distinguishes the method. Possible
homonym methods in the same class would get subsequent qualifiers.

3.3.2 Index Entries

The index stores binding instances (B ⊆ U ×U), aliases (A ⊆ U ×U), transitive
and non-transitive imports for each namespace ns (TIns ⊆ U × U and NIns ⊆
U ×U), and types of binding instances (Ptype ⊆ U × T). For a binding instance
with URI u, B contains an entry (u′, u), where u′ is retrieved from u by omitting

Chapter 3. A Task Engine for Incremental Name and Type Analysis 41

Relation Key Value

B C#:/Class.A C#:/Class.A.1
C#:/Class.A.1/Field.b C#:/Class.A.1/Field.b.1
C#:/Class.A.1/Field.m C#:/Class.A.1/Field.m.1
C#:/Class.A.1/Method.m C#:/Class.A.1/Method.m.1
C#:/Class.B C#:/Class.B.1
C#:/Class.B.1/Field.i C#:/Class.B.1/Field.i.1
C#:/Class.B.1/Field.f C#:/Class.B.1/Field.i.1
C#:/Class.B.1/Method.m C#:/Class.B.1/Method.m.1
C#:/Class.C C#:/Class.C.1
C#:/Class.C.1/Method.n C#:/Class.C.1/Method.n.1

NIField, TIField C#:/Class.C.1 Task:/31

NIMethod, TIMethod C#:/Class.C.1 Task:/31

Ptype C#:/Class.A.1/Field.b.1 Task:/6
C#:/Class.A.1/Field.m.1 int
C#:/Class.A.1/Method.m.1 ([], float)
C#:/Class.B.1/Field.i.1 int
C#:/Class.B.1/Field.f.1 float
C#:/Class.B.1/Method.m.1 ([], int)
C#:/Class.C.1/Method.n.1 ([], int)

Table 3.1: Initial semantic index for the C# program in listing 3.1a.

the unique qualifier. u′ is useful to resolve binding prospects, as we will show
later. An alias consists of the new name, that is a binding instance, and the
old name, that is a binding prospect. For each alias, A contains an entry (a, u),
where a is the URI of the binding instance and u is the URI of the binding
prospect. For a transitive wildcard import from a scope with URI u into a scope
with URI u′, TIns contains an entry (u′, u). Similarly, NIns contains entries for
non-transitive imports. Finally, for a binding instance of URI u and of type
t, Ptype contains an entry (u, t). P can also store other properties of binding
instances, but we focus on types for this paper.

Example. Table 3.1 shows the index for the running example. It contains
entries in B for binding instances of classes A, B, and C, fields A.b, A.m, B.i, and
B.f, and methods A.m, B.m, and C.n. Corresponding entries for Ptype contain the
types of all fields and methods in the program. Since the running example
does not define any aliases, A does not contain any entries. It also contains
corresponding entries for NIField, TIField, NIMethod, and TIMethod. These entries
model inheritance by a combination of a non-transitive and a transitive import.
C first inherits the fields and methods from A (non-transitive import). Second,
C inherits the fields and methods which are inherited by A (transitive import).

3.3.3 Initial Collection

We collect index entries in a generic top-down traversal, which needs to be
instantiated with language-specific name binding and scope rules. During the

42

traversal, a dictionary S is maintained to keep track of the current scope for
each namespace. At each node, we perform the following actions:

1. If the node is the context of a binding instance of name n in namespace
ns, we create a new unique qualifier q, construct URIs u′ = S(ns)/ns.n and
u = u′.q, and add (u′, u) to B. If the instance is of type t, we add (u, t) to
Ptype. If the node is a scope for a namespace ns′, we update S(ns) to u.

2. If the current node is an anonymous scope for a namespace ns, we extend
S(ns) with an additional anonymous segment.

3. If the current node defines an alias, transitive, or non-transitive wildcard
import, we add corresponding pairs of URIs to A, TIns, or NIns.

Collection does not consider binding prospects which need to be resolved.
Furthermore, entries in TIns, NIns, and Ptype might still require project-wide
name resolution and type analysis. Instead of performing this analysis during
the collection, we defer the remaining analysis tasks to a second phase of
analysis and store unique placeholder URIs in the index. For example, the
type of field A.b contains a class name B, which needs to be resolved. The
index in table 3.1 does not contain an actual type, but a reference to a deferred
resolution task (Task:/6 in this case). Also, the index entries for wildcard
imports refers to a deferred task, since the name of the base class of class C
needs to be resolved first. References to tasks are created by hash consing, and
therefore stay the same when the task stays the same.

Partitions. The semantic index is a project-wide data structure, but collection
can be split over separate partitions. A partition is typically a file, but can also
be a smaller unit. The only constraint we impose on partitions is that they
need to be in global scope. This ensures that index collection is independent
of other partitions. Collection for a partition p will provide us with a partial
index consisting of Bp, Ap, TIp,ns, NIp,ns, and Pp,type. The overall index can be
formed by combining all partial indices of a project.

3.3.4 Incremental Collection

When a partition is edited, reanalysis is triggered. But only the partial index
of the changed partition needs to be recollected, while partial indices of other
partitions remain valid. Partial recollection will result in an updated relation
B′p. Given the original Bp, we define a change set ∆B = (B′p \ Bp)∪ (Bp \ B′p) of
entries added to or removed from B. In the same way, we can define ∆A, and
∆Ptype . For imports, the situation is slightly different, since we need to consider
changes in transitive import chains. We keep a change set ∆Ins for a derived
relation Ins = TI∗ns ◦NIns, where TI∗ is the reflexive transitive closure of TI and
I is the composition of this closure with NI.

Example. Table 3.2 shows non-empty change sets for the running example,
where superscripts indicate editing steps. In step 1, changing the return type
of method A.m causes a change in Ptype. In step 3, adding a parameter to the
same method causes changes to B and Ptype. In step 4, changing the parent
of class C causes changes in IField and IMethod. In step 5, enclosing class C in a

Chapter 3. A Task Engine for Incremental Name and Type Analysis 43

Change Key Value

∆1
Ptype

C#:/Class.A.1/Method.m.1 ([], float)
C#:/Class.A.1/Method.m.1 ([], int)

∆3
B C#:/Class.A.1/Method.m.1/Var.b C#:/Class.A.1/Method.m.1/Var.b.1

∆3
Ptype

C#:/Class.A.1/Method.m.1/Var.b.1 Task:/6
C#:/Class.A.1/Method.m.1 ([], int)
C#:/Class.A.1/Method.m.1 ([Task:/6], int)

∆4
IField

C#:/Class.C.1 Task:/31
C#:/Class.C.1 Task:/6

∆4
IMethod

C#:/Class.C.1 Task:/31
C#:/Class.C.1 Task:/6

∆5
B C#:/Ns.N C#:/Ns.N.1

C#:/Class.C C#:/Class.C.1
C#:/Ns.N.1/Class.C C#:/Ns.N.1/Class.C.1
C#:/Class.C.1/Method.n C#:/Class.C.1/Method.n.1
C#:/Ns.N.1/Class.C.1/Method.n C#:/Ns.N.1/Class.C.1/Method.n.1

∆5
IField

C#:/Class.C.1 Task:/6
C#:/Ns.N.1/Class.C.1 Task:/54

∆5
IMethod

C#:/Class.C.1 Task:/6
C#:/Ns.N.1/Class.C.1 Task:/54

∆5
Ptype

C#:/Class.C.1/Method.n.1 ([], int)
C#:/Ns.N.1/Class.C.1/Method.n.1 ([], int)

Table 3.2: Changes to the semantic index of table 3.1, based on the changes to the
C# program from listing 3.1b. Highlighted parts are modified or new values/entries.
Striked through parts are old values or removed entries.

namespace affects all index entries for the class and its contained elements.
The next section discusses how change-sets trigger reevaluation of deferred
analysis tasks.

3.4 Deferred Analysis Tasks

In the previous section, we discussed the collection of index entries. This
collection is efficient, since it requires only a single top-down traversal. When a
partition changes, recollection is even more efficient, since it can be restricted to
the changed partition, while the collected entries from other partitions remain
valid. This is achieved by deferring name resolution and type analysis tasks,
which might require information from other partitions or from other tasks.

Tasks are collected together with index entries and evaluated afterwards in
a second analysis phase. For evaluation, no traversal is needed. Instead, inter-
task dependencies determine an evaluation order. When a partition changes,
only the tasks for this partition are recollected in the first phase. Change sets
determine which tasks need to re-evaluated, including affected tasks from

44

Instruction Semantics

resolve uri B [uri]
resolve alias uri A [uri]
resolve import ns

into uri Ins [uri]

lookup type of uri Ptype [uri]
check type t in T {t} ∩ T
cast type t to T C [t] ∩ T
assign type t {t}
s1 + s2 R [s1, s2]

s1 <+ s2

{
R [s1] , if 6= ∅
R [s2] , otherwise

filter
s1 + s2 by type T

{
u ∈ R [s1,s2]| Ptype ◦ C [u] ∩ T 6= ∅

}
filter
s1 <+ s2 by type T

{ {
u ∈ R [s1]| (Ptype ◦ C) [u] ∩ T 6= ∅

}
, if 6= ∅{

u ∈ R [s2]| Ptype ◦ C [u] ∩ T 6= ∅
}

, otherwise

disambiguate
s1 + s2
by type T

{u ∈ R [s1,s2]| ∀u′ ∈ R [s1,s2] : δC(u′, T) ≥ δC(u, T)}

disambiguate
s1 <+ s2
by type T

{
{u ∈ R [s1]| ∀u′ ∈ R [s1,s2] : δC(u′, T) ≥ δC(u, T)} , if 6= ∅
{u ∈ R [s2]| ∀u′ ∈ R [s1,s2] : δC(u′, T) ≥ δC(u, T)} , ow.

Table 3.3: Syntax and semantics of name and type analysis instructions. uri
denotes a URI, ns a namespace, t a type, T a set of types, and s1, s2 subtask IDs.

other partitions.

3.4.1 Instructions

Each task consists of a special URI, which is used as a placeholder in the
semantic index, its dependencies to other tasks, and an instruction. Table 3.3
lists the instructions which can be used in tasks. Their semantics is given with
respect to the semantic index, a type cast relation C ⊆ T × T , where (t, t′) ∈ C
iff type t can be cast to type t′, and a partial function δC : T × T → N for
the distance between types. We write R [S] to denote the image of a set S
under a relation R and omit set braces for finite sets, that is, we write R [e]
instead of R [{e}]. We provide three name resolution instructions for looking
up binding instances from B (resolve), named imports from A (resolve alias),
and wildcard imports from the derived relation Ins (resolve import), and four
type analysis instructions for type look-up from Ptype (lookup), for checks with
respect to expected types (check), for casts to an expected type according to
C (cast), and for assigning types to program elements (assign).

Chapter 3. A Task Engine for Incremental Name and Type Analysis 45

ID Instruction Results

1 resolve C#:/Class.B C#:/Class.B.1
2 resolve alias C#:/Class.B
3 resolve Task:/2
4 resolve import Class into C#:/
5 resolve Task:/4/Class.B
6 Task:/1 + Task:/3 + Task:/5 C#:/Class.B.1
7 assign type int int
8 resolve C#:/Class.A.1/Method.m.1/Var.b
9 resolve C#:/Class.A.1/Field.b C#:/Class.A.1/Field.b.1

10 resolve import Field into C#:/Class.A.1
11 resolve Task:/10/Field.b
12 Task:/9 <+ Task:/11 C#:/Class.A.1/Field.b.1
13 Task:/8 <+ Task:/12 C#:/Class.A.1/Field.b.1
14 lookup type of Task:/13 C#:/Class.B.1
15 resolve Task:/14/Field.f C#:/Class.B.1/Field.f.1
16 resolve import Field into Task:/14
17 resolve Task:/16/Field.f
18 Task:/15 <+ Task:/17 C#:/Class.B.1/Field.f.1
19 lookup type of Task:/18 float
20 check type Task:/7 in

{int, long, float, double, String}
int

21 check type Task:/19 in
{int, long, float, double, String}

float

22 cast type Task:/21 to Task:/20
23 cast type Task:/20 to Task:/21 float
24 Task:/22 + Task:/23 float
25 cast type Task:/24 to float float
26 cast type Task:/20 to int int
27 resolve C#:/Class.A C#:/Class.A.1
28 resolve alias C#:/Class.A
29 resolve Task:/28
30 resolve Task:/4/Class.A
31 Task:/27 + Task:/29 + Task:/30 C#:/Class.A.1
32 resolve C#:/Class.C.1/Method.m
33 resolve import Method into C#:/Class.C.1 C#:/Class.A.1
34 resolve Task:/33/Method.m C#:/Class.A.1/Method.m.1
35 assign type [] []
36 disambiguate Task:/32 <+ Task:/34

by type Task:/35
C#:/Class.A.1/Method.m.1

37 lookup type of Task:/36 ([], float)
38 cast type Task:/37 to int

Table 3.4: Tasks and their solutions for the C# program in listing 3.1a.

46

Example. Table 3.4 shows tasks and their solutions for the running example.
Tasks 1 to 6 try to resolve class name B. Task 1 looks for B directly in the global
scope. It finds an entry in B and succeeds. Task 2 looks for aliases, which task 3
tries to resolve next. Instead of a concrete URI, the task 3 has a reference to
task 2. Since task 2 fails to find any named imports, task 3 also fails. Task 5
tries to resolve B inside imported scopes, which are yielded by task 4. Both
tasks fail. Task 6 combines resolution results based on local classes, aliases,
and imported classes. We will discuss such combinators in the next example.

Tasks 7 to 25 are involved in type checking the return expression of A.m()
in listing 3.1a. Task 7 assigns type int to the integer constant. Tasks 8 to 18
are an example for the interaction between name and type analysis. The first
six tasks try to resolve b either as a local variable, a field in the current class,
or an inherited field. Next, task 14 looks up the type of the resolved field A.b,
before the remaining tasks resolve field f with respect to that type B. Task 19
looks up the type of the referred field. The remaining tasks analyze the binary
expression: Tasks 20 and 21 check if the subexpressions are numeric or string
types. Tasks 22 and 23 try to coerce the left to the right type and vice versa.
Both tasks are combined by task 24. Finally, task 25 checks if the type of the
return expression can be coerced to the declared return type of the method.

3.4.2 Combinators

Table 3.3 also shows six instructions to combine the results of subtasks. The
semantics of these combinators are expressed in terms of a relation R, where
(t, r) ∈ R iff r is a result of task t. Notably, tasks can have multiple results. We
will revisit R later, when we discuss task evaluation.

The simplest combinators are a non-deterministic choice + and a determinis-
tic pendant <+. The result of the non-deterministic choice is the union of the
results of its subtasks. while the result of the deterministic choice is the result
of its first non-failing subtask. Furthermore, we provide combinators filter
and disambiguate. Both can be used in a non-deterministic or deterministic
fashion to combine the result sets of resolution tasks with respect to expected
types. filter keeps only compliant results. disambiguate keeps only results
which fit best with respect to the expected types. The non-deterministic variant
keeps all of them, while the deterministic variant chooses the first subtask
which contributes to the best fitting results.

Example. In table 3.4, task 6 combines resolution results based on local classes,
aliased classes, and imported classes. The non-deterministic choice ensures that
no result is preferred over another. Similarly, task 24 combines the results of
alternative coercion tasks. In tasks 12 and 13, deterministic choices ensure that
local fields win over inherited fields and variables win over fields, respectively.

Method call resolution in the presence of overloaded methods is a well-
known example for interaction between name and type analysis. Actual and
formal argument types need to be considered by the resolution, since they
need to comply. Furthermore, relations between these types indicate which
declaration is more applicable. As an example, consider tasks 32 to 36 in
table 3.4. They resolve method call m() in the return expression of C.n() from

Chapter 3. A Task Engine for Incremental Name and Type Analysis 47

listing 3.1a. Task 32 tries to resolve it locally, while tasks 33 and 34 consider
inherited methods. Task 35 assigns an empty list as the type of the actual
parameters of the call. Task 36 selects only these methods which fits this type
best, preferring local over inherited methods. Finally, the last two tasks check
the return expression of C.n. Task 37 looks up the type of A.m. Task 38 tries to
casts this to the declared return type, but fails.

3.4.3 Initial Evaluation

During the generic traversal in the collection phase, we do not only collect
semantic index entries but also instructions of tasks (T ⊆ U × I) and inter-task
dependencies (D ⊆ U × U). Language-specific collection rules are needed to
control the collection of name resolution and type analysis tasks. D imposes
an evaluation order for tasks. First, we can evaluate independent tasks. Next,
we can evaluate tasks which only depend on already evaluated tasks. This will
evaluate all tasks except those with cyclic dependencies, which we consider
erroneous. As mentioned earlier, we capture task results in a relation R ⊆
U × (URIs ∪ T).

Multiple Results. The instruction of each task is evaluated according to the
semantics given in table 3.3. However, this only works, if we replace place-
holders of dependent subtasks with their results. When a subtask has multiple
results, we evaluate the dependent task for each of these results. Consider
task 14 from table 3.4 as an example. It can only be evaluated after replacing
the placeholder Task:/13 with a result of the corresponding task. Since this
task has a single result C#:/Class.A.1/Field.b.1, we actually need to evaluate
the instruction lookup type C#:/Class.A.1/Field.b.1, yielding C#://Class.B.1
as its only result.

3.4.4 Incremental Evaluation

When a partition is edited, the partial index and tasks for this partition will be
recollected, resulting in an updated relation T′p. We need to evaluate new tasks,
which did not exist in another partition before. We collect the URIs of these
tasks in a change set: ∆Tp = dom(T′p \ Tp). Furthermore, a changed semantic
index might affect the results of the tasks from all partitions, requiring the
reevaluation of those tasks. The various change sets determine which tasks
need to be reevaluated:

(u′, u) ∈ ∆B: tasks which evaluated an instruction resolve u′.

(a, u) ∈ ∆A: tasks which evaluated an instruction resolve alias a.

(u′, u) ∈ ∆I : tasks which evaluated an instruction resolve import u′.

(u, t) ∈ ∆Ptype : tasks which evaluated an instruction lookup type of u and
filter or disambiguate tasks with a subtask s with u ∈ R [s].

We maintain the URIs of these tasks in another change set ∆T . The URIs of
tasks which require evaluation is given by the set ∆Tp ∪ D∗ [∆T].

48

ID Instruction Results

39 cast type Task:/24 to int

40 resolve Task:/14/Field.i C#:/Class.B.1/Field.i.1
41 resolve Task:/16/Field.i
42 Task:/40 <+ Task:/41 C#:/Class.B.1/Field.i.1
43 lookup type of Task:/42 int
44 check type Task:/43 in

{int, long, float, double, String}
int

45 cast type Task:/44 to Task:/20 int
46 cast type Task:/20 to Task:/44 int
47 Task:/45 + Task:/46 int
48 cast type Task:/47 to int int

49 resolve C#:/Ns.N.1/Class.B
50 resolve alias C#:/Ns.N.1/Class.B
51 resolve Task:/50
52 resolve import Class into C#:/Ns.N.1
53 resolve Task:/52/Class.B
54 Task:/49 + Task:/51 + Task:/53
55 Task:/31 + Task:/54 C#/Class.B.1
56 resolve C#:/Ns.N.1/Class.C.1/Method.m
57 resolve import Method

into C#:/Ns.N.1/Class.C.1
C#:/Class.B.1

58 resolve Task:/57/Method.m C#:/Class.B.1/Method.m.1
59 disambiguate Task:/56 + Task:/58

by type Task:/35
C#:/Class.B.1/Method.m.1

60 lookup type of Task:/59 ([], int)
61 cast type Task:/60 to int int

Table 3.5: New tasks and their solutions for the C# program in listing 3.1b.

Example. In step 1 of the running example, task 25 becomes obsolete, since
the return expression needs to be checked with respect to a new type, which is
done by a new task 39, shown in table 3.5. Furthermore, the disambiguation in
task 36 depends on an element in ∆1

Ptype
, which is to be reevaluated. Transitive

dependencies trigger also the reevaluation of tasks 37 and 38. Since task 38
succeeds now, it does no longer indicate a type error in C.n. But the new
task 39 fails, indicating a new type error in A.m.

In step 2, tasks 15, 17 to 19, 21 to 24, and 39 become obsolete, since another
field needs to be resolved. The semantic index was not changed, and only the
corresponding new tasks 40 to 48 need to be evaluated. In step 3, the additional
variable parameter causes changes in the semantic index. ∆3

B requires the
reevaluation of task 8 and its dependent tasks 14, 16, and 40 to 48. Furthermore,
∆3

Ptype
requires the reevaluation of task 36 and its dependent tasks 37 and 38.

Similarly, ∆4
IField

requires the reevaluation of task 33 and its dependent tasks 34
and 36 to 38.

Chapter 3. A Task Engine for Incremental Name and Type Analysis 49

Finally, the new enclosing namespace introduced in step 5 makes tasks 32
to 34 and 36 to 38 obsolete and introduces new tasks 49 to 61, which take the
new namespace into account.

3.5 Implementation

We have implemented the approach as four components of the Spoofax lan-
guage workbench [75]. The first component is a Java implementation of the
semantic index. It maintains a multimap storing relations B, A, I, and P, a set
keeping partition names, and another multimap from partitions to their index
entries. During collection, it calculates change sets on the fly, maintaining two
multisets for newly added and removed elements.

The second component is a task engine implemented in Java. It maintains a
map from task IDs to their instructions and bidirectional multimaps between
task IDs and their partitions, between task IDs and index entries they depend
on, and for task dependencies. Just as the semantic index, the task engine
exposes a collection API and calculates change sets on the fly, maintaining
a set of added and a set of removed tasks. Additionally, it exposes an API
for task evaluation. During evaluation, it maintains a queue of scheduled
tasks and a bidirectional multimap of task dependencies which are discovered
dynamically. Results and messages of tasks are kept in maps. Both components
use hash-based data structures which can be persisted to file. They support
Java representations of terms as values and expose their APIs to Stratego [18],
Spoofax’s term rewriting language for analysis, transformation, and code
generation.

The third component implements index and task collection as a generic
traversal in Stratego. At each tree node, the traversal applies language-specific
rewrite rules for name and type analysis. These rules can either be manually
written in Stratego, or generated from meta-languages such as NaBL.

The fourth component is a compiler for NaBL, which generates language-
specific rules for the index and task collection traversal. Additionally, we have
created a new meta-DSL for specifying simple type systems, called TS, which
also compiles to the index and task collection traversal. Therefore, language
developers can specify their name and type analysis in NaBL and TS, from
which a collection traversal is derived, which is then used to do incremental
name and type analysis with the task engine. For example, listing 3.2 shows an
extract of NaBL and TS rules for a C#-like language. If a certain name or type
rule cannot be expressed in NaBL or TS, a collection rule can still be manually
implemented by means of the API.

3.6 Evaluation

We evaluate the correctness, performance, and scalability of our approach with an
implementation for name and type analysis of WebDSL programs. Correctness
is interesting since we only analyze affected program elements. We expect
incremental analysis to yield the same result as a full analysis. Performance
and scalability are crucial since they are the main purpose of incremental

50

binding rules
Class(NonPartial(), c, _, _): defines Class c scopes Field, Method
Field(_, f) : defines Field f
Method(_, m, _, _) : defines Method m scopes Var

Base(c):
imports Field, imported Field, Method, imported Method from Class c

ClassType(c) : refers to Class c
FieldAcc(e, f) : refers to Field f in Class c where e has type c
VarRef(x) : refers to Var x otherwise refers to Field x
ThisCall(m, p*): refers to best Method m of type t* where p* has type t*

(a) Declarative name binding and scope rules in NaBL.

type rules
Add(x, y) : ty
where x : x-ty

and y : y-ty
and (

(
x-ty <is: String() and x-ty => ty

or y-ty <is: String() and y-ty => ty
)
or
(

x-ty <is: Numerical() else error "Expected numerical" on x
and y-ty <is: Numerical() else error "Expected numerical" on y
and <promote-bin> (x-ty, y-ty) => ty

)
)

(b) Declarative type rule for string concatenation or numerical addition in TS.

Listing 3.2: Declarative name and type rules for a C#-like language.

analysis. We want to assess whether performance is acceptable for practical
use in IDEs and how the approach scales for large projects. Specifically, we
evaluate the following research questions: RQ1) Does incremental name and
type analysis of WebDSL applications yield the same results as full analysis?
RQ2) What is the performance gain of incremental name and type analysis of
WebDSL applications compared to full analysis? RQ3) How does the size of a
WebDSL application influence the performance of incremental name and type
analysis? RQ4) Is incremental name and type analysis suitable for a WebDSL
IDE?

3.6.1 Research method

In a controlled setting, we quantitatively compare the results and performance
of incremental and full analysis of different versions of WebDSL applications.
We have reimplemented name and type analysis for WebDSL, using NaBL to
specify name binding and scope rules and Stratego to specify type analysis.
We apply the same algorithm to perform full and incremental analyses to the

Chapter 3. A Task Engine for Incremental Name and Type Analysis 51

source code histories of two WebDSL applications. We run a full analysis on
all files in a revision, and and incremental analysis only on changed files with
respect to the result of a full analysis of the previous revision.

Subjects. WebDSL is a domain-specific language for the implementation of
dynamic web applications [49]. It was designed from the ground up with
static analysis and cross-aspect consistency checking in mind [59]. This focus
makes it is an ideal candidate to evaluate its static analysis. WebDSL provides
many language constructs on which constraints have to be checked. It also
embodies a complex expression language that is representative of expressions
in general purpose languages such as Java and C#. It has been used for several
applications in production, including the issue tracker YellowGrass [149], which
is a subject of this evaluation, the digital library Researchr, and the online
education platform WebLab. When developing such larger applications, the
usability of the WebDSL IDE sometimes suffered from the lack of incremental
analyses.

We focus on two open source WebDSL applications: Blog [154], a web
application for wikis and blogs, and YellowGrass [148], a tag-based issue
tracker. In their latest revisions, their code bases consist of approximately
7 and 9 KLOC.

Data collection. We perform measurements by repeating the following for
every revision of each application. We run an incremental and a full analysis.
During each of the analyses we record execution timings. After each analysis
we preserve the data from the semantic index and the task engine which we
analyze afterwards.

Each analysis is sequentially executed on command line in a separate invo-
cation of the Java Virtual Machine (JVM) and garbage collection is invoked
before each analysis. After starting the virtual machine, we run three analyses
and discard results allowing for the warmup period of the JVM’s JIT compiler.
All executions are carried out on the same machine with 2.7 Ghz Intel Core
i-7, 16 GB of memory, and Oracle Java Hotspot VM version 1.6.0 45 in server
JIT mode. We fix the JVM’s heap size at 4 GB to decrease the noise caused by
garbage collection. We set the maximum stack size at 16 MB.

Analysis procedure. For RQ1, we evaluate the structural equality of data from
the semantic index and the task engine produced by full and incremental analy-
sis. For RQ2, we determine absolute execution times of full and incremental
analysis and the relative speed up. We calculate the relative performance gain
between analyses separately for each revision. We report geometric mean and
distribution of absolute and relative performance of all revisions. For RQ3, we
determine the number of lines and the number of changed lines of a revision.
We relate the incremental analysis time to these numbers. For RQ4, we filter
revisions which changed only a single file. On these revisions, we determine
the execution time of incremental analysis.

52

SEQNUM PARSE [FULL] COLLECT [FULL] EVALUATE [FULL] PARSE [INCR] COLLECT [INCR] EVALUATE [INCR] DELTAFILES PARSE/DELTAFILES
[INCR]

COLLECT/
DELTAFILES [INCR]

EVALUATE/
DELTAFILES [INCR]

TOTAL [FULL] TOTAL [INCR] RATIO INDEX-SIZE INDEX-DIFF cov(TOTAL[INCR],
INDEX-SIZE)

cov(TOTAL[INCR],IND
EX-DIFF)

DELTALOC TOTALLOC TOTAL[INCR]/
DELTALOC

full P full C full E incr P incr C incr E

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

1030 2640 1070 1050 2470 1060 4 262.5 617.5 265 4,740 4,580 0.966244725738397 7,047 7,047 -0.167824104408355 0.689878474422275 3139 3139 1.45906339598598 1.03 2.64 1.07 1.05 2.47 1.06
1130 2560 1140 380 420 100 11 34.5454545454545 38.1818181818182 9.09090909090909 4,830 900 18.63% 7,469 424 224 3336 4.01785714285714 1.13 2.56 1.14 0.38 0.42 0.1
1130 2770 1170 380 370 100 9 42.2222222222222 41.1111111111111 11.1111111111111 5,070 850 16.77% 7,756 341 196 3487 4.33673469387755 1.13 2.77 1.17 0.38 0.37 0.1
1100 2770 1190 390 230 30 4 97.5 57.5 7.5 5,060 650 12.85% 7,819 135 219 3554 2.96803652968037 1.1 2.77 1.19 0.39 0.23 0.03
1100 2570 1170 340 30 0 1 340 30 0 4,840 370 7.64% 7,819 0 4 3554 92.5 1.1 2.57 1.17 0.34 0.03 0
1160 2790 1200 390 330 70 6 65 55 11.6666666666667 5,150 790 15.34% 7,954 163 115 3629 6.8695652173913 1.16 2.79 1.2 0.39 0.33 0.07
1140 2730 1340 430 590 190 10 43 59 19 5,210 1,210 23.22% 8,235 439 237 3754 5.10548523206751 1.14 2.73 1.34 0.43 0.59 0.19
1150 2880 1270 400 400 70 4 100 100 17.5 5,300 870 16.42% 8,349 148 56 3799 15.5357142857143 1.15 2.88 1.27 0.4 0.4 0.07
1160 3050 1320 370 280 40 3 123.333333333333 93.3333333333333 13.3333333333333 5,530 690 12.48% 8,426 153 56 3823 12.3214285714286 1.16 3.05 1.32 0.37 0.28 0.04
1210 3190 1470 400 280 20 2 200 140 10 5,870 700 11.93% 8,479 53 28 3843 25 1.21 3.19 1.47 0.4 0.28 0.02
1200 3010 1410 350 100 0 1 350 100 0 5,620 450 8.01% 8,481 2 10 3849 45 1.2 3.01 1.41 0.35 0.1 0
1350 2970 1380 400 290 20 4 100 72.5 5 5,700 710 12.46% 8,515 120 35 3864 20.2857142857143 1.35 2.97 1.38 0.4 0.29 0.02
1300 3180 1360 430 390 20 5 86 78 4 5,840 840 14.38% 8,564 139 37 3877 22.7027027027027 1.3 3.18 1.36 0.43 0.39 0.02
1220 3020 1440 390 280 40 3 130 93.3333333333333 13.3333333333333 5,680 710 12.50% 8,595 127 46 3884 15.4347826086957 1.22 3.02 1.44 0.39 0.28 0.04
1230 2920 1330 420 380 10 4 105 95 2.5 5,480 810 14.78% 8,645 50 49 3919 16.530612244898 1.23 2.92 1.33 0.42 0.38 0.01
1230 3090 1410 370 170 0 1 370 170 0 5,730 540 9.42% 8,645 0 2 3919 270 1.23 3.09 1.41 0.37 0.17 0
1200 3030 1410 390 250 0 4 97.5 62.5 0 5,640 640 11.35% 8,641 4 8 3919 80 1.2 3.03 1.41 0.39 0.25 0
1250 3010 1330 390 260 20 2 195 130 10 5,590 670 11.99% 8,669 64 28 3927 23.9285714285714 1.25 3.01 1.33 0.39 0.26 0.02
1190 2940 1400 390 260 0 2 195 130 0 5,530 650 11.75% 8,678 9 12 3931 54.1666666666667 1.19 2.94 1.4 0.39 0.26 0
1190 3050 1420 430 340 0 5 86 68 0 5,660 770 13.60% 8,702 24 19 3944 40.5263157894737 1.19 3.05 1.42 0.43 0.34 0
1240 3160 1440 420 370 20 3 140 123.333333333333 6.66666666666667 5,840 810 13.87% 8,709 15 10 3946 81 1.24 3.16 1.44 0.42 0.37 0.02
1200 2930 1390 400 240 10 2 200 120 5 5,520 650 11.78% 8,773 66 59 3995 11.0169491525424 1.2 2.93 1.39 0.4 0.24 0.01
1220 3150 1450 390 260 140 3 130 86.6666666666667 46.6666666666667 5,820 790 13.57% 8,773 70 140 3967 5.64285714285714 1.22 3.15 1.45 0.39 0.26 0.14
1220 2950 1410 510 950 90 9 56.6666666666667 105.555555555556 10 5,580 1,550 27.78% 8,995 304 79 4036 19.620253164557 1.22 2.95 1.41 0.51 0.95 0.09
1220 3070 1460 450 540 30 4 112.5 135 7.5 5,750 1,020 17.74% 9,046 97 30 4046 34 1.22 3.07 1.46 0.45 0.54 0.03
1260 3170 1460 400 250 160 3 133.333333333333 83.3333333333333 53.3333333333333 5,890 810 13.75% 9,068 106 22 4064 36.8181818181818 1.26 3.17 1.46 0.4 0.25 0.16
1270 3140 1520 440 660 150 6 73.3333333333333 110 25 5,930 1,250 21.08% 9,332 684 206 4158 6.06796116504854 1.27 3.14 1.52 0.44 0.66 0.15
1250 3220 1500 360 220 20 3 120 73.3333333333333 6.66666666666667 5,970 600 10.05% 9,339 75 13 4161 46.1538461538462 1.25 3.22 1.5 0.36 0.22 0.02
1320 3340 1510 410 380 190 3 136.666666666667 126.666666666667 63.3333333333333 6,170 980 15.88% 9,407 74 37 4190 26.4864864864865 1.32 3.34 1.51 0.41 0.38 0.19
1320 3330 1560 430 450 100 3 143.333333333333 150 33.3333333333333 6,210 980 15.78% 9,465 140 58 4205 16.8965517241379 1.32 3.33 1.56 0.43 0.45 0.1
1350 3310 1730 460 730 250 6 76.6666666666667 121.666666666667 41.6666666666667 6,390 1,440 22.54% 9,720 485 189 4336 7.61904761904762 1.35 3.31 1.73 0.46 0.73 0.25
1330 3390 1610 370 250 10 3 123.333333333333 83.3333333333333 3.33333333333333 6,330 630 9.95% 9,750 36 33 4343 19.0909090909091 1.33 3.39 1.61 0.37 0.25 0.01
1350 3130 1570 410 340 0 2 205 170 0 6,050 750 12.40% 9,750 4 18 4347 41.6666666666667 1.35 3.13 1.57 0.41 0.34 0
1290 3580 1590 370 280 60 2 185 140 30 6,460 710 10.99% 9,860 234 72 4381 9.86111111111111 1.29 3.58 1.59 0.37 0.28 0.06
1350 3440 1650 420 380 20 3 140 126.666666666667 6.66666666666667 6,440 820 12.73% 9,870 50 42 4379 19.5238095238095 1.35 3.44 1.65 0.42 0.38 0.02
1310 3510 1680 350 30 0 1 350 30 0 6,500 380 5.85% 9,866 4 21 4378 18.0952380952381 1.31 3.51 1.68 0.35 0.03 0
1310 3290 1570 390 110 10 2 195 55 5 6,170 510 8.27% 9,796 112 15 4377 34 1.31 3.29 1.57 0.39 0.11 0.01
1370 3490 1740 510 560 80 4 127.5 140 20 6,600 1,150 17.42% 10,039 259 96 4460 11.9791666666667 1.37 3.49 1.74 0.51 0.56 0.08
1340 3410 1690 510 990 160 6 85 165 26.6666666666667 6,440 1,660 25.78% 10,315 586 193 4549 8.60103626943005 1.34 3.41 1.69 0.51 0.99 0.16
1380 3520 1770 510 860 70 7 72.8571428571429 122.857142857143 10 6,670 1,440 21.59% 10,314 233 62 4543 23.2258064516129 1.38 3.52 1.77 0.51 0.86 0.07
1350 3510 1710 490 740 230 5 98 148 46 6,570 1,460 22.22% 10,385 163 45 4574 32.4444444444444 1.35 3.51 1.71 0.49 0.74 0.23
1370 3590 1710 520 990 120 5 104 198 24 6,670 1,630 24.44% 10,461 394 63 4615 25.8730158730159 1.37 3.59 1.71 0.52 0.99 0.12
1380 3570 1750 530 1070 20 7 75.7142857142857 152.857142857143 2.85714285714286 6,700 1,620 24.18% 10,481 44 56 4615 28.9285714285714 1.38 3.57 1.75 0.53 1.07 0.02
1350 3620 1740 410 350 10 2 205 175 5 6,710 770 11.48% 10,485 4 6 4615 128.333333333333 1.35 3.62 1.74 0.41 0.35 0.01
1350 3440 1740 510 670 30 4 127.5 167.5 7.5 6,530 1,210 18.53% 10,491 12 22 4615 55 1.35 3.44 1.74 0.51 0.67 0.03
1390 3440 1930 610 1560 460 10 61 156 46 6,760 2,630 38.91% 10,708 955 251 4714 10.4780876494024 1.39 3.44 1.93 0.61 1.56 0.46
1390 3560 1880 470 520 210 5 94 104 42 6,830 1,200 17.57% 10,735 33 75 4742 16 1.39 3.56 1.88 0.47 0.52 0.21
1410 3700 1840 390 300 0 3 130 100 0 6,950 690 9.93% 10,736 1 6 4746 115 1.41 3.7 1.84 0.39 0.3 0
1400 3690 1820 530 810 240 9 58.8888888888889 90 26.6666666666667 6,910 1,580 22.87% 10,839 125 133 4791 11.8796992481203 1.4 3.69 1.82 0.53 0.81 0.24
1400 3760 1880 360 80 10 1 360 80 10 7,040 450 6.39% 10,841 6 14 4791 32.1428571428571 1.4 3.76 1.88 0.36 0.08 0.01
1420 3730 1860 430 590 70 3 143.333333333333 196.666666666667 23.3333333333333 7,010 1,090 15.55% 10,964 175 53 4838 20.5660377358491 1.42 3.73 1.86 0.43 0.59 0.07
1410 3490 1930 390 320 0 1 390 320 0 6,830 710 10.40% 10,964 0 2 4838 355 1.41 3.49 1.93 0.39 0.32 0
1410 3460 1920 520 870 30 5 104 174 6 6,790 1,420 20.91% 10,968 190 107 4845 13.2710280373832 1.41 3.46 1.92 0.52 0.87 0.03
1380 3430 1910 450 470 10 3 150 156.666666666667 3.33333333333333 6,720 930 13.84% 10,978 34 20 4843 46.5 1.38 3.43 1.91 0.45 0.47 0.01
1410 3610 1950 690 1600 460 10 69 160 46 6,970 2,750 39.45% 11,309 667 183 4983 15.0273224043716 1.41 3.61 1.95 0.69 1.6 0.46
1520 3720 1940 570 1090 20 6 95 181.666666666667 3.33333333333333 7,180 1,680 23.40% 11,329 24 29 4994 57.9310344827586 1.52 3.72 1.94 0.57 1.09 0.02
1740 4080 2030 390 270 10 2 195 135 5 7,850 670 8.54% 11,328 1 9 4997 74.4444444444444 1.74 4.08 2.03 0.39 0.27 0.01
1700 4370 2050 630 1370 120 11 57.2727272727273 124.545454545455 10.9090909090909 8,120 2,120 26.11% 11,327 575 237 4996 8.94514767932489 1.7 4.37 2.05 0.63 1.37 0.12
1430 3890 2100 550 1140 90 6 91.6666666666667 190 15 7,420 1,780 23.99% 11,401 438 64 5032 27.8125 1.43 3.89 2.1 0.55 1.14 0.09
1430 3670 2000 440 490 0 2 220 245 0 7,100 930 13.10% 11,401 0 6 5032 155 1.43 3.67 2 0.44 0.49 0
1460 3740 2130 570 1120 20 6 95 186.666666666667 3.33333333333333 7,330 1,710 23.33% 11,431 50 37 5041 46.2162162162162 1.46 3.74 2.13 0.57 1.12 0.02
1500 3670 2080 350 90 0 1 350 90 0 7,250 440 6.07% 11,428 3 2 5041 220 1.5 3.67 2.08 0.35 0.09 0
1460 3930 2080 550 970 0 5 110 194 0 7,470 1,520 20.35% 11,446 18 36 5041 42.2222222222222 1.46 3.93 2.08 0.55 0.97 0
1480 3860 1990 520 840 0 3 173.333333333333 280 0 7,330 1,360 18.55% 11,450 4 8 5041 170 1.48 3.86 1.99 0.52 0.84 0
1470 3970 2020 390 50 0 1 390 50 0 7,460 440 5.90% 11,451 1 2 5041 220 1.47 3.97 2.02 0.39 0.05 0
1460 3730 2040 440 410 10 2 220 205 5 7,230 860 11.89% 11,453 10 19 5049 45.2631578947368 1.46 3.73 2.04 0.44 0.41 0.01
1480 3990 2020 430 430 10 3 143.333333333333 143.333333333333 3.33333333333333 7,490 870 11.62% 11,484 67 44 5066 19.7727272727273 1.48 3.99 2.02 0.43 0.43 0.01
1490 3800 2010 390 280 30 3 130 93.3333333333333 10 7,300 700 9.59% 11,476 188 56 5070 12.5 1.49 3.8 2.01 0.39 0.28 0.03
1460 3970 2040 370 180 0 2 185 90 0 7,470 550 7.36% 11,483 7 10 5074 55 1.46 3.97 2.04 0.37 0.18 0
1440 3940 2030 340 40 0 1 340 40 0 7,410 380 5.13% 11,485 2 16 5078 23.75 1.44 3.94 2.03 0.34 0.04 0
1490 3790 2060 350 100 10 1 350 100 10 7,340 460 6.27% 11,493 8 9 5083 51.1111111111111 1.49 3.79 2.06 0.35 0.1 0.01
1470 3990 2030 410 350 0 1 410 350 0 7,490 760 10.15% 11,492 5 33 5088 23.030303030303 1.47 3.99 2.03 0.41 0.35 0
1450 3950 2000 360 190 20 2 180 95 10 7,400 570 7.70% 11,492 72 33 5089 17.2727272727273 1.45 3.95 2 0.36 0.19 0.02
1500 3950 2030 420 280 0 1 420 280 0 7,480 700 9.36% 11,501 29 29 5110 24.1379310344828 1.5 3.95 2.03 0.42 0.28 0
1540 3850 2030 400 310 170 2 200 155 85 7,420 880 11.86% 11,483 24 54 5120 16.2962962962963 1.54 3.85 2.03 0.4 0.31 0.17
1500 4130 2140 620 1550 370 9 68.8888888888889 172.222222222222 41.1111111111111 7,770 2,540 32.69% 11,814 869 189 5240 13.4391534391534 1.5 4.13 2.14 0.62 1.55 0.37
1560 4270 2290 620 1430 160 7 88.5714285714286 204.285714285714 22.8571428571429 8,120 2,210 27.22% 11,952 770 114 5298 19.3859649122807 1.56 4.27 2.29 0.62 1.43 0.16
1640 4370 2170 440 760 90 5 88 152 18 8,180 1,290 15.77% 12,107 403 130 5372 9.92307692307692 1.64 4.37 2.17 0.44 0.76 0.09
1540 3940 2280 450 670 30 5 90 134 6 7,760 1,150 14.82% 12,122 135 26 5378 44.2307692307692 1.54 3.94 2.28 0.45 0.67 0.03
1670 4250 2250 470 640 0 2 235 320 0 8,170 1,110 13.59% 12,122 2 4 5378 277.5 1.67 4.25 2.25 0.47 0.64 0
1590 4310 2290 600 1230 60 9 66.6666666666667 136.666666666667 6.66666666666667 8,190 1,890 23.08% 12,324 230 201 5491 9.40298507462687 1.59 4.31 2.29 0.6 1.23 0.06
1560 4050 2250 640 1620 180 7 91.4285714285714 231.428571428571 25.7142857142857 7,860 2,440 31.04% 12,402 826 113 5516 21.5929203539823 1.56 4.05 2.25 0.64 1.62 0.18
1560 4310 2230 410 430 10 2 205 215 5 8,100 850 10.49% 12,382 96 26 5514 32.6923076923077 1.56 4.31 2.23 0.41 0.43 0.01
1570 4310 2320 380 260 0 1 380 260 0 8,200 640 7.80% 12,384 2 2 5516 320 1.57 4.31 2.32 0.38 0.26 0
1560 4230 2280 570 1090 100 3 190 363.333333333333 33.3333333333333 8,070 1,760 21.81% 12,379 379 58 5532 30.3448275862069 1.56 4.23 2.28 0.57 1.09 0.1
1570 4290 2300 760 2100 580 15 50.6666666666667 140 38.6666666666667 8,160 3,440 42.16% 12,428 2,555 1102 5561 3.12159709618875 1.57 4.29 2.3 0.76 2.1 0.58
1660 4240 2280 360 240 40 3 120 80 13.3333333333333 8,180 640 7.82% 12,578 202 93 5615 6.88172043010753 1.66 4.24 2.28 0.36 0.24 0.04
1590 4140 2390 550 1130 80 8 68.75 141.25 10 8,120 1,760 21.67% 12,701 401 133 5640 13.2330827067669 1.59 4.14 2.39 0.55 1.13 0.08
1560 4390 2410 370 100 10 2 185 50 5 8,360 480 5.74% 12,729 34 39 5655 12.3076923076923 1.56 4.39 2.41 0.37 0.1 0.01
1560 4460 2360 510 710 0 5 102 142 0 8,380 1,220 14.56% 12,732 3 37 5658 32.972972972973 1.56 4.46 2.36 0.51 0.71 0
1610 4370 2370 430 380 40 2 215 190 20 8,350 850 10.18% 12,761 173 58 5708 14.6551724137931 1.61 4.37 2.37 0.43 0.38 0.04
1610 4140 2330 480 440 0 2 240 220 0 8,080 920 11.39% 12,764 9 6 5712 153.333333333333 1.61 4.14 2.33 0.48 0.44 0
1660 4840 2360 500 790 60 5 100 158 12 8,860 1,350 15.24% 12,827 187 39 5715 34.6153846153846 1.66 4.84 2.36 0.5 0.79 0.06
1610 4290 2330 380 250 10 1 380 250 10 8,230 640 7.78% 12,832 15 15 5720 42.6666666666667 1.61 4.29 2.33 0.38 0.25 0.01
1580 4360 2380 560 630 80 4 140 157.5 20 8,320 1,270 15.26% 12,923 257 67 5752 18.955223880597 1.58 4.36 2.38 0.56 0.63 0.08
1750 4480 2330 510 650 240 5 102 130 48 8,560 1,400 16.36% 12,990 309 109 5781 12.8440366972477 1.75 4.48 2.33 0.51 0.65 0.24
1620 4230 2310 670 1530 10 14 47.8571428571429 109.285714285714 0.714285714285714 8,160 2,210 27.08% 12,927 169 78 5797 28.3333333333333 1.62 4.23 2.31 0.67 1.53 0.01
1740 4390 2370 660 1600 170 12 55 133.333333333333 14.1666666666667 8,500 2,430 28.59% 12,952 533 100 5837 24.3 1.74 4.39 2.37 0.66 1.6 0.17
1650 4320 2330 460 570 0 4 115 142.5 0 8,300 1,030 12.41% 12,966 16 14 5843 73.5714285714286 1.65 4.32 2.33 0.46 0.57 0
1650 4460 2540 400 310 0 1 400 310 0 8,650 710 8.21% 12,966 0 2 5843 355 1.65 4.46 2.54 0.4 0.31 0
1640 4240 2370 400 320 10 1 400 320 10 8,250 730 8.85% 12,973 7 23 5842 31.7391304347826 1.64 4.24 2.37 0.4 0.32 0.01
1650 4520 2350 520 1190 180 7 74.2857142857143 170 25.7142857142857 8,520 1,890 22.18% 13,134 699 94 5904 20.1063829787234 1.65 4.52 2.35 0.52 1.19 0.18
1650 4450 2460 540 1030 60 11 49.0909090909091 93.6363636363636 5.45454545454545 8,560 1,630 19.04% 13,280 246 103 5928 15.8252427184466 1.65 4.45 2.46 0.54 1.03 0.06
1660 4520 2440 380 300 0 4 95 75 0 8,620 680 7.89% 13,298 32 24 5938 28.3333333333333 1.66 4.52 2.44 0.38 0.3 0
1690 4690 2440 350 100 0 1 350 100 0 8,820 450 5.10% 13,298 2 4 5938 112.5 1.69 4.69 2.44 0.35 0.1 0
1740 4580 2540 430 560 240 3 143.333333333333 186.666666666667 80 8,860 1,230 13.88% 13,369 253 27 5965 45.5555555555556 1.74 4.58 2.54 0.43 0.56 0.24
1680 4660 2560 360 310 40 4 90 77.5 10 8,900 710 7.98% 13,448 139 33 5984 21.5151515151515 1.68 4.66 2.56 0.36 0.31 0.04
1710 4800 2460 420 480 0 3 140 160 0 8,970 900 10.03% 13,481 33 19 5997 47.3684210526316 1.71 4.8 2.46 0.42 0.48 0
1680 4630 2460 480 640 0 3 160 213.333333333333 0 8,770 1,120 12.77% 13,482 17 67 5998 16.7164179104478 1.68 4.63 2.46 0.48 0.64 0
1680 4590 2600 350 50 0 1 350 50 0 8,870 400 4.51% 13,484 2 6 5998 66.6666666666667 1.68 4.59 2.6 0.35 0.05 0
1640 4290 2500 380 200 0 1 380 200 0 8,430 580 6.88% 13,490 6 1 5999 580 1.64 4.29 2.5 0.38 0.2 0
1680 4440 2510 330 50 0 1 330 50 0 8,630 380 4.40% 13,492 2 2 5999 190 1.68 4.44 2.51 0.33 0.05 0
1670 4360 2530 410 410 30 2 205 205 15 8,560 850 9.93% 13,512 50 13 6010 65.3846153846154 1.67 4.36 2.53 0.41 0.41 0.03
1690 4700 2420 440 490 10 3 146.666666666667 163.333333333333 3.33333333333333 8,810 940 10.67% 13,530 26 9 6017 104.444444444444 1.69 4.7 2.42 0.44 0.49 0.01
1660 4600 2510 340 100 0 1 340 100 0 8,770 440 5.02% 13,530 0 3 6014 146.666666666667 1.66 4.6 2.51 0.34 0.1 0
1680 4370 2490 520 690 30 5 104 138 6 8,540 1,240 14.52% 13,529 63 30 6022 41.3333333333333 1.68 4.37 2.49 0.52 0.69 0.03
1730 4320 2610 410 460 60 3 136.666666666667 153.333333333333 20 8,660 930 10.74% 13,567 72 31 6042 30 1.73 4.32 2.61 0.41 0.46 0.06
1690 4510 2570 350 110 0 2 175 55 0 8,770 460 5.25% 13,565 8 10 6042 46 1.69 4.51 2.57 0.35 0.11 0
1720 4770 2540 410 630 110 2 205 315 55 9,030 1,150 12.74% 13,587 380 72 6048 15.9722222222222 1.72 4.77 2.54 0.41 0.63 0.11
1730 4760 2630 430 450 70 2 215 225 35 9,120 950 10.42% 13,519 328 46 6062 20.6521739130435 1.73 4.76 2.63 0.43 0.45 0.07
1870 5020 2530 410 290 10 1 410 290 10 9,420 710 7.54% 13,519 2 8 6058 88.75 1.87 5.02 2.53 0.41 0.29 0.01
1750 4740 2610 620 1380 100 7 88.5714285714286 197.142857142857 14.2857142857143 9,100 2,100 23.08% 13,553 430 161 6061 13.0434782608696 1.75 4.74 2.61 0.62 1.38 0.1
1860 4670 2590 380 430 70 5 76 86 14 9,120 880 9.65% 13,622 293 134 6141 6.56716417910448 1.86 4.67 2.59 0.38 0.43 0.07
1720 4770 2590 420 110 0 1 420 110 0 9,080 530 5.84% 13,622 0 6 6143 88.3333333333333 1.72 4.77 2.59 0.42 0.11 0
1750 4670 2520 360 170 0 2 180 85 0 8,940 530 5.93% 13,625 3 81 6149 6.54320987654321 1.75 4.67 2.52 0.36 0.17 0
1750 4770 2560 360 200 0 2 180 100 0 9,080 560 6.17% 13,625 0 4 6149 140 1.75 4.77 2.56 0.36 0.2 0
1760 4710 2550 390 260 20 3 130 86.6666666666667 6.66666666666667 9,020 670 7.43% 13,639 72 32 6157 20.9375 1.76 4.71 2.55 0.39 0.26 0.02
1780 4750 2560 420 440 0 2 210 220 0 9,090 860 9.46% 13,609 34 10 6149 86 1.78 4.75 2.56 0.42 0.44 0
1770 4810 2570 330 40 10 1 330 40 10 9,150 380 4.15% 13,612 3 1 6150 380 1.77 4.81 2.57 0.33 0.04 0.01
1760 4540 2550 340 110 0 1 340 110 0 8,850 450 5.08% 13,627 17 16 6156 28.125 1.76 4.54 2.55 0.34 0.11 0
1820 4590 2580 340 130 20 1 340 130 20 8,990 490 5.45% 13,680 107 48 6182 10.2083333333333 1.82 4.59 2.58 0.34 0.13 0.02
1730 4760 2670 400 380 40 2 200 190 20 9,160 820 8.95% 13,708 244 15 6197 54.6666666666667 1.73 4.76 2.67 0.4 0.38 0.04
1760 4850 2660 400 460 250 3 133.333333333333 153.333333333333 83.3333333333333 9,270 1,110 11.97% 13,848 140 60 6254 18.5 1.76 4.85 2.66 0.4 0.46 0.25
1750 4880 2670 380 390 50 4 95 97.5 12.5 9,300 820 8.82% 13,846 260 42 6268 19.5238095238095 1.75 4.88 2.67 0.38 0.39 0.05
1790 4420 2550 420 500 0 4 105 125 0 8,760 920 10.50% 13,705 141 53 6217 17.3584905660377 1.79 4.42 2.55 0.42 0.5 0
1740 5150 2630 360 100 10 1 360 100 10 9,520 470 4.94% 13,706 3 2 6217 235 1.74 5.15 2.63 0.36 0.1 0.01
1760 4590 2580 690 1440 350 10 69 144 35 8,930 2,480 27.77% 13,668 356 87 6184 28.5057471264368 1.76 4.59 2.58 0.69 1.44 0.35
1760 4860 2540 370 130 180 3 123.333333333333 43.3333333333333 60 9,160 680 7.42% 13,681 37 23 6205 29.5652173913043 1.76 4.86 2.54 0.37 0.13 0.18
1730 4840 2510 330 70 10 1 330 70 10 9,080 410 4.52% 13,689 8 4 6207 102.5 1.73 4.84 2.51 0.33 0.07 0.01
1750 4730 2570 420 470 40 4 105 117.5 10 9,050 930 10.28% 13,702 167 19 6212 48.9473684210526 1.75 4.73 2.57 0.42 0.47 0.04
1760 4790 2570 330 110 0 1 330 110 0 9,120 440 4.82% 13,702 4 2 6212 220 1.76 4.79 2.57 0.33 0.11 0
1750 4830 2620 560 1130 130 5 112 226 26 9,200 1,820 19.78% 13,707 507 36 6216 50.5555555555556 1.75 4.83 2.62 0.56 1.13 0.13
1860 4710 2580 350 180 10 2 175 90 5 9,150 540 5.90% 13,725 76 18 6230 30 1.86 4.71 2.58 0.35 0.18 0.01
1810 4520 2600 440 330 0 1 440 330 0 8,930 770 8.62% 13,729 4 16 6242 48.125 1.81 4.52 2.6 0.44 0.33 0
1760 4820 2570 370 270 40 1 370 270 40 9,150 680 7.43% 13,715 200 27 6245 25.1851851851852 1.76 4.82 2.57 0.37 0.27 0.04
1940 4910 2580 400 290 0 2 200 145 0 9,430 690 7.32% 13,718 5 17 6252 40.5882352941176 1.94 4.91 2.58 0.4 0.29 0
1790 4850 2660 360 110 0 1 360 110 0 9,300 470 5.05% 13,712 6 8 6248 58.75 1.79 4.85 2.66 0.36 0.11 0
1770 4480 2530 380 460 70 3 126.666666666667 153.333333333333 23.3333333333333 8,780 910 10.36% 13,717 423 55 6245 16.5454545454545 1.77 4.48 2.53 0.38 0.46 0.07
1920 4420 2480 350 200 10 3 116.666666666667 66.6666666666667 3.33333333333333 8,820 560 6.35% 13,717 24 12 6245 46.6666666666667 1.92 4.42 2.48 0.35 0.2 0.01
1760 4710 2570 360 200 10 1 360 200 10 9,040 570 6.31% 13,712 75 10 6249 57 1.76 4.71 2.57 0.36 0.2 0.01
1760 4740 2570 370 270 50 1 370 270 50 9,070 690 7.61% 13,729 181 24 6259 28.75 1.76 4.74 2.57 0.37 0.27 0.05
1750 4720 2540 390 270 20 3 130 90 6.66666666666667 9,010 680 7.55% 13,727 10 11 6258 61.8181818181818 1.75 4.72 2.54 0.39 0.27 0.02
1760 4530 2530 460 680 220 4 115 170 55 8,820 1,360 15.42% 13,899 298 138 6356 9.85507246376812 1.76 4.53 2.53 0.46 0.68 0.22
1830 4730 2520 550 790 0 4 137.5 197.5 0 9,080 1,340 14.76% 13,902 11 38 6342 35.2631578947368 1.83 4.73 2.52 0.55 0.79 0
1770 4510 2510 380 230 0 2 190 115 0 8,790 610 6.94% 13,891 19 13 6337 46.9230769230769 1.77 4.51 2.51 0.38 0.23 0
1790 4800 2540 350 220 10 1 350 220 10 9,130 580 6.35% 13,907 48 9 6338 64.4444444444444 1.79 4.8 2.54 0.35 0.22 0.01
1770 4350 2550 360 200 10 1 360 200 10 8,670 570 6.57% 13,917 10 4 6342 142.5 1.77 4.35 2.55 0.36 0.2 0.01
1740 4700 2560 360 200 10 1 360 200 10 9,000 570 6.33% 13,896 59 14 6346 40.7142857142857 1.74 4.7 2.56 0.36 0.2 0.01
1760 4690 2580 490 560 180 5 98 112 36 9,030 1,230 13.62% 13,931 35 89 6432 13.8202247191011 1.76 4.69 2.58 0.49 0.56 0.18
1760 4470 2510 660 1370 40 11 60 124.545454545455 3.63636363636364 8,740 2,070 23.68% 14,021 182 74 6454 27.972972972973 1.76 4.47 2.51 0.66 1.37 0.04
1840 4440 2520 350 70 180 1 350 70 180 8,800 600 6.82% 14,027 6 14 6466 42.8571428571429 1.84 4.44 2.52 0.35 0.07 0.18
1770 4500 2510 350 70 170 1 350 70 170 8,780 590 6.72% 14,033 6 17 6483 34.7058823529412 1.77 4.5 2.51 0.35 0.07 0.17
1780 4820 2520 450 780 80 6 75 130 13.3333333333333 9,120 1,310 14.36% 14,185 314 128 6538 10.234375 1.78 4.82 2.52 0.45 0.78 0.08
1830 4880 2650 360 70 0 1 360 70 0 9,360 430 4.59% 14,186 1 3 6539 143.333333333333 1.83 4.88 2.65 0.36 0.07 0
1880 4560 2670 470 650 120 4 117.5 162.5 30 9,110 1,240 13.61% 14,171 67 33 6538 37.5757575757576 1.88 4.56 2.67 0.47 0.65 0.12
1850 5000 2690 340 60 0 1 340 60 0 9,540 400 4.19% 14,171 0 4 6538 100 1.85 5 2.69 0.34 0.06 0
1850 4620 2670 420 430 40 3 140 143.333333333333 13.3333333333333 9,140 890 9.74% 14,172 11 11 6539 80.9090909090909 1.85 4.62 2.67 0.42 0.43 0.04
1840 4900 2670 320 60 10 1 320 60 10 9,410 390 4.14% 14,171 7 1 6538 390 1.84 4.9 2.67 0.32 0.06 0.01
1800 4930 2570 350 90 0 1 350 90 0 9,300 440 4.73% 14,172 1 36 6504 12.2222222222222 1.8 4.93 2.57 0.35 0.09 0
1800 4680 2650 330 50 0 1 330 50 0 9,130 380 4.16% 14,172 0 2 6504 190 1.8 4.68 2.65 0.33 0.05 0
1800 4580 2670 540 1020 90 8 67.5 127.5 11.25 9,050 1,650 18.23% 13,990 752 131 6426 12.5954198473282 1.8 4.58 2.67 0.54 1.02 0.09
1800 4720 2750 440 670 110 5 88 134 22 9,270 1,220 13.16% 14,148 254 74 6499 16.4864864864865 1.8 4.72 2.75 0.44 0.67 0.11
1820 5120 2680 680 1490 100 8 85 186.25 12.5 9,620 2,270 23.60% 14,224 350 80 6540 28.375 1.82 5.12 2.68 0.68 1.49 0.1
1820 5090 2830 690 1570 80 8 86.25 196.25 10 9,740 2,340 24.02% 14,310 254 68 6600 34.4117647058824 1.82 5.09 2.83 0.69 1.57 0.08
1830 5180 2820 610 1220 20 5 122 244 4 9,830 1,850 18.82% 14,329 21 11 6609 168.181818181818 1.83 5.18 2.82 0.61 1.22 0.02
1870 4890 2780 530 960 80 4 132.5 240 20 9,540 1,570 16.46% 14,483 254 61 6669 25.7377049180328 1.87 4.89 2.78 0.53 0.96 0.08
1850 5190 2870 380 280 10 1 380 280 10 9,910 670 6.76% 14,496 13 7 6676 95.7142857142857 1.85 5.19 2.87 0.38 0.28 0.01
1840 5200 2870 360 140 10 1 360 140 10 9,910 510 5.15% 14,496 4 2 6676 255 1.84 5.2 2.87 0.36 0.14 0.01
1850 5230 2860 390 190 190 3 130 63.3333333333333 63.3333333333333 9,940 770 7.75% 14,537 63 34 6703 22.6470588235294 1.85 5.23 2.86 0.39 0.19 0.19
1860 5330 2980 470 1020 360 6 78.3333333333333 170 60 10,170 1,850 18.19% 14,682 459 117 6766 15.8119658119658 1.86 5.33 2.98 0.47 1.02 0.36
1890 5050 2950 340 80 10 1 340 80 10 9,890 430 4.35% 14,686 4 2 6766 215 1.89 5.05 2.95 0.34 0.08 0.01
1850 5390 2990 460 400 50 1 460 400 50 10,230 910 8.90% 14,686 4 2 6766 455 1.85 5.39 2.99 0.46 0.4 0.05
1920 5160 3030 650 1570 150 7 92.8571428571429 224.285714285714 21.4285714285714 10,110 2,370 23.44% 14,876 270 136 6872 17.4264705882353 1.92 5.16 3.03 0.65 1.57 0.15
1890 5410 2960 360 300 0 2 180 150 0 10,260 660 6.43% 14,876 4 8 6874 82.5 1.89 5.41 2.96 0.36 0.3 0
1890 5280 3130 650 1740 230 5 130 348 46 10,300 2,620 25.44% 15,082 536 125 6948 20.96 1.89 5.28 3.13 0.65 1.74 0.23
1950 5670 3160 360 80 10 1 360 80 10 10,780 450 4.17% 15,083 3 2 6948 225 1.95 5.67 3.16 0.36 0.08 0.01
1900 5630 3150 390 160 0 1 390 160 0 10,680 550 5.15% 15,088 5 2 6948 275 1.9 5.63 3.15 0.39 0.16 0
1990 5470 3070 460 680 0 3 153.333333333333 226.666666666667 0 10,530 1,140 10.83% 15,096 8 10 6948 114 1.99 5.47 3.07 0.46 0.68 0
1900 5310 3090 410 570 110 2 205 285 55 10,300 1,090 10.58% 15,126 250 24 6964 45.4166666666667 1.9 5.31 3.09 0.41 0.57 0.11
1930 5660 3160 370 200 20 1 370 200 20 10,750 590 5.49% 15,211 85 34 6998 17.3529411764706 1.93 5.66 3.16 0.37 0.2 0.02
1920 5400 3130 360 510 100 2 180 255 50 10,450 970 9.28% 15,270 199 26 7024 37.3076923076923 1.92 5.4 3.13 0.36 0.51 0.1
1930 5380 3110 370 410 70 1 370 410 70 10,420 850 8.16% 15,274 192 22 7030 38.6363636363636 1.93 5.38 3.11 0.37 0.41 0.07
1930 5810 3270 380 450 50 2 190 225 25 11,010 880 7.99% 15,336 106 69 7063 12.7536231884058 1.93 5.81 3.27 0.38 0.45 0.05
1950 5750 3160 400 390 0 2 200 195 0 10,860 790 7.27% 15,350 14 12 7071 65.8333333333333 1.95 5.75 3.16 0.4 0.39 0
1910 5440 3260 400 330 220 3 133.333333333333 110 73.3333333333333 10,610 950 8.95% 15,419 73 52 7115 18.2692307692308 1.91 5.44 3.26 0.4 0.33 0.22
1950 5740 3240 390 470 60 1 390 470 60 10,930 920 8.42% 15,429 152 7 7116 131.428571428571 1.95 5.74 3.24 0.39 0.47 0.06
1980 5980 3290 390 410 10 1 390 410 10 11,250 810 7.20% 15,450 21 45 7119 18 1.98 5.98 3.29 0.39 0.41 0.01
1920 5630 3280 410 450 30 1 410 450 30 10,830 890 8.22% 15,513 63 24 7141 37.0833333333333 1.92 5.63 3.28 0.41 0.45 0.03
1850 5800 3290 470 940 70 2 235 470 35 10,940 1,480 13.53% 15,529 192 101 7148 14.6534653465347 1.85 5.8 3.29 0.47 0.94 0.07
1920 5690 3370 380 360 0 1 380 360 0 10,980 740 6.74% 15,526 5 2 7148 370 1.92 5.69 3.37 0.38 0.36 0
1850 5730 3340 380 380 0 1 380 380 0 10,920 760 6.96% 15,533 7 1 7149 760 1.85 5.73 3.34 0.38 0.38 0
2000 5790 3250 410 520 60 1 410 520 60 11,040 990 8.97% 15,566 143 14 7163 70.7142857142857 2 5.79 3.25 0.41 0.52 0.06
1930 5620 3220 340 50 10 1 340 50 10 10,770 400 3.71% 15,572 24 4 7167 100 1.93 5.62 3.22 0.34 0.05 0.01
1940 5640 3390 440 540 0 2 220 270 0 10,970 980 8.93% 15,572 0 39 7170 25.1282051282051 1.94 5.64 3.39 0.44 0.54 0
1980 5670 3360 400 400 0 1 400 400 0 11,010 800 7.27% 15,578 6 1 7171 800 1.98 5.67 3.36 0.4 0.4 0
2030 6050 3290 480 990 100 2 240 495 50 11,370 1,570 13.81% 15,647 217 69 7200 22.7536231884058 2.03 6.05 3.29 0.48 0.99 0.1
1960 5940 3310 400 390 0 1 400 390 0 11,210 790 7.05% 15,647 0 139 7198 5.68345323741007 1.96 5.94 3.31 0.4 0.39 0
1950 6100 3290 480 750 0 3 160 250 0 11,340 1,230 10.85% 15,656 9 48 7200 25.625 1.95 6.1 3.29 0.48 0.75 0
1970 5680 3380 430 510 0 1 430 510 0 11,030 940 8.52% 15,659 3 1 7201 940 1.97 5.68 3.38 0.43 0.51 0
1960 5950 3540 360 230 40 1 360 230 40 11,450 630 5.50% 15,708 65 32 7221 19.6875 1.96 5.95 3.54 0.36 0.23 0.04
1910 5630 3400 500 970 60 2 250 485 30 10,940 1,530 13.99% 15,752 196 20 7237 76.5 1.91 5.63 3.4 0.5 0.97 0.06
1930 5880 3380 430 630 60 1 430 630 60 11,190 1,120 10.01% 15,766 224 4 7241 280 1.93 5.88 3.38 0.43 0.63 0.06
1870 5600 3370 460 520 0 1 460 520 0 10,840 980 9.04% 15,770 4 2 7241 490 1.87 5.6 3.37 0.46 0.52 0
1940 6130 3400 340 70 0 1 340 70 0 11,470 410 3.57% 15,766 10 19 7244 21.5789473684211 1.94 6.13 3.4 0.34 0.07 0
1970 6070 3420 330 60 0 1 330 60 0 11,460 390 3.40% 15,757 9 8 7238 48.75 1.97 6.07 3.42 0.33 0.06 0
1980 5680 3330 0 0 0 0 10,990 0 15,757 0 0 7238 1.98 5.68 3.33 0 0 0
1920 5670 3400 350 50 0 1 350 50 0 10,990 400 3.64% 15,756 3 3 7237 133.333333333333 1.92 5.67 3.4 0.35 0.05 0
1970 6090 3410 410 470 0 2 205 235 0 11,470 880 7.67% 15,746 10 4 7237 220 1.97 6.09 3.41 0.41 0.47 0
1910 5710 3440 390 240 30 2 195 120 15 11,060 660 5.97% 15,822 110 45 7272 14.6666666666667 1.91 5.71 3.44 0.39 0.24 0.03
1990 5960 3410 1070 3600 300 31 34.5161290322581 116.129032258065 9.67741935483871 11,360 4,970 43.75% 15,600 2,394 3110 7328 1.59807073954984 1.99 5.96 3.41 1.07 3.6 0.3
2050 6250 3390 430 560 170 6 71.6666666666667 93.3333333333333 28.3333333333333 11,690 1,160 9.92% 15,643 431 177 7379 6.55367231638418 2.05 6.25 3.39 0.43 0.56 0.17
2000 6020 3380 340 90 10 1 340 90 10 11,400 440 3.86% 15,631 40 58 7377 7.58620689655172 2 6.02 3.38 0.34 0.09 0.01
1920 5370 3010 390 330 150 2 195 165 75 10,300 870 8.45% 15,016 779 270 7119 3.22222222222222 1.92 5.37 3.01 0.39 0.33 0.15
1910 5000 2820 390 270 90 2 195 135 45 9,730 750 7.71% 14,477 663 236 6887 3.17796610169492 1.91 5 2.82 0.39 0.27 0.09
1900 5290 2840 340 60 10 1 340 60 10 10,030 410 4.09% 14,467 34 70 6883 5.85714285714286 1.9 5.29 2.84 0.34 0.06 0.01
1880 5010 2840 340 50 0 1 340 50 0 9,730 390 4.01% 14,468 3 24 6885 16.25 1.88 5.01 2.84 0.34 0.05 0
1900 4990 2830 370 130 10 1 370 130 10 9,720 510 5.25% 14,452 94 34 6885 15 1.9 4.99 2.83 0.37 0.13 0.01
1910 4990 2810 590 990 20 8 73.75 123.75 2.5 9,710 1,600 16.48% 14,447 183 341 6956 4.69208211143695 1.91 4.99 2.81 0.59 0.99 0.02
1970 5710 3420 480 1540 780 3 160 513.333333333333 260 11,100 2,800 25.23% 15,718 1,323 567 7507 4.93827160493827 1.97 5.71 3.42 0.48 1.54 0.78
2080 6270 3440 550 1150 110 6 91.6666666666667 191.666666666667 18.3333333333333 11,790 1,810 15.35% 15,783 481 341 7616 5.30791788856305 2.08 6.27 3.44 0.55 1.15 0.11
1910 6100 3490 450 750 520 2 225 375 260 11,500 1,720 14.96% 15,788 809 456 7620 3.7719298245614 1.91 6.1 3.49 0.45 0.75 0.52
2110 6180 3430 340 50 0 1 340 50 0 11,720 390 3.33% 15,786 2 4 7620 97.5 2.11 6.18 3.43 0.34 0.05 0
1960 5890 3330 360 170 0 1 360 170 0 11,180 530 4.74% 15,787 11 77 7599 6.88311688311688 1.96 5.89 3.33 0.36 0.17 0
2060 6420 3480 410 360 0 3 136.666666666667 120 0 11,960 770 6.44% 15,787 2 225 7608 3.42222222222222 2.06 6.42 3.48 0.41 0.36 0
2060 6390 3490 340 90 0 1 340 90 0 11,940 430 3.60% 15,789 12 144 7642 2.98611111111111 2.06 6.39 3.49 0.34 0.09 0
2130 6400 3460 450 400 0 2 225 200 0 11,990 850 7.09% 15,791 6 36 7642 23.6111111111111 2.13 6.4 3.46 0.45 0.4 0
2040 6340 3490 440 440 0 2 220 220 0 11,870 880 7.41% 15,803 14 31 7631 28.3870967741935 2.04 6.34 3.49 0.44 0.44 0
2090 6570 3550 630 1200 80 8 78.75 150 10 12,210 1,910 15.64% 15,971 488 245 7760 7.79591836734694 2.09 6.57 3.55 0.63 1.2 0.08
2190 6420 3540 350 160 0 1 350 160 0 12,150 510 4.20% 15,969 4 2 7760 255 2.19 6.42 3.54 0.35 0.16 0
2090 6250 3470 380 190 0 1 380 190 0 11,810 570 4.83% 15,969 8 16 7760 35.625 2.09 6.25 3.47 0.38 0.19 0
2090 6240 3520 600 1580 220 7 85.7142857142857 225.714285714286 31.4285714285714 11,850 2,400 20.25% 16,044 919 295 7789 8.13559322033898 2.09 6.24 3.52 0.6 1.58 0.22
2110 6500 3510 400 460 10 5 80 92 2 12,120 870 7.18% 16,049 59 54 7804 16.1111111111111 2.11 6.5 3.51 0.4 0.46 0.01
1990 6240 3520 360 170 0 2 180 85 0 11,750 530 4.51% 16,049 6 26 7792 20.3846153846154 1.99 6.24 3.52 0.36 0.17 0
2000 6370 3460 420 760 140 2 210 380 70 11,830 1,320 11.16% 16,054 425 71 7791 18.5915492957746 2 6.37 3.46 0.42 0.76 0.14
2120 6310 3510 430 370 0 3 143.333333333333 123.333333333333 0 11,940 800 6.70% 16,063 23 103 7768 7.76699029126214 2.12 6.31 3.51 0.43 0.37 0
2080 6390 3450 420 640 110 4 105 160 27.5 11,920 1,170 9.82% 16,110 417 172 7803 6.80232558139535 2.08 6.39 3.45 0.42 0.64 0.11
1970 6040 3420 350 60 0 1 350 60 0 11,430 410 3.59% 16,111 1 6 7803 68.3333333333333 1.97 6.04 3.42 0.35 0.06 0
1970 6120 3430 410 380 20 3 136.666666666667 126.666666666667 6.66666666666667 11,520 810 7.03% 16,149 92 94 7822 8.61702127659574 1.97 6.12 3.43 0.41 0.38 0.02
2040 6330 3430 340 50 0 1 340 50 0 11,800 390 3.31% 16,149 2 2 7822 195 2.04 6.33 3.43 0.34 0.05 0
2110 6320 3500 430 420 80 3 143.333333333333 140 26.6666666666667 11,930 930 7.80% 16,061 566 172 7836 5.40697674418605 2.11 6.32 3.5 0.43 0.42 0.08
2160 6390 3510 370 200 0 1 370 200 0 12,060 570 4.73% 16,061 0 2 7836 285 2.16 6.39 3.51 0.37 0.2 0
2130 6380 3530 400 390 0 1 400 390 0 12,040 790 6.56% 16,055 6 2 7836 395 2.13 6.38 3.53 0.4 0.39 0
2100 6400 3660 350 110 0 1 350 110 0 12,160 460 3.78% 16,071 16 13 7845 35.3846153846154 2.1 6.4 3.66 0.35 0.11 0
2340 6660 3510 340 70 0 1 340 70 0 12,510 410 3.28% 16,075 8 12 7845 34.1666666666667 2.34 6.66 3.51 0.34 0.07 0
1990 6050 3370 360 180 0 1 360 180 0 11,410 540 4.73% 16,075 4 8 7845 67.5 1.99 6.05 3.37 0.36 0.18 0
2110 6230 3480 370 110 10 1 370 110 10 11,820 490 4.15% 16,088 35 31 7848 15.8064516129032 2.11 6.23 3.48 0.37 0.11 0.01
2020 6070 3360 330 50 0 1 330 50 0 11,450 380 3.32% 16,092 4 4 7850 95 2.02 6.07 3.36 0.33 0.05 0
2000 6130 3420 340 40 0 1 340 40 0 11,550 380 3.29% 16,091 13 13 7849 29.2307692307692 2 6.13 3.42 0.34 0.04 0
2140 6340 3540 320 60 10 1 320 60 10 12,020 390 3.24% 16,096 5 5 7850 78 2.14 6.34 3.54 0.32 0.06 0.01
2000 6160 3340 360 130 10 1 360 130 10 11,500 500 4.35% 16,096 6 26 7872 19.2307692307692 2 6.16 3.34 0.36 0.13 0.01
2130 6270 3500 450 340 30 4 112.5 85 7.5 11,900 820 6.89% 16,118 148 91 7921 9.01098901098901 2.13 6.27 3.5 0.45 0.34 0.03
1970 6180 3480 380 220 0 2 190 110 0 11,630 600 5.16% 16,122 8 17 7920 35.2941176470588 1.97 6.18 3.48 0.38 0.22 0
2170 6220 3440 340 80 0 1 340 80 0 11,830 420 3.55% 16,123 1 6 7920 70 2.17 6.22 3.44 0.34 0.08 0
2120 6370 3950 380 410 20 1 380 410 20 12,440 810 6.51% 16,157 34 13 7929 62.3076923076923 2.12 6.37 3.95 0.38 0.41 0.02
2570 7180 3560 370 240 20 2 185 120 10 13,310 630 4.73% 16,192 55 32 7955 19.6875 2.57 7.18 3.56 0.37 0.24 0.02
2400 6630 3630 400 270 10 1 400 270 10 12,660 680 5.37% 16,203 11 5 7960 136 2.4 6.63 3.63 0.4 0.27 0.01
2220 6320 3520 330 50 0 1 330 50 0 12,060 380 3.15% 16,208 21 23 7971 16.5217391304348 2.22 6.32 3.52 0.33 0.05 0
2130 6450 3550 350 100 0 1 350 100 0 12,130 450 3.71% 16,211 11 23 7954 19.5652173913043 2.13 6.45 3.55 0.35 0.1 0
2150 6280 3530 360 230 30 1 360 230 30 11,960 620 5.18% 16,225 124 33 7961 18.7878787878788 2.15 6.28 3.53 0.36 0.23 0.03
2150 6330 3470 330 90 0 1 330 90 0 11,950 420 3.51% 16,228 3 7 7966 60 2.15 6.33 3.47 0.33 0.09 0
1990 6040 3550 340 60 0 1 340 60 0 11,580 400 3.45% 16,229 1 1 7967 400 1.99 6.04 3.55 0.34 0.06 0
2060 6160 3520 410 370 0 2 205 185 0 11,740 780 6.64% 16,231 22 117 8002 6.66666666666667 2.06 6.16 3.52 0.41 0.37 0
2120 7000 3690 350 110 0 1 350 110 0 12,810 460 3.59% 16,233 2 9 8003 51.1111111111111 2.12 7 3.69 0.35 0.11 0
2000 6220 3610 370 210 10 1 370 210 10 11,830 590 4.99% 16,255 76 28 8013 21.0714285714286 2 6.22 3.61 0.37 0.21 0.01
1990 5940 3510 460 550 20 4 115 137.5 5 11,440 1,030 9.00% 16,239 116 150 7969 6.86666666666667 1.99 5.94 3.51 0.46 0.55 0.02
1990 5980 3460 500 640 20 5 100 128 4 11,430 1,160 10.15% 16,236 135 166 8013 6.98795180722892 1.99 5.98 3.46 0.5 0.64 0.02
1980 6180 3520 380 180 0 1 380 180 0 11,680 560 4.79% 16,227 15 39 8018 14.3589743589744 1.98 6.18 3.52 0.38 0.18 0
1980 6270 3740 380 380 0 1 380 380 0 11,990 760 6.34% 16,227 0 12 8018 63.3333333333333 1.98 6.27 3.74 0.38 0.38 0
2280 6180 3440 370 240 30 1 370 240 30 11,900 640 5.38% 16,248 137 103 8027 6.21359223300971 2.28 6.18 3.44 0.37 0.24 0.03
1980 6050 3520 430 590 50 5 86 118 10 11,550 1,070 9.26% 16,284 286 50 8055 21.4 1.98 6.05 3.52 0.43 0.59 0.05
2160 6300 3500 340 70 10 1 340 70 10 11,960 420 3.51% 16,294 18 4 8057 105 2.16 6.3 3.5 0.34 0.07 0.01
2000 6210 3570 370 230 20 2 185 115 10 11,780 620 5.26% 16,326 60 25 8080 24.8 2 6.21 3.57 0.37 0.23 0.02
2260 6480 3620 390 350 20 3 130 116.666666666667 6.66666666666667 12,360 760 6.15% 16,275 157 56 8058 13.5714285714286 2.26 6.48 3.62 0.39 0.35 0.02
2170 6650 3580 390 280 10 2 195 140 5 12,400 680 5.48% 16,275 4 15 8067 45.3333333333333 2.17 6.65 3.58 0.39 0.28 0.01
2270 6630 3620 360 250 10 2 180 125 5 12,520 620 4.95% 16,307 60 25 8090 24.8 2.27 6.63 3.62 0.36 0.25 0.01
1930 6140 3400 530 840 30 4 132.5 210 7.5 11,470 1,400 12.21% 16,314 121 90 8090 15.5555555555556 1.93 6.14 3.4 0.53 0.84 0.03
2160 6390 3620 420 420 20 3 140 140 6.66666666666667 12,170 860 7.07% 16,321 91 77 8109 11.1688311688312 2.16 6.39 3.62 0.42 0.42 0.02
1890 6090 3610 330 160 10 2 165 80 5 11,590 500 4.31% 16,321 20 18 8109 27.7777777777778 1.89 6.09 3.61 0.33 0.16 0.01
2180 6360 3600 340 130 0 2 170 65 0 12,140 470 3.87% 16,321 0 4 8109 117.5 2.18 6.36 3.6 0.34 0.13 0
2190 6460 3470 510 810 200 3 170 270 66.6666666666667 12,120 1,520 12.54% 16,336 49 38 8123 40 2.19 6.46 3.47 0.51 0.81 0.2
2180 6300 3520 400 240 40 1 400 240 40 12,000 680 5.67% 16,336 2 2 8123 340 2.18 6.3 3.52 0.4 0.24 0.04
2170 6490 3550 350 240 20 1 350 240 20 12,210 610 5.00% 16,298 192 241 8130 2.53112033195021 2.17 6.49 3.55 0.35 0.24 0.02
2230 6680 3540 390 400 0 1 390 400 0 12,450 790 6.35% 16,299 1 6 8130 131.666666666667 2.23 6.68 3.54 0.39 0.4 0
2210 6480 3620 340 120 0 1 340 120 0 12,310 460 3.74% 16,299 0 2 8130 230 2.21 6.48 3.62 0.34 0.12 0
1970 6040 3640 370 190 0 1 370 190 0 11,650 560 4.81% 16,299 0 14 8118 40 1.97 6.04 3.64 0.37 0.19 0
2160 6290 3410 350 80 0 1 350 80 0 11,860 430 3.63% 16,317 26 10 8122 43 2.16 6.29 3.41 0.35 0.08 0
1900 6040 3560 350 180 30 1 350 180 30 11,500 560 4.87% 16,362 145 63 8143 8.88888888888889 1.9 6.04 3.56 0.35 0.18 0.03
2270 6560 3470 430 440 0 3 143.333333333333 146.666666666667 0 12,300 870 7.07% 16,396 44 47 8152 18.5106382978723 2.27 6.56 3.47 0.43 0.44 0
2180 6510 3620 450 580 110 2 225 290 55 12,310 1,140 9.26% 16,410 228 45 8157 25.3333333333333 2.18 6.51 3.62 0.45 0.58 0.11
2060 6410 3550 380 380 310 4 95 95 77.5 12,020 1,070 8.90% 16,780 370 175 8329 6.11428571428571 2.06 6.41 3.55 0.38 0.38 0.31
2020 6430 3670 370 350 60 3 123.333333333333 116.666666666667 20 12,120 780 6.44% 16,951 307 155 8410 5.03225806451613 2.02 6.43 3.67 0.37 0.35 0.06
2250 6790 3600 410 270 0 3 136.666666666667 90 0 12,640 680 5.38% 16,963 18 33 8419 20.6060606060606 2.25 6.79 3.6 0.41 0.27 0
2250 6640 3880 410 210 10 2 205 105 5 12,770 630 4.93% 16,968 31 20 8425 31.5 2.25 6.64 3.88 0.41 0.21 0.01
2030 6380 3650 400 330 40 2 200 165 20 12,060 770 6.38% 16,988 34 18 8435 42.7777777777778 2.03 6.38 3.65 0.4 0.33 0.04
2290 6690 3610 500 790 30 3 166.666666666667 263.333333333333 10 12,590 1,320 10.48% 17,045 135 51 8461 25.8823529411765 2.29 6.69 3.61 0.5 0.79 0.03
1970 6520 3740 390 400 0 1 390 400 0 12,230 790 6.46% 17,044 1 5 8460 158 1.97 6.52 3.74 0.39 0.4 0
2030 6390 3700 400 210 0 2 200 105 0 12,120 610 5.03% 17,050 6 8 8460 76.25 2.03 6.39 3.7 0.4 0.21 0
2030 6520 3740 410 680 140 4 102.5 170 35 12,290 1,230 10.01% 17,456 500 226 8632 5.44247787610619 2.03 6.52 3.74 0.41 0.68 0.14
2070 6570 3760 360 140 10 1 360 140 10 12,400 510 4.11% 17,464 12 8 8632 63.75 2.07 6.57 3.76 0.36 0.14 0.01
2260 6820 3760 350 90 10 1 350 90 10 12,840 450 3.50% 17,472 12 11 8633 40.9090909090909 2.26 6.82 3.76 0.35 0.09 0.01
2280 6740 3770 350 140 0 1 350 140 0 12,790 490 3.83% 17,473 1 2 8633 245 2.28 6.74 3.77 0.35 0.14 0
1860 6590 3840 460 320 0 2 230 160 0 12,290 780 6.35% 17,478 5 4 8635 195 1.86 6.59 3.84 0.46 0.32 0
2020 6590 3740 350 180 0 1 350 180 0 12,350 530 4.29% 17,472 16 13 8634 40.7692307692308 2.02 6.59 3.74 0.35 0.18 0
2270 6730 3750 380 200 0 1 380 200 0 12,750 580 4.55% 17,479 7 8 8634 72.5 2.27 6.73 3.75 0.38 0.2 0
2040 6540 3750 350 190 10 1 350 190 10 12,330 550 4.46% 17,473 10 13 8633 42.3076923076923 2.04 6.54 3.75 0.35 0.19 0.01
2280 6780 3740 370 270 0 2 185 135 0 12,800 640 5.00% 17,479 12 17 8635 37.6470588235294 2.28 6.78 3.74 0.37 0.27 0
2280 6690 3760 350 200 0 1 350 200 0 12,730 550 4.32% 17,473 10 13 8634 42.3076923076923 2.28 6.69 3.76 0.35 0.2 0
2310 6920 3790 350 270 60 2 175 135 30 13,020 680 5.22% 17,729 256 99 8732 6.86868686868687 2.31 6.92 3.79 0.35 0.27 0.06
2010 6690 3710 320 60 0 1 320 60 0 12,410 380 3.06% 17,737 8 8 8738 47.5 2.01 6.69 3.71 0.32 0.06 0
2300 6840 3820 600 1430 390 9 66.6666666666667 158.888888888889 43.3333333333333 12,960 2,420 18.67% 17,761 546 370 8765 6.54054054054054 2.3 6.84 3.82 0.6 1.43 0.39
1880 6710 3810 330 70 10 1 330 70 10 12,400 410 3.31% 17,760 1 4 8765 102.5 1.88 6.71 3.81 0.33 0.07 0.01
2290 6830 3800 380 380 0 2 190 190 0 12,920 760 5.88% 17,758 2 4 8765 190 2.29 6.83 3.8 0.38 0.38 0
2290 6860 3820 370 90 0 1 370 90 0 12,970 460 3.55% 17,758 4 4 8765 115 2.29 6.86 3.82 0.37 0.09 0
2290 6760 3790 390 410 60 2 195 205 30 12,840 860 6.70% 17,672 358 66 8765 13.030303030303 2.29 6.76 3.79 0.39 0.41 0.06
2300 6800 3740 350 150 0 1 350 150 0 12,840 500 3.89% 17,673 1 1 8766 500 2.3 6.8 3.74 0.35 0.15 0
2320 6780 3820 460 490 30 4 115 122.5 7.5 12,920 980 7.59% 17,784 115 61 8811 16.0655737704918 2.32 6.78 3.82 0.46 0.49 0.03
1930 6720 3810 350 130 10 1 350 130 10 12,460 490 3.93% 17,789 11 26 8815 18.8461538461538 1.93 6.72 3.81 0.35 0.13 0.01
2320 6790 3820 350 200 0 1 350 200 0 12,930 550 4.25% 17,791 2 2 8817 275 2.32 6.79 3.82 0.35 0.2 0
1890 6650 3810 440 640 90 3 146.666666666667 213.333333333333 30 12,350 1,170 9.47% 17,847 456 80 8819 14.625 1.89 6.65 3.81 0.44 0.64 0.09
1790 6750 3820 410 310 10 2 205 155 5 12,360 730 5.91% 17,850 3 16 8821 45.625 1.79 6.75 3.82 0.41 0.31 0.01
2310 6840 3740 580 1330 450 5 116 266 90 12,890 2,360 18.31% 18,036 624 254 8937 9.29133858267716 2.31 6.84 3.74 0.58 1.33 0.45
2290 6930 3860 360 80 0 1 360 80 0 13,080 440 3.36% 18,031 5 104 8835 4.23076923076923 2.29 6.93 3.86 0.36 0.08 0
2050 6670 3800 390 230 0 1 390 230 0 12,520 620 4.95% 18,030 1 6 8835 103.333333333333 2.05 6.67 3.8 0.39 0.23 0
2340 6990 3860 370 140 0 1 370 140 0 13,190 510 3.87% 18,030 2 2 8835 255 2.34 6.99 3.86 0.37 0.14 0
1860 6780 3830 390 250 0 1 390 250 0 12,470 640 5.13% 18,032 2 5 8838 128 1.86 6.78 3.83 0.39 0.25 0
2300 6930 3850 370 180 10 1 370 180 10 13,080 560 4.28% 18,030 4 3 8839 186.666666666667 2.3 6.93 3.85 0.37 0.18 0.01
2320 6980 3900 670 1320 310 5 134 264 62 13,200 2,300 17.42% 18,146 154 145 8956 15.8620689655172 2.32 6.98 3.9 0.67 1.32 0.31
2290 6920 3850 420 180 20 1 420 180 20 13,060 620 4.75% 18,148 10 7 8959 88.5714285714286 2.29 6.92 3.85 0.42 0.18 0.02
2310 6890 3880 400 180 10 1 400 180 10 13,080 590 4.51% 18,148 8 2 8959 295 2.31 6.89 3.88 0.4 0.18 0.01
2300 6900 3800 360 150 10 1 360 150 10 13,000 520 4.00% 18,149 27 7 8960 74.2857142857143 2.3 6.9 3.8 0.36 0.15 0.01
2000 6570 3810 360 140 10 1 360 140 10 12,380 510 4.12% 18,150 1 2 8960 255 2 6.57 3.81 0.36 0.14 0.01
2280 6760 3800 360 200 40 1 360 200 40 12,840 600 4.67% 18,188 150 27 8967 22.2222222222222 2.28 6.76 3.8 0.36 0.2 0.04
1990 6710 3820 370 150 0 1 370 150 0 12,520 520 4.15% 18,191 3 5 8970 104 1.99 6.71 3.82 0.37 0.15 0
2280 6860 3830 350 90 10 1 350 90 10 12,970 450 3.47% 18,196 5 1 8971 450 2.28 6.86 3.83 0.35 0.09 0.01
2280 6870 3910 430 270 0 1 430 270 0 13,060 700 5.36% 18,196 0 15 8984 46.6666666666667 2.28 6.87 3.91 0.43 0.27 0
2350 6930 3890 410 270 0 2 205 135 0 13,170 680 5.16% 18,204 8 13 8991 52.3076923076923 2.35 6.93 3.89 0.41 0.27 0

