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Summary
The future quantum internet promises to create shared quantum entanglement between
any two points on Earth, enabling applications such as provably-secure communication
and connecting quantum computers. A popular method for distributing entanglement is
by sending entangled photons through optical fiber. However, the probability of success-
ful transmission decreases exponentially with the fiber length. This makes it challenging
to realize large fiber-based quantum networks that create shared entanglement, let alone
the construction of a quantum internet. Quantum repeaters have been proposed as a solu-
tion to mitigate losses by acting as intermediary nodes that divide long optical fibers into
smaller segments. The required technology, however, is still under development. In this
thesis we aim to expedite the realization of fiber-based quantum networks by identifying
shortcuts towards that end.

One way in which we look for shortcuts is by identifying the technological advances
that are required to build such networks. To achieve this we translate performance de-
mands on the network to requirements on individual components, such as quantum re-
peaters. This way we are not only able to indicate how much development current-day
technology still requires before functional quantum networks can be built, but also what
specific set of improvements could be applied to state-of-the-art hardware to get there as
soon as possible.

A specific promising shortcut that we investigate in this thesis is the construction of
quantum networks using existing fiber infrastructure. As deploying optical fiber is costly,
an economical method for building quantum networks would be to incorporate fiber that
has already been placed in the field. Existing infrastructure however imposes restrictions
on quantum networks, in particular on the possible locations where quantum hardware
could be installed. An important question to answer is then how severe the effects of
these restrictions are. We address this question by investigating the performance degrada-
tion caused by displacing nodes from their optimal location, and the increase in required
technological advances when restrictions are taken into account. Additionally, we pro-
vide tools for choosing where to deploy quantum repeaters when subject to placement
restrictions.

Finally, we also address the fact that quantum networks may need to provide entan-
glement to more than just two parties. When a network has many end nodes that require
bipartite entanglement between different pairs of them, it is important that it is designed
such that every end node is sufficiently connected to every other end node. We provide
conditions to judge whether this is the case and a method to ensure the conditions are met.
Alternatively end nodes could require multipartite entangled states shared by more than
two of them, in which case specialized nodes may need to be included in the network.
We investigate what such a node could look like and perform a thorough performance
analysis.
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Samenvatting
Het toekomstige kwantuminternet belooft kwantumverstrengeling tussen welke twee lo-
caties op aarde dan ook te kunnen creëren en zo toepassingen, zoals communicatie waar-
van de veiligheid bewezen is en het verbinden van kwantumcomputers, mogelijk te maken.
Een populaire manier om kwantumverstrengeling the verspreiden is door verstrengelde
fotonen door glasvezelkabels te versturen. Echter, de kans dat een foton succesvol wordt
ontvangen neemt exponentieel af met de lengte van de kabel. Dit maakt het moeilijk om
grote glasvezelkwantumnetwerken te realizeren, laat staan een kwantuminternet. Kwan-
tumversterkers zouden op verschillende punten langs de kabel kunnen worden geïnstal-
leerd om zo de snelheid waarmee verstrengeling wordt verspreid te vergroten, maar de
benodigde technologie is nog in ontwikkeling. Met dit proefschrift hopen we de aanvang
van glasvezelkwantumnetwerken te bespoedigen door afsnijroutes daartoe te identifice-
ren.

Één manier waarop wij afsnijroutes zoeken is door te bepalen welke technologische
vooruitgang er nodig is om zulke netwerken mogelijk te maken. Hiertoe vertalen wij ver-
eisten aan de prestaties van het netwerk naar benodigdheden aan individuële componen-
ten, zoals kwantumversterkers. Op deze manier kunnen wij niet alleen aangeven hoeveel
ontwikkeling hedendaagse technologie nog nodig heeft voordat er functionele kwantum-
netwerken gebouwd kunnen worden, maar ook welke specifieke verbeteringen dat het
snelste mogelijk zouden maken.

Een veelbelovende afsnijroute die wij in dit proefschrift in het bijzonder onderzoeken
is het bouwen van kwantumnetwerken door middel van reeds bestaande glasvezelinfra-
structuur. Het uitrollen van glasvezel is duur, en aangezien er al veel zulke kabels in de
grond liggen is een zuinigere manier om kwantumnetwerken te bouwen het gebruik daar-
van. Bestaande infrastructuur beperkt echter wel hoe kwantumnetwerken eruit kunnen
zien, in het bijzonder waar kwantumapparatuur precies geïnstalleerd kan worden. Een be-
langrijke vraag is dan ook hoe ernstig de effecten van deze beperkingen zijn. We addres-
seren deze vraag door te onderzoeken hoezeer prestaties worden verslechterd wanneer
kwantumapparatuur enige afstand van de meest ideale locatie verwijderd is, en door te
bestuderen hoezeer deze beperkingen de vereiste technologische vooruitgang vergroten.
Verder bieden wij ook hulpmiddelen aan om te bepalen waar kwantumversterkers in dat
geval het beste geplaatst kunnen worden.

Als laatste addresseren wij ook het feit dat kwantumnetwerken mogelijk verstrenge-
lingmoeten bieden aanmeer dan twee deelnemers. Wanneer een netwerk veel deelnemers
heeft die, in verschillende paren van twee, verstrengeling willen delen, is het belangrijk
dat het netwerk zo is ontworpen dat alle deelnemers goed genoeg verbonden zijn met
elkaar. We formuleren vereisten om te bepalen of dit het geval is en presenteren een me-
thode om aan deze vereisten te voldoen. Het zou echter ook kunnen zijn dat meer dan
twee deelnemers samen één verstrengelde kwantumtoestand willen delen, in welk geval
wellicht gespecializeerde kwantumapparatuur in het netwerk opgenomen moet worden.



xiv Samenvatting

We onderzoeken hoe die apparatuur er uit zou kunnen zien en bestuderen in detail hoe
goed die zou presteren.
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Introduction

The theory of quantum mechanics has been developed since the early twentieth century
to describe physics at small length scales, arguably starting with the seminal work by Max
Planck on black-body radiation in 1900 [1]. According to quantummechanics, two ormore
systems can be entangled [2], in which case they share a single quantum state and can-
not be accurately described independently from one another. As first discovered by John
Stewart Bell in 1964 [3], the statistics predicted by quantum mechanics when performing
certain measurements on entangled systems display a level of correlation that would be
hard to reproduce in a world governed by classical physics. In fact, these correlations are
incompatible with any theory in which local measurement outcomes only depend on lo-
cal (possibly hidden) variables, given that a number of basic assumptions hold [4], such
as statistical independence between the settings of measurement devices and the systems
they measure [5]. It has been experimentally verified that the correlations predicted by
quantum mechanics are not just theoretical but also hold in nature, for example in an
experiment conducted in Delft in 2015 (a “loophole-free Bell test”) [6].

Besides the important implications entanglement has for fundamental physics, more
recently interest has arisen in the engineering of entangled quantum states to be used as
a practical resource. For instance, if two parties have access to entangled states, the appli-
cation Quantum Key Distribution (QKD) enables them to create a provably-secure secret
key [7–9], which can be used, e.g., for the encryption of messages that only the owners
of that key can decrypt. Other applications that make use of quantum entanglement in-
clude connecting remote telescopes to take higher-resolution pictures [10] and improved
clock synchronization [11]. Another practical application of the properties of quantum
mechanics is the construction of quantum computers, which manipulate quantum states
in order to, in theory, perform some calculations more efficiently than possible on a classi-
cal computer [12–16]. Shared entanglement enables the exchange of quantum information
between quantum computers through quantum teleportation [17]. Other applications of
entanglement shared between quantum computers include distributed quantum comput-
ing [18, 19], allowing the computers to perform computations in a distributed fashion, and
blind quantum computating [20, 21], allowing a client to perform quantum computations
on a server without the server learning the nature of those computations.

In order to perform applications that require entanglement, first one needs to create
entangled states shared between the relevant parties. Quantum networks are networks
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able to distribute remote entanglement, their construction envisioned to ultimately lead
to a quantum internet that enables the creation of shared entanglement between any two
points on Earth [22, 23]. However, at the time of writing, a quantum internet is far from
realized, with the first quantum network connecting three nodes having only recently
been demonstrated [24]. While the manipulation and control of quantum systems is in
general by no means an easy task, quantum networks are particularly challenging to con-
struct due to the transmission losses encountered when exchanging entangled particles
between nodes of the network [25–28]. In this thesis, we focus on quantum networks in
which entanglement is generated between nodes by sending entangled photons through
optical fiber. Although optical fibers have been highly optimized after years of optical
telecommunication (even leading to a Nobel prize being awarded to Charles K. Kao in
2009 [29]), the probability that a photon is successfully transmitted through a fiber still
falls exponentially with the length of that fiber [30, 31]. With typical losses in single-
mode optical fiber being of the order of 0.2 dB/km [31], the photon survival probability is
about one in a hundred over hundred kilometers of optical fiber, but quickly declines to
approximately only one in ten billion over five hundred kilometers. Direct transmission of
photons over fiber is therefore not well suited for the construction of large-scale quantum
networks, let alone a global quantum internet.

When a classical signal is sent through optical fiber, the same exponential losses are
encountered. These can be mitigated using optical amplifiers, but that strategy does not
work in the quantum case due to the no-cloning theorem [28], according to which it is
impossible to duplicate an arbitrary quantum state [32–34]. Still it is possible to increase
entangling rates by installing intermediate nodes that separate a longer stretch of opti-
cal fiber into shorter segments [35]. While entanglement may be generated only slowly
over the full fiber distance, it can be created much more efficiently on each of the shorter
segments. Just splitting fiber into segments, however, is not enough. The intermediate
nodes need to be able to provide certain functionality that enables leveraging the higher
efficiency on the shorter segments such that end-to-end entanglement is produced faster
than what would be achievable over the full fiber length all at once. Devices that provide
such functionality are called quantum repeaters [22, 26–28], and a quantum network can
consist of both end nodes that require shared entanglement as a service, and repeaters
that facilitate that service [23]. There are a number of different operational principles
on which a quantum repeater can be based (as discussed in Chapter 2), but although im-
pressive progress is being made and proof-of-principle experiments have been recently
performed [36, 37], practical quantum repeaters that can be usefully deployed are still
technologically out of reach.

In this thesis, we aim to contribute to the swift deployment of quantum repeaters, and
to the real-world construction of fiber-based quantum networks. To this end, we analyze
the requirements imposed on such networks and identify paths towards their realization.
As such, we aim to find shortcuts towards the realization of fiber-based quantum networks,
as suggested by the title of this thesis. Below we list the particular research questions that
we address and indicate what part of this thesis addresses the question in what way.

What are the minimal requirements on quantum hardware to build a functional
quantum-repeater network?
It is clear that experimental progress is needed in order to build useful quantum networks.
However, it is not always obvious how much progress is needed. Even more importantly,
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there are many ways in which quantum hardware could be improved, and it would be
useful to know which should have the highest priority. For instance, is it more important
to improve a device’s emission probability or its error rates when manipulating quantum
states? An answer to this question could help realize a more efficient allocation of research
projects and resources, such that quantum networks can come into fruition as soon as
possible. Within this thesis, this particular question is addressed most in depth in Chapter
3. In that chapter we consider a concrete single-repeater quantum network and specific
types of quantum hardware, and investigate what the “smallest” admissible amount of
improvement over the state-of-the-art is such that the network performance meets a set of
demands (namely, a minimal rate and fidelity of entanglement distribution). The question
is also addressed in Chapter 5, where we additionally investigate the effect of the number
of repeaters in the network and the focus is less on the hardware specifics and more on
how the different demands that could be imposed on the network as a whole affect the
requirements on individual repeaters.

How large is the effect of constraints imposed by existing fiber infrastructure
on hardware requirements and network performance, if a quantum network is
constructed using that infrastructure?
Classical telecommunication networks utilize optical fiber, and as such fiber infrastructure
is already widespread. Using this existing infrastructure to build quantum networks,
rather than deploying new infrastructure, would be a very economical method for the
construction of fiber-based quantum networks and can be thought of as a shortcut towards
their realization. However, incorporating existing infrastructure imposes a number of
constraints on the quantum network. Not only is fiber only available along specific paths,
also the locations where the fiber emerges from the ground and quantum hardware could
be installed are predetermined. In both Chapters 3 and 5 we optimize over the constrained
placement of network nodes, and in Chapter 3 we also explicitly investigate how much
larger the requirements imposed on quantum hardware are on a real fiber grid compared
to a more idealized fiber grid. One of the consequences of infrastructure constraints is
that the nodes of the quantum network may not always be evenly spaced, meaning that
different fiber segments having different lengths. In Chapter 4 we investigate in depth
to what extent such an uneven spacing would deteriorate the performance of specific
types of quantum networks. Finally, in Chapter 6, we address the question of where in
an existing fiber grid one should install quantum repeaters and where not, in case one
aims to minimize the total number of repeaters in the network while ensuring a number
of demands on the network performance are met.

How can a set of multiple end nodes in a quantum network be served optimally?
While in Chapters 3, 4 and 5wemostly focus on quantum networks that have only two end
nodes, a general network could have many end nodes that require shared entanglement.
In Chapter 6 we focus on the distribution of bipartite entanglement, i.e., entanglement
between two quantum systems, between different pairs of end nodes in a network. More
specifically, we consider how quantum repeaters can be allocated across a network such
that any set of two end nodes can obtain shared entanglement with some guaranteed qual-
ity of service. In Chapter 7, on the other hand, we consider the case when the end nodes
want to share multipartite entanglement, i.e., entanglement shared between more than
two quantum systems. We investigate how nodes dedicated to the creation of multipartite
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entanglement (somewhat akin to quantum repeaters) could be operated and perform a
thorough performance analysis. This is a step towards determining optimal strategies for
the distribution of multipartite entanglement in future quantum networks in the presence
of hardware imperfections.
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2
Preliminaries

In this chapter we briefly discuss some of the key concepts required to understand this
thesis. Particularly, we discuss the types of quantum repeaters that we consider and some
of the metrics employed to quantify the performance level of a quantum network.

2.1 Basic operations of quantum repeaters
All the quantum repeaters we study in this thesis share two basic operational principles.
These are heralded entanglement generation [1–4], which is used to create entangled states
between neighboring nodes in the network, and entanglement swapping [2, 5, 6], which
is used to transform entangled states between neighbors into entangled states between
non-neighboring nodes. Let us for simplicity focus on a quantum-repeater chain, that is,
a one-dimensional quantum network with two end nodes at the far ends and quantum-
repeater nodes as intermediary nodes. Entanglement between the end nodes can then be
generated by first performing heralded entanglement generation between all neighbors,
and then performing entanglement swapping at all repeaters. Before looking at specific
types of quantum repeaters, we will first explain entanglement swapping and heralded
entanglement generation in more detail.

2.1.1 Bell states
A quantum bit (qubit) is a two-level system that can be in the state |0⟩, |1⟩, or a superposi-
tion of the two of the form

|𝜓 ⟩ = 𝛼 |0⟩+𝛽 |1⟩ , (2.1)

with complex numbers 𝛼 and 𝛽 such that the state is normalized (i.e., |𝛼|2 = |𝛽|2 = 1) [7, 8].
Then, when there are two qubits, their state can be any normalized superposition of |0⟩⊗|0⟩,
|0⟩ ⊗ |1⟩, |1⟩ ⊗ |0⟩ and |1⟩ ⊗ |1⟩. Now let us define the Bell states [7–9],

|𝜙𝑖𝑗⟩ ≡ (𝑋 𝑖𝑍 𝑗 ⊗1) 1
√2(|0⟩⊗ |0⟩+ |1⟩⊗1). (2.2)

Here, 𝑖 and 𝑗 can take the values 0 and 1, 𝑋 and 𝑍 are the Pauli X and Z operators re-
spectively defined as 𝑋 = |0⟩⟨1|+ |1⟩ ⟨0| and 𝑍 = |0⟩⟨0|− |1⟩⟨1|, and 1 is the identity operator
1 = |0⟩⟨0|+ |1⟩⟨1|. These four states form an orthonormal basis, known as the Bell basis, for
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two qubits. That is, any two-qubit state can be written as a normalized superposition of
the Bell states instead of the states |0⟩ ⊗ |0⟩, |0⟩ ⊗ |1⟩, |1⟩ ⊗ |0⟩ and |1⟩ ⊗ |1⟩ [7–9]. These Bell
states are entangled, by which it is meant that they cannot be written as a product of two
single-qubit states,

|𝜙𝑖𝑗⟩ ≠ |𝜓1⟩⊗ |𝜓2⟩ . (2.3)

In fact, the Bell states are maximally entangled (meaning that when one qubit is lost there
is no information left about the remaining qubit), and every two-qubit maximally entan-
gled state is equivalent to a Bell state up to single-qubit unitary operations [10]. The goal
of the chains of quantum repeaters considered in this thesis is to distribute such a max-
imally entangled state between the chain’s end nodes, as fast and with as few errors as
possible. Heralded entanglement generation, discussed in more detail below, is a method
for creating Bell states shared between qubits at neighboring nodes.

2.1.2 Entanglement swapping
Now, we define a Bell-State Measurement (BSM) as a two-qubit measurement with mea-
surement operators that are projectors onto the Bell basis (see, e.g., Ref. [8] for a review
on measurements in quantum mechanics). Then, if qubits 1 and 2 are in the state |𝜙𝑖𝑗⟩1,2
and the qubits 3 and 4 are in the state |𝜙𝑘𝑙⟩3,4, a BSM on qubits 2 and 3 with outcome |𝜙𝑚𝑛⟩
creates the following state shared by qubits 1 and 4:

(|𝜙𝑚𝑛⟩ ⟨𝜙𝑚𝑛 |)2,3 |𝜙𝑖𝑗⟩1,2 |𝜙𝑘𝑙⟩3,4
|||𝜙𝑚𝑛⟩ ⟨𝜙𝑚𝑛 |)2,3 |𝜙𝑖𝑗⟩1,2 |𝜙𝑘𝑙⟩3,4||

= |𝜙𝑖⊕𝑘⊕𝑚,𝑗⊕𝑙⊕𝑛⟩1,4 |𝜙𝑚𝑛⟩2,3 . (2.4)

Here, ⊕ denotes addition modulo two. Thus, the qubits 1 and 4 which before did not share
any entanglement now share a Bell state. This method for creating entanglement between
two possibly remote qubits is what we refer to here as entanglement swapping, a pro-
cedure discovered first in Ref. [5]. In the context of quantum repeaters, entanglement
swapping is when a BSM is performed on two local qubits that are entangled with qubits
at different nodes. If there is a Bell state shared between every pair of neighboring nodes
in a quantum-repeater chain and every repeater performs entanglement swapping, the
end nodes will end up sharing entanglement. Entanglement swapping has been experi-
mentally realized in various physical systems [11–16].

2.1.3 Heralded entanglement generation
In this thesis, we consider a class of protocols for distributing entanglement between neigh-
bors that we refer to as heralded entanglement generation [1, 2]. By this, we mean a proto-
col that works as follows. Two nodes that want to share entanglement perform a sequence
of attempts at entanglement generation. At the end of every attempt, both partaking nodes
are notified whether the attempt was successful or not (success and failure are “heralded”).
After a success, the nodes share an entangled (but possibly erroneous) state. After a fail-
ure, the nodes are left with nothing and must try again. In particular, in this thesis, we
consider the so-called single-click protocol (proposed in Ref. [3], demonstrated experi-
mentally in, e.g., Refs. [15, 17, 18]) and the double-click protocol (also sometimes referred
to as the Barrett-Kok protocol after its inventors [4], experimentally realized in, e.g., Refs.
[19–22]) for heralded entanglement generation. For other protocols see, e.g., Refs [1, 6].
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In these protocols, two neighboring nodes both generate local entanglement between a
matter qubit and a photon. The entangled photons are then transmitted through optical
fiber to a midpoint station, where a BSM is performed on the photons. As explained above,
this will result in the creation of an entangled state shared between the two matter qubits.
Attempts can fail for several reasons, one of which is photon loss (e.g., due to attenuation
losses in fiber). In both the single- and double-click scheme, the heralding station performs
a BSM using linear optics (more specifically, using beam splitters and single-photon de-
tectors). In that case, even if there is no loss in the system, there is a probability that
the measurement does not project on an entangled state, resulting in heralded failure. In
fact, it has been proven that it is impossible to exceed a success probability of 50% using
only linear optics [23] (unless ancillary entangled photons are introduced [24], although
even then the BSM remains probabilistic). For more detailed models for the single- and
double-click protocols, see Chapter 3. We note that when building a quantum network
using existing fiber infrastructure, this may restrict not only the placement of quantum
repeaters but also of midpoint stations.