0

3

6

9

12

15

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Ti
m

e
(s

)

Revision

Parse Collect Evaluate

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Ti
m

e
(s

)

Revision

Parse Collect Evaluate

SEQNUM DELTAFILES PARSE
[INCR]

COLLECT
[INCR]

EVALUATE
[INCR]

TOTAL [INCR] DELTALOC TOTALLOC TOTAL[INCR]
/DELTALOC

p c e

4
10
15
35
49
51
61
64
69
70
71
73
83
93
99
100
104
109
110
111
114
120
123
128
129
130
135
138
140
143
144
146
149
150
155
156
157
160
161
163
165
167
168
169
176
177
180
181
185
186
189
191
195
196
197
199
200
201
202
204
206
208
209
211
212
213
214
216
221
224
225
226
231
232
234
238
239
246
248
250
251
252
253
254
255
256
257
258
259
262
263
265
266
267
268
269
270
272
273
276
277
278
280
290
291
292
293
294
295
296
305
308
309
310
312
313
314
316
318
320
322
324
326
327
331
332
333
334
335
337
338
339
340
341
342
343
344

1 340 30 0 370 4 3554 92.5 0.34 0.03 0
1 350 100 0 450 10 3849 45 0.35 0.1 0
1 370 170 0 540 2 3919 270 0.37 0.17 0
1 350 30 0 380 21 4378 18.095238095 0.35 0.03 0
1 360 80 10 450 14 4791 32.142857143 0.36 0.08 0.01
1 390 320 0 710 2 4838 355 0.39 0.32 0
1 350 90 0 440 2 5041 220 0.35 0.09 0
1 390 50 0 440 2 5041 220 0.39 0.05 0
1 340 40 0 380 16 5078 23.75 0.34 0.04 0
1 350 100 10 460 9 5083 51.111111111 0.35 0.1 0.01
1 410 350 0 760 33 5088 23.03030303 0.41 0.35 0
1 420 280 0 700 29 5110 24.137931034 0.42 0.28 0
1 380 260 0 640 2 5516 320 0.38 0.26 0
1 380 250 10 640 15 5720 42.666666667 0.38 0.25 0.01
1 400 310 0 710 2 5843 355 0.4 0.31 0
1 400 320 10 730 23 5842 31.739130435 0.4 0.32 0.01
1 350 100 0 450 4 5938 112.5 0.35 0.1 0
1 350 50 0 400 6 5998 66.666666667 0.35 0.05 0
1 380 200 0 580 1 5999 580 0.38 0.2 0
1 330 50 0 380 2 5999 190 0.33 0.05 0
1 340 100 0 440 3 6014 146.66666667 0.34 0.1 0
1 410 290 10 710 8 6058 88.75 0.41 0.29 0.01
1 420 110 0 530 6 6143 88.333333333 0.42 0.11 0
1 330 40 10 380 1 6150 380 0.33 0.04 0.01
1 340 110 0 450 16 6156 28.125 0.34 0.11 0
1 340 130 20 490 48 6182 10.208333333 0.34 0.13 0.02
1 360 100 10 470 2 6217 235 0.36 0.1 0.01
1 330 70 10 410 4 6207 102.5 0.33 0.07 0.01
1 330 110 0 440 2 6212 220 0.33 0.11 0
1 440 330 0 770 16 6242 48.125 0.44 0.33 0
1 370 270 40 680 27 6245 25.185185185 0.37 0.27 0.04
1 360 110 0 470 8 6248 58.75 0.36 0.11 0
1 360 200 10 570 10 6249 57 0.36 0.2 0.01
1 370 270 50 690 24 6259 28.75 0.37 0.27 0.05
1 350 220 10 580 9 6338 64.444444444 0.35 0.22 0.01
1 360 200 10 570 4 6342 142.5 0.36 0.2 0.01
1 360 200 10 570 14 6346 40.714285714 0.36 0.2 0.01
1 350 70 180 600 14 6466 42.857142857 0.35 0.07 0.18
1 350 70 170 590 17 6483 34.705882353 0.35 0.07 0.17
1 360 70 0 430 3 6539 143.33333333 0.36 0.07 0
1 340 60 0 400 4 6538 100 0.34 0.06 0
1 320 60 10 390 1 6538 390 0.32 0.06 0.01
1 350 90 0 440 36 6504 12.222222222 0.35 0.09 0
1 330 50 0 380 2 6504 190 0.33 0.05 0
1 380 280 10 670 7 6676 95.714285714 0.38 0.28 0.01
1 360 140 10 510 2 6676 255 0.36 0.14 0.01
1 340 80 10 430 2 6766 215 0.34 0.08 0.01
1 460 400 50 910 2 6766 455 0.46 0.4 0.05
1 360 80 10 450 2 6948 225 0.36 0.08 0.01
1 390 160 0 550 2 6948 275 0.39 0.16 0
1 370 200 20 590 34 6998 17.352941176 0.37 0.2 0.02
1 370 410 70 850 22 7030 38.636363636 0.37 0.41 0.07
1 390 470 60 920 7 7116 131.42857143 0.39 0.47 0.06
1 390 410 10 810 45 7119 18 0.39 0.41 0.01
1 410 450 30 890 24 7141 37.083333333 0.41 0.45 0.03
1 380 360 0 740 2 7148 370 0.38 0.36 0
1 380 380 0 760 1 7149 760 0.38 0.38 0
1 410 520 60 990 14 7163 70.714285714 0.41 0.52 0.06
1 340 50 10 400 4 7167 100 0.34 0.05 0.01
1 400 400 0 800 1 7171 800 0.4 0.4 0
1 400 390 0 790 139 7198 5.6834532374 0.4 0.39 0
1 430 510 0 940 1 7201 940 0.43 0.51 0
1 360 230 40 630 32 7221 19.6875 0.36 0.23 0.04
1 430 630 60 1,120 4 7241 280 0.43 0.63 0.06
1 460 520 0 980 2 7241 490 0.46 0.52 0
1 340 70 0 410 19 7244 21.578947368 0.34 0.07 0
1 330 60 0 390 8 7238 48.75 0.33 0.06 0
1 350 50 0 400 3 7237 133.33333333 0.35 0.05 0
1 340 90 10 440 58 7377 7.5862068966 0.34 0.09 0.01
1 340 60 10 410 70 6883 5.8571428571 0.34 0.06 0.01
1 340 50 0 390 24 6885 16.25 0.34 0.05 0
1 370 130 10 510 34 6885 15 0.37 0.13 0.01
1 340 50 0 390 4 7620 97.5 0.34 0.05 0
1 360 170 0 530 77 7599 6.8831168831 0.36 0.17 0
1 340 90 0 430 144 7642 2.9861111111 0.34 0.09 0
1 350 160 0 510 2 7760 255 0.35 0.16 0
1 380 190 0 570 16 7760 35.625 0.38 0.19 0
1 350 60 0 410 6 7803 68.333333333 0.35 0.06 0
1 340 50 0 390 2 7822 195 0.34 0.05 0
1 370 200 0 570 2 7836 285 0.37 0.2 0
1 400 390 0 790 2 7836 395 0.4 0.39 0
1 350 110 0 460 13 7845 35.384615385 0.35 0.11 0
1 340 70 0 410 12 7845 34.166666667 0.34 0.07 0
1 360 180 0 540 8 7845 67.5 0.36 0.18 0
1 370 110 10 490 31 7848 15.806451613 0.37 0.11 0.01
1 330 50 0 380 4 7850 95 0.33 0.05 0
1 340 40 0 380 13 7849 29.230769231 0.34 0.04 0
1 320 60 10 390 5 7850 78 0.32 0.06 0.01
1 360 130 10 500 26 7872 19.230769231 0.36 0.13 0.01
1 340 80 0 420 6 7920 70 0.34 0.08 0
1 380 410 20 810 13 7929 62.307692308 0.38 0.41 0.02
1 400 270 10 680 5 7960 136 0.4 0.27 0.01
1 330 50 0 380 23 7971 16.52173913 0.33 0.05 0
1 350 100 0 450 23 7954 19.565217391 0.35 0.1 0
1 360 230 30 620 33 7961 18.787878788 0.36 0.23 0.03
1 330 90 0 420 7 7966 60 0.33 0.09 0
1 340 60 0 400 1 7967 400 0.34 0.06 0
1 350 110 0 460 9 8003 51.111111111 0.35 0.11 0
1 370 210 10 590 28 8013 21.071428571 0.37 0.21 0.01
1 380 180 0 560 39 8018 14.358974359 0.38 0.18 0
1 380 380 0 760 12 8018 63.333333333 0.38 0.38 0
1 370 240 30 640 103 8027 6.213592233 0.37 0.24 0.03
1 340 70 10 420 4 8057 105 0.34 0.07 0.01
1 400 240 40 680 2 8123 340 0.4 0.24 0.04
1 350 240 20 610 241 8130 2.531120332 0.35 0.24 0.02
1 390 400 0 790 6 8130 131.66666667 0.39 0.4 0
1 340 120 0 460 2 8130 230 0.34 0.12 0
1 370 190 0 560 14 8118 40 0.37 0.19 0
1 350 80 0 430 10 8122 43 0.35 0.08 0
1 350 180 30 560 63 8143 8.8888888889 0.35 0.18 0.03
1 390 400 0 790 5 8460 158 0.39 0.4 0
1 360 140 10 510 8 8632 63.75 0.36 0.14 0.01
1 350 90 10 450 11 8633 40.909090909 0.35 0.09 0.01
1 350 140 0 490 2 8633 245 0.35 0.14 0
1 350 180 0 530 13 8634 40.769230769 0.35 0.18 0
1 380 200 0 580 8 8634 72.5 0.38 0.2 0
1 350 190 10 550 13 8633 42.307692308 0.35 0.19 0.01
1 350 200 0 550 13 8634 42.307692308 0.35 0.2 0
1 320 60 0 380 8 8738 47.5 0.32 0.06 0
1 330 70 10 410 4 8765 102.5 0.33 0.07 0.01
1 370 90 0 460 4 8765 115 0.37 0.09 0
1 350 150 0 500 1 8766 500 0.35 0.15 0
1 350 130 10 490 26 8815 18.846153846 0.35 0.13 0.01
1 350 200 0 550 2 8817 275 0.35 0.2 0
1 360 80 0 440 104 8835 4.2307692308 0.36 0.08 0
1 390 230 0 620 6 8835 103.33333333 0.39 0.23 0
1 370 140 0 510 2 8835 255 0.37 0.14 0
1 390 250 0 640 5 8838 128 0.39 0.25 0
1 370 180 10 560 3 8839 186.66666667 0.37 0.18 0.01
1 420 180 20 620 7 8959 88.571428571 0.42 0.18 0.02
1 400 180 10 590 2 8959 295 0.4 0.18 0.01
1 360 150 10 520 7 8960 74.285714286 0.36 0.15 0.01
1 360 140 10 510 2 8960 255 0.36 0.14 0.01
1 360 200 40 600 27 8967 22.222222222 0.36 0.2 0.04
1 370 150 0 520 5 8970 104 0.37 0.15 0
1 350 90 10 450 1 8971 450 0.35 0.09 0.01
1 430 270 0 700 15 8984 46.666666667 0.43 0.27 0

0

0.3

0.6

0.9

1.2

1.5

0 20 40 60 80 100 120

Ti
m

e
(s

)

Revision

Parse Collect Evaluate

(a) Run time for full analysis, for each revision in the source code repository.

SEQNUM PARSE [FULL] COLLECT [FULL] EVALUATE [FULL] PARSE [INCR] COLLECT [INCR] EVALUATE [INCR] DELTAFILES PARSE/DELTAFILES
[INCR]

COLLECT/
DELTAFILES [INCR]

EVALUATE/
DELTAFILES [INCR]

TOTAL [FULL] TOTAL [INCR] RATIO INDEX-SIZE INDEX-DIFF cov(TOTAL[INCR],
INDEX-SIZE)

cov(TOTAL[INCR],IND
EX-DIFF)

DELTALOC TOTALLOC TOTAL[INCR]/
DELTALOC

full P full C full E incr P incr C incr E

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

1030 2640 1070 1050 2470 1060 4 262.5 617.5 265 4,740 4,580 0.966244725738397 7,047 7,047 -0.167824104408355 0.689878474422275 3139 3139 1.45906339598598 1.03 2.64 1.07 1.05 2.47 1.06
1130 2560 1140 380 420 100 11 34.5454545454545 38.1818181818182 9.09090909090909 4,830 900 18.63% 7,469 424 224 3336 4.01785714285714 1.13 2.56 1.14 0.38 0.42 0.1
1130 2770 1170 380 370 100 9 42.2222222222222 41.1111111111111 11.1111111111111 5,070 850 16.77% 7,756 341 196 3487 4.33673469387755 1.13 2.77 1.17 0.38 0.37 0.1
1100 2770 1190 390 230 30 4 97.5 57.5 7.5 5,060 650 12.85% 7,819 135 219 3554 2.96803652968037 1.1 2.77 1.19 0.39 0.23 0.03
1100 2570 1170 340 30 0 1 340 30 0 4,840 370 7.64% 7,819 0 4 3554 92.5 1.1 2.57 1.17 0.34 0.03 0
1160 2790 1200 390 330 70 6 65 55 11.6666666666667 5,150 790 15.34% 7,954 163 115 3629 6.8695652173913 1.16 2.79 1.2 0.39 0.33 0.07
1140 2730 1340 430 590 190 10 43 59 19 5,210 1,210 23.22% 8,235 439 237 3754 5.10548523206751 1.14 2.73 1.34 0.43 0.59 0.19
1150 2880 1270 400 400 70 4 100 100 17.5 5,300 870 16.42% 8,349 148 56 3799 15.5357142857143 1.15 2.88 1.27 0.4 0.4 0.07
1160 3050 1320 370 280 40 3 123.333333333333 93.3333333333333 13.3333333333333 5,530 690 12.48% 8,426 153 56 3823 12.3214285714286 1.16 3.05 1.32 0.37 0.28 0.04
1210 3190 1470 400 280 20 2 200 140 10 5,870 700 11.93% 8,479 53 28 3843 25 1.21 3.19 1.47 0.4 0.28 0.02
1200 3010 1410 350 100 0 1 350 100 0 5,620 450 8.01% 8,481 2 10 3849 45 1.2 3.01 1.41 0.35 0.1 0
1350 2970 1380 400 290 20 4 100 72.5 5 5,700 710 12.46% 8,515 120 35 3864 20.2857142857143 1.35 2.97 1.38 0.4 0.29 0.02
1300 3180 1360 430 390 20 5 86 78 4 5,840 840 14.38% 8,564 139 37 3877 22.7027027027027 1.3 3.18 1.36 0.43 0.39 0.02
1220 3020 1440 390 280 40 3 130 93.3333333333333 13.3333333333333 5,680 710 12.50% 8,595 127 46 3884 15.4347826086957 1.22 3.02 1.44 0.39 0.28 0.04
1230 2920 1330 420 380 10 4 105 95 2.5 5,480 810 14.78% 8,645 50 49 3919 16.530612244898 1.23 2.92 1.33 0.42 0.38 0.01
1230 3090 1410 370 170 0 1 370 170 0 5,730 540 9.42% 8,645 0 2 3919 270 1.23 3.09 1.41 0.37 0.17 0
1200 3030 1410 390 250 0 4 97.5 62.5 0 5,640 640 11.35% 8,641 4 8 3919 80 1.2 3.03 1.41 0.39 0.25 0
1250 3010 1330 390 260 20 2 195 130 10 5,590 670 11.99% 8,669 64 28 3927 23.9285714285714 1.25 3.01 1.33 0.39 0.26 0.02
1190 2940 1400 390 260 0 2 195 130 0 5,530 650 11.75% 8,678 9 12 3931 54.1666666666667 1.19 2.94 1.4 0.39 0.26 0
1190 3050 1420 430 340 0 5 86 68 0 5,660 770 13.60% 8,702 24 19 3944 40.5263157894737 1.19 3.05 1.42 0.43 0.34 0
1240 3160 1440 420 370 20 3 140 123.333333333333 6.66666666666667 5,840 810 13.87% 8,709 15 10 3946 81 1.24 3.16 1.44 0.42 0.37 0.02
1200 2930 1390 400 240 10 2 200 120 5 5,520 650 11.78% 8,773 66 59 3995 11.0169491525424 1.2 2.93 1.39 0.4 0.24 0.01
1220 3150 1450 390 260 140 3 130 86.6666666666667 46.6666666666667 5,820 790 13.57% 8,773 70 140 3967 5.64285714285714 1.22 3.15 1.45 0.39 0.26 0.14
1220 2950 1410 510 950 90 9 56.6666666666667 105.555555555556 10 5,580 1,550 27.78% 8,995 304 79 4036 19.620253164557 1.22 2.95 1.41 0.51 0.95 0.09
1220 3070 1460 450 540 30 4 112.5 135 7.5 5,750 1,020 17.74% 9,046 97 30 4046 34 1.22 3.07 1.46 0.45 0.54 0.03
1260 3170 1460 400 250 160 3 133.333333333333 83.3333333333333 53.3333333333333 5,890 810 13.75% 9,068 106 22 4064 36.8181818181818 1.26 3.17 1.46 0.4 0.25 0.16
1270 3140 1520 440 660 150 6 73.3333333333333 110 25 5,930 1,250 21.08% 9,332 684 206 4158 6.06796116504854 1.27 3.14 1.52 0.44 0.66 0.15
1250 3220 1500 360 220 20 3 120 73.3333333333333 6.66666666666667 5,970 600 10.05% 9,339 75 13 4161 46.1538461538462 1.25 3.22 1.5 0.36 0.22 0.02
1320 3340 1510 410 380 190 3 136.666666666667 126.666666666667 63.3333333333333 6,170 980 15.88% 9,407 74 37 4190 26.4864864864865 1.32 3.34 1.51 0.41 0.38 0.19
1320 3330 1560 430 450 100 3 143.333333333333 150 33.3333333333333 6,210 980 15.78% 9,465 140 58 4205 16.8965517241379 1.32 3.33 1.56 0.43 0.45 0.1
1350 3310 1730 460 730 250 6 76.6666666666667 121.666666666667 41.6666666666667 6,390 1,440 22.54% 9,720 485 189 4336 7.61904761904762 1.35 3.31 1.73 0.46 0.73 0.25
1330 3390 1610 370 250 10 3 123.333333333333 83.3333333333333 3.33333333333333 6,330 630 9.95% 9,750 36 33 4343 19.0909090909091 1.33 3.39 1.61 0.37 0.25 0.01
1350 3130 1570 410 340 0 2 205 170 0 6,050 750 12.40% 9,750 4 18 4347 41.6666666666667 1.35 3.13 1.57 0.41 0.34 0
1290 3580 1590 370 280 60 2 185 140 30 6,460 710 10.99% 9,860 234 72 4381 9.86111111111111 1.29 3.58 1.59 0.37 0.28 0.06
1350 3440 1650 420 380 20 3 140 126.666666666667 6.66666666666667 6,440 820 12.73% 9,870 50 42 4379 19.5238095238095 1.35 3.44 1.65 0.42 0.38 0.02
1310 3510 1680 350 30 0 1 350 30 0 6,500 380 5.85% 9,866 4 21 4378 18.0952380952381 1.31 3.51 1.68 0.35 0.03 0
1310 3290 1570 390 110 10 2 195 55 5 6,170 510 8.27% 9,796 112 15 4377 34 1.31 3.29 1.57 0.39 0.11 0.01
1370 3490 1740 510 560 80 4 127.5 140 20 6,600 1,150 17.42% 10,039 259 96 4460 11.9791666666667 1.37 3.49 1.74 0.51 0.56 0.08
1340 3410 1690 510 990 160 6 85 165 26.6666666666667 6,440 1,660 25.78% 10,315 586 193 4549 8.60103626943005 1.34 3.41 1.69 0.51 0.99 0.16
1380 3520 1770 510 860 70 7 72.8571428571429 122.857142857143 10 6,670 1,440 21.59% 10,314 233 62 4543 23.2258064516129 1.38 3.52 1.77 0.51 0.86 0.07
1350 3510 1710 490 740 230 5 98 148 46 6,570 1,460 22.22% 10,385 163 45 4574 32.4444444444444 1.35 3.51 1.71 0.49 0.74 0.23
1370 3590 1710 520 990 120 5 104 198 24 6,670 1,630 24.44% 10,461 394 63 4615 25.8730158730159 1.37 3.59 1.71 0.52 0.99 0.12
1380 3570 1750 530 1070 20 7 75.7142857142857 152.857142857143 2.85714285714286 6,700 1,620 24.18% 10,481 44 56 4615 28.9285714285714 1.38 3.57 1.75 0.53 1.07 0.02
1350 3620 1740 410 350 10 2 205 175 5 6,710 770 11.48% 10,485 4 6 4615 128.333333333333 1.35 3.62 1.74 0.41 0.35 0.01
1350 3440 1740 510 670 30 4 127.5 167.5 7.5 6,530 1,210 18.53% 10,491 12 22 4615 55 1.35 3.44 1.74 0.51 0.67 0.03
1390 3440 1930 610 1560 460 10 61 156 46 6,760 2,630 38.91% 10,708 955 251 4714 10.4780876494024 1.39 3.44 1.93 0.61 1.56 0.46
1390 3560 1880 470 520 210 5 94 104 42 6,830 1,200 17.57% 10,735 33 75 4742 16 1.39 3.56 1.88 0.47 0.52 0.21
1410 3700 1840 390 300 0 3 130 100 0 6,950 690 9.93% 10,736 1 6 4746 115 1.41 3.7 1.84 0.39 0.3 0
1400 3690 1820 530 810 240 9 58.8888888888889 90 26.6666666666667 6,910 1,580 22.87% 10,839 125 133 4791 11.8796992481203 1.4 3.69 1.82 0.53 0.81 0.24
1400 3760 1880 360 80 10 1 360 80 10 7,040 450 6.39% 10,841 6 14 4791 32.1428571428571 1.4 3.76 1.88 0.36 0.08 0.01
1420 3730 1860 430 590 70 3 143.333333333333 196.666666666667 23.3333333333333 7,010 1,090 15.55% 10,964 175 53 4838 20.5660377358491 1.42 3.73 1.86 0.43 0.59 0.07
1410 3490 1930 390 320 0 1 390 320 0 6,830 710 10.40% 10,964 0 2 4838 355 1.41 3.49 1.93 0.39 0.32 0
1410 3460 1920 520 870 30 5 104 174 6 6,790 1,420 20.91% 10,968 190 107 4845 13.2710280373832 1.41 3.46 1.92 0.52 0.87 0.03
1380 3430 1910 450 470 10 3 150 156.666666666667 3.33333333333333 6,720 930 13.84% 10,978 34 20 4843 46.5 1.38 3.43 1.91 0.45 0.47 0.01
1410 3610 1950 690 1600 460 10 69 160 46 6,970 2,750 39.45% 11,309 667 183 4983 15.0273224043716 1.41 3.61 1.95 0.69 1.6 0.46
1520 3720 1940 570 1090 20 6 95 181.666666666667 3.33333333333333 7,180 1,680 23.40% 11,329 24 29 4994 57.9310344827586 1.52 3.72 1.94 0.57 1.09 0.02
1740 4080 2030 390 270 10 2 195 135 5 7,850 670 8.54% 11,328 1 9 4997 74.4444444444444 1.74 4.08 2.03 0.39 0.27 0.01
1700 4370 2050 630 1370 120 11 57.2727272727273 124.545454545455 10.9090909090909 8,120 2,120 26.11% 11,327 575 237 4996 8.94514767932489 1.7 4.37 2.05 0.63 1.37 0.12
1430 3890 2100 550 1140 90 6 91.6666666666667 190 15 7,420 1,780 23.99% 11,401 438 64 5032 27.8125 1.43 3.89 2.1 0.55 1.14 0.09
1430 3670 2000 440 490 0 2 220 245 0 7,100 930 13.10% 11,401 0 6 5032 155 1.43 3.67 2 0.44 0.49 0
1460 3740 2130 570 1120 20 6 95 186.666666666667 3.33333333333333 7,330 1,710 23.33% 11,431 50 37 5041 46.2162162162162 1.46 3.74 2.13 0.57 1.12 0.02
1500 3670 2080 350 90 0 1 350 90 0 7,250 440 6.07% 11,428 3 2 5041 220 1.5 3.67 2.08 0.35 0.09 0
1460 3930 2080 550 970 0 5 110 194 0 7,470 1,520 20.35% 11,446 18 36 5041 42.2222222222222 1.46 3.93 2.08 0.55 0.97 0
1480 3860 1990 520 840 0 3 173.333333333333 280 0 7,330 1,360 18.55% 11,450 4 8 5041 170 1.48 3.86 1.99 0.52 0.84 0
1470 3970 2020 390 50 0 1 390 50 0 7,460 440 5.90% 11,451 1 2 5041 220 1.47 3.97 2.02 0.39 0.05 0
1460 3730 2040 440 410 10 2 220 205 5 7,230 860 11.89% 11,453 10 19 5049 45.2631578947368 1.46 3.73 2.04 0.44 0.41 0.01
1480 3990 2020 430 430 10 3 143.333333333333 143.333333333333 3.33333333333333 7,490 870 11.62% 11,484 67 44 5066 19.7727272727273 1.48 3.99 2.02 0.43 0.43 0.01
1490 3800 2010 390 280 30 3 130 93.3333333333333 10 7,300 700 9.59% 11,476 188 56 5070 12.5 1.49 3.8 2.01 0.39 0.28 0.03
1460 3970 2040 370 180 0 2 185 90 0 7,470 550 7.36% 11,483 7 10 5074 55 1.46 3.97 2.04 0.37 0.18 0
1440 3940 2030 340 40 0 1 340 40 0 7,410 380 5.13% 11,485 2 16 5078 23.75 1.44 3.94 2.03 0.34 0.04 0
1490 3790 2060 350 100 10 1 350 100 10 7,340 460 6.27% 11,493 8 9 5083 51.1111111111111 1.49 3.79 2.06 0.35 0.1 0.01
1470 3990 2030 410 350 0 1 410 350 0 7,490 760 10.15% 11,492 5 33 5088 23.030303030303 1.47 3.99 2.03 0.41 0.35 0
1450 3950 2000 360 190 20 2 180 95 10 7,400 570 7.70% 11,492 72 33 5089 17.2727272727273 1.45 3.95 2 0.36 0.19 0.02
1500 3950 2030 420 280 0 1 420 280 0 7,480 700 9.36% 11,501 29 29 5110 24.1379310344828 1.5 3.95 2.03 0.42 0.28 0
1540 3850 2030 400 310 170 2 200 155 85 7,420 880 11.86% 11,483 24 54 5120 16.2962962962963 1.54 3.85 2.03 0.4 0.31 0.17
1500 4130 2140 620 1550 370 9 68.8888888888889 172.222222222222 41.1111111111111 7,770 2,540 32.69% 11,814 869 189 5240 13.4391534391534 1.5 4.13 2.14 0.62 1.55 0.37
1560 4270 2290 620 1430 160 7 88.5714285714286 204.285714285714 22.8571428571429 8,120 2,210 27.22% 11,952 770 114 5298 19.3859649122807 1.56 4.27 2.29 0.62 1.43 0.16
1640 4370 2170 440 760 90 5 88 152 18 8,180 1,290 15.77% 12,107 403 130 5372 9.92307692307692 1.64 4.37 2.17 0.44 0.76 0.09
1540 3940 2280 450 670 30 5 90 134 6 7,760 1,150 14.82% 12,122 135 26 5378 44.2307692307692 1.54 3.94 2.28 0.45 0.67 0.03
1670 4250 2250 470 640 0 2 235 320 0 8,170 1,110 13.59% 12,122 2 4 5378 277.5 1.67 4.25 2.25 0.47 0.64 0
1590 4310 2290 600 1230 60 9 66.6666666666667 136.666666666667 6.66666666666667 8,190 1,890 23.08% 12,324 230 201 5491 9.40298507462687 1.59 4.31 2.29 0.6 1.23 0.06
1560 4050 2250 640 1620 180 7 91.4285714285714 231.428571428571 25.7142857142857 7,860 2,440 31.04% 12,402 826 113 5516 21.5929203539823 1.56 4.05 2.25 0.64 1.62 0.18
1560 4310 2230 410 430 10 2 205 215 5 8,100 850 10.49% 12,382 96 26 5514 32.6923076923077 1.56 4.31 2.23 0.41 0.43 0.01
1570 4310 2320 380 260 0 1 380 260 0 8,200 640 7.80% 12,384 2 2 5516 320 1.57 4.31 2.32 0.38 0.26 0
1560 4230 2280 570 1090 100 3 190 363.333333333333 33.3333333333333 8,070 1,760 21.81% 12,379 379 58 5532 30.3448275862069 1.56 4.23 2.28 0.57 1.09 0.1
1570 4290 2300 760 2100 580 15 50.6666666666667 140 38.6666666666667 8,160 3,440 42.16% 12,428 2,555 1102 5561 3.12159709618875 1.57 4.29 2.3 0.76 2.1 0.58
1660 4240 2280 360 240 40 3 120 80 13.3333333333333 8,180 640 7.82% 12,578 202 93 5615 6.88172043010753 1.66 4.24 2.28 0.36 0.24 0.04
1590 4140 2390 550 1130 80 8 68.75 141.25 10 8,120 1,760 21.67% 12,701 401 133 5640 13.2330827067669 1.59 4.14 2.39 0.55 1.13 0.08
1560 4390 2410 370 100 10 2 185 50 5 8,360 480 5.74% 12,729 34 39 5655 12.3076923076923 1.56 4.39 2.41 0.37 0.1 0.01
1560 4460 2360 510 710 0 5 102 142 0 8,380 1,220 14.56% 12,732 3 37 5658 32.972972972973 1.56 4.46 2.36 0.51 0.71 0
1610 4370 2370 430 380 40 2 215 190 20 8,350 850 10.18% 12,761 173 58 5708 14.6551724137931 1.61 4.37 2.37 0.43 0.38 0.04
1610 4140 2330 480 440 0 2 240 220 0 8,080 920 11.39% 12,764 9 6 5712 153.333333333333 1.61 4.14 2.33 0.48 0.44 0
1660 4840 2360 500 790 60 5 100 158 12 8,860 1,350 15.24% 12,827 187 39 5715 34.6153846153846 1.66 4.84 2.36 0.5 0.79 0.06
1610 4290 2330 380 250 10 1 380 250 10 8,230 640 7.78% 12,832 15 15 5720 42.6666666666667 1.61 4.29 2.33 0.38 0.25 0.01
1580 4360 2380 560 630 80 4 140 157.5 20 8,320 1,270 15.26% 12,923 257 67 5752 18.955223880597 1.58 4.36 2.38 0.56 0.63 0.08
1750 4480 2330 510 650 240 5 102 130 48 8,560 1,400 16.36% 12,990 309 109 5781 12.8440366972477 1.75 4.48 2.33 0.51 0.65 0.24
1620 4230 2310 670 1530 10 14 47.8571428571429 109.285714285714 0.714285714285714 8,160 2,210 27.08% 12,927 169 78 5797 28.3333333333333 1.62 4.23 2.31 0.67 1.53 0.01
1740 4390 2370 660 1600 170 12 55 133.333333333333 14.1666666666667 8,500 2,430 28.59% 12,952 533 100 5837 24.3 1.74 4.39 2.37 0.66 1.6 0.17
1650 4320 2330 460 570 0 4 115 142.5 0 8,300 1,030 12.41% 12,966 16 14 5843 73.5714285714286 1.65 4.32 2.33 0.46 0.57 0
1650 4460 2540 400 310 0 1 400 310 0 8,650 710 8.21% 12,966 0 2 5843 355 1.65 4.46 2.54 0.4 0.31 0
1640 4240 2370 400 320 10 1 400 320 10 8,250 730 8.85% 12,973 7 23 5842 31.7391304347826 1.64 4.24 2.37 0.4 0.32 0.01
1650 4520 2350 520 1190 180 7 74.2857142857143 170 25.7142857142857 8,520 1,890 22.18% 13,134 699 94 5904 20.1063829787234 1.65 4.52 2.35 0.52 1.19 0.18
1650 4450 2460 540 1030 60 11 49.0909090909091 93.6363636363636 5.45454545454545 8,560 1,630 19.04% 13,280 246 103 5928 15.8252427184466 1.65 4.45 2.46 0.54 1.03 0.06
1660 4520 2440 380 300 0 4 95 75 0 8,620 680 7.89% 13,298 32 24 5938 28.3333333333333 1.66 4.52 2.44 0.38 0.3 0
1690 4690 2440 350 100 0 1 350 100 0 8,820 450 5.10% 13,298 2 4 5938 112.5 1.69 4.69 2.44 0.35 0.1 0
1740 4580 2540 430 560 240 3 143.333333333333 186.666666666667 80 8,860 1,230 13.88% 13,369 253 27 5965 45.5555555555556 1.74 4.58 2.54 0.43 0.56 0.24
1680 4660 2560 360 310 40 4 90 77.5 10 8,900 710 7.98% 13,448 139 33 5984 21.5151515151515 1.68 4.66 2.56 0.36 0.31 0.04
1710 4800 2460 420 480 0 3 140 160 0 8,970 900 10.03% 13,481 33 19 5997 47.3684210526316 1.71 4.8 2.46 0.42 0.48 0
1680 4630 2460 480 640 0 3 160 213.333333333333 0 8,770 1,120 12.77% 13,482 17 67 5998 16.7164179104478 1.68 4.63 2.46 0.48 0.64 0
1680 4590 2600 350 50 0 1 350 50 0 8,870 400 4.51% 13,484 2 6 5998 66.6666666666667 1.68 4.59 2.6 0.35 0.05 0
1640 4290 2500 380 200 0 1 380 200 0 8,430 580 6.88% 13,490 6 1 5999 580 1.64 4.29 2.5 0.38 0.2 0
1680 4440 2510 330 50 0 1 330 50 0 8,630 380 4.40% 13,492 2 2 5999 190 1.68 4.44 2.51 0.33 0.05 0
1670 4360 2530 410 410 30 2 205 205 15 8,560 850 9.93% 13,512 50 13 6010 65.3846153846154 1.67 4.36 2.53 0.41 0.41 0.03
1690 4700 2420 440 490 10 3 146.666666666667 163.333333333333 3.33333333333333 8,810 940 10.67% 13,530 26 9 6017 104.444444444444 1.69 4.7 2.42 0.44 0.49 0.01
1660 4600 2510 340 100 0 1 340 100 0 8,770 440 5.02% 13,530 0 3 6014 146.666666666667 1.66 4.6 2.51 0.34 0.1 0
1680 4370 2490 520 690 30 5 104 138 6 8,540 1,240 14.52% 13,529 63 30 6022 41.3333333333333 1.68 4.37 2.49 0.52 0.69 0.03
1730 4320 2610 410 460 60 3 136.666666666667 153.333333333333 20 8,660 930 10.74% 13,567 72 31 6042 30 1.73 4.32 2.61 0.41 0.46 0.06
1690 4510 2570 350 110 0 2 175 55 0 8,770 460 5.25% 13,565 8 10 6042 46 1.69 4.51 2.57 0.35 0.11 0
1720 4770 2540 410 630 110 2 205 315 55 9,030 1,150 12.74% 13,587 380 72 6048 15.9722222222222 1.72 4.77 2.54 0.41 0.63 0.11
1730 4760 2630 430 450 70 2 215 225 35 9,120 950 10.42% 13,519 328 46 6062 20.6521739130435 1.73 4.76 2.63 0.43 0.45 0.07
1870 5020 2530 410 290 10 1 410 290 10 9,420 710 7.54% 13,519 2 8 6058 88.75 1.87 5.02 2.53 0.41 0.29 0.01
1750 4740 2610 620 1380 100 7 88.5714285714286 197.142857142857 14.2857142857143 9,100 2,100 23.08% 13,553 430 161 6061 13.0434782608696 1.75 4.74 2.61 0.62 1.38 0.1
1860 4670 2590 380 430 70 5 76 86 14 9,120 880 9.65% 13,622 293 134 6141 6.56716417910448 1.86 4.67 2.59 0.38 0.43 0.07
1720 4770 2590 420 110 0 1 420 110 0 9,080 530 5.84% 13,622 0 6 6143 88.3333333333333 1.72 4.77 2.59 0.42 0.11 0
1750 4670 2520 360 170 0 2 180 85 0 8,940 530 5.93% 13,625 3 81 6149 6.54320987654321 1.75 4.67 2.52 0.36 0.17 0
1750 4770 2560 360 200 0 2 180 100 0 9,080 560 6.17% 13,625 0 4 6149 140 1.75 4.77 2.56 0.36 0.2 0
1760 4710 2550 390 260 20 3 130 86.6666666666667 6.66666666666667 9,020 670 7.43% 13,639 72 32 6157 20.9375 1.76 4.71 2.55 0.39 0.26 0.02
1780 4750 2560 420 440 0 2 210 220 0 9,090 860 9.46% 13,609 34 10 6149 86 1.78 4.75 2.56 0.42 0.44 0
1770 4810 2570 330 40 10 1 330 40 10 9,150 380 4.15% 13,612 3 1 6150 380 1.77 4.81 2.57 0.33 0.04 0.01
1760 4540 2550 340 110 0 1 340 110 0 8,850 450 5.08% 13,627 17 16 6156 28.125 1.76 4.54 2.55 0.34 0.11 0
1820 4590 2580 340 130 20 1 340 130 20 8,990 490 5.45% 13,680 107 48 6182 10.2083333333333 1.82 4.59 2.58 0.34 0.13 0.02
1730 4760 2670 400 380 40 2 200 190 20 9,160 820 8.95% 13,708 244 15 6197 54.6666666666667 1.73 4.76 2.67 0.4 0.38 0.04
1760 4850 2660 400 460 250 3 133.333333333333 153.333333333333 83.3333333333333 9,270 1,110 11.97% 13,848 140 60 6254 18.5 1.76 4.85 2.66 0.4 0.46 0.25
1750 4880 2670 380 390 50 4 95 97.5 12.5 9,300 820 8.82% 13,846 260 42 6268 19.5238095238095 1.75 4.88 2.67 0.38 0.39 0.05
1790 4420 2550 420 500 0 4 105 125 0 8,760 920 10.50% 13,705 141 53 6217 17.3584905660377 1.79 4.42 2.55 0.42 0.5 0
1740 5150 2630 360 100 10 1 360 100 10 9,520 470 4.94% 13,706 3 2 6217 235 1.74 5.15 2.63 0.36 0.1 0.01
1760 4590 2580 690 1440 350 10 69 144 35 8,930 2,480 27.77% 13,668 356 87 6184 28.5057471264368 1.76 4.59 2.58 0.69 1.44 0.35
1760 4860 2540 370 130 180 3 123.333333333333 43.3333333333333 60 9,160 680 7.42% 13,681 37 23 6205 29.5652173913043 1.76 4.86 2.54 0.37 0.13 0.18
1730 4840 2510 330 70 10 1 330 70 10 9,080 410 4.52% 13,689 8 4 6207 102.5 1.73 4.84 2.51 0.33 0.07 0.01
1750 4730 2570 420 470 40 4 105 117.5 10 9,050 930 10.28% 13,702 167 19 6212 48.9473684210526 1.75 4.73 2.57 0.42 0.47 0.04
1760 4790 2570 330 110 0 1 330 110 0 9,120 440 4.82% 13,702 4 2 6212 220 1.76 4.79 2.57 0.33 0.11 0
1750 4830 2620 560 1130 130 5 112 226 26 9,200 1,820 19.78% 13,707 507 36 6216 50.5555555555556 1.75 4.83 2.62 0.56 1.13 0.13
1860 4710 2580 350 180 10 2 175 90 5 9,150 540 5.90% 13,725 76 18 6230 30 1.86 4.71 2.58 0.35 0.18 0.01
1810 4520 2600 440 330 0 1 440 330 0 8,930 770 8.62% 13,729 4 16 6242 48.125 1.81 4.52 2.6 0.44 0.33 0
1760 4820 2570 370 270 40 1 370 270 40 9,150 680 7.43% 13,715 200 27 6245 25.1851851851852 1.76 4.82 2.57 0.37 0.27 0.04
1940 4910 2580 400 290 0 2 200 145 0 9,430 690 7.32% 13,718 5 17 6252 40.5882352941176 1.94 4.91 2.58 0.4 0.29 0
1790 4850 2660 360 110 0 1 360 110 0 9,300 470 5.05% 13,712 6 8 6248 58.75 1.79 4.85 2.66 0.36 0.11 0
1770 4480 2530 380 460 70 3 126.666666666667 153.333333333333 23.3333333333333 8,780 910 10.36% 13,717 423 55 6245 16.5454545454545 1.77 4.48 2.53 0.38 0.46 0.07
1920 4420 2480 350 200 10 3 116.666666666667 66.6666666666667 3.33333333333333 8,820 560 6.35% 13,717 24 12 6245 46.6666666666667 1.92 4.42 2.48 0.35 0.2 0.01
1760 4710 2570 360 200 10 1 360 200 10 9,040 570 6.31% 13,712 75 10 6249 57 1.76 4.71 2.57 0.36 0.2 0.01
1760 4740 2570 370 270 50 1 370 270 50 9,070 690 7.61% 13,729 181 24 6259 28.75 1.76 4.74 2.57 0.37 0.27 0.05
1750 4720 2540 390 270 20 3 130 90 6.66666666666667 9,010 680 7.55% 13,727 10 11 6258 61.8181818181818 1.75 4.72 2.54 0.39 0.27 0.02
1760 4530 2530 460 680 220 4 115 170 55 8,820 1,360 15.42% 13,899 298 138 6356 9.85507246376812 1.76 4.53 2.53 0.46 0.68 0.22
1830 4730 2520 550 790 0 4 137.5 197.5 0 9,080 1,340 14.76% 13,902 11 38 6342 35.2631578947368 1.83 4.73 2.52 0.55 0.79 0
1770 4510 2510 380 230 0 2 190 115 0 8,790 610 6.94% 13,891 19 13 6337 46.9230769230769 1.77 4.51 2.51 0.38 0.23 0
1790 4800 2540 350 220 10 1 350 220 10 9,130 580 6.35% 13,907 48 9 6338 64.4444444444444 1.79 4.8 2.54 0.35 0.22 0.01
1770 4350 2550 360 200 10 1 360 200 10 8,670 570 6.57% 13,917 10 4 6342 142.5 1.77 4.35 2.55 0.36 0.2 0.01
1740 4700 2560 360 200 10 1 360 200 10 9,000 570 6.33% 13,896 59 14 6346 40.7142857142857 1.74 4.7 2.56 0.36 0.2 0.01
1760 4690 2580 490 560 180 5 98 112 36 9,030 1,230 13.62% 13,931 35 89 6432 13.8202247191011 1.76 4.69 2.58 0.49 0.56 0.18
1760 4470 2510 660 1370 40 11 60 124.545454545455 3.63636363636364 8,740 2,070 23.68% 14,021 182 74 6454 27.972972972973 1.76 4.47 2.51 0.66 1.37 0.04
1840 4440 2520 350 70 180 1 350 70 180 8,800 600 6.82% 14,027 6 14 6466 42.8571428571429 1.84 4.44 2.52 0.35 0.07 0.18
1770 4500 2510 350 70 170 1 350 70 170 8,780 590 6.72% 14,033 6 17 6483 34.7058823529412 1.77 4.5 2.51 0.35 0.07 0.17
1780 4820 2520 450 780 80 6 75 130 13.3333333333333 9,120 1,310 14.36% 14,185 314 128 6538 10.234375 1.78 4.82 2.52 0.45 0.78 0.08
1830 4880 2650 360 70 0 1 360 70 0 9,360 430 4.59% 14,186 1 3 6539 143.333333333333 1.83 4.88 2.65 0.36 0.07 0
1880 4560 2670 470 650 120 4 117.5 162.5 30 9,110 1,240 13.61% 14,171 67 33 6538 37.5757575757576 1.88 4.56 2.67 0.47 0.65 0.12
1850 5000 2690 340 60 0 1 340 60 0 9,540 400 4.19% 14,171 0 4 6538 100 1.85 5 2.69 0.34 0.06 0
1850 4620 2670 420 430 40 3 140 143.333333333333 13.3333333333333 9,140 890 9.74% 14,172 11 11 6539 80.9090909090909 1.85 4.62 2.67 0.42 0.43 0.04
1840 4900 2670 320 60 10 1 320 60 10 9,410 390 4.14% 14,171 7 1 6538 390 1.84 4.9 2.67 0.32 0.06 0.01
1800 4930 2570 350 90 0 1 350 90 0 9,300 440 4.73% 14,172 1 36 6504 12.2222222222222 1.8 4.93 2.57 0.35 0.09 0
1800 4680 2650 330 50 0 1 330 50 0 9,130 380 4.16% 14,172 0 2 6504 190 1.8 4.68 2.65 0.33 0.05 0
1800 4580 2670 540 1020 90 8 67.5 127.5 11.25 9,050 1,650 18.23% 13,990 752 131 6426 12.5954198473282 1.8 4.58 2.67 0.54 1.02 0.09
1800 4720 2750 440 670 110 5 88 134 22 9,270 1,220 13.16% 14,148 254 74 6499 16.4864864864865 1.8 4.72 2.75 0.44 0.67 0.11
1820 5120 2680 680 1490 100 8 85 186.25 12.5 9,620 2,270 23.60% 14,224 350 80 6540 28.375 1.82 5.12 2.68 0.68 1.49 0.1
1820 5090 2830 690 1570 80 8 86.25 196.25 10 9,740 2,340 24.02% 14,310 254 68 6600 34.4117647058824 1.82 5.09 2.83 0.69 1.57 0.08
1830 5180 2820 610 1220 20 5 122 244 4 9,830 1,850 18.82% 14,329 21 11 6609 168.181818181818 1.83 5.18 2.82 0.61 1.22 0.02
1870 4890 2780 530 960 80 4 132.5 240 20 9,540 1,570 16.46% 14,483 254 61 6669 25.7377049180328 1.87 4.89 2.78 0.53 0.96 0.08
1850 5190 2870 380 280 10 1 380 280 10 9,910 670 6.76% 14,496 13 7 6676 95.7142857142857 1.85 5.19 2.87 0.38 0.28 0.01
1840 5200 2870 360 140 10 1 360 140 10 9,910 510 5.15% 14,496 4 2 6676 255 1.84 5.2 2.87 0.36 0.14 0.01
1850 5230 2860 390 190 190 3 130 63.3333333333333 63.3333333333333 9,940 770 7.75% 14,537 63 34 6703 22.6470588235294 1.85 5.23 2.86 0.39 0.19 0.19
1860 5330 2980 470 1020 360 6 78.3333333333333 170 60 10,170 1,850 18.19% 14,682 459 117 6766 15.8119658119658 1.86 5.33 2.98 0.47 1.02 0.36
1890 5050 2950 340 80 10 1 340 80 10 9,890 430 4.35% 14,686 4 2 6766 215 1.89 5.05 2.95 0.34 0.08 0.01
1850 5390 2990 460 400 50 1 460 400 50 10,230 910 8.90% 14,686 4 2 6766 455 1.85 5.39 2.99 0.46 0.4 0.05
1920 5160 3030 650 1570 150 7 92.8571428571429 224.285714285714 21.4285714285714 10,110 2,370 23.44% 14,876 270 136 6872 17.4264705882353 1.92 5.16 3.03 0.65 1.57 0.15
1890 5410 2960 360 300 0 2 180 150 0 10,260 660 6.43% 14,876 4 8 6874 82.5 1.89 5.41 2.96 0.36 0.3 0
1890 5280 3130 650 1740 230 5 130 348 46 10,300 2,620 25.44% 15,082 536 125 6948 20.96 1.89 5.28 3.13 0.65 1.74 0.23
1950 5670 3160 360 80 10 1 360 80 10 10,780 450 4.17% 15,083 3 2 6948 225 1.95 5.67 3.16 0.36 0.08 0.01
1900 5630 3150 390 160 0 1 390 160 0 10,680 550 5.15% 15,088 5 2 6948 275 1.9 5.63 3.15 0.39 0.16 0
1990 5470 3070 460 680 0 3 153.333333333333 226.666666666667 0 10,530 1,140 10.83% 15,096 8 10 6948 114 1.99 5.47 3.07 0.46 0.68 0
1900 5310 3090 410 570 110 2 205 285 55 10,300 1,090 10.58% 15,126 250 24 6964 45.4166666666667 1.9 5.31 3.09 0.41 0.57 0.11
1930 5660 3160 370 200 20 1 370 200 20 10,750 590 5.49% 15,211 85 34 6998 17.3529411764706 1.93 5.66 3.16 0.37 0.2 0.02
1920 5400 3130 360 510 100 2 180 255 50 10,450 970 9.28% 15,270 199 26 7024 37.3076923076923 1.92 5.4 3.13 0.36 0.51 0.1
1930 5380 3110 370 410 70 1 370 410 70 10,420 850 8.16% 15,274 192 22 7030 38.6363636363636 1.93 5.38 3.11 0.37 0.41 0.07
1930 5810 3270 380 450 50 2 190 225 25 11,010 880 7.99% 15,336 106 69 7063 12.7536231884058 1.93 5.81 3.27 0.38 0.45 0.05
1950 5750 3160 400 390 0 2 200 195 0 10,860 790 7.27% 15,350 14 12 7071 65.8333333333333 1.95 5.75 3.16 0.4 0.39 0
1910 5440 3260 400 330 220 3 133.333333333333 110 73.3333333333333 10,610 950 8.95% 15,419 73 52 7115 18.2692307692308 1.91 5.44 3.26 0.4 0.33 0.22
1950 5740 3240 390 470 60 1 390 470 60 10,930 920 8.42% 15,429 152 7 7116 131.428571428571 1.95 5.74 3.24 0.39 0.47 0.06
1980 5980 3290 390 410 10 1 390 410 10 11,250 810 7.20% 15,450 21 45 7119 18 1.98 5.98 3.29 0.39 0.41 0.01
1920 5630 3280 410 450 30 1 410 450 30 10,830 890 8.22% 15,513 63 24 7141 37.0833333333333 1.92 5.63 3.28 0.41 0.45 0.03
1850 5800 3290 470 940 70 2 235 470 35 10,940 1,480 13.53% 15,529 192 101 7148 14.6534653465347 1.85 5.8 3.29 0.47 0.94 0.07
1920 5690 3370 380 360 0 1 380 360 0 10,980 740 6.74% 15,526 5 2 7148 370 1.92 5.69 3.37 0.38 0.36 0
1850 5730 3340 380 380 0 1 380 380 0 10,920 760 6.96% 15,533 7 1 7149 760 1.85 5.73 3.34 0.38 0.38 0
2000 5790 3250 410 520 60 1 410 520 60 11,040 990 8.97% 15,566 143 14 7163 70.7142857142857 2 5.79 3.25 0.41 0.52 0.06
1930 5620 3220 340 50 10 1 340 50 10 10,770 400 3.71% 15,572 24 4 7167 100 1.93 5.62 3.22 0.34 0.05 0.01
1940 5640 3390 440 540 0 2 220 270 0 10,970 980 8.93% 15,572 0 39 7170 25.1282051282051 1.94 5.64 3.39 0.44 0.54 0
1980 5670 3360 400 400 0 1 400 400 0 11,010 800 7.27% 15,578 6 1 7171 800 1.98 5.67 3.36 0.4 0.4 0
2030 6050 3290 480 990 100 2 240 495 50 11,370 1,570 13.81% 15,647 217 69 7200 22.7536231884058 2.03 6.05 3.29 0.48 0.99 0.1
1960 5940 3310 400 390 0 1 400 390 0 11,210 790 7.05% 15,647 0 139 7198 5.68345323741007 1.96 5.94 3.31 0.4 0.39 0
1950 6100 3290 480 750 0 3 160 250 0 11,340 1,230 10.85% 15,656 9 48 7200 25.625 1.95 6.1 3.29 0.48 0.75 0
1970 5680 3380 430 510 0 1 430 510 0 11,030 940 8.52% 15,659 3 1 7201 940 1.97 5.68 3.38 0.43 0.51 0
1960 5950 3540 360 230 40 1 360 230 40 11,450 630 5.50% 15,708 65 32 7221 19.6875 1.96 5.95 3.54 0.36 0.23 0.04
1910 5630 3400 500 970 60 2 250 485 30 10,940 1,530 13.99% 15,752 196 20 7237 76.5 1.91 5.63 3.4 0.5 0.97 0.06
1930 5880 3380 430 630 60 1 430 630 60 11,190 1,120 10.01% 15,766 224 4 7241 280 1.93 5.88 3.38 0.43 0.63 0.06
1870 5600 3370 460 520 0 1 460 520 0 10,840 980 9.04% 15,770 4 2 7241 490 1.87 5.6 3.37 0.46 0.52 0
1940 6130 3400 340 70 0 1 340 70 0 11,470 410 3.57% 15,766 10 19 7244 21.5789473684211 1.94 6.13 3.4 0.34 0.07 0
1970 6070 3420 330 60 0 1 330 60 0 11,460 390 3.40% 15,757 9 8 7238 48.75 1.97 6.07 3.42 0.33 0.06 0
1980 5680 3330 0 0 0 0 10,990 0 15,757 0 0 7238 1.98 5.68 3.33 0 0 0
1920 5670 3400 350 50 0 1 350 50 0 10,990 400 3.64% 15,756 3 3 7237 133.333333333333 1.92 5.67 3.4 0.35 0.05 0
1970 6090 3410 410 470 0 2 205 235 0 11,470 880 7.67% 15,746 10 4 7237 220 1.97 6.09 3.41 0.41 0.47 0
1910 5710 3440 390 240 30 2 195 120 15 11,060 660 5.97% 15,822 110 45 7272 14.6666666666667 1.91 5.71 3.44 0.39 0.24 0.03
1990 5960 3410 1070 3600 300 31 34.5161290322581 116.129032258065 9.67741935483871 11,360 4,970 43.75% 15,600 2,394 3110 7328 1.59807073954984 1.99 5.96 3.41 1.07 3.6 0.3
2050 6250 3390 430 560 170 6 71.6666666666667 93.3333333333333 28.3333333333333 11,690 1,160 9.92% 15,643 431 177 7379 6.55367231638418 2.05 6.25 3.39 0.43 0.56 0.17
2000 6020 3380 340 90 10 1 340 90 10 11,400 440 3.86% 15,631 40 58 7377 7.58620689655172 2 6.02 3.38 0.34 0.09 0.01
1920 5370 3010 390 330 150 2 195 165 75 10,300 870 8.45% 15,016 779 270 7119 3.22222222222222 1.92 5.37 3.01 0.39 0.33 0.15
1910 5000 2820 390 270 90 2 195 135 45 9,730 750 7.71% 14,477 663 236 6887 3.17796610169492 1.91 5 2.82 0.39 0.27 0.09
1900 5290 2840 340 60 10 1 340 60 10 10,030 410 4.09% 14,467 34 70 6883 5.85714285714286 1.9 5.29 2.84 0.34 0.06 0.01
1880 5010 2840 340 50 0 1 340 50 0 9,730 390 4.01% 14,468 3 24 6885 16.25 1.88 5.01 2.84 0.34 0.05 0
1900 4990 2830 370 130 10 1 370 130 10 9,720 510 5.25% 14,452 94 34 6885 15 1.9 4.99 2.83 0.37 0.13 0.01
1910 4990 2810 590 990 20 8 73.75 123.75 2.5 9,710 1,600 16.48% 14,447 183 341 6956 4.69208211143695 1.91 4.99 2.81 0.59 0.99 0.02
1970 5710 3420 480 1540 780 3 160 513.333333333333 260 11,100 2,800 25.23% 15,718 1,323 567 7507 4.93827160493827 1.97 5.71 3.42 0.48 1.54 0.78
2080 6270 3440 550 1150 110 6 91.6666666666667 191.666666666667 18.3333333333333 11,790 1,810 15.35% 15,783 481 341 7616 5.30791788856305 2.08 6.27 3.44 0.55 1.15 0.11
1910 6100 3490 450 750 520 2 225 375 260 11,500 1,720 14.96% 15,788 809 456 7620 3.7719298245614 1.91 6.1 3.49 0.45 0.75 0.52
2110 6180 3430 340 50 0 1 340 50 0 11,720 390 3.33% 15,786 2 4 7620 97.5 2.11 6.18 3.43 0.34 0.05 0
1960 5890 3330 360 170 0 1 360 170 0 11,180 530 4.74% 15,787 11 77 7599 6.88311688311688 1.96 5.89 3.33 0.36 0.17 0
2060 6420 3480 410 360 0 3 136.666666666667 120 0 11,960 770 6.44% 15,787 2 225 7608 3.42222222222222 2.06 6.42 3.48 0.41 0.36 0
2060 6390 3490 340 90 0 1 340 90 0 11,940 430 3.60% 15,789 12 144 7642 2.98611111111111 2.06 6.39 3.49 0.34 0.09 0
2130 6400 3460 450 400 0 2 225 200 0 11,990 850 7.09% 15,791 6 36 7642 23.6111111111111 2.13 6.4 3.46 0.45 0.4 0
2040 6340 3490 440 440 0 2 220 220 0 11,870 880 7.41% 15,803 14 31 7631 28.3870967741935 2.04 6.34 3.49 0.44 0.44 0
2090 6570 3550 630 1200 80 8 78.75 150 10 12,210 1,910 15.64% 15,971 488 245 7760 7.79591836734694 2.09 6.57 3.55 0.63 1.2 0.08
2190 6420 3540 350 160 0 1 350 160 0 12,150 510 4.20% 15,969 4 2 7760 255 2.19 6.42 3.54 0.35 0.16 0
2090 6250 3470 380 190 0 1 380 190 0 11,810 570 4.83% 15,969 8 16 7760 35.625 2.09 6.25 3.47 0.38 0.19 0
2090 6240 3520 600 1580 220 7 85.7142857142857 225.714285714286 31.4285714285714 11,850 2,400 20.25% 16,044 919 295 7789 8.13559322033898 2.09 6.24 3.52 0.6 1.58 0.22
2110 6500 3510 400 460 10 5 80 92 2 12,120 870 7.18% 16,049 59 54 7804 16.1111111111111 2.11 6.5 3.51 0.4 0.46 0.01
1990 6240 3520 360 170 0 2 180 85 0 11,750 530 4.51% 16,049 6 26 7792 20.3846153846154 1.99 6.24 3.52 0.36 0.17 0
2000 6370 3460 420 760 140 2 210 380 70 11,830 1,320 11.16% 16,054 425 71 7791 18.5915492957746 2 6.37 3.46 0.42 0.76 0.14
2120 6310 3510 430 370 0 3 143.333333333333 123.333333333333 0 11,940 800 6.70% 16,063 23 103 7768 7.76699029126214 2.12 6.31 3.51 0.43 0.37 0
2080 6390 3450 420 640 110 4 105 160 27.5 11,920 1,170 9.82% 16,110 417 172 7803 6.80232558139535 2.08 6.39 3.45 0.42 0.64 0.11
1970 6040 3420 350 60 0 1 350 60 0 11,430 410 3.59% 16,111 1 6 7803 68.3333333333333 1.97 6.04 3.42 0.35 0.06 0
1970 6120 3430 410 380 20 3 136.666666666667 126.666666666667 6.66666666666667 11,520 810 7.03% 16,149 92 94 7822 8.61702127659574 1.97 6.12 3.43 0.41 0.38 0.02
2040 6330 3430 340 50 0 1 340 50 0 11,800 390 3.31% 16,149 2 2 7822 195 2.04 6.33 3.43 0.34 0.05 0
2110 6320 3500 430 420 80 3 143.333333333333 140 26.6666666666667 11,930 930 7.80% 16,061 566 172 7836 5.40697674418605 2.11 6.32 3.5 0.43 0.42 0.08
2160 6390 3510 370 200 0 1 370 200 0 12,060 570 4.73% 16,061 0 2 7836 285 2.16 6.39 3.51 0.37 0.2 0
2130 6380 3530 400 390 0 1 400 390 0 12,040 790 6.56% 16,055 6 2 7836 395 2.13 6.38 3.53 0.4 0.39 0
2100 6400 3660 350 110 0 1 350 110 0 12,160 460 3.78% 16,071 16 13 7845 35.3846153846154 2.1 6.4 3.66 0.35 0.11 0
2340 6660 3510 340 70 0 1 340 70 0 12,510 410 3.28% 16,075 8 12 7845 34.1666666666667 2.34 6.66 3.51 0.34 0.07 0
1990 6050 3370 360 180 0 1 360 180 0 11,410 540 4.73% 16,075 4 8 7845 67.5 1.99 6.05 3.37 0.36 0.18 0
2110 6230 3480 370 110 10 1 370 110 10 11,820 490 4.15% 16,088 35 31 7848 15.8064516129032 2.11 6.23 3.48 0.37 0.11 0.01
2020 6070 3360 330 50 0 1 330 50 0 11,450 380 3.32% 16,092 4 4 7850 95 2.02 6.07 3.36 0.33 0.05 0
2000 6130 3420 340 40 0 1 340 40 0 11,550 380 3.29% 16,091 13 13 7849 29.2307692307692 2 6.13 3.42 0.34 0.04 0
2140 6340 3540 320 60 10 1 320 60 10 12,020 390 3.24% 16,096 5 5 7850 78 2.14 6.34 3.54 0.32 0.06 0.01
2000 6160 3340 360 130 10 1 360 130 10 11,500 500 4.35% 16,096 6 26 7872 19.2307692307692 2 6.16 3.34 0.36 0.13 0.01
2130 6270 3500 450 340 30 4 112.5 85 7.5 11,900 820 6.89% 16,118 148 91 7921 9.01098901098901 2.13 6.27 3.5 0.45 0.34 0.03
1970 6180 3480 380 220 0 2 190 110 0 11,630 600 5.16% 16,122 8 17 7920 35.2941176470588 1.97 6.18 3.48 0.38 0.22 0
2170 6220 3440 340 80 0 1 340 80 0 11,830 420 3.55% 16,123 1 6 7920 70 2.17 6.22 3.44 0.34 0.08 0
2120 6370 3950 380 410 20 1 380 410 20 12,440 810 6.51% 16,157 34 13 7929 62.3076923076923 2.12 6.37 3.95 0.38 0.41 0.02
2570 7180 3560 370 240 20 2 185 120 10 13,310 630 4.73% 16,192 55 32 7955 19.6875 2.57 7.18 3.56 0.37 0.24 0.02
2400 6630 3630 400 270 10 1 400 270 10 12,660 680 5.37% 16,203 11 5 7960 136 2.4 6.63 3.63 0.4 0.27 0.01
2220 6320 3520 330 50 0 1 330 50 0 12,060 380 3.15% 16,208 21 23 7971 16.5217391304348 2.22 6.32 3.52 0.33 0.05 0
2130 6450 3550 350 100 0 1 350 100 0 12,130 450 3.71% 16,211 11 23 7954 19.5652173913043 2.13 6.45 3.55 0.35 0.1 0
2150 6280 3530 360 230 30 1 360 230 30 11,960 620 5.18% 16,225 124 33 7961 18.7878787878788 2.15 6.28 3.53 0.36 0.23 0.03
2150 6330 3470 330 90 0 1 330 90 0 11,950 420 3.51% 16,228 3 7 7966 60 2.15 6.33 3.47 0.33 0.09 0
1990 6040 3550 340 60 0 1 340 60 0 11,580 400 3.45% 16,229 1 1 7967 400 1.99 6.04 3.55 0.34 0.06 0
2060 6160 3520 410 370 0 2 205 185 0 11,740 780 6.64% 16,231 22 117 8002 6.66666666666667 2.06 6.16 3.52 0.41 0.37 0
2120 7000 3690 350 110 0 1 350 110 0 12,810 460 3.59% 16,233 2 9 8003 51.1111111111111 2.12 7 3.69 0.35 0.11 0
2000 6220 3610 370 210 10 1 370 210 10 11,830 590 4.99% 16,255 76 28 8013 21.0714285714286 2 6.22 3.61 0.37 0.21 0.01
1990 5940 3510 460 550 20 4 115 137.5 5 11,440 1,030 9.00% 16,239 116 150 7969 6.86666666666667 1.99 5.94 3.51 0.46 0.55 0.02
1990 5980 3460 500 640 20 5 100 128 4 11,430 1,160 10.15% 16,236 135 166 8013 6.98795180722892 1.99 5.98 3.46 0.5 0.64 0.02
1980 6180 3520 380 180 0 1 380 180 0 11,680 560 4.79% 16,227 15 39 8018 14.3589743589744 1.98 6.18 3.52 0.38 0.18 0
1980 6270 3740 380 380 0 1 380 380 0 11,990 760 6.34% 16,227 0 12 8018 63.3333333333333 1.98 6.27 3.74 0.38 0.38 0
2280 6180 3440 370 240 30 1 370 240 30 11,900 640 5.38% 16,248 137 103 8027 6.21359223300971 2.28 6.18 3.44 0.37 0.24 0.03
1980 6050 3520 430 590 50 5 86 118 10 11,550 1,070 9.26% 16,284 286 50 8055 21.4 1.98 6.05 3.52 0.43 0.59 0.05
2160 6300 3500 340 70 10 1 340 70 10 11,960 420 3.51% 16,294 18 4 8057 105 2.16 6.3 3.5 0.34 0.07 0.01
2000 6210 3570 370 230 20 2 185 115 10 11,780 620 5.26% 16,326 60 25 8080 24.8 2 6.21 3.57 0.37 0.23 0.02
2260 6480 3620 390 350 20 3 130 116.666666666667 6.66666666666667 12,360 760 6.15% 16,275 157 56 8058 13.5714285714286 2.26 6.48 3.62 0.39 0.35 0.02
2170 6650 3580 390 280 10 2 195 140 5 12,400 680 5.48% 16,275 4 15 8067 45.3333333333333 2.17 6.65 3.58 0.39 0.28 0.01
2270 6630 3620 360 250 10 2 180 125 5 12,520 620 4.95% 16,307 60 25 8090 24.8 2.27 6.63 3.62 0.36 0.25 0.01
1930 6140 3400 530 840 30 4 132.5 210 7.5 11,470 1,400 12.21% 16,314 121 90 8090 15.5555555555556 1.93 6.14 3.4 0.53 0.84 0.03
2160 6390 3620 420 420 20 3 140 140 6.66666666666667 12,170 860 7.07% 16,321 91 77 8109 11.1688311688312 2.16 6.39 3.62 0.42 0.42 0.02
1890 6090 3610 330 160 10 2 165 80 5 11,590 500 4.31% 16,321 20 18 8109 27.7777777777778 1.89 6.09 3.61 0.33 0.16 0.01
2180 6360 3600 340 130 0 2 170 65 0 12,140 470 3.87% 16,321 0 4 8109 117.5 2.18 6.36 3.6 0.34 0.13 0
2190 6460 3470 510 810 200 3 170 270 66.6666666666667 12,120 1,520 12.54% 16,336 49 38 8123 40 2.19 6.46 3.47 0.51 0.81 0.2
2180 6300 3520 400 240 40 1 400 240 40 12,000 680 5.67% 16,336 2 2 8123 340 2.18 6.3 3.52 0.4 0.24 0.04
2170 6490 3550 350 240 20 1 350 240 20 12,210 610 5.00% 16,298 192 241 8130 2.53112033195021 2.17 6.49 3.55 0.35 0.24 0.02
2230 6680 3540 390 400 0 1 390 400 0 12,450 790 6.35% 16,299 1 6 8130 131.666666666667 2.23 6.68 3.54 0.39 0.4 0
2210 6480 3620 340 120 0 1 340 120 0 12,310 460 3.74% 16,299 0 2 8130 230 2.21 6.48 3.62 0.34 0.12 0
1970 6040 3640 370 190 0 1 370 190 0 11,650 560 4.81% 16,299 0 14 8118 40 1.97 6.04 3.64 0.37 0.19 0
2160 6290 3410 350 80 0 1 350 80 0 11,860 430 3.63% 16,317 26 10 8122 43 2.16 6.29 3.41 0.35 0.08 0
1900 6040 3560 350 180 30 1 350 180 30 11,500 560 4.87% 16,362 145 63 8143 8.88888888888889 1.9 6.04 3.56 0.35 0.18 0.03
2270 6560 3470 430 440 0 3 143.333333333333 146.666666666667 0 12,300 870 7.07% 16,396 44 47 8152 18.5106382978723 2.27 6.56 3.47 0.43 0.44 0
2180 6510 3620 450 580 110 2 225 290 55 12,310 1,140 9.26% 16,410 228 45 8157 25.3333333333333 2.18 6.51 3.62 0.45 0.58 0.11
2060 6410 3550 380 380 310 4 95 95 77.5 12,020 1,070 8.90% 16,780 370 175 8329 6.11428571428571 2.06 6.41 3.55 0.38 0.38 0.31
2020 6430 3670 370 350 60 3 123.333333333333 116.666666666667 20 12,120 780 6.44% 16,951 307 155 8410 5.03225806451613 2.02 6.43 3.67 0.37 0.35 0.06
2250 6790 3600 410 270 0 3 136.666666666667 90 0 12,640 680 5.38% 16,963 18 33 8419 20.6060606060606 2.25 6.79 3.6 0.41 0.27 0
2250 6640 3880 410 210 10 2 205 105 5 12,770 630 4.93% 16,968 31 20 8425 31.5 2.25 6.64 3.88 0.41 0.21 0.01
2030 6380 3650 400 330 40 2 200 165 20 12,060 770 6.38% 16,988 34 18 8435 42.7777777777778 2.03 6.38 3.65 0.4 0.33 0.04
2290 6690 3610 500 790 30 3 166.666666666667 263.333333333333 10 12,590 1,320 10.48% 17,045 135 51 8461 25.8823529411765 2.29 6.69 3.61 0.5 0.79 0.03
1970 6520 3740 390 400 0 1 390 400 0 12,230 790 6.46% 17,044 1 5 8460 158 1.97 6.52 3.74 0.39 0.4 0
2030 6390 3700 400 210 0 2 200 105 0 12,120 610 5.03% 17,050 6 8 8460 76.25 2.03 6.39 3.7 0.4 0.21 0
2030 6520 3740 410 680 140 4 102.5 170 35 12,290 1,230 10.01% 17,456 500 226 8632 5.44247787610619 2.03 6.52 3.74 0.41 0.68 0.14
2070 6570 3760 360 140 10 1 360 140 10 12,400 510 4.11% 17,464 12 8 8632 63.75 2.07 6.57 3.76 0.36 0.14 0.01
2260 6820 3760 350 90 10 1 350 90 10 12,840 450 3.50% 17,472 12 11 8633 40.9090909090909 2.26 6.82 3.76 0.35 0.09 0.01
2280 6740 3770 350 140 0 1 350 140 0 12,790 490 3.83% 17,473 1 2 8633 245 2.28 6.74 3.77 0.35 0.14 0
1860 6590 3840 460 320 0 2 230 160 0 12,290 780 6.35% 17,478 5 4 8635 195 1.86 6.59 3.84 0.46 0.32 0
2020 6590 3740 350 180 0 1 350 180 0 12,350 530 4.29% 17,472 16 13 8634 40.7692307692308 2.02 6.59 3.74 0.35 0.18 0
2270 6730 3750 380 200 0 1 380 200 0 12,750 580 4.55% 17,479 7 8 8634 72.5 2.27 6.73 3.75 0.38 0.2 0
2040 6540 3750 350 190 10 1 350 190 10 12,330 550 4.46% 17,473 10 13 8633 42.3076923076923 2.04 6.54 3.75 0.35 0.19 0.01
2280 6780 3740 370 270 0 2 185 135 0 12,800 640 5.00% 17,479 12 17 8635 37.6470588235294 2.28 6.78 3.74 0.37 0.27 0
2280 6690 3760 350 200 0 1 350 200 0 12,730 550 4.32% 17,473 10 13 8634 42.3076923076923 2.28 6.69 3.76 0.35 0.2 0
2310 6920 3790 350 270 60 2 175 135 30 13,020 680 5.22% 17,729 256 99 8732 6.86868686868687 2.31 6.92 3.79 0.35 0.27 0.06
2010 6690 3710 320 60 0 1 320 60 0 12,410 380 3.06% 17,737 8 8 8738 47.5 2.01 6.69 3.71 0.32 0.06 0
2300 6840 3820 600 1430 390 9 66.6666666666667 158.888888888889 43.3333333333333 12,960 2,420 18.67% 17,761 546 370 8765 6.54054054054054 2.3 6.84 3.82 0.6 1.43 0.39
1880 6710 3810 330 70 10 1 330 70 10 12,400 410 3.31% 17,760 1 4 8765 102.5 1.88 6.71 3.81 0.33 0.07 0.01
2290 6830 3800 380 380 0 2 190 190 0 12,920 760 5.88% 17,758 2 4 8765 190 2.29 6.83 3.8 0.38 0.38 0
2290 6860 3820 370 90 0 1 370 90 0 12,970 460 3.55% 17,758 4 4 8765 115 2.29 6.86 3.82 0.37 0.09 0
2290 6760 3790 390 410 60 2 195 205 30 12,840 860 6.70% 17,672 358 66 8765 13.030303030303 2.29 6.76 3.79 0.39 0.41 0.06
2300 6800 3740 350 150 0 1 350 150 0 12,840 500 3.89% 17,673 1 1 8766 500 2.3 6.8 3.74 0.35 0.15 0
2320 6780 3820 460 490 30 4 115 122.5 7.5 12,920 980 7.59% 17,784 115 61 8811 16.0655737704918 2.32 6.78 3.82 0.46 0.49 0.03
1930 6720 3810 350 130 10 1 350 130 10 12,460 490 3.93% 17,789 11 26 8815 18.8461538461538 1.93 6.72 3.81 0.35 0.13 0.01
2320 6790 3820 350 200 0 1 350 200 0 12,930 550 4.25% 17,791 2 2 8817 275 2.32 6.79 3.82 0.35 0.2 0
1890 6650 3810 440 640 90 3 146.666666666667 213.333333333333 30 12,350 1,170 9.47% 17,847 456 80 8819 14.625 1.89 6.65 3.81 0.44 0.64 0.09
1790 6750 3820 410 310 10 2 205 155 5 12,360 730 5.91% 17,850 3 16 8821 45.625 1.79 6.75 3.82 0.41 0.31 0.01
2310 6840 3740 580 1330 450 5 116 266 90 12,890 2,360 18.31% 18,036 624 254 8937 9.29133858267716 2.31 6.84 3.74 0.58 1.33 0.45
2290 6930 3860 360 80 0 1 360 80 0 13,080 440 3.36% 18,031 5 104 8835 4.23076923076923 2.29 6.93 3.86 0.36 0.08 0
2050 6670 3800 390 230 0 1 390 230 0 12,520 620 4.95% 18,030 1 6 8835 103.333333333333 2.05 6.67 3.8 0.39 0.23 0
2340 6990 3860 370 140 0 1 370 140 0 13,190 510 3.87% 18,030 2 2 8835 255 2.34 6.99 3.86 0.37 0.14 0
1860 6780 3830 390 250 0 1 390 250 0 12,470 640 5.13% 18,032 2 5 8838 128 1.86 6.78 3.83 0.39 0.25 0
2300 6930 3850 370 180 10 1 370 180 10 13,080 560 4.28% 18,030 4 3 8839 186.666666666667 2.3 6.93 3.85 0.37 0.18 0.01
2320 6980 3900 670 1320 310 5 134 264 62 13,200 2,300 17.42% 18,146 154 145 8956 15.8620689655172 2.32 6.98 3.9 0.67 1.32 0.31
2290 6920 3850 420 180 20 1 420 180 20 13,060 620 4.75% 18,148 10 7 8959 88.5714285714286 2.29 6.92 3.85 0.42 0.18 0.02
2310 6890 3880 400 180 10 1 400 180 10 13,080 590 4.51% 18,148 8 2 8959 295 2.31 6.89 3.88 0.4 0.18 0.01
2300 6900 3800 360 150 10 1 360 150 10 13,000 520 4.00% 18,149 27 7 8960 74.2857142857143 2.3 6.9 3.8 0.36 0.15 0.01
2000 6570 3810 360 140 10 1 360 140 10 12,380 510 4.12% 18,150 1 2 8960 255 2 6.57 3.81 0.36 0.14 0.01
2280 6760 3800 360 200 40 1 360 200 40 12,840 600 4.67% 18,188 150 27 8967 22.2222222222222 2.28 6.76 3.8 0.36 0.2 0.04
1990 6710 3820 370 150 0 1 370 150 0 12,520 520 4.15% 18,191 3 5 8970 104 1.99 6.71 3.82 0.37 0.15 0
2280 6860 3830 350 90 10 1 350 90 10 12,970 450 3.47% 18,196 5 1 8971 450 2.28 6.86 3.83 0.35 0.09 0.01
2280 6870 3910 430 270 0 1 430 270 0 13,060 700 5.36% 18,196 0 15 8984 46.6666666666667 2.28 6.87 3.91 0.43 0.27 0
2350 6930 3890 410 270 0 2 205 135 0 13,170 680 5.16% 18,204 8 13 8991 52.3076923076923 2.35 6.93 3.89 0.41 0.27 0