2.2 Types of quantum repeaters
Let two end nodes be separated by a fiber of total length 𝐿. Then the probability that a
photon transmitted from one node to the other is not lost due to fiber attenuation is given
by an exponential decay [25],

𝜂(𝐿) = 𝑒−
𝐿

𝐿att , (2.5)
where 𝐿att is the attenuation length of the fiber (a typical value considered in quantum-
repeater literature is 𝐿att ≈ 22 km) [2, 6]. For simplicity, let us assume that the success
probability of heralded entanglement generation between the two nodes takes the form
[6]

𝑃succ(𝐿) = 𝑝0𝜂(𝐿), (2.6)
where 𝑝0 parametrizes all loss in the system not due to attenuation. This formula is ap-
proximately correct when heralded entanglement generation is implemented using the
double-click protocol or the direct transmission of entangled photons (for the single-click
protocol the scaling would be rather like √𝜂, but this would not change the argument
made below). Imagine now that we split the distance 𝐿 between the end nodes into 𝑁
equal segments by installing𝑁 −1 repeaters along the fiber, and that all neighboring nodes
simultaneously perform one attempt at entanglement generation after which all repeaters
perform entanglement swapping. End-to-end entanglement will only be created in case
each of the repeaters held two entangled qubits to perform the swap on, or equivalently, in
case entanglement generation succeeded on each of the segments. The success probability
is then

𝑃succ, chain(𝐿,𝑁 ) = 𝑃succ(𝐿/𝑁 )𝑁 = 𝑝𝑁0 𝑒−
𝐿
𝐿0 < 𝑃succ(𝐿). (2.7)

Therefore, introducing repeaters actually reduced the success probability by including the
non-attenuation losses 𝑝0 multiple times. Apparently, just splitting a fiber into smaller
segments is in itself not enough to realize faster entanglement distribution. The quantum
repeaters need additional functionality before they can actually be used as repeaters. There
are two such types of functionality in particular that we consider in this thesis. Namely,
they are long-lived quantum memory and multiplexing. While quantum repeaters can
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be built using only one of these types of functionality, they can also be combined (as we
consider in Chapter 5).

2.2.1 Long-lived quantum memory
A long-lived quantum memory is a system that can preserve quantum states for extended
periods of time. It can boost the rate at which entanglement is distributed between end
nodes as follows [2, 6, 26]: Imagine, again, that heralded entanglement generation is per-
formed on each of the segments of a repeater chain. Entanglement will be successfully
distributed between some of the nodes but not between others. Now, instead of requir-
ing all the repeaters to immediately perform entanglement swapping, repeaters can store
their entangled qubits in quantummemory. Then, the segments over which entanglement
generation was previously unsuccessful are used to reattempt entanglement generation.
Successfully entangled qubits are again stored in memory, while repeaters that failed a
second time will yet again perform a new attempt. This can be continued until all neigh-
boring nodes share entanglement. At that point, entanglement swapping can be executed
at the repeaters to create an end-to-end entangled state. By not requiring all segments to
be successful at the same time, the average time required until the end nodes share entan-
glement can be decreased. However, it must be noted that real-life quantum memory is
imperfect and extended storage periods can incur errors [13, 15, 27–29]. Therefore, states
can often not be stored indefinitely but should be discarded after some time. The amount
of time after which a state is discarded is referred to as the cutoff time [30–36]. The cutoff
time can often be freely chosen, where having a short cutoff time lessens the probability of
an error occurring, but at the cost of often having to discard states, thereby increasing the
time required until end-to-end entanglement can be generated. For example, in Chapters
3 and 5 the cutoff time is optimized over to determine the minimal hardware requirements
for meeting a set of network performance demands.

We note that enhancing entangling rates using long-lived quantum memory is a strat-
egy not limited to quantum repeaters. For instance, in Chapter 7 we investigate network
nodes dedicated to the distribution of multipartite entangled states shared between 𝑁 > 2
end nodes. First heralded entanglement generation is executed between the dedicated
node and each end node, after which a multipartite analogue of entanglement swapping
is performed. If no memory is present at the central node, heralded entanglement genera-
tionmust succeedwith all𝑁 neighbours at the same time, resulting in a success probability
that decreases exponentially with the number of end nodes. If the central node instead con-
tains quantum memory, entanglement generation does not need to succeed everywhere
at the same time, thereby reducing the time required to distribute the multipartite state.

2.2.2 Multiplexing
Another strategy for decreasing the time until end-to-end entanglement is distributed is
multiplexing. When multiplexing is used, every time slot of heralded entanglement gener-
ation is used to performmultiple attempts. This can for instance be done by using different
frequency modes [37–39] or temporal modes [40–43] of the photons employed. Then, two
neighbors end up sharing entanglement after a single time slot if at least one attempt was
successful. Even if they are forced to perform entanglement swapping straight away be-
cause of the lack of long-lived quantum memory, the end-to-end success probability will
be increased by the presence of the repeaters. If there are 𝑛 modes of multiplexing, the



2.2 Types of quantum repeaters

2

11

success probability of heralded entanglement generation over one segment is equal to the
probability that not all 𝑛 modes fail, i.e.,

𝑃succ, 𝑛 modes = 1− (1−𝑃succ)𝑛 ≈ 𝑛𝑃succ. (2.8)

This approximation is valid when 𝑃succ is small. Given enough repeaters and modes, the
success probability can then theoretically be brought arbitrarily close to unity. However,
it must be noted that even when using multiplexing one still requires short-lived quan-
tum memories for heralded entanglement generation, as local entangled qubits need to be
stored until success or failure of each mode is heralded by the midpoint station. Based
on this information, repeater nodes need to decide which of the 2𝑛 local qubits should
undergo entanglement swapping. While storage times will be only relatively short, one
difficulty with implementing multiplexing is the need for multimode quantum memories
[40, 42, 44–48] (see, e.g., Ref. [39] for a thorough analysis).

2.2.3 Other types of repeaters
We would like to stress that the types of repeaters considered in this thesis and explained
above by nomeans represent themost general class of repeater protocols. For instance, the
repeaters we consider don’t incorporate techniques for combatting errors that may occur
during heralded entanglement generation or entanglement swapping. If the probability
of such errors is high, the end-to-end entanglement delivered by a repeater chain may
not be useful anymore (see Section 2.3 for a discussion about how the severity of errors
in entangled states can be quantified). Two possible techniques for combatting errors are
entanglement distillation and the use of quantum-error-corrected logical qubits. Entangle-
ment distillation (also known as entanglement purification) is a technique to transform a
number of noisy entangled states into a smaller number of less noisy states [49–52]. Com-
bining distillation with the use of quantum memory (and possibly multiplexing) results
in a so-called first-generation quantum-repeater protocol [2, 6, 53], an example of which
is the first proposal for a quantum-repeater protocol, named the BDCZ protocol after its
inventors [26]. When instead quantum error correction [54–56] is used, entanglement
is not created between individual physical qubits but instead between logical qubits that
each exist of multiple physical qubits according to some encoding scheme [57–60]. Re-
dundancy in the encoding of logical qubits can lead to resilience against errors. When
such a scheme is used, entanglement swapping must be performed between two logical
qubits instead of between two physical qubits. When quantummemory (and possibly mul-
tiplexing) is combined with quantum error correction this is sometimes referred to as a
second-generation quantum-repeater protocol [2, 6, 53]. A downside to both techniques
for combatting errors is that they require more capabilities of quantum repeaters, such as
the generation and storage of multiple entangled pairs with each neighboring node and a
more thorough manipulation of those stored states. This may make them less suitable for
near-future quantum networks (see, for example, Refs. [61, 62] for studies that investigate
whether distillation helps for hardware quality close to the current state-of-the-art), and
this motivates why they are mostly absent in this thesis.

A final type of quantum repeater that we mention here is the one-way quantum re-
peater (also known as a third-generation quantum repeater) [2, 6, 53, 63–66]. These types
of quantum repeaters employ quantum-error-correcting codes to protect against losses
and do away with the need for two-way communication between nodes, thereby poten-
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tially enabling repetition rates that are much higher than for schemes based on heralded
entanglement generation. A downside however is that by the no-cloning theorem it is
impossible to effectively protect against losses if they exceed 50%, meaning that repeaters
need to be spaced closely together (50% attenuation loss corresponds to approximately 15
km of fiber at 𝐿att = 22 km) [6]. For more information about different types of quantum
repeater see, e.g., Refs. [2, 6].

2.3 Quantifying repeater performance
In order to quantify how well a repeater chain performs, we need performance metrics
for entanglement distribution. Repeaters have been presented here primarily as a method
for speeding up entanglement generation over large distances. However, just looking at
how quickly entanglement is created is not enough. It is also important to consider the
probability that there are errors in the delivered entangled state. For example, end nodes
may think they share a Bell state |𝜙00⟩, but if there has been a Pauli-X error on a qubit it
may instead be the Bell state |𝜙10⟩. Such errors can be accounted for using the density-
matrix formalism [7–9]. When a system is in the quantum state |𝜓𝑖⟩ with probability 𝑝𝑖
(such that ∑𝑖 𝑝𝑖 = 1), a density matrix

𝜌 =∑
𝑖
𝑝𝑖 ||𝜓𝑖⟩⟨𝜓𝑖 || (2.9)

is assigned to that system. When there are multiple nonzero 𝑝𝑖 ’s, the system is said to be
in a mixed state. Conversely, when there is only one nonzero 𝑝𝑖 , the state is said to be
pure.

2.3.1 Rate and fidelity
Probably the simplest way of quantifying the performance of entanglement generation is
using the rate and fidelity. The (entangling) rate 𝑅 is simply the number of end-to-end
entangled states that can be produced on average per time unit and is often reported in
entanglement-generation experiments [15, 17, 21, 22, 67–69]. To be more precise, let 𝑇 be
the average time that the end nodes have to wait between the creation of one end-to-end
entangled state and the next, then the rate is given by [70]

𝑅 = 1
𝑇 . (2.10)

On the other hand, the fidelity is a metric for the how erroneous delivered states are.
If the target state of entanglement generation is |𝜙⟩ but in reality the delivered state is
represented by the density matrix 𝜌, the fidelity is defined by [71]

𝐹 = ⟨𝜙||𝜌||𝜙⟩ . (2.11)

2.3.2 Secret-key rate
A downside to rate and fidelity is that they are two numbers for quantifying the perfor-
mance level of one process. If one repeater chain produces entanglement at a rate of 1 Hz
and a fidelity of 0.8 and another chain at a rate of 10 Hz and a fidelity of 0.6, which is bet-
ter? One way of solving this issue is by looking at how good the system is at supporting
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actual applications that require entanglement. As one of the oldest and best known such
applications, Quantum Key Distribution (QKD) [72–77] is a straightforward application to
consider to this end. When performing entanglement-based QKD, two parties sharing an
entangled state measure their qubits. If they measure in the same basis and the state they
share is a pure, maximally-entangled state, the results are either expected to be perfectly
correlated or anticorrelated (depending on the entangled state and themeasurement basis).
In that case, each such measurement directly produces one bit that can be used as a secret
key. When there are errors present however, correlations are imperfect, as quantified by
the Quantum Bit Error Rate (QBER) (it is the probability that measurement outcomes are
not correctly correlated). These erroneous measurement results provide a raw key, from
which a secret key can still be distilled using classical error correction as long as the QBER
is not too large. We here define the secret fraction 𝑓 to be the ratio between the lengths of
the secret key and the raw key in the asymptotic limit, i.e., in the limit where the length of
the raw key goes to infinity. It is a decreasing function of the QBER and hence a measure
of how erroneous the entangled state is. The secret-key rate can then be defined as

SKR = 𝑅𝑓 , (2.12)

i.e., it is the product of the secret fraction and the rate at which entanglement is distributed.
This can be interpreted as the number of private-key bits produced per time unit (up to
possibly a constant factor to account for sifting, which is the filtering out of measurement
results obtained when both parties did not measure in the same basis). What the secret
fraction looks like depends on the specific QKD protocol considered, see, e.g., Ref. [76] for
an overview. In Chapters 4 and 5 we consider specifically the entanglement-based BB84
protocol [73, 74]. Assuming the QBER is the same for each of the two measurement bases
used, the secret fraction can be written as [78–80]

𝑓BB84 =max (0,1−2ℎ(QBER)) , (2.13)

where ℎ(𝑥) = −𝑥 ln𝑥 −(1−𝑥) ln(1−𝑥) is the binary-entropy function. The BB84 asymptotic
secret key rate is used as a performance metric for various experiments [12, 68, 81] and
quantum-network analyses [32, 33, 35, 39, 58, 70, 82].

2.3.3 Blind quantum computing
An advantage of using the secret-key rate to quantify quantum-network performance is
that it is an application-driven metric. However, not all applications may have the same
requirements, and therefore considering only QKD may result in a skewed perspective on
what good quantum networks are. For instance, QKD is a single-qubit application, mean-
ing that individual entangled states are directly processed after they have been created. In
contrast, other applications may require multiple live entangled qubits simultaneously for
further processing. Especially if these qubits need to be stored in noisy quantummemories
until all required states are present, a quantum network that is good at performing QKD
may not be as good at performing such other applications. Therefore, in this thesis, we also
consider an application-driven performance metric that is not based on QKD. Specifically,
we use the application of Blind Quantum Computation (BQC) [83–89]. This is an applica-
tion that allows a client to execute a quantum program on a quantum-computing server
without the server learning what program is executed. We focus on a minimal version of
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this application, where only two-qubit quantum programs are executed at the server, in ac-
cordance with the protocol presented in Ref. [89]. In this protocol, the client determines
randomly per round whether it is a computation round (such that it contributes to the
client learning the desired computational result), and test rounds. Test rounds are used
to verify the server’s honesty, but noise in distributed entangled states can also lead to
test failure. It is therefore impossible to tell whether the server is dishonest or the quality
of entangled states is bad, making the test-round success probability in case of an honest
server an important metric for how well the protocol can be executed.
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3
Requirements for a

processing-node quantum repeater
on a real-world fiber grid

GuusAvis∗, Francisco Ferreira da Silva∗,
Tim Coopmans, Axel Dahlberg, Hana
Jirovská, DavidMaier, JulianRabbie, Ar-
ianaTorres-Knoop and StephanieWehner.
We numerically study the distribution of entanglement between the Dutch cities of Delft and
Eindhoven realized with a processing-node quantum repeater and determine minimal hard-
ware requirements for verifiable blind quantum computation using color centers and trapped
ions. Our results are obtained considering restrictions imposed by a real-world fiber grid
and using detailed hardware-specific models. By comparing our results to those we would
obtain in idealized settings we show that simplifications lead to a distorted picture of hard-
ware demands, particularly on memory coherence and photon collection. We develop general
machinery suitable for studying arbitrary processing-node repeater chains using NetSquid,
a discrete-event simulator for quantum networks. This enables us to include time-dependent
noise models and simulate repeater protocols with cut-offs, including the required classical
control communication. We find minimal hardware requirements by solving an optimiza-
tion problem using genetic algorithms on a high-performance-computing cluster. Our work
provides guidance for further experimental progress, and showcases limitations of studying
quantum-repeater requirements in idealized situations.

Part of the challenge in building quantum repeaters is that their hardware require-
ments remain largely unknown. Extensive studies have been conducted to estimate such

∗These authors contributed equally.
This chapter is based on the preprint arXiv:2207.10579.
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requirements both analytically (see, e.g., [1–24]), as well as using numerical simulations
(see, e.g., [25–33]). While greatly informative in helping us understand minimal hardware
requirements needed to bridge long distances, they have mostly been conducted in ideal-
ized settings where all repeaters are equally spaced, and one assumes a uniform loss of
typically 0.2 dB/km on each fiber segment (exceptions are [20–22]). Furthermore, with
few exceptions [8, 21, 22, 24, 31], such studies only provide rough approximations of time-
dependent noise, and do not take into account platform-specific physical effects such as
noise on the memory qubits during entanglement generation on NV centers [34] or col-
lective Gaussian dephasing in ion traps (see Figure 3.1).

3.1 Results
In this chapter, we present the first study that takes into account time-dependent noise,
platform-specific noise sources and classical control communication, as well as constraints
imposed by a real-world fiber network, and optimizes over parameters of the repeater
protocols used to generate entanglement. Our investigation is conducted using fiber data
from SURF, an organization that provides connectivity to educational institutions in the
Netherlands. Specifically, we will consider a network path connecting the Dutch cities
of Delft and Eindhoven, separated by 226.5 km of optical fiber (see Figure 3.1 (a)). In
placing equipment, we restrict ourselves to SURF locations, which leads to the repeater
being located closer to Delft than to Eindhoven. Intermediary stations used for heralded
entanglement generation (see Figure 3.1 (b)) cannot be placed equidistantly from both
nodes either, as is generally assumed in idealized studies. We emphasize that we restrict
ourselves to existing infrastructure, and therefore do not investigate the possibility of
altering the fiber links. We direct the interested reader to related work which focuses on
determining hardware requirements while taking into account howmany repeaters to use
and their placement [35].

We consider the case where the network path is used to support an advanced quantum
application, namely Verifiable Blind Quantum Computation (VBQC) [36], with a client
located in Eindhoven and a powerful quantum-computing server located in Delft. We
chose VBQC because since their introduction blind-quantum-computing protocols have
attracted a lot of interest, being widely cited as one of the principal future applications of
quantum networks (see, e.g., [36–43]). While it is true that VBQC is somewhat unique in
that it is highly asymmetrical in terms of the resources it requires from client and server,
it is representative for many other quantum-networking applications in that it requires
multiple live qubits. Additionally, the noise resilience of the specific VBQC protocol we
consider [36] makes it particularly suitable to study the performance of such applications
in the presence of hardware imperfections. Specifically, we consider the smallest instance
of VBQC, where two entangled pairs are generated between the client and the server. Such
entanglement is used to send qubits from the client to the server. We show in Section 3.7
that this can be done through remote state preparation [44]. To set the requirements of
our quantum-network path, we impose that its hardware must be good enough to execute
VBQC with the largest acceptable error rate [36]. This demand can be translated to re-
quirements on the fidelity and rate at which entanglement is produced. Both depend on
the lifetime of the server’s memory, as the server needs to be able to wait until both qubit
states have been generated before it can begin processing. Additionally, the requirements
on the fidelity and rate can also be understood as the fidelity and rate at which we can
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Figure 3.1: (a) Satellite photo of the Netherlands overlaid with a depiction of the hypothetical one-repeater setup
connecting the Dutch cities of Delft and Eindhoven that we investigate. The white circles represent processing
nodes, connected to each other and to heralding stations through fiber drawn in white. The black dots within the
processing nodes represent qubits (the distinction between communication andmemory qubits is not represented
here). The placement of nodes and heralding stations is constrained by the fiber network, and their position on
the figure roughly approximates their actual geographic location. All distances are given in kilometers, with
a total fiber distance between Delft and Eindhoven of 226.5 km. (b) Heralding station. Photons emitted by a
processing node travel through the optical fiber and are interfered at a beam splitter. Photon detection heralds
entanglement between processing nodes. This process is affected by the overall probability that emitted photons
are detected, the coincidence probability, i.e., the probability that photons arrive in the same time window, the
imperfect indistinguishability of the photons as measured by the visibility and dark counts in the detector. (c)
Color center in diamond, one of the processing nodes we investigate. We consider an optically-active electronic
spin used as a communication qubit, and a carbon spin used as a memory qubit. Decoherence in both qubits
is modeled through amplitude damping and phase damping channels with characteristic times 𝑇1 and 𝑇2, re-
spectively. These are different for the two qubits. The existence of an always-on interaction between the qubits
allows for the execution of two-qubit gates, but also means that entangling attempts with the communication
qubit induce noise on the memory qubit. (d) Ion trap, the other processing node we investigate. We consider
two optically active ions trapped in an electromagnetic field generated by electrodes, whose energy levels are
used as qubits. The ions interact through their collective motional modes, which enables the implementation of
two-qubit gates. They are subject to collective Gaussian dephasing noise characterized by a coherence time.
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deterministically teleport unknown data qubits between the client and the server. There-
fore, while our investigation focuses on VBQC, our results can also be interpreted from
the perspective of quantum teleportation.