0

3

6

9

12

15

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Ti
m

e
(s

)

Revision

Parse Collect Evaluate

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Ti
m

e
(s

)

Revision

Parse Collect Evaluate

SEQNUM DELTAFILES PARSE
[INCR]

COLLECT
[INCR]

EVALUATE
[INCR]

TOTAL [INCR] DELTALOC TOTALLOC TOTAL[INCR]
/DELTALOC

p c e

4
10
15
35
49
51
61
64
69
70
71
73
83
93
99
100
104
109
110
111
114
120
123
128
129
130
135
138
140
143
144
146
149
150
155
156
157
160
161
163
165
167
168
169
176
177
180
181
185
186
189
191
195
196
197
199
200
201
202
204
206
208
209
211
212
213
214
216
221
224
225
226
231
232
234
238
239
246
248
250
251
252
253
254
255
256
257
258
259
262
263
265
266
267
268
269
270
272
273
276
277
278
280
290
291
292
293
294
295
296
305
308
309
310
312
313
314
316
318
320
322
324
326
327
331
332
333
334
335
337
338
339
340
341
342
343
344

1 340 30 0 370 4 3554 92.5 0.34 0.03 0
1 350 100 0 450 10 3849 45 0.35 0.1 0
1 370 170 0 540 2 3919 270 0.37 0.17 0
1 350 30 0 380 21 4378 18.095238095 0.35 0.03 0
1 360 80 10 450 14 4791 32.142857143 0.36 0.08 0.01
1 390 320 0 710 2 4838 355 0.39 0.32 0
1 350 90 0 440 2 5041 220 0.35 0.09 0
1 390 50 0 440 2 5041 220 0.39 0.05 0
1 340 40 0 380 16 5078 23.75 0.34 0.04 0
1 350 100 10 460 9 5083 51.111111111 0.35 0.1 0.01
1 410 350 0 760 33 5088 23.03030303 0.41 0.35 0
1 420 280 0 700 29 5110 24.137931034 0.42 0.28 0
1 380 260 0 640 2 5516 320 0.38 0.26 0
1 380 250 10 640 15 5720 42.666666667 0.38 0.25 0.01
1 400 310 0 710 2 5843 355 0.4 0.31 0
1 400 320 10 730 23 5842 31.739130435 0.4 0.32 0.01
1 350 100 0 450 4 5938 112.5 0.35 0.1 0
1 350 50 0 400 6 5998 66.666666667 0.35 0.05 0
1 380 200 0 580 1 5999 580 0.38 0.2 0
1 330 50 0 380 2 5999 190 0.33 0.05 0
1 340 100 0 440 3 6014 146.66666667 0.34 0.1 0
1 410 290 10 710 8 6058 88.75 0.41 0.29 0.01
1 420 110 0 530 6 6143 88.333333333 0.42 0.11 0
1 330 40 10 380 1 6150 380 0.33 0.04 0.01
1 340 110 0 450 16 6156 28.125 0.34 0.11 0
1 340 130 20 490 48 6182 10.208333333 0.34 0.13 0.02
1 360 100 10 470 2 6217 235 0.36 0.1 0.01
1 330 70 10 410 4 6207 102.5 0.33 0.07 0.01
1 330 110 0 440 2 6212 220 0.33 0.11 0
1 440 330 0 770 16 6242 48.125 0.44 0.33 0
1 370 270 40 680 27 6245 25.185185185 0.37 0.27 0.04
1 360 110 0 470 8 6248 58.75 0.36 0.11 0
1 360 200 10 570 10 6249 57 0.36 0.2 0.01
1 370 270 50 690 24 6259 28.75 0.37 0.27 0.05
1 350 220 10 580 9 6338 64.444444444 0.35 0.22 0.01
1 360 200 10 570 4 6342 142.5 0.36 0.2 0.01
1 360 200 10 570 14 6346 40.714285714 0.36 0.2 0.01
1 350 70 180 600 14 6466 42.857142857 0.35 0.07 0.18
1 350 70 170 590 17 6483 34.705882353 0.35 0.07 0.17
1 360 70 0 430 3 6539 143.33333333 0.36 0.07 0
1 340 60 0 400 4 6538 100 0.34 0.06 0
1 320 60 10 390 1 6538 390 0.32 0.06 0.01
1 350 90 0 440 36 6504 12.222222222 0.35 0.09 0
1 330 50 0 380 2 6504 190 0.33 0.05 0
1 380 280 10 670 7 6676 95.714285714 0.38 0.28 0.01
1 360 140 10 510 2 6676 255 0.36 0.14 0.01
1 340 80 10 430 2 6766 215 0.34 0.08 0.01
1 460 400 50 910 2 6766 455 0.46 0.4 0.05
1 360 80 10 450 2 6948 225 0.36 0.08 0.01
1 390 160 0 550 2 6948 275 0.39 0.16 0
1 370 200 20 590 34 6998 17.352941176 0.37 0.2 0.02
1 370 410 70 850 22 7030 38.636363636 0.37 0.41 0.07
1 390 470 60 920 7 7116 131.42857143 0.39 0.47 0.06
1 390 410 10 810 45 7119 18 0.39 0.41 0.01
1 410 450 30 890 24 7141 37.083333333 0.41 0.45 0.03
1 380 360 0 740 2 7148 370 0.38 0.36 0
1 380 380 0 760 1 7149 760 0.38 0.38 0
1 410 520 60 990 14 7163 70.714285714 0.41 0.52 0.06
1 340 50 10 400 4 7167 100 0.34 0.05 0.01
1 400 400 0 800 1 7171 800 0.4 0.4 0
1 400 390 0 790 139 7198 5.6834532374 0.4 0.39 0
1 430 510 0 940 1 7201 940 0.43 0.51 0
1 360 230 40 630 32 7221 19.6875 0.36 0.23 0.04
1 430 630 60 1,120 4 7241 280 0.43 0.63 0.06
1 460 520 0 980 2 7241 490 0.46 0.52 0
1 340 70 0 410 19 7244 21.578947368 0.34 0.07 0
1 330 60 0 390 8 7238 48.75 0.33 0.06 0
1 350 50 0 400 3 7237 133.33333333 0.35 0.05 0
1 340 90 10 440 58 7377 7.5862068966 0.34 0.09 0.01
1 340 60 10 410 70 6883 5.8571428571 0.34 0.06 0.01
1 340 50 0 390 24 6885 16.25 0.34 0.05 0
1 370 130 10 510 34 6885 15 0.37 0.13 0.01
1 340 50 0 390 4 7620 97.5 0.34 0.05 0
1 360 170 0 530 77 7599 6.8831168831 0.36 0.17 0
1 340 90 0 430 144 7642 2.9861111111 0.34 0.09 0
1 350 160 0 510 2 7760 255 0.35 0.16 0
1 380 190 0 570 16 7760 35.625 0.38 0.19 0
1 350 60 0 410 6 7803 68.333333333 0.35 0.06 0
1 340 50 0 390 2 7822 195 0.34 0.05 0
1 370 200 0 570 2 7836 285 0.37 0.2 0
1 400 390 0 790 2 7836 395 0.4 0.39 0
1 350 110 0 460 13 7845 35.384615385 0.35 0.11 0
1 340 70 0 410 12 7845 34.166666667 0.34 0.07 0
1 360 180 0 540 8 7845 67.5 0.36 0.18 0
1 370 110 10 490 31 7848 15.806451613 0.37 0.11 0.01
1 330 50 0 380 4 7850 95 0.33 0.05 0
1 340 40 0 380 13 7849 29.230769231 0.34 0.04 0
1 320 60 10 390 5 7850 78 0.32 0.06 0.01
1 360 130 10 500 26 7872 19.230769231 0.36 0.13 0.01
1 340 80 0 420 6 7920 70 0.34 0.08 0
1 380 410 20 810 13 7929 62.307692308 0.38 0.41 0.02
1 400 270 10 680 5 7960 136 0.4 0.27 0.01
1 330 50 0 380 23 7971 16.52173913 0.33 0.05 0
1 350 100 0 450 23 7954 19.565217391 0.35 0.1 0
1 360 230 30 620 33 7961 18.787878788 0.36 0.23 0.03
1 330 90 0 420 7 7966 60 0.33 0.09 0
1 340 60 0 400 1 7967 400 0.34 0.06 0
1 350 110 0 460 9 8003 51.111111111 0.35 0.11 0
1 370 210 10 590 28 8013 21.071428571 0.37 0.21 0.01
1 380 180 0 560 39 8018 14.358974359 0.38 0.18 0
1 380 380 0 760 12 8018 63.333333333 0.38 0.38 0
1 370 240 30 640 103 8027 6.213592233 0.37 0.24 0.03
1 340 70 10 420 4 8057 105 0.34 0.07 0.01
1 400 240 40 680 2 8123 340 0.4 0.24 0.04
1 350 240 20 610 241 8130 2.531120332 0.35 0.24 0.02
1 390 400 0 790 6 8130 131.66666667 0.39 0.4 0
1 340 120 0 460 2 8130 230 0.34 0.12 0
1 370 190 0 560 14 8118 40 0.37 0.19 0
1 350 80 0 430 10 8122 43 0.35 0.08 0
1 350 180 30 560 63 8143 8.8888888889 0.35 0.18 0.03
1 390 400 0 790 5 8460 158 0.39 0.4 0
1 360 140 10 510 8 8632 63.75 0.36 0.14 0.01
1 350 90 10 450 11 8633 40.909090909 0.35 0.09 0.01
1 350 140 0 490 2 8633 245 0.35 0.14 0
1 350 180 0 530 13 8634 40.769230769 0.35 0.18 0
1 380 200 0 580 8 8634 72.5 0.38 0.2 0
1 350 190 10 550 13 8633 42.307692308 0.35 0.19 0.01
1 350 200 0 550 13 8634 42.307692308 0.35 0.2 0
1 320 60 0 380 8 8738 47.5 0.32 0.06 0
1 330 70 10 410 4 8765 102.5 0.33 0.07 0.01
1 370 90 0 460 4 8765 115 0.37 0.09 0
1 350 150 0 500 1 8766 500 0.35 0.15 0
1 350 130 10 490 26 8815 18.846153846 0.35 0.13 0.01
1 350 200 0 550 2 8817 275 0.35 0.2 0
1 360 80 0 440 104 8835 4.2307692308 0.36 0.08 0
1 390 230 0 620 6 8835 103.33333333 0.39 0.23 0
1 370 140 0 510 2 8835 255 0.37 0.14 0
1 390 250 0 640 5 8838 128 0.39 0.25 0
1 370 180 10 560 3 8839 186.66666667 0.37 0.18 0.01
1 420 180 20 620 7 8959 88.571428571 0.42 0.18 0.02
1 400 180 10 590 2 8959 295 0.4 0.18 0.01
1 360 150 10 520 7 8960 74.285714286 0.36 0.15 0.01
1 360 140 10 510 2 8960 255 0.36 0.14 0.01
1 360 200 40 600 27 8967 22.222222222 0.36 0.2 0.04
1 370 150 0 520 5 8970 104 0.37 0.15 0
1 350 90 10 450 1 8971 450 0.35 0.09 0.01
1 430 270 0 700 15 8984 46.666666667 0.43 0.27 0

0

0.3

0.6

0.9

1.2

1.5

0 20 40 60 80 100 120

Ti
m

e
(s

)

Revision

Parse Collect Evaluate

(b) Run time for incremental analysis, for each revision in the source code repositoryTOTALLOC PARSE [FULL] COLLECT [FULL] EVALUATE [FULL] PARSE [INCR] COLLECT [INCR] EVALUATE [INCR] DELTAFILES PARSE/DELTAFILES
[INCR]

COLLECT/
DELTAFILES [INCR]

EVALUATE/
DELTAFILES [INCR]

TOTAL [FULL] TOTAL [INCR] RATIO INDEX-SIZE INDEX-DIFF cov(TOTAL[INCR],
INDEX-SIZE)

cov(TOTAL[INCR],IND
EX-DIFF)

DELTALOC TOTALLOC TOTAL[INCR]/
DELTALOC

TOTAL [INCR] [S] p c e

3139
3336
3487
3554
3554
3629
3754
3799
3823
3843
3849
3864
3877
3884
3919
3919
3919
3927
3931
3944
3946
3967
3995
4036
4046
4064
4158
4161
4190
4205
4336
4343
4347
4377
4378
4379
4381
4460
4543
4549
4574
4615
4615
4615
4615
4714
4742
4746
4791
4791
4838
4838
4843
4845
4983
4994
4996
4997
5032
5032
5041
5041
5041
5041
5041
5049
5066
5070
5074
5078
5083
5088
5089
5110
5120
5240
5298
5372
5378
5378
5491
5514
5516
5516
5532
5561
5615
5640
5655
5658
5708
5712
5715
5720
5752
5781
5797
5837
5842
5843
5843
5904
5928
5938
5938
5965
5984
5997
5998
5998
5999
5999
6010
6014
6017
6022
6042
6042
6048
6058
6061
6062
6141
6143
6149
6149
6149
6150
6156
6157
6182
6184
6197
6205
6207
6212
6212
6216
6217
6217
6230
6242
6245
6245
6245
6248
6249
6252
6254
6258
6259
6268
6337
6338
6342
6342
6346
6356
6426
6432
6454
6466
6483
6499
6504
6504
6538
6538
6538
6538
6539
6539
6540
6600
6609
6669
6676
6676
6703
6766
6766
6766
6872
6874
6883
6885
6885
6887
6948
6948
6948
6948
6956
6964
6998
7024
7030
7063
7071
7115
7116
7119
7119
7141
7148
7148
7149
7163
7167
7170
7171
7198
7200
7200
7201
7221
7237
7237
7237
7238
7238
7241
7241
7244
7272
7328
7377
7379
7507
7599
7608
7616
7620
7620
7631
7642
7642
7760
7760
7760
7768
7789
7791
7792
7803
7803
7804
7822
7822
7836
7836
7836
7845
7845
7845
7848
7849
7850
7850
7872
7920
7920
7921
7929
7954
7955
7960
7961
7966
7967
7969
7971
8002
8003
8013
8013
8018
8018
8027
8055
8057
8058
8067
8080
8090
8090
8109
8109
8109
8118
8122
8123
8123
8130
8130
8130
8143
8152
8157
8329
8410
8419
8425
8435
8460
8460
8461
8632
8632
8633
8633
8633
8634
8634
8634
8635
8635
8732
8738
8765
8765
8765
8765
8765
8766
8811
8815
8817
8819
8821
8835
8835
8835
8838
8839
8937
8956
8959
8959
8960
8960
8967
8970
8971
8984
8991