In our study, we obtain the following results, described in more detail below: First,
we investigate the minimal hardware requirements that are needed to realize target fideli-
ties and rates that allow executing VBQC using our network path. These correspond to
theminimal improvements over state-of-the-art hardware parameters that enable meeting
the targets. Specifically, we consider parameters measured for networked color centers
(specifically, for NV centers in diamond) [45–52] and ion traps [53–60]. We find that
considerable improvements are needed even to bridge relatively modest distances, with
our study also shining light on which parameters require significantly more improvement
than others. To obtain this result, we have built an extensive simulation framework on
top of the discrete event simulator NetSquid [61], which includes models of color centers
(specifically adapted from NV centers in diamond), ion traps, a general abstract model ap-
plicable to all processing nodes, as well as different schemes of entanglement generation.
Our framework can be readily re-configured to study other network paths of this form, in-
cluding the ability to configure other types of processing-node hardware, or entanglement-
generation schemes. Being able to simulate the Delft-Eindhoven path, we then perform pa-
rameter optimization based on genetic algorithms to search for parameter improvements
that minimize a cost function (see Section 6.3 for details) on SURF’s high-performance-
computing cluster Snellius.

Second, we examine the absoluteminimal requirements for all parameters in ourmodels
(for color centers and ion traps), if all other parameters are set to their perfect value (ex-
cept for photon loss in fiber). We observe that the minimal hardware requirements impose
higher demands on each individual parameter than the absolute minimal requirements.
This highlights potential dangers in trying to maximize individual parameters without
taking into account global requirement trade-offs. However, somewhat surprisingly, we
find that the absolute minimal requirements are typically of the same order of magnitude
as the minimal requirements, and can therefore still be valuable as a first-order approxi-
mation. Our results are obtained using the same NetSquid simulation, by incrementally
increasing the value of a parameter until the target requirements are met.

Finally, we investigate whether the idealized network paths usually employed in the
repeater literature would lead to significantly different minimal hardware improvements.
Specifically, in such idealized setups all repeaters and heralding stations are equally spaced,
all fibers are taken to have 0.2 dB/km attenuation, and themodels employed for the processing-
node hardware are largely platform-agnostic. We find that considering real-world network
topologies such as the SURF grid imposes significantly more stringent demands.

Let us now be more precise about the setup of our network path, as well as the require-
ments imposed by VBQC:

3.1.1 Quantum-Network Path
The network path we consider consists of three processing nodes that are assumed to
all have the same hardware. That is, the stated hardware requirements are sufficient for
all nodes and we do not differentiate between the three nodes. On an abstract level, all
processing nodes have at least one so-called communication qubit, which can be used
to generate entanglement with a photon. The repeater node in the middle (Nieuwegein,
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Figure 3.1 (a)) has two qubits available (at least one of which is a communication qubit)
that it can use to simultaneously hold entanglement with the node in Delft, as well as the
one in Eindhoven. Once entanglement has been generated with both Delft and Eindhoven,
the repeater node may perform an entanglement swap [62] in order to create end-to-end
entanglement between Delft and Eindhoven (see Figure 3.2). On processing nodes, such
a swap can be realized deterministically, i.e., with success probability 1, since it can be
implemented using quantum gates andmeasurements on the processor. We note that even
when the gates and measurements are noisy the swap remains deterministic, although it
will induce noise on the resulting entangled state.

Figure 3.2: Protocol executed in the setup we investigate. 1. No entanglement is shared a priori. E.N. stands for
End Node, R.N. stands for Repeater Node and H.S. stands for Heralding Station. 2. Entanglement generation
attempts begin along the longer link, which connects the repeater node to the Eindhoven node. 3. After entan-
glement has been established along the longer link, attempts for entanglement generation along the shorter link
start. In case this takes longer than a given cut-off time, the previously generated entanglement is discarded and
we go back to 2. 4. After entanglement is generated on both links, the repeater node performs an entanglement
swap, creating an end-to-end entangled state. 5. TheDelft node maps its half of the state to a powerful quantum-
computing server, while the Eindhoven node measures its half.
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For all types of processing nodes, we here assume the repeater to act sequentially [21]
due to hardware restrictions. That is, it can only generate entanglement with one of the
other two nodes at a time. To minimize the memory requirements at the repeater node
(Nieuwegein), we will always first produce entanglement with the farthest node (Eind-
hoven). Once this entanglement has been produced, the repeater generates entanglement
with the closest node (Delft). To combat the effect of memory decoherence, entangled
qubits are discarded after a cut-off time [21]. This means that if entanglement between
Delft andNieuwegein is not producedwithin a specific timewindow following the success-
ful generation of entanglement between Nieuwegein and Eindhoven, all entanglement is
discarded and we restart the protocol by regenerating entanglement between Nieuwegein
and Eindhoven. Classical communication is used to initiate entanglement generation be-
tween nodes and notify all nodes when swaps or discards are performed.

We consider three types of processing nodes (see Figure 3.1 (c) and (d)): (1) color cen-
ters, specifically modeled on NV centers in diamond, (2) ion traps and (3) a general abstract
model applicable to all processing nodes. Let us now provide more specific details on each
of these models required for the parameter analysis below.

(1) NV centers are a prominent example of color centers for which significant data is
available fromquantum-networking experiments [45–50]. Here, the color center’s optically-
active electronic spin is employed as a communication qubit. The second qubit is given
by the long-lived spin state of a Carbon-13 atom, which is coupled to the communication
qubit and used as a memory qubit. Our color-center model accounts for the following:

• Restricted topology, with one optically-active communication qubit and one mem-
ory qubit (note however that larger registers have been realized, for example in [52]);

• Restricted gate set, with arbitrary rotations on the communication qubit, Z-rotations
on the memory qubit and a controlled rotation gate between the two qubits;

• Depolarizing noise in all gates, bit-flip noise in measurement;

• Qubit decoherence in memory modeled through amplitude damping and dephas-
ing channels with decay times 𝑇1 and 𝑇2 (we consider the experimentally-realized
times of 𝑇1 = 1 hour (10 hours) and 𝑇2 = 0.5 s (1 s) for the communication (memory)
qubit [50–52]);

• Induced dephasing noise on the memory qubit whenever entanglement generation
using the communication qubit is attempted [34, 49].

The efficiency of the photonic interface in NV centers is limited to 3% due to the zero-
phonon line (ZPL). It is likely that executing VBQC using the path we investigate will
require overall photon detection probabilities higher than 3%. Little data is presently avail-
able for other color centers (SiV, SnV). We hence focus on the NV model, but do allow a
higher emission probability, which could be achieved either by using a color center with
a more favorable ZPL (65-90% for SiV [63], 57% for SnV [63]), or by placing the NV in
a cavity [64]. More details about our color-center model, and a validation of the model
against experimental data for NV centers, can be found in Section 3.6.

(2) Trapped ions are charged atoms suspended in an electromagnetic trap, the energy
levels of which can be used as qubits. Our trapped-ion model accounts for the following:
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• Two identical, optically active ions in a trap;

• Restricted gate set as described in [65], with arbitrary single-qubit Z rotations, arbi-
trary collective rotations around axes in the XY plane, and an entangling Mølmer-
Sørensen gate [66];

• Depolarizing noise in all gates, bit-flip noise in measurement;

• Qubit decoherence modeled as collective Gaussian dephasing, with a characteristic
coherence time [31];

• Off-resonant scattering that adds a random delay to the emission time of photons,
which is counteracted using a tunable coincidence time window (as captured by a
toy model introduced in Section 3.9).

More details about our trapped-ion model, and a validation of the model against experi-
mental data, can be found in Section 3.6.

(3) We further investigate an abstract, platform-agnostic processing-node model. This
model accounts for depolarizing noise in all gates and in photon emission, as well as
amplitude-damping and phase-damping noise in the memory. It does not account for any
platform-specific restrictions on topology, gate set or noise sources. Later on, we show
that using the abstract model instead of hardware-specific models leads to an inaccurate
picture of minimal hardware requirements. Even so, the abstract model can be valuable to
study systems for which hardware-specific models are as of yet unavailable. Additionally,
we note that the smaller number of hardware parameters in the abstract model as com-
pared to the hardware-specific models means that the parameter space can be explored
more efficiently, making it easier to, e.g., find minimal hardware parameters.

To entangle two processing nodes, one can use different schemes for entanglement
generation, andwe here consider the so-called single-click [67] and double-click schemes [68].
Both of these start with two distant nodes generating matter-photon entanglement and
sending the photon to a heralding station. In the single (double)-click protocol, matter-
matter entanglement is heralded by the detection of one (two) photons after interference.
The trapped-ion nodes we investigate perform only double-click entanglement generation
as single-click entanglement generation has not been realized for the type of trapped-ion
devices we consider, i.e., trapped ions in a cavity. The color-center nodes and abstract
nodes perform both single and double click. Our entanglement-generation models ac-
count for the following physical effects:

• Emission of the photon in the correct mode, modeled through a loss channel;

• Imperfect photon emission modeled through a depolarizing channel;

• Capture of the photon into the fiber, modeled through a loss channel;

• Photon frequency conversion, modeled through a loss channel (as a first-order ap-
proximation, we assume this is a noiseless process);

• Photon attenuation in fiber, modeled through a loss channel;

• Photon delay in fiber;
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• Photon detection at the detector, modeled through a loss channel;

• Detector dark counts;

• Photon arrival at the detector at different times;

• Imperfect photon indistinguishability.

While photon attenuation losses depend on the characteristics (such as the length) of the
fiber that is used to deploy a quantum network, the other losses depend only on the quan-
tum hardware that is used. For convenience we collect all the hardware-related losses into
a single parameter, called the photon detection probability excluding attenuation losses.

The hardware parameters used in our models are based on quantum-networking ex-
periments with NV centers (single-click [47–50] and double-click [45, 46]), and trapped
ions (double-click [54]).

3.1.2 Blind Quantum Computation
Having discussed our modeling of the path between Delft and Eindhoven, we turn to the
end nodes.

Both end nodes are processing nodes. The end node in Eindhoven takes the role of
client in the VBQC protocol. In Delft, there is not only an end node, but also a powerful
quantum-computing server. After entanglement is established by the end node in Delft
it transfers its half of the entangled state to this server. The client in Eindhoven simply
measures its half of the entangled state. The Delft scenario is similar to the setting investi-
gated in [69], where the authors consider an architecture in which a node contains two NV
centers, one of them used for networking and the other for computing. Here, we make
some simplifying assumptions that allow us to focus on the network path: we take the
state transfer process to be instantaneous and noiseless, and assume that the computing
node is always available to receive the state. Further, we assume that the quantum gates
performed by the server are noiseless and instantaneous, and that their qubits are subject
to depolarizing noise with memory coherence time T = 100 s. Because of these assump-
tions, the requirements we find are limited primarily by imperfections in the network path
itself rather than in the computing node.