1030 2640 1070 1050 2470 1060 4 262.5 617.5 265 4,740 4,580 0.966244725738397 7,047 7,047 -0.167824104408355 0.689878474422276 3139 3139 1.45906339598598 4.58 1.05 2.47 1.06
1130 2560 1140 380 420 100 11 34.5454545454545 38.1818181818182 9.09090909090909 4,830 900 18.63% 7,469 424 224 3336 4.01785714285714 0.9 0.38 0.42 0.1
1130 2770 1170 380 370 100 9 42.2222222222222 41.1111111111111 11.1111111111111 5,070 850 16.77% 7,756 341 196 3487 4.33673469387755 0.85 0.38 0.37 0.1
1100 2770 1190 390 230 30 4 97.5 57.5 7.5 5,060 650 12.85% 7,819 135 219 3554 2.96803652968037 0.65 0.39 0.23 0.03
1100 2570 1170 340 30 0 1 340 30 0 4,840 370 7.64% 7,819 0 4 3554 92.5 0.37 0.34 0.03 0
1160 2790 1200 390 330 70 6 65 55 11.6666666666667 5,150 790 15.34% 7,954 163 115 3629 6.8695652173913 0.79 0.39 0.33 0.07
1140 2730 1340 430 590 190 10 43 59 19 5,210 1,210 23.22% 8,235 439 237 3754 5.10548523206751 1.21 0.43 0.59 0.19
1150 2880 1270 400 400 70 4 100 100 17.5 5,300 870 16.42% 8,349 148 56 3799 15.5357142857143 0.87 0.4 0.4 0.07
1160 3050 1320 370 280 40 3 123.333333333333 93.3333333333333 13.3333333333333 5,530 690 12.48% 8,426 153 56 3823 12.3214285714286 0.69 0.37 0.28 0.04
1210 3190 1470 400 280 20 2 200 140 10 5,870 700 11.93% 8,479 53 28 3843 25 0.7 0.4 0.28 0.02
1200 3010 1410 350 100 0 1 350 100 0 5,620 450 8.01% 8,481 2 10 3849 45 0.45 0.35 0.1 0
1350 2970 1380 400 290 20 4 100 72.5 5 5,700 710 12.46% 8,515 120 35 3864 20.2857142857143 0.71 0.4 0.29 0.02
1300 3180 1360 430 390 20 5 86 78 4 5,840 840 14.38% 8,564 139 37 3877 22.7027027027027 0.84 0.43 0.39 0.02
1220 3020 1440 390 280 40 3 130 93.3333333333333 13.3333333333333 5,680 710 12.50% 8,595 127 46 3884 15.4347826086957 0.71 0.39 0.28 0.04
1230 2920 1330 420 380 10 4 105 95 2.5 5,480 810 14.78% 8,645 50 49 3919 16.530612244898 0.81 0.42 0.38 0.01
1230 3090 1410 370 170 0 1 370 170 0 5,730 540 9.42% 8,645 0 2 3919 270 0.54 0.37 0.17 0
1200 3030 1410 390 250 0 4 97.5 62.5 0 5,640 640 11.35% 8,641 4 8 3919 80 0.64 0.39 0.25 0
1250 3010 1330 390 260 20 2 195 130 10 5,590 670 11.99% 8,669 64 28 3927 23.9285714285714 0.67 0.39 0.26 0.02
1190 2940 1400 390 260 0 2 195 130 0 5,530 650 11.75% 8,678 9 12 3931 54.1666666666667 0.65 0.39 0.26 0
1190 3050 1420 430 340 0 5 86 68 0 5,660 770 13.60% 8,702 24 19 3944 40.5263157894737 0.77 0.43 0.34 0
1240 3160 1440 420 370 20 3 140 123.333333333333 6.66666666666667 5,840 810 13.87% 8,709 15 10 3946 81 0.81 0.42 0.37 0.02
1220 3150 1450 390 260 140 2 195 130 70 5,820 790 13.57% 8,773 70 140 3967 5.64285714285714 0.79 0.39 0.26 0.14
1200 2930 1390 400 240 10 3 133.333333333333 80 3.33333333333333 5,520 650 11.78% 8,773 66 59 3995 11.0169491525424 0.65 0.4 0.24 0.01
1220 2950 1410 510 950 90 9 56.6666666666667 105.555555555556 10 5,580 1,550 27.78% 8,995 304 79 4036 19.620253164557 1.55 0.51 0.95 0.09
1220 3070 1460 450 540 30 4 112.5 135 7.5 5,750 1,020 17.74% 9,046 97 30 4046 34 1.02 0.45 0.54 0.03
1260 3170 1460 400 250 160 3 133.333333333333 83.3333333333333 53.3333333333333 5,890 810 13.75% 9,068 106 22 4064 36.8181818181818 0.81 0.4 0.25 0.16
1270 3140 1520 440 660 150 6 73.3333333333333 110 25 5,930 1,250 21.08% 9,332 684 206 4158 6.06796116504854 1.25 0.44 0.66 0.15
1250 3220 1500 360 220 20 3 120 73.3333333333333 6.66666666666667 5,970 600 10.05% 9,339 75 13 4161 46.1538461538462 0.6 0.36 0.22 0.02
1320 3340 1510 410 380 190 3 136.666666666667 126.666666666667 63.3333333333333 6,170 980 15.88% 9,407 74 37 4190 26.4864864864865 0.98 0.41 0.38 0.19
1320 3330 1560 430 450 100 3 143.333333333333 150 33.3333333333333 6,210 980 15.78% 9,465 140 58 4205 16.8965517241379 0.98 0.43 0.45 0.1
1350 3310 1730 460 730 250 6 76.6666666666667 121.666666666667 41.6666666666667 6,390 1,440 22.54% 9,720 485 189 4336 7.61904761904762 1.44 0.46 0.73 0.25
1330 3390 1610 370 250 10 3 123.333333333333 83.3333333333333 3.33333333333333 6,330 630 9.95% 9,750 36 33 4343 19.0909090909091 0.63 0.37 0.25 0.01
1350 3130 1570 410 340 0 2 205 170 0 6,050 750 12.40% 9,750 4 18 4347 41.6666666666667 0.75 0.41 0.34 0
1310 3290 1570 390 110 10 2 195 55 5 6,170 510 8.27% 9,796 112 15 4377 34 0.51 0.39 0.11 0.01
1310 3510 1680 350 30 0 3 116.666666666667 10 0 6,500 380 5.85% 9,866 4 21 4378 18.0952380952381 0.38 0.35 0.03 0
1350 3440 1650 420 380 20 1 420 380 20 6,440 820 12.73% 9,870 50 42 4379 19.5238095238095 0.82 0.42 0.38 0.02
1290 3580 1590 370 280 60 2 185 140 30 6,460 710 10.99% 9,860 234 72 4381 9.86111111111111 0.71 0.37 0.28 0.06
1370 3490 1740 510 560 80 4 127.5 140 20 6,600 1,150 17.42% 10,039 259 96 4460 11.9791666666667 1.15 0.51 0.56 0.08
1380 3520 1770 510 860 70 6 85 143.333333333333 11.6666666666667 6,670 1,440 21.59% 10,314 233 62 4543 23.2258064516129 1.44 0.51 0.86 0.07
1340 3410 1690 510 990 160 7 72.8571428571429 141.428571428571 22.8571428571429 6,440 1,660 25.78% 10,315 586 193 4549 8.60103626943005 1.66 0.51 0.99 0.16
1350 3510 1710 490 740 230 5 98 148 46 6,570 1,460 22.22% 10,385 163 45 4574 32.4444444444444 1.46 0.49 0.74 0.23
1370 3590 1710 520 990 120 5 104 198 24 6,670 1,630 24.44% 10,461 394 63 4615 25.8730158730159 1.63 0.52 0.99 0.12
1380 3570 1750 530 1070 20 7 75.7142857142857 152.857142857143 2.85714285714286 6,700 1,620 24.18% 10,481 44 56 4615 28.9285714285714 1.62 0.53 1.07 0.02
1350 3620 1740 410 350 10 2 205 175 5 6,710 770 11.48% 10,485 4 6 4615 128.333333333333 0.77 0.41 0.35 0.01
1350 3440 1740 510 670 30 4 127.5 167.5 7.5 6,530 1,210 18.53% 10,491 12 22 4615 55 1.21 0.51 0.67 0.03
1390 3440 1930 610 1560 460 10 61 156 46 6,760 2,630 38.91% 10,708 955 251 4714 10.4780876494024 2.63 0.61 1.56 0.46
1390 3560 1880 470 520 210 5 94 104 42 6,830 1,200 17.57% 10,735 33 75 4742 16 1.2 0.47 0.52 0.21
1410 3700 1840 390 300 0 3 130 100 0 6,950 690 9.93% 10,736 1 6 4746 115 0.69 0.39 0.3 0
1400 3690 1820 530 810 240 9 58.8888888888889 90 26.6666666666667 6,910 1,580 22.87% 10,839 125 133 4791 11.8796992481203 1.58 0.53 0.81 0.24
1400 3760 1880 360 80 10 1 360 80 10 7,040 450 6.39% 10,841 6 14 4791 32.1428571428571 0.45 0.36 0.08 0.01
1420 3730 1860 430 590 70 3 143.333333333333 196.666666666667 23.3333333333333 7,010 1,090 15.55% 10,964 175 53 4838 20.5660377358491 1.09 0.43 0.59 0.07
1410 3490 1930 390 320 0 1 390 320 0 6,830 710 10.40% 10,964 0 2 4838 355 0.71 0.39 0.32 0
1380 3430 1910 450 470 10 5 90 94 2 6,720 930 13.84% 10,978 34 20 4843 46.5 0.93 0.45 0.47 0.01
1410 3460 1920 520 870 30 3 173.333333333333 290 10 6,790 1,420 20.91% 10,968 190 107 4845 13.2710280373832 1.42 0.52 0.87 0.03
1410 3610 1950 690 1600 460 10 69 160 46 6,970 2,750 39.45% 11,309 667 183 4983 15.0273224043716 2.75 0.69 1.6 0.46
1520 3720 1940 570 1090 20 6 95 181.666666666667 3.33333333333333 7,180 1,680 23.40% 11,329 24 29 4994 57.9310344827586 1.68 0.57 1.09 0.02
1700 4370 2050 630 1370 120 2 315 685 60 8,120 2,120 26.11% 11,327 575 237 4996 8.94514767932489 2.12 0.63 1.37 0.12
1740 4080 2030 390 270 10 11 35.4545454545455 24.5454545454545 0.909090909090909 7,850 670 8.54% 11,328 1 9 4997 74.4444444444444 0.67 0.39 0.27 0.01
1430 3890 2100 550 1140 90 6 91.6666666666667 190 15 7,420 1,780 23.99% 11,401 438 64 5032 27.8125 1.78 0.55 1.14 0.09
1430 3670 2000 440 490 0 2 220 245 0 7,100 930 13.10% 11,401 0 6 5032 155 0.93 0.44 0.49 0
1460 3740 2130 570 1120 20 6 95 186.666666666667 3.33333333333333 7,330 1,710 23.33% 11,431 50 37 5041 46.2162162162162 1.71 0.57 1.12 0.02
1500 3670 2080 350 90 0 1 350 90 0 7,250 440 6.07% 11,428 3 2 5041 220 0.44 0.35 0.09 0
1460 3930 2080 550 970 0 5 110 194 0 7,470 1,520 20.35% 11,446 18 36 5041 42.2222222222222 1.52 0.55 0.97 0
1480 3860 1990 520 840 0 3 173.333333333333 280 0 7,330 1,360 18.55% 11,450 4 8 5041 170 1.36 0.52 0.84 0
1470 3970 2020 390 50 0 1 390 50 0 7,460 440 5.90% 11,451 1 2 5041 220 0.44 0.39 0.05 0
1460 3730 2040 440 410 10 2 220 205 5 7,230 860 11.89% 11,453 10 19 5049 45.2631578947368 0.86 0.44 0.41 0.01
1480 3990 2020 430 430 10 3 143.333333333333 143.333333333333 3.33333333333333 7,490 870 11.62% 11,484 67 44 5066 19.7727272727273 0.87 0.43 0.43 0.01
1490 3800 2010 390 280 30 3 130 93.3333333333333 10 7,300 700 9.59% 11,476 188 56 5070 12.5 0.7 0.39 0.28 0.03
1460 3970 2040 370 180 0 2 185 90 0 7,470 550 7.36% 11,483 7 10 5074 55 0.55 0.37 0.18 0
1440 3940 2030 340 40 0 1 340 40 0 7,410 380 5.13% 11,485 2 16 5078 23.75 0.38 0.34 0.04 0
1490 3790 2060 350 100 10 1 350 100 10 7,340 460 6.27% 11,493 8 9 5083 51.1111111111111 0.46 0.35 0.1 0.01
1470 3990 2030 410 350 0 1 410 350 0 7,490 760 10.15% 11,492 5 33 5088 23.030303030303 0.76 0.41 0.35 0
1450 3950 2000 360 190 20 2 180 95 10 7,400 570 7.70% 11,492 72 33 5089 17.2727272727273 0.57 0.36 0.19 0.02
1500 3950 2030 420 280 0 1 420 280 0 7,480 700 9.36% 11,501 29 29 5110 24.1379310344828 0.7 0.42 0.28 0
1540 3850 2030 400 310 170 2 200 155 85 7,420 880 11.86% 11,483 24 54 5120 16.2962962962963 0.88 0.4 0.31 0.17
1500 4130 2140 620 1550 370 9 68.8888888888889 172.222222222222 41.1111111111111 7,770 2,540 32.69% 11,814 869 189 5240 13.4391534391534 2.54 0.62 1.55 0.37
1560 4270 2290 620 1430 160 7 88.5714285714286 204.285714285714 22.8571428571429 8,120 2,210 27.22% 11,952 770 114 5298 19.3859649122807 2.21 0.62 1.43 0.16
1640 4370 2170 440 760 90 5 88 152 18 8,180 1,290 15.77% 12,107 403 130 5372 9.92307692307692 1.29 0.44 0.76 0.09
1540 3940 2280 450 670 30 5 90 134 6 7,760 1,150 14.82% 12,122 135 26 5378 44.2307692307692 1.15 0.45 0.67 0.03
1670 4250 2250 470 640 0 2 235 320 0 8,170 1,110 13.59% 12,122 2 4 5378 277.5 1.11 0.47 0.64 0
1590 4310 2290 600 1230 60 9 66.6666666666667 136.666666666667 6.66666666666667 8,190 1,890 23.08% 12,324 230 201 5491 9.40298507462687 1.89 0.6 1.23 0.06
1560 4310 2230 410 430 10 7 58.5714285714286 61.4285714285714 1.42857142857143 8,100 850 10.49% 12,382 96 26 5514 32.6923076923077 0.85 0.41 0.43 0.01
1560 4050 2250 640 1620 180 2 320 810 90 7,860 2,440 31.04% 12,402 826 113 5516 21.5929203539823 2.44 0.64 1.62 0.18
1570 4310 2320 380 260 0 1 380 260 0 8,200 640 7.80% 12,384 2 2 5516 320 0.64 0.38 0.26 0
1560 4230 2280 570 1090 100 3 190 363.333333333333 33.3333333333333 8,070 1,760 21.81% 12,379 379 58 5532 30.3448275862069 1.76 0.57 1.09 0.1
1570 4290 2300 760 2100 580 15 50.6666666666667 140 38.6666666666667 8,160 3,440 42.16% 12,428 2,555 1102 5561 3.12159709618875 3.44 0.76 2.1 0.58
1660 4240 2280 360 240 40 3 120 80 13.3333333333333 8,180 640 7.82% 12,578 202 93 5615 6.88172043010753 0.64 0.36 0.24 0.04
1590 4140 2390 550 1130 80 8 68.75 141.25 10 8,120 1,760 21.67% 12,701 401 133 5640 13.2330827067669 1.76 0.55 1.13 0.08
1560 4390 2410 370 100 10 2 185 50 5 8,360 480 5.74% 12,729 34 39 5655 12.3076923076923 0.48 0.37 0.1 0.01
1560 4460 2360 510 710 0 5 102 142 0 8,380 1,220 14.56% 12,732 3 37 5658 32.972972972973 1.22 0.51 0.71 0
1610 4370 2370 430 380 40 2 215 190 20 8,350 850 10.18% 12,761 173 58 5708 14.6551724137931 0.85 0.43 0.38 0.04
1610 4140 2330 480 440 0 2 240 220 0 8,080 920 11.39% 12,764 9 6 5712 153.333333333333 0.92 0.48 0.44 0
1660 4840 2360 500 790 60 5 100 158 12 8,860 1,350 15.24% 12,827 187 39 5715 34.6153846153846 1.35 0.5 0.79 0.06
1610 4290 2330 380 250 10 1 380 250 10 8,230 640 7.78% 12,832 15 15 5720 42.6666666666667 0.64 0.38 0.25 0.01
1580 4360 2380 560 630 80 4 140 157.5 20 8,320 1,270 15.26% 12,923 257 67 5752 18.955223880597 1.27 0.56 0.63 0.08
1750 4480 2330 510 650 240 5 102 130 48 8,560 1,400 16.36% 12,990 309 109 5781 12.8440366972477 1.4 0.51 0.65 0.24
1620 4230 2310 670 1530 10 14 47.8571428571429 109.285714285714 0.714285714285714 8,160 2,210 27.08% 12,927 169 78 5797 28.3333333333333 2.21 0.67 1.53 0.01
1740 4390 2370 660 1600 170 12 55 133.333333333333 14.1666666666667 8,500 2,430 28.59% 12,952 533 100 5837 24.3 2.43 0.66 1.6 0.17
1640 4240 2370 400 320 10 4 100 80 2.5 8,250 730 8.85% 12,973 7 23 5842 31.7391304347826 0.73 0.4 0.32 0.01
1650 4320 2330 460 570 0 1 460 570 0 8,300 1,030 12.41% 12,966 16 14 5843 73.5714285714286 1.03 0.46 0.57 0
1650 4460 2540 400 310 0 1 400 310 0 8,650 710 8.21% 12,966 0 2 5843 355 0.71 0.4 0.31 0
1650 4520 2350 520 1190 180 7 74.2857142857143 170 25.7142857142857 8,520 1,890 22.18% 13,134 699 94 5904 20.1063829787234 1.89 0.52 1.19 0.18
1650 4450 2460 540 1030 60 11 49.0909090909091 93.6363636363636 5.45454545454545 8,560 1,630 19.04% 13,280 246 103 5928 15.8252427184466 1.63 0.54 1.03 0.06
1660 4520 2440 380 300 0 4 95 75 0 8,620 680 7.89% 13,298 32 24 5938 28.3333333333333 0.68 0.38 0.3 0
1690 4690 2440 350 100 0 1 350 100 0 8,820 450 5.10% 13,298 2 4 5938 112.5 0.45 0.35 0.1 0
1740 4580 2540 430 560 240 3 143.333333333333 186.666666666667 80 8,860 1,230 13.88% 13,369 253 27 5965 45.5555555555556 1.23 0.43 0.56 0.24
1680 4660 2560 360 310 40 4 90 77.5 10 8,900 710 7.98% 13,448 139 33 5984 21.5151515151515 0.71 0.36 0.31 0.04
1710 4800 2460 420 480 0 3 140 160 0 8,970 900 10.03% 13,481 33 19 5997 47.3684210526316 0.9 0.42 0.48 0
1680 4630 2460 480 640 0 3 160 213.333333333333 0 8,770 1,120 12.77% 13,482 17 67 5998 16.7164179104478 1.12 0.48 0.64 0
1680 4590 2600 350 50 0 1 350 50 0 8,870 400 4.51% 13,484 2 6 5998 66.6666666666667 0.4 0.35 0.05 0
1640 4290 2500 380 200 0 1 380 200 0 8,430 580 6.88% 13,490 6 1 5999 580 0.58 0.38 0.2 0
1680 4440 2510 330 50 0 1 330 50 0 8,630 380 4.40% 13,492 2 2 5999 190 0.38 0.33 0.05 0
1670 4360 2530 410 410 30 2 205 205 15 8,560 850 9.93% 13,512 50 13 6010 65.3846153846154 0.85 0.41 0.41 0.03
1660 4600 2510 340 100 0 3 113.333333333333 33.3333333333333 0 8,770 440 5.02% 13,530 0 3 6014 146.666666666667 0.44 0.34 0.1 0
1690 4700 2420 440 490 10 1 440 490 10 8,810 940 10.67% 13,530 26 9 6017 104.444444444444 0.94 0.44 0.49 0.01
1680 4370 2490 520 690 30 5 104 138 6 8,540 1,240 14.52% 13,529 63 30 6022 41.3333333333333 1.24 0.52 0.69 0.03
1730 4320 2610 410 460 60 3 136.666666666667 153.333333333333 20 8,660 930 10.74% 13,567 72 31 6042 30 0.93 0.41 0.46 0.06
1690 4510 2570 350 110 0 2 175 55 0 8,770 460 5.25% 13,565 8 10 6042 46 0.46 0.35 0.11 0
1720 4770 2540 410 630 110 2 205 315 55 9,030 1,150 12.74% 13,587 380 72 6048 15.9722222222222 1.15 0.41 0.63 0.11
1870 5020 2530 410 290 10 2 205 145 5 9,420 710 7.54% 13,519 2 8 6058 88.75 0.71 0.41 0.29 0.01
1750 4740 2610 620 1380 100 1 620 1,380 100 9,100 2,100 23.08% 13,553 430 161 6061 13.0434782608696 2.1 0.62 1.38 0.1
1730 4760 2630 430 450 70 7 61.4285714285714 64.2857142857143 10 9,120 950 10.42% 13,519 328 46 6062 20.6521739130435 0.95 0.43 0.45 0.07
1860 4670 2590 380 430 70 5 76 86 14 9,120 880 9.65% 13,622 293 134 6141 6.56716417910448 0.88 0.38 0.43 0.07
1720 4770 2590 420 110 0 1 420 110 0 9,080 530 5.84% 13,622 0 6 6143 88.3333333333333 0.53 0.42 0.11 0
1750 4670 2520 360 170 0 2 180 85 0 8,940 530 5.93% 13,625 3 81 6149 6.54320987654321 0.53 0.36 0.17 0
1750 4770 2560 360 200 0 2 180 100 0 9,080 560 6.17% 13,625 0 4 6149 140 0.56 0.36 0.2 0
1780 4750 2560 420 440 0 3 140 146.666666666667 0 9,090 860 9.46% 13,609 34 10 6149 86 0.86 0.42 0.44 0
1770 4810 2570 330 40 10 2 165 20 5 9,150 380 4.15% 13,612 3 1 6150 380 0.38 0.33 0.04 0.01
1760 4540 2550 340 110 0 1 340 110 0 8,850 450 5.08% 13,627 17 16 6156 28.125 0.45 0.34 0.11 0
1760 4710 2550 390 260 20 1 390 260 20 9,020 670 7.43% 13,639 72 32 6157 20.9375 0.67 0.39 0.26 0.02
1820 4590 2580 340 130 20 1 340 130 20 8,990 490 5.45% 13,680 107 48 6182 10.2083333333333 0.49 0.34 0.13 0.02
1760 4590 2580 690 1440 350 2 345 720 175 8,930 2,480 27.77% 13,668 356 87 6184 28.5057471264368 2.48 0.69 1.44 0.35
1730 4760 2670 400 380 40 3 133.333333333333 126.666666666667 13.3333333333333 9,160 820 8.95% 13,708 244 15 6197 54.6666666666667 0.82 0.4 0.38 0.04
1760 4860 2540 370 130 180 4 92.5 32.5 45 9,160 680 7.42% 13,681 37 23 6205 29.5652173913043 0.68 0.37 0.13 0.18
1730 4840 2510 330 70 10 4 82.5 17.5 2.5 9,080 410 4.52% 13,689 8 4 6207 102.5 0.41 0.33 0.07 0.01
1750 4730 2570 420 470 40 1 420 470 40 9,050 930 10.28% 13,702 167 19 6212 48.9473684210526 0.93 0.42 0.47 0.04
1760 4790 2570 330 110 0 10 33 11 0 9,120 440 4.82% 13,702 4 2 6212 220 0.44 0.33 0.11 0
1750 4830 2620 560 1130 130 3 186.666666666667 376.666666666667 43.3333333333333 9,200 1,820 19.78% 13,707 507 36 6216 50.5555555555556 1.82 0.56 1.13 0.13
1790 4420 2550 420 500 0 1 420 500 0 8,760 920 10.50% 13,705 141 53 6217 17.3584905660377 0.92 0.42 0.5 0
1740 5150 2630 360 100 10 4 90 25 2.5 9,520 470 4.94% 13,706 3 2 6217 235 0.47 0.36 0.1 0.01
1860 4710 2580 350 180 10 1 350 180 10 9,150 540 5.90% 13,725 76 18 6230 30 0.54 0.35 0.18 0.01
1810 4520 2600 440 330 0 5 88 66 0 8,930 770 8.62% 13,729 4 16 6242 48.125 0.77 0.44 0.33 0
1760 4820 2570 370 270 40 2 185 135 20 9,150 680 7.43% 13,715 200 27 6245 25.1851851851852 0.68 0.37 0.27 0.04
1770 4480 2530 380 460 70 1 380 460 70 8,780 910 10.36% 13,717 423 55 6245 16.5454545454545 0.91 0.38 0.46 0.07
1920 4420 2480 350 200 10 1 350 200 10 8,820 560 6.35% 13,717 24 12 6245 46.6666666666667 0.56 0.35 0.2 0.01
1790 4850 2660 360 110 0 2 180 55 0 9,300 470 5.05% 13,712 6 8 6248 58.75 0.47 0.36 0.11 0
1760 4710 2570 360 200 10 1 360 200 10 9,040 570 6.31% 13,712 75 10 6249 57 0.57 0.36 0.2 0.01
1940 4910 2580 400 290 0 3 133.333333333333 96.6666666666667 0 9,430 690 7.32% 13,718 5 17 6252 40.5882352941176 0.69 0.4 0.29 0
1760 4850 2660 400 460 250 3 133.333333333333 153.333333333333 83.3333333333333 9,270 1,110 11.97% 13,848 140 60 6254 18.5 1.11 0.4 0.46 0.25
1750 4720 2540 390 270 20 1 390 270 20 9,010 680 7.55% 13,727 10 11 6258 61.8181818181818 0.68 0.39 0.27 0.02
1760 4740 2570 370 270 50 1 370 270 50 9,070 690 7.61% 13,729 181 24 6259 28.75 0.69 0.37 0.27 0.05
1750 4880 2670 380 390 50 3 126.666666666667 130 16.6666666666667 9,300 820 8.82% 13,846 260 42 6268 19.5238095238095 0.82 0.38 0.39 0.05
1770 4510 2510 380 230 0 4 95 57.5 0 8,790 610 6.94% 13,891 19 13 6337 46.9230769230769 0.61 0.38 0.23 0
1790 4800 2540 350 220 10 4 87.5 55 2.5 9,130 580 6.35% 13,907 48 9 6338 64.4444444444444 0.58 0.35 0.22 0.01
1830 4730 2520 550 790 0 2 275 395 0 9,080 1,340 14.76% 13,902 11 38 6342 35.2631578947368 1.34 0.55 0.79 0
1770 4350 2550 360 200 10 1 360 200 10 8,670 570 6.57% 13,917 10 4 6342 142.5 0.57 0.36 0.2 0.01
1740 4700 2560 360 200 10 1 360 200 10 9,000 570 6.33% 13,896 59 14 6346 40.7142857142857 0.57 0.36 0.2 0.01
1760 4530 2530 460 680 220 1 460 680 220 8,820 1,360 15.42% 13,899 298 138 6356 9.85507246376812 1.36 0.46 0.68 0.22
1800 4580 2670 540 1020 90 5 108 204 18 9,050 1,650 18.23% 13,990 752 131 6426 12.5954198473282 1.65 0.54 1.02 0.09
1760 4690 2580 490 560 180 11 44.5454545454545 50.9090909090909 16.3636363636364 9,030 1,230 13.62% 13,931 35 89 6432 13.8202247191011 1.23 0.49 0.56 0.18
1760 4470 2510 660 1370 40 1 660 1,370 40 8,740 2,070 23.68% 14,021 182 74 6454 27.972972972973 2.07 0.66 1.37 0.04
1840 4440 2520 350 70 180 1 350 70 180 8,800 600 6.82% 14,027 6 14 6466 42.8571428571429 0.6 0.35 0.07 0.18
1770 4500 2510 350 70 170 6 58.3333333333333 11.6666666666667 28.3333333333333 8,780 590 6.72% 14,033 6 17 6483 34.7058823529412 0.59 0.35 0.07 0.17
1800 4720 2750 440 670 110 1 440 670 110 9,270 1,220 13.16% 14,148 254 74 6499 16.4864864864865 1.22 0.44 0.67 0.11
1800 4930 2570 350 90 0 4 87.5 22.5 0 9,300 440 4.73% 14,172 1 36 6504 12.2222222222222 0.44 0.35 0.09 0
1800 4680 2650 330 50 0 1 330 50 0 9,130 380 4.16% 14,172 0 2 6504 190 0.38 0.33 0.05 0
1780 4820 2520 450 780 80 3 150 260 26.6666666666667 9,120 1,310 14.36% 14,185 314 128 6538 10.234375 1.31 0.45 0.78 0.08
1880 4560 2670 470 650 120 1 470 650 120 9,110 1,240 13.61% 14,171 67 33 6538 37.5757575757576 1.24 0.47 0.65 0.12
1850 5000 2690 340 60 0 1 340 60 0 9,540 400 4.19% 14,171 0 4 6538 100 0.4 0.34 0.06 0
1840 4900 2670 320 60 10 1 320 60 10 9,410 390 4.14% 14,171 7 1 6538 390 0.39 0.32 0.06 0.01
1830 4880 2650 360 70 0 8 45 8.75 0 9,360 430 4.59% 14,186 1 3 6539 143.333333333333 0.43 0.36 0.07 0
1850 4620 2670 420 430 40 5 84 86 8 9,140 890 9.74% 14,172 11 11 6539 80.9090909090909 0.89 0.42 0.43 0.04
1820 5120 2680 680 1490 100 8 85 186.25 12.5 9,620 2,270 23.60% 14,224 350 80 6540 28.375 2.27 0.68 1.49 0.1
1820 5090 2830 690 1570 80 8 86.25 196.25 10 9,740 2,340 24.02% 14,310 254 68 6600 34.4117647058824 2.34 0.69 1.57 0.08
1830 5180 2820 610 1220 20 5 122 244 4 9,830 1,850 18.82% 14,329 21 11 6609 168.181818181818 1.85 0.61 1.22 0.02
1870 4890 2780 530 960 80 4 132.5 240 20 9,540 1,570 16.46% 14,483 254 61 6669 25.7377049180328 1.57 0.53 0.96 0.08
1850 5190 2870 380 280 10 1 380 280 10 9,910 670 6.76% 14,496 13 7 6676 95.7142857142857 0.67 0.38 0.28 0.01
1840 5200 2870 360 140 10 1 360 140 10 9,910 510 5.15% 14,496 4 2 6676 255 0.51 0.36 0.14 0.01
1850 5230 2860 390 190 190 3 130 63.3333333333333 63.3333333333333 9,940 770 7.75% 14,537 63 34 6703 22.6470588235294 0.77 0.39 0.19 0.19
1860 5330 2980 470 1020 360 6 78.3333333333333 170 60 10,170 1,850 18.19% 14,682 459 117 6766 15.8119658119658 1.85 0.47 1.02 0.36
1890 5050 2950 340 80 10 1 340 80 10 9,890 430 4.35% 14,686 4 2 6766 215 0.43 0.34 0.08 0.01
1850 5390 2990 460 400 50 1 460 400 50 10,230 910 8.90% 14,686 4 2 6766 455 0.91 0.46 0.4 0.05
1920 5160 3030 650 1570 150 7 92.8571428571429 224.285714285714 21.4285714285714 10,110 2,370 23.44% 14,876 270 136 6872 17.4264705882353 2.37 0.65 1.57 0.15
1890 5410 2960 360 300 0 2 180 150 0 10,260 660 6.43% 14,876 4 8 6874 82.5 0.66 0.36 0.3 0
1900 5290 2840 340 60 10 5 68 12 2 10,030 410 4.09% 14,467 34 70 6883 5.85714285714286 0.41 0.34 0.06 0.01
1880 5010 2840 340 50 0 1 340 50 0 9,730 390 4.01% 14,468 3 24 6885 16.25 0.39 0.34 0.05 0
1900 4990 2830 370 130 10 1 370 130 10 9,720 510 5.25% 14,452 94 34 6885 15 0.51 0.37 0.13 0.01
1910 5000 2820 390 270 90 3 130 90 30 9,730 750 7.71% 14,477 663 236 6887 3.17796610169492 0.75 0.39 0.27 0.09
1890 5280 3130 650 1740 230 2 325 870 115 10,300 2,620 25.44% 15,082 536 125 6948 20.96 2.62 0.65 1.74 0.23
1950 5670 3160 360 80 10 1 360 80 10 10,780 450 4.17% 15,083 3 2 6948 225 0.45 0.36 0.08 0.01
1900 5630 3150 390 160 0 2 195 80 0 10,680 550 5.15% 15,088 5 2 6948 275 0.55 0.39 0.16 0
1990 5470 3070 460 680 0 1 460 680 0 10,530 1,140 10.83% 15,096 8 10 6948 114 1.14 0.46 0.68 0
1910 4990 2810 590 990 20 2 295 495 10 9,710 1,600 16.48% 14,447 183 341 6956 4.69208211143695 1.6 0.59 0.99 0.02
1900 5310 3090 410 570 110 2 205 285 55 10,300 1,090 10.58% 15,126 250 24 6964 45.4166666666667 1.09 0.41 0.57 0.11
1930 5660 3160 370 200 20 3 123.333333333333 66.6666666666667 6.66666666666667 10,750 590 5.49% 15,211 85 34 6998 17.3529411764706 0.59 0.37 0.2 0.02
1920 5400 3130 360 510 100 1 360 510 100 10,450 970 9.28% 15,270 199 26 7024 37.3076923076923 0.97 0.36 0.51 0.1
1930 5380 3110 370 410 70 1 370 410 70 10,420 850 8.16% 15,274 192 22 7030 38.6363636363636 0.85 0.37 0.41 0.07
1930 5810 3270 380 450 50 1 380 450 50 11,010 880 7.99% 15,336 106 69 7063 12.7536231884058 0.88 0.38 0.45 0.05
1950 5750 3160 400 390 0 2 200 195 0 10,860 790 7.27% 15,350 14 12 7071 65.8333333333333 0.79 0.4 0.39 0
1910 5440 3260 400 330 220 1 400 330 220 10,610 950 8.95% 15,419 73 52 7115 18.2692307692308 0.95 0.4 0.33 0.22
1950 5740 3240 390 470 60 1 390 470 60 10,930 920 8.42% 15,429 152 7 7116 131.428571428571 0.92 0.39 0.47 0.06
1980 5980 3290 390 410 10 1 390 410 10 11,250 810 7.20% 15,450 21 45 7119 18 0.81 0.39 0.41 0.01
1920 5370 3010 390 330 150 1 390 330 150 10,300 870 8.45% 15,016 779 270 7119 3.22222222222222 0.87 0.39 0.33 0.15
1920 5630 3280 410 450 30 2 205 225 15 10,830 890 8.22% 15,513 63 24 7141 37.0833333333333 0.89 0.41 0.45 0.03
1850 5800 3290 470 940 70 1 470 940 70 10,940 1,480 13.53% 15,529 192 101 7148 14.6534653465347 1.48 0.47 0.94 0.07
1920 5690 3370 380 360 0 2 190 180 0 10,980 740 6.74% 15,526 5 2 7148 370 0.74 0.38 0.36 0
1850 5730 3340 380 380 0 1 380 380 0 10,920 760 6.96% 15,533 7 1 7149 760 0.76 0.38 0.38 0
2000 5790 3250 410 520 60 3 136.666666666667 173.333333333333 20 11,040 990 8.97% 15,566 143 14 7163 70.7142857142857 0.99 0.41 0.52 0.06
1930 5620 3220 340 50 10 1 340 50 10 10,770 400 3.71% 15,572 24 4 7167 100 0.4 0.34 0.05 0.01
1940 5640 3390 440 540 0 1 440 540 0 10,970 980 8.93% 15,572 0 39 7170 25.1282051282051 0.98 0.44 0.54 0
1980 5670 3360 400 400 0 2 200 200 0 11,010 800 7.27% 15,578 6 1 7171 800 0.8 0.4 0.4 0
1960 5940 3310 400 390 0 1 400 390 0 11,210 790 7.05% 15,647 0 139 7198 5.68345323741007 0.79 0.4 0.39 0
2030 6050 3290 480 990 100 1 480 990 100 11,370 1,570 13.81% 15,647 217 69 7200 22.7536231884058 1.57 0.48 0.99 0.1
1950 6100 3290 480 750 0 1 480 750 0 11,340 1,230 10.85% 15,656 9 48 7200 25.625 1.23 0.48 0.75 0
1970 5680 3380 430 510 0 1 430 510 0 11,030 940 8.52% 15,659 3 1 7201 940 0.94 0.43 0.51 0
1960 5950 3540 360 230 40 0 11,450 630 5.50% 15,708 65 32 7221 19.6875 0.63 0.36 0.23 0.04
1910 5630 3400 500 970 60 1 500 970 60 10,940 1,530 13.99% 15,752 196 20 7237 76.5 1.53 0.5 0.97 0.06
1920 5670 3400 350 50 0 2 175 25 0 10,990 400 3.64% 15,756 3 3 7237 133.333333333333 0.4 0.35 0.05 0
1970 6090 3410 410 470 0 2 205 235 0 11,470 880 7.67% 15,746 10 4 7237 220 0.88 0.41 0.47 0
1970 6070 3420 330 60 0 31 10.6451612903226 1.93548387096774 0 11,460 390 3.40% 15,757 9 8 7238 48.75 0.39 0.33 0.06 0
1980 5680 3330 0 0 0 6 0 0 0 10,990 0 15,757 0 0 7238 0 0 0 0
1930 5880 3380 430 630 60 1 430 630 60 11,190 1,120 10.01% 15,766 224 4 7241 280 1.12 0.43 0.63 0.06
1870 5600 3370 460 520 0 2 230 260 0 10,840 980 9.04% 15,770 4 2 7241 490 0.98 0.46 0.52 0
1940 6130 3400 340 70 0 2 170 35 0 11,470 410 3.57% 15,766 10 19 7244 21.5789473684211 0.41 0.34 0.07 0
1910 5710 3440 390 240 30 1 390 240 30 11,060 660 5.97% 15,822 110 45 7272 14.6666666666667 0.66 0.39 0.24 0.03
1990 5960 3410 1070 3600 300 1 1,070 3,600 300 11,360 4,970 43.75% 15,600 2,394 3110 7328 1.59807073954984 4.97 1.07 3.6 0.3
2000 6020 3380 340 90 10 1 340 90 10 11,400 440 3.86% 15,631 40 58 7377 7.58620689655172 0.44 0.34 0.09 0.01
2050 6250 3390 430 560 170 8 53.75 70 21.25 11,690 1,160 9.92% 15,643 431 177 7379 6.55367231638418 1.16 0.43 0.56 0.17
1970 5710 3420 480 1540 780 3 160 513.333333333333 260 11,100 2,800 25.23% 15,718 1,323 567 7507 4.93827160493827 2.8 0.48 1.54 0.78
1960 5890 3330 360 170 0 6 60 28.3333333333333 0 11,180 530 4.74% 15,787 11 77 7599 6.88311688311688 0.53 0.36 0.17 0
2060 6420 3480 410 360 0 2 205 180 0 11,960 770 6.44% 15,787 2 225 7608 3.42222222222222 0.77 0.41 0.36 0
2080 6270 3440 550 1150 110 1 550 1,150 110 11,790 1,810 15.35% 15,783 481 341 7616 5.30791788856305 1.81 0.55 1.15 0.11
1910 6100 3490 450 750 520 1 450 750 520 11,500 1,720 14.96% 15,788 809 456 7620 3.7719298245614 1.72 0.45 0.75 0.52
2110 6180 3430 340 50 0 3 113.333333333333 16.6666666666667 0 11,720 390 3.33% 15,786 2 4 7620 97.5 0.39 0.34 0.05 0
2040 6340 3490 440 440 0 1 440 440 0 11,870 880 7.41% 15,803 14 31 7631 28.3870967741935 0.88 0.44 0.44 0
2060 6390 3490 340 90 0 2 170 45 0 11,940 430 3.60% 15,789 12 144 7642 2.98611111111111 0.43 0.34 0.09 0
2130 6400 3460 450 400 0 2 225 200 0 11,990 850 7.09% 15,791 6 36 7642 23.6111111111111 0.85 0.45 0.4 0
2090 6570 3550 630 1200 80 8 78.75 150 10 12,210 1,910 15.64% 15,971 488 245 7760 7.79591836734694 1.91 0.63 1.2 0.08
2190 6420 3540 350 160 0 1 350 160 0 12,150 510 4.20% 15,969 4 2 7760 255 0.51 0.35 0.16 0
2090 6250 3470 380 190 0 1 380 190 0 11,810 570 4.83% 15,969 8 16 7760 35.625 0.57 0.38 0.19 0
2120 6310 3510 430 370 0 7 61.4285714285714 52.8571428571429 0 11,940 800 6.70% 16,063 23 103 7768 7.76699029126214 0.8 0.43 0.37 0
2090 6240 3520 600 1580 220 5 120 316 44 11,850 2,400 20.25% 16,044 919 295 7789 8.13559322033898 2.4 0.6 1.58 0.22
2000 6370 3460 420 760 140 2 210 380 70 11,830 1,320 11.16% 16,054 425 71 7791 18.5915492957746 1.32 0.42 0.76 0.14
1990 6240 3520 360 170 0 2 180 85 0 11,750 530 4.51% 16,049 6 26 7792 20.3846153846154 0.53 0.36 0.17 0
2080 6390 3450 420 640 110 3 140 213.333333333333 36.6666666666667 11,920 1,170 9.82% 16,110 417 172 7803 6.80232558139535 1.17 0.42 0.64 0.11
1970 6040 3420 350 60 0 4 87.5 15 0 11,430 410 3.59% 16,111 1 6 7803 68.3333333333333 0.41 0.35 0.06 0
2110 6500 3510 400 460 10 1 400 460 10 12,120 870 7.18% 16,049 59 54 7804 16.1111111111111 0.87 0.4 0.46 0.01
1970 6120 3430 410 380 20 3 136.666666666667 126.666666666667 6.66666666666667 11,520 810 7.03% 16,149 92 94 7822 8.61702127659574 0.81 0.41 0.38 0.02
2040 6330 3430 340 50 0 1 340 50 0 11,800 390 3.31% 16,149 2 2 7822 195 0.39 0.34 0.05 0
2110 6320 3500 430 420 80 3 143.333333333333 140 26.6666666666667 11,930 930 7.80% 16,061 566 172 7836 5.40697674418605 0.93 0.43 0.42 0.08
2160 6390 3510 370 200 0 1 370 200 0 12,060 570 4.73% 16,061 0 2 7836 285 0.57 0.37 0.2 0
2130 6380 3530 400 390 0 1 400 390 0 12,040 790 6.56% 16,055 6 2 7836 395 0.79 0.4 0.39 0
2100 6400 3660 350 110 0 1 350 110 0 12,160 460 3.78% 16,071 16 13 7845 35.3846153846154 0.46 0.35 0.11 0
2340 6660 3510 340 70 0 1 340 70 0 12,510 410 3.28% 16,075 8 12 7845 34.1666666666667 0.41 0.34 0.07 0
1990 6050 3370 360 180 0 1 360 180 0 11,410 540 4.73% 16,075 4 8 7845 67.5 0.54 0.36 0.18 0
2110 6230 3480 370 110 10 1 370 110 10 11,820 490 4.15% 16,088 35 31 7848 15.8064516129032 0.49 0.37 0.11 0.01
2000 6130 3420 340 40 0 1 340 40 0 11,550 380 3.29% 16,091 13 13 7849 29.2307692307692 0.38 0.34 0.04 0
2020 6070 3360 330 50 0 1 330 50 0 11,450 380 3.32% 16,092 4 4 7850 95 0.38 0.33 0.05 0
2140 6340 3540 320 60 10 1 320 60 10 12,020 390 3.24% 16,096 5 5 7850 78 0.39 0.32 0.06 0.01
2000 6160 3340 360 130 10 1 360 130 10 11,500 500 4.35% 16,096 6 26 7872 19.2307692307692 0.5 0.36 0.13 0.01
1970 6180 3480 380 220 0 4 95 55 0 11,630 600 5.16% 16,122 8 17 7920 35.2941176470588 0.6 0.38 0.22 0
2170 6220 3440 340 80 0 2 170 40 0 11,830 420 3.55% 16,123 1 6 7920 70 0.42 0.34 0.08 0
2130 6270 3500 450 340 30 1 450 340 30 11,900 820 6.89% 16,118 148 91 7921 9.01098901098901 0.82 0.45 0.34 0.03
2120 6370 3950 380 410 20 1 380 410 20 12,440 810 6.51% 16,157 34 13 7929 62.3076923076923 0.81 0.38 0.41 0.02
2130 6450 3550 350 100 0 2 175 50 0 12,130 450 3.71% 16,211 11 23 7954 19.5652173913043 0.45 0.35 0.1 0
2570 7180 3560 370 240 20 1 370 240 20 13,310 630 4.73% 16,192 55 32 7955 19.6875 0.63 0.37 0.24 0.02
2400 6630 3630 400 270 10 1 400 270 10 12,660 680 5.37% 16,203 11 5 7960 136 0.68 0.4 0.27 0.01
2150 6280 3530 360 230 30 1 360 230 30 11,960 620 5.18% 16,225 124 33 7961 18.7878787878788 0.62 0.36 0.23 0.03
2150 6330 3470 330 90 0 1 330 90 0 11,950 420 3.51% 16,228 3 7 7966 60 0.42 0.33 0.09 0
1990 6040 3550 340 60 0 1 340 60 0 11,580 400 3.45% 16,229 1 1 7967 400 0.4 0.34 0.06 0
1990 5940 3510 460 550 20 1 460 550 20 11,440 1,030 9.00% 16,239 116 150 7969 6.86666666666667 1.03 0.46 0.55 0.02
2220 6320 3520 330 50 0 2 165 25 0 12,060 380 3.15% 16,208 21 23 7971 16.5217391304348 0.38 0.33 0.05 0
2060 6160 3520 410 370 0 1 410 370 0 11,740 780 6.64% 16,231 22 117 8002 6.66666666666667 0.78 0.41 0.37 0
2120 7000 3690 350 110 0 1 350 110 0 12,810 460 3.59% 16,233 2 9 8003 51.1111111111111 0.46 0.35 0.11 0
2000 6220 3610 370 210 10 4 92.5 52.5 2.5 11,830 590 4.99% 16,255 76 28 8013 21.0714285714286 0.59 0.37 0.21 0.01
1990 5980 3460 500 640 20 5 100 128 4 11,430 1,160 10.15% 16,236 135 166 8013 6.98795180722892 1.16 0.5 0.64 0.02
1980 6180 3520 380 180 0 1 380 180 0 11,680 560 4.79% 16,227 15 39 8018 14.3589743589744 0.56 0.38 0.18 0
1980 6270 3740 380 380 0 1 380 380 0 11,990 760 6.34% 16,227 0 12 8018 63.3333333333333 0.76 0.38 0.38 0
2280 6180 3440 370 240 30 1 370 240 30 11,900 640 5.38% 16,248 137 103 8027 6.21359223300971 0.64 0.37 0.24 0.03
1980 6050 3520 430 590 50 5 86 118 10 11,550 1,070 9.26% 16,284 286 50 8055 21.4 1.07 0.43 0.59 0.05
2160 6300 3500 340 70 10 1 340 70 10 11,960 420 3.51% 16,294 18 4 8057 105 0.42 0.34 0.07 0.01
2260 6480 3620 390 350 20 2 195 175 10 12,360 760 6.15% 16,275 157 56 8058 13.5714285714286 0.76 0.39 0.35 0.02
2170 6650 3580 390 280 10 3 130 93.3333333333333 3.33333333333333 12,400 680 5.48% 16,275 4 15 8067 45.3333333333333 0.68 0.39 0.28 0.01
2000 6210 3570 370 230 20 2 185 115 10 11,780 620 5.26% 16,326 60 25 8080 24.8 0.62 0.37 0.23 0.02
2270 6630 3620 360 250 10 2 180 125 5 12,520 620 4.95% 16,307 60 25 8090 24.8 0.62 0.36 0.25 0.01
1930 6140 3400 530 840 30 4 132.5 210 7.5 11,470 1,400 12.21% 16,314 121 90 8090 15.5555555555556 1.4 0.53 0.84 0.03
2160 6390 3620 420 420 20 3 140 140 6.66666666666667 12,170 860 7.07% 16,321 91 77 8109 11.1688311688312 0.86 0.42 0.42 0.02
1890 6090 3610 330 160 10 2 165 80 5 11,590 500 4.31% 16,321 20 18 8109 27.7777777777778 0.5 0.33 0.16 0.01
2180 6360 3600 340 130 0 2 170 65 0 12,140 470 3.87% 16,321 0 4 8109 117.5 0.47 0.34 0.13 0
1970 6040 3640 370 190 0 3 123.333333333333 63.3333333333333 0 11,650 560 4.81% 16,299 0 14 8118 40 0.56 0.37 0.19 0
2160 6290 3410 350 80 0 1 350 80 0 11,860 430 3.63% 16,317 26 10 8122 43 0.43 0.35 0.08 0
2190 6460 3470 510 810 200 1 510 810 200 12,120 1,520 12.54% 16,336 49 38 8123 40 1.52 0.51 0.81 0.2
2180 6300 3520 400 240 40 1 400 240 40 12,000 680 5.67% 16,336 2 2 8123 340 0.68 0.4 0.24 0.04
2170 6490 3550 350 240 20 1 350 240 20 12,210 610 5.00% 16,298 192 241 8130 2.53112033195021 0.61 0.35 0.24 0.02
2230 6680 3540 390 400 0 1 390 400 0 12,450 790 6.35% 16,299 1 6 8130 131.666666666667 0.79 0.39 0.4 0
2210 6480 3620 340 120 0 1 340 120 0 12,310 460 3.74% 16,299 0 2 8130 230 0.46 0.34 0.12 0
1900 6040 3560 350 180 30 1 350 180 30 11,500 560 4.87% 16,362 145 63 8143 8.88888888888889 0.56 0.35 0.18 0.03
2270 6560 3470 430 440 0 3 143.333333333333 146.666666666667 0 12,300 870 7.07% 16,396 44 47 8152 18.5106382978723 0.87 0.43 0.44 0
2180 6510 3620 450 580 110 2 225 290 55 12,310 1,140 9.26% 16,410 228 45 8157 25.3333333333333 1.14 0.45 0.58 0.11
2060 6410 3550 380 380 310 4 95 95 77.5 12,020 1,070 8.90% 16,780 370 175 8329 6.11428571428571 1.07 0.38 0.38 0.31
2020 6430 3670 370 350 60 3 123.333333333333 116.666666666667 20 12,120 780 6.44% 16,951 307 155 8410 5.03225806451613 0.78 0.37 0.35 0.06
2250 6790 3600 410 270 0 3 136.666666666667 90 0 12,640 680 5.38% 16,963 18 33 8419 20.6060606060606 0.68 0.41 0.27 0
2250 6640 3880 410 210 10 2 205 105 5 12,770 630 4.93% 16,968 31 20 8425 31.5 0.63 0.41 0.21 0.01
2030 6380 3650 400 330 40 2 200 165 20 12,060 770 6.38% 16,988 34 18 8435 42.7777777777778 0.77 0.4 0.33 0.04
1970 6520 3740 390 400 0 3 130 133.333333333333 0 12,230 790 6.46% 17,044 1 5 8460 158 0.79 0.39 0.4 0
2030 6390 3700 400 210 0 1 400 210 0 12,120 610 5.03% 17,050 6 8 8460 76.25 0.61 0.4 0.21 0
2290 6690 3610 500 790 30 2 250 395 15 12,590 1,320 10.48% 17,045 135 51 8461 25.8823529411765 1.32 0.5 0.79 0.03
2030 6520 3740 410 680 140 4 102.5 170 35 12,290 1,230 10.01% 17,456 500 226 8632 5.44247787610619 1.23 0.41 0.68 0.14
2070 6570 3760 360 140 10 1 360 140 10 12,400 510 4.11% 17,464 12 8 8632 63.75 0.51 0.36 0.14 0.01
2260 6820 3760 350 90 10 1 350 90 10 12,840 450 3.50% 17,472 12 11 8633 40.9090909090909 0.45 0.35 0.09 0.01
2280 6740 3770 350 140 0 1 350 140 0 12,790 490 3.83% 17,473 1 2 8633 245 0.49 0.35 0.14 0
2040 6540 3750 350 190 10 2 175 95 5 12,330 550 4.46% 17,473 10 13 8633 42.3076923076923 0.55 0.35 0.19 0.01
2020 6590 3740 350 180 0 1 350 180 0 12,350 530 4.29% 17,472 16 13 8634 40.7692307692308 0.53 0.35 0.18 0
2270 6730 3750 380 200 0 1 380 200 0 12,750 580 4.55% 17,479 7 8 8634 72.5 0.58 0.38 0.2 0
2280 6690 3760 350 200 0 1 350 200 0 12,730 550 4.32% 17,473 10 13 8634 42.3076923076923 0.55 0.35 0.2 0
1860 6590 3840 460 320 0 2 230 160 0 12,290 780 6.35% 17,478 5 4 8635 195 0.78 0.46 0.32 0
2280 6780 3740 370 270 0 1 370 270 0 12,800 640 5.00% 17,479 12 17 8635 37.6470588235294 0.64 0.37 0.27 0
2310 6920 3790 350 270 60 2 175 135 30 13,020 680 5.22% 17,729 256 99 8732 6.86868686868687 0.68 0.35 0.27 0.06
2010 6690 3710 320 60 0 1 320 60 0 12,410 380 3.06% 17,737 8 8 8738 47.5 0.38 0.32 0.06 0
2300 6840 3820 600 1430 390 9 66.6666666666667 158.888888888889 43.3333333333333 12,960 2,420 18.67% 17,761 546 370 8765 6.54054054054054 2.42 0.6 1.43 0.39
1880 6710 3810 330 70 10 1 330 70 10 12,400 410 3.31% 17,760 1 4 8765 102.5 0.41 0.33 0.07 0.01
2290 6830 3800 380 380 0 2 190 190 0 12,920 760 5.88% 17,758 2 4 8765 190 0.76 0.38 0.38 0
2290 6860 3820 370 90 0 1 370 90 0 12,970 460 3.55% 17,758 4 4 8765 115 0.46 0.37 0.09 0
2290 6760 3790 390 410 60 2 195 205 30 12,840 860 6.70% 17,672 358 66 8765 13.030303030303 0.86 0.39 0.41 0.06
2300 6800 3740 350 150 0 1 350 150 0 12,840 500 3.89% 17,673 1 1 8766 500 0.5 0.35 0.15 0
2320 6780 3820 460 490 30 4 115 122.5 7.5 12,920 980 7.59% 17,784 115 61 8811 16.0655737704918 0.98 0.46 0.49 0.03
1930 6720 3810 350 130 10 1 350 130 10 12,460 490 3.93% 17,789 11 26 8815 18.8461538461538 0.49 0.35 0.13 0.01
2320 6790 3820 350 200 0 1 350 200 0 12,930 550 4.25% 17,791 2 2 8817 275 0.55 0.35 0.2 0
1890 6650 3810 440 640 90 3 146.666666666667 213.333333333333 30 12,350 1,170 9.47% 17,847 456 80 8819 14.625 1.17 0.44 0.64 0.09
1790 6750 3820 410 310 10 2 205 155 5 12,360 730 5.91% 17,850 3 16 8821 45.625 0.73 0.41 0.31 0.01
2290 6930 3860 360 80 0 5 72 16 0 13,080 440 3.36% 18,031 5 104 8835 4.23076923076923 0.44 0.36 0.08 0
2050 6670 3800 390 230 0 1 390 230 0 12,520 620 4.95% 18,030 1 6 8835 103.333333333333 0.62 0.39 0.23 0
2340 6990 3860 370 140 0 1 370 140 0 13,190 510 3.87% 18,030 2 2 8835 255 0.51 0.37 0.14 0
1860 6780 3830 390 250 0 1 390 250 0 12,470 640 5.13% 18,032 2 5 8838 128 0.64 0.39 0.25 0
2300 6930 3850 370 180 10 1 370 180 10 13,080 560 4.28% 18,030 4 3 8839 186.666666666667 0.56 0.37 0.18 0.01
2310 6840 3740 580 1330 450 1 580 1,330 450 12,890 2,360 18.31% 18,036 624 254 8937 9.29133858267716 2.36 0.58 1.33 0.45
2320 6980 3900 670 1320 310 5 134 264 62 13,200 2,300 17.42% 18,146 154 145 8956 15.8620689655172 2.3 0.67 1.32 0.31
2290 6920 3850 420 180 20 1 420 180 20 13,060 620 4.75% 18,148 10 7 8959 88.5714285714286 0.62 0.42 0.18 0.02
2310 6890 3880 400 180 10 1 400 180 10 13,080 590 4.51% 18,148 8 2 8959 295 0.59 0.4 0.18 0.01
2300 6900 3800 360 150 10 1 360 150 10 13,000 520 4.00% 18,149 27 7 8960 74.2857142857143 0.52 0.36 0.15 0.01
2000 6570 3810 360 140 10 1 360 140 10 12,380 510 4.12% 18,150 1 2 8960 255 0.51 0.36 0.14 0.01
2280 6760 3800 360 200 40 1 360 200 40 12,840 600 4.67% 18,188 150 27 8967 22.2222222222222 0.6 0.36 0.2 0.04
1990 6710 3820 370 150 0 1 370 150 0 12,520 520 4.15% 18,191 3 5 8970 104 0.52 0.37 0.15 0
2280 6860 3830 350 90 10 1 350 90 10 12,970 450 3.47% 18,196 5 1 8971 450 0.45 0.35 0.09 0.01
2280 6870 3910 430 270 0 1 430 270 0 13,060 700 5.36% 18,196 0 15 8984 46.6666666666667 0.7 0.43 0.27 0
2350 6930 3890 410 270 0 2 205 135 0 13,170 680 5.16% 18,204 8 13 8991 52.3076923076923 0.68 0.41 0.27 0

0

1

2

3

4

5

3139 5516 6538 7836 8835

Ti
m

e
(s

)

LOC

Parse Collect Evaluate

(c) Incremental analysis time ordered by total
Lines of Code (LOC).

DELTALOC PARSE [FULL] COLLECT [FULL] EVALUATE [FULL] PARSE [INCR] COLLECT [INCR] EVALUATE [INCR] DELTAFILES PARSE/DELTAFILES
[INCR]

COLLECT/
DELTAFILES [INCR]

EVALUATE/
DELTAFILES [INCR]

TOTAL [FULL] TOTAL [INCR] RATIO INDEX-SIZE INDEX-DIFF cov(TOTAL[INCR],
INDEX-SIZE)

cov(TOTAL[INCR],IND
EX-DIFF)

DELTALOC TOTALLOC TOTAL[INCR]/
DELTALOC

TOTAL [INCR] [S] p c e

0
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
10
10
10
10
10
10
10
10
11
11
11
11
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
15
15
15
15
15
16
16
16
16
16
17
17
17
17
18
18
18
18
19
19
19
19
19
20
20
20
21
22
22
22
23
23
23
23
24
24
24
24
24
25
25
26
26
26
26
26
26
27
27
27
28
28
28
29
29
30
30
31
31
31
32
32
32
33
33
33
33
33
33
33
34
34
34
35
36
36
36
36
37
37
37
37
38
38
39
39
39
39
42
42
44
45
45
45
45
46
46
47
48
48
49
50
51
52
53
53
54
54
55
56
56
56
56
56
58
58
58
58
59
60
61
61
62
63
63
64
66
67
67
68
69
69
70
71
72
72
74
74
75
77
77
78
79
80
80
81
87
89
90
91
93
94
94
96
99
100
101
103
103
103
104
107
109
113
114
115
117
117
125
128
130
131
133
133
134
136
138
139
140
144
145
150
155
161
166
172
172
175
177
183
189
189
193
196
201
206
219
224
225
226
236
237
237
241
245
251
254
270
295
341
341
370
456
567
1102
3110
3139

1980 5680 3330 0 0 0 4 0 0 0 10,990 0 15,757 0 0 7238 0 0 0 0
1640 4290 2500 380 200 0 11 34.5454545454545 18.1818181818182 0 8,430 580 6.88% 13,490 6 1 5999 580 0.58 0.38 0.2 0
1770 4810 2570 330 40 10 9 36.6666666666667 4.44444444444444 1.11111111111111 9,150 380 4.15% 13,612 3 1 6150 380 0.38 0.33 0.04 0.01
1840 4900 2670 320 60 10 4 80 15 2.5 9,410 390 4.14% 14,171 7 1 6538 390 0.39 0.32 0.06 0.01
1850 5730 3340 380 380 0 1 380 380 0 10,920 760 6.96% 15,533 7 1 7149 760 0.76 0.38 0.38 0
1980 5670 3360 400 400 0 6 66.6666666666667 66.6666666666667 0 11,010 800 7.27% 15,578 6 1 7171 800 0.8 0.4 0.4 0
1970 5680 3380 430 510 0 10 43 51 0 11,030 940 8.52% 15,659 3 1 7201 940 0.94 0.43 0.51 0
1990 6040 3550 340 60 0 4 85 15 0 11,580 400 3.45% 16,229 1 1 7967 400 0.4 0.34 0.06 0
2300 6800 3740 350 150 0 3 116.666666666667 50 0 12,840 500 3.89% 17,673 1 1 8766 500 0.5 0.35 0.15 0
2280 6860 3830 350 90 10 2 175 45 5 12,970 450 3.47% 18,196 5 1 8971 450 0.45 0.35 0.09 0.01
1230 3090 1410 370 170 0 1 370 170 0 5,730 540 9.42% 8,645 0 2 3919 270 0.54 0.37 0.17 0
1410 3490 1930 390 320 0 4 97.5 80 0 6,830 710 10.40% 10,964 0 2 4838 355 0.71 0.39 0.32 0
1500 3670 2080 350 90 0 5 70 18 0 7,250 440 6.07% 11,428 3 2 5041 220 0.44 0.35 0.09 0
1470 3970 2020 390 50 0 3 130 16.6666666666667 0 7,460 440 5.90% 11,451 1 2 5041 220 0.44 0.39 0.05 0
1570 4310 2320 380 260 0 4 95 65 0 8,200 640 7.80% 12,384 2 2 5516 320 0.64 0.38 0.26 0
1650 4460 2540 400 310 0 1 400 310 0 8,650 710 8.21% 12,966 0 2 5843 355 0.71 0.4 0.31 0
1680 4440 2510 330 50 0 4 82.5 12.5 0 8,630 380 4.40% 13,492 2 2 5999 190 0.38 0.33 0.05 0
1760 4790 2570 330 110 0 2 165 55 0 9,120 440 4.82% 13,702 4 2 6212 220 0.44 0.33 0.11 0
1740 5150 2630 360 100 10 2 180 50 5 9,520 470 4.94% 13,706 3 2 6217 235 0.47 0.36 0.1 0.01
1800 4680 2650 330 50 0 5 66 10 0 9,130 380 4.16% 14,172 0 2 6504 190 0.38 0.33 0.05 0
1840 5200 2870 360 140 10 3 120 46.6666666666667 3.33333333333333 9,910 510 5.15% 14,496 4 2 6676 255 0.51 0.36 0.14 0.01
1890 5050 2950 340 80 10 2 170 40 5 9,890 430 4.35% 14,686 4 2 6766 215 0.43 0.34 0.08 0.01
1850 5390 2990 460 400 50 3 153.333333333333 133.333333333333 16.6666666666667 10,230 910 8.90% 14,686 4 2 6766 455 0.91 0.46 0.4 0.05
1950 5670 3160 360 80 10 9 40 8.88888888888889 1.11111111111111 10,780 450 4.17% 15,083 3 2 6948 225 0.45 0.36 0.08 0.01
1900 5630 3150 390 160 0 4 97.5 40 0 10,680 550 5.15% 15,088 5 2 6948 275 0.55 0.39 0.16 0
1920 5690 3370 380 360 0 3 126.666666666667 120 0 10,980 740 6.74% 15,526 5 2 7148 370 0.74 0.38 0.36 0
1870 5600 3370 460 520 0 6 76.6666666666667 86.6666666666667 0 10,840 980 9.04% 15,770 4 2 7241 490 0.98 0.46 0.52 0
2190 6420 3540 350 160 0 3 116.666666666667 53.3333333333333 0 12,150 510 4.20% 15,969 4 2 7760 255 0.51 0.35 0.16 0
2040 6330 3430 340 50 0 3 113.333333333333 16.6666666666667 0 11,800 390 3.31% 16,149 2 2 7822 195 0.39 0.34 0.05 0
2160 6390 3510 370 200 0 3 123.333333333333 66.6666666666667 0 12,060 570 4.73% 16,061 0 2 7836 285 0.57 0.37 0.2 0
2130 6380 3530 400 390 0 6 66.6666666666667 65 0 12,040 790 6.56% 16,055 6 2 7836 395 0.79 0.4 0.39 0
2180 6300 3520 400 240 40 3 133.333333333333 80 13.3333333333333 12,000 680 5.67% 16,336 2 2 8123 340 0.68 0.4 0.24 0.04
2210 6480 3620 340 120 0 2 170 60 0 12,310 460 3.74% 16,299 0 2 8130 230 0.46 0.34 0.12 0
2280 6740 3770 350 140 0 2 175 70 0 12,790 490 3.83% 17,473 1 2 8633 245 0.49 0.35 0.14 0
2320 6790 3820 350 200 0 3 116.666666666667 66.6666666666667 0 12,930 550 4.25% 17,791 2 2 8817 275 0.55 0.35 0.2 0
2340 6990 3860 370 140 0 1 370 140 0 13,190 510 3.87% 18,030 2 2 8835 255 0.51 0.37 0.14 0
2310 6890 3880 400 180 10 2 200 90 5 13,080 590 4.51% 18,148 8 2 8959 295 0.59 0.4 0.18 0.01
2000 6570 3810 360 140 10 4 90 35 2.5 12,380 510 4.12% 18,150 1 2 8960 255 0.51 0.36 0.14 0.01
1660 4600 2510 340 100 0 6 56.6666666666667 16.6666666666667 0 8,770 440 5.02% 13,530 0 3 6014 146.666666666667 0.44 0.34 0.1 0
1830 4880 2650 360 70 0 7 51.4285714285714 10 0 9,360 430 4.59% 14,186 1 3 6539 143.333333333333 0.43 0.36 0.07 0
1920 5670 3400 350 50 0 5 70 10 0 10,990 400 3.64% 15,756 3 3 7237 133.333333333333 0.4 0.35 0.05 0
2300 6930 3850 370 180 10 5 74 36 2 13,080 560 4.28% 18,030 4 3 8839 186.666666666667 0.56 0.37 0.18 0.01
1100 2570 1170 340 30 0 7 48.5714285714286 4.28571428571429 0 4,840 370 7.64% 7,819 0 4 3554 92.5 0.37 0.34 0.03 0
1670 4250 2250 470 640 0 2 235 320 0 8,170 1,110 13.59% 12,122 2 4 5378 277.5 1.11 0.47 0.64 0
1690 4690 2440 350 100 0 4 87.5 25 0 8,820 450 5.10% 13,298 2 4 5938 112.5 0.45 0.35 0.1 0
1750 4770 2560 360 200 0 10 36 20 0 9,080 560 6.17% 13,625 0 4 6149 140 0.56 0.36 0.2 0
1730 4840 2510 330 70 10 5 66 14 2 9,080 410 4.52% 13,689 8 4 6207 102.5 0.41 0.33 0.07 0.01
1770 4350 2550 360 200 10 3 120 66.6666666666667 3.33333333333333 8,670 570 6.57% 13,917 10 4 6342 142.5 0.57 0.36 0.2 0.01
1850 5000 2690 340 60 0 9 37.7777777777778 6.66666666666667 0 9,540 400 4.19% 14,171 0 4 6538 100 0.4 0.34 0.06 0
1930 5620 3220 340 50 10 1 340 50 10 10,770 400 3.71% 15,572 24 4 7167 100 0.4 0.34 0.05 0.01
1970 6090 3410 410 470 0 3 136.666666666667 156.666666666667 0 11,470 880 7.67% 15,746 10 4 7237 220 0.88 0.41 0.47 0
1930 5880 3380 430 630 60 1 430 630 60 11,190 1,120 10.01% 15,766 224 4 7241 280 1.12 0.43 0.63 0.06
2110 6180 3430 340 50 0 5 68 10 0 11,720 390 3.33% 15,786 2 4 7620 97.5 0.39 0.34 0.05 0
2020 6070 3360 330 50 0 3 110 16.6666666666667 0 11,450 380 3.32% 16,092 4 4 7850 95 0.38 0.33 0.05 0
2160 6300 3500 340 70 10 10 34 7 1 11,960 420 3.51% 16,294 18 4 8057 105 0.42 0.34 0.07 0.01
2180 6360 3600 340 130 0 6 56.6666666666667 21.6666666666667 0 12,140 470 3.87% 16,321 0 4 8109 117.5 0.47 0.34 0.13 0
1860 6590 3840 460 320 0 2 230 160 0 12,290 780 6.35% 17,478 5 4 8635 195 0.78 0.46 0.32 0
1880 6710 3810 330 70 10 11 30 6.36363636363636 0.909090909090909 12,400 410 3.31% 17,760 1 4 8765 102.5 0.41 0.33 0.07 0.01
2290 6830 3800 380 380 0 6 63.3333333333333 63.3333333333333 0 12,920 760 5.88% 17,758 2 4 8765 190 0.76 0.38 0.38 0
2290 6860 3820 370 90 0 2 185 45 0 12,970 460 3.55% 17,758 4 4 8765 115 0.46 0.37 0.09 0
2140 6340 3540 320 60 10 6 53.3333333333333 10 1.66666666666667 12,020 390 3.24% 16,096 5 5 7850 78 0.39 0.32 0.06 0.01
2400 6630 3630 400 270 10 1 400 270 10 12,660 680 5.37% 16,203 11 5 7960 136 0.68 0.4 0.27 0.01
1970 6520 3740 390 400 0 5 78 80 0 12,230 790 6.46% 17,044 1 5 8460 158 0.79 0.39 0.4 0
1860 6780 3830 390 250 0 3 130 83.3333333333333 0 12,470 640 5.13% 18,032 2 5 8838 128 0.64 0.39 0.25 0
1990 6710 3820 370 150 0 1 370 150 0 12,520 520 4.15% 18,191 3 5 8970 104 0.52 0.37 0.15 0
1350 3620 1740 410 350 10 2 205 175 5 6,710 770 11.48% 10,485 4 6 4615 128.333333333333 0.77 0.41 0.35 0.01
1410 3700 1840 390 300 0 3 130 100 0 6,950 690 9.93% 10,736 1 6 4746 115 0.69 0.39 0.3 0
1430 3670 2000 440 490 0 3 146.666666666667 163.333333333333 0 7,100 930 13.10% 11,401 0 6 5032 155 0.93 0.44 0.49 0
1610 4140 2330 480 440 0 2 240 220 0 8,080 920 11.39% 12,764 9 6 5712 153.333333333333 0.92 0.48 0.44 0
1680 4590 2600 350 50 0 1 350 50 0 8,870 400 4.51% 13,484 2 6 5998 66.6666666666667 0.4 0.35 0.05 0
1720 4770 2590 420 110 0 1 420 110 0 9,080 530 5.84% 13,622 0 6 6143 88.3333333333333 0.53 0.42 0.11 0
1970 6040 3420 350 60 0 1 350 60 0 11,430 410 3.59% 16,111 1 6 7803 68.3333333333333 0.41 0.35 0.06 0
2170 6220 3440 340 80 0 2 170 40 0 11,830 420 3.55% 16,123 1 6 7920 70 0.42 0.34 0.08 0
2230 6680 3540 390 400 0 1 390 400 0 12,450 790 6.35% 16,299 1 6 8130 131.666666666667 0.79 0.39 0.4 0
2050 6670 3800 390 230 0 2 195 115 0 12,520 620 4.95% 18,030 1 6 8835 103.333333333333 0.62 0.39 0.23 0
1850 5190 2870 380 280 10 9 42.2222222222222 31.1111111111111 1.11111111111111 9,910 670 6.76% 14,496 13 7 6676 95.7142857142857 0.67 0.38 0.28 0.01
1950 5740 3240 390 470 60 7 55.7142857142857 67.1428571428571 8.57142857142857 10,930 920 8.42% 15,429 152 7 7116 131.428571428571 0.92 0.39 0.47 0.06
2150 6330 3470 330 90 0 5 66 18 0 11,950 420 3.51% 16,228 3 7 7966 60 0.42 0.33 0.09 0
2290 6920 3850 420 180 20 5 84 36 4 13,060 620 4.75% 18,148 10 7 8959 88.5714285714286 0.62 0.42 0.18 0.02
2300 6900 3800 360 150 10 2 180 75 5 13,000 520 4.00% 18,149 27 7 8960 74.2857142857143 0.52 0.36 0.15 0.01
1200 3030 1410 390 250 0 9 43.3333333333333 27.7777777777778 0 5,640 640 11.35% 8,641 4 8 3919 80 0.64 0.39 0.25 0
1480 3860 1990 520 840 0 7 74.2857142857143 120 0 7,330 1,360 18.55% 11,450 4 8 5041 170 1.36 0.52 0.84 0
1870 5020 2530 410 290 10 2 205 145 5 9,420 710 7.54% 13,519 2 8 6058 88.75 0.71 0.41 0.29 0.01
1790 4850 2660 360 110 0 1 360 110 0 9,300 470 5.05% 13,712 6 8 6248 58.75 0.47 0.36 0.11 0
1890 5410 2960 360 300 0 3 120 100 0 10,260 660 6.43% 14,876 4 8 6874 82.5 0.66 0.36 0.3 0
1970 6070 3420 330 60 0 15 22 4 0 11,460 390 3.40% 15,757 9 8 7238 48.75 0.39 0.33 0.06 0
1990 6050 3370 360 180 0 3 120 60 0 11,410 540 4.73% 16,075 4 8 7845 67.5 0.54 0.36 0.18 0
2030 6390 3700 400 210 0 8 50 26.25 0 12,120 610 5.03% 17,050 6 8 8460 76.25 0.61 0.4 0.21 0
2070 6570 3760 360 140 10 2 180 70 5 12,400 510 4.11% 17,464 12 8 8632 63.75 0.51 0.36 0.14 0.01
2270 6730 3750 380 200 0 5 76 40 0 12,750 580 4.55% 17,479 7 8 8634 72.5 0.58 0.38 0.2 0
2010 6690 3710 320 60 0 2 160 30 0 12,410 380 3.06% 17,737 8 8 8738 47.5 0.38 0.32 0.06 0
1740 4080 2030 390 270 10 2 195 135 5 7,850 670 8.54% 11,328 1 9 4997 74.4444444444444 0.67 0.39 0.27 0.01
1490 3790 2060 350 100 10 5 70 20 2 7,340 460 6.27% 11,493 8 9 5083 51.1111111111111 0.46 0.35 0.1 0.01
1690 4700 2420 440 490 10 1 440 490 10 8,810 940 10.67% 13,530 26 9 6017 104.444444444444 0.94 0.44 0.49 0.01
1790 4800 2540 350 220 10 4 87.5 55 2.5 9,130 580 6.35% 13,907 48 9 6338 64.4444444444444 0.58 0.35 0.22 0.01
2120 7000 3690 350 110 0 5 70 22 0 12,810 460 3.59% 16,233 2 9 8003 51.1111111111111 0.46 0.35 0.11 0
1200 3010 1410 350 100 0 14 25 7.14285714285714 0 5,620 450 8.01% 8,481 2 10 3849 45 0.45 0.35 0.1 0
1240 3160 1440 420 370 20 12 35 30.8333333333333 1.66666666666667 5,840 810 13.87% 8,709 15 10 3946 81 0.81 0.42 0.37 0.02
1460 3970 2040 370 180 0 4 92.5 45 0 7,470 550 7.36% 11,483 7 10 5074 55 0.55 0.37 0.18 0
1690 4510 2570 350 110 0 1 350 110 0 8,770 460 5.25% 13,565 8 10 6042 46 0.46 0.35 0.11 0
1780 4750 2560 420 440 0 1 420 440 0 9,090 860 9.46% 13,609 34 10 6149 86 0.86 0.42 0.44 0
1760 4710 2570 360 200 10 7 51.4285714285714 28.5714285714286 1.42857142857143 9,040 570 6.31% 13,712 75 10 6249 57 0.57 0.36 0.2 0.01
1990 5470 3070 460 680 0 11 41.8181818181818 61.8181818181818 0 10,530 1,140 10.83% 15,096 8 10 6948 114 1.14 0.46 0.68 0
2160 6290 3410 350 80 0 4 87.5 20 0 11,860 430 3.63% 16,317 26 10 8122 43 0.43 0.35 0.08 0
1750 4720 2540 390 270 20 1 390 270 20 9,010 680 7.55% 13,727 10 11 6258 61.8181818181818 0.68 0.39 0.27 0.02
1850 4620 2670 420 430 40 3 140 143.333333333333 13.3333333333333 9,140 890 9.74% 14,172 11 11 6539 80.9090909090909 0.89 0.42 0.43 0.04
1830 5180 2820 610 1220 20 4 152.5 305 5 9,830 1,850 18.82% 14,329 21 11 6609 168.181818181818 1.85 0.61 1.22 0.02
2260 6820 3760 350 90 10 3 116.666666666667 30 3.33333333333333 12,840 450 3.50% 17,472 12 11 8633 40.9090909090909 0.45 0.35 0.09 0.01
1190 2940 1400 390 260 0 3 130 86.6666666666667 0 5,530 650 11.75% 8,678 9 12 3931 54.1666666666667 0.65 0.39 0.26 0
1920 4420 2480 350 200 10 1 350 200 10 8,820 560 6.35% 13,717 24 12 6245 46.6666666666667 0.56 0.35 0.2 0.01
1950 5750 3160 400 390 0 1 400 390 0 10,860 790 7.27% 15,350 14 12 7071 65.8333333333333 0.79 0.4 0.39 0
2340 6660 3510 340 70 0 1 340 70 0 12,510 410 3.28% 16,075 8 12 7845 34.1666666666667 0.41 0.34 0.07 0
1980 6270 3740 380 380 0 2 190 190 0 11,990 760 6.34% 16,227 0 12 8018 63.3333333333333 0.76 0.38 0.38 0
1250 3220 1500 360 220 20 3 120 73.3333333333333 6.66666666666667 5,970 600 10.05% 9,339 75 13 4161 46.1538461538462 0.6 0.36 0.22 0.02
1670 4360 2530 410 410 30 1 410 410 30 8,560 850 9.93% 13,512 50 13 6010 65.3846153846154 0.85 0.41 0.41 0.03
1770 4510 2510 380 230 0 5 76 46 0 8,790 610 6.94% 13,891 19 13 6337 46.9230769230769 0.61 0.38 0.23 0
2100 6400 3660 350 110 0 3 116.666666666667 36.6666666666667 0 12,160 460 3.78% 16,071 16 13 7845 35.3846153846154 0.46 0.35 0.11 0
2000 6130 3420 340 40 0 2 170 20 0 11,550 380 3.29% 16,091 13 13 7849 29.2307692307692 0.38 0.34 0.04 0
2120 6370 3950 380 410 20 2 190 205 10 12,440 810 6.51% 16,157 34 13 7929 62.3076923076923 0.81 0.38 0.41 0.02
2040 6540 3750 350 190 10 2 175 95 5 12,330 550 4.46% 17,473 10 13 8633 42.3076923076923 0.55 0.35 0.19 0.01
2020 6590 3740 350 180 0 1 350 180 0 12,350 530 4.29% 17,472 16 13 8634 40.7692307692308 0.53 0.35 0.18 0
2280 6690 3760 350 200 0 7 50 28.5714285714286 0 12,730 550 4.32% 17,473 10 13 8634 42.3076923076923 0.55 0.35 0.2 0
2350 6930 3890 410 270 0 5 82 54 0 13,170 680 5.16% 18,204 8 13 8991 52.3076923076923 0.68 0.41 0.27 0
1400 3760 1880 360 80 10 1 360 80 10 7,040 450 6.39% 10,841 6 14 4791 32.1428571428571 0.45 0.36 0.08 0.01
1650 4320 2330 460 570 0 2 230 285 0 8,300 1,030 12.41% 12,966 16 14 5843 73.5714285714286 1.03 0.46 0.57 0
1740 4700 2560 360 200 10 2 180 100 5 9,000 570 6.33% 13,896 59 14 6346 40.7142857142857 0.57 0.36 0.2 0.01
1840 4440 2520 350 70 180 3 116.666666666667 23.3333333333333 60 8,800 600 6.82% 14,027 6 14 6466 42.8571428571429 0.6 0.35 0.07 0.18
2000 5790 3250 410 520 60 2 205 260 30 11,040 990 8.97% 15,566 143 14 7163 70.7142857142857 0.99 0.41 0.52 0.06
1970 6040 3640 370 190 0 1 370 190 0 11,650 560 4.81% 16,299 0 14 8118 40 0.56 0.37 0.19 0
1310 3290 1570 390 110 10 1 390 110 10 6,170 510 8.27% 9,796 112 15 4377 34 0.51 0.39 0.11 0.01
1610 4290 2330 380 250 10 1 380 250 10 8,230 640 7.78% 12,832 15 15 5720 42.6666666666667 0.64 0.38 0.25 0.01
1730 4760 2670 400 380 40 2 200 190 20 9,160 820 8.95% 13,708 244 15 6197 54.6666666666667 0.82 0.4 0.38 0.04
2170 6650 3580 390 280 10 3 130 93.3333333333333 3.33333333333333 12,400 680 5.48% 16,275 4 15 8067 45.3333333333333 0.68 0.39 0.28 0.01
2280 6870 3910 430 270 0 4 107.5 67.5 0 13,060 700 5.36% 18,196 0 15 8984 46.6666666666667 0.7 0.43 0.27 0
1440 3940 2030 340 40 0 4 85 10 0 7,410 380 5.13% 11,485 2 16 5078 23.75 0.38 0.34 0.04 0
1760 4540 2550 340 110 0 1 340 110 0 8,850 450 5.08% 13,627 17 16 6156 28.125 0.45 0.34 0.11 0
1810 4520 2600 440 330 0 10 44 33 0 8,930 770 8.62% 13,729 4 16 6242 48.125 0.77 0.44 0.33 0
2090 6250 3470 380 190 0 3 126.666666666667 63.3333333333333 0 11,810 570 4.83% 15,969 8 16 7760 35.625 0.57 0.38 0.19 0
1790 6750 3820 410 310 10 1 410 310 10 12,360 730 5.91% 17,850 3 16 8821 45.625 0.73 0.41 0.31 0.01
1940 4910 2580 400 290 0 4 100 72.5 0 9,430 690 7.32% 13,718 5 17 6252 40.5882352941176 0.69 0.4 0.29 0
1770 4500 2510 350 70 170 1 350 70 170 8,780 590 6.72% 14,033 6 17 6483 34.7058823529412 0.59 0.35 0.07 0.17
1970 6180 3480 380 220 0 5 76 44 0 11,630 600 5.16% 16,122 8 17 7920 35.2941176470588 0.6 0.38 0.22 0
2280 6780 3740 370 270 0 2 185 135 0 12,800 640 5.00% 17,479 12 17 8635 37.6470588235294 0.64 0.37 0.27 0
1350 3130 1570 410 340 0 1 410 340 0 6,050 750 12.40% 9,750 4 18 4347 41.6666666666667 0.75 0.41 0.34 0
1860 4710 2580 350 180 10 1 350 180 10 9,150 540 5.90% 13,725 76 18 6230 30 0.54 0.35 0.18 0.01
1890 6090 3610 330 160 10 2 165 80 5 11,590 500 4.31% 16,321 20 18 8109 27.7777777777778 0.5 0.33 0.16 0.01
2030 6380 3650 400 330 40 1 400 330 40 12,060 770 6.38% 16,988 34 18 8435 42.7777777777778 0.77 0.4 0.33 0.04
1190 3050 1420 430 340 0 3 143.333333333333 113.333333333333 0 5,660 770 13.60% 8,702 24 19 3944 40.5263157894737 0.77 0.43 0.34 0
1460 3730 2040 440 410 10 3 146.666666666667 136.666666666667 3.33333333333333 7,230 860 11.89% 11,453 10 19 5049 45.2631578947368 0.86 0.44 0.41 0.01
1710 4800 2460 420 480 0 1 420 480 0 8,970 900 10.03% 13,481 33 19 5997 47.3684210526316 0.9 0.42 0.48 0
1750 4730 2570 420 470 40 1 420 470 40 9,050 930 10.28% 13,702 167 19 6212 48.9473684210526 0.93 0.42 0.47 0.04
1940 6130 3400 340 70 0 3 113.333333333333 23.3333333333333 0 11,470 410 3.57% 15,766 10 19 7244 21.5789473684211 0.41 0.34 0.07 0
1380 3430 1910 450 470 10 4 112.5 117.5 2.5 6,720 930 13.84% 10,978 34 20 4843 46.5 0.93 0.45 0.47 0.01
1910 5630 3400 500 970 60 4 125 242.5 15 10,940 1,530 13.99% 15,752 196 20 7237 76.5 1.53 0.5 0.97 0.06
2250 6640 3880 410 210 10 2 205 105 5 12,770 630 4.93% 16,968 31 20 8425 31.5 0.63 0.41 0.21 0.01
1310 3510 1680 350 30 0 1 350 30 0 6,500 380 5.85% 9,866 4 21 4378 18.0952380952381 0.38 0.35 0.03 0
1260 3170 1460 400 250 160 1 400 250 160 5,890 810 13.75% 9,068 106 22 4064 36.8181818181818 0.81 0.4 0.25 0.16
1350 3440 1740 510 670 30 1 510 670 30 6,530 1,210 18.53% 10,491 12 22 4615 55 1.21 0.51 0.67 0.03
1930 5380 3110 370 410 70 5 74 82 14 10,420 850 8.16% 15,274 192 22 7030 38.6363636363636 0.85 0.37 0.41 0.07
1640 4240 2370 400 320 10 11 36.3636363636364 29.0909090909091 0.909090909090909 8,250 730 8.85% 12,973 7 23 5842 31.7391304347826 0.73 0.4 0.32 0.01
1760 4860 2540 370 130 180 1 370 130 180 9,160 680 7.42% 13,681 37 23 6205 29.5652173913043 0.68 0.37 0.13 0.18
2130 6450 3550 350 100 0 1 350 100 0 12,130 450 3.71% 16,211 11 23 7954 19.5652173913043 0.45 0.35 0.1 0
2220 6320 3520 330 50 0 6 55 8.33333333333333 0 12,060 380 3.15% 16,208 21 23 7971 16.5217391304348 0.38 0.33 0.05 0
1660 4520 2440 380 300 0 1 380 300 0 8,620 680 7.89% 13,298 32 24 5938 28.3333333333333 0.68 0.38 0.3 0
1760 4740 2570 370 270 50 4 92.5 67.5 12.5 9,070 690 7.61% 13,729 181 24 6259 28.75 0.69 0.37 0.27 0.05
1880 5010 2840 340 50 0 1 340 50 0 9,730 390 4.01% 14,468 3 24 6885 16.25 0.39 0.34 0.05 0
1900 5310 3090 410 570 110 3 136.666666666667 190 36.6666666666667 10,300 1,090 10.58% 15,126 250 24 6964 45.4166666666667 1.09 0.41 0.57 0.11
1920 5630 3280 410 450 30 1 410 450 30 10,830 890 8.22% 15,513 63 24 7141 37.0833333333333 0.89 0.41 0.45 0.03
2000 6210 3570 370 230 20 1 370 230 20 11,780 620 5.26% 16,326 60 25 8080 24.8 0.62 0.37 0.23 0.02
2270 6630 3620 360 250 10 1 360 250 10 12,520 620 4.95% 16,307 60 25 8090 24.8 0.62 0.36 0.25 0.01
1540 3940 2280 450 670 30 8 56.25 83.75 3.75 7,760 1,150 14.82% 12,122 135 26 5378 44.2307692307692 1.15 0.45 0.67 0.03
1560 4310 2230 410 430 10 5 82 86 2 8,100 850 10.49% 12,382 96 26 5514 32.6923076923077 0.85 0.41 0.43 0.01
1920 5400 3130 360 510 100 8 45 63.75 12.5 10,450 970 9.28% 15,270 199 26 7024 37.3076923076923 0.97 0.36 0.51 0.1
1990 6240 3520 360 170 0 8 45 21.25 0 11,750 530 4.51% 16,049 6 26 7792 20.3846153846154 0.53 0.36 0.17 0
2000 6160 3340 360 130 10 5 72 26 2 11,500 500 4.35% 16,096 6 26 7872 19.2307692307692 0.5 0.36 0.13 0.01
1930 6720 3810 350 130 10 4 87.5 32.5 2.5 12,460 490 3.93% 17,789 11 26 8815 18.8461538461538 0.49 0.35 0.13 0.01
1740 4580 2540 430 560 240 1 430 560 240 8,860 1,230 13.88% 13,369 253 27 5965 45.5555555555556 1.23 0.43 0.56 0.24
1760 4820 2570 370 270 40 1 370 270 40 9,150 680 7.43% 13,715 200 27 6245 25.1851851851852 0.68 0.37 0.27 0.04
2280 6760 3800 360 200 40 3 120 66.6666666666667 13.3333333333333 12,840 600 4.67% 18,188 150 27 8967 22.2222222222222 0.6 0.36 0.2 0.04
1210 3190 1470 400 280 20 6 66.6666666666667 46.6666666666667 3.33333333333333 5,870 700 11.93% 8,479 53 28 3843 25 0.7 0.4 0.28 0.02
1250 3010 1330 390 260 20 1 390 260 20 5,590 670 11.99% 8,669 64 28 3927 23.9285714285714 0.67 0.39 0.26 0.02
2000 6220 3610 370 210 10 1 370 210 10 11,830 590 4.99% 16,255 76 28 8013 21.0714285714286 0.59 0.37 0.21 0.01
1520 3720 1940 570 1090 20 7 81.4285714285714 155.714285714286 2.85714285714286 7,180 1,680 23.40% 11,329 24 29 4994 57.9310344827586 1.68 0.57 1.09 0.02
1500 3950 2030 420 280 0 2 210 140 0 7,480 700 9.36% 11,501 29 29 5110 24.1379310344828 0.7 0.42 0.28 0
1220 3070 1460 450 540 30 5 90 108 6 5,750 1,020 17.74% 9,046 97 30 4046 34 1.02 0.45 0.54 0.03
1680 4370 2490 520 690 30 1 520 690 30 8,540 1,240 14.52% 13,529 63 30 6022 41.3333333333333 1.24 0.52 0.69 0.03
1730 4320 2610 410 460 60 1 410 460 60 8,660 930 10.74% 13,567 72 31 6042 30 0.93 0.41 0.46 0.06
2040 6340 3490 440 440 0 3 146.666666666667 146.666666666667 0 11,870 880 7.41% 15,803 14 31 7631 28.3870967741935 0.88 0.44 0.44 0
2110 6230 3480 370 110 10 2 185 55 5 11,820 490 4.15% 16,088 35 31 7848 15.8064516129032 0.49 0.37 0.11 0.01
1760 4710 2550 390 260 20 1 390 260 20 9,020 670 7.43% 13,639 72 32 6157 20.9375 0.67 0.39 0.26 0.02
1960 5950 3540 360 230 40 2 180 115 20 11,450 630 5.50% 15,708 65 32 7221 19.6875 0.63 0.36 0.23 0.04
2570 7180 3560 370 240 20 1 370 240 20 13,310 630 4.73% 16,192 55 32 7955 19.6875 0.63 0.37 0.24 0.02
1330 3390 1610 370 250 10 2 185 125 5 6,330 630 9.95% 9,750 36 33 4343 19.0909090909091 0.63 0.37 0.25 0.01
1470 3990 2030 410 350 0 2 205 175 0 7,490 760 10.15% 11,492 5 33 5088 23.030303030303 0.76 0.41 0.35 0
1450 3950 2000 360 190 20 3 120 63.3333333333333 6.66666666666667 7,400 570 7.70% 11,492 72 33 5089 17.2727272727273 0.57 0.36 0.19 0.02
1680 4660 2560 360 310 40 1 360 310 40 8,900 710 7.98% 13,448 139 33 5984 21.5151515151515 0.71 0.36 0.31 0.04
1880 4560 2670 470 650 120 1 470 650 120 9,110 1,240 13.61% 14,171 67 33 6538 37.5757575757576 1.24 0.47 0.65 0.12
2150 6280 3530 360 230 30 1 360 230 30 11,960 620 5.18% 16,225 124 33 7961 18.7878787878788 0.62 0.36 0.23 0.03
2250 6790 3600 410 270 0 2 205 135 0 12,640 680 5.38% 16,963 18 33 8419 20.6060606060606 0.68 0.41 0.27 0
1850 5230 2860 390 190 190 1 390 190 190 9,940 770 7.75% 14,537 63 34 6703 22.6470588235294 0.77 0.39 0.19 0.19
1900 4990 2830 370 130 10 1 370 130 10 9,720 510 5.25% 14,452 94 34 6885 15 0.51 0.37 0.13 0.01
1930 5660 3160 370 200 20 1 370 200 20 10,750 590 5.49% 15,211 85 34 6998 17.3529411764706 0.59 0.37 0.2 0.02
1350 2970 1380 400 290 20 1 400 290 20 5,700 710 12.46% 8,515 120 35 3864 20.2857142857143 0.71 0.4 0.29 0.02
1460 3930 2080 550 970 0 2 275 485 0 7,470 1,520 20.35% 11,446 18 36 5041 42.2222222222222 1.52 0.55 0.97 0
1750 4830 2620 560 1130 130 1 560 1,130 130 9,200 1,820 19.78% 13,707 507 36 6216 50.5555555555556 1.82 0.56 1.13 0.13
1800 4930 2570 350 90 0 2 175 45 0 9,300 440 4.73% 14,172 1 36 6504 12.2222222222222 0.44 0.35 0.09 0
2130 6400 3460 450 400 0 1 450 400 0 11,990 850 7.09% 15,791 6 36 7642 23.6111111111111 0.85 0.45 0.4 0
1300 3180 1360 430 390 20 3 143.333333333333 130 6.66666666666667 5,840 840 14.38% 8,564 139 37 3877 22.7027027027027 0.84 0.43 0.39 0.02
1320 3340 1510 410 380 190 1 410 380 190 6,170 980 15.88% 9,407 74 37 4190 26.4864864864865 0.98 0.41 0.38 0.19
1460 3740 2130 570 1120 20 1 570 1,120 20 7,330 1,710 23.33% 11,431 50 37 5041 46.2162162162162 1.71 0.57 1.12 0.02
1560 4460 2360 510 710 0 2 255 355 0 8,380 1,220 14.56% 12,732 3 37 5658 32.972972972973 1.22 0.51 0.71 0
1830 4730 2520 550 790 0 1 550 790 0 9,080 1,340 14.76% 13,902 11 38 6342 35.2631578947368 1.34 0.55 0.79 0
2190 6460 3470 510 810 200 1 510 810 200 12,120 1,520 12.54% 16,336 49 38 8123 40 1.52 0.51 0.81 0.2
1560 4390 2410 370 100 10 1 370 100 10 8,360 480 5.74% 12,729 34 39 5655 12.3076923076923 0.48 0.37 0.1 0.01
1660 4840 2360 500 790 60 1 500 790 60 8,860 1,350 15.24% 12,827 187 39 5715 34.6153846153846 1.35 0.5 0.79 0.06
1940 5640 3390 440 540 0 0 10,970 980 8.93% 15,572 0 39 7170 25.1282051282051 0.98 0.44 0.54 0
1980 6180 3520 380 180 0 1 380 180 0 11,680 560 4.79% 16,227 15 39 8018 14.3589743589744 0.56 0.38 0.18 0
1350 3440 1650 420 380 20 2 210 190 10 6,440 820 12.73% 9,870 50 42 4379 19.5238095238095 0.82 0.42 0.38 0.02
1750 4880 2670 380 390 50 2 190 195 25 9,300 820 8.82% 13,846 260 42 6268 19.5238095238095 0.82 0.38 0.39 0.05
1480 3990 2020 430 430 10 31 13.8709677419355 13.8709677419355 0.32258064516129 7,490 870 11.62% 11,484 67 44 5066 19.7727272727273 0.87 0.43 0.43 0.01
1350 3510 1710 490 740 230 6 81.6666666666667 123.333333333333 38.3333333333333 6,570 1,460 22.22% 10,385 163 45 4574 32.4444444444444 1.46 0.49 0.74 0.23
1980 5980 3290 390 410 10 1 390 410 10 11,250 810 7.20% 15,450 21 45 7119 18 0.81 0.39 0.41 0.01
1910 5710 3440 390 240 30 2 195 120 15 11,060 660 5.97% 15,822 110 45 7272 14.6666666666667 0.66 0.39 0.24 0.03
2180 6510 3620 450 580 110 2 225 290 55 12,310 1,140 9.26% 16,410 228 45 8157 25.3333333333333 1.14 0.45 0.58 0.11
1220 3020 1440 390 280 40 1 390 280 40 5,680 710 12.50% 8,595 127 46 3884 15.4347826086957 0.71 0.39 0.28 0.04
1730 4760 2630 430 450 70 1 430 450 70 9,120 950 10.42% 13,519 328 46 6062 20.6521739130435 0.95 0.43 0.45 0.07
2270 6560 3470 430 440 0 1 430 440 0 12,300 870 7.07% 16,396 44 47 8152 18.5106382978723 0.87 0.43 0.44 0
1820 4590 2580 340 130 20 8 42.5 16.25 2.5 8,990 490 5.45% 13,680 107 48 6182 10.2083333333333 0.49 0.34 0.13 0.02
1950 6100 3290 480 750 0 3 160 250 0 11,340 1,230 10.85% 15,656 9 48 7200 25.625 1.23 0.48 0.75 0
1230 2920 1330 420 380 10 6 70 63.3333333333333 1.66666666666667 5,480 810 14.78% 8,645 50 49 3919 16.530612244898 0.81 0.42 0.38 0.01
1980 6050 3520 430 590 50 2 215 295 25 11,550 1,070 9.26% 16,284 286 50 8055 21.4 1.07 0.43 0.59 0.05
2290 6690 3610 500 790 30 1 500 790 30 12,590 1,320 10.48% 17,045 135 51 8461 25.8823529411765 1.32 0.5 0.79 0.03
1910 5440 3260 400 330 220 1 400 330 220 10,610 950 8.95% 15,419 73 52 7115 18.2692307692308 0.95 0.4 0.33 0.22
1420 3730 1860 430 590 70 3 143.333333333333 196.666666666667 23.3333333333333 7,010 1,090 15.55% 10,964 175 53 4838 20.5660377358491 1.09 0.43 0.59 0.07
1790 4420 2550 420 500 0 1 420 500 0 8,760 920 10.50% 13,705 141 53 6217 17.3584905660377 0.92 0.42 0.5 0
1540 3850 2030 400 310 170 2 200 155 85 7,420 880 11.86% 11,483 24 54 5120 16.2962962962963 0.88 0.4 0.31 0.17
2110 6500 3510 400 460 10 2 200 230 5 12,120 870 7.18% 16,049 59 54 7804 16.1111111111111 0.87 0.4 0.46 0.01
1770 4480 2530 380 460 70 8 47.5 57.5 8.75 8,780 910 10.36% 13,717 423 55 6245 16.5454545454545 0.91 0.38 0.46 0.07
1150 2880 1270 400 400 70 1 400 400 70 5,300 870 16.42% 8,349 148 56 3799 15.5357142857143 0.87 0.4 0.4 0.07
1160 3050 1320 370 280 40 1 370 280 40 5,530 690 12.48% 8,426 153 56 3823 12.3214285714286 0.69 0.37 0.28 0.04
1380 3570 1750 530 1070 20 7 75.7142857142857 152.857142857143 2.85714285714286 6,700 1,620 24.18% 10,481 44 56 4615 28.9285714285714 1.62 0.53 1.07 0.02
1490 3800 2010 390 280 30 5 78 56 6 7,300 700 9.59% 11,476 188 56 5070 12.5 0.7 0.39 0.28 0.03
2260 6480 3620 390 350 20 2 195 175 10 12,360 760 6.15% 16,275 157 56 8058 13.5714285714286 0.76 0.39 0.35 0.02
1320 3330 1560 430 450 100 2 215 225 50 6,210 980 15.78% 9,465 140 58 4205 16.8965517241379 0.98 0.43 0.45 0.1
1560 4230 2280 570 1090 100 3 190 363.333333333333 33.3333333333333 8,070 1,760 21.81% 12,379 379 58 5532 30.3448275862069 1.76 0.57 1.09 0.1
1610 4370 2370 430 380 40 4 107.5 95 10 8,350 850 10.18% 12,761 173 58 5708 14.6551724137931 0.85 0.43 0.38 0.04
2000 6020 3380 340 90 10 1 340 90 10 11,400 440 3.86% 15,631 40 58 7377 7.58620689655172 0.44 0.34 0.09 0.01
1200 2930 1390 400 240 10 3 133.333333333333 80 3.33333333333333 5,520 650 11.78% 8,773 66 59 3995 11.0169491525424 0.65 0.4 0.24 0.01
1760 4850 2660 400 460 250 1 400 460 250 9,270 1,110 11.97% 13,848 140 60 6254 18.5 1.11 0.4 0.46 0.25
1870 4890 2780 530 960 80 3 176.666666666667 320 26.6666666666667 9,540 1,570 16.46% 14,483 254 61 6669 25.7377049180328 1.57 0.53 0.96 0.08
2320 6780 3820 460 490 30 1 460 490 30 12,920 980 7.59% 17,784 115 61 8811 16.0655737704918 0.98 0.46 0.49 0.03
1380 3520 1770 510 860 70 1 510 860 70 6,670 1,440 21.59% 10,314 233 62 4543 23.2258064516129 1.44 0.51 0.86 0.07
1370 3590 1710 520 990 120 1 520 990 120 6,670 1,630 24.44% 10,461 394 63 4615 25.8730158730159 1.63 0.52 0.99 0.12
1900 6040 3560 350 180 30 1 350 180 30 11,500 560 4.87% 16,362 145 63 8143 8.88888888888889 0.56 0.35 0.18 0.03
1430 3890 2100 550 1140 90 1 550 1,140 90 7,420 1,780 23.99% 11,401 438 64 5032 27.8125 1.78 0.55 1.14 0.09
2290 6760 3790 390 410 60 1 390 410 60 12,840 860 6.70% 17,672 358 66 8765 13.030303030303 0.86 0.39 0.41 0.06
1580 4360 2380 560 630 80 1 560 630 80 8,320 1,270 15.26% 12,923 257 67 5752 18.955223880597 1.27 0.56 0.63 0.08
1680 4630 2460 480 640 0 1 480 640 0 8,770 1,120 12.77% 13,482 17 67 5998 16.7164179104478 1.12 0.48 0.64 0
1820 5090 2830 690 1570 80 1 690 1,570 80 9,740 2,340 24.02% 14,310 254 68 6600 34.4117647058824 2.34 0.69 1.57 0.08
1930 5810 3270 380 450 50 1 380 450 50 11,010 880 7.99% 15,336 106 69 7063 12.7536231884058 0.88 0.38 0.45 0.05
2030 6050 3290 480 990 100 4 120 247.5 25 11,370 1,570 13.81% 15,647 217 69 7200 22.7536231884058 1.57 0.48 0.99 0.1
1900 5290 2840 340 60 10 2 170 30 5 10,030 410 4.09% 14,467 34 70 6883 5.85714285714286 0.41 0.34 0.06 0.01
2000 6370 3460 420 760 140 1 420 760 140 11,830 1,320 11.16% 16,054 425 71 7791 18.5915492957746 1.32 0.42 0.76 0.14
1290 3580 1590 370 280 60 1 370 280 60 6,460 710 10.99% 9,860 234 72 4381 9.86111111111111 0.71 0.37 0.28 0.06
1720 4770 2540 410 630 110 2 205 315 55 9,030 1,150 12.74% 13,587 380 72 6048 15.9722222222222 1.15 0.41 0.63 0.11
1760 4470 2510 660 1370 40 1 660 1,370 40 8,740 2,070 23.68% 14,021 182 74 6454 27.972972972973 2.07 0.66 1.37 0.04
1800 4720 2750 440 670 110 1 440 670 110 9,270 1,220 13.16% 14,148 254 74 6499 16.4864864864865 1.22 0.44 0.67 0.11
1390 3560 1880 470 520 210 1 470 520 210 6,830 1,200 17.57% 10,735 33 75 4742 16 1.2 0.47 0.52 0.21
1960 5890 3330 360 170 0 1 360 170 0 11,180 530 4.74% 15,787 11 77 7599 6.88311688311688 0.53 0.36 0.17 0
2160 6390 3620 420 420 20 1 420 420 20 12,170 860 7.07% 16,321 91 77 8109 11.1688311688312 0.86 0.42 0.42 0.02
1620 4230 2310 670 1530 10 1 670 1,530 10 8,160 2,210 27.08% 12,927 169 78 5797 28.3333333333333 2.21 0.67 1.53 0.01
1220 2950 1410 510 950 90 2 255 475 45 5,580 1,550 27.78% 8,995 304 79 4036 19.620253164557 1.55 0.51 0.95 0.09
1820 5120 2680 680 1490 100 1 680 1,490 100 9,620 2,270 23.60% 14,224 350 80 6540 28.375 2.27 0.68 1.49 0.1
1890 6650 3810 440 640 90 1 440 640 90 12,350 1,170 9.47% 17,847 456 80 8819 14.625 1.17 0.44 0.64 0.09
1750 4670 2520 360 170 0 4 90 42.5 0 8,940 530 5.93% 13,625 3 81 6149 6.54320987654321 0.53 0.36 0.17 0
1760 4590 2580 690 1440 350 5 138 288 70 8,930 2,480 27.77% 13,668 356 87 6184 28.5057471264368 2.48 0.69 1.44 0.35
1760 4690 2580 490 560 180 1 490 560 180 9,030 1,230 13.62% 13,931 35 89 6432 13.8202247191011 1.23 0.49 0.56 0.18
1930 6140 3400 530 840 30 1 530 840 30 11,470 1,400 12.21% 16,314 121 90 8090 15.5555555555556 1.4 0.53 0.84 0.03
2130 6270 3500 450 340 30 1 450 340 30 11,900 820 6.89% 16,118 148 91 7921 9.01098901098901 0.82 0.45 0.34 0.03
1660 4240 2280 360 240 40 5 72 48 8 8,180 640 7.82% 12,578 202 93 5615 6.88172043010753 0.64 0.36 0.24 0.04
1650 4520 2350 520 1190 180 1 520 1,190 180 8,520 1,890 22.18% 13,134 699 94 5904 20.1063829787234 1.89 0.52 1.19 0.18
1970 6120 3430 410 380 20 2 205 190 10 11,520 810 7.03% 16,149 92 94 7822 8.61702127659574 0.81 0.41 0.38 0.02
1370 3490 1740 510 560 80 3 170 186.666666666667 26.6666666666667 6,600 1,150 17.42% 10,039 259 96 4460 11.9791666666667 1.15 0.51 0.56 0.08
2310 6920 3790 350 270 60 2 175 135 30 13,020 680 5.22% 17,729 256 99 8732 6.86868686868687 0.68 0.35 0.27 0.06
1740 4390 2370 660 1600 170 2 330 800 85 8,500 2,430 28.59% 12,952 533 100 5837 24.3 2.43 0.66 1.6 0.17
1850 5800 3290 470 940 70 4 117.5 235 17.5 10,940 1,480 13.53% 15,529 192 101 7148 14.6534653465347 1.48 0.47 0.94 0.07
1650 4450 2460 540 1030 60 3 180 343.333333333333 20 8,560 1,630 19.04% 13,280 246 103 5928 15.8252427184466 1.63 0.54 1.03 0.06
2120 6310 3510 430 370 0 2 215 185 0 11,940 800 6.70% 16,063 23 103 7768 7.76699029126214 0.8 0.43 0.37 0
2280 6180 3440 370 240 30 2 185 120 15 11,900 640 5.38% 16,248 137 103 8027 6.21359223300971 0.64 0.37 0.24 0.03
2290 6930 3860 360 80 0 3 120 26.6666666666667 0 13,080 440 3.36% 18,031 5 104 8835 4.23076923076923 0.44 0.36 0.08 0
1410 3460 1920 520 870 30 1 520 870 30 6,790 1,420 20.91% 10,968 190 107 4845 13.2710280373832 1.42 0.52 0.87 0.03
1750 4480 2330 510 650 240 1 510 650 240 8,560 1,400 16.36% 12,990 309 109 5781 12.8440366972477 1.4 0.51 0.65 0.24
1560 4050 2250 640 1620 180 1 640 1,620 180 7,860 2,440 31.04% 12,402 826 113 5516 21.5929203539823 2.44 0.64 1.62 0.18
1560 4270 2290 620 1430 160 1 620 1,430 160 8,120 2,210 27.22% 11,952 770 114 5298 19.3859649122807 2.21 0.62 1.43 0.16
1160 2790 1200 390 330 70 1 390 330 70 5,150 790 15.34% 7,954 163 115 3629 6.8695652173913 0.79 0.39 0.33 0.07
1860 5330 2980 470 1020 360 1 470 1,020 360 10,170 1,850 18.19% 14,682 459 117 6766 15.8119658119658 1.85 0.47 1.02 0.36
2060 6160 3520 410 370 0 1 410 370 0 11,740 780 6.64% 16,231 22 117 8002 6.66666666666667 0.78 0.41 0.37 0
1890 5280 3130 650 1740 230 3 216.666666666667 580 76.6666666666667 10,300 2,620 25.44% 15,082 536 125 6948 20.96 2.62 0.65 1.74 0.23
1780 4820 2520 450 780 80 2 225 390 40 9,120 1,310 14.36% 14,185 314 128 6538 10.234375 1.31 0.45 0.78 0.08
1640 4370 2170 440 760 90 4 110 190 22.5 8,180 1,290 15.77% 12,107 403 130 5372 9.92307692307692 1.29 0.44 0.76 0.09
1800 4580 2670 540 1020 90 3 180 340 30 9,050 1,650 18.23% 13,990 752 131 6426 12.5954198473282 1.65 0.54 1.02 0.09
1400 3690 1820 530 810 240 3 176.666666666667 270 80 6,910 1,580 22.87% 10,839 125 133 4791 11.8796992481203 1.58 0.53 0.81 0.24
1590 4140 2390 550 1130 80 2 275 565 40 8,120 1,760 21.67% 12,701 401 133 5640 13.2330827067669 1.76 0.55 1.13 0.08
1860 4670 2590 380 430 70 2 190 215 35 9,120 880 9.65% 13,622 293 134 6141 6.56716417910448 0.88 0.38 0.43 0.07
1920 5160 3030 650 1570 150 3 216.666666666667 523.333333333333 50 10,110 2,370 23.44% 14,876 270 136 6872 17.4264705882353 2.37 0.65 1.57 0.15
1760 4530 2530 460 680 220 1 460 680 220 8,820 1,360 15.42% 13,899 298 138 6356 9.85507246376812 1.36 0.46 0.68 0.22
1960 5940 3310 400 390 0 2 200 195 0 11,210 790 7.05% 15,647 0 139 7198 5.68345323741007 0.79 0.4 0.39 0
1220 3150 1450 390 260 140 4 97.5 65 35 5,820 790 13.57% 8,773 70 140 3967 5.64285714285714 0.79 0.39 0.26 0.14
2060 6390 3490 340 90 0 1 340 90 0 11,940 430 3.60% 15,789 12 144 7642 2.98611111111111 0.43 0.34 0.09 0
2320 6980 3900 670 1320 310 1 670 1,320 310 13,200 2,300 17.42% 18,146 154 145 8956 15.8620689655172 2.3 0.67 1.32 0.31
1990 5940 3510 460 550 20 1 460 550 20 11,440 1,030 9.00% 16,239 116 150 7969 6.86666666666667 1.03 0.46 0.55 0.02
2020 6430 3670 370 350 60 2 185 175 30 12,120 780 6.44% 16,951 307 155 8410 5.03225806451613 0.78 0.37 0.35 0.06
1750 4740 2610 620 1380 100 1 620 1,380 100 9,100 2,100 23.08% 13,553 430 161 6061 13.0434782608696 2.1 0.62 1.38 0.1
1990 5980 3460 500 640 20 1 500 640 20 11,430 1,160 10.15% 16,236 135 166 8013 6.98795180722892 1.16 0.5 0.64 0.02
2080 6390 3450 420 640 110 1 420 640 110 11,920 1,170 9.82% 16,110 417 172 7803 6.80232558139535 1.17 0.42 0.64 0.11
2110 6320 3500 430 420 80 2 215 210 40 11,930 930 7.80% 16,061 566 172 7836 5.40697674418605 0.93 0.43 0.42 0.08
2060 6410 3550 380 380 310 1 380 380 310 12,020 1,070 8.90% 16,780 370 175 8329 6.11428571428571 1.07 0.38 0.38 0.31
2050 6250 3390 430 560 170 2 215 280 85 11,690 1,160 9.92% 15,643 431 177 7379 6.55367231638418 1.16 0.43 0.56 0.17
1410 3610 1950 690 1600 460 1 690 1,600 460 6,970 2,750 39.45% 11,309 667 183 4983 15.0273224043716 2.75 0.69 1.6 0.46
1350 3310 1730 460 730 250 9 51.1111111111111 81.1111111111111 27.7777777777778 6,390 1,440 22.54% 9,720 485 189 4336 7.61904761904762 1.44 0.46 0.73 0.25
1500 4130 2140 620 1550 370 1 620 1,550 370 7,770 2,540 32.69% 11,814 869 189 5240 13.4391534391534 2.54 0.62 1.55 0.37
1340 3410 1690 510 990 160 2 255 495 80 6,440 1,660 25.78% 10,315 586 193 4549 8.60103626943005 1.66 0.51 0.99 0.16
1130 2770 1170 380 370 100 1 380 370 100 5,070 850 16.77% 7,756 341 196 3487 4.33673469387755 0.85 0.38 0.37 0.1
1590 4310 2290 600 1230 60 2 300 615 30 8,190 1,890 23.08% 12,324 230 201 5491 9.40298507462687 1.89 0.6 1.23 0.06
1270 3140 1520 440 660 150 1 440 660 150 5,930 1,250 21.08% 9,332 684 206 4158 6.06796116504854 1.25 0.44 0.66 0.15
1100 2770 1190 390 230 30 4 97.5 57.5 7.5 5,060 650 12.85% 7,819 135 219 3554 2.96803652968037 0.65 0.39 0.23 0.03
1130 2560 1140 380 420 100 1 380 420 100 4,830 900 18.63% 7,469 424 224 3336 4.01785714285714 0.9 0.38 0.42 0.1
2060 6420 3480 410 360 0 1 410 360 0 11,960 770 6.44% 15,787 2 225 7608 3.42222222222222 0.77 0.41 0.36 0
2030 6520 3740 410 680 140 3 136.666666666667 226.666666666667 46.6666666666667 12,290 1,230 10.01% 17,456 500 226 8632 5.44247787610619 1.23 0.41 0.68 0.14
1910 5000 2820 390 270 90 2 195 135 45 9,730 750 7.71% 14,477 663 236 6887 3.17796610169492 0.75 0.39 0.27 0.09
1140 2730 1340 430 590 190 5 86 118 38 5,210 1,210 23.22% 8,235 439 237 3754 5.10548523206751 1.21 0.43 0.59 0.19
1700 4370 2050 630 1370 120 1 630 1,370 120 8,120 2,120 26.11% 11,327 575 237 4996 8.94514767932489 2.12 0.63 1.37 0.12
2170 6490 3550 350 240 20 1 350 240 20 12,210 610 5.00% 16,298 192 241 8130 2.53112033195021 0.61 0.35 0.24 0.02
2090 6570 3550 630 1200 80 1 630 1,200 80 12,210 1,910 15.64% 15,971 488 245 7760 7.79591836734694 1.91 0.63 1.2 0.08
1390 3440 1930 610 1560 460 1 610 1,560 460 6,760 2,630 38.91% 10,708 955 251 4714 10.4780876494024 2.63 0.61 1.56 0.46
2310 6840 3740 580 1330 450 1 580 1,330 450 12,890 2,360 18.31% 18,036 624 254 8937 9.29133858267716 2.36 0.58 1.33 0.45
1920 5370 3010 390 330 150 5 78 66 30 10,300 870 8.45% 15,016 779 270 7119 3.22222222222222 0.87 0.39 0.33 0.15
2090 6240 3520 600 1580 220 1 600 1,580 220 11,850 2,400 20.25% 16,044 919 295 7789 8.13559322033898 2.4 0.6 1.58 0.22
1910 4990 2810 590 990 20 1 590 990 20 9,710 1,600 16.48% 14,447 183 341 6956 4.69208211143695 1.6 0.59 0.99 0.02
2080 6270 3440 550 1150 110 1 550 1,150 110 11,790 1,810 15.35% 15,783 481 341 7616 5.30791788856305 1.81 0.55 1.15 0.11
2300 6840 3820 600 1430 390 1 600 1,430 390 12,960 2,420 18.67% 17,761 546 370 8765 6.54054054054054 2.42 0.6 1.43 0.39
1910 6100 3490 450 750 520 1 450 750 520 11,500 1,720 14.96% 15,788 809 456 7620 3.7719298245614 1.72 0.45 0.75 0.52
1970 5710 3420 480 1540 780 1 480 1,540 780 11,100 2,800 25.23% 15,718 1,323 567 7507 4.93827160493827 2.8 0.48 1.54 0.78
1570 4290 2300 760 2100 580 1 760 2,100 580 8,160 3,440 42.16% 12,428 2,555 1102 5561 3.12159709618875 3.44 0.76 2.1 0.58
1990 5960 3410 1070 3600 300 1 1,070 3,600 300 11,360 4,970 43.75% 15,600 2,394 3110 7328 1.59807073954984 4.97 1.07 3.6 0.3
1030 2640 1070 1050 2470 1060 2 525 1,235 530 4,740 4,580 0.966244725738397 7,047 7,047 -0.167824104408355 0.689878474422275 3139 3139 1.45906339598598 4.58 1.05 2.47 1.06