We investigate hardware requirements on three processing nodes (two end nodes and
one repeater node) so that a client in Eindhoven can perform 2-qubit VBQC, a particular
case of the protocol described in [36], using the Delft server. In this protocol, the client
prepares qubits at the server, which are then used to perform either computation or test
rounds. In test rounds, the results of the computation returned by the server are com-
pared to expected results. The protocol is only robust to noise if the noise does not cause
too large an error rate. The protocol is shown in [36] to remain correct if the maximal
probability of error in a test round can be upper-bounded by 25%. We prove in Section
3.7 that the protocol is still correct if the average probability of error in a test round can
be upper-bounded by 25%. We further prove in the same section that if the entangled
pairs distributed by the network path can be used to perform quantum teleportation at a
given rate and quality, the protocol can be executed successfully. Namely, this is true if
the average fidelity at which unknown pure quantum states can be teleported using the
entangled pairs distributed by the network path (𝐹tel) and the entangling rate 𝑅 satisfy a
specific bound. We note that this bound takes into account potential jitter in the delivery
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of entanglement (i.e., the fact that the time required to generate entanglement, and hence
the time entangled states need to be stored in memory, can fluctuate around its expected
value). We consider two distinct pairs of 𝐹tel and 𝑅 that satisfy this bound as our target
metrics, namely:

• Target 1: 𝐹tel = 0.8717, 𝑅 = 0.1 Hz,

• Target 2: 𝐹tel = 0.8571, 𝑅 = 0.5 Hz.

The choice of these specific values was motivated by the fact that there is no fidelity 𝐹tel ≤ 1
for 𝑅 ≈ 0.014Hz such that the VBQC condition is satisfied, therefore all target rates should
satisfy 𝑅 > 0.014 Hz, preferably with some margin to avoid trivial solutions. Additionally,
Target 1 is achievable using either the single-click or double-click protocol and using either
one or zero repeaters on the fiber path under consideration, given sufficient hardware
improvements. In contrast, Target 2 is achievable only using the single-click protocol and
one repeater (see also Sections 3.14.3 and 3.14.4). This suggests that the difference between
the two targets is large enough to lead to significantly different results.

The derivation of this bound assumes that the client prepares qubits at the server by
first generating them locally and then transmitting them to the server using quantum
teleportation. We note that alternatively the remote-state-preparation protocol [44] can be
used, which will likely be more feasible in a real experiment as it requires fewer quantum
operations by the client. In Section 3.7 we describe a way how the VBQC protocol [36] can
be performed using remote state preparation. Note however that we have not investigated
the security of the protocol in this case. We show that under the assumption that local
operations are noiseless, quantum teleportation and remote state preparation lead to the
exact same requirements on the network path. Thus, in case the target is met, VBQC can
be successfully executed using either quantum teleportation or remote state preparation.
Lastly, we note that there is a linear relation between the average teleportation fidelity 𝐹tel
and the fidelity of the entangled pair [70].

3.1.3 Minimal Hardware Requirements.
Here, we aim to find the smallest improvements over current hardware to generate entan-
glement enabling VBQC. These are shown at the bottom of Figure 3.3 for color centers
(left) and trapped ions (right). In the table at the top of Figure 3.3 we show a selection of
the actual values for the minimal hardware requirements (the set of parameters represent-
ing the smallest improvement over state-of-the-art parameters, see Section 6.3 for details
on how we determine this), as well as the absolute minimal requirements (the minimal
value for each parameter assuming that every other parameter except for photon loss in
fiber is perfect). All the parameters are explained in Section 6.3, and their state-of-the-art
values that we consider are given in Table 5.1.

The minimal color-center hardware requirements for Target 1 (blue line in Figure 3.3,
bottom left) correspond to the usage of a double-click protocol, as we found that this
allows for laxer requirements than using a single-click protocol. On the other hand, the
minimal requirements for Target 2 (orange line in Figure 3.3, bottom left) correspond to
the usage of a single-click entanglement-generation protocol. This is because achieving
Target 2 in the setup we studied is not possible at all with a double-click protocol even if
every parameter except for photon loss in fiber is perfect. Therefore, and since we do not
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model single-click entanglement generation with trapped ions, the bottom-right plot of
Figure 3.3 depicts only the requirements for trapped ions to achieve Target 1.

We thus find that in the setup we investigated performance targets with relatively
higher fidelity and lower rate are better met by using a double-click protocol. On the
other hand, higher rates can only be achieved with single-click protocols. This was to be
expected, as (a) states generated with single-click protocols are inherently imperfect, even
with perfect hardware and (b) the entanglement-generation rate of double-click protocols
scales poorly with both the distance and the detection probability due to the fact that two
photons must be detected to herald success.

3.1.4 Absolute Minimal Requirements.
We now aim to find the minimal parameter values that enable meeting the targets, if the
only other imperfection were photon loss in fiber. These are the absolute minimal re-
quirements, presented in the table at the top of Figure 3.3. We observe that while there
is a gap between them and the minimal hardware requirements, it is perhaps surprisingly
small. For example, the minimal photon detection probability excluding attenuation losses
required to achieve Target 1 with color centers is roughly 1.5 times larger than the corre-
sponding absolute minimal requirement. However, both requirements represent a three
order of magnitude increase with respect to the state-of-the-art, which makes a factor of
1.5 seem small in comparison.

We remark on the feasibility of achieving theminimal hardware requirements for color
centers. NV centers, on which we have based the state-of-the-art parameters used in this
work, are the color center that has been most extensively used in quantum-networking
experiments (see [63] for a review). As discussed in Section 6.1, the efficiency of the pho-
tonic interface in this system is limited to 3% due to the zero-phonon line. Both targets
we investigated place an absolute minimal requirement on the photon detection probabil-
ity excluding attenuation losses above this value. Improving the photonic interface of NV
centers beyond the limit imposed by the zero-phonon line is only possible through integra-
tion of the NV center into a resonant cavity [64]. Alternatively, other color centers with
a more efficient photonic interface could be considered as alternatives for long-distance
quantum communication [63].
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Setup 𝑝det 𝑇coh (s)

CC

Baseline 0.00051 0.5

R = 0.1 Hz Minimal hardware requirement 0.71 7.2
Absolute minimal requirement 0.48 1.0

R = 0.5 Hz Minimal hardware requirement 0.88 7.5
Absolute minimal requirement 0.22 1.0

TI
Baseline 0.12 0.085

R = 0.1 Hz Minimal hardware requirement 0.96 0.67
Absolute minimal requirement 0.59 0.42

Figure 3.3: Top: Parameter values required to connect the Dutch cities of Delft and Eindhoven using color-center
(CC) and trapped-ion (TI) repeaters for an entanglement-generation rate of 0.1 Hz and an average teleportation
fidelity of 0.8717 (Target 1) and a rate of 0.5 Hz and average teleportation fidelity of 0.8571 (Target 2). The baseline
parameter values have been demonstrated in state-of-the-art experiments. The absolute minimal requirements
are the required parameter values assuming that there are no other sources of noise or loss with the exception of
fiber attenuation. The coherence-time values in the table are the communication-qubit dephasing time for CC and
the collective dephasing time for TI (see Section 6.3 for an explanation of these parameters). The TI requirements
are for running a double-click entanglement-generation protocol. The CC requirements are for running a double-
click protocol for Target 1, and a single-click protocol for Target 2. We note that all the minimal requirements
found have a photon detection probability excluding attenuation losses above 30%, the current state-of-the-art
value for frequency conversion [57]. Bottom: Directions along which hardware must be improved to connect
the Dutch cities of Delft and Eindhoven using a CC (left) and TI (right) repeater. The further away the line is
from the center towards a given parameter, the larger improvement that parameter requires. Improvement is
measured in terms of the “improvement factor”, which tends to infinity as a parameter tends to its perfect value
(see Section 6.3 for the definition). In both plots a logarithmic scale is used. The origin of the plots corresponds
to an improvement factor of 1, i.e., no improvement with respect to the state of the art. On the bottom left (CC),
the blue (orange) line corresponds to the minimal requirements for Target 1 (Target 2). Improvement is depicted
for the following parameters, clockwise from the top: photon detection probability excluding attenuation losses
in fiber, dephasing time of the communication qubit, dephasing time of the memory qubit, noise in the two-
qubit gate, visibility of photon interference and dephasing noise induced on memory qubits when entanglement
generation is attempted. On the bottom right (TI), the line corresponds to the minimal requirements for Target
1. Improvement is depicted for the following parameters, clockwise from the top: photon detection probability
excluding attenuation losses in fiber, qubit collective dephasing coherence time, spin-photon emission fidelity,
visibility of photon interference and probability that two emitted photons coincide at the detection station. All
parameters are explained in Section 6.3, and their state-of-the-art values that are being improved upon are given
in Table 5.1.
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3.2 Discussion
3.2.1 Hardware Requirements in Simplified Settings.
Since we made use of real-life fiber data and elaborate, platform-specific hardware mod-
els, the results above would be difficult to obtain analytically. For instance, collective
Gaussian dephasing in ion traps could be challenging to analyze. Analytical results are
however attractive, as they provide a more intuitive picture of the problem at hand. In
order to find them, an approach commonly taken in the literature is to simplify the setup
under study so that it becomes analytically tractable. A usual simplification is to assume
what we name the standard scenario, in which nodes and heralding stations are equally
spaced, and where the fiber attenuation is 0.2 dB/km throughout. Another common sim-
plification is to consider simplified physical models for the nodes and the entangled states
they generate (see, among others, [19, 71–73]). In order to investigate how hardware re-
quirements change if such simplifications are used, we now apply our methodology to
these two simplified situations and compare the resulting hardware requirements with
the ones for our setup. We hope to understand whether considering these setups leads to
similar results, indicating that the simplifying approach is a good one, or if doing so paints
an unrealistic picture of the hardware requirements, which would favor our approach.