0

1

2

3

4

5

0 2 5 10 14 23 33 46 67 103 189

Ti
m

e
(s

)

∆LOC

Parse Collect Evaluate

(d) Incremental analysis time ordered by the
size of the change: ∆LOC.

Figure 3.1: Benchmarking results

3.6.2 Results and interpretation

We published the collected data and all analysis results in a public reposi-
tory [144], including instructions on reproducing our experiments. Since both
applications yield similar results, we discuss only Yellowgrass data here. Data
for Blog can be found in the repository. For the future, we plan to collect data
on more WebDSL applications and on more programming languages. Our
implementation and the subjects are also open source.

RQ1) For all revisions of both applications, incremental and full analysis
produce structurally equal data in semantic index and task engine. This is the
expected outcome and supports the equivalence of both analyses.

RQ2) Figures 3.1a and 3.1b show the absolute execution times of full and
incremental analyses of all revisions. Full analysis takes between 4.74 and

Chapter 3. A Task Engine for Incremental Name and Type Analysis 53

13.31 seconds. Incremental analysis takes between 0.37 and 4.97 seconds.
The mean analysis times are 9.75 seconds and 0.96 seconds, with standard
deviations of 2.29 and 0.61 seconds, respectively. Incremental analysis takes
between 3.06% and 43.75% of the time of a full analysis. The mean ratio
between incremental and full analysis is 10.56%. Thus, incremental analysis
gives huge performance gains.

RQ3) Figures 3.1c and 3.1d shows incremental analysis times per revision,
ordered by LOC and changed LOC, respectively. The size of a project does
not seem to influence incremental analysis time (correlation coefficient −0.18),
but the size of the change does. This is the expected outcome, but more
experiments will be needed

RQ4) There were 137 revisions which affected only a single file. Incremen-
tal analysis takes between 0.37 and 1.12 seconds. There is only one revision
where incremental analysis takes longer than one second. The mean incre-
mental analysis time is 0.56 seconds. All analysis times would be acceptable
response times in an interactive IDE setting, where analysis is performed in the
background without blocking the user interface. Single responses which take
slightly more than one second would still be acceptable, if regular responses
are fast. Furthermore, changes between two revisions are more coarse grained
and should require more re-evaluation than changes in an editing scenario.

3.6.3 Threats to validity

An important threat to external validity is that we analyzed only WebDSL
applications and only two of them. We are convinced that WebDSL’s name
and type analysis is representative for other languages, but our evaluation
cannot generalize beyond WebDSL and its sublanguages. Furthermore, other
WebDSL applications, particularly those of different size, might show different
characteristics. Additional threats are the large distance between revisions and
the correctness of revisions. In real-time editing scenarios, distances might be
much smaller and revisions might switch between correct and erroneous states.
We believe that smaller distances would only be in the benefit of incremental
analysis. Erroneous revisions should not affect parse and collection times but
evaluation times, which tend to be small. A threat to internal validity is file size.
Incremental analysis re-parses and re-collects changed files. Independent of
the actual changes inside a file, file size alone can influence parse and collection
times. However, we believe that this does not influence the conclusions from
any of our research questions. Regarding construct validity, we measured
performance using wall-clock time only and control JIT compilation with a
warm-up phase. By running the garbage collector between analysis runs, we
ensured a similar amount of memory available to all analyses. However, the
semantic index and the task engine store large amounts of data (13 MB in the
worst case) and may experience garbage collection pauses.

3.7 Related Work

We give an overview of other approaches for incremental name and type
analysis.

54

3.7.1 IDEs and Language Workbenches

IDEs such as Eclipse typically lack a generic framework for the development
of incremental analyses, but provide manual implementations of incremental
analysis and compilation for popular languages such as Java or C#. Some lan-
guage workbenches automatically derive incremental analyses. In SugarJ [37],
extensions inherit the incremental behaviour of SugarJ, which uses the module
system of Java to provide incremental compilation on file-level, but lacks name
and type analysis of its host language Java. Xtext [12] leverages incremental
analysis and compilation from the Eclipse JDT to user-defined languages, as
long as they map to Java concepts. The JDT performs only local analyses on
edit and global analyses on save. MPS [159] does not require name binding
due to its projectional nature. It supports incremental type analysis but lacks a
framework for other incremental analyses. In general, language workbenches
lack frameworks for developing incremental analyses.

3.7.2 Attribute Grammars

Attribute Grammars (AGs) [83] provide a formal way of specifying the seman-
tics of a context-free language, including name and type analysis. One of the
first incremental attribute evaluators is proposed in [25]. It only evaluates
changed attributes and propagates evaluation to affected attributes. A similar
incremental evaluation algorithm is shown in [164, 165] for ordered attributed
grammars [73]. In [122, 124, 121, 72], extensions to propagation are shown
that stop propagation if an attribute value is unchanged from its previous
attribution.

Similar to attribute grammars, our approach exploits static dependencies,
caching, and change propagation. Similar to ordered attribute grammars, we
assume an evaluation order of tasks. Though tasks can be cyclic, we just do
not evaluate them. While attributes are (re-)evaluated in visits to the tree, our
collection separates tasks from the tree and they are (re-)evaluated independent
of the tree. As a consequence, we do not require incremental parsing techniques
and are not restricted to editing modes. For name analysis, attribute grammars
typically pass environments throughout the tree. Incremental name analysis
suffers from this as a single change in the environment requires a full re-
evaluation of the aggregated environment and all dependent attributes. In our
approach, we have a predefined notion of an environment, the semantic index,
which is globally maintained. It enables fine-grained dependency tracking
for name and type analysis tasks solely based on changing entries, not on
changing environments.

3.7.3 Reference Attribute Grammars

A popular extension to attribute grammars is the addition of reference at-
tributes. These simplify the specification of algorithms that require non-local
information, including name resolution. Door Attribute Grammars [55, 54]
extend attribute grammars with reference attributes and door objects which
facilitate analysis of object-oriented languages. A similar but more general
extension is shown in [120].

Chapter 3. A Task Engine for Incremental Name and Type Analysis 55

Reference Attribute Grammars (RAGs) [56] are a generalization of door
attribute grammars where the door objects are removed. In [130], an incre-
mental evaluator for reference attributed grammars is shown which is used by
the JastAdd [33] meta-compilation system. JastAdd also adds parametrized
attributes which allow attributes to be parametrized, forming a mapping. The
approach is compared to traditional attribute grammars in [131] and shows
that the use of reference attribute grammars reduces the number of affected
attributes for name and type analysis significantly.

Our approach has two mechanisms similar to reference attributes. First, we
can refer to binding instances by URIs and can look up their properties in
the semantic index. Second, properties and tasks can refer to arbitrary other
tasks. Reference attribute grammars discover dependencies during evaluation.
We detect inter-task dependencies after collection. This already helps in
establishing an ordering for evaluation. Only dependencies from properties to
tasks are discovered during evaluation. Similar to ordinary attribute grammars,
reference attribute grammars also do not provide a solution for aggregate
attributes.

Some attribute grammar formalisms take a functional approach to evaluation.
In [115] attributes are evaluated using visit-functions with memoization. A
more general extension to attribute grammars is the higher order attribute
grammar [157, 139] for which an incremental evaluator is presented in [156].
Similar to this approach, our approach employs a global cache and uses
hash consing to efficiently share tasks and to make look-ups into the cache
extremely fast. Tasks can also be seen as functions, but the evaluation strategy
differs. Visit-functions are still applied on subtrees while tasks are completely
separated from the tree.

3.7.4 Other Approaches

Pregmatic [13] is an incremental program environment generator that uses
extended affix grammars for specification. It uses an incremental propagation
algorithm similar to the one used by attribute grammar approaches which
were discussed earlier. Instead of separating parsing and semantic analysis, all
evaluation is done during parse-time which differs significantly from our parse,
collect and evaluate approach. Incremental Rewriting [103] describes efficient
algorithms for incrementally rewriting programs based on algebraic specifi-
cations. An algorithm for incrementally evaluating functions on aggregated
values is also shown. The approach does not support non-local dependencies,
making specification of name binding less intuitive as it requires copying of
information.

3.8 Conclusion

We have proposed an approach for incremental name and type analysis in two
phases, collection and deferred evaluation of analysis tasks. The collection is
instantiated with language-specific name binding and type rules and incremen-
tal on file level. Unchanged files are neither re-parsed nor re-traversed. The
evaluation phase is incremental on task level. When a file changes, all tasks

56

that are affected by this change are reevaluated. This might include dependent
tasks from other files.

Tasks execute low-level instructions for name resolution and type analysis,
and can form a basis for the definition of declarative meta-languages at a higher
level of abstraction. For example, we map declarative name binding and scope
rules expressed in NaBL to an instantiation of the presented approach. We
implemented the approach as part of the Spoofax language workbench. It frees
language engineers from the burden of manually implementing incremental
analysis. We applied the implementation to WebDSL and empirical evaluation
has shown this analysis to be responsive to changes in analyzed programs and
suitable to the interactive requirements of an IDE setting.

Acknowledgements

This research was supported by NWO/EW Free Competition Project 612.001.114

(Deep Integration of Domain-Specific Languages) and by a research grant from
Oracle Labs. We would like to thank Lennart Kats for his contribution to the
start of NaBL and to Spoofax’ incremental analysis project. We would also like
to thank Karl Kalleberg for valuable discussions on the interpretation of name
binding and scoping rules.

Chapter 3. A Task Engine for Incremental Name and Type Analysis 57

58

4
Reflection: Incremental Name and Type
Analysis, Bootstrapping, and Spoofax Core

We reflect on the applications and expressiveness of NaBL, TS, and the task
engine, which we will refer to as NaBL for brevity. Furthermore, we provide
a vision for bootstrapping the meta-languages of Spoofax, and describe our
work on Spoofax Core to make bootstrapping, other research, and application
in industry feasible.

Incremental Name and Type Analysis

We have applied NaBL to develop the static analysis of Green-Marl [63], a DSL
for graph analysis, initially developed at Stanford University, but now part of
the Parallel Graph AnalytiX (PGX) [94] project at Oracle Labs. With Green-
Marl, graph analysis programs can be concisely written in terms of graph
analysis concepts such as nodes, vertices, properties of nodes and vertices,
and depth/breadth-first traversals. The PGX runtime can then automatically
parallelize these graph analyses.

We have also applied NaBL in the 2015-2016 edition of the Compiler Con-
struction lab [145], where students develop a full version of the MiniJava [9]
language, including name and type analysis and corresponding editor services.

Limitations in Expressiveness. NaBL can be used to model many interesting
name and type analysis patterns, even for complicated DSLs such as Green-
Marl. However, there are several limitations in expressiveness. For example,
certain kind of let bindings such as let*, which are found in some functional
languages, cannot be modeled because of a lack of control over scopes. Method
overriding and overloading, where there are multiple method definitions
a method call can refer to, and a selection must be made between those
definitions based on parameter types, are not well supported. Finally, more
comprehensive type systems with nonlocal inference are not supported.

Scope Graphs. Further work on improving the expressiveness has been done by
other researchers in the context of Scope Graphs [109], a language-independent
theory for program binding structure and name resolution. With this approach,
a scope graph is first constructed from an abstract syntax tree using language-
specific rules. Then, references in the scope graph are resolved to definitions
using a language-independent resolution process. Name resolution is specified
in terms of a concise, declarative and language-independent resolution calculus,
while the actual name resolution is performed by a resolution algorithm that
is sound and complete with respect to the calculus.

Hendrik van Antwerpen et al. refine and extend the scope graph framework
to a full framework for static semantic analysis [5]. The framework is based

59

on a language of constraints, which support uniting type checking and name
resolution. A language-specific extraction function translates an abstract syntax
tree to a set of constraints, which are then solved by a constraint solver, which
is proven to be sound. Although not discussed in [5], the extraction function
can be generated from NaBL2, a meta-DSL for specifying name and type
analysis in terms of syntax-directed constraint generation rules.

The expressiveness of the framework was further extended in [6] by viewing
scopes as types, enabling models of the internal structure of non-simple
types such as structural records and generic classes. Statix, a new meta-DSL
was introduced, to enable specification of static semantics using this new
framework.

The main difference between NaBL and scope graphs, is that scope graph
approaches are more expressive, include the formal semantics of the calculi,
and include algorithms that are sound in relation to the calculi. However,
making these algorithms incremental and scalable; and providing good error
messages, semantic completions, and other editor services; are still open
problems.

Bootstrapping

We have self-applied NaBL and TS and the SDF [153] meta-DSL (for syntax
specification), providing incremental name and type analysis and editor ser-
vices for these meta-languages. These meta-languages all depend on each
other. That is, NaBL’s syntax is specified in SDF, its name binding in itself,
and its type analysis in TS. Similarly, SDF and TS are specified in NaBL and
each other. Therefore, we performed an ad-hoc form of bootstrapping, where
for each meta-language, we apply its own compiler and the compiler of other
meta-languages to the sources of the meta-language to generate code that
implements parts of that meta-language. We then commit this generated code
to source control, serving as a baseline for building the meta-language.

However, this ad-hoc form of bootstrapping is problematic, because commit-
ting generated (possibly binary) artifacts in source control creates additional
load on source control storage. Furthermore, forgetting to commit the gener-
ated code may break the compilation of the meta-language. Finally, since we
are applying all meta-language compilers only once, we cannot find cascading
defects that are only evident after multiple applications.

Our vision to solve these bootstrapping problems is to do fixpoint bootstrap-
ping, to version and separately store meta-language compilers (binaries), and
to support using multiple versions of meta-language compilers simultaneously
in an interactive system. We want to evaluate this approach by application
to Spoofax and its meta-languages. However, using Spoofax as a vehicle for
research turned out to be a problem for several reasons.

Spoofax Problem Analysis

First of all, Spoofax was dependent on the Eclipse IDE. It was not possible to
run the Spoofax language workbench, or any language created with Spoofax,

60

private void registerWithImp(Language language) {
final int TRIES = 10;
final int SLEEP = 500;

for (int i = 0; i < TRIES; i++) {
try {

LanguageRegistry.registerLanguage(language);
return;

} catch (ConcurrentModificationException e) {
// Loop
try {

Thread.sleep(SLEEP);
} catch (InterruptedException e2) {

throw new RuntimeException(e2);
}

}
}

}

Listing 4.1: Unclear concurrency and dynamic language loading in older versions of
Spoofax.

outside of the Eclipse IDE, making it hard to develop, build, test, and deploy
Spoofax.

One of the defining features of Spoofax is dynamic language loading [75],
where a language under development can be dynamically reloaded in the
IDE without restarting, with the changes being immediately visible. However,
Spoofax used IMP [24] for its Eclipse editor services, which does not support
dynamic language loading, and thus required a hack to get this working: a
single IMP language which acted as all Spoofax dynamic languages, with the
actual language being identified at runtime based on the extension of a file.
Furthermore, there were two ways to load languages: statically from an Eclipse
plugin, and dynamically at runtime, which resulted in different code paths for
all editor services.

The concurrency model of Spoofax was unclear, leading to code as found in
listing 4.1 in several places. Finally, Spoofax’s code was very tightly coupled,
making to modify a part without breaking other parts.

Besides these problems, we also missed two features crucial for bootstrap-
ping meta-languages. We need to be able to version the compilers of languages,
and to have explicit dependencies between languages. For example, to build
NaBL version 2, we need SDF version 3’s compiler, NaBL version 1’s compiler,
and TS version 1’s compiler.

Spoofax Core

Given this problem analysis; and the need to do bootstrapping, other research,
and better application in industry; we need to develop a better tooling foun-
dation. Therefore, we have reimplemented Spoofax, dubbed Spoofax Core,
which solves these problems and adds missing features. This was a joint effort

Chapter 4. Reflection: Incremental Name and Type Analysis and Bootstrapping 61

Spoofax 2.0

Spoofax Core Spoofax-meta Core

MetaBorg Core MetaBorg-meta Core

Sunshine
adapter

Eclipse
adapter

Eclipse
adapter

IntelliJ
adapter

Maven
adapter

Stratego
runtime

JSGLR

Meta
lang.

Figure 4.1: Spoofax Core component architecture.

with Vlad Vergu, Hendrik van Antwerpen, Daniel Pelsmaeker, Martijn Dwars,
Eduardo Souza Amorim, and Sebastian Erdweg.

Spoofax Core is a platform-independent Java library, meaning that it can be
integrated into any Java application, making custom integrations possible. We
provide ready-made adapters for various platforms such as the command-line
(called Sunshine), the Eclipse and IntelliJ IDEs, and the Maven build system.
The language workbench environment, also called the meta-environment,
is separated from the runtime environment so that languages can be used
without a dependency on the meta-environment. Figure 4.1 is a depiction of
this architecture

Spoofax Core can be developed, built, tested, and deployed from the
command-line on Windows, Linux, and MacOS, allowing anyone to work
on Spoofax. To ensure that Spoofax works, and to provide ready-made pack-
ages for using Spoofax, our Jenkins build farm continuously builds, tests, and
deploys Spoofax Core and its adapters.

Spoofax Core is loosely coupled, enabling parts of Spoofax to be changed
without breaking other parts. We use the Guice [48] dependency injection
framework to hook up these loosely coupled parts as a separate concern,
while also allowing several parts to be freely extended. Dynamic language
loading is supported as a separate concern, with the rest of Spoofax only
dealing with the concept of a language that is already loaded. Furthermore, we
support concurrent environments such as IDEs by being thread-safe when its
concurrency invariants are upheld. Finally, we have full support for versioning
languages and explicit versioned dependencies between languages.

With this new foundation, we continue our research into bootstrapping in
the next chapter (chapter 5).

62

5
Bootstrapping Domain-Specific
Meta-Languages in Language Workbenches

Abstract

It is common practice to bootstrap compilers of programming languages. By
using the compiled language to implement the compiler, compiler developers
can code in their own high-level language and gain a large-scale test case. In
this chapter, we investigate bootstrapping of compiler-compilers as they occur
in language workbenches. Language workbenches support the development
of compilers through the application of multiple collaborating domain-specific
meta-languages for defining a language’s syntax, analysis, code generation,
and editor support. We analyze the bootstrapping problem of language work-
benches in detail, propose a method for sound bootstrapping based on fixpoint
compilation, and show how to conduct breaking meta-language changes in a
bootstrapped language workbench. We have applied sound bootstrapping to
the Spoofax language workbench and report on our experience.

5.1 Introduction

A bootstrapped compiler can compile its own source code, because the compiler
is written in the compiled language itself. Such bootstrapping yields four main
advantages:

1. A bootstrapped compiler can be written in the compiled high-level language.

2. It provides a large-scale test case for detecting defects in the compiler and
the compiled language.

3. It shows that the language’s coverage is sufficient to implement itself.

4. Compiler improvements such as better static analysis or the generation of
faster code applies to all compiled programs, including the compiler itself.

Compiler bootstrapping is common practice nowadays. For example, the GCC
compiler for the C language is a bootstrapped compiler; its source code is
written in C and it can compile itself. More generally for a language L, a
bootstrapped compiler Lc should apply to its own definition Ld such that
Ld ∈ L and Lc(Ld) = Lc.

Language workbenches [39] are compiler-compilers that provide high-level
meta-languages for defining domain-specific languages (DSLs) and their com-
pilers. Thus, users of a language workbench implement the compiler Lc of
language L not in L but in a high-level meta-language M such that Ld ∈ M
and Mc(Ld) = Lc. Thus, bootstrapping of Lc is no longer required, which is
good since many DSLs have limited expressiveness and are often ill-suited for

63

compiler development.
What we desire instead is bootstrapping of a language workbench’s compiler-

compiler Mc. We want to use our meta-languages for implementing our meta-
language compilers, thus inheriting the benefits of bootstrapping stated above:
high-level meta-language implementation, large-scale test case, meta-language
coverage, and improvement dissemination. In short, bootstrapping of language
workbenches supports meta-language development. However, bootstrapping
of language workbenches also entails three novel challenges:

• Most language workbenches provide separate meta-languages M1..n for de-
scribing the different language aspects such as syntax, analysis, code gen-
eration, and editor support. Thus, to build the defintion of any one meta-
language compiler Mi

d, multiple meta-language compilers M1..n
c are necessary

such that M1..n
c (Mi

d) = Mi
c. This entails intricate dependencies that sound

language-workbench bootstrapping needs to handle.

• Most language workbenches provide an integrated development environ-
ment (IDE). Typically, language workbenches generate or instantiate this
IDE based on the definition of the meta-languages. In this setup, the meta-
language developer needs to restart the IDE whenever the definition of a
meta-language is changed. However, to support bootstrapping, the defini-
tion of meta-language compilers should be available within the IDE and no
restart should be required to generate and load the new bootstrapped meta-
language compilers [88]. Importantly, since meta-language changes can be
defective, it also needs to be possible to rollback to an older meta-language
version if bootstrapping fails.

• Since meta-languages in language workbenches depend on one another, it
can become difficult to implement breaking changes that require the simulta-
neous modification of a meta-language and existing client code. For example,
renaming a keyword in one meta-language can require modifications in the
compilers of the other meta-languages. To preserve changeability, we need
to support implementing such breaking changes in a bootstrapped language
workbench.

We present a solution to these challenges based on versioning and fixpoint
bootstrapping of meta-language compilers. That is, we iteratively self-apply
meta-language compilers to derive new versions until no change occurs. For
this to work, we identified properties that meta-language compilers need to
satisfy: explicit cross-language dependencies, deterministic compilation, and
comparability of compiler binaries. To support meta-language engineers, we
describe how to build interactive environments on top of fixpoint bootstrapping.
Finally, we discuss how to implement and bootstrap breaking changes in the
context of fixpoint bootstrapping.

To confirm the validity of our approach, we have implemented fixpoint
bootstrapping for the Spoofax language workbench [75]. We use our imple-
mentation to successfully bootstrap eight meta-languages. We present our
experience with seven changes to the meta-languages. We describe how we
implemented the changes, how bootstrapping helped us to detect defects, and

64

how we handled breaking changes.
We are the first to describe a method for bootstrapping the meta-languages

of a language workbench. In summary, we make the following contributions:

• We present a detailed problem analysis and requirements for language-
workbench bootstrapping (section 5.2).

• We describe a sound bootstrapping method based on fixpoint meta-language
compilation (section 5.3).

• We explain how to build bootstrapping-aware interactive environments (sec-
tion 5.4).

• We investigate support for implementing breaking changes in a bootstrapped
language workbench (section 5.5).

• We validate our approach by realizing it in Spoofax and by investigating
seven bootstrapping changes (section 5.6).

5.2 Problem Analysis

To get a better understanding of bootstrapping in the context of language
workbenches, we analyze the problem of bootstrapping in more detail. This
problem analysis will help us answer why we need bootstrapping in the first
place, and what is required to do bootstrapping in the context of language
workbenches.

5.2.1 Bootstrapping Example

First, we need a more realistic example that shows the complexities of boot-
strapping language workbenches. As an example, we use the SDF and Stratego
meta-languages from the Spoofax language workbench. SDF [153] is a meta-
language for specifying syntax of a language. Stratego [18] is a meta-language
for specifying term transformations. SDF and Stratego are bootstrapped by
self specification and mutual specification. That is, SDF’s syntax is specified in
SDF, and its transformations in Stratego. Stratego’s syntax is specified in SDF,
and its transformations in Stratego.

SDF also contains several generators. SDF contains a pretty-printer generator
PP-gen that generates a pretty-printer based on the layout and concrete syntax
in a syntax specification [158]. A pretty-printer (sometimes called an unparser)
is the inverse of a parser. It takes a parsed abstract syntax tree (AST) and pretty-
prints it back to a string. The generated pretty-printer is a Stratego program
that performs this function. Besides generating a pretty-printer, SDF contains a
signature generator Sig-gen that generates signatures for the nodes occurring
in the AST. Since these signatures serve as a basis for AST transformations in
Stratego, SDF describes these signatures in Stratego syntax and pretty-prints
them using the generated Stratego pretty-printer.

Overall, our scenario entails various complex dependencies across languages.
In the remainder of this section, we focus on the following dependency chain:

• The pretty-printer generator translates SDF ASTs into Stratego ASTs and

Chapter 5. Bootstrapping Meta-DSLs in Language Workbenches 65

thus requires the SDF and Stratego signatures.

• The SDF signatures are generated by the signature generator using the
Stratego pretty-printer.

• The Stratego pretty-printer is generated by the pretty-printer generator, from
the Stratego syntax definition.

• The pretty-printer generator is implemented as a Stratego program within
SDF.

We want to apply bootstrapping to SDF and Stratego to detect defective
changes to a language’s implementation. In order to illustrate the difficulties
of bootstrapping in the context of language workbenches, we will deliber-
ately introduce a defect in the implementation of the pretty-printer gener-
ator. Normally, a pretty-printer needs to align with the parser such that
parse(pretty-print(ast)) = ast. We break the the pretty-printer generator to
violate this equation by generating pretty-printers that print superfluous semi-
colons. This is an obvious way to sabotage the pretty-printer generator and will
cause parse failures when parsing a pretty-printed string. We expect bootstrap-
ping to detect this defect. Figure 5.1 shows an iterative bootstrapping attempt
with relevant dependencies, illustrating code examples, and an explanation for
each bootstrapping iteration.

We start with a baseline of language implementations. We introduce the
defect in the pretty-printer generator and start rebuilding the whole system
in Iteration 1 using the baseline. However, despite the defect, all components
build fine in Iteration 1. This is because it takes multiple iterations for the
defect to propagate through the system before it produces an error. In our
example, the defective pretty-printer generator (Iteration 1) generates a broken
pretty-printer (2), which is used by the signature generator (3), which then
generates signatures in Stratego syntax but with superfluous semicolons (4).
All defects remain undetected until the build of PP-gen or Sig-gen in Iteration 4

fails because of parse errors in the signatures.

Our example illustrates multiple points. First, dependencies between com-
ponents in a language workbench are complex, circular, and across languages.
Second, language bootstrapping yields a significant test case for language
implementations and can successfully detect defects. Third, a single build is
insufficient because many defects only materialize after multiple iterations of
rebuilding.

This example is still far removed from the complexity that language work-
benches face in practice. For example, Spoofax features eight interdependent
meta-languages and SDF alone has seven generators that uses pretty-printers
from four other meta-languages.

5.2.2 Requirements

Based on our example above, we derive requirements for sound bootstrapping
support in language workbenches.

66

generates

uses

generated component

generator
correct

hidden defect

observed defect

language

M source files written in
meta-language M

M CG

generator G generates C, from source
files written in meta-language M, using
previously generated component I

I

Bootstrapping iteration 1

Baseline

Bootstrapping iteration 2

Bootstrapping iteration 3

Bootstrapping iteration 4

String(s) -> List(Op("S", [List([Str(s)])]))

String(s) -> List(Op("S", [List([Str(s), Str(";")])]))

pp-Decl : Signature(t) ->
 [H([SOpt(HS(), "0")], [S("signature")]), <pp-Sig> t]

pp-Decl : Signature(t) ->
 [H([SOpt(HS(), "0")], [S("signature"), S(";")]), <pp-Sig> t]

module; signatures/sorts/Sorts-sig
signature; constructors;
 :; String ->; Sort
 Sort :; Sort ->; Symbol
 ParameterizedSort :; Sort *; List(;Symbol); ->; Symbol

module signatures/sorts/Sorts-sig
signature constructors
 : String -> Sort
 Sort : Sort -> Symbol
 ParameterizedSort : Sort * List(Symbol) -> Symbol

Correct baseline, consisting of SDF and Stratego (STR), with a working Stratego
pretty-printer (PP).

The language engineer changes PP-gen, the pretty-printer generator. In this example,
they introduce a defect into the pretty-printer generator, that generates pretty-printers
that print superfluous semicolons.
The defect is not observed, because the defect PP-gen has not been used yet.

PP is now a defect Stratego pretty-printer, generated with the defect PP-gen from
SDF1, but is not included in Sig-gen yet.
The defects are not observed, because the defect PP has not been used yet.

The defect Stratego pretty-printer from STR2 is now included in Sig-gen. However,
SDF signatures (Sig) are still correct, since they are generated by the correct signature
generator from SDF2, which imports a correct Stratego pretty-printer from STR1.
The defects are not observed, because the defect Sig-gen has not been used yet.

Defect SDF signatures, generated with the defect signature generator from SDF3.
These signatures are not valid Stratego code. The defects are observed because PP-
gen and Sig-gen use signatures that cannot be parsed.

SDF0 STR0

SDF1 STR1

SDF2 STR2

SDF3 STR3

SDF4

Sig

Sig-genPP-gen

Sig-genPP-gen

PP

PP

Sig

Sig-genPP-gen PP

Sig

Sig-genPP-gen PP

Sig

Sig-genPP-gen

SDF

SDF

SDF

SDF

SDF

SDF

SDF

Figure 5.1: Bootstrapping flow for bootstrapping SDF and Stratego with a defective
pretty-printer generator. In each iteration, SDF and Stratego are compiled, based on
their previous versions. For example, SDF2 is compiled with SDF1 and STR1. In the
fourth iteration, bootstrapping fails because of a parse error, which can be traced
back to the change which introduces a defect into the pretty-printer generator in the
first iteration. Source code on the right belongs to underlined/bold components on
the left.

Chapter 5. Bootstrapping Meta-DSLs in Language Workbenches 67

Sound Bootstrapping. In our example, we needed 4 bootstrapping iterations to
find a failure caused by the defective pretty-printer. In general, there is no way
to know how many iterations are necessary until a defect materializes or after
how many iterations it is safe to stop. Therefore, for sound bootstrapping it is
required to iterate until reaching a fixpoint, that is, until the build stabilizes.

To determine if a fixpoint has been reached, we must be able to compare
the binaries that meta-languages generate. We have reached a fixpoint if the
generated binaries in iteration k + 1 are identical to the binaries generated in
iteration k. Since the binaries are the same, further rebuilds after reaching a
fixpoint cannot change the implementation or detect new defects.

A further requirement for fixpoint bootstrapping is that compilers must be
deterministic. That is, when calling a compiler with identical source files, the
compiler must produce identical binaries.

Bootstrapping always requires a baseline of meta-language binaries to kick-
start the process. Bootstrapping uses the baseline only to rebuild the meta-
languages in the first bootstrapping iteration. After that, bootstrapping uses
the bootstrapped binaries.

Finally, the bootstrapping system should be general; it should work for any
meta-language in the language workbench.

Interactive Bootstrapping Environment. Besides having a bootstrapping system
that satisfies the requirements above, we also need to support bootstrapping
in the interactive environments of language workbenches. In particular, an
interactive environment needs to provide operations that (1) start a bootstrap-
ping attempt, (2) load a new baseline into the environment after bootstrapping
succeeded, (3) roll back to an existing baseline after bootstrapping failed, and
(4) cancel non-terminating bootstrapping attempts.

Loading a baseline needs to be such that subsequent bootstrapping attempts
use the new baseline. When bootstrapping fails, a rollback to the existing
baseline is required such that the defect causing the failure can be fixed and a
new bootstrapping attempt can be started. All operations should work within
the same language workbench environment, without requiring a restart of the
environment, or a new environment to be started.

Bootstrapping Breaking Changes. Bootstrapping helps to detect changes that
break a language implementation. However, sometimes breaking changes
are desirable, for example, to change the syntax of a meta-language. If we
change the syntax definition of some language L and the code written in L
simultaneously, bootstrapping fails to parse the source code in Iteration 1

because the baseline only supports the old syntax of L. If we change the syntax
definition of L but leave the code written in L unchanged, bootstrapping fails
to parse the source code in Iteration 2 because the parser of L generated in
Iteration 1 only supports the new syntax of L.

The bootstrapping environment should provide operations for bootstrapping
breaking changes.

68

5.3 Sound Bootstrapping

Compiling or bootstrapping a meta-language is a complex operation that
requires application of generators from many meta-languages, to a meta-
language that consist of sources in several meta-languages. Therefore, we
would like to find a general compilation and bootstrapping algorithm.

We describe a method for sound bootstrapping that fulfills the requirements
from the previous section. As a first step towards compilation and bootstrap-
ping, we introduce a general model for meta-language definitions and products.
Using the model, we describe a general compilation algorithm that compiles
a meta-language definition into a meta-language product. Finally, we show
how to perform fixpoint bootstrapping operations based on the model and
compilation algorithm. We use the bootstrapping scenario from fig. 5.1 as a
running example in this section.

5.3.1 Language Definitions and Products

As a first step towards bootstrapping, we introduce a general model for lan-
guage definitions and products. We require such a model to describe a general
compilation and bootstrapping algorithm for meta-languages. Listing 5.1
shows the model encoded in Haskell. In this subsection, we explain the model.
In later subsections, we explain the compilation and fixpoint bootstrapping
algorithm.

Language. First of all, we use a unique name to identify each meta-language
Lang of a language workbench, such as SDF and Stratego. However, a name
alone is not enough to uniquely distinguish meta-languages. Multiple versions
of the same meta-language exist when bootstrapping, for example, a baseline
version of SDF and the first bootstrapping iteration of SDF. Therefore, we also
use a version to identify a language, LangID in the model. We denote a language
L with version 1 as L1. For example, with versioning, we can uniquely identify
different versions of SDF and Stratego: SDF0, STR0, SDF1, STR1.

Bootstrapping applies the generators of a meta-language to the definition
of its own and other meta-languages. Therefore, it is important to distinguish
a meta-language definition from a meta-language product, which results from
compiling the definition. The example in fig. 5.1 does not make this distinction
to reduce its complexity, but we require this distinction here in order to
precisely define compilation and bootstrapping.

Language Definition. Each language definition LangDef defines a specific ver-
sion of a language. We denote the definition of language L at version 1 as L1

d.
The definition consists of source artifacts written in different meta-languages
(field alang of Artifact). To compile a language definition, we need to know
what external artifacts and generators it requires. To this end, a language
definition defines artifact and generator dependencies on previous versions of
itself or on specific versions of other languages. We use these dependencies
during compilation.

Chapter 5. Bootstrapping Meta-DSLs in Language Workbenches 69

-- Model for languages, language definitions with sources, and language products with
artifacts and generators.

type Version = Int
type Lang = String
data LangID = LangID { name :: Lang, version :: Version }
data Artifact = Artifact { aname :: String, alang :: Lang, acontent :: String }
data LangDef = LangDef { dlang :: LangID, dsources :: [Artifact], dartDeps :: [LangID],

dgenDeps :: [LangID] }
data Generator = Generator { gname :: String, gsource :: Lang, gtarget :: Lang,

generate :: Artifact -> Artifact }
data LangProd = LangProd { plang :: LangID, partifacts :: [Artifact],

pgenerators :: [Generator] }
type Baseline = [LangProd]

getProd :: LangID -> Baseline -> LangProd
getProd lang baseline = fromJust $ find (\prod -> lang == plang prod) baseline

-- Compile. Sort languages by generator source/target and run relevant generators against
relevant artifacts.

compile :: LangDef -> Baseline -> LangProd
compile def baseline = createLangProd def (runGens sorted gens inputs) where

inputs = dsources def ++ [a | l <- dartDeps def, a <- partifacts (getProd l baseline)]
gens = [g | l <- dgenDeps def, g <- pgens (getProd l baseline)]
sorted = topsort [l | LangID l _ <- dgenDeps def] [(gsource g,gtarget g) | g <- gens]

runGens :: [Lang] -> [Generator] -> [Artifact] -> [Artifact]
runGens [] gens inputs = inputs
runGens (lang:langs) gens inputs = runGens langs gens (inputs ++ runGensFor lang gens

inputs)

runGensFor :: Lang -> [Generator] -> [Artifact] -> [Artifact]
runGensFor lang gens inputs = [generate g a | g <- gens, a <- inputs, gsource g == lang,

alang a == lang]

createLangProd :: LangDef -> [Artifact] -> LangProd -- Implemented by the LWB.

-- Fixpoint bootstrap language definitions with a baseline.
-- Update versions in the first iteration, then fixpoint.
bootstrap :: Version -> [LangDef] -> Baseline -> (Baseline, [LangDef])
bootstrap v defs baseline =

let firstBuild = [compile (setVersion v def) baseline | def <- defs] in
bootstrapFixpoint (prepareFixpoint v defs) firstBuild

bootstrapFixpoint :: [LangDef] -> Baseline -> (Baseline, [LangDef])
bootstrapFixpoint defs baseline =

let newBaseline = [compile def baseline | def <- defs] in
if baseline == newBaseline
then (newBaseline, defs)
else bootstrapFixpoint defs newBaseline

setVersion :: Version -> LangDef -> LangDef
setVersion v (LangDef (LangID l _) srcs gdeps adeps) = LangDef (LangID l v) srcs gdeps

adeps

prepareFixpoint :: Version -> [LangDef] -> [LangDef]
prepareFixpoint v defs = [prepareFixpointDef v bootstrappedLangs def | def <- defs]

where bootstrappedLangs = [l | LangDef (LangID l _) _ _ _ <- defs]

prepareFixpointDef :: Version -> [Lang] -> LangDef -> LangDef
prepareFixpointDef v langs (LangDef (LangID l _) srcs adeps gdeps) =

LangDef (LangID l v) srcs [updateDep v langs dep | dep <- adeps] [updateDep v langs
dep | dep <- gdeps]

updateDep :: Version -> [Lang] -> LangID -> LangID

Listing 5.1: Model for sound bootstrapping, with algorithms for compilation and
fixpoint bootstrapping, encoded in Haskell.

70

Language Product. A language product LangProd models a compiled meta-
language definition. We denote the product of compiling L1

d as L1
p. A product

exports artifacts and generators. A generator Generator transforms artifacts
of some source language into artifacts of some target language. For example,
Sig-gen in SDF transforms SDF artifacts into Stratego artifacts, or fails if
the SDF artifacts are invalid, which we model as a dynamic exception of
function generate.

Example. Language definitions and products model the dependencies re-
quired to compile a definition into a product, which we describe in the next
subsection. For example, SDF1

d requires the application of generator Sig-gen
of SDF0

p, whereas STR1
d requires the application of generator PP-gen of SDF0

p.
Moreover, SDF1

d requires the pretty-print table artifact PP of STR0
p.

5.3.2 Compilation

Before we can bootstrap multiple meta-language definitions against a baseline
of meta-language products, we must first be able to compile a single meta-
language definition. We describe the compilation algorithm that compiles a
single language definition using the model from above.

Function compile takes a language definition and a baseline of language
products, and produces a new language product from the definition. The basic
idea of the algorithm is to run the required generators on the source artifacts
and the required external artifacts. This yields new generated artifacts that we
package into a language product using createLangProd.

We first collect all generator inputs, which are the source artifacts (dsources
def) of the definition and the required artifacts according to dependencies
(dartDeps def). We use the baseline to resolve dependencies; function getProd
finds the product of the required LangID. Similar to required artifacts, we collect
the required generators according to dependencies (dgenDeps def).

When running generators, we need to make sure to call them in the right
order: A generator must run later if it consumes an artifact produced by
another generator. For example, SDF1

d requires the application of generator
Sig-gen, which produces Stratego code. But SDF1

d also requires the application
of the Stratego-compiler generator of STR0

p, which translates Stratego code into
an executable. Thus, we must run Sig-gen before the Stratego compiler. To this
end, we sort all languages topologically according to their source and target
languages.

Function runGenerators iterates over the sorted source languages and for
each one applies all generators of the current source language lang. Function
runGeneratorsFor finds all relevant generators g that take artifacts of lang as
input and it finds all relevant artifacts a of lang. It then calls the generate
function of all relevant generators g on all relevant artifacts a and collects and
returns the generated artifacts. Function runGenerators passes the generated
artifacts down when recursing to allow subsequent generators to compile them.
If any generate function fails with a dynamic exception, the compilation fails.

Finally, after generating all artifacts, we create a language product from the

Chapter 5. Bootstrapping Meta-DSLs in Language Workbenches 71

language definition and the generated artifacts by calling createLangProd. This
function must be implemented by the language workbench. We abstract over
how a language workbench determines which artifacts to export and which
generators to create from generated artifacts. For example, Spoofax determines
which artifacts to export from a configuration file in the language definition,
has built-in notions of generators to create based on generated artifacts, and
allows a language definition to configure its own generators.

5.3.3 Fixpoint Bootstrapping

We can now use compilation to define fixpoint bootstrapping. In general, there
is no way to know how many bootstrapping iterations are required before it is
safe to stop. Therefore, we iteratively bootstrap meta-languages until reaching
a fixpoint. We define a general fixpoint bootstrapping algorithm using the
model and compilation algorithm from above.

Function bootstrap takes the version of the new baseline, a list of meta-
language definitions, and an existing baseline, and it produces a new baseline
of the given version. The basic idea of the algorithm is to compile meta-
language definitions in iterations, until we reach a fixpoint. However, to avoid
building against the old baseline repeatedly, we have to update the versions of
the language definitions in the first iteration.

In the first iteration, function bootstrap calls compile on modified definitions
def where we have set the version to v. This yields a list of language products
firstBuild that contains products of version v. We use this as starting point
for fixpoint computation. In addition, we update the dependencies in defs
using function prepareFixpoint, which updates versions and dependencies of
all bootstrapped languages to v.

To produce a new baseline, we repeat bootstrapping in bootstrapFixpoint
until reaching a fixpoint. In each iteration, we compile all meta-language
definition into meta-language products. If the new baseline is equal to the
baseline from the previous iteration, we have reached a fixpoint and return the
new baseline.

To compare the language products of a baseline, we compare the name,
version, artifacts, and generators of products. To compare generators, we
need to compare the executables of generators (not modeled in Haskell). In
practice, this boils down to comparing binary files byte-for-byte, ignoring
nondeterministic metadata such as the creation date or the last modified date.
We change meta-language versions each iteration in fig. 5.1 for illustrative
purposes. However, bootstrap only changes versions once, to prevent baseline
comparison from always failing because of version differences.

Bootstrapping fails with a dynamic exception if any compile operation fails.
Otherwise, our algorithm soundly produces a new baseline. In the next section,
we explain how to manage baselines in interactive environments.

5.4 Interactive Bootstrapping

A language workbench provides an interactive environment in which a lan-
guage engineer can import language definitions, make changes to the defini-

72

tions in interactive editors, compile them into a language products, and test the
changed languages. This allows a language engineer to quickly iterate over lan-
guage design and implementation. Likewise, a meta-language engineer wants
to quickly iterate over meta-language design and implementation [88]. There-
fore, we need to support running bootstrapping operations in the interactive
language workbench environment.

A language workbench manages an interactive environment with a language
registry that manages all loaded language definitions and language products.
The language registry loads language definitions and products dynamically,
that is, while the environment is running without restarting the environment
or starting a new one. The language workbench should react to loading,
reloading, and unloading of language definitions and products, for example,
by setting up file associations and updating editors.

To support interactive development, meta-language compilation interacts
with the language registry. Instead of receiving a baseline as argument, in an
interactive environment function compile from the previous section uses the
language registry to retrieve language products. Thus, a change to the registry
affects subsequent compilations.

Since bootstrapping relies on compile, in an interactive environment boot-
strapping also interacts with the language registry. Instead of receiving a
baseline as argument, in an interactive environment function bootstrap from
the previous section uses the language registry to retrieve an initial baseline.
Before calling compile in each iteration, bootstrap needs to load/reload the
compiled products of version v. If bootstrapping succeeds, the new baseline
stays in the language registry upon termination of bootstrap. But if boot-
strapping fails with an exception, subsequent operations may not use the
intermediate language products. To this end, bootstrap needs to rollback
changes to the registry by unloading the language products of version v, and
rolling back version changes in definitions.

Based on these changes to the algorithms and the language registry, our
bootstrapping model supports interactive environments. Specifically, we can
start a bootstrapping attempt with bootstrap, load a new baseline into the
registry, and rollback the registry after bootstrapping failed or was canceled by
the user.

5.5 Bootstrapping Breaking Changes

In the context of bootstrapping, a breaking change is a change to meta-language
definitions such that fixpoint bootstrapping fails. Instead of treating such
change as a whole, a breaking change needs to be decomposed into multiple
smaller changes for which fixpoint bootstrapping succeeds.

For example, changing a keyword in the SDF meta-language is a breaking
change, because it will cause parse failures for SDF source files elsewhere.
Changing a keyword and all usages of the old keyword is also a breaking
change, because we use the old baseline on the first build, which does not
support the new keyword.

To perform such a breaking change, we need decompose it into smaller non-

Chapter 5. Bootstrapping Meta-DSLs in Language Workbenches 73

breaking changes. Using such decomposition, fixpoint bootstrapping succeeds
after each change. However, it is actually sufficient to only perform a full
fixpoint bootstrap after the final change and to only find defects then. For
the intermediate changes, it is enough to bootstrap a single iteration in order
to construct a new baseline for the subsequent builds. To support this, we
propose to extend the interactive environment with an additional bootstrapping
operation that bootstraps a single iteration only. This will still find all defects
in the final fixpoint bootstrapping, but intermediate defects may go unnoticed
until then.

A common breaking change that occurs when evolving a meta-language is
the change of a feature F to F′. For example, this includes changing the syntax
of Stratego or changing the Sig-gen generator in SDF. We can decompose
a change of feature F to F′ in M by (1) adding F

′
as an alternative to F in

M, (2) executing a single bootstrap iteration, (3) changing all source artifacts
written in M to use F

′
instead of F, (4) executing a single bootstrap iteration, (5)

removing F from M, and finally (6) performing a fixpoint bootstrap.
We have successfully used this decomposition for changing features in our

evaluation.

5.6 Evaluation

To evaluate our bootstrapping method, we realized it in the Spoofax language
workbench and bootstrapped Spoofax’s eight meta-languages.

5.6.1 Implementation

We have implemented the model, general compilation algorithm, and general
bootstrapping algorithm of our sound bootstrapping method in the interactive
Eclipse environment of the Spoofax language workbench. With our implemen-
tation, a meta-language engineer can import meta-language definitions into
Eclipse, make changes to the definitions, and run bootstrapping operations
on the definitions to produce new baselines. The Eclipse console displays
information about the bootstrapping process, e.g. when a new iteration starts,
which artifacts were different during language product comparison, and any
errors that occur during bootstrapping.

When bootstrapping fails, changes are reverted, and the console shows ob-
served errors. Bootstrapping can also be cancelled by cancelling the bootstrap-
ping job. When bootstrapping succeeds, the new baseline and meta-language
definitions are dynamically loaded, such that the meta-language engineer can
start making changes to the definitions and run new bootstrapping operations.

5.6.2 Meta-languages

To evaluate the bootstrapping method and implementation, we bootstrap
Spoofax’s meta-languages. Spoofax currently consists of eight meta-languages:
SDF2, SDF3, Stratego, ESV, NaBL, TS, NaBL2, and DynSem. The generator
dependencies between these meta-languages are shown in fig. 5.2.

Syntax used to be specified in the SDF2 [153] language, but we have since

74

SDF2

SDF3

Stratego

ESV

NaBL
TS

NaBL2

Dynsem

Figure 5.2: Generator dependencies between meta-languages. A generator de-
pendency indicates that a meta-language requires (some) generators of a meta-
language.

moved on to the more advanced SDF3 [158] language with syntax templates
from which pretty-printers are automatically derived. SDF2 still exists because
of compatibility reasons (some languages still use it) but also to use it as a
target for generation. The SDF3 compiler generates SDF2, which the SDF2

compiler turns into a parse table. The SDF that we have been using as a
running example in this paper is actually SDF3.

ESV is a domain-specific meta-language for specifying editor services such
as syntax coloring, outlines, and folding. Every meta-language (including ESV
itself) uses ESV to specify its editor services, such that Spoofax can derive an
editor for the meta-languages.

Stratego [150, 18] is used for specifying term transformations and static se-
mantics in several (meta)languages, and is also a common target for generation.
For the name and type analysis domains, NaBL [89] is a domain-specific meta-
language for specifying name analysis, and TS for specifying type analysis in
terms of typing rules. NaBL2 is an evolution of NaBL that combines NaBL
and TS in one language. Again, the older version of the language is kept for
compatibility reasons. Finally, DynSem [147] is a meta-language for dynamic
semantics specification through operational semantics.

We have successfully bootstrapped these meta-languages with our bootstrap-
ping implementation.

Chapter 5. Bootstrapping Meta-DSLs in Language Workbenches 75

5.6.3 Bootstrapping Changes

We evaluate our bootstrapping method and its implementation in Spoofax
by bootstrapping changes to Spoofax’s meta-languages. We could not test
our bootstrapping implementation against existing changes made to the meta-
languages, because our bootstrapping implementation expects meta-languages
to be in a specific format which existing meta-languages are not. Therefore,
we converted the meta-languages to this format and constructed realistic and
interesting changes for evaluation.

We have logged the changes in the form of a Git repository1, which contains
a readme file explaining how to view the repository. Each change is tagged
with a version in the Git repository. For each tag, sources and binaries of the
created baseline are available. Tags for fixpoint bootstrapping operation also
include the bootstrapping log. We now go over each change scenario to explain
what we changed, why we made the change, and any issues that occurred.

Initial Bootstrap. To be able to bootstrap Spoofax’s meta-languages, we convert
the meta-language definitions to work with our bootstrapping implementation.
We successfully bootstrap the meta-languages by running a fixpoint bootstrap-
ping operation. Version v2.1.0 is the first fixpoint bootstrap that includes all
meta-languages, and will be used as a baseline for the next change.

SDF2 in SDF3. SDF2 currently exports a handwritten pretty-printer, which
is imported by SDF3 to pretty-print SDF2 source files. A handwritten pretty-
printer is bad for maintenance because it must be manually changed whenever
the syntax changes. However, a generated pretty-printer is automatically
updated in conjunction with changes to the syntax, which reduces the mainte-
nance effort. Therefore, we convert SDF2’s syntax to SDF3, such that SDF3’s
pretty-printer generator, generates a pretty-printer to replace the handwritten
one.

This is a breaking change because SDF3 imports SDF2’s pretty printer, and
we change the pretty-printer that SDF2 exports, so SDF3’s imports need to
change. We decompose the change into three parts by applying the feature
change decomposition shown previously: (1) we convert SDF2’s syntax to SDF3

and export the generated pretty-printer, while still exporting the handwritten
pretty-printer, (2) we change SDF3 to use the generated pretty-printer from
SDF2, and (3) we remove the handwritten pretty-printer from SDF2. We apply
each bootstrapping operation in the same environment, to test the interactive
language workbench environment.

We first convert SDF2’s syntax to SDF3, and run a single iteration bootstrap-
ping operation to produce baseline v2.1.1. However, we have converted the
syntax of SDF2 wrongly, constructor names are supposed to be in lowercase to
retain compatibility with existing SDF2 transformations. Furthermore, lower-
case constructor names such as module conflict with Stratego’s syntax, which
uses module as a reserved keyword. Therefore, we change SDF3 to support
quotation marks in constructor names to support 'module, which does not

1https://github.com/spoofax-bootstrapping/bootstrapping

76

https://github.com/spoofax-bootstrapping/bootstrapping

conflict with Stratego, and run a single iteration bootstrapping operation to
produce baseline v2.1.2.

We convert SDF2’s grammar again, with lowercase constructor names, and
prefix reserved keywords with ' where needed, run a single iteration boot-
strapping operation to create baseline v2.1.3. We use the newly generated
signatures and pretty-printer from SDF2 in SDF3, run a fixpoint bootstrapping
operation (to confirm that the pretty-printer works), which succeeds, and
produces baseline v2.1.4.

Finally, we clean up SDF2 by removing the handwritten pretty-printer. We
also fix a bug in Stratego that causes some imports to loop infinitely during
analysis, that was uncovered by the import dependencies between SDF2 and
SDF3, which now mutually import each other. A fixpoint bootstrapping
operation produces baseline v2.1.5.

Stratego in SDF3. We convert Stratego’s syntax from SDF2 to SDF3 to also
benefit from generated signatures and pretty-printers, instead of handwritten
ones. This breaking change is decomposed in a similar way. However, we
do not remove the handwritten pretty-printer yet, because multiple other
meta-languages are using it, while we only change NaBL to use the generated
one.

We convert Stratego’s syntax to SDF3, run a single iteration bootstrapping
operation to produce baseline v2.1.6. We change NaBL to use the newly gener-
ated Stratego signatures and pretty-printer, and run a fixpoint bootstrapping
operation to produce baseline v2.1.7.

Results. We were able to successfully bootstrap eight meta-languages with
realistic changes, including complex breaking changes that required multiple
bootstrapping steps. Bootstrapping is sound because it terminates, finds
defects when we introduce them, and produces a baseline when bootstrapping
succeeds. We were also able to run multiple bootstrapping operations in the
interactive language workbench environment, where the baseline produced
from bootstrapping is loaded into the environment and used to kickstart the
next bootstrapping operation.

5.7 Related Work

We now discuss related work on bootstrapping.

5.7.1 Bootstrapped General-Purpose Languages

Most general-purpose programming languages are bootstrapped. We discuss
early languages and compilers that were bootstrapped.

The first programming language to be bootstrapped in 1959 is the
NELIAC [66] dialect of the ALGOL 58 language. The main advantage of
bootstrapping the compiler is implementation in a higher-level language. In-
stead of writing the compiler in assembly, it could be written in NELIAC
itself, which is a much higher-level language than assembly. This allowed
the compiler to be more easily be cross-compiled to the assembly of other
machines, since the cross-compiled versions could be written in NELIAC.

Chapter 5. Bootstrapping Meta-DSLs in Language Workbenches 77

Lisp was bootstrapped by creating a Lisp compiler written in Lisp, which
was interpreted by an existing Lisp interpreter [142]. It is the first compiler that
compiled itself by being interpreted by an existing interpreter of that language.

The Pascal P compiler [110] is a compiler for the minimal subset of standard
PASCAL that it can still compile itself. It generates object code for a hypotheti-
cal stack computer SC. The first version of the compiler is written in assembly
for SC. Using an assembler or interpreter for SC, the first compiler is compiled
or executed. The compiler is bootstrapped by writing the compiler in itself,
and compiling it with the existing compiler. The bootstrapped compiler is
validated by comparing the assembled compiler binary and the bootstrapped
compiler binary, a convention that we still apply to this day.

5.7.2 Bootstrapping

We now look at literature on the art of bootstrapping itself.
Tombstone diagrams (also called T-diagrams) are a graphical notation for

reasoning about translators (compilers), first introduced in [16] and extended
with interpreters and machines in [31]. T-diagrams are most commonly used
to describe bootstrapping, cross-compilation, and other processes that require
executing complex chains of compilers, interpreters, and machines [95]. T-
diagrams are a useful tool for graphically reasoning about compilers and
bootstrapping, orthogonal to the bootstrapping framework presented in this
paper.

Axiomatic bootstrapping [8] is an approach for reasoning about bootstrap-
ping using axioms and equations between those axioms, to verify if a change
to a compiler will result in a successful bootstrap. They present axioms for
an interactive ML runtime and compiler, which compiles to native code, and
needs to deal with multiple architectures, calling conventions, and binary for-
mats. For example, instantiating the axioms and equations show that changing
the calling convention of the compiler causes bootstrapping to fail, and that a
special cross-compilation operation can bootstrap the change.

Axioms are a useful tool to verify if a single bootstrapping iteration will work,
and to reason about how a breaking change should be split up over multiple
bootstrapping steps. However, axioms cannot be used to find hidden defects,
such as the example from fig. 5.1, because those defects can manifest over an
arbitrary number of iterations. Axioms also cannot be used to reason if a fixed
point can be reached, for the same reason. Therefore, it is complementary to
the bootstrapping framework presented in this paper.

5.7.3 Language Workbenches

We now look at related work on bootstrapping in language workbenches.
Xtext [12] is a framework and IDE for the development of programming

languages and DSLs. Its Grammar and Xtend meta-languages are bootstrapped.
However, Xtext does not support dynamic loading, so it is not possible to
bootstrap the meta-languages in the language workbench environment.

MPS [159] is a projectional language workbench. It has several meta-
languages which are bootstrapped, but are read-only in the language work-

78

bench environment, meaning that they cannot be bootstrapped in the language
workbench environment. MPS supports dependencies between languages
through its powerful extension system. A meta-language can be extended,
and that extension could be bootstrapped. However, MPS does not support
versioning or undoing changes, making rollbacks impossible if defects are
introduced.

MetaEdit+ [78] is a graphical language workbench for domain-specific mod-
eling. Some of its meta-languages are bootstrapped, and can be bootstrapped
in the language workbench environment. When changes are applied, they
immediately apply to the bootstrapped meta-language and other languages.
If an applied change breaks the language, the change can be undone or aban-
doned entirely to go back to a previous working state, after which the error
can be fixed. However, they do not document their bootstrapping method, so
it cannot be applied to other language workbenches.

Ensō [97, 138] is a project to enable a software development paradigm based
on interpretation and integration of executable specification languages. Ensō’s
meta-languages are bootstrapped, but has no general framework for fixpoint
bootstrapping or versioning of meta-languages. The meta-language engineer
has to write code which handles fixpoint bootstrapping and versioning specifi-
cally for their meta-languages.

Rascal [81] is a metaprogramming language and IDE for source code analysis
and transformation. In the current version, Rascal’s parser is bootstrapped,
but the rest is implemented as an interpreter in Java. Development versions
include a new Rascal compiler which is completely bootstrapped. However,
the Rascal IDE has no general support for fixpoint bootstrapping or versioning
of languages.

SugarJ [37, 35] is a Java-based extensible programming language that allows
programmers to extend the base language with custom language features. In
principle, SugarJ can be bootstrapped, because its compiler is written in Java
and Java is a subset of SugarJ. However, in practice this was never done, and it
is not obvious if that would actually work.

Racket [146] is an extensible programming language in the Lisp/Scheme
family, which can serve as a platform for language creation, design, and imple-
mentation. DrRacket [41, 42] is the Racket IDE. Racket is mostly bootstrapped,
but the core of the compiler and interpreter are implemented in C. The parts
of Racket that are written in Racket can be changed interactively in DrRacket,
which affects subsequently running Racket programs. A defect introduced in
Racket’s self definition may prevent bootstrapping to succeed, which requires
a restart of the DrRacket IDE.

5.7.4 Staged Metaprogramming

Staged metaprogramming approaches such as MetaML [143], MetaOCaml [21],
Mint [162], and LMS [125] provide typesafe run-time code generation, which
ensures that generated code does not contain typing defects. However, these
approaches do not provide support for bootstrapping.

Chapter 5. Bootstrapping Meta-DSLs in Language Workbenches 79

5.8 Conclusion

Bootstrapping is an efficient means for detecting defects in compiler imple-
mentations and should be useful for language workbenches as well. However,
bootstrapping compiler-compilers of language workbenches needs to handle
the intricate interactions between meta-languages. Unfortunately, previous
literature on bootstrapping ignores these intricacies.

We present a sound method for meta-language bootstrapping. Given a base-
line and updated meta-language definitions, our bootstrapping algorithm con-
structs a new baseline through fixpoint self-application of the meta-languages.
We explain how our algorithms can be used in interactive environments and
how to decompose breaking changes that occur when evolving meta-languages.

We have implemented the approach in the Spoofax language workbench
and evaluated it by successfully bootstrapping eight interdependent meta-
languages, and report on our experience with bootstrapping two breaking
changes. This makes Spoofax into a laboratory for meta-language design
experimentation.

Acknowledgements

This research was supported by NWO/EW Free Competition Project
612.001.114 (Deep Integration of Domain-Specific Languages) and NWO VICI
Project (639.023.206) (Language Designer’s Workbench).

80

6
Reflection: Language Workbench Pipelines

Our work on bootstrapping enables systematic bootstrapping of the meta-
languages of language workbenches in an interactive metaprogramming sys-
tem. However, while working on bootstrapping, we noticed that language
workbenches implement a very complicated pipeline. A language workbench
pipeline builds (meta-)language specifications into (meta-)language products;
parses, analyses, and transforms programs using these products; and provides
feedback to programmers through editor services such as inline error messages,
code styling, structure outlines, and code completion. Such a pipeline roughly
flows as follows:

• Meta-language specifications are bootstrapped using a baseline, to produce
new meta-language products.

• Meta-language programs (which specify a language) go through the pipeline:
parse, analyze, transform, and provide feedback to the language developer,
using meta-language products.

• Language specifications are built into language products.

• Programs go through the pipeline and provide feedback to programmers,
using language products.

• When programs are transformed or compiled into other programs that
require more processing or feedback, the pipeline continues.

To make an interactive (meta)programming system based on such a pipeline,
it must be incremental, scalable, and easy to develop and maintain. While the
pipeline was improved a lot with our work on Spoofax Core and bootstrapping,
it still suffered from several problems which we now analyze.

Problem Analysis

The pipeline of Spoofax overspecifies certain dependencies, causing a loss of
incrementality. For example, when we change the name and type analysis
specification of a language, rebuild the language specification into a language
product, and then edit a program of that language, Spoofax will reparse the
program even though the parser did not change. This is because Spoofax does
not perform fine-grained dependency tracking, because the development effort
to do so would be large, requiring incrementality techniques such as caching,
cache invalidation, dependency tracking, and change detection.

Conversely, Spoofax’s pipeline also underspecifies certain dependencies,
causing loss of correctness. For example, when we change the NaBL meta-
language, and then edit a language specification that uses NaBL, Spoofax
will not automatically rebuild the NaBL meta-language, resulting in inconsis-
tent behavior. The language developer must first manually build (bootstrap)

81

NaBL, and then build their own language. This is again because Spoofax
does not perform fine-grained dependency tracking, but also because eagerly
rebootstrapping the meta-languages for every change would take a lot of time.

In some cases, Spoofax’s pipeline is incremental and correct. For example,
the separate transformation (compilation) of the source files of the SDF meta-
language into normalized SDF files for parse table generation, pretty-printer
rules, and syntactic code completion rules, is incremental and correct. Sepa-
rate compilation is simpler to implement because there are no dependencies
between source files. However, to achieve this, we still manually implement an
incremental pipeline with caching, invalidation, and change detection.

Finally, Spoofax’s pipeline is implemented in five different formalisms:

1. A custom build system that parses, analyzes, and transforms programs,
which is incremental only if the transformation is a separate transformation
(i.e., does not depend on other files or modules).

2. A language registry which (re)loads languages dynamically, enabling live
language development.

3. Maven POM files which instruct Maven to download Java dependencies
and compile Java code.

4. The meta-language bootstrapping system from the previous chapter.

5. An incremental build system for building language specifications, based on
Pluto [36], a sound and optimal incremental build system with dynamic
dependencies.

Because the pipeline is specified in five different formalisms, it is harder to
understand and change, and several opportunities for incrementality are lost
because different formalisms do not properly communicate.

Vision

Given this problem analysis, and the desire to develop correct and responsive
interactive programming systems for language workbench pipelines, we need
a systematic method for developing these pipelines. This method should have
a single formalism in which pipelines can be concisely and directly expressed,
without the pipeline developer having to explicitly think about incrementality.
Pipelines specified in this formalism are correctly and incrementally executed,
and scale down to low-impact changes and large inputs.

In the next chapter (chapter 7), we show PIE, a formalism for describing
pipelines, and a runtime for correctly and incrementally executing these pipe-
lines. PIE reuses the incremental build algorithm from Pluto [36]. However,
Pluto’s incremental build algorithm does not scale because it needs to traverse
the entire dependency graph after each change, which becomes slow with
many low-impact changes and large dependency graphs. In chapter 8 we solve
this scalability problem with a new change-driven incremental build algorithm.

82

7
PIE: A DSL, API, and Runtime for
Interactive Software Development Pipelines

Abstract

Context. Software development pipelines automate essential parts of the soft-
ware engineering processes, such as compiling and continuous integration
testing. In particular, interactive pipelines, which process events in a live envi-
ronment such as an IDE, require responsive results for low-latency feedback,
and persistence to retain low-latency feedback between restarts.

Inquiry. Developing an incrementalized and persistent version of a pipe-
line is one way to improve responsiveness, but requires implementation of
dependency tracking, cache invalidation, and other complicated and error-
prone techniques. Therefore, interactivity complicates pipeline development
if responsiveness and persistency become responsibilities of the pipeline pro-
grammer, rather than being supported by the underlying system. Systems
for programming incremental pipelines exist, but do not focus on ease of
development, requiring a high degree of boilerplate, increasing development
and maintenance effort.

Approach. We develop PIE, a DSL, API, and runtime for developing interac-
tive software development pipelines, where ease of development is a focus. The
PIE DSL is a statically typed and lexically scoped language. PIE programs are
compiled to programs implementing the API, which the PIE runtime executes
in an incremental and persistent way.

Knowledge. PIE provides a straightforward programming model that enables
direct and concise expression of pipelines without boilerplate, reducing the
development and maintenance effort of pipelines. Compiled pipeline programs
can be embedded into interactive environments such as code editors and IDEs,
enabling timely feedback at a low cost.

Grounding. Compared to the state of the art, PIE reduces the code required
to express an interactive pipeline by a factor of 6 in a case study on syntax-
aware editors. Furthermore, we evaluate PIE in two case studies of complex
interactive software development scenarios, demonstrating that PIE can handle
complex interactive pipelines in a straightforward and concise way.

Importance. Interactive pipelines are complicated software artifacts that power
many important systems such as continuous feedback cycles in IDEs and
code editors, and live language development in language workbenches. New
pipelines, and evolution of existing pipelines, is frequently necessary. Therefore,
a system for easily developing and maintaining interactive pipelines, such as
PIE, is important.

83

7.1 Introduction

A pipeline is a directed acyclic graph of processors in which data flows from
the output of one processor to the input of its succeeding processors. Pipelines
are ubiquitously used in computer hardware and software. E.g., in hardware,
CPUs contain instruction pipelines that allow interleaved execution of multi-
ple instructions that are split into fixed stages. Software pipelines compose
software components by programmatically connecting their input and output
ports (e.g., UNIX pipes).

In software development, pipelines are used to automate parts of the soft-
ware engineering process, such as building software systems via build scripts,
or continuously testing and integrating the composition of subsystems. Such
pipelines are suitable for batch-processing, and often run isolated on remote
servers without user interaction.

Interactive software development pipelines build software artifacts, but react
instantly to changes in input data and provide timely feedback to the user.
Typical examples are continuous editing of source code in an IDE, providing
feedback through editor services such as syntax highlighting; selective re-
execution of failing test cases in the interactive mode of a build system during
development; or development of languages in a language workbench [39].

Interactive pipelines focus on delivering timely results when processing an
event, such that the user can subsequently act on the results. Furthermore, an
interactive software development pipeline should persist its state on non-volatile
memory so that a session can be restarted without re-execution. Especially
in the context of an IDE, restarting the development environment should not
trigger re-execution of the entire pipeline, especially if pipeline steps are costly,
such as advanced static analyses [141].

Interactivity complicates the development of pipelines, if timeliness and per-
sistency become responsibilities of the pipeline programmer, rather than being
supported by the underlying system. Developing an incrementalized version
of an expensive operation is one way to reduce the turnaround time when
re-executing the operation. However, implementing support for incrementality
in a pipeline is typically complicated and error-prone. Similarly, persisting the
result of expensive operations reduces the turnaround time when restarting a
session, but requires tedious management of files or a database. Furthermore,
when persistency is combined with incrementality, dependency tracking and
invalidation is required, which is also complicated and error-prone. Therefore,
an expressive system for easily developing correct incremental and persistent
interactive software development pipelines is required.

One system that partially achieves this is Pluto [36], a sound and optimal
incremental build system. Pluto supports dynamic dependencies, meaning that
dependencies to files and other build steps are created during build execution
(as opposed to before or after building), enabling both increased incrementality
through finer-grained dependencies, and increased expressiveness. While Pluto
focusses on build systems, it is well suited for expressing correct incremental
and persistent pipelines. However, ease of development is not a focus of
Pluto, as pipelines are implemented as Java classes, requiring significant

84

boilerplate which leads to an increase in development and maintenance effort.
Furthermore, persistence in Pluto is not fully automated because pipeline
developers need to manually thread objects through pipelines to prevent
hidden dependencies, and domain-specific features such as file operations are
not first class. These are open problems that we would like to address.

In this paper, we introduce PIE, a DSL, API, and runtime for programming
interactive software development pipelines, where ease of development is
a focus. The PIE DSL provides a straightforward programming model that
enables direct and concise expression of pipelines, without the boilerplate
of encoding incrementality and persistence in a general-purpose language,
reducing development and maintenance effort. The PIE compiler transforms
high-level pipeline programs into programs implementing the PIE API, result-
ing in pipeline programs that can be incrementally executed and persisted
to non-volatile memory to survive restarts with the PIE runtime. Compiled
pipeline programs can be embedded in an interactive environment such as
an IDE, combining coarse grained build operations with fine-grained event
processing. To summarize, the paper makes the following contributions:

• The PIE language, a DSL with high-level abstractions for developing inter-
active software development pipelines without boilerplate.

• The PIE API for implementing foreign pipeline functions, and as a compila-
tion target for the DSL, with reduced boilerplate.

• The PIE runtime that executes pipelines implemented in the API in an
incremental and persistent way, which fully automates persistence and
automatically infers hidden dependencies.

• An evaluation of PIE in two critical case studies: (1) modeling of the pipeline
of a language workbench in an IDE setting, and (2) a pipeline for incremental
performance testing.

The PIE implementation is available as open source software [84].

Outline. The paper continues as follows. In section 7.2 we describe require-
ments for interactive software development pipelines, review the state of the
art, and list open problems. In section 7.3 we illustrate PIE by example. In
section 7.4 we describe the PIE API and runtime. In section 7.5 we describe
the syntax, static semantics, and compilation of the PIE DSL in more detail. In
sections 7.6 and 7.7 we present critical case studies of the application of PIE in
an interactive language workbench and an interactive benchmarking setting.
In section 7.8 we discuss related work. In section 7.9 we discuss directions for
future work. Finally, we conclude in section 7.10.

7.2 Problem Analysis

In this section, we first describe requirements for interactive software develop-
ment pipelines, review the state of the art, and list open problems.

Chapter 7. PIE: A Framework for Interactive Software Development Pipelines 85

Text

Generate
Parse Table Parse

Code
Editor

Error
messages

Figure 7.1: Example of an interactive software development pipeline, where text
from a code editor is parsed, and parse error messages are displayed in the editor.

7.2.1 Requirements

We first describe the requirements for interactive software development pipe-
lines. In order to do so, we use the example pipeline from fig. 7.1 as the
running example in this section. In this pipeline, a code editor parses its text
buffers in order to display error messages interactively to the programmer.
Parsing requires a parse table, which is generated by an external process and
may change when a new version of a language is deployed, with new syn-
tax that requires regeneration of the parse table. We identify the following
requirements for interactive software development pipelines:

Incrementality. A pipeline should attempt to recompute only what has been
affected by a change. For example, when only a text buffer in the code editor
changes, the pipeline reparses the text and new error messages are displayed,
but the generated parse table is reused because it did not change.

Correctness. Incremental pipeline executions must have the same results as
from-scratch batch executions. For example, if the parse table does change, the
pipeline also reparses text and displays new error messages.

Persistence. Results of computation should be persisted to disk in order to
enable incrementality after a restart of the pipeline. For example, if we restart
the code editor, the parse table is retrieved from disk instead of requiring a
lengthy recomputation.

Expressiveness. In practice, pipelines are a lot more complex than the simple
example shown here. It should be possible to express more complex pipelines
as well.

Ease of development. Pipelines are complex pieces of software, especially
when the previous requirements are involved. Therefore, the development and
maintenance effort of pipelines should be low.

7.2.2 State of the Art

We now review the state of the art in interactive software development pipe-
lines, and determine to what extent existing tools meet the requirements,
focussing on build systems.

Make [133], and systems with similar dependency management (e.g., Ninja,
SCons, MSBuild, CloudMake, Ant), are tools for developing build systems
based on declarative rules operating on files. These tools support incremental

86

Text (buffer 1)
requires file
provides file

requires build

Text (buffer 2)

Generate
Parse Table

Parse

Code
Editorsyntax.tblsyntax.sdf3

Parse

Error
messages

Error
messages

Figure 7.2: Pluto dependency graph created by executing the pipeline from fig. 7.1,
where the code editor has 2 open text buffers.

builds, but incrementality is limited to static file dependencies which are
specified up front in the build rules. Because dependencies cannot be the result
of computation, the dependencies must either be soundly overapproximated,
which limits incrementality, or underapproximated, which is unsound. For
example, a Makefile that determines the version of a Java source file, in
order to parse it with the corresponding parse table file, must depend on all
parse table files instead of a single one. Therefore, a system that supports a
more expressive dependency mechanism is required. A detailed discussion of
dependency expressiveness can be found in section 7.8, but in this section, we
focus on the system with the highest dependency expressivity: Pluto.

Pluto [36] is a sound and optimal incremental build system with support
for dynamic dependencies. A build system in Pluto is implemented in terms
of builders, which are functions that perform arbitrary computations and
dynamically record dependencies to files and other builders during execution.
Executing a builder with an input produces a build, containing an output object
and recorded dependencies.

Figure 7.2 illustrates the dependency graph Pluto produces when it executes
the pipeline of fig. 7.1 where the code editor has two open text buffers. The
dependency graph differs from the pipeline by containing builds (function
calls) instead of builders (function definitions). For example, the pipeline
has one parse builder, but two parse builds, one for each text buffer. We
use this dependency graph to illustrate Pluto’s adherence to requirements for
interactive pipelines:

Incrementality. The code editor has two text buffers open, which have separate
dependencies to a parse build. When one text buffer changes, only the corre-
sponding parse build is recomputed. Therefore, Pluto supports fine-grained
incrementality.

Correctness. The parse builds depend on the parse table build, such that when
the parse table is regenerated, the parse builds are re-executed, and new error
messages are displayed in the editor. Pluto enforces this by performing hidden
dependency detection. That is, if a build requires a file, without requiring the
build that provides that file, Pluto marks this as an error and aborts execution.

Persistence. While not shown in the dependency graph, builds are persisted

Chapter 7. PIE: A Framework for Interactive Software Development Pipelines 87

to disk to survive restarts.

Expressiveness. Dependencies are recorded during build execution, allowing
builds to depend on files or call other builds, based on results of computation.
For example, when parsing Java code, the parse builder may choose to depend
on a different parse table, based on whether we want to parse text of version 8

or 9 of Java. This greatly increases the expressiveness required for interactive
software development pipelines.

Ease of development. Pluto build systems are implemented in Java, requiring
significant boilerplate.

To summarize, Pluto provides a great foundation for implementing interactive
software development pipelines, but does not cater to the pipeline developer
because ease of development is not a focus, leading to a higher implementation
and maintenance effort than necessary.

7.2.3 Open Problems

The main problem is that Pluto build systems are not easy to develop. We list
four concrete open problems.

Boilerplate. Pipelines in Pluto are written in Java, which has a rigid and
verbose syntax, requiring significant boilerplate. Pipelines are implemented
as classes extending the Builder abstract class, as seen in listing 7.1. Such a
class requires generics for specifying the input and output type, a factory and
constructor enabling other builders to create instances of this builder to execute
it, a persistentPath method for persistence, and finally a build method that
performs the actual build computation. The Parse builder requires an inner
class for representing multiple input values, which must correctly implement
equals and hashCode, which Pluto uses to detect if an input has changed for
incrementality. Finally, calling other builders through requireBuild is verbose,
because the factory is referenced, and the result is unwrapped with .val.

Semi-automated persistence. Pipeline developers are required to implement
the persistentPath method of a builder and return a unique and deterministic
filesystem path where the result of the builder and its input are persisted. It
must be unique to prevent overlap with other builders or other inputs. For
example, if the Parse builder persists results to the same file for different
text buffers, it overwrites the persisted result of other builds. It must be
deterministic such that the persisted file can later be found again. Since the OS
filesystem is used for persistence, there are also limitations to which characters
can be used in paths, and to how long a path can be. For example, on Windows,
the current practical limit is 260 characters which is frequently reached with
deeply nested paths, causing persistence to fail.

Hidden dependencies. Hidden dependency detection is crucial for sound incre-
mental builds, but is also cumbersome. In the pipeline in listing 7.1, we must
construct a build request object for the parse table generator, pass that object to
the Parse builder, and require it to depend on the parse table generator. This
becomes tedious especially in larger and more complicated pipelines.

88

class GenerateTable extends Builder<File, Out<File>> {
static BuilderFactory<File, Out<File>, GenerateTable> factory =

BuilderFactoryFactory.of(GenerateTable.class, File.class);

GenerateTable(File syntaxFile) {
super(syntaxFile);

}
@Override File persistentPath(File syntaxFile) {

return new File("generate-table-" + hash(syntaxFile));
}
@Override Out<File> build(File syntaxFile) throws IOException {

require(syntaxFile);
File tblFile = generateTable(syntaxFile);
provide(tblFile);
return OutputPersisted.of(tblFile);

}
}
class Parse extends Builder<Parse.Input, Out<ParseResult>> {

static class Input implements Serializable {
File tblFile; String text; BuildRequest tblReq;
Input(File tblFile, String text, BuildRequest tblReq) {

this.tblFile = tblFile;
this.text = text;
this.tblReq = tblReq;

}
boolean equals(Object o) {/* omitted */ }
int hashCode() {/* omitted */ }

}
@Override Out<ParseResult> build(Input input) throws IOException {

requireBuild(input.tblReq);
require(input.tblFile);
return OutputPersisted.of(parse(input.tblFile, input.text));

}
/* ... other required code omitted ... */

}
class UpdateEditor extends Builder<String, Out<ParseResult>> {

@Override Out<ParseResult> build(String text) throws IOException {
File syntaxFile = new File("syntax.sdf3");
File tblFile = requireBuild(GenerateTable.factory, syntaxFile).val;
BuildRequest tblReq = new BuildRequest(GenerateTable.factory, syntaxFile);
return requireBuild(Parse.factory, new Parse.Input(tblReq, tblFile, text));

}
/* ... other required code omitted ... */

}

Listing 7.1: The parsing pipeline implemented as Java classes in Pluto.

Chapter 7. PIE: A Framework for Interactive Software Development Pipelines 89

Text

lexical.sdf

contextfree.sdf

lexical.norm

contextfree.norm
parse.tbl

AST

normalize

normalize

generate
table parse

Editor

Tokens style Styling

(1)
(5)

(2) (3)

(4)Messages

Figure 7.3: The example pipeline: (1) normalization of SDF syntax definition source
modules, (2) generation of a parse table from the normalized modules comprising
the definition for a language, (3) parsing the text of an editor using the parse table,
(4) computing the styles for the parsed tokens, and (5) displaying the styling and
error messages in an editor.

Missing domain-specific features. Finally, path (handle to file or directory) and
list operations, which are prevalent in software development pipelines, are not
first class in general-purpose languages such as Java.

Solving these concrete problems requires a proper abstraction over interac-
tive software development pipelines, which we present in subsequent sections.

7.3 PIE by Example

To solve the open problems from the previous section, we introduce PIE: a DSL,
API, and runtime for developing and executing interactive software develop-
ment pipelines. Pipelines in PIE have minimal boilerplate, fully automated per-
sistence, automatically infer hidden dependencies, and have domain-specific
features such as path and list operations. In this section we illustrate PIE by
means of an example that combines building and interaction. We discuss the
example and the requirements for this pipeline, present the pipeline in the PIE
DSL, and discuss its features and execution.

Example Pipeline: Syntax-Aware Editors. As example we consider a code editor
with syntax styling based on a syntax definition. The pipeline to support this
use case is depicted by the diagram in fig. 7.3. It generates a parse table from
a syntax definition, parses the program text of an editor, computes syntax
styling for each token, and finally applies the computed syntax styling to the
text in the editor. We want this pipeline to be interactive by embedding it into
the IDE such that changes to the syntax definition as well as changes to the
text in an editor are reflected in updates to syntax styling. The example in
fig. 7.3 is representative for language workbenches [38, 39], which support edits
on a language definition that are immediately reflected in the programming
environment that is derived from it.

Concretely, we instantiate the pipeline with components from the Spoofax
language workbench [75]. We process an SDF [153, 158] syntax definition
in two stages. First, syntax definition modules are separately transformed
(normalized) to a core language. Next, the normalized modules comprising
the syntax definition for a language are transformed to a parse table. The
parse table is interpreted by a scannerless parser [152, 15] to parse the contents
of an editor, returning an AST, token stream, and error messages. A syntax

90

func normalize(file: path, includeDirs: path*) -> path = {
requires file; [requires dir with extension "sdf" | dir <- includeDirs];
val normFile = file.replaceExtension("norm");
val depFile = file.replaceExtension("dep");
exec(["sdf2normalized"] + "$file" + ["-I$dir" | dir <- includeDirs] +

"-o$normFile" + "-d$depFile");
[requires dep by hash | dep <- extract-deps(depFile)];
generates normFile; normFile

}
func extract-deps(depFile: path) -> path* = foreign
func generate-table(normFiles: path*, outputFile: path) -> path = {

[requires file by hash | file <- normFiles];
exec(["sdf2table"] + ["$file" | file <- normFiles] + "-o$outputFile");
generates outputFile; outputFile

}
func exec(arguments: string*) -> (string, string) = foreign

data Ast = foreign {} data Token = foreign {} data Msg = foreign {}
data ParseTable = foreign {} data Styling = foreign {}
func table2object(text: string) -> ParseTable = foreign
func parse(text: string, table: ParseTable) -> (Ast, Token*, Msg*) = foreign
func style(tokenStream: Token*) -> Styling = foreign
func update-editor(text: string) -> (Styling, Msg*) = {

val sdfFiles = [./lexical.sdf, ./contextfree.sdf];
val normFiles = [normalize(file, [./include]) | file <- sdfFiles];
val parseTableFile = generate-table(normFiles, ./parse.tbl);
val (ast, tokenStream, msgs) = parse(text, table2object(read
parseTableFile));
(style(tokenStream), msgs)

}

Listing 7.2: PIE DSL program for the pipeline illustrated in fig. 7.3. Identifiers of
foreign functions and data types are omitted for brevity.

highlighter annotates tokens in the token stream with styles.

Integrated Pipelines with the PIE DSL. Listing 7.2 shows the pipeline program
in the PIE DSL. We first explain what each function does, and then discuss the
features and execution of PIE in more detail.

The normalize function executes a command-line tool to normalize an SDF
source file into a normalized version that is ready for parse table generation,
and retrieves (dynamic) dependencies from the generated dependency (.dep)
file, implemented by the extract-deps foreign function. The generate-table
function executes a command-line tool on normalized files, creating a parse
table file. The parse function, when given a parse table object, parses text into
an AST, token stream, and error messages. The style function produces a
styling based on a token stream, which can be used in source code editors for
styling the text of the source code. Finally, the update-editor function defines
the complete pipeline by composing all previously defined functions.

Composing Pipelines with Functions. In PIE, pipelines are defined in terms of
function definitions which are the reusable processors of the pipeline, and
function calls that compose these processors to form a pipeline. Function calls

Chapter 7. PIE: A Framework for Interactive Software Development Pipelines 91

register a dynamic call dependency from caller to callee.

Domain-Specific Types and Dependencies. Since build pipelines often interact
with files and directories, PIE has native support for path types and several
operations on paths. Path literals such as ./lexical.sdf provide an easy way
to instantiate relative or absolute paths. The requires operation dynamically
registers a path dependency from the current function call to the path, indicating
that the function reads the path, whereas generates records a dependency
indicating the function creates or writes to the path. The read operation reads
the text of a given path, and also registers a path dependency.

Path dependencies to directories can specify a filter such as with extension
"sdf" to only create dependencies to files inside the directory that match
the filter. Finally, path dependencies can specify how changes are detected.
For example requires dep by hash indicates that a change is only detected
when the hash of the file changes, instead of the (default) modification date,
providing more fine grained dependency tracking.

Foreign Functions and Types. Some functions are foreign, indicating that they
are implemented outside of the PIE DSL, either because they are outside of the
scope of the DSL (e.g., text processing required for extract-deps), or because
they require system calls. For example, exec is a foreign function that takes a
list of command-line arguments, executes a process with those arguments, and
returns its standard output and error text. Unlike read, exec is not first class,
because it does not induce special (path) dependencies.

PIE contains several built-in types such as string and bool, but foreign types
can be defined to interface with existing types. Foreign data types are required
to integrate with existing code, such as an editor that expects objects of type
Styling and Msg, returned by foreign functions parse and style.

Comprehensions. Pipelines frequently work with lists, which are natively sup-
ported in PIE by annotating a type with * multiplicity. Lists are instantiated
with list literals between [], and concatenated using +. List comprehensions
such as [f(elem) | elem <- elems] transform a list into a new list by applying
a function f to each element of the list.

Execution and IDE Integration. To execute a pipeline, we compile it into a
program implementing the PIE API. We embed the compiled pipeline, together
with the PIE runtime, into an IDE such as Eclipse. When an editor in Eclipse is
opened or changed, it calls the update-editor function through the PIE runtime
with the text from the editor. The PIE runtime then incrementally executes
(and persists the results of) the pipeline and returns Styling and Msg objects,
which Eclipse displays in the editor. Because the results of the pipeline are
persisted, a restart of Eclipse does not require re-execution of the pipeline. This
becomes especially important with larger pipelines.

Solutions to Open Problems. PIE solves the open problems listed in section 7.2.
First of all, PIE minimizes boilerplate by enabling direct expression of pipelines
in the PIE DSL through function definitions, function calls, foreign data types
and functions, and path dependencies. The compiler of the DSL generates

92

the corresponding boilerplate. Furthermore, PIE supports fully automated
persistence. There is no need to specify where the result of a function call is
stored. The PIE runtime stores results automatically based on the function
name and input arguments. It persists the function arguments, return value,
and dependencies in a key-value store, preventing filesystem issues.

Hidden call dependencies are automatically inferred. In other words, when a
function requires files that are generated by another function, the first function
does not explicitly need to call the latter. For example, generate-table requires
files that normalize generates, but does not need to explicitly call normalize
to record a call dependency which keeps the required files up-to-date. The
PIE runtime infers these dependencies by keeping track of which function call
generated a file, further reducing boilerplate. Note that this only infers call
dependencies, not path dependencies, which still need to be declared by the
pipeline programmer.

Finally, the PIE DSL caters to the pipeline developer by including domain-
specific features – such as path type and operations, list type and comprehen-
sions, string and path interpolation, and tuples – to make pipeline development
convenient.

Solving these problems reduces the implementation and maintenance effort.
The equivalent Pluto implementation for this pipeline requires 396 lines of
Java code in 8 files (excluding comments and newlines), whereas the PIE
implementation is over 6 times shorter by only requiring 62 lines of code
in 2 files. The PIE code consists of 34 lines of PIE DSL code, and 28 lines of
PIE API code for interfacing with foreign functions.

7.4 PIE API and Runtime

In this section, we review the PIE API and runtime, and our reasons for not
directly reusing the Pluto runtime.

7.4.1 API

The PIE API is a Kotlin [71] library for implementing PIE function definitions
on the JVM. Kotlin is a programming language with a focus on reducing
verbosity and increasing extensibility compared to Java, while maintaining
fully compatible with Java by running on the JVM. It shares many goals with
Scala [34], but additionally focusses on fast compile times and simplicity. We
chose to specify the API in Kotlin instead of Java, because it has a more flexible
and concise syntax. The PIE API is heavily based on the Pluto API, but uses
terminology from the pipeline domain (functions instead of builders), and
requires less boilerplate.

Listing 7.3 illustrates the parsing pipeline implemented in the PIE API. A
pipeline function definition is implemented by creating a class which subtypes
the Func interface and overrides the exec function. The exec function takes
an input, is executed in an execution context ExecContext, and produces an
output. The execution context enables calling other pipeline functions through
the requireCall function, and recording of path dependencies through the
require and generate functions, using Kotlin’s extension functions to make

Chapter 7. PIE: A Framework for Interactive Software Development Pipelines 93

typealias In = Serializable
typealias Out = Serializable
interface Func<in I:In, out O:Out> {

fun ExecContext.exec(input: I): O
}
interface ExecContext {

fun <I:In, O:Out, F:Func<I, O>> requireCall(clazz: KClass<F>, input: I,
stamper: OutputStamper = OutputStampers.equals): O

fun require(path: PPath, stamper: PathStamper = PathStampers.modified)
fun generate(path: PPath, stamper: PathStamper = PathStampers.hash)

}

class GenerateTable: Func<PPath, PPath> {
override fun ExecContext.exec(syntaxFile: PPath): PPath {

require(syntaxFile)
val tableFile = generateTable(syntaxFile)
generate(tableFile)
return tableFile

}
}
class Parse: Func<Parse.Input, ParseResult> {

data class Input(val tableFile: PPath, val text: String): Serializable
override fun ExecContext.exec(input: Input): ParseResult {

require(input.tableFile)
return parse(input.tableFile, input.text)

}
}
class UpdateEditor: Func<String, ParseResult> {

override fun ExecContext.exec(text: String): ParseResult {
val tableFile = requireCall(GenerateTable::class, path("syntax.sdf3"))
return requireCall(Parse::class, Parse.Input(tableFile, text))

}
}

Listing 7.3: The PIE Func API and implementation of a parsing pipeline in that API.

these functions accessible without a qualifier. The PIE runtime uses this
execution context for dependency tracking and hidden dependency inference.

Inputs of Func implementations must be immutable, Serializable, and have
an equals and hashCode implementation. These properties are required so that
the PIE runtime can assume objects do not change inside a cache, can persist
objects to non-volatile memory, and can detect if an object has changed for
incrementality. The types used in listing 7.3 all adhere to these properties. Fur-
thermore, Kotlin’s data classes automatically implement equals and hashCode,
reducing boilerplate for multiple input arguments.

Outputs of functions must adhere to the same properties, with the exception
that outputs can opt-out of serialization. Some outputs are in-memory object
representations and cannot be serialized, are too large to be serialized, or
are not immutable. PIE supports these kind of objects as outputs of function
calls, by wrapping the output in a special class (OutTransient) which prevents
serialization. PIE still caches these outputs in volatile memory. However, when
the runtime is restarted (thus clearing the in-memory cache), and such an

94

output is requested by calling the function, PIE re-executes the function to
recreate the output.

Although it is possible to implement a full pipeline directly in this API,
there is more boilerplate involved compared to writing the pipeline in the
PIE DSL. Therefore, the API should only be used for implementing foreign
functions, such as interfacing with a parse table generator and parser, or for ex-
ecuting system calls such as executing command-line tools. However, reduced
boilerplate for implementing foreign functions reduces implementation and
maintenance effort.

7.4.2 Runtime

The job of the PIE runtime is to execute a pipeline – represented as a set of Func
implementations, from compiled PIE DSL code, and from foreign function
implementations against the PIE API – in an incremental and persistent way.
The runtime is largely based on the Pluto runtime, from which we inherit the
sound and optimal incremental and persistent build algorithm. However, we
incorporate fully automated persistence and hidden dependency inference in
the PIE runtime.

The runtime calls a Func by calling its exec function with an input argument,
under an execution context. During execution, a function may call other
functions, and record path dependencies, through the execution context, and
finally return a value. After a function has been executed, the runtime persists
the returned value and recorded dependency information in a key-value
store, by mapping the function call (Func instance and input argument) to
the returned value and dependency information. This mapping is used by
the incremental build algorithm as a cache and for retrieving dependency
information. We use the LMDB [140] key-value database, which persists to
a single file on the filesystem, and is memory-mapped for fast read access.
Therefore, we fully automate persistence, meaning that pipeline developers
are freed from reasoning about persistence.

To infer hidden dependencies, whenever a path (handle to file or directory)
is generated, the runtime maps (in the key-value store) the path to the function
call that generated the path. Whenever a path is required, the runtime consults
the mapping to look up if that path was generated by a function call. If it
was, then a function call dependency is inferred from the current executing
function call to the function call that generated the path. For example, in
listing 7.3, a call of GenerateTable generates the parse table file, which a call
of Parse requires. The runtime then infers a dependency from the Parse call
to the GenerateTable call. This is sound, because there may be at most one
function call that generates a single path. We validate this property and abort
execution when multiple function calls generate a single path. Therefore, we
automatically infer hidden dependencies.

7.4.3 Reusing the Pluto Runtime

We have implemented our own API and runtime, instead of reusing the Pluto
runtime, for the following three reasons. First of all, we reimplemented parts

Chapter 7. PIE: A Framework for Interactive Software Development Pipelines 95

of the Pluto runtime in order to better understand Pluto’s incremental rebuild
algorithm and concrete implementation. Second, we wanted to reduce boil-
erplate for writing foreign functions. Third, automated persistence would be
hard to implement in Pluto, because Pluto requires every pipeline function to
implement a persistentPath function (as seen in listing 7.1), which returns a
unique filesystem path for persisting the result of executing a function with a
particular input. We could generate a persistentPath implementation from the
PIE DSL, but then foreign functions still need to manually implement this func-
tions. Furthermore, filesystem paths may not contain certain characters, and
have size limits (e.g., 260 characters on many Windows systems), which makes
using files as a persistent storage complicated and error prone. Therefore, in
the PIE runtime, we persist to a memory-mapped database.

7.5 PIE Language

In this section, we present PIE’s language definition. We present PIE’s syntax
specification, describe domain-specific language constructs, and briefly look at
static semantics. Finally, we describe compilation from the PIE language to the
API, providing incremental and persistent pipeline execution when executed
with the PIE runtime.

7.5.1 Syntax

Listing 7.4 shows PIE’s syntax through an EBNF grammar specification. PIE
programs are composed of (foreign) function definitions and foreign data types
at the top level. Its constructs can be categorized into base constructs that can
be directly translated to a general purpose language, and special constructs for
the domain of interactive software development pipelines that require a special
translation. Base constructs include regular unary and binary operations,
control flow, list comprehensions, value declarations and references, function
definitions and calls, early return or failure, literals, and string interpolation.
Special constructs include path types, path literals, dependencies (requires
and generates), and operations (exists, read, list, and walk); foreign function
definitions and calls; and foreign data definitions.

We intentionally keep PIE’s constructs simple in order to support incre-
mentality and persistence, with concise expression of pipelines, while still
supporting a wide range of different pipelines. For example, PIE does not
allow assignment or other forms of mutation, because mutation complicates
incrementality support. Instead, immutability allows the dynamic semantics
to perform caching for improved incrementality.

7.5.2 Static Semantics

PIE is a statically typed and lexically scoped language. As base types, PIE
has the unit type, booleans, integer, strings, paths, and user-defined foreign
data types. Types can be made optional (t?), into a list (t*), and composed
into tuples ((t1, t2)). All data type and function definitions are explicitly
typed, but types are inferred inside function bodies. Static type checks prevent

96

idchr = ?[a-zA-Z0-9-_]?;
id = {idchr};
qid = {idchr | "."};
int = ["-"]{?[0-9]?};

func_head = id "(" {id ":" t, ","} ")" "->" t;
func_def = "func" func_head "=" ("foreign" id|"foreign java" qid "#" id|e);
data_def = "data" id [":" id] "foreign java" id "{" {"func" func_head} "}";
program = {func_def | data_def};

t = "unit"|"bool"|"int"|"string"|"path"| id | t "?" | t "*" | "(" {t, ","} ")";

e = "{" {e, ";"} "}" | "(" e ")"
| "!" e | e "!" | e ("==" | "!=" | "||" | "&&" | "+") e
| "if" "(" e ")" e ["else" e]
| "[" e "|" binder "<-" e "]" | "val" binder "=" e
| id | id "(" {e, ","} ")" | e "." id "(" {e, ","} ")"
| "requires" e ["with" filter] ["by" stamper] | "generates" e ["by" stamper]
| "exists" e | "read" e | "list" e ["with" filter] | "walk" e ["with" filter]
| "return" e | "fail" e
| "unit" | "true" | "false" | int | "null"
| "(" {e, ","} ")" | "[" {e, ","} "]"
| '"' {?~[\"\$\n\r]? | '\\$' | '\\"' | "$" id | "${" e "}"} '"'
| ["."] "/" {?~[\n\r\$\,\;\]\)\]? | '\\ ' | '\\$' | "$" id | "${" e "}"};

binder = bind | "(" {bind, ","} ")";
bind = id | id ":" t;

filter = ("regex" | "pattern" ["s"] | "extension" ["s"]) e;

stamper = "exists" | "modified" | "hash";

Listing 7.4: PIE’s syntax definition in a dialect of EBNF.

mistakes in the pipeline from appearing at runtime. For example, it is not
possible to call a pipeline function with an argument of the wrong type, as
PIE’s type checker will correctly mark this as a type error. Name binding
prevents mistakes such as duplicate definitions and unresolved references.

7.5.3 Compilation

To execute a PIE program with the PIE runtime, we compile it to a Kotlin pro-
gram implementing the PIE API. We compile every function definition in the
program to a class implementing Func, with corresponding input and output
types, and compile its function to the exec method. Multiple function argu-
ments, as well as tuple types, are translated into an immutable data class, im-
plementing the required equals, and hashCode functions, and the Serializable
interface. Function calls are compiled to requireOutput calls on the execution
context, which records a function call dependency and incrementally executes
that function.

Path dependencies are translated to require and generate calls on the exe-
cution context, which records path dependencies, and which infers hidden

Chapter 7. PIE: A Framework for Interactive Software Development Pipelines 97

dependencies when requiring a generated file. Path dependencies can use
different stampers, which instruct the PIE runtime as to how generated and
required paths are checked for changes during incremental execution. The
exists stamper checks that a file or directory exists, modified compares the
modification date of a file or directory, and hash compares the hash of a file,
or the hashes of all files in a directory. The exists, read, list, and walk path
operations are translated to function calls of built-in functions that perform
these tasks and register the corresponding path dependencies. For example,
the walk construct recursively walks over files and directories in a top-down
fashion, returns them, and registers dependencies for each visited directory.
Some path constructs also accept a filter that filters down the visited files and
directories. For example, a requires on a directory with a filter only creates
path dependencies for files and directories that are accepted by the filter. A
regular expression, ANT pattern, or file extension filter can be used.

Other constructs (ones that do not affect incrementality or persistence) are
compiled directly to Kotlin expressions. For example, list comprehensions are
translated to maps.

7.6 Case Study: Spoofax Language Workbench

We evaluate PIE using two critical [43] case studies that are representative
for the domain of interactive software development pipelines. In this section
we discuss a case study in the domain of language workbenches. In the next
section we discuss a case study in the domain of benchmarking.

Spoofax [75] is a language workbench for developing textual programming
languages. Spoofax supports simultaneous development of a language defini-
tion and testing the programming environment generated from that language
definition. This requires complex pipelines, including bootstrapping of lan-
guages [86]. In this case study we evaluate the feasibility of implementing the
Spoofax pipeline using PIE.

In the Spoofax ecosystem, a programming language is specified in terms of
multiple high-level declarative meta-language definitions, where each meta-
language covers a language-independent aspect (e.g., separate syntax defini-
tion [153], name binding rules [5, 109, 89], or the dynamic semantics definition
of a programming language [147]). Subsequently, Spoofax generates a com-
plete implementation of a programming language, given all the meta-language
definitions. Dividing a programming language implementation into linguistic
abstractions in terms high-level meta-language definitions is the key enabler for
maintainability of a language, however it complicates the necessary (interactive)
software development pipelines.

Spoofax supports interactive language development in the Eclipse IDE, in-
cluding developing multiple language specifications side-by-side. In contrast
to a regular IDE that solely processes changes of source files in the source
language, Spoofax additionally comes with support for interactive software
development pipelines that respond to language specification changes. For
example, changes to the syntax specification are reflected by reparsing source
files of the language. In order to achieve this goal, Spoofax will: (1) execute

98

a pipeline to regenerate the language implementation based on the language
specification, (2) reload the updated language implementation into the lan-
guage registry, and (3) execute a pipeline for all open source files of the changed
language.

The pipeline for source files will: (1) parse the source file into an AST and
token stream, (2) generate syntax styling based on the token stream, (3) show
parse errors (if any) and apply syntax styling, and (4) analyze and transform
the source file.

7.6.1 Pipeline Re-Implementation

We have implemented Spoofax’s management of multiple languages, parsing,
and syntax-based styling with the PIE pipeline that is illustrated in listing 7.5.
This is an extension to the example pipeline of section 7.3, but is still a subset of
the complete pipeline due to space constraints. We omit the foreign keyword
for brevity.

Language Specification Management. The first part of the pipeline is used to
manage multiple language specifications. The LangSpec data type represents a
language specification, which has a file extension and configuration required
for syntax specification and styling. The Workspace type represents a workspace
with multiple language specifications, which has a list of relevant file exten-
sions, and a function to get the LangSpec for a path based on its extension. The
aforementioned data types are similar to classes by binding function defini-
tions to them. In this particular case their implementations are foreign (i.e.,
implemented in a JVM language), but registered in PIE in order for using
them in an interactive software development pipeline. An instance of the
Workspace (which contains LangSpecs) is created by the getWorkspace function
from a configuration file. Interfacing with foreign functions and data types
is a key enabler for embedding PIE pipelines in other programs, while still
benefiting from domain-specific features such as dependency tracking.

Parse Table Generation, Parsing, and Styling. The second part implements pars-
ing. There are several foreign data and function definitions which bind to
Spoofax’s tools. For example, sdf2table takes a specification in the SDF meta-
language, and produces a ParseTable which can be used to parse programs
with the jsglrParse function. The parse function takes as input the text to parse
and the language specification containing the syntax specification mainFile to
derive a parser from, creates a parse table for the language specification, and
uses that to parse the input text. Parsing returns a product type containing
the Ast, Tokens, and error Messages. Since parsing can fail, the AST and tokens
are annotated with ? multiplicity to indicate that they are nullable (optional).
The third part implements syntax-based styling, similarly to parsing.

Processing Files in the IDE. The fourth part combines parsing and styling to
process a single string or file and return the error messages and styling, which
we can display in the Eclipse IDE. The fifth and sixth parts interface with
the Eclipse IDE, by providing functions to keep an Eclipse project and editor
up-to-date. A project is kept up-to-date by walking over the relevant files of

Chapter 7. PIE: A Framework for Interactive Software Development Pipelines 99

// 1) Language specification and workspace management
data LangSpec = {

func syntax() -> path; func startSymbol() -> string; func styling() -> path
}
data Workspace = {

func extensions() -> string*; func langSpec(path) -> LangSpec
}
func createWorkspace(string, path) -> Workspace
func getWorkspace(root: path) -> Workspace = {

val text = read(root + "/workspace.cfg"); createWorkspace(text, root)
}
// 2) Creating parse tables and parsing
data ParseTable {} data Ast {} data Token {} data Msg {}
func sdf2table(path) -> ParseTable
func jsglrParse(string, string, ParseTable) -> (Ast?, Token*?, Msg*)
func parse(text: string, langSpec: LangSpec) -> (Ast?, Token*?, Msg*) = {

val mainFile = langSpec.syntax(); requires mainFile;
val startSymbol = langSpec.startSymbol();
val table = sdf2table(mainFile); jsglrParse(text, startSymbol, table)

}
// 3) Syntax-based styling
data SyntaxStyler {} data Styling {}
func esv2styler(path) -> SyntaxStyler
func esvStyle(Token*, SyntaxStyler) -> Styling
func style(tokens: Token*, langSpec: LangSpec) -> Styling = {

val mainFile = langSpec.styling(); requires mainFile;
val styler = esv2styler(mainFile); esvStyle(tokens, styler)

}
// 4) Combine parsing and styling to process strings and files
func processString(text: string, langSpec: LangSpec) -> (Msg*, Styling?) = {

val (ast, tokens, msgs) = parse(text, langSpec);
val styling = if(tokens != null) style(tokens, langSpec) else null;
(msgs, styling)

}
func processFile(file: path, langSpec: LangSpec) -> (Msg*, Styling?) =

processString(read file, langSpec)
// 5) Keep files of an Eclipse project up-to-date
func updateProject(root: path, project: path) -> (path, Msg*, Styling?)* = {

val workspace = getWorkspace(root);
val relevantFiles = walk project with extensions workspace.extensions();
[updateFile(file, workspace) | file <- relevantFiles]

}
func updateFile(file: path, workspace: Workspace) -> (path, Msg*, Styling?) = {

val langSpec = workspace.langSpec(file);
val (msgs, styling) = processFile(file, langSpec); (file, msgs, styling)

}
// 6) Keep an Eclipse editor up-to-date
func updateEditor(text: string, file: path, root: path) -> (Msg*, Styling?) = {

val workspace = getWorkspace(root); val langSpec = workspace.langSpec(file);
processString(text, langSpec)

}

Listing 7.5: Spoofax pipeline in PIE, with support for developing multiple language
specifications, parsing, syntax styling, and embedding into the Eclipse IDE.

100

the project, and returning the messages and styling for each file which are
displayed in Eclipse. An editor is kept up-to-date by processing the text in the
editor.

7.6.2 Analysis

In this section we discuss the observations we made while re-implementing
the incremental software development pipeline of Spoofax in PIE. Overall, the
re-implementation improves on the areas mentioned below.

Canonical Pipeline Formalism. The main benefit over the old pipeline of Spoofax
is that the PIE re-implementation is written in a single and concise formalism
that is easier to understand and maintain. The old pipeline of Spoofax is com-
prised of code and configuration in four different formalisms: 1) Maven Project
Object Model (POM) file that describes the compilation of Java source code, 2)
an incremental build system using the Pluto [36] Java API and runtime that
builds language specifications, 3) a custom (partially incremental) build system
for building and bootstrapping meta-languages, and 4) a custom language
registry that manages multiple language specifications. Incrementality and
persistence are only partially supported, and implemented and maintained
explicitly.

In contrast, the PIE pipeline is specified as a single formalism in a readable,
concise, and precise way, without having to implement incrementality and
persistence explicitly.

Exact (Dynamic) Dependencies. Spoofax’s old pipeline emits dependencies
that are either overapproximated or underapproximated, resulting in poor
incrementality and therefore longer execution times. For example, in Spoofax,
changing the styling specification will trigger parsing, analysis, compilation,
and styling for all editors, even though only recomputation of the styling
is required (i.e., sound overapproximation). On the other hand, changing
the syntax specification will not trigger reparsing of files that are not open
in editors (i.e., unsound underapproximation). In the PIE pipeline, these
problems do not occur because of the implicit incrementality of function calls,
and the right path dependencies.

For example, the parse function creates several dependencies which enable
incremental recomputation. When the input text, mainFile path, contents of the
mainFile, or the startSymbol changes, the function is recomputed. Furthermore,
the function creates a parse table, which is a long-running operation. However,
because of incremental recomputation and persistence, the parse table is
computed once, and after that only when the syntax specification changes.

Support for Complex Pipeline Patterns. Due to space constraints, listing 7.5 omits
the parts necessary for using Spoofax’s name binding language and constraint
solver, interfacing with existing Spoofax languages, and bootstrapping lan-
guages, but our re-implementation does support the aforementioned features.
The full implementation can be found online [85].

Chapter 7. PIE: A Framework for Interactive Software Development Pipelines 101

func main(jmhArgs: string*) -> path* = {
val jar = build(); val pkg = "io.usethesource.criterion";
val javaSrcDir = ./src/main/java/io/usethesource/criterion;
val benchs: (string, string, path*)* = [// Benchmarks name, pattern, classes

("set","$pkg.JmhSetBenchmarks.(*)\$",[javaSrcDir+"/JmhSetBenchmarks.java"])
, ("map","$pkg.JmhMapBenchmarks.(*)\$",[javaSrcDir+"/JmhMapBenchmarks.java"])
];
val subjs: (string, string, path*)* = [// Subjects name, identifier, libs

("clojure" , "VF_CLOJURE" , [./lib/clojure.jar])
, ("champ" , "VF_CHAMP" , [./lib/champ.jar])
, ("scala" , "VF_SCALA" , [./lib/scala.jar])
, ("javaslang" , "VF_JAVASLANG" , [./lib/javaslang.jar])
, ("unclejim" , "VF_UNCLEJIM" , [./lib/unclejim.jar])
, ("dexx" , "VF_DEXX" , [./lib/dexx.jar])
, ("pcollections", "VF_PCOLLECTIONS", [./lib/pcollections.jar])
];
[run_benchmark(jar, jmhArgs, bench, subj) | bench <- benchs, subj <- subjs]

}
func build() -> path = {

val pomFile = ./pom.xml; requires pomFile;
[requires file | file <- walk ./src with extensions ["java", "scala"]];
exec(["mvn", "verify", "-f", "$pomFile"]);
val jar = ./target/benchmarks.jar;
generates jar; jar

}
func run_benchmark(jar: path, jmhArgs: string*, bench: (string, string, path*),

subj: (string, string, path*)) -> path = {
val (bName, bId, bDeps) = bench; [requires dep | dep <- bDeps];
val (sName, sId, sDeps) = subj; [requires dep | dep <- sDeps];
val csv = ./results/${bName}_${sName}.csv;
requires jar by hash;
exec(["java", "-jar", "$jar"] + bId + ["-p", "subject=$sId"] + jmhArgs +

["-rff", "$csv"]);
generates csv; csv

}

Listing 7.6: Incremental performance benchmarking pipeline in PIE.

7.7 Case Study: Live Performance Testing

In this section we evaluate PIE on a case study for continuously monitoring
the performance of a set of libraries. Specifically we use a snapshot of the
Criterion benchmark suite [136] that measures the performance of immutable
hash-set/map data structures on the JVM. The snapshot of Criterion was sub-
mitted as a well-documented artifact to accompany the findings of a research
paper [137].

Under the hood, Criterion uses the Java Microbenchmarking Harness
(JMH) [69] to execute benchmark suites against seven data structure libraries,
producing Comma-Separated Values (CSV) files with statistical-relevant bench-
marking data. Criterion uses bash scripts for orchestration, requiring to re-run
all benchmarks whenever a benchmark or subject library changes. Those
scripts are not able to exploit incrementality, which is tedious since benchmark-
ing all combinations takes roughly two days, to produce statistically significant

102

outputs.
We re-engineered the pipeline such that initially each subject and bench-

mark combination is tested in isolation, and then incrementally re-execute all
benchmarks for a particular subject if and only if that subject changes. In case
the implementation of a benchmark changes, all subjects are re-tested for that
benchmark. Regardless of the scenario, the CSV result files are kept up-to-date
for subsequent data visualization.

We can apply such a pipeline on a local machine while developing the
benchmarks for timely performance test results, or on a remote benchmark-
ing server to minimize the amount of benchmarking work when something
changes. While it is technically possible to write such an incremental pipeline
in bash scripts, it would require a lot of manual work to implement, and will
likely result in error-prone code. Fortunately, it is straightforward to write this
pipeline in PIE.