a. Effect of Existing Fiber Networks on Hardware Requirements We investigate how the
hardware requirements in the standard scenario differ from the fiber-network-based setup.
We thus present in Figure 3.4 a comparison of the hardware requirements for color centers
in the two situations. In both cases, we consider double-click entanglement generation,
targeting an entanglement-generation rate of 0.1 Hz and an average teleportation fidelity
of 0.8717. Significant improvements over the state-of-the-art are required in both scenar-
ios, but the magnitude of these improvements would be understated in case one were to
consider the standard scenario and ignore existing fiber infrastructure. For example, doing
so would lead to underestimating the required coherence time of the memory qubits by a
factor of four. More broadly, we see that the improvement required is larger in the fiber-
network scenario for (i) the photon detection probability excluding attenuation losses and
(ii) memory parameters (coherence times and tolerance to entanglement-generation at-
tempts). Both of these results can be explained by the fact that when a real-world fiber
network is considered there is more attenuation and the nodes are not evenly spaced. As
a consequence, better photonic interfaces are required to achieve similar rates, and states
likely spend a longer time in memory, necessitating longer coherence times. This empha-
sizes the need for considering limitations imposed by existing fiber infrastructure when
estimating requirements on repeater hardware.

b. Effect of Platform-Specific Modeling on Hardware Requirements Finally, we look into
how the hardware requirements are affected if the processing nodes are modeled in a sim-
plified, platform-agnostic way. We thus compare the hardware requirements for color-
center and trapped-ion repeaters with those for a platform-agnostic abstract model for
a quantum repeater. This is a simple processing-node model that accounts for generic
noise sources such as memory decoherence and imperfect photon indistinguishability,
but does not take platform-specific considerations such as restricted topologies into ac-
count. For more details on the platform-agnostic abstract model, see Section 3.6.7. We
consider double-click entanglement generation in the fiber-network-based setup, target-
ing an entanglement-generation rate of 0.1 Hz and an average teleportation fidelity of
0.8717.
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Figure 3.4: Hardware requirements for connecting the Dutch cities of Delft and Eindhoven using a color center
repeater performing double-click entanglement generation on an actual fiber network (blue) and assuming the
standard scenario (orange, dashed). Requirements are for achieving an entanglement-generation rate of 0.1 Hz
and an average teleportation fidelity of 0.8717. Parameters shown are, from top to bottom: visibility of photon in-
terference, dephasing noise induced on memory qubits when entanglement generation is attempted, dephasing
time of communication qubit, dephasing time of memory qubit, photon detection probability excluding attenu-
ation losses in fiber and two-qubit gate fidelity.

To perform the comparison, we proceed as follows: (i) map the state-of-the-art hard-
ware parameters to abstract-model parameters, (ii) run the optimization process for the
platform-specific model and the abstract model in order to find the minimal hardware re-
quirements for both, (iii) map the obtained platform-specific hardware requirements to
the abstract model and (iv) compare them to the hardware requirements obtained by run-
ning the optimization process for the abstract model. The results of this comparison can
be seen in Figure 3.5. The hardware requirements are significantly different for the ab-
stract model and for the trapped-ion and color-center models. This can be explained by
the greater simplicity of the abstract model. Take coherence time as an example. The com-
munication and memory qubits of color centers decohere at different rates, a complexity
which is not present in the abstract model. Therefore, improving the coherence time in
the abstract model has a bigger impact than improving a given coherence time in the color
center model. This means that in the abstract model it is comparatively cheaper to achieve
the same performance by improving the coherence time rather than other parameters. The
fact that memory noise in trapped ions is modeled differently than in the abstract model
(the trapped-ion memory noise is Gaussian, arising from a collective dephasing process.
See Equations 3.7 and 3.9) could also explain the difference in the requirements for the
coherence times seen in that case.

3.2.2 Entanglement Without a Repeater.
We note that one of the set of targets we investigated, namely an entanglement-generation
rate of 0.1 Hz and an average teleportation fidelity of 0.8717, could also be achieved in
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(a) Color center.

(b) Ion trap.

Figure 3.5: Comparison of hardware requirements for connecting the Dutch cities of Delft and Eindhoven using
a repeater performing double-click entanglement generation considering a simple abstract model and more de-
tailed color center (left) and ion trap (right) models. Requirements are for achieving an entanglement-generation
rate of 0.1 Hz and an average teleportation fidelity of 0.8717. Parameters shown are, from top to bottom: spin-
photon emission fidelity (trapped ion only), visibility of photon interference, photon detection probability ex-
cluding attenuation losses in fiber, fidelity of entanglement swap and qubit coherence time.
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the setup we investigated without using a repeater node if a single-click entanglement-
generation protocol were employed. Furthermore, the hardware improvements required
would be more modest in this case than if a repeater were used. For more details on this,
see Section 3.14.3.

3.2.3 Outlook.
In order to design and realize real-world quantum networks, it is important to determine
minimal hardware requirements in more complex scenarios such as heterogeneous net-
works with multiple repeaters and end nodes. The method presented in this work is well
suited for this. Furthermore, it would be valuable to investigate what limitations the as-
sumptions we have made in our modeling place on our results. For example, we did not
consider the effects of fiber dispersion. These effects could hamper entanglement gen-
eration and hence affect the minimal hardware requirements. Even though preliminary
investigations suggest that these effects might be small, quantifying themwould represent
a step forward in determining realistic minimal repeater-hardware requirements. Another
interesting open question is what effect the use of entanglement-distillation protocols
(see [74] for a review) would have on the minimal hardware requirements.

3.3 Methods
In this section we elaborate on our approach for determining the minimal and absolute
minimal hardware requirements for processing-node repeaters to generate entangled states
enabling VBQC.

3.3.1 Conditions on Network Path to Enable VBQC.
In our setup, a client wishes to perform 2-qubit VBQC, a particular case of the protocol
described in [36], on a powerful remote server whose qubits are assumed to suffer from
depolarizing noise with coherence time 𝑇 = 100 s. We further assume that the computa-
tion itself is perfect, with the only imperfections arising from the network path used to
remotely prepare the qubits. This protocol is shown in [36] to be robust to noise, remaining
correct if the maximal probability of error in a test round can be upper-bounded by 25%.
We argue in Section 3.7 that the protocol is still correct if the average probability of error
in a test round can be upper-bounded by 25%, as long as we assume that the error proba-
bilities are independent and identically distributed across different rounds of the protocol.
This is the case for the setup studied here, as the state of the network is fully reset after
entanglement swapping takes place at the repeater node. This condition, together with the
assumption on the server’s coherence time, can be used to derive bounds on the required
average teleportation fidelity and entanglement-generation rate, as shown in Section 3.7.

3.3.2 Average Teleportation Fidelity.
We use the average teleportation fidelity 𝐹tel that can be obtained with the teleportation
channel Λ𝜎 arising from the end-to-end entangled state 𝜎 generated by the network we
investigate as a target metric:

𝐹tel(𝜎) ≡ ∫𝜓
⟨𝜓 ||Λ𝜎 (||𝜓⟩⟨𝜓 ||)||𝜓⟩𝑑𝜓 , (3.1)
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where the integral is taken over the Haar measure. See Section 3.7.1 for more details.

3.3.3 Hardware Improvement for VBQC as an Optimization Prob-
lem.

We want to find the minimal hardware requirements that achieve a given average telepor-
tation fidelity 𝐹𝑡𝑎𝑟𝑔𝑒𝑡 and entanglement-generation rate 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 . We restate this as a con-
strained optimization problem: we wish to minimize the hardware improvement, while
ensuring that the performance constraints are met. These constraints are relaxed through
scalarization, resulting in a single-objective problem in which we aim to minimize the sum
of the hardware improvement and two penalty terms, one for the rate target and one for
the teleportation fidelity target. The resulting cost function is given by

𝐶 = 𝑤1(1+(𝐹𝑡𝑎𝑟𝑔𝑒𝑡 −𝐹tel)
2 )Θ(𝐹𝑡𝑎𝑟𝑔𝑒𝑡 −𝐹tel)

+𝑤2(1+(𝑅𝑡𝑎𝑟𝑔𝑒𝑡 −𝑅)
2 )Θ(𝑅𝑡𝑎𝑟𝑔𝑒𝑡 −𝑅)

+𝑤3𝐻𝐶 (𝑥1, ..., 𝑥𝑁 ) ,
(3.2)

where𝐻𝐶 is the hardware cost associated with parameter set {𝑥1, ..., 𝑥𝑁 },𝑤𝑖 are the weights
of the objectives,Θ is the Heaviside function and 𝐹tel and 𝑅 are the average teleportation fi-
delity and entanglement-generation rate achieved by the parameter set, respectively. The
hardware cost function𝐻𝐶 maps sets of hardware parameters to a cost that represents how
large of an improvement over the state of the art the set requires. To compute this con-
sistently across different parameters we use no-imperfection probabilities, as done in [61]
(where they are called no-error probabilities). A parameter is improved by a factor 𝑘, called
the improvement factor, if its corresponding no-imperfection probability 𝑝ni becomes 𝑘√𝑝ni.
For example, if the error probability of a gate is 40%, its probability of no-imperfection is
0.6. After improving it by a factor of 4 the no-imperfection probability becomes 4√0.6 ≈ 0.88,
corresponding to an error probability of approximately 12%. The hardware cost associated
with a set of hardware parameters is the sum of the respective improvement factors, i.e.,

𝐻𝐶 (𝑥1, ..., 𝑥𝑁 ) =
𝑁
∑
𝑖=1

ln {𝑝ni(𝑏𝑖)}
ln {𝑝ni(𝑥𝑖)}

, (3.3)

where 𝑝ni(𝑥𝑖) is the no-imperfection probability corresponding to the value 𝑥𝑖 of parame-
ter 𝑖 and 𝑝ni(𝑏𝑖) is the no-imperfection probability corresponding to the baseline value 𝑏𝑖
of parameter 𝑖. We have here for concreteness used natural logarithms, but the hardware
cost is invariant to changes in the logarithms’ bases. We note that these improvement
factors are the quantities shown in Figure 3.3. The weights 𝑤𝑖 are chosen such that the
first two terms are larger than the last one for near-term parameters, guaranteeing that
the set of parameters minimizing 𝐶 meets performance targets. We are then effectively
restricted to the region of parameter space in which the performance constraints are satis-
fied, as all points corresponding to near-term parameters in this region have a lower cost
than points outside it. The problem then becomes one of minimizing the hardware cost
in this region. We have verified that the expected values of the average teleportation fi-
delity and entanglement-generation rate of the parameter sets found meet the constraints,
thus enabling VBQC conditional on our assumptions. Our method guarantees that the set
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of parameters found is ’minimal’ in the sense that making any of the parameters worse
would result in the target not being met. However, we note that there exist many such
solutions, and if specific knowledge is available about how hard it is to improve particular
parameters, the cost function could be adapted to pick out minimal parameter sets that
may be easier to attain. An example of this is the efficiency of the NV center’s photonic in-
terface, which is limited to 3% due to the ZPL. Going beyond this limit requires integration
into a cavity, which carries with it a host of challenges [63, 64]. One could then modify
the cost function to make improving the efficiency of the photonic interface beyond 3%
more expensive than improving other parameters. However, as it is challenging to accu-
rately estimate the hardness associated with specific improvements and, furthermore, the
hardness may depend on the specific expertise available within a given research group,
we have refrained from making such estimates.