7.7.1 Pipeline Re-Implementation

Listing 7.6 illustrates the benchmarking pipeline in PIE. The build
function builds the benchmark and yields an executable JAR file
./target/benchmarks.jar, by invoking Maven on the POM file ./pom.xml. The
build function requires all Java and Scala source files, to ensure that the JAR
file is rebuilt as soon as a single source files changes.

To produce a CSV result file, the run_benchmark function executes the JAR
file with the necessary command-line arguments for the JMH library, including
the combination of benchmark and subject. The tuples benchmark and subject
both store unique name identifiers —that are later used for naming the CSV
file— and references to files they are comprised of. These file references are
used by PIE to create dependencies for incremental re-execution.

Finally, main glues everything together by creating a list of benchmarks
and subjects, running the benchmark with each combination of those, and by
returning the up-to-date CSV files for subsequent data visualization.

7.7.2 Analysis

Compared to the existing bash script, the PIE pipeline provides incremental
and persistent execution, and static analysis. The main benefit of the PIE
pipeline over the bash script is that it provides incremental execution by
function calls and path dependency annotations. In bash, implementing
an incremental pipeline requires the pipeline developer to explicitly encode
dependency tracking, change detection, caching, and more, which is why the
existing bash script is not incremental. In the PIE pipeline, incrementality
comes from stating the requires and generates dependencies in each function,
which is straightforward because it is clear what the dependencies of each
function are.

Furthermore, PIE performs static name and type analysis, before executing
the pipeline, whereas bash has no static checks at all. This means that errors
such as simple typographical errors, or appending a value of a wrong type to
a list of strings, result in a static error in PIE which is easily fixed, but result in

Chapter 7. PIE: A Framework for Interactive Software Development Pipelines 103

M
ak

e

A
ut

om
ak

e

O
M

ak
e

Tu
p

PR
O

M

N
ix

M
av

en

A
nt

G
ra

dl
e

Je
nk

in
s

Sh
ak

e

Pl
ut

o

Fa
br

ic
at

e

Sp
ar

k

R
ea

ct
iv

e
Pr

og
.

W
or

kfl
ow

La
ng

.

PI
E

Low Boilerplate
Static Analysis
Dynamic File Deps.
Implicit Incrementality
Embeddable
Restartable
Cross-platform

Table 7.1: Feature overview of PIE and related work (= full support, = par-
tial/limited support, = no support).

run-time errors in bash.

7.8 Related Work

In this section we discuss related work with a focus on build systems. Table 7.1
provides a feature overview of the systems we discuss throughout this section.

7.8.1 Partial Domain-Specific Build Abstractions

Make [133] is a build automation tool based on declarative rules. Make extracts
a static dependency graph from these rules, and executes the commands
according to the dependency graph. Upon re-execution, Make is able to detect
unchanged files that do not require regeneration based on timestamps. Make
supports a limited form of dynamic dependencies that does not generalize, i.e.,
an include directive that allows loading other Makefiles.

Automake [98] alleviates many of Make’s shortcoming by introducing a
formalism on top of Make that generates Makefiles. Automake is mostly
geared towards C compilation and other compilation processes that follow
similar patterns, but cannot be used to write arbitrary interactive pipelines,
making it less flexible than PIE. Due to a lack of static checking, ill-typed
Automake scripts may propagate defects — that are only detectable at run time
— to the generated Makefiles. In contrast, PIE catches such errors statically
before pipeline execution.

OMake [62] is a build tool with a Make-like syntax, but with a richer
dependency tracking mechanism. PIE is similar to OMake in that both supports
a form of dynamic path dependencies (called side-effects in OMake), and
incrementality based on these dependencies. However, like Make, OMake
works exclusively with files and command-line processes, meaning that it is
not possible to depend on the result of a function call, or to interface with
foreign functions and types, making it unsuitable for interactive pipelines

104

which require embedding into an interactive system.
Tup [127] is a build tool with Make-like rules. Tup automatically infers

required file dependencies by instrumenting the build process, providing more
fine-grained dependencies than Make. However, the dependency on the input
file and generated file must still be declared statically upfront.

PROM [79] is a Prolog-based make tool where Make-like builds are specified
declaratively and executed as Prolog terms, increasing expressiveness and ease
of development. PROM’s update algorithm executes in two phases, where first
a file-dependency graph is created, after which creation rules are executed to
create new files, or to update out-of-date files. Because of these phases, PROM
does not support dynamic discovery of dependencies during build execution.

Nix [28, 30] is a purely functional language for building and deploying soft-
ware. One of its applications is managing the configuration of the operating
system NixOS [29]. Nix supports incremental execution of pipelines through
cryptographic hashes of attributes and files, but must be explicitly initiated by
the developer through the use of the mkDerivation function. While incremental-
ity becomes explicit, Nix puts the burden on pipeline developers, whereas PIE
supports incrementality implicitly. Furthermore, Nix is dynamically checked,
meaning that name and type defects are reported at runtime, as opposed to
before runtime with static checking in PIE.

Maven [45] is a software dependency management and build tool, popular
in the Java ecosystem. It features a fixed sequence of pipeline steps such
as compile, package, and deploy, which are configured through an XML file.
Maven is neither incremental nor interactive, requiring a full batch re-execution
every time data in the pipeline changes.

Ant [44] is a build automation tool, using XML configuration files for defin-
ing software development pipelines. Ant supports incrementality by inserting
uptodate statements that check if a source file is up to date with its target file,
making incrementality explicit, at the cost of burdening the developer. Ant
does not provide static analysis.

Gradle [67] is a build automation tool, programmable with the Groovy
language, featuring domain-specific library functions to specify builds declara-
tively. Gradle supports incremental task execution through annotations that
specify a task’s input/output variables, files, and directories. Like Make, depen-
dencies have to be specified statically up-front, causing an overapproximation
of dependencies.

Jenkins is a continuous integration server which can be programmed with
its Groovy pipeline and a set of domain-specific library functions [70]. Jenkins
can detect changes to a (remote) source code repository to trigger re-execution
of an entire build pipeline, however without support for incrementality.

7.8.2 Software Development Pipelines as a Library

Subsequently discussed software pipeline solutions are available as a library
(i.e., internal DSL) implemented in a general-purpose programming language.
Unlike an external DSL solution such as PIE, those libraries do not support
domain-specific syntax or error reporting in terms of the domain, instead

Chapter 7. PIE: A Framework for Interactive Software Development Pipelines 105

requiring encoding of domain concepts. Furthermore, it is hard, if not impossi-
ble, to restrict features of a programming language via a library, that heavily
influence incrementality, such as mutable state. Finally, the compiler of the PIE
DSL can be retargeted to a different environment or programming language,
enabling a PIE pipeline to be embedded into different interactive environments
without (or minimal) alteration.

Shake [107, 108] is a Haskell library for specifying build systems. Unlike
Make, required file dependencies can be specified during builds in Shake,
supporting more complex dependencies and reducing overapproximation of
dependencies. However, like Make, targets (generated file dependencies) have
to be specified up-front. This means that it is not possible to specify builds
where the names of generated files are decided dynamically. For example, the
Java compiler generates a class file for each inner class in a source file, where
its file names are based on the inner and outer class name. Therefore, the
generated file dependencies of the Java compiler are decided dynamically, and
cannot be specified in Shake.

Pluto [36] is a Java library for developing incremental builds, which we have
already discussed extensively in section 7.2. One difference between Pluto
and PIE is that Pluto supports incremental cyclic builders, whereas PIE does
not. We have opted not to implicitly support cycles for simplicity of the build
algorithm, and because cycles typically do not appear in pipelines. Cycles can
be handled explicitly in PIE by programming the cyclic computation inside a
single pipeline function.

Fabricate [64] is a Python library for developing incremental and parallel
builds, that aims to automatically infer all file dependencies by tracing system
calls. System call tracing is not cross-platform, only fully supporting Linux at
the moment. PIE in contrast is cross-platform, because its runtime works on
any operating system the JVM runs on.

Apache Spark [7] is a big data processing framework where distributed
datasets are transformed by higher-order functions. PIE is similar to Spark in
that both create dependency graphs between calculations. For example, when
transforming a dataset with Spark (e.g., with map or filter), the derived dataset
depends on the parent dataset, such that the derived dataset is rederived when
the parent changes. PIE differs from Spark in that PIE works with local data
only, whereas Spark works with a distributed storage system required for big
data processing. However, PIE supports arbitrary computations (as opposed to
a fixed set of higher-order functions in Spark), and dynamic file dependencies.

7.8.3 General-Purpose Languages

Reusing an existing general-purpose language, such as Java or Haskell, and
giving it an incremental and persistent interpretation is not feasible for several
reasons. It requires adding additional constructs to the language, such as
path dependencies and operations, which require changes to the syntax, static
semantics, dynamic semantics (compiler or interpreter) of the language. That
requires at the very least being able to change the language, which is not always
possible. Even when it is possible, language parsers, checkers, and compilers

106

are often large codebases that require significant effort to change. Furthermore,
we also need to ensure that existing constructs work under incrementality. For
example, mutable state in Java interferes with incrementality.

7.8.4 Reactive Programming

Reactive programming is characterized by asynchronous data stream pro-
cessing, where data streams form a pipeline by composing streams with a
set of stream combinators. Reactive programming approaches come in the
form of libraries implemented in general-purpose languages, such as Reactive
Extensions [101], or as an extended language such as REScala [126]. Reactive
programming approaches provide a form of incrementality where the reactive
pipeline will rerun if any input signal changes. However, they do not cache
outputs or prevent re-execution of pipeline steps when there are no changes.
Note that reactive programming approaches operate in volatile memory only,
whereas PIE’s runtime supports persistence (i.e., pause and resume) of pipeline
executions. Preserving a pipeline’s state is of special importance in interactive
environments such as IDEs, to support restarting the programming environ-
ment without re-triggering potentially expensive calculations. Furthermore,
reactive programming approaches do not support (dynamic) file dependencies.

7.8.5 Workflow Languages

Workflows, like pipelines, describe components (processors) and how data
flows between these components. Workflow languages are DSLs which are
used to model data analysis workflows [4], business process management [1],
and model-to-model transformations [12], among others. The crucial differenti-
ation between many workflow systems and software development pipelines, is
that the former model manual steps that require human interaction, whereas
the latter focuses on processors that perform general purpose computations.

7.9 Future Work

We now discuss directions for future work.

7.9.1 First-Class Functions and Closures

Currently, the PIE DSL does not support first-class functions and closures, for
simplicity. The PIE runtime does support first-class functions, since function
calls are immutable and serializable values which can be passed between
functions and called. However, closures are not yet supported, because (again
for simplicity), functions must be registered with the runtime before a pipeline
is executed.

To fully support first-class functions and closures, we must add them to the
PIE DSL, and support closures in the runtime and API. This requires closures
to be serializable, which the JVM supports. Closures from foreign functions
must ensure not to capture mutable state, non-serializable values, or large
objects graphs, as these can break incrementality. Spores [105] could be used
to guarantee these properties for closures.

Chapter 7. PIE: A Framework for Interactive Software Development Pipelines 107

7.9.2 Live Pipelines

PIE pipelines can dynamically evolve through the inputs into the pipeline:
files on the filesystem such as configuration files, and objects passed through
function calls such as editor text. However, the pipeline code itself currently
cannot dynamically evolve at runtime. When the pipeline code itself is changed,
the pipeline must be recompiled and reloaded. This process is relatively fast,
because compiling PIE DSL code and restarting the JVM is fast, but can
be improved nevertheless. Furthermore, dynamic evolution of pipelines at
runtime is especially important if we want to apply PIE to live programming
environments.

While there are known solutions for compiling and reloading code in the
JVM, such as using class loaders, it is unclear how to handle incrementality
in the face of changes to the pipeline program. For example, if the normalize
function in listing 7.2 is changed, all calls of normalize are potentially out-of-
date and need to be re-executed, as well as all function calls that (transitively)
call normalize. Similarly, foreign functions and data types can be changed,
which require re-execution or even data migrations in the persistent storage.

7.10 Conclusion

We have presented PIE: a DSL, API, and runtime for developing interactive
software development pipelines. PIE provides a straightforward programming
model that enables direct and concise expression of pipelines with minimal
boilerplate, reducing the development and maintenance effort of pipelines.
Compared to the state of the art, PIE reduces the code required to express an
interactive pipeline by a factor of 6 in a case study on syntax-aware editors.
Furthermore, we have evaluated PIE on two complex interactive software
development pipelines, showing that the domain-specific integration of features
in PIE enable concise expression of pipelines, which are normally cumbersome
to express with a combination of traditional build systems and general-purpose
languages.

Acknowledgements

This research was supported by NWO/EW Free Competition Project
612.001.114 (Deep Integration of Domain-Specific Languages) and NWO VICI
Project (639.023.206) (Language Designer’s Workbench).

108

8
Scalable Incremental Building with Dynamic
Task Dependencies

Abstract

Incremental build systems are essential for fast, reproducible software builds.
Incremental build systems enable short feedback cycles when they capture
dependencies precisely and selectively execute build tasks efficiently. A much
overlooked feature of build systems is the expressiveness of the scripting
language, which directly influences the maintainability of build scripts. In this
chapter, we present a new incremental build algorithm that allows build
engineers to use a full-fledged programming language with explicit task
invocation, value and file inspection facilities, and conditional and iterative
language constructs. In contrast to prior work on incrementality for such
programmable builds, our algorithm scales with the number of tasks affected
by a change and is independent of the size of the software project being
built. Specifically, our algorithm accepts a set of changed files, transitively
detects and re-executes affected build tasks, but also accounts for new task
dependencies discovered during building. We have evaluated the performance
of our algorithm in a real-world case study and confirm its scalability.

8.1 Introduction

Virtually every large software project employs a build system to resolve de-
pendencies, compile source code, and package binaries. One great feature of
build systems besides build automation is incrementality: After a change to
a source or configuration file, only part of a build script needs re-execution
while other parts can be reused from a previous run. Indeed, incremental build
systems are a key enabler for short feedback cycles. The reliable and long-term
maintainable usage of incremental build systems requires the following three
properties:

Efficiency. The most obvious requirement is that rebuilds must be efficient.
That is, the amount of time required for a rebuild must be proportional to
how many build tasks are affected by a change. Specifically, a small change
affecting few tasks should only incur a short rebuild time.

Precision. An incremental rebuild is only useful if it yields the exact same
result as a clean build. To this end, incremental build systems must capture pre-
cise dependency information about file usage and task invocations. Make-like
build systems do not offer means for capturing precise dependencies. Instead,
over-approximation (*.h) leads to inefficiency because of considering too many
files, and under-approximation (mylib.h) leads to incorrect rebuilds because
of missing dependencies (e.g., other.h). Precise dependency information is

109

required for efficient and correct rebuilds.

Expressiveness. Like all software artifacts, build scripts grow during a pro-
ject’s lifetime [100] and require increasing maintenance [93]. Therefore, build
scripts should be written in expressive languages, avoiding accidental complex-
ity. That is, build scripting languages should not require build engineers to
apply complicated design patterns (e.g., recursive [106] or generated Makefiles)
for expressing common scenarios.

Current incremental build systems put a clear focus on efficiency and pre-
cision, but fall short in terms of expressiveness. In particular, in order to
support incremental rebuilds, current systems impose a strict separation of
configuration and build stages. All variability of the build process needs to
be fixed in the configuration stage, whereas the build stage merely executes a
pre-configured build plan. This model contradicts reality, where how to build
an artifact depends on the execution of other build tasks. We have observed
two sources of variability in building. First, based on the result of other tasks,
conditional building selects one of multiple build tasks to process a certain input.
Second, based on the result of other tasks, iterative building invokes build
tasks multiple times on different inputs. In both cases, dependencies on task
invocations only emerge during the build; build engineers cannot describe
these dynamic dependencies in the configuration phase. We illustrate a concrete
example in section 8.2.

A solution to the expressiveness problem is to provide build engineers
with a full-fledged programming language. In such a system, build tasks are
procedures that can invoke other build tasks in their body. Build tasks can
inspect the output of invoked tasks and use that to conditionally and iteratively
invoke further tasks. The problem of such a programmable build system is
that it is difficult to achieve incrementality. We are only aware of a single build
system that is both programmable and incremental: Pluto [36]. Unfortunately,
the incremental build algorithm of Pluto has an important limitation: To check
which tasks need re-execution, Pluto needs to traverse the entire dependency
graph of the previous build and has to touch every file that was read or written
in the previous build. This contradicts our first requirement, efficiency, because
the rebuild time of Pluto depends on the size of the software project more
than it depends on the size of the change. In particular, even when no file
was changed, Pluto’s algorithm requires seconds to determine that indeed no
task requires re-execution. We illustrate Pluto’s algorithm using an example in
section 8.2.

In this paper, we design, implement, and evaluate a new incremental build
algorithm for build systems with dynamic task dependencies. While Pluto’s
algorithm only takes the old dependency graph as input and traverses it top-
down, our algorithm also takes a set of changed files and primarily traverses
the dependency graph bottom-up. We can collect changed files, for example,
from IDEs that manage their workspace or by using a file system watchdog.
Our algorithm uses the changed files to drive rebuilding of tasks, only loading
and executing those tasks that are (transitively) affected by a change. However,

110

due to dynamic task dependencies, the dependency graph can change from
one build to the next one. Our build algorithm accounts for newly discovered
and deleted task dependencies by mixing bottom-up and top-down traversals.

Our new incremental build algorithm provides significant performance
improvements when changes are small. We have conducted a real-world
case study on the Spoofax language workbench, a tool built for developing
domain-specific languages (DSLs). The build script of Spoofax processes DSL
specification files and generates interpreters, compilers, and IDE plug-ins for
them. We found that our algorithm successfully eliminates the overhead of
large dependency graphs and provides efficient rebuilding that is proportional
to the change size.

In summary, we make the following contributions. We review programmatic
build scripts, incremental building with Pluto, and why this does not scale
(section 8.2). We describe our key idea of bottom-up incremental building, and
what is needed to make it work (section 8.3) We present our hybrid incremental
build algorithm that mixes bottom-up and top-down building (section 8.4), and
briefly discuss its implementation (section 8.5). We evaluate the performance
of the hybrid algorithm against Pluto’s algorithm with a case study on the
Spoofax language workbench (section 8.6).

8.2 Background and Problem Statement

Most build systems provide a declarative scripting language. Declarative lan-
guages are great as they let developers focus on what to compute rather than
how to compute it. However, we argue that declarativity is misdirected when it
comes to describing sophisticated build processes that involve conditional and
iterative task application.

For example, consider the build script in listing 8.1. We wrote this build
script in the PIE build script language [91], which mostly provides standard
programming language concepts. That is, the build script performs iterative
building by defining and calling functions (tasks) like main and parseYaml,
stores results of tasks in local variables such as config and src which can be
immediately used by subsequent tasks, and involves conditional building with
control structures like if and for. By and large, our build script is a normal
program that happens to handle file paths and invoke external processes to
generate and run tests. But how can we execute such a programmatic build
script incrementally?

Most build systems require declarative specifications of build tasks for this
reason: to support efficient incremental rebuilds. However, Erdweg et al.
demonstrated that it is also possible to incrementally execute programmatic
build scripts, with Pluto [36], a build system that incrementally executes build
scripts written in Java. The PIE language we used in our example is an
alternative front-end to Pluto [91].

The build algorithm of Pluto constructs a dependency graph of a build while
the build script runs. For example, consider the dependency graph of our
example script in fig. 8.1. The dependency graph contains a node for each
invoked task and for each read or written file. Edges between nodes encode

Chapter 8. Scalable Incremental Building with Dynamic Task Dependencies 111

func main() -> string {
val config = parseYaml(./config.yaml)
val src = config.srcDir
if (config.checkStyle) {

val styleOk = checkStyle(src)
if (config.failOnStyle && !styleOk)

return "style error"
}
val userTests = ./test/**
val genTests = genTests(src, ./test-gen)
var failed = 0
for (test <- userTests ++ genTests) {

val testOk = runTest(test)
if (!testOk) failed += 1

}
return "Failed tests: " + failed

}
func parseYaml(p: path) -> Config {...}
func checkStyle(src: path) -> bool {...}
func genTests(src: path, trg: path) -> path* {...}
func runTest(test: path) -> bool {...}

Listing 8.1: Build script that invokes tasks conditionally and iteratively at build time.

dependencies. A task depends on the tasks it invokes and on the files it reads
or writes. Moreover, when a task reads a file that was generated by another
task, the reading task depends on the generating task such that the generating
task is executed first. While not shown in our graph, both task-task edges
and task-file edges are labeled with stamps (e.g., timestamp, hashsum) that
determine if the task output respectively file content is up-to-date.

The incremental build algorithm of Pluto takes the dependency graph of the
previous run and selectively reruns tasks to ensure consistency of the build.
The dependency graph of a build is consistent if for each invoked task (i) all
read and written files are up-to-date and (ii) the outputs of all called tasks
are up-to-date. An incremental build algorithm is correct if it always restores
consistency [36]. Or intuitively: a correct incremental build algorithm yields
the same result as a clean build. The challenge is to restore consistency with as
little computational effort as possible. For example, let us assume the initial
dependency graph (top-left in fig. 8.1) is consistent to begin with. We discuss
three different changes C1–C3:

C1. If we change file ./config.yaml to turn off style checking, task main be-
comes inconsistent since the stamp of its file dependency changes (e.g., newer
timestamp, changed hashsum). We can restore consistency by rerunning tasks
parseYaml and main only; all other tasks remain consistent since they neither
invoke main nor read files written by main. The incremental build yields a new
dependency graph (top-right in fig. 8.1), where the new invocation of main
does not depend on checkStyle anymore.

C2. If instead, we change the content of user test ./test/X, task
runTest(./test/X) becomes inconsistent and needs rerunning. Since task main

112

main

parse
Yaml(..)

check
Style(..)

gen
Tests(..)

./config
.yaml

./src/A ./src/B ./src/
B_aux

./test-
gen/
A

./test-
gen/
B

./test/
X

runTest

main

parse
Yaml(..)

check
Style(..)

gen
Tests(..)

./config
.yaml

./src/A ./src/B ./src/
B_aux

./test-
gen/
A

./test-
gen/
B

./test/
X

runTest

main

parse
Yaml(..)

check
Style(..)

gen
Tests(..)

./config
.yaml

./src/A ./src/B ./src/
B_aux

./test-
gen/
A

./test-
gen/
B

./test/
X

runTest

./src/C

./test-
gen/
C

runTest

Initial dependency graph Change C1

Change C2 Change C3

reads file
writes file
requires task
affected by change

main

parse
Yaml(..)

gen
Tests(..)

./config
.yaml

./src/A ./src/B ./src/
B_aux

./test-
gen/
A

./test-
gen/
B

./test/
X

runTest

check
Style(..)

Figure 8.1: The dependency graph of a build captures task and file dependencies
and is the basis for incremental building.

calls runTest(./test/X), it needs rerunning if the boolean value returned by
runTest flips. Either way, the dependency graph remains unaffected (bottom-
left in fig. 8.1).

C3. Finally, if we add a source file ./src/C, tasks checkStyle and genTests are
affected because they depend on the directory ./src. If the new file has a style
error, this affects main and yields a new dependency graph where no testing
occurs (not shown). Otherwise, let us assume genTests produces a new test
./test-gen/C for the added file, which affects main’s scan of directory test-gen.
During the subsequent rerun of main, we discover a new task invocation
runTest(./test-gen/C) (bottom-right in fig. 8.1).

The incremental build algorithm of Pluto can handle these and any other
changes correctly. Moreover, the algorithm is optimally incremental in the
sense that it only executes a task if absolutely necessary. The basic idea of
the algorithm is to start at the root node(s) of the dependency graph, to
traverse it depth-first, and to interleave consistency checking and rerunning.
In particular, while rerunning a task that invokes another task, if the invoked
task exists in the dependency graph, continue with consistency checking of the
invoked task and only rerun it if necessary. This interleaving of consistency

Chapter 8. Scalable Incremental Building with Dynamic Task Dependencies 113

checking and rerunning is what enables support for conditional and iterative
task invocations.

Problem Statement. The incremental build algorithm of Pluto has an important
limitation. Irrespective of the changed files, it has to traverse the entire depen-
dency graph to check consistency and to discover tasks that need rerunning.
While that may be fine for larger changes that affect large parts of the graph
like C3, the overhead for small-impact changes like C2 is significant. Especially
in interactive settings, where developers routinely trigger sequences of small-
impact changes, this overhead can quickly render the system unresponsive.
The problem is that the algorithm does not scale down to small changes when
scaling up to large dependency graphs.

Our goal is to design, realize, and evaluate a new incremental build algo-
rithm for programmatic build scripts that scales in the size of a change. That
is, rebuild times should be proportional to the impact a change has on the
overall build. In particular, rebuild times should be independent of the size
of the dependency graph. These requirements preclude a full traversal of the
dependency graph to discover affected tasks as done by Pluto. Instead, our
new algorithm takes the set of changed files as input and only ever visits
affected tasks.

8.3 Key Idea and Challenges

The key idea to increasing the scalability of the Pluto algorithm is to execute
tasks bottom-up. In this section, we motivate this approach, and we discuss the
corner cases that require adjustments to a pure bottom-up algorithm.

8.3.1 Bottom-Up Traversal

The key problem of the Pluto build algorithm is that it visits and checks tasks
that are ultimately unaffected. For example, in change C2 in section 8.2, only a
single task (runTest) is affected by the change to file ./test/X. However, Pluto
will visit and check all reachable tasks in a top-down depth-first traversal,
including the tasks that are not affected by the change (parseYaml, checkStyle,
and genTests). Establishing that these tasks are unaffected is expensive, as our
benchmarks demonstrate (section 8.6).

To make the algorithm scale, it should only visit the nodes of the dependency
graph that are actually affected by a change. The changes that trigger a re-build
are to files, which are at the leaves of the dependency graph. Tasks that need
to be recomputed depend directly or indirectly on such file changes. Instead
of looking for tasks that may indirectly depend on a change and gradually
getting closer to the actual change, as Pluto does, why not start with those
changes and the tasks that depend on them?

The key idea of our algorithm is to traverse the dependency graph bottom-
up, driven by file changes, only visiting and checking affected tasks. The
algorithm first executes the tasks that are directly affected by changed files.
For example, in change C2, file ./test/X changes, which directly affects task
runTest(./test/X), which must therefore be re-executed. Tasks can also be

114

indirectly affected by a file change, namely when it reads a file produced by
an affected task or when it reads the output value of an affected task. For
example, in change C3, file ./src/C is added, which triggers re-execution of
genTests, which yields a new output value to main, which thus is indirectly
affected, re-executes, and creates a new runTest task. A subsequent edit of
file ./src/C triggers genTests again, which produces the same value as before
but updates the generated file ./test-gen/C, which affects the corresponding
runTest task (the main task is not affected this time).

Thus, a bottom-up traversal executes tasks that are affected by changed files
or by other affected tasks, following a path from the changed leaves of the
dependency graph to the root(s). However, a pure bottom-up traversal is not
adequate to support programmatic build scripts with dynamic dependencies.
We discuss the adjustments that are necessary to realize an adequate algorithm.

8.3.2 Top-Down Initialization

In order to perform a bottom-up traversal over the dependency graph, we need
a dependency graph to start with. Therefore, we start with Pluto’s top-down
algorithm to obtain the initial dependency graph. This is efficient, since every
task is affected in the initial build.

8.3.3 Early Cut-Off

By default, a bottom-up traversal takes the transitive closure of dependencies,
re-executing all tasks on the path from a changed file to the root(s) of the
dependency graph. However, re-execution of a task does not always lead to a
new result. If the result was the same as before, the path to the root can be
cut off early. For example, in C2 main depends on runTest(./test/X), which
depends on the changed ./test/X file. So, do we need to re-execute main? That
depends on the output of task runTest(./test/X). If the result is a different
(integer) value than before, the number of tests that fail changes, and main
should be re-executed Otherwise, main is not affected and we can cut off the
build early1, as shown in the bottom-left part of fig. 8.1.

8.3.4 Order of Recomputation

Another potential problem of naive bottom-up evaluation is that tasks may
be executed multiple times. For example, in change C3, main depends on
two existing affected tasks: checkStyle and genTests. A possible execution
trace when checkStyle does affect main (not shown in the figure), is to execute
checkStyle, then main which is affected by checkStyle, then execute genTests,
and then execute main again because it is affected by genTests. Executing a
task multiple times is not only inefficient, but also causes glitches: inconsistent
results that are exposed to users.

To avoid such re-executions, we should ensure that all affected dependencies
of a task are executed before the task itself. Instead of eagerly executing tasks

1In a real-world build script, runTest would output a report of which tests fail and why,
and main would be re-executed whenever this changes. We support this, but chose to keep the
example from section 8.2 simple for demonstration purposes.

Chapter 8. Scalable Incremental Building with Dynamic Task Dependencies 115

when encountered during a bottom-up traversal, we schedule tasks in a priority
queue, which is topologically sorted according to the dependency graph. Until
the queue is empty, scheduled tasks are removed from the front of the queue
and executed. The topological ordering of the priority queue ensures that task
dependencies are executed before the task itself.

8.3.5 Dynamic Dependencies

The final challenge is to support dynamic dependencies during a bottom-up
traversal. Consider change C3 again, where a new task runTests(./test-gen/C)
is discovered by main. A bottom-up traversal can never detect such a dynamic
dependency, since it only has access to the dependency graph of the previous
run. To remedy this, we temporarily switch to top-down depth-first building
when executing a task, so that the task can discover dependencies to new tasks,
discover dependencies to existing tasks, or remove existing dependencies.

When discovering a dependency to a new task, top-down depth-first building
continues recursively by (eagerly) executing the new task. For example, in
change C3, task main is (indirectly) affected and thus is built in a top-down
manner (after its dependencies checkStyle and genTests have been built), which
recursively calls task runTests(./test-gen/C) and registers a dependency to it.
Furthermore, when a dependency is discovered to a task t that exists in the old
dependency graph, it might be affected already. That is, t and dependencies of
t may have been scheduled in the queue. We cannot execute t before executing
its dependencies. Therefore, we temporarily switch back to bottom-up building,
executing dependencies of t that are scheduled in the queue, until t itself is
executed or found unaffected. Then we switch back to top-down building and
continue executing the caller. Finally, when a dependency is removed (i.e.,
dependency to a task that was made in the previous run, but not in this run),
the dependency graph is updated, but no further action is taken.

8.3.6 Dependency Graph Validation

As in the Pluto algorithm, we also need to enforce validity of the dependency
graph by detecting overlapping generated files, hidden task dependencies, and
cyclic tasks. An overlapping generated file occurs when more than one task
generates (creates or writes to) the same file. This makes it unclear in which
order those tasks must be executed to bring the file into a consistent state, and
is therefore disallowed. Furthermore, a hidden dependency occurs when a
task requires (reads) a file that was generated by another task, without the
requiring task depending on the generator task. Such a dependency must
be made explicit, so that the generated file is updated by the generator task
before being read by the requiring task. Finally, a task is cyclic when it
(indirectly) calls itself. We disallow cyclic tasks to ensure termination of the
build algorithm. We check these invariants on-the-fly while constructing the
new dependency graph for subsequent incremental builds.

116

var Tq
var Te
var Oc
var DGnew

function buildNewTask(t, DGold)
Te := ∅
Oc := ∅
DGnew := DGold
exec(t)

function buildWithChangedFiles(F, DGold)
Te := ∅
Oc := ∅
DGnew := DGold
Tq := PriorityQueue(DGold.depOrder())
schedAffByFiles(F, DGold)
while Tq 6= ∅ do

execAndSchedule(Tq.poll(), DGold)

(a) Variables and main build functions.

function execAndSchedule(t , DGold)
val r := exec(t)
schedAffByFiles(r.genFiles, DGold)
schedAffCallersOf(t , r.output, DGold)
return r.output

function schedAffByFiles(F, DGold)
for f ← F do

for (stamp, t)← DGold.requireesOf(f) do
if ¬stamp.isConsistent(f) then

Tq := Tq ∪ t
if (stamp, t)← DGold.generatorOf(f) then

if ¬stamp.isConsistent(f) then
Tq := Tq ∪ t

function schedAffCallersOf(t , o , DGold)
for (stamp, tcall)← DGold.callersOf(t) do

if ¬stamp.isConsistent(o) then
Tq := Tq ∪ tcall

(b) Change-driven, bottom-up building.

function exec(t)
if t ∈ Te then abort
Te := Te ∪ t ; val r := t.run(); Te := Te \ t
DGnew := DGnew ∪ r; validate(t , r); observe(t , r.output)
Oc[t] := r.output; return r .output

function require(t , DGold)
if o ← Oc[t] then return o
else if t ∈ DGold then return requireNow(t , DGold)
else return exec(t)

function requireNow(t , DGold)
while val tmin := Tq.leastDepFromOrEq(t) do

Tq := Tq \ tmin
val o := execAndSchedule(tmin, DGold)
if t = tmin then return o

val o := DGold.outputOf(t)
observe(t , o); Oc[t] := o; return o

function validate(t , r)
for f ← r .genFiles do

for (_, tgen)← DGnew.generatorOf(f) do
if t 6= tgen then abort

for f ← r.reqFiles do
for (_, tgen)← DGnew.generatorOf(f) do

if ¬DGnew.callsTaskTr(t , tgen) then abort

(c) Execution, requirement, and validation.

Listing 8.2: Change-driven incremental build algorithm.

Chapter 8. Scalable Incremental Building with Dynamic Task Dependencies 117

8.4 Change-Driven Incremental Building

In this section, we present our hybrid algorithm that mixes bottom-up and
top-down incremental building based on the observations and ideas from the
previous section. We present the algorithm in three parts: main functions
(listing 8.2a), bottom-up building (listing 8.2b), and execution (listing 8.2c). All
functions share four global variables defined at the top of listing 8.2a. Variable
Tq is a topologically ordered priority queue of affected tasks that still need to
be executed. Variable Te is a set of currently executing tasks, used to detect
cyclic tasks. Variable Oc is a cache of output values for tasks that have already
been executed. Finally, variable DGnew is the new dependency graph that
is constructed from the old dependency graph and dynamic dependencies
on-the-fly.

We provide two entry points to incremental building in listing 8.2a, both
of which first clear the set of executing tasks Te, clear the cache Oc, and copy
the old dependency graph DGold to DGnew. Function buildNewTask is the
entry point for an initial build. Function buildNewTask then simply invokes
function exec (listing 8.2c) to execute the task. We describe exec below.

The second entry point buildWithChangedFiles is more interesting as
it initiates bottom-up building. It takes as input a set of changed file paths
F, represented as filesystem path strings such as ./config.yaml, and the old
dependency graph DGold. The basic idea is to schedule and run affected tasks
using priority queue Tq until all affected tasks are up-to-date. To this end,
we create a new priority queue using the task dependencies in DGold as a
topological ordering. We call function schedAffByFiles (described below)
with the old dependency graph to find all tasks directly affected by the changed
file paths F, and add those tasks to the queue Tq. The main loop of bottom-up
building is the following while-loop: As long as there are affected tasks in the
queue, poll a scheduled task (retrieve the task at the front and remove it) from
the queue, execute it, and add all tasks affected by it to the queue. Since the
queue is topologically ordered, dependencies of tasks are executed before the
task itself. Unless a task itself does not terminate (for example by recursively
calling new tasks ad infinitum), the queue becomes empty at some point since
cyclic tasks are disallowed, terminating the algorithm.

8.4.1 Bottom-Up Building

Whenever a task occurs in the priority queue Tq, it is definitely affected (directly
or indirectly) by changed files. Hence, no further consistency check is necessary.
Function execAndSchedule in listing 8.2b accepts an affected task, runs it
unconditionally using exec, and schedules new tasks based on the generated
files and output value of the executed task. If a task does not change or create
new generated files, nor produce a new output value, no new tasks will be
scheduled and building may be cut off early.

Function schedAffByFiles schedules tasks based on changed file paths F. If
task t requires a changed file and the stamp stamp has changed (is inconsistent)
then t is affected by the change to f and is scheduled by adding it to Tq.

118

Analogously, if a task generates a file that has changed, it is affected and thus
scheduled. A stamp contains a summary of a file’s content, such as the last
modification date or a hash, and is used to efficiently check whether a file has
changed with isConsistent. For example, when using the file’s modification
date as a stamp, we compare the modification date in the stamp, with the
current modification date of the file on the local filesystem, and consider the file
changed if the modification date is different. We use the old dependency graph
DGold (computed in a previous run of the algorithm) to find tasks that require
a file (requireesOf), and to find the task that generates a file (generatorOf),
along with the stamp that was produced at the time the dependency was
created.

Likewise, the schedAffCallersOf function schedules callers of task t based
on changes to its output value o. If tcall has a dependency to task t, and that
dependency is inconsistent with relation to the new output value o of t, then
tcall is affected by the new output value o and is scheduled. Similarly, we
use a stamp of the output value, which could be the full output value, such
as an integer representing the number of failing tests, or a summary of the
value such as a hash, and compare the stamp with the new output value with
isConsistent. Finally, the old dependency graph DGold is used to find callers
of a task with callersOf.

8.4.2 Execution, Requirement, and Validation

Function exec (listing 8.2c) executes the body of t. During task execution, a
task may require (call) other tasks with the require function. Therefore, we
first need to check if we are already executing task t, and abort when a cycle
is detected. Then, we add t to the set of executing tasks Te, run the body of
the task, and remove t from Te. Once execution completes, we update the
new dependency graph DGnew with the result r of executing t. A result r
contains the dynamic dependencies the task made during execution: a set
reqFiles of read files, genFiles of created or written to files, and a set reqTasks
of other tasks that were called by t; and the output value output that the task
produced. A dependency graph DG is a set of those results, where each task
has a single result. We then validate the new dependency graph, call any
external observers of the task’s output with observe, cache the output, and
finally return the output.

We use function exec to execute tasks both during bottom-up and top-down
traversals. While exec is agnostic to the traversal order, function require

must take care to handle tasks required bottom-up and top-down correctly.
We distinguish three cases. If t was already executed (visited) this run, we
return its cached output value Oc[t]. Otherwise, we check if t was in the old
dependency graph DGold. If task t is new and does not occur in DGold, then
we execute it unconditionally. Note that no existing task in DGold can depend
or be affected by the new task t.

If task t existed before in DGold, we only execute it if it is actually affected.
Since the caller of t awaits the output of t, we use function requireNow

to force its checking and possible execution now. Task t is affected if it

Chapter 8. Scalable Incremental Building with Dynamic Task Dependencies 119

occurs in queue Tq or if any of its dependencies occurring in Tq will affect
it later. Function requireNow repeatedly finds dependency tmin of t that is
lowest in the dependency graph (closes to the leaves). Since the queue only
contains affected tasks, we execute tmin and schedule tasks affected by it. We
continue until either we have executed the required task t, or until no more
dependencies of task t are affected and we can reuse t’s output value from
the old dependency graph with DGold.outputOf(t). Note that this latter case
always triggers for tasks scheduled bottom-up by buildWithChangedFiles,
because their dependencies cannot occur in Tq anymore.

The validate function incrementally validates the correctness of the new
dependency graph after executing a task t. For a dependency graph to be
correct, it may not have overlapping generated files, nor any hidden depen-
dencies. If another task tgen generates the same file f as t does, there is an
overlapping generated file and execution is aborted. Furthermore, if t requires
a file f without a (transitive) task dependency on tgen that generates f , there is
a hidden dependency and execution is aborted. In both cases, this signals that
there is an error in the build script.

8.4.3 Properties

An incremental build algorithm is correct if it produces the exact same result
as a clean build. Therefore, all affected and new tasks must be executed. Our
algorithm is correct for tasks in the old dependency graph: if a task is affected,
it will be scheduled. A task is affected directly by depending on a changed
file, or indirectly (transitively) by depending on a changed file that an affected
task generates, or by depending on the changed output of an affected task. All
indirectly affected tasks are always found by traversing the dependency graph
bottom-up, through polling the queue and scheduling affected tasks. Finally,
all scheduled tasks are executed.

Our algorithm is also correct for new tasks that are executed top-down
like the Pluto algorithm, which is correct [36]. The only difference is the
reqireNow function which first executes the dependencies of the task, but
does eventually execute the task itself. Therefore, the hybrid algorithm is
correct.

For optimality, we only consider and execute affected tasks. For existing
tasks, this is true because only affected tasks are scheduled. New tasks are
affected and always executed. However, we only want to execute needed tasks.
The hybrid algorithm considers all task in the old dependency graph as needed.
This is an overapproximation, because it can happen that an affected task is
not needed any more after top-down execution, since a task may remove its
dependency to an affected task. Therefore, theoretically, the hybrid algorithm is
only partially optimal. However, this is a rare case, as shown in the evaluation
in section 8.6.

8.5 Implementation

We have implemented the hybrid algorithm as an alternative execution algo-
rithm for PIE [91], a system for developing interactive software development

120

pipelines, consisting of a DSL and API for implementing interactive pipelines,
and a runtime for incrementally executing them. Interactive software devel-
opment pipelines are similar to incremental build systems: they are used to
incrementally build software artifacts, and also require fast feedback for usage
in interactive environments with many low-impact changes such as IDEs and
code editors. PIE builds forth on Pluto by reusing its model and algorithm,
but provides a concise and expressive DSL for developing interactive pipelines
and build scripts, minimizing boilerplate in contrast to Pluto’s Java API.

Our algorithm is implemented as a separate executor in the PIE runtime,
fully conforming to its API. That is, we can run existing PIE build scripts
without changes to our algorithm. Furthermore, since PIE implements the
Pluto build algorithm, we can compare our algorithm against Pluto’s, for the
exact same build scripts. PIE, including our hybrid algorithm, is open source
software that can be found online [116].

8.6 Evaluation

In this section, we evaluate the performance of the hybrid algorithm, compared
to Pluto’s pure top-down algorithm. We describe our experimental setup, show
the results, interpret them, and discuss threats to validity.

8.6.1 Experimental Setup

We compare the performance of the Pluto incremental build algorithm, as im-
plemented in the PIE runtime, against our hybrid incremental build algorithm,
which we have implemented in PIE runtime.

Build Script. As a build script, we reuse the Spoofax-PIE pipeline, a reimple-
mentation of a large part of the Spoofax pipeline, which was used as a case
study of PIE [91] (section 7.6, listing 7.5). Spoofax [75] is a language work-
bench [38] (a set of tools for developing languages) in which languages are
specified in terms of meta-languages, such as SDF [153] for syntax specification,
and NaBL [5, 109, 89] for name and type analysis. The Spoofax pipeline de-
rives artifacts from a language specification, such as a parse table for parsing,
and a constraint generator and solver for solving name and type analysis.
Furthermore, Spoofax supports interactive language development in an IDE
setting, enabling a language developer to modify a language specification,
resulting in immediate feedback in example programs of that language, and
also supports developing multiple languages side-by-side. The Spoofax-PIE
reimplementation supports these features. The build script is open-source and
can be found online [132].

As input, the Spoofax build script takes a workspace directory consisting of
language specifications, where each language specification has a configuration
file describing how to build the language specification, a specification of the
syntax, styling, and name and type analysis in meta-languages, and example
programs. A configuration file at the root of the workspace lists the locations
of all language specifications, and locations of the Spoofax meta-languages.
As a concrete workspace, we use a directory with three Spoofax language

Chapter 8. Scalable Incremental Building with Dynamic Task Dependencies 121

specifications for the Tiger, Calc, and MiniJava languages.
Describing the Spoofax build script is outside of the scope of this paper.

However, we do argue why Spoofax requires a programmatic build script
with dynamic dependencies. The Spoofax build script frequently makes use
of conditional building, where the result of executing a task influences a
condition for another task. For example, when a program fails to parse, the
program cannot be analyzed, since analysis requires an AST. Therefore, a
condition that checks whether the parsing task succeeds guards the analysis
task. Furthermore, Spoofax also makes frequent use of iterative building,
where tasks are invoked multiples on different inputs which are outputs of
previous tasks. For example, there is a single task description for parsing a file,
which is dispatched based on the result of parsing the workspace configuration
file, parsing the language specification configuration files, the concrete files that
are in the workspace, and the extension of each file. Without a programmatic
build script, all these forms of variability would have to be encoded in the
configuration step of a declarative build script, which is not possible because
many values only become evident during build script execution.

Changes. To measure incremental performance, we have synthesized a chain
of 60 realistic changes with varying impacts. First, a from-scratch build is
performed that builds all language specifications. Then, we make changes in
the form of opening or changing a text editor, requiring execution of a task
that provides feedback for that editor, or of modifying and saving a file, which
requires execution of tasks that keep the workspace up-to-date.

Changes include: editing and saving example programs, styling specifica-
tions, syntax specifications, and name and type analysis specifications; adding
a new language specification; undoing changes; and two extreme cases where
we run the build with no or all files changed. These changes have varying
impacts, where the impact is determined by how many tasks are affected by
a change, and the run time of those tasks. For example, changing a syntax
definition file requires recompilation of the parse table and reparsing of all
example programs. Changing the name and types specification has a larger
impact because it requires regeneration of a constraint generator, compilation
of the constraint generator, application of the generator against all example
programs, and finally application of the constraint solver to solve all generated
constraints. A small impact change is editing an example program in an editor,
which just requires parsing, styling, and analysis for that program.

We run the exact same changes against the Pluto and our hybrid algorithm,
with the only difference that we pass the changed files to our hybrid algorithm,
whereas Pluto does not require this. We run the chain of changes against one
algorithm in one go, to simulate a full editing session.

Technicalities. We run the benchmark using the JMH [69] benchmarking frame-
work, which runs the benchmark for an algorithm in a separate forked JVM,
letting the JVM JIT fully specialize to that algorithm. Furthermore, it runs the
benchmark multiple times before starting measurements, to ensure that the
JVM is warmed up. Finally, it ensures that the garbage collector is executed

122

ag
gr

eg
at

e
ru

nt
im

e
in

 s
ec

on
ds

1s

10s

100s

A B C D E F G H I J K L

70.1

0.0

49.1

18.8

3.0

21.5

3.9

27.5

0.70.0

1.1

68.7 69.8

3.3

50.9

28.6

17.6

8.48.5

30.4

8.89.1
12.1

68.1 pluto hybrid

0.005 0.7 0.00001

Figure 8.2: Column chart with aggregate benchmark time measurements. The
x-axis represent the different changes (described below), the y-axis represents the
time taken in seconds in logarithmic scale. For each change, we show the time
taken for the Pluto algorithm and our hybrid algorithm. A = initial build, B = all
editor changes, C = example program changes, D = styling specification changes,
E = adding language specification, F = syntax specification small change, G =
syntax specification cascading change, H = syntax specification refactor, I = analysis
specification changes, J = analysis specification refactor, K = no changes, L = all
files changed.

before running a benchmark, so that garbage produced in a previous run does
not influence the new one.

We have executed the benchmark on a MacBook Pro with a 2.7 GHz Intel
Core i7 processor, 16 GB of 1600 MHz DDR3 memory, and a SSD, running
macOS 10.12.6. The benchmark was executed with a 64-bit JRE of version
1.8.0b144, with 16 MB of stack memory, and 4 GB of heap memory.

8.6.2 Results and Interpretation

We now show the benchmarking results and interpret them. It is not possible
to discuss time measurements for all 60 changes. Therefore we aggregate the
time taken for different kinds of changes and show those instead. Figure 8.2
shows the time measurements for each aggregated change, for both the Pluto
and hybrid algorithm, in a column chart with logarithmic scale. We now go
over the results for each kind of change.

A) Initial build. First, we perform an initial build, building all language
specifications. To obtain the initial dependency graph, we use top-down
building. Therefore, both the Pluto and hybrid algorithm perform identically.

B) Editor changes. We aggregate the running time for all editor changes:
both opening new editors and editor text changes, for example programs
and language specifications. For all editor changes combined, the hybrid
algorithm is 11 seconds faster, providing a speedup of 1016%. The speedup is
high because these changes have a small impact, and therefore are efficiently
handled by the hybrid algorithm. It is important to quickly process editor

Chapter 8. Scalable Incremental Building with Dynamic Task Dependencies 123

changes in IDEs, as programmers make many changes to editors and require
fast feedback cycles.

C) Example program file changes. We modify the files of several example pro-
gram, and add a new example program file. For these changes combined, the
hybrid algorithm takes 0.005 seconds, providing a 9 second (182133%) speedup.
Again, these changes have a small impact, and are therefore efficiently handled
by the hybrid algorithm, whereas the Pluto algorithm still requires checking of
the entire dependency graph.

D) Styling specification change. We modify the styling specification of the
Calc language, and add a styling specification to the Tiger language. For
these changes, the hybrid algorithm is 8 seconds faster, providing a 1245%
speedup. The impact of these changes are slightly larger: changes to the styling
specification require re-styling of open editors, but are still relatively smaller
in impact and thus efficiently handled.

E) Adding language specification. We add the MiniJava language to the
workspace, requiring it to be built, and its example programs to be pro-
cessed. Since this change causes many new tasks to be executed, its impact is
large. The hybrid algorithm performs roughly the same as the Pluto algorithm,
providing only a 2.9 second (11%) speedup because of reduced dependency
graph checking.

F) Syntax specification small change. We modify lexical syntax definition of the
Calc language to parse numbers incorrectly, and undo the change afterwards.
This requires the parse table to be rebuilt, and requires processing of Calc’s ex-
ample programs. The hybrid algorithm provides a 4.5 second (118%) speedup,
because a smaller part of the dependency graph is checked.

G) Syntax specification cascading change. We modify the Calc syntax definition
in such a way that the resulting parser will fail to parse all example programs,
and also in such a way that new AST signatures need to be generated. From
the syntax specification, Spoofax generates AST signature files that the name
and type analysis uses. These signature files have changed, therefore requiring
the name and type analysis specification to be recompiled. Finally, all example
programs must be reparsed and reanalyzed.

However, because example programs cannot be parsed any more, they also
cannot be analyzed any more, since name and type analysis requires an AST.
Therefore, the dependency from the process example file task, to the task that
analyzes the AST of an example program, disappears. The Pluto algorithm
first visits the process example file task, which removes its dependency to
the analysis task, and therefore never recompiles the name and type analysis
specification. However, the hybrid algorithm goes bottom-up to first recompile
the name and type analysis specification, and only then executes the process
example file task, therefore executing a task that was not required to be
executed. In this case, the hybrid algorithm was 13 seconds slower, causing a
61% slowdown.

This is a tradeoff of the hybrid algorithm: if a dependency to a task disap-

124

pears, the hybrid algorithm will still visit it. However, these cases are very rare,
only a single change triggers this kind of behavior. For example, if at least
one example program could be parsed into an AST (possibly through error
recovery), the analysis specification has to be recompiled. We undo the change
afterwards to make example programs parse again.

H) Syntax specification refactor. We refactor a part of the MiniJava syntax
definition into another file, which results in a semantically equivalent parser.
The hybrid algorithm provides a 14.5 second (483%) speedup, because it first
rebuilds the parse table, detects that it did not change, and then cuts off
the build early. Contrary to the previous change, a bottom-up traversal here
helps in cutting down the incremental build time, by not even traversing the
unaffected part of the dependency graph.

I) Analysis specification change. We modify the name and type analysis specifi-
cation of the Calc language, such that it scopes bindings differently, and undo
the change afterwards. Because changing these specifications has a moderate
impact, the hybrid algorithm provides a moderate 9.7 second speedup (52%).

J) Analysis specification refactor. We refactor a part of the Tiger name and
type analysis specification into another file. Even though this results in a
semantically equivalent analyzer, the change detection of the Spoofax-PIE
build script is not smart enough to detect this. Because compiling the name
and type analysis specification, and then performing constraint solving for
all Tiger example programs, is expensive, this change has a large impact.
Therefore, the Pluto and hybrid algorithm perform nearly identically.

K) No changes. When there are no changes, the hybrid algorithm essentially
performs no work, completing in sub-millisecond time, while the Pluto algo-
rithm still needs to check the entire dependency graph, costing 3.3 seconds of
time. This is the constant overhead that even small-impact changes suffer from
with the Pluto algorithm, which the hybrid algorithm saves.

L) All files changed. Finally, we change all source files by appending a space
to the end of each file. Realistically, this kind of change can happen when
checking out a different branch in a source control management system such
as Git. When all source files change, using a bottom-up approach makes
no sense, since (almost all) tasks will be affected, while incurring overhead
because of scheduling. Therefore, we detect when more than 50% of source
files (all required files, for which there is no generator task) change, and run a
top-down build with the Pluto algorithm instead, therefore running as fast as
the Pluto algorithm does. This heuristic seems to work well, but may require
further tweaking.

Conclusion. We can conclude that, for this build script and workspace direc-
tory, our algorithm scales better with the impact of a change than the Pluto
algorithm, for many kinds of changes. The only exceptions being when all files
are changed, for which a full rebuild could be triggered, or when a dependency
to an expensive task is removed, which rarely happens.

Chapter 8. Scalable Incremental Building with Dynamic Task Dependencies 125

8.6.3 Threats to Validity

A possible threat to validity is that we have benchmarked the algorithms
against a single build script. However, it is a complex build script that repre-
sents the realistic scenario of interactive language development in a language
workbench. For example, the build script requires dynamic file dependencies
in order to track precise dependencies which only become evident during a
build. Furthermore, it also requires dynamic task dependencies, in order to
dispatch the correct tasks based on the configuration of the workspace and
each language specification.

Another possible threat is that we have synthesized a chain of changes,
instead of using existing change scenarios. However, we have constructed 60

changes to different kinds of aspects; such as changing an example program,
and changing a file of the syntax specification; and with varying levels of
impact, ranging from changing the text in a single editor, to changing a file of
the name and type specification, which transitively affects many other tasks.

8.7 Related Work

We now discuss related work, starting with the large body of work on incre-
mental build systems with static dependencies.

Static Dependencies. Make [133] is an incremental build system with declar-
ative build rules based on files. It has limited support for dynamic file de-
pendencies, and no proper support for dynamic task dependencies. Because
of these limitations, Make scales well for simple build scripts, since it can
first topologically sort dependencies, iterate over the dependencies, and in-
crementally execute affected tasks. While it is possible to emulate dynamic
task dependencies, this requires tedious Makefile generation, encoding of all
dependencies as files, and recursive Make execution. Therefore, Make is not
sufficient for more complicated build scripts.

Many build systems follow a similar approach to Make, first building a task
DAG, and then executing it. For example, Gradle [67], Bazel [47], Buck [40],
PROM [79], Fabricate [64], Tup [127], and Ninja [99] follow this approach,
with slight variations. Gradle is a build automation tool, programmable in
the Groovy language, that, like our hybrid algorithm, also supports values
as inputs and outputs of tasks. PROM replaces declarative make rules with
logical programming, while keeping the same incremental build algorithm.
Fabricate uses system tracing to automatically infer file dependencies, but is
only supported on Linux. Tup, like our hybrid build algorithm, requires a
list of changed files as input, instead of scanning all files, to more efficiently
build the task DAG. Ninja, unlike Make, detects changes to the commands of
a rule, resulting in a rebuild if the rule is changed. None of the above systems
supports dynamic file or task dependencies.

Dynamic Dependencies. Some build systems intertwine incremental execution
with the discovery of file and task dependencies. Pluto [36] is a Java library
for developing incremental build scripts with dynamic dependencies. As

126

discussed throughout this paper, Pluto uses a top-down algorithm that does
not scale to small changes over large dependency graphs.

OMake [62] is a build system with Make-like syntax, but with a richer
dependency tracking mechanism and a more complicated algorithm. It has
limited support for dynamic file dependencies through scanner rules that scan
depfiles and register their dependencies during execution. However, it does
not support dynamic task dependencies; all tasks dependencies are specified
statically in the build rules.

Shake [107, 108] is a Haskell library for implementing build scripts with
incremental execution. It has limited support for dynamic file dependencies,
allowing needed files to be discovered dynamically, but generated file depen-
dencies must be specified statically as the build target. It also has limited
support for dynamic task dependencies: Tasks are named by keys, and those
tasks can be required like files through their keys. However, these tasks are
not parameterized, nor can they return values, making their use as dynamic
task dependencies tedious.

Incremental Computing. Our work is also related to approaches on incremental
computing. Datalog [22] is a logic programming language with incremental
solvers [50]. The are several differences between our hybrid algorithm and
incremental Datalog solvers. Datalog solvers can deal with cycles, eagerly
compute all facts, and use static dependencies from the Datalog program,
whereas the hybrid algorithm (and build systems in general) disallow cycles,
only compute demanded facts, and use dynamic dependencies.

Adapton [52, 51] is a library for on-demand (lazy) incremental computation.
Like the Pluto and our hybrid algorithm, Adapton supports a form of dynamic
task dependencies: dynamic computation dependencies which form a compu-
tation (thunk) graph. Initially, Adapton builds a full computation graph. When
the computation graph is affected by a change, edges of thunks are marked as
dirty. Then, when a dirtied computation is demanded, it transitively "cleans"
the edges of thunks during change propagation, re-executing out-of-date com-
putations. Nominal Adapton’s [51] formal development relaxes the ordering of
dirtying and cleaning, allowing dirtying while change propagation is running.
However, the algorithm or implementation with this relaxed ordering is not
described.

8.8 Conclusion

We have shown the need for an efficient, precise, and expressive build system.
Many build systems are efficient and precise, but not expressive, making
complex build script development tedious. Pluto, a recent incremental build
system that supports programmable build scripts with dynamic dependencies,
is expressive, but does not scale with the impact of a change, because it
requires a top-down traversal over the entire dependency graph for each
change. To overcome this scalability problem, we have realized a hybrid
algorithm that mixes bottom-up building for scalability, and top-down building
for expressiveness through dynamic dependencies. We have evaluated the

Chapter 8. Scalable Incremental Building with Dynamic Task Dependencies 127

performance of our hybrid algorithm against Pluto’s algorithm, with a case
study on the Spoofax language workbench. The evaluation demonstrates that
the hybrid algorithm, with the exception of one kind of change, indeed scales
better with the impact of a change, and is therefore faster than the Pluto
algorithm, in particular for low-impact changes.

Acknowledgments

This research was supported by NWO/EW Free Competition Project
612.001.114 (Deep Integration of Domain-Specific Languages) and NWO VICI
Project (639.023.206) (Language Designer’s Workbench).

128

9
Conclusion

We now conclude by summarizing interactive programming systems, our
vision of language-parametric methods, and our five core contributions. We
discuss our thesis, and how our core contributions relate to it. Finally, we end
by discussing directions for future work.

9.1 Interactive Programming Systems

A programming system for a programming language supports the develop-
ment of programs through a batch compiler that validates programs and by
transforming those programs into executable forms. An interactive program-
ming system additionally supports the development of programs by providing
automatic, continuous, responsive, and inline feedback to the programmer.
However, a programming system is only truly interactive when it is correct and
responsive.

A method to achieve responsiveness is incrementality, where the response
time is proportional to the impact of a change. Furthermore, responsiveness is
only achieved when incrementality is scalable, where the incremental system
can scale down to many low-impact changes, and scale up to large inputs. This
is especially important in interactive programming systems, since the majority
of changes are small (e.g., typing a character into a source code editor), and
programs are large. Finally, it is important that correctness is still guaranteed
in the presence of scalable incrementality.

However, manually implementing an incremental system is a challenge as it
requires the application of cross-cutting techniques such as dependency track-
ing, caching, cache invalidation, change detection, and persistence, which are
complicated and error-prone to implement. Furthermore, scalable incremental-
ity increases the challenge, as incrementality must scale up to large dependency
graphs, cache large amounts of data, do cache invalidation through these large
graphs, and detect low-impact changes. Finally, the scalable and incremental
implementation must be correct, which is unlikely when manually implement-
ing complicated and error-prone techniques.

Therefore, our vision is to use language-parametric methods to develop respon-
sive and correct interactive programming systems. Such a language-parametric
method takes as input an implementation or description of a programming
language, and automatically produces (parts of) an interactive programming
system, without the language developer having to manually implement a
correct, incremental, and scalable interactive programming system.

Our thesis is that these language-parametric methods for developing interac-
tive programming systems are feasible and useful. We have shown feasibility of
language-parametric methods in the five core contributions of this dissertation
by developing three language-parametric methods: declarative specification of

129

incremental name and type analysis, bootstrapping of language workbench
meta-DSLs, and pipelining of interactive programming systems.

9.2 Language-Parametric Methods

We now summarize the language-language parametric methods developed in
this dissertation and discuss their usefulness.

9.2.1 Incremental Name and Type Analysis

We have developed a language-parametric method for incremental name and
type analysis consisting of the NaBL (chapter 2), and the incremental task
engine (chapter 3).

NaBL is a meta-DSL for declarative specification of name binding and
scope rules of programming languages in terms of definitions and use sites,
properties of names, namespaces for separating categories of names, scopes
in which definitions are visible, and imports between scopes. From such a
specification, the NaBL compiler derives a name analysis and editor services
for inline error checking, reference resolution, and code completion, freeing the
language developer from having to manually implement these parts. Therefore,
NaBL is a language-parametric method for developing correct name analysis
and corresponding interactive editor services.

We extend NaBL with incrementality and type checking, using a language
independent task engine for incremental name and type analysis. In this
approach, we specify name and scope rules in NaBL, typing rules in TS – a
meta-DSL for simple type system specification – from which we automatically
derive a traversal that collects naming and typing tasks when given a program.
These tasks are sent to the task engine, which then executes changed tasks
to incrementally execute name and type analysis, updating data structures
required for editor services, and responsively updating inline error messages.
Therefore, NaBL, TS, and the task engine are a language-parametric method for
developing correct and responsive name and type analysis with corresponding
editor services.

We have evaluated NaBL by specifying the name binding of a subset of C#
(sections 2.2 and 2.3), and have evaluated the task engine approach by spec-
ifying the name and type rules of the WebDSL language and by confirming
responsiveness through benchmarking (section 3.6). Furthermore, as discussed
in chapter 4, the task engine approach is used to specify and run the incremen-
tal name and type analysis of the Green-Marl [63, 94] DSL, and the NaBL, TS,
and SDF [153] meta-DSLs of the Spoofax [75] language workbench. Finally,
NaBL, TS, and the task engine were used to teach students about incremen-
tal name and type analysis as part of the 2015-2016 edition of the Compiler
Construction lab [145] where they develop a full version of the MiniJava [9]
language.

130

9.2.2 Bootstrapping meta-DSLs of Language Workbenches

A bootstrapped compiler can compile its own source code, because the com-
piler is written in the compiled language itself, providing several benefits
such as a high-level implementation of the compiler, a large-scale test case for
the compiler, and improvement dissemination. However, DSLs have limited
expressiveness (by design) and are therefore ill-suited for bootstrapping. There-
fore, language workbenches provide high level meta-languages for developing
DSLs and their compilers, freeing language developers from having to boot-
strap their DSLs. What we desire instead, is bootstrapping the meta-language
compilers of language workbenches, to inherit the benefits of bootstrapping
stated above.

However, bootstrapping a language workbench is complicated by the fact
that most provide multiple separate domain-specific meta-languages for describing
different language aspects such as syntax, name and type analysis, code gener-
ation, and so forth. Thus, in order to build a meta-language compiler, we need
to apply multiple meta-language compilers, entailing intricate dependencies
that sound language workbench bootstrapping needs to handle. Furthermore,
meta-languages often generate generators, which may in turn generate more
generators, requiring an unknown number of build iterations to apply all
generators and possibly find defects in them.

Our solution to these problems is to do versioning and dependency track-
ing between meta-languages, and perform fixpoint bootstrapping, where we
iteratively self-apply meta-language compilers to derive new versions until
no change occurs, or until we find a defect (listing 5.1). Bootstrapping op-
erations can be started, cancelled (when diverging), and rolled back (when
defect) interactively, supporting the interactive programming system of the
language workbench. In conclusion, our bootstrapping approach provides a
(meta)language-parametric method for correctly and interactively bootstrap-
ping the meta-languages of language workbenches, in an interactive program-
ming environment.

We have evaluated our bootstrapping approach by bootstrapping the eight
meta-DSLs of the Spoofax language workbench (section 8.6). We make seven
realistic changes to one or more meta-languages and perform fixpoint boot-
strapping operations. We were able to create new baselines after successful
bootstrapping attempts; make breaking changes by decomposing changes into
multiple compatible ones; find defects in changes, roll back to the existing base-
line, fix the defect, and reattempt bootstrapping; and perform these operations
in the interactive programming system of Spoofax.

To this day, we are still bootstrapping the meta-languages of Spoofax as
part of its build. We are still versioning, creating explicit dependencies, and
releasing new baselines of Spoofax’s meta-languages, even with the addition
of two extra meta-DSLs: FlowSpec [129] and Statix [6].

9.2.3 Pipelining of Interactive Programming Systems

We have developed PIE, which provides a language-parametric method for de-
veloping interactive software development pipelines, a superset of correct and

Chapter 9. Conclusion 131

responsive interactive programming environments (chapter 7); and developed
a change-driven algorithm for PIE which makes it scalable (chapter 8).

An interactive software development pipeline automates parts of the soft-
ware engineering process, such as building software via build scripts, but also
reacts immediately to changes in input, and provides timely feedback to the
user. An interactive programming system is an instance of such a pipeline,
where changes to programs are immediately processed to provide timely feed-
back to programmers. However, interactivity complicates the development of
pipelines, if responsiveness and correctness become the responsibility of the
pipeline programmer, rather than being supported by the underlying system.

PIE consists of a DSL, API, and runtime for developing correct and respon-
sive interactive software development pipelines, where ease of development
is a focus. The PIE DSL serves as a front-end for developing pipelines with
minimal boilerplate in a functional language. The PIE API is a lower-level
front-end for developing foreign pipeline functions which cannot be modeled
in the DSL. Finally, the runtime incrementally executes pipelines implemented
in the API using Pluto’s incremental build algorithm.

However, the incremental build algorithm that we used did not scale, because
it needs to traverse the entire dependency graph (produced in a previous build)
from top to bottom, making the run-time of the algorithm dependent on the
size of the dependency graph, not the impact of the change. This quickly becane
a problem in interactive programming systems, where there are many changes
and those changes have a low-impact (e.g., programmer typing characters into
an editor), while the program and its induced dependency graph is large.

To solve this scalability problem, we have developed a new incremental
build algorithm that performs change-driven rebuilding (listings 8.2a to 8.2c).
Our algorithm scales with the impact of a change, and is independent from
the size of the dependency graph, because it only ever visits affected tasks.
Therefore, PIE with our change-driven incremental build algorithm provides a
language-parametric method for developing correct and responsive interactive
programming systems. Furthermore, PIE can more generally be applied to
interactive software development pipelines, such as build scripts, continuous
integration pipelines, benchmarking pipelines.

We evaluate PIE with a case study by reimplementing a significant part
of the interactive programming system of the Spoofax language workbench
(listing 7.5). The existing pipeline of Spoofax’s interactive programming system
was scattered across four different formalisms, decreasing ease of development;
overapproximates dependencies, causing loss of incrementality; and underap-
proximates dependencies, causing loss of correctness. However, with PIE, we
can easily integrate the different components of Spoofax; such as its parser,
analyzers, transformations, build scripts, editor services, meta-languages, and
dynamic language loading; into a single formalism. PIE ensures that the
pipeline is correct and responsive, without the pipeline programmer having
to implement techniques such as incrementality, or without having to reason
about correctness.

We also experimentally evaluate the performance of our change-driven

132

bottom-up algorithm with the Spoofax pipeline (fig. 8.2). To measure incremen-
tal performance an scalability, we synthesized a chain of 60 realistic changes
of varying types and impacts, ranging from changing an example program,
to changing the syntax specification of a language, to adding a new language
specification. Results show that for low-impact changes (i.e., changes that
only cause a small number of tasks to be actually affected), our change-driven
algorithm is several orders of magnitude faster than the previous algorithm
we used, while not slower for high-impact changes.

Finally, to show that PIE can be used for other interactive software develop-
ment pipelines, we have also performed a case study with the benchmarking
suite from the accompanying artifact [136] of Criterion [137], which measures
performance of immutable data structures on the JVM. Criterion uses a bash
script to orchestrate benchmarking tasks, requiring to re-run all benchmarks
after changes. We converted this script into a PIE pipeline (listing 7.6), which
runs each benchmark and subject pair in isolation, enabling incrementality
where PIE only executes a benchmark against all subjects if a benchmark
changes, and only executes a subject against all benchmarks when a subject
changes.

9.3 Future Work

We now discuss future work on incremental name and type analysis, boot-
strapping of meta-DSLs, and pipelining of interactive programming systems.

9.3.1 Incremental Name and Type Analysis

Expressiveness. As discussed in chapter 4, future work for NaBL, TS and the
task engine is to increase the expressiveness of the approach to support more
kinds of names, scopes, and type systems. Much of this future work has
already been done in the context of Scope Graphs [109], an extension of scope
graphs into a full analysis framework based on constraint solving [5], and
further improvements to expressiveness [6]. However, making this constraint-
based analysis framework feasible for interactive programming systems is still
a challenge, as it is not yet incremental nor scalable, and does not provide
editor services such as good inline error messages, code completion, semantic
code styling, and occurrence highlighting. Therefore, future work should focus
on the combination of high expressiveness of name and type systems, while
properly supporting correct and responsive interactive programming systems.

Type-Directed Transformations. Furthermore, transformations are frequently
name or type-directed instead of syntax-directed (e.g., compile a Java class
into a class file, for every public Java class in the program), or need to query
(properties of) names or types. NaBL supports this by building an index of
names and providing an API to it, and the task engine supports this by build-
ing tasks which represent queries, for which the value is available through
an API when performing a transformation. While it is possible to do name
and type-directed transformations, these APIs feel ad-hoc, and do not support
incremental transformations. One interesting direction of future work is to fig-

Chapter 9. Conclusion 133

ure out a high-quality API for name and type-directed transformations, name
and type queries, and how to (automatically) incrementalize transformations
with such an API.

Updating Analysis Data after Transformations. Finally, a frequently occurring
pattern in compilation is to perform multiple small optimization transforma-
tions to the program, where each one transforms the program into a new
(semantically equivalent) program. However, after such a transformation, the
name and type information can be invalidated, because names or types may
have been renamed, created, removed, or moved into a different scope. Since
optimizations need access to name and type information, we must re-execute
name and type analysis to make that information up-to-date again. Even
when name and type analysis is incremental, it is costly to do so because of
change detection and other overhead, which dominates when hundreds or
even thousands of small optimization transformations occur. Therefore, an-
other interesting direction of future work is to figure out how to incrementally
update name and type information after (small) transformations.

9.3.2 Bootstrapping of Meta-DSLs

Our fixpoint bootstrapping approach either produces a new baseline or finds a
defect after a number of fixpoint iterations, or diverges when the compilers
of the meta-DSLs diverge. Therefore, our approach is a dynamic one: we can
only figure this out after executing the compilers of the meta-DSLs. Future
work could be to find out a way to do this statically, possibly by exploiting the
fact that compilers typically converge.

Finally, bootstrapping can also be seen as a sort of pipeline. It is currently
not possible to perform fixpoint bootstrapping with PIE, as PIE does not have
a fixpoint operations. If we want to integrate fixpoint bootstrapping in PIE, we
need to add an incremental fixpoint operation to PIE.

9.3.3 Pipelining of Interactive Programming Systems

There is a lot of future work for PIE in the space of pipelining of interactive
programming systems, and software development pipelines in general.

Observability. PIE currently does not track if (the effect of) a task is observable
to the outside world. For example, if we create a task that provides feedback
for a code editor (e.g., code styling and inline error messages), but that code
editor is currently not visible (e.g., it is hidden behind another window or was
closed by the programmer), then we do not need to execute that task when
the code changes, because the effect is not observable. We need to track which
tasks are observable to the outside world, provide operations for marking
tasks as (un)observed, and never execute tasks that are directly or transitively
unobserved, to increase efficiency. The challenge is to find an efficient way
to maintain this information, while keeping the incremental build algorithm
correct. Furthermore, observability information could be used to perform
garbage collection of tasks that are no longer required.

134

Concurrency. PIE currently does not support concurrency or parallelism. Inter-
active programming systems are concurrent systems where multiple things can
happen concurrently, such as running name and type analysis on one program,
while parsing another program, while the user is requesting code completion.
Similarly, processors have many cores which require parallelism to exploit.
Concurrent and parallelism support is a challenge in the presence of dynamic
dependencies, as multiple tasks could read/write to files concurrently without
prior knowledge, causing conflicts. Furthermore, concurrently running tasks
require a consistency model such as eventual consistency, as tasks may use the
values produced by other tasks. Extending the PIE model and algorithm with
concurrency and parallelism while overcoming these problems is a challenge.
It is also a technical challenge, as efficient concurrent and parallel execution is
hard to implement right, especially in the presence of the mutable filesystem,
incrementality, and persistence.

Deferred Tasks. PIE currently does not support deferring a task while it is
executing: a task either fully executes, or fails. Deferring execution is useful
in the case where a task currently does not have enough information yet to
execute, and that information cannot be retrieved by executing another task,
because it is unknown which task provides this information. For example, in
name analysis, use sites in a module frequently refer to definition sites in other
modules through imports. However, when the other module has not been
analyzed yet, and it is unknown where this module resides, it is not possible to
complete name analysis for the current module, and the task must be deferred
until the other module has been analyzed. The challenge here is to extend the
PIE model and algorithm with support for deferring tasks in an efficient way,
possibly through coroutines or other asynchronous programming models.

Partial Evaluation. Partial evaluation could be used to automate deployment
in PIE pipelines. Tasks in a pipeline depend on other data by depending on
the files or output values from other tasks. Sometimes, this data is completely
dynamic. For example, in a live language development pipeline for a DSL, the
task that compiles programs of the DSL depends on another task that builds
the compiler, which in turn depends on the compiler specification source files
of the DSL. Whenever this compiler specification changes, a new compiler is
built, and all example programs are recompiled with this new compiler.

On the other hand, when we want to deploy the DSL to a customer’s
computer, the compiler does not change any more and becomes completely
static. Instead of deploying the compiler specification source files to the
customer, we would rather only deploy the compiler, to avoid the customer
having to build the compiler, having to store source files which never change,
and possibly to prevent reverse engineering of the compiler via source code.
Currently, to achieve this, we would need to manually adapt the pipeline to
accept both compiler specification source files and a built compiler, which is
tedious. With partial evaluation, we can automate this process by specifying
which input data is static, execute the tasks of the pipeline, and replace tasks
which (transitively) depend on completely static data with a task that just

Chapter 9. Conclusion 135

returns the static data.

Applications. Finally, we want to keep evaluating PIE by application to more
subdomains of interactive software development pipelines.

136

Bibliography

[1] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. “YAWL: yet
another workflow language”. In: Inf. Syst. 30.4 (2005), pp. 245–275. doi:
10.1016/j.is.2004.02.002.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley, Aug. 2006.

[3] Johan Åkesson, Torbjörn Ekman, and Görel Hedin. “Implementation of
a Modelica compiler using JastAdd attribute grammars”. In: Science of
Computer Programming 75.1-2 (2010), pp. 21–38. doi: 10.1016/j.scico.
2009.07.003.

[4] Peter Amstutz, Michael R. Crusoe, Nebojša Tijanić, Brad Chapman,
John Chilton, Michael Heuer, Andrey Kartashov, Dan Leehr, Hervé
Ménager, Maya Nedeljkovich, Matt Scales, Stian Soiland-Reyes, and
Luka Stojanovic. “Common Workflow Language, v1.0”. In: (2016). doi:
10.6084/m9.figshare.3115156.v2.

[5] Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Vis-
ser, and Guido Wachsmuth. “A constraint language for static semantic
analysis based on scope graphs”. In: Proceedings of the 2016 ACM SIG-
PLAN Workshop on Partial Evaluation and Program Manipulation, PEPM
2016, St. Petersburg, FL, USA, January 20 - 22, 2016. Ed. by Martin Erwig
and Tiark Rompf. ACM, 2016, pp. 49–60. isbn: 978-1-4503-4097-7. doi:
10.1145/2847538.2847543.

[6] Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and
Eelco Visser. “Scopes as types”. In: Proceedings of the ACM on Program-
ming Languages 2.OOPSLA (2018). doi: 10.1145/3276484.

[7] Apache. Spark. https://spark.apache.org/. (Visited on 10/04/2019).

[8] Andrew W. Appel. “Axiomatic Bootstrapping: A Guide for Compiler
Hackers”. In: ACM Transactions on Programming Languages and Systems
16.6 (1994), pp. 1699–1718. doi: 10.1145/197320.197336.

[9] Andrew W. Appel. Modern Compiler Implementation in Java, 2nd edition.
Cambridge University Press, 2002. isbn: 0-521-82060-X.

[10] John Warner Backus. “The syntax and semantics of the proposed inter-
national algebraic language of the Zurich ACM-GAMM Conference”.
In: IFIP Congress. 1959, pp. 125–131.

[11] Jon Bentley. “Programming pearls: little languages”. In: Commun. ACM
29 (1986). doi: 10.1145/6424.315691.

[12] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and
Xtend. 2nd. Packt Publishing, 2016.

137

https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1016/j.scico.2009.07.003
https://doi.org/10.1016/j.scico.2009.07.003
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/3276484
https://spark.apache.org/
https://doi.org/10.1145/197320.197336
https://doi.org/10.1145/6424.315691

[13] Mark G. J. van den Brand. “PREGMATIC - a generator for incremental
programming environments”. PhD thesis. University Nijmegen, 1992.

[14] Mark G. J. van den Brand, Arie van Deursen, Jan Heering, H. A. de Jong,
Merijn de Jonge, Tobias Kuipers, Paul Klint, Leon Moonen, Pieter A.
Olivier, Jeroen Scheerder, Jurgen J. Vinju, Eelco Visser, and Joost Visser.
“The ASF+SDF Meta-environment: A Component-Based Language De-
velopment Environment”. In: Compiler Construction, 10th International
Conference, CC 2001 Held as Part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001,
Proceedings. Ed. by Reinhard Wilhelm. Vol. 2027. Lecture Notes in Com-
puter Science. Springer, 2001, pp. 365–370. isbn: 3-540-41861-X. doi:
10.1016/S1571-0661(04)80917-4.

[15] Mark G. J. van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco
Visser. “Disambiguation Filters for Scannerless Generalized LR Parsers”.
In: Compiler Construction, 11th International Conference, CC 2002, Held
as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings. Ed.
by R. Nigel Horspool. Vol. 2304. Lecture Notes in Computer Science.
Springer, 2002, pp. 143–158. isbn: 3-540-43369-4. doi: 10.1007/3-540-
45937-5_12.

[16] Harvey Bratman. “A alternate form of the "UNCOL diagram"”. In:
Communications of the ACM 4.3 (1961), p. 142. doi: 10.1145/366199.
366249.

[17] Martin Bravenboer, Arthur van Dam, Karina Olmos, and Eelco Visser.
“Program Transformation with Scoped Dynamic Rewrite Rules”. In:
Fundamenta Informaticae 69.1-2 (2006). https://content.iospress.
com/articles/fundamenta-informaticae/fi69-1-2-06, pp. 123–178.

[18] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco
Visser. “Stratego/XT 0.17. A language and toolset for program transfor-
mation”. In: Science of Computer Programming 72.1-2 (2008), pp. 52–70.
doi: 10.1016/j.scico.2007.11.003.

[19] Doug Brown, John Levine, and Tony Mason. Lex & Yacc. 2nd. O’Reilly
Series. O’Reilly Media, 1992. isbn: 9781565920002.

[20] Christoff Bürger, Sven Karol, Christian Wende, and Uwe Aßmann.
“Reference Attribute Grammars for Metamodel Semantics”. In: Software
Language Engineering - Third International Conference, SLE 2010, Eindhoven,
The Netherlands, October 12-13, 2010, Revised Selected Papers. Ed. by Brian
A. Malloy, Steffen Staab, and Mark van den Brand. Vol. 6563. Lecture
Notes in Computer Science. Springer, 2010, pp. 22–41. isbn: 978-3-642-
19439-9. doi: 10.1007/978-3-642-19440-5_3.

138

https://doi.org/10.1016/S1571-0661(04)80917-4
https://doi.org/10.1007/3-540-45937-5_12
https://doi.org/10.1007/3-540-45937-5_12
https://doi.org/10.1145/366199.366249
https://doi.org/10.1145/366199.366249
https://content.iospress.com/articles/fundamenta-informaticae/fi69-1-2-06
https://content.iospress.com/articles/fundamenta-informaticae/fi69-1-2-06
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1007/978-3-642-19440-5_3

[21] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. “Im-
plementing Multi-stage Languages Using ASTs, Gensym, and Reflec-
tion”. In: Generative Programming and Component Engineering, Second In-
ternational Conference, GPCE 2003, Erfurt, Germany, September 22-25, 2003,
Proceedings. Ed. by Frank Pfenning and Yannis Smaragdakis. Vol. 2830.
Lecture Notes in Computer Science. Springer, 2003, pp. 57–76. isbn:
3-540-20102-5. doi: 10.1007/978-3-540-39815-8_4.

[22] Stefano Ceri, Georg Gottlob, and Letizia Tanca. “What you Always
Wanted to Know About Datalog (And Never Dared to Ask)”. In: IEEE
Trans. Knowl. Data Eng. 1.1 (1989), pp. 146–166. doi: 10.1109/69.43410.

[23] Donald D. Chamberlin and Raymond F. Boyce. “SEQUEL: A Structured
English Query Language”. In: Proceedings of 1974 ACM-SIGMOD Work-
shop on Data Description, Access and Control, Ann Arbor, Michigan, May
1-3, 1974, 2 Volumes. Ed. by Randall Rustin. ACM, 1974, pp. 249–264.
doi: 10.1145/800296.811515.

[24] Philippe Charles, Robert M. Fuhrer, and Stanley M. Sutton Jr. “IMP: a
meta-tooling platform for creating language-specific ides in eclipse”.
In: 22nd IEEE/ACM International Conference on Automated Software En-
gineering (ASE 2007), November 5-9, 2007, Atlanta, Georgia, USA. Ed. by
R. E. Kurt Stirewalt, Alexander Egyed, and Bernd Fischer. ACM, 2007,
pp. 485–488. isbn: 978-1-59593-882-4. doi: 10.1145/1321631.1321715.

[25] Alan J. Demers, Thomas W. Reps, and Tim Teitelbaum. “Incremental
Evaluation for Attribute Grammars with Application to Syntax-Directed
Editors”. In: POPL. 1981, pp. 105–116. doi: 10.1145/567532.567544.

[26] Arie van Deursen and Paul Klint. “Little languages: little maintenance?”
In: Journal of Software Maintenance 10.2 (1998). http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.50.4726, pp. 75–92.

[27] Arie van Deursen, Paul Klint, and Joost Visser. “Domain-Specific Lan-
guages: An Annotated Bibliography”. In: SIGPLAN Notices 35.6 (2000),
pp. 26–36. doi: 10.1145/352029.352035.

[28] Eelco Dolstra, Merijn de Jonge, and Eelco Visser. “Nix: A Safe and
Policy-Free System for Software Deployment”. In: Proceedings of the
18th Conference on Systems Administration (LISA 2004), Atlanta, USA, No-
vember 14-19, 2004. http://www.usenix.org/publications/library/
proceedings/lisa04/tech/dolstra.html. USENIX, 2004, pp. 79–92.

[29] Eelco Dolstra and Andres Löh. “NixOS: a purely functional Linux
distribution”. In: Proceeding of the 13th ACM SIGPLAN international
conference on Functional programming, ICFP 2008, Victoria, BC, Canada,
September 20-28, 2008. Ed. by James Hook and Peter Thiemann. ACM,
2008, pp. 367–378. isbn: 978-1-59593-919-7. doi: 10.1145/1411204.
1411255.

BIBLIOGRAPHY 139

https://doi.org/10.1007/978-3-540-39815-8_4
https://doi.org/10.1109/69.43410
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/1321631.1321715
https://doi.org/10.1145/567532.567544
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.4726
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.4726
https://doi.org/10.1145/352029.352035
http://www.usenix.org/publications/library/proceedings/lisa04/tech/dolstra.html
http://www.usenix.org/publications/library/proceedings/lisa04/tech/dolstra.html
https://doi.org/10.1145/1411204.1411255
https://doi.org/10.1145/1411204.1411255

[30] Eelco Dolstra, Eelco Visser, and Merijn de Jonge. “Imposing a Memory
Management Discipline on Software Deployment”. In: 26th International
Conference on Software Engineering (ICSE 2004), 23-28 May 2004, Edin-
burgh, United Kingdom. IEEE Computer Society, 2004, pp. 583–592. isbn:
0-7695-2163-0. doi: 10.1109/ICSE.2004.1317480.

[31] Jay Earley and Howard E. Sturgis. “A formalism for translator inter-
actions”. In: Communications of the ACM 13.10 (1970), pp. 607–617. doi:
10.1145/355598.362740.

[32] Torbjörn Ekman and Görel Hedin. “The JastAdd extensible Java com-
piler”. In: Proceedings of the 22nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2007, October 21-25, 2007, Montreal, Quebec, Canada. Ed. by Richard P.
Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr.
ACM, 2007, pp. 1–18. isbn: 978-1-59593-786-5. doi: 10.1145/1297027.
1297029.

[33] Torbjörn Ekman and Görel Hedin. “The JastAdd system - modular
extensible compiler construction”. In: Science of Computer Programming
69.1-3 (2007), pp. 14–26. doi: 10.1016/j.scico.2007.02.003.

[34] EPFL. The Scala Programming Language. https://www.scala-lang.org/.
(Visited on 10/04/2019).

[35] Sebastian Erdweg. “Extensible Languages for Flexible and Principled
Domain Abstraction”. PhD thesis. Philipps-Universität Marburg, Mar.
2013.

[36] Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. “A sound and
optimal incremental build system with dynamic dependencies”. In:
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015.
Ed. by Jonathan Aldrich and Patrick Eugster. ACM, 2015, pp. 89–106.
isbn: 978-1-4503-3689-5. doi: 10.1145/2814270.2814316.

[37] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Oster-
mann. “SugarJ: library-based syntactic language extensibility”. In: Pro-
ceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2011, part of
SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011. Ed. by Cristina
Videira Lopes and Kathleen Fisher. ACM, 2011, pp. 391–406. isbn:
978-1-4503-0940-0. doi: 10.1145/2048066.2048099.

[38] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik,
Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi,
Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido Wachsmuth, and
Jimi van der Woning. “The State of the Art in Language Workbenches
- Conclusions from the Language Workbench Challenge”. In: Software

140

https://doi.org/10.1109/ICSE.2004.1317480
https://doi.org/10.1145/355598.362740
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1016/j.scico.2007.02.003
https://www.scala-lang.org/
https://doi.org/10.1145/2814270.2814316
https://doi.org/10.1145/2048066.2048099

Language Engineering - 6th International Conference, SLE 2013, Indianapolis,
IN, USA, October 26-28, 2013. Proceedings. Ed. by Martin Erwig, Richard F.
Paige, and Eric Van Wyk. Vol. 8225. Lecture Notes in Computer Science.
Springer, 2013, pp. 197–217. isbn: 978-3-319-02653-4. doi: 10.1007/978-
3-319-02654-1_11.

[39] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik,
Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi,
Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido Wachsmuth,
and Jimi van der Woning. “Evaluating and comparing language work-
benches: Existing results and benchmarks for the future”. In: Computer
Languages, Systems & Structures 44 (2015), pp. 24–47. doi: 10.1016/j.
cl.2015.08.007.

[40] Facebook. Buck: a fast build tool. https://buckbuild.com/. (Visited on
10/04/2019).

[41] Robby Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shri-
ram Krishnamurthi, Paul Steckler, and Matthias Felleisen. “DrScheme:
a programming environment for Scheme”. In: Journal of Functional Pro-
gramming 12.2 (2002), pp. 159–182.

[42] Robby Findler and PLT. DrRacket: Programming Environment. Tech. rep.
PLT-TR-2010-2. http://racket-lang.org/tr2/. PLT Design Inc., 2010.

[43] Bent Flyvbjerg. “Five Misunderstandings about Case-Study Research”.
In: Qualitative Inquiry 12.2 (Apr. 2006).

[44] Apache Software Foundation. Ant. https://ant.apache.org/. (Visited
on 10/04/2019).

[45] Apache Software Foundation. Maven. https://maven.apache.org/.
(Visited on 10/04/2019).

[46] Martin Fowler. Language Workbenches: The Killer-App for Domain Spe-
cific Languages? http : / / www . martinfowler . com / articles /
languageWorkbench.html. 2005.

[47] Google. Bazel - a fast, scalable, multi-language and extensible build system.
https://bazel.build/. (Visited on 10/04/2019).

[48] Google. Guice. https : / / github . com / google / guice. (Visited on
10/04/2019).

[49] Danny M. Groenewegen, Zef Hemel, Lennart C. L. Kats, and Eelco
Visser. “WebDSL: a domain-specific language for dynamic web ap-
plications”. In: Companion to the 23rd Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2008, October 19-13, 2007, Nashville, TN, USA. Ed. by
Gail E. Harris. ACM, 2008, pp. 779–780. isbn: 978-1-60558-220-7. doi:
10.1145/1449814.1449858.

BIBLIOGRAPHY 141

https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1016/j.cl.2015.08.007
https://buckbuild.com/
https://ant.apache.org/
https://maven.apache.org/
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
https://bazel.build/
https://github.com/google/guice
https://doi.org/10.1145/1449814.1449858

[50] Ashish Gupta and Inderpal Singh Mumick. “Maintenance of Materi-
alized Views: Problems, Techniques, and Applications”. In: IEEE Data
Eng. Bull. 18.2 (1995). db/journals/debu/GuptaM95.html, pp. 3–18.

[51] Matthew A. Hammer, Joshua Dunfield, Kyle Headley, Nicholas Labich,
Jeffrey S. Foster, Michael W. Hicks, and David Van Horn. “Incremental
computation with names”. In: Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh,
PA, USA, October 25-30, 2015. Ed. by Jonathan Aldrich and Patrick Eu-
gster. ACM, 2015, pp. 748–766. isbn: 978-1-4503-3689-5. doi: 10.1145/
2814270.2814305.

[52] Matthew A. Hammer, Yit Phang Khoo, Michael Hicks, and Jeffrey S.
Foster. “Adapton: composable, demand-driven incremental computa-
tion”. In: ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11,
2014. Ed. by Michael F. P. O’Boyle and Keshav Pingali. ACM, 2014, p. 18.
isbn: 978-1-4503-2784-8. doi: 10.1145/2594291.2594324.

[53] Görel Hedin. “An Introductory Tutorial on JastAdd Attribute Gram-
mars”. In: Generative and Transformational Techniques in Software Engineer-
ing III - International Summer School, GTTSE 2009, Braga, Portugal, July
6-11, 2009. Revised Papers. Ed. by Joao M. Fernandes, Ralf Lämmel, Joost
Visser, and João Saraiva. Vol. 6491. Lecture Notes in Computer Science.
Springer, 2009, pp. 166–200. isbn: 978-3-642-18022-4. doi: 10.1007/978-
3-642-18023-1_4.

[54] Görel Hedin. “Incremental Semantic Analysis”. PhD thesis. 1992.

[55] Görel Hedin. “Incremental Static-Semantic Analysis for Object-Oriented
Languages Using Door Attribute Grammars”. In: Attribute Grammars,
Applications and Systems, International Summer School SAGA, Prague,
Czechoslovakia, June 4-13, 1991, Proceedings. Ed. by Henk Alblas and
Borivoj Melichar. Vol. 545. Lecture Notes in Computer Science. Springer,
1991, pp. 374–379. isbn: 3-540-54572-7.

[56] Görel Hedin. “Reference Attributed Grammars”. In: Informatica (Slove-
nia) 24.3 (2000).

[57] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and
Christian Wende. “Derivation and Refinement of Textual Syntax for
Models”. In: Model Driven Architecture - Foundations and Applications, 5th
European Conference, ECMDA-FA 2009, Enschede, The Netherlands, June
23-26, 2009. Proceedings. Ed. by Richard F. Paige, Alan Hartman, and
Arend Rensink. Vol. 5562. Lecture Notes in Computer Science. Springer,
2009, pp. 114–129. isbn: 978-3-642-02673-7. doi: 10.1007/978-3-642-
02674-4_9.

142

https://doi.org/10.1145/2814270.2814305
https://doi.org/10.1145/2814270.2814305
https://doi.org/10.1145/2594291.2594324
https://doi.org/10.1007/978-3-642-18023-1_4
https://doi.org/10.1007/978-3-642-18023-1_4
https://doi.org/10.1007/978-3-642-02674-4_9
https://doi.org/10.1007/978-3-642-02674-4_9

[58] Florian Heidenreich, Jendrik Johannes, Jan Reimann, Mirko Seifert,
Christian Wende, Christian Werner, Claas Wilke, and Uwe Aßmann.
“Model-driven Modernisation of Java Programs with JaMoPP”. In: Joint
Proceedings of the First International Workshop on Model-Driven Software
Migration (MDSM 2011) and the Fifth International Workshop on System
Quality and Maintainability (SQM 2011), March 1, 2011 in Oldenburg,
Germany. CEUR Workshop Proceedings, Mar. 2011, pp. 8–11.

[59] Zef Hemel, Danny M. Groenewegen, Lennart C. L. Kats, and Eelco
Visser. “Static consistency checking of web applications with WebDSL”.
In: Journal of Symbolic Computation 46.2 (2011), pp. 150–182. doi: 10.
1016/j.jsc.2010.08.006.

[60] Zef Hemel, Lennart C. L. Kats, Danny M. Groenewegen, and Eelco
Visser. “Code generation by model transformation: a case study in
transformation modularity”. In: Software and Systems Modeling 9.3 (2010),
pp. 375–402. doi: 10.1007/s10270-009-0136-1.

[61] Zef Hemel and Eelco Visser. “Declaratively programming the mobile
web with Mobl”. In: Proceedings of the 26th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27,
2011. Ed. by Cristina Videira Lopes and Kathleen Fisher. ACM, 2011,
pp. 695–712. isbn: 978-1-4503-0940-0. doi: 10.1145/2048066.2048121.

[62] Jason Hickey and Aleksey Nogin. “OMake: Designing a Scalable Build
Process”. In: Fundamental Approaches to Software Engineering, 9th Interna-
tional Conference, FASE 2006, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 27-
28, 2006, Proceedings. Ed. by Luciano Baresi and Reiko Heckel. Vol. 3922.
Lecture Notes in Computer Science. Springer, 2006, pp. 63–78. isbn:
3-540-33093-3. doi: 10.1007/11693017_7.

[63] Sungpack Hong, Hassan Chafi, Eric Sedlar, and Kunle Olukotun.
“Green-Marl: a DSL for easy and efficient graph analysis”. In: Pro-
ceedings of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2012, London,
UK, March 3-7, 2012. Ed. by Tim Harris and Michael L. Scott. ACM, 2012,
pp. 349–362. isbn: 978-1-4503-0759-8. doi: 10.1145/2150976.2151013.

[64] B. Hoyts and Simon Alford. fabricate. https : / / github . com /
SimonAlfie/fabricate. 2009. (Visited on 10/04/2019).

[65] Human Usable Textual Notation Specification. Object Management Group.
2004.

[66] Harry D. Huskey, M. H. Halstead, and R. McArthur. “NELIAC - Dialect
of ALGOL”. In: Communications of the ACM 3.8 (Aug. 1960), pp. 463–468.
doi: 10.1145/367368.367373.

[67] Gradle Inc. Gradle Build Tool. https : / / gradle . org/. (Visited on
10/04/2019).

BIBLIOGRAPHY 143

https://doi.org/10.1016/j.jsc.2010.08.006
https://doi.org/10.1016/j.jsc.2010.08.006
https://doi.org/10.1007/s10270-009-0136-1
https://doi.org/10.1145/2048066.2048121
https://doi.org/10.1007/11693017_7
https://doi.org/10.1145/2150976.2151013
https://github.com/SimonAlfie/fabricate
https://github.com/SimonAlfie/fabricate
https://doi.org/10.1145/367368.367373
https://gradle.org/

[68] interactive. In: Cambridge Dictionary. 2018. url: https://dictionary.
cambridge . org / dictionary / english / interactive (visited on
10/04/2019).

[69] Java Microbenchmarking Harness (JMH). http://openjdk.java.net/
projects/code-tools/jmh/. (Visited on 10/04/2019).

[70] Jenkins Pipeline syntax. https://jenkins.io/doc/book/pipeline/
syntax/. (Visited on 10/04/2019).

[71] JetBrains. Kotlin Programming Language. https://kotlinlang.org/.
(Visited on 10/04/2019).

[72] Gregory F. Johnson and Charles N. Fischer. “A Meta-Language and
System for Nonlocal Incremental Attribute Evaluation in Language-
Based Editors”. In: POPL. 1985, pp. 141–151.

[73] Uwe Kastens. “Ordered Attributed Grammars”. In: Acta Informatica 13

(1980), pp. 229–256.
[74] Uwe Kastens and William M. Waite. “Modularity and Reusability in

Attribute Grammars”. In: Acta Informatica 31.7 (1994). http://portal.
acm.org/citation.cfm?id=191491, pp. 601–627.

[75] Lennart C. L. Kats and Eelco Visser. “The Spoofax language work-
bench: rules for declarative specification of languages and IDEs”. In:
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
2010. Ed. by William R. Cook, Siobhán Clarke, and Martin C. Rinard.
Reno/Tahoe, Nevada: ACM, 2010, pp. 444–463. isbn: 978-1-4503-0203-6.
doi: 10.1145/1869459.1869497.

[76] Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. “Pure and
declarative syntax definition: paradise lost and regained”. In: Proceed-
ings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2010. Ed. by
William R. Cook, Siobhán Clarke, and Martin C. Rinard. Reno/Tahoe,
Nevada: ACM, 2010, pp. 918–932. isbn: 978-1-4503-0203-6. doi: 10.
1145/1869459.1869535.

[77] Sven Keidel, Wulf Pfeiffer, and Sebastian Erdweg. “The IDE portability
problem and its solution in Monto”. In: Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering, Ams-
terdam, The Netherlands, October 31 - November 1, 2016. Ed. by Tijs van
der Storm, Emilie Balland, and Dániel Varró. http://dl.acm.org/
citation.cfm?id=2997368. ACM, 2016, pp. 152–162. isbn: 978-1-4503-
4447-0.

[78] Steven Kelly, Kalle Lyytinen, and Matti Rossi. “MetaEdit+ A Fully Con-
figurable Multi-User and Multi-Tool CASE and CAME Environment”.
In: Seminal Contributions to Information Systems Engineering, 25 Years of
CAiSE. Ed. by Janis A. Bubenko Jr., John Krogstie, Oscar Pastor, Barbara
Pernici, Colette Rolland, and Arne Sølvberg. Springer, 2013, pp. 109–
129. isbn: 978-3-642-36926-1. doi: 10.1007/978-3-642-36926-1_9.

144

https://dictionary.cambridge.org/dictionary/english/interactive
https://dictionary.cambridge.org/dictionary/english/interactive
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://kotlinlang.org/
http://portal.acm.org/citation.cfm?id=191491
http://portal.acm.org/citation.cfm?id=191491
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869535
https://doi.org/10.1145/1869459.1869535
http://dl.acm.org/citation.cfm?id=2997368
http://dl.acm.org/citation.cfm?id=2997368
https://doi.org/10.1007/978-3-642-36926-1_9

[79] Thilo Kielmann. PROM: A flexible, PROLOG-based make tool. Technical
Report Report TI-4/91. Darmstadt, Germany: Institute of Theoretical
Computer Science, Darmstadt University of Technology, 1991.

[80] Paul Klint. “A Meta-Environment for Generating Programming Envi-
ronments”. In: ACM Transactions on Software Engineering Methodology 2.2
(1993), pp. 176–201. doi: 10.1145/151257.151260.

[81] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. “RASCAL: A Domain
Specific Language for Source Code Analysis and Manipulation”. In:
Ninth IEEE International Working Conference on Source Code Analysis and
Manipulation, SCAM 2009, Edmonton, Alberta, Canada, September 20-21,
2009. IEEE Computer Society, 2009, pp. 168–177. isbn: 978-0-7695-3793-1.
doi: 10.1109/SCAM.2009.28.

[82] Donald E. Knuth. “backus normal form vs. Backus Naur form”. In:
Communications of the ACM 7.12 (1964), pp. 735–736. doi: 10.1145/
355588.365140.

[83] Donald E. Knuth. “Semantics of Context-Free Languages”. In: Theory
Comput. Syst. 2.2 (1968). http://www.springerlink.com/content/
m2501m07m4666813/, pp. 127–145.

[84] Gabriel Konat. PIE implementation for <Programming> 2018. Mar. 2018.
doi: 10.5281/zenodo.1199192.

[85] Gabriel Konat. Spoofax-PIE implementation for <Programming> 2018. Mar.
2018. doi: 10.5281/zenodo.1199194.

[86] Gabriël Konat, Sebastian Erdweg, and Eelco Visser. “Bootstrapping
Domain-Specific Meta-Languages in Language Workbenches”. In: Pro-
ceedings of the 2016 ACM SIGPLAN International Conference on Gener-
ative Programming: Concepts and Experiences, GPCE 2016, Amsterdam,
The Netherlands, October 31 - November 1, 2016. Ed. by Bernd Fischer
and Ina Schaefer. ACM, 2016, pp. 47–58. isbn: 978-1-4503-4446-3. doi:
10.1145/2993236.2993242.

[87] Gabriël Konat, Sebastian Erdweg, and Eelco Visser. “Scalable incremen-
tal building with dynamic task dependencies”. In: Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineer-
ing, ASE 2018, Montpellier, France, September 3-7, 2018. Ed. by Marianne
Huchard, Christian Kästner, and Gordon Fraser. ACM, 2018, pp. 76–86.
doi: 10.1145/3238147.3238196.

[88] Gabriël Konat, Sebastian Erdweg, and Eelco Visser. “Towards Live
Language Development”. In: Workshop on Live Programming Systems
(LIVE). 2016.

[89] Gabriël Konat, Lennart C. L. Kats, Guido Wachsmuth, and Eelco Visser.
“Declarative Name Binding and Scope Rules”. In: Software Language
Engineering, 5th International Conference, SLE 2012, Dresden, Germany,
September 26-28, 2012, Revised Selected Papers. Ed. by Krzysztof Czar-
necki and Görel Hedin. Vol. 7745. Lecture Notes in Computer Science.

BIBLIOGRAPHY 145

https://doi.org/10.1145/151257.151260
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1145/355588.365140
https://doi.org/10.1145/355588.365140
http://www.springerlink.com/content/m2501m07m4666813/
http://www.springerlink.com/content/m2501m07m4666813/
https://doi.org/10.5281/zenodo.1199192
https://doi.org/10.5281/zenodo.1199194
https://doi.org/10.1145/2993236.2993242
https://doi.org/10.1145/3238147.3238196

Springer, 2012, pp. 311–331. isbn: 978-3-642-36089-3. doi: 10.1007/978-
3-642-36089-3_18.

[90] Gabriël Konat, Luís Eduardo de Souza Amorim, Sebastian Erdweg,
and Eelco Visser. Bootstrapping, Default Formatting, and Skeleton Editing
in the Spoofax Language Workbench. Language Workbench Challenge
(LWC@SLE). https://2016.splashcon.org/details/lwc2016/4/
Bootstrapping-Default-Formatting-and-Skeleton-Editing-in-
the-Spoofax-Language-Workb. 2016.

[91] Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco
Visser. “PIE: A Domain-Specific Language for Interactive Software
Development Pipelines”. In: Programming Journal 2.3 (2018), p. 9. doi:
10.22152/programming-journal.org/2018/2/9.

[92] Shriram Krishnamurthi. Programming Languages: Application and Inter-
pretation. http://www.cs.brown.edu/~sk/Publications/Books/
ProgLangs/2007-04-26/. 2007.

[93] Epperly T Kumfert G. Software in the DOE: The Hidden Overhead of "The
Build". Tech. rep. Lawrence Livermore National Laboratory, 2002.

[94] Oracle Labs. Parallel Graph AnalytiX. https : / / www . oracle . com /
technetwork/oracle-labs/parallel-graph-analytix/overview/
index.html. (Visited on 10/04/2019).

[95] Olivier Lecarme, Mireille Pellissier, and Marie-Claude Thomas.
“Computer-aided Production of Language Implementation Systems:
A Review and Classification”. In: Software: Practice and Experience 12.9
(1982), pp. 785–824.

[96] John Levine. Flex & Bison. O’Reilly Series. O’Reilly Media, 2009. isbn:
9780596155971.

[97] Alex Loh, Tijs van der Storm, and William R. Cook. “Managed data:
modular strategies for data abstraction”. In: ACM Symposium on New
Ideas in Programming and Reflections on Software, Onward! 2012, part
of SPLASH ’12, Tucson, AZ, USA, October 21-26, 2012. Ed. by Gary T.
Leavens and Jonathan Edwards. ACM, 2012, pp. 179–194. isbn: 978-1-
4503-1562-3. doi: 10.1145/2384592.2384609.

[98] David Mackenzie, Tom Tromey, Alexandre Duret-Lutz, Ralf Wildenhues,
and Stefano Lattarini. GNU Automake. Free Software Foundation, Feb.
2018.

[99] Evan Martin. The Ninja build system. https://ninja- build.org/
manual.html. (Visited on 10/04/2019).

[100] Shane McIntosh, Bram Adams, and Ahmed E. Hassan. “The evolution
of ANT build systems”. In: Proceedings of the 7th International Working
Conference on Mining Software Repositories, MSR 2010 (Co-located with
ICSE), Cape Town, South Africa, May 2-3, 2010, Proceedings. Ed. by Jim
Whitehead and Thomas Zimmermann. IEEE, 2010, pp. 42–51. isbn:
978-1-4244-6803-4. doi: 10.1109/MSR.2010.5463341.

146

https://doi.org/10.1007/978-3-642-36089-3_18
https://doi.org/10.1007/978-3-642-36089-3_18
https://2016.splashcon.org/details/lwc2016/4/Bootstrapping-Default-Formatting-and-Skeleton-Editing-in-the-Spoofax-Language-Workb
https://2016.splashcon.org/details/lwc2016/4/Bootstrapping-Default-Formatting-and-Skeleton-Editing-in-the-Spoofax-Language-Workb
https://2016.splashcon.org/details/lwc2016/4/Bootstrapping-Default-Formatting-and-Skeleton-Editing-in-the-Spoofax-Language-Workb
https://doi.org/10.22152/programming-journal.org/2018/2/9
http://www.cs.brown.edu/~sk/Publications/Books/ProgLangs/2007-04-26/
http://www.cs.brown.edu/~sk/Publications/Books/ProgLangs/2007-04-26/
https://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytix/overview/index.html
https://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytix/overview/index.html
https://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytix/overview/index.html
https://doi.org/10.1145/2384592.2384609
https://ninja-build.org/manual.html
https://ninja-build.org/manual.html
https://doi.org/10.1109/MSR.2010.5463341

[101] Erik Meijer. “Reactive extensions (Rx): curing your asynchronous pro-
gramming blues”. In: ACM SIGPLAN Commercial Users of Functional
Programming. ACM. 2010, p. 11. doi: 10.1145/1900160.1900173.

[102] Marjan Mernik, Jan Heering, and Anthony M. Sloane. “When and how
to develop domain-specific languages”. In: ACM Computing Surveys 37.4
(2005), pp. 316–344. doi: 10.1145/1118890.1118892.

[103] Emma Anna Van Der Meulen. “Incremental Rewriting”. PhD thesis.
University of Amsterdam, 1994.

[104] Jon Meyer and Troy Downing. Java Virtual Machine. O Reilly, 1997. isbn:
1-56592-194-1.

[105] Heather Miller, Philipp Haller, and Martin Odersky. “Spores: A Type-
Based Foundation for Closures in the Age of Concurrency and Distri-
bution”. In: ECOOP 2014 - Object-Oriented Programming - 28th European
Conference, Uppsala, Sweden, July 28 - August 1, 2014. Proceedings. Ed. by
Richard Jones. Vol. 8586. Lecture Notes in Computer Science. Springer,
2014, pp. 308–333. isbn: 978-3-662-44201-2. doi: 10.1007/978-3-662-
44202-9_13.

[106] Peter Miller. Recursive make considered harmful. http : / / aegis .
sourceforge.net/auug97.pdf. (Visited on 10/04/2019).

[107] Neil Mitchell. “Shake before building: replacing make with haskell”.
In: ACM SIGPLAN International Conference on Functional Programming,
ICFP’12, Copenhagen, Denmark, September 9-15, 2012. Ed. by Peter Thie-
mann and Robby Bruce Findler. ACM, 2012, pp. 55–66. isbn: 978-1-4503-
1054-3. doi: 10.1145/2364527.2364538.

[108] Andrey Mokhov, Neil Mitchell, Simon L. Peyton Jones, and Simon
Marlow. “Non-recursive make considered harmful: build systems at
scale”. In: Proceedings of the 9th International Symposium on Haskell, Haskell
2016, Nara, Japan, September 22-23, 2016. Ed. by Geoffrey Mainland. ACM,
2016, pp. 170–181. isbn: 978-1-4503-4434-0. doi: 10.1145/2976002.
2976011.

[109] Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth.
“A Theory of Name Resolution”. In: Programming Languages and Systems
- 24th European Symposium on Programming, ESOP 2015, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings. Ed. by Jan Vitek. Vol. 9032.
Lecture Notes in Computer Science. Springer, 2015, pp. 205–231. isbn:
978-3-662-46668-1. doi: 10.1007/978-3-662-46669-8_9.

[110] K. V. Nori, U. Ammann, K. Jensen, and H. H. Nägeli. The PASCAL <P>
Compiler: Implementation Notes. Tech. rep. ETH Zürich, 1974.

[111] Object Constraint Language. 2.3.1. Object Management Group. 2012.

[112] Martin Odersky. “Defining Context-Dependent Syntax Without Using
Contexts”. In: ACM Transactions on Programming Languages and Systems
15.3 (1993), pp. 535–562. doi: 10.1145/169683.174159.

BIBLIOGRAPHY 147

https://doi.org/10.1145/1900160.1900173
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1007/978-3-662-44202-9_13
https://doi.org/10.1007/978-3-662-44202-9_13
http://aegis.sourceforge.net/auug97.pdf
http://aegis.sourceforge.net/auug97.pdf
https://doi.org/10.1145/2364527.2364538
https://doi.org/10.1145/2976002.2976011
https://doi.org/10.1145/2976002.2976011
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/169683.174159

[113] Hubert Österle, Jörg Becker, Ulrich Frank, Thomas Hess, Dimitris Kara-
giannis, Helmut Krcmar, Peter Loos, Peter Mertens, Andreas Oberweis,
and Elmar J. Sinz. “Memorandum on design-oriented information sys-
tems research”. In: EJIS 20.1 (2011), pp. 7–10. doi: 10.1057/ejis.2010.
55.

[114] Daniël Pelsmaeker. “Portable Editor Services”. MA thesis. 2018.

[115] Maarten C. Pennings. “Generating incremental attribute evaluators”.
Ph.D. Thesis. Computer Science, Utrecht University, Nov. 1994.

[116] PIE implementation. https://github.com/metaborg/pie. (Visited on
10/04/2019).

[117] Benjamin C. Pierce. Types and Programming Languages. Cambridge, Mass-
achusetts: MIT Press, 2002.

[118] Arnd Poetzsch-Heffter. “Implementing High-Level Identification Speci-
fications”. In: Compiler Construction, 4th International Conference on Com-
piler Construction, CC 92, Paderborn, Germany, October 5-7, 1992, Proceed-
ings. Ed. by Uwe Kastens and Peter Pfahler. Vol. 641. Lecture Notes in
Computer Science. Springer, 1992, pp. 59–65. isbn: 3-540-55984-1.

[119] Arnd Poetzsch-Heffter. “Logic-Based Specification of Visibility Rules”.
In: PLILP. 1991, pp. 63–74.

[120] Arnd Poetzsch-Heffter. “Programming Language Specification and
Prototyping Using the MAX System”. In: Programming Language Im-
plementation and Logic Programming, 5th International Symposium, PLILP
93, Tallinn, Estonia, August 25-27, 1993, Proceedings. Ed. by Maurice
Bruynooghe and Jaan Penjam. Vol. 714. Lecture Notes in Computer
Science. Springer, 1993, pp. 137–150. isbn: 3-540-57186-8.

[121] Thomas W. Reps. Generating language-based environments. Cambridge,
MA, USA: Massachusetts Institute of Technology, 1984. isbn: 0-262-
18115-0.

[122] Thomas W. Reps. “Optimal-Time Incremental Semantic Analysis for
Syntax-Directed Editors”. In: POPL. 1982, pp. 169–176. doi: 10.1145/
582153.582172.

[123] Thomas W. Reps and Tim Teitelbaum. “The Synthesizer Generator”.
In: Proceedings of the first ACM SIGSOFT/SIGPLAN software engineering
symposium on Practical software development environments. New York,
USA: ACM, 1984, pp. 42–48. doi: 10.1145/800020.808247.

[124] Thomas W. Reps, Tim Teitelbaum, and Alan J. Demers. “Incremental
Context-Dependent Analysis for Language-Based Editors”. In: ACM
Transactions on Programming Languages and Systems 5.3 (1983), pp. 449–
477. doi: 10.1145/2166.357218.

148

https://doi.org/10.1057/ejis.2010.55
https://doi.org/10.1057/ejis.2010.55
https://github.com/metaborg/pie
https://doi.org/10.1145/582153.582172
https://doi.org/10.1145/582153.582172
https://doi.org/10.1145/800020.808247
https://doi.org/10.1145/2166.357218

[125] Tiark Rompf and Martin Odersky. “Lightweight modular staging: a
pragmatic approach to runtime code generation and compiled DSLs”.
In: Generative Programming And Component Engineering, Proceedings of the
Ninth International Conference on Generative Programming and Component
Engineering, GPCE 2010, Eindhoven, The Netherlands, October 10-13, 2010.
Ed. by Eelco Visser and Jaakko Järvi. ACM, 2010, pp. 127–136. isbn:
978-1-4503-0154-1. doi: 10.1145/1868294.1868314.

[126] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. “REScala: bridging
between object-oriented and functional style in reactive applications”. In:
13th International Conference on Modularity, MODULARITY ’14, Lugano,
Switzerland, April 22-26, 2014. Ed. by Walter Binder, Erik Ernst, Achille
Peternier, and Robert Hirschfeld. ACM, 2014, pp. 25–36. isbn: 978-1-
4503-2772-5. doi: 10.1145/2577080.2577083.

[127] Mike Shal. Build System Rules and Algorithms. http://gittup.org/
tup/build_system_rules_and_algorithms.pdf. 2009. (Visited on
10/04/2019).

[128] Mary Shaw. “Writing Good Software Engineering Research Papers”.
In: Proceedings of the 25th International Conference on Software Engineer-
ing, May 3-10, 2003, Portland, Oregon, USA. http://computer.org/
proceedings/icse/1877/18770726abs.htm. IEEE Computer Society,
2003, pp. 726–737.

[129] Jeff Smits and Eelco Visser. “FlowSpec: declarative dataflow analysis
specification”. In: Proceedings of the 10th ACM SIGPLAN International
Conference on Software Language Engineering, SLE 2017, Vancouver, BC,
Canada, October 23-24, 2017. Ed. by Benoît Combemale, Marjan Mernik,
and Bernhard Rumpe. ACM, 2017, pp. 221–231. isbn: 978-1-4503-5525-4.
doi: 10.1145/3136014.3136029.

[130] Emma Söderberg. “Contributions to the Construction of Extensible
Semantic Editors”. PhD thesis. 2012.

[131] Emma Söderberg and Görel Hedin. “A Comparative Study of Incre-
mental Attribute Grammar Solutions to Name Resolution”. In: 2012.

[132] Spoofax-PIE implementation. https://github.com/metaborg/spoofax-
pie. (Visited on 10/04/2019).

[133] Richard M. Stallman, Roland McGrath, and Paul D. Smith. GNU Make.
Free Software Foundation, May 2016.

[134] Standard ECMA-334 C# Language Specification, 5th edition. 2017.

[135] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
Eclipse Modeling Framework. 2nd ed. Addison-Wesley, 2009.

[136] Michael J. Steindorfer and Jurgen J. Vinju. Artifact for ’Optimizing Hash-
Array Mapped Tries for Fast and Lean Immutable JVM Collections’. https:
//github.com/msteindorfer/oopsla15-artifact. 2015. (Visited on
10/04/2019).

BIBLIOGRAPHY 149

https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1145/2577080.2577083
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
http://computer.org/proceedings/icse/1877/18770726abs.htm
http://computer.org/proceedings/icse/1877/18770726abs.htm
https://doi.org/10.1145/3136014.3136029
https://github.com/metaborg/spoofax-pie
https://github.com/metaborg/spoofax-pie
https://github.com/msteindorfer/oopsla15-artifact
https://github.com/msteindorfer/oopsla15-artifact

[137] Michael J. Steindorfer and Jurgen J. Vinju. “Optimizing hash-array
mapped tries for fast and lean immutable JVM collections”. In: Proceed-
ings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2015, part of
SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015. Ed. by Jonathan
Aldrich and Patrick Eugster. ACM, 2015, pp. 783–800. isbn: 978-1-4503-
3689-5. doi: 10.1145/2814270.2814312.

[138] Tijs van der Storm, William R. Cook, and Alex Loh. “Object Grammars”.
In: Software Language Engineering, 5th International Conference, SLE 2012,
Dresden, Germany, September 26-28, 2012, Revised Selected Papers. Ed. by
Krzysztof Czarnecki and Görel Hedin. Vol. 7745. Lecture Notes in
Computer Science. Springer, 2012, pp. 4–23. isbn: 978-3-642-36089-3.
doi: 10.1007/978-3-642-36089-3_2.

[139] S. Doaitse Swierstra and Harald Vogt. “Higher Order Attribute Gram-
mars”. In: Attribute Grammars, Applications and Systems, International
Summer School SAGA, Prague, Czechoslovakia, June 4-13, 1991, Proceedings.
Ed. by Henk Alblas and Borivoj Melichar. Vol. 545. Lecture Notes in
Computer Science. Springer, 1991, pp. 256–296. isbn: 3-540-54572-7.

[140] Symas. Lightning Memory-mapped Database. https://symas.com/lmdb/.
(Visited on 10/04/2019).

[141] Tamás Szabó, Sebastian Erdweg, and Markus Völter. “IncA: a DSL
for the definition of incremental program analyses”. In: Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016. Ed. by David
Lo, Sven Apel, and Sarfraz Khurshid. ACM, 2016, pp. 320–331. isbn:
978-1-4503-3845-5. doi: 10.1145/2970276.2970298.

[142] M. Levin T. Hart. AI Memo 39 - The New Compiler. Tech. rep. MIT, 1962.

[143] Walid Taha and Tim Sheard. “MetaML and multi-stage programming
with explicit annotations”. In: Theoretical Computer Science 248.1-2 (2000),
pp. 211–242. doi: 10.1016/S0304-3975(00)00053-0.

[144] Task Engine Benchmarking Results. https://bitbucket.org/slde/
opendata-experiments. (Visited on 10/04/2019).

[145] Delft University of Technology. TUDelft Compiler Construction, Lab 6:
Name Analysis. http://tudelft-in4303.github.io/assignments/
ms2/lab6.html. (Visited on 10/04/2019).

[146] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew
Flatt, and Matthias Felleisen. “Languages as libraries”. In: Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011. Ed. by
Mary W. Hall and David A. Padua. ACM, 2011, pp. 132–141. isbn:
978-1-4503-0663-8. doi: 10.1145/1993498.1993514.

150

https://doi.org/10.1145/2814270.2814312
https://doi.org/10.1007/978-3-642-36089-3_2
https://symas.com/lmdb/
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1016/S0304-3975(00)00053-0
https://bitbucket.org/slde/opendata-experiments
https://bitbucket.org/slde/opendata-experiments
http://tudelft-in4303.github.io/assignments/ms2/lab6.html
http://tudelft-in4303.github.io/assignments/ms2/lab6.html
https://doi.org/10.1145/1993498.1993514

[147] Vlad A. Vergu, Pierre Néron, and Eelco Visser. “DynSem: A DSL for
Dynamic Semantics Specification”. In: 26th International Conference on
Rewriting Techniques and Applications, RTA 2015, June 29 to July 1, 2015,
Warsaw, Poland. Ed. by Maribel Fernández. Vol. 36. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 365–378. isbn:
978-3-939897-85-9. doi: 10.4230/LIPIcs.RTA.2015.365.

[148] Sander Vermolen, Chris Melman, Elmer van Chastelet, Danny Groe-
newegen, and Eelco Visser. YellowGrass source code. https://github.
com/webdsl/yellowgrass. (Visited on 10/04/2019).

[149] Sander Vermolen, Chris Melman, Elmer van Chastelet, Danny Groe-
newegen, and Eelco Visser. YellowGrass: a tag-based issue tracker powered
by WebDSL. https://yellowgrass.org/. (Visited on 10/04/2019).

[150] Eelco Visser. “A Bootstrapped Compiler for Strategies (Extended Ab-
stract)”. In: Strategies in Automated Deduction (STRATEGIES’99). Trento,
Italy, July 1999, pp. 73–83.

[151] Eelco Visser. “Program Transformation with Stratego/XT: Rules, Strate-
gies, Tools, and Systems in Stratego/XT 0.9”. In: Domain-Specific Pro-
gram Generation, International Seminar, Dagstuhl Castle, Germany, March
23-28, 2003, Revised Papers. Ed. by Christian Lengauer, Don S. Batory,
Charles Consel, and Martin Odersky. Vol. 3016. Lecture Notes in Com-
puter Science. Springer, 2003, pp. 216–238. isbn: 3-540-22119-0. doi:
10.1007/978-3-540-25935-0_13.

[152] Eelco Visser. Scannerless Generalized-LR Parsing. Tech. rep. P9707. Pro-
gramming Research Group, University of Amsterdam, July 1997.

[153] Eelco Visser. “Syntax Definition for Language Prototyping”. PhD thesis.
University of Amsterdam, Sept. 1997.

[154] Eelco Visser. WebDSL Blog source code. https://github.com/webdsl/
blog. (Visited on 10/04/2019).

[155] Eelco Visser, Guido Wachsmuth, Andrew P. Tolmach, Pierre Néron,
Vlad A. Vergu, Augusto Passalaqua, and Gabriël Konat. “A Language
Designer’s Workbench: A One-Stop-Shop for Implementation and Veri-
fication of Language Designs”. In: Onward! 2014, Proceedings of the 2014
ACM International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming & Software, part of SPLASH ’14, Portland, OR, USA,
October 20-24, 2014. Ed. by Andrew P. Black, Shriram Krishnamurthi,
Bernd Bruegge, and Joseph N. Ruskiewicz. ACM, 2014, pp. 95–111.
isbn: 978-1-4503-3210-1. doi: 10.1145/2661136.2661149.

[156] Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. “Efficient
Incremental Evaluation of Higher order Attribute Grammars”. In: PLILP.
1991, pp. 231–242. doi: 10.1007/3-540-54444-5_102.

[157] Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. “Higher-
Order Attribute Grammars”. In: PLDI. 1989, pp. 131–145.

BIBLIOGRAPHY 151

https://doi.org/10.4230/LIPIcs.RTA.2015.365
https://github.com/webdsl/yellowgrass
https://github.com/webdsl/yellowgrass
https://yellowgrass.org/
https://doi.org/10.1007/978-3-540-25935-0_13
https://github.com/webdsl/blog
https://github.com/webdsl/blog
https://doi.org/10.1145/2661136.2661149
https://doi.org/10.1007/3-540-54444-5_102

[158] Tobi Vollebregt, Lennart C. L. Kats, and Eelco Visser. “Declarative speci-
fication of template-based textual editors”. In: International Workshop on
Language Descriptions, Tools, and Applications, LDTA ’12, Tallinn, Estonia,
March 31 - April 1, 2012. Ed. by Anthony Sloane and Suzana Andova.
ACM, 2012, pp. 1–7. isbn: 978-1-4503-1536-4. doi: 10.1145/2427048.
2427056.

[159] Markus Völter and Konstantin Solomatov. “Language Modularization
and Composition with Projectional Language Workbenches illustrated
with MPS”. In: Software Language Engineering, Third International Con-
ference, SLE 2010. Ed. by Mark G. J. van den Brand, Brian Malloy, and
Steffen Staab. Lecture Notes in Computer Science. Springer, 2010.

[160] Guido Wachsmuth, Gabriël Konat, Vlad A. Vergu, Danny M. Groe-
newegen, and Eelco Visser. “A Language Independent Task Engine for
Incremental Name and Type Analysis”. In: Software Language Engineer-
ing - 6th International Conference, SLE 2013, Indianapolis, IN, USA, October
26-28, 2013. Proceedings. Ed. by Martin Erwig, Richard F. Paige, and
Eric Van Wyk. Vol. 8225. Lecture Notes in Computer Science. Springer,
2013, pp. 260–280. isbn: 978-3-319-02653-4. doi: 10.1007/978-3-319-
02654-1_15.

[161] Guido Wachsmuth, Gabriël Konat, and Eelco Visser. “Language Design
with the Spoofax Language Workbench”. In: IEEE Software 31.5 (2014),
pp. 35–43. doi: 10.1109/MS.2014.100.

[162] Edwin Westbrook, Mathias Ricken, Jun Inoue, Yilong Yao, Tamer Ab-
delatif, and Walid Taha. “Mint: Java multi-stage programming using
weak separability”. In: Proceedings of the 2010 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2010,
Toronto, Ontario, Canada, June 5-10, 2010. Ed. by Benjamin G. Zorn and
Alexander Aiken. ACM, 2010, pp. 400–411. isbn: 978-1-4503-0019-3. doi:
10.1145/1806596.1806642.

[163] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. “Silver: An
extensible attribute grammar system”. In: Science of Computer Program-
ming 75.1-2 (2010), pp. 39–54. doi: 10.1016/j.scico.2009.07.004.

[164] Dashing Yeh. “On Incremental Evaluation of Ordered Attribute Gram-
mars”. In: BIT 23.3 (1983), pp. 308–320. doi: 10.1007/BF01934460.

[165] Dashing Yeh and Uwe Kastens. “Improvements of an incremental eval-
uation algorithm for ordered attribute grammars”. In: SIGPLAN Notices
23.12 (1988), pp. 45–50. doi: 10.1145/57669.57672.

152

https://doi.org/10.1145/2427048.2427056
https://doi.org/10.1145/2427048.2427056
https://doi.org/10.1007/978-3-319-02654-1_15
https://doi.org/10.1007/978-3-319-02654-1_15
https://doi.org/10.1109/MS.2014.100
https://doi.org/10.1145/1806596.1806642
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1007/BF01934460
https://doi.org/10.1145/57669.57672

Curriculum Vitae

Gabriël Ditmar Primo Konat
Born August 13th 1988 in The Hague, the Netherlands.

2018 - present
Postdoctoral Research
Delft University of Technology
Department of Software Technology, Programming Languages group

2012 - 2018
Ph.D. in Computer Science
Delft University of Technology
Department of Software Technology, Programming Languages group

06/2013 - 08/2013, 07/2014 - 09/2014, 07/2015 - 09/2015
Research Assistant
Oracle Labs in Redwood Shores, California, United States of America

2009 - 2012
M.Sc. in Computer Science (cum laude)
Delft University of Technology
Specialization: Software Engineering

2005 - 2009
B.Sc. in Computer Science
Institute of Applied Sciences, Rijswijk
Specialization: Software Development

2000 - 2005
HAVO diploma
Segbroek College in The Hague
Specialization: Nature & Technology

153

154

List of Publications

• Gabriël Konat, Sebastian Erdweg, and Eelco Visser. “Scalable incremental
building with dynamic task dependencies”. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ASE
2018, Montpellier, France, September 3-7, 2018. Ed. by Marianne Huchard,
Christian Kästner, and Gordon Fraser. ACM, 2018, pp. 76–86. doi: 10.1145/
3238147.3238196

• Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Vis-
ser. “PIE: A Domain-Specific Language for Interactive Software Develop-
ment Pipelines”. In: Programming Journal 2.3 (2018), p. 9. doi: 10.22152/
programming-journal.org/2018/2/9

• Gabriël Konat, Sebastian Erdweg, and Eelco Visser. “Bootstrapping Domain-
Specific Meta-Languages in Language Workbenches”. In: Proceedings of
the 2016 ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences, GPCE 2016, Amsterdam, The Netherlands, October
31 - November 1, 2016. Ed. by Bernd Fischer and Ina Schaefer. ACM, 2016,
pp. 47–58. isbn: 978-1-4503-4446-3. doi: 10.1145/2993236.2993242

• Gabriël Konat, Luís Eduardo de Souza Amorim, Sebastian Erdweg, and
Eelco Visser. Bootstrapping, Default Formatting, and Skeleton Editing in the
Spoofax Language Workbench. Language Workbench Challenge (LWC@SLE).
https://2016.splashcon.org/details/lwc2016/4/Bootstrapping-
Default - Formatting - and - Skeleton - Editing - in - the - Spoofax -
Language-Workb. 2016

• Gabriël Konat, Sebastian Erdweg, and Eelco Visser. “Towards Live Language
Development”. In: Workshop on Live Programming Systems (LIVE). 2016

• Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly,
Alex Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen,
Eugen Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco
Visser, Kevin van der Vlist, Guido Wachsmuth, and Jimi van der Woning.
“Evaluating and comparing language workbenches: Existing results and
benchmarks for the future”. In: Computer Languages, Systems & Structures 44

(2015), pp. 24–47. doi: 10.1016/j.cl.2015.08.007

• Eelco Visser, Guido Wachsmuth, Andrew P. Tolmach, Pierre Néron, Vlad A.
Vergu, Augusto Passalaqua, and Gabriël Konat. “A Language Designer’s
Workbench: A One-Stop-Shop for Implementation and Verification of Lan-
guage Designs”. In: Onward! 2014, Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software, part of SPLASH ’14, Portland, OR, USA, October 20-24, 2014. Ed.
by Andrew P. Black, Shriram Krishnamurthi, Bernd Bruegge, and Joseph

155

https://doi.org/10.1145/3238147.3238196
https://doi.org/10.1145/3238147.3238196
https://doi.org/10.22152/programming-journal.org/2018/2/9
https://doi.org/10.22152/programming-journal.org/2018/2/9
https://doi.org/10.1145/2993236.2993242
https://2016.splashcon.org/details/lwc2016/4/Bootstrapping-Default-Formatting-and-Skeleton-Editing-in-the-Spoofax-Language-Workb
https://2016.splashcon.org/details/lwc2016/4/Bootstrapping-Default-Formatting-and-Skeleton-Editing-in-the-Spoofax-Language-Workb
https://2016.splashcon.org/details/lwc2016/4/Bootstrapping-Default-Formatting-and-Skeleton-Editing-in-the-Spoofax-Language-Workb
https://doi.org/10.1016/j.cl.2015.08.007

N. Ruskiewicz. ACM, 2014, pp. 95–111. isbn: 978-1-4503-3210-1. doi:
10.1145/2661136.2661149

• Guido Wachsmuth, Gabriël Konat, and Eelco Visser. “Language Design with
the Spoofax Language Workbench”. In: IEEE Software 31.5 (2014), pp. 35–43.
doi: 10.1109/MS.2014.100

• Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly,
Alex Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen,
Eugen Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco
Visser, Kevin van der Vlist, Guido Wachsmuth, and Jimi van der Woning.
“The State of the Art in Language Workbenches - Conclusions from the
Language Workbench Challenge”. In: Software Language Engineering - 6th
International Conference, SLE 2013, Indianapolis, IN, USA, October 26-28, 2013.
Proceedings. Ed. by Martin Erwig, Richard F. Paige, and Eric Van Wyk.
Vol. 8225. Lecture Notes in Computer Science. Springer, 2013, pp. 197–217.
isbn: 978-3-319-02653-4. doi: 10.1007/978-3-319-02654-1_11

• Guido Wachsmuth, Gabriël Konat, Vlad A. Vergu, Danny M. Groenewegen,
and Eelco Visser. “A Language Independent Task Engine for Incremental
Name and Type Analysis”. In: Software Language Engineering - 6th Inter-
national Conference, SLE 2013, Indianapolis, IN, USA, October 26-28, 2013.
Proceedings. Ed. by Martin Erwig, Richard F. Paige, and Eric Van Wyk.
Vol. 8225. Lecture Notes in Computer Science. Springer, 2013, pp. 260–280.
isbn: 978-3-319-02653-4. doi: 10.1007/978-3-319-02654-1_15

• Gabriël Konat, Lennart C. L. Kats, Guido Wachsmuth, and Eelco Visser.
“Declarative Name Binding and Scope Rules”. In: Software Language Engineer-
ing, 5th International Conference, SLE 2012, Dresden, Germany, September 26-28,
2012, Revised Selected Papers. Ed. by Krzysztof Czarnecki and Görel Hedin.
Vol. 7745. Lecture Notes in Computer Science. Springer, 2012, pp. 311–331.
isbn: 978-3-642-36089-3. doi: 10.1007/978-3-642-36089-3_18

156

https://doi.org/10.1145/2661136.2661149
https://doi.org/10.1109/MS.2014.100
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1007/978-3-319-02654-1_15
https://doi.org/10.1007/978-3-642-36089-3_18

	Samenvatting
	Summary
	Preface
	Introduction
	Programming Systems
	Interactive Programming Systems
	Developing Interactive Programming Systems
	Language-Parametric Methods
	Contributions
	NaBL: Declarative Name Binding and Scope Rules
	A Task Engine for Incremental Name and Type Analysis
	Bootstrapping Meta-DSLs in Language Workbenches
	PIE: A Framework for Interactive Software Development Pipelines
	Scalable Incremental Building with Dynamic Task Dependencies

	Research Methodology
	Structure

	NaBL: A Meta-DSL for Declarative Name Binding and Scope Rules
	Introduction
	Declarative Name Binding and Scope Rules
	Definitions and References
	Namespaces
	Scopes
	Namespaces as Language Concepts
	Imports
	Types

	Name Binding Patterns
	Unscoped Definition Sites
	Definition Sites inside their Scopes
	Definition Sites outside their Scopes
	Contextual Use Sites

	Editor Services
	Reference Resolving
	Constraint Checking
	Code Completion

	Implementation
	Persistence of Name Bindings
	Resolving Names

	Integration into Spoofax
	Index API
	Reference resolution
	Constraint checking
	Code completion

	Evaluation and Discussion
	Limitations
	Coverage

	Related work
	Symbol Tables
	Attribute Grammars
	Visibility Predicates
	Dynamic Rewrite Rules
	Textual Language Workbenches

	A Language Independent Task Engine for Incremental Name and Type Analysis
	Introduction
	Name and Type Analysis
	Name Analysis
	Type Analysis
	Incremental Analysis

	Semantic Index
	URIs
	Index Entries
	Initial Collection
	Incremental Collection

	Deferred Analysis Tasks
	Instructions
	Combinators
	Initial Evaluation
	Incremental Evaluation

	Implementation
	Evaluation
	Research method
	Results and interpretation
	Threats to validity

	Related Work
	IDEs and Language Workbenches
	Attribute Grammars
	Reference Attribute Grammars
	Other Approaches

	Conclusion

	Reflection: Incremental Name and Type Analysis, Bootstrapping, and Spoofax Core
	Bootstrapping Domain-Specific Meta-Languages in Language Workbenches
	Introduction
	Problem Analysis
	Bootstrapping Example
	Requirements

	Sound Bootstrapping
	Language Definitions and Products
	Compilation
	Fixpoint Bootstrapping

	Interactive Bootstrapping
	Bootstrapping Breaking Changes
	Evaluation
	Implementation
	Meta-languages
	Bootstrapping Changes

	Related Work
	Bootstrapped General-Purpose Languages
	Bootstrapping
	Language Workbenches
	Staged Metaprogramming

	Conclusion

	Reflection: Language Workbench Pipelines
	PIE: A DSL, API, and Runtime for Interactive Software Development Pipelines
	Introduction
	Problem Analysis
	Requirements
	State of the Art
	Open Problems

	PIE by Example
	PIE API and Runtime
	API
	Runtime
	Reusing the Pluto Runtime

	PIE Language
	Syntax
	Static Semantics
	Compilation

	Case Study: Spoofax Language Workbench
	Pipeline Re-Implementation
	Analysis

	Case Study: Live Performance Testing
	Pipeline Re-Implementation
	Analysis

	Related Work
	Partial Domain-Specific Build Abstractions
	Software Development Pipelines as a Library
	General-Purpose Languages
	Reactive Programming
	Workflow Languages

	Future Work
	First-Class Functions and Closures
	Live Pipelines

	Conclusion

	Scalable Incremental Building with Dynamic Task Dependencies
	Introduction
	Background and Problem Statement
	Key Idea and Challenges
	Bottom-Up Traversal
	Top-Down Initialization
	Early Cut-Off
	Order of Recomputation
	Dynamic Dependencies
	Dependency Graph Validation

	Change-Driven Incremental Building
	Bottom-Up Building
	Execution, Requirement, and Validation
	Properties

	Implementation
	Evaluation
	Experimental Setup
	Results and Interpretation
	Threats to Validity

	Related Work
	Conclusion

	Conclusion
	Interactive Programming Systems
	Language-Parametric Methods
	Incremental Name and Type Analysis
	Bootstrapping meta-DSLs of Language Workbenches
	Pipelining of Interactive Programming Systems

	Future Work
	Incremental Name and Type Analysis
	Bootstrapping of Meta-DSLs
	Pipelining of Interactive Programming Systems

	Bibliography
	Curriculum Vitae
	List of Publications