3.3.4 Optimization Parameters.
Using the methodology described later on in this section, we perform an optimization over
both protocol and hardware parameters. First we enumerate the protocol parameters:

• Cut-off time, the time after which a stored qubit is discarded;

• Bright-state parameter (single-click entanglement generation only), the fraction of
a matter qubit’s superposition state that is optically active;

• Coincidence time window (double-click entanglement generation with ion traps
only), themaximum amount of time between the detection of two photons for which
a success is heralded. We model the effect of the coincidence time window using a
toy model, see Section 3.9.

Second, we enumerate the hardware parameters:

• The Hong-Ou-Mandel visibility [75] is a measure for the indistinguishability of in-
terfering photons and is defined by [76]

1− 𝐶min
𝐶max

. (3.4)

Here 𝐶min is the probability (coincidence count rate) that two photons that are in-
terfered on a 50:50 beamsplitter are detected at two different detectors when the
indistinguishability is optimized (as is the case when using interference to gener-
ate entanglement), while 𝐶max is the same probability when the photons are made
distinguishable.

• The probability of double excitation is the probability that two photons are emitted
instead of one in entanglement generation with color centers;

• The induced memory qubit noise is the dephasing suffered by the memory qubit
when the communication qubit is used to attempt entanglement generation. The
number given for this parameter in Table 5.1 corresponds to the number of electron
spin pumping cycles after which the Bloch vector length of the memory qubit in the
state (|0⟩ + |1⟩)/ √2 in the 𝑋 −𝑌 plane of the Bloch sphere has shrunk to 1/𝑒 when
the communication qubit has bright-state parameter 0.5 [34];
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• The interferometric phase uncertainty is the uncertainty in the phase acquired by
the two interfering photons when they travel through the fiber in single-click en-
tanglement generation with color centers;

• The photon detection probability excluding attenuation losses is the probability that
a photon is detected given that emission was attempted, and assuming that the fiber
length is negligible, i.e., considering every form of photon loss (including coupling
to fiber) except the length-dependent attenuation loss in fiber;

• Every gate is parameterized by a depolarizing-channel fidelity;

• For color centers, 𝑇1 and 𝑇2 are the characteristic times of the time-dependent am-
plitude damping and phase damping channels affecting the qubits, and are different
for the communication and memory qubits. The effect of the amplitude (phase)
damping channel after time 𝑡 is given by equation (3.5) ((3.6))

𝜌 → (|0⟩⟨0| + √𝑒−𝑡/𝑇1 |1⟩⟨1|)𝜌

(|0⟩⟨0| + √𝑒−𝑡/𝑇1 |1⟩⟨1|)
†

+ √1−𝑒−𝑡/𝑇1 |0⟩⟨1|𝜌 ( √1−𝑒−𝑡/𝑇1 |0⟩⟨1|)
†

(3.5)

𝜌 → (1− 1
2 (1− 𝑒

−𝑡/𝑇2𝑒−𝑡/(2𝑇1)))𝜌

+ 1
2 (1− 𝑒

−𝑡/𝑇2𝑒−𝑡/(2𝑇1))𝑍𝜌𝑍;
(3.6)

• For ion traps, the coherence time characterizes the time-dependent collective Gaus-
sian dephasing process that the qubits undergo, which is given by [31]:

𝜌 →∫
∞

−∞
𝐾𝑟𝜌𝐾†𝑟 𝑝(𝑟)𝑑𝑟, (3.7)

where

𝐾𝑟 = exp(−𝑖𝑟 𝑡𝜏
𝑛
∑
𝑗=1

𝑍𝑗), (3.8)

𝑍𝑗 denotes a Pauli 𝑍 acting on qubit 𝑗, 𝑛 is the total number of ions in the trap, 𝜏
the coherence time and 𝑡 the storage time, and

𝑝(𝑟) = 1
√2𝜋 𝑒

−𝑟2/2; (3.9)

• The noise on matter-photon emission is parameterized by a depolarizing-channel
fidelity (i.e., the matter-photon state directly after emission is a mixture between a
maximally entangled state and a maximally mixed state);

• The dark-count probability is the probability that a detection event is registered at
a detector without a photon arriving.
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The state-of-the-art values we use for the hardware parameters are shown in Table 5.1. For
more details on how the effects of the different hardware parameters are included in our
models, see Section 3.6. We note that some of the hardware parameters we consider in fact
conceal trade-offs. For example, the probability of getting a double excitation when using
color centers to emit photons can to an extent be tuned. In this case, a lower probability
of double excitation would come at the cost of getting fewer events. However, optimizing
over all such trade-offs is beyond the scope of this work.

Color center Ion trap
Visibility 0.9 [50] 0.89 [54]

Probability of double excitation 0.06 [50] -
Induced memory qubit noise

(entanglement attempts until dephasing) 5300 [50] -

Interferometric phase uncertainty (rad) 0.21 [50] -
Photon detection probability
excluding attenuation losses 5.1×10−4 [50] 0.111 [55–57]

Two-qubit gate fidelity 0.97 [47] 0.95 [53]
Two-qubit gate duration 500 𝜇s [47] 107 𝜇s [53]

Communication T1 1 h [51] -
Communication T2 0.5 s [50] -

Memory T1 10 h [52] -
Memory T2 1 s [52] -

Coherence time - 85 ms [53]
Matter-photon emission fidelity 1 [77] 0.99 [78]
Matter-photon emission duration 3.8 𝜇s [49] 50 𝜇s [53, 56]

Dark count probability 1.5×10−7 [50] 1.4×10−5 [55]

Table 3.1: State-of-the-art color center and trapped-ion hardware parameters. For the trapped-ion parameters, a
detection time window of 17.5 𝜇s and a coincidence time window of 0.5 𝜇s are assumed (see Section 3.6 for more
details). All fidelities are depolarizing-channel fidelities. A dash (“-”) indicates that a value would not be well
defined (for instance, there is no T1 or T2 time defined for trapped ions, while there is no coherence time defined
for color centers). We note that not all of these parameter values have been realized in a single experiment.

3.3.5 Evaluating Hardware Quality.
In order to minimize the cost function 𝐶 , we require an efficient way of evaluating the
performance attained by each parameter set. We do this through simulation of end-to-end
entanglement generation using NetSquid. The full density matrix of the states generated,
as well as how long their generation took in simulation time are recorded and used to
compute the average teleportation fidelity and rate of entanglement generation. Since
entanglement generation is a stochastic process, multiple simulation runs are performed
in order to collect representative statistics.

3.3.6 Framework for Simulating Quantum Repeaters.
In our NetSquid simulation framework, we have implemented hardware models for color
centers, trapped ions and a platform-agnostic abstract model. This includes the imple-
mentation of different circuits for entanglement swapping and moving states for each



3

40 3 Requirements for a processing-node quantum repeater on a real-world fiber grid

platform, conditioned on their respective topologies and gate sets. Additionally, we have
implemented both single and double-click entanglement-generation protocols. In order to
combine these different building blocks that are required to simulate end-to-end entangle-
ment distribution, we define services that each have a well-defined input and output but
can have different implementations. For example, the entanglement-generation service
can either use the single-click or double-click protocol, and entanglement swapping can
be executed on either color center or trapped-ion hardware. End-to-end entanglement
generation is then orchestrated using a link-layer protocol (inspired on the one proposed
in [79]) that makes calls to the different services, agnostically of how the services are im-
plemented. This allows us to use the same protocol for each different configuration of
the simulation. Switching between configurations in our simulation framework then only
requires editing a human-readable configuration file. The modularity of the simulation
framework would make it simple to investigate further hardware platforms and protocols.

The link-layer protocol is itself an implementation of the link-layer service defined
in [79]. From a user perspective, this simplifies using the simulation as all that needs to be
done to generate entanglement is make a call to the well-defined link-layer service, with-
out any knowledge of the protocol that implements the service. In this work, the link-layer
protocol is the one for a single sequential repeater illustrated in Figure 3.2. However, the
protocols included in our simulation code are able to simulate entanglement generation on
chains of an arbitrary number of (sequential) repeaters that use classical communication
to negotiate when to generate entanglement and that implement local cut-off times.

3.3.7 Finding Minimal Hardware Improvements.
In order to find the sets of parameters minimizing the cost function 𝐶 , we employ the
optimization methodology introduced in [80], which integrates genetic algorithms and
NetSquid simulations. A genetic algorithm is an iterative optimization method, which
initiates by randomly generating a population consisting of many sets of parameters, also
known as individuals. These are then evaluated using the NetSquid simulation and the
cost function, and a new population is bred through mutation and crossover of individuals
in the previous population. The process then iterates, with better-performing individuals
beingmore likely to propagate to further iterations. For further details on the optimization
methodology employed, see Section 3.11 and [80].

This methodology is computationally intensive, so we execute it on the Snellius su-
percomputer. We use one node of the Snellius supercomputer, which contains 128 2.6
GHz cores and a total of 256 GiB of memory. Based on previously observed data reported
in [80], we employ a population size of 150 evolving for 200 generations. The simulation
is run 100 times for each set of parameters, as we have empirically determined that this
constitutes a good balance between accuracy and computation time. The time required for
the procedure to conclude is hardware, protocol and parameter dependent, but we have
observed that 10 wall-clock hours are typically enough. We stress that this approach is
general, modular and freely available [80].

3.3.8 Finding Absolute Minimal Hardware Requirements.
In order to find these requirements, which are the minimal parameter values enabling
meeting the performance targets if the only other imperfection is photon loss in fiber,
we perform a sweep of each parameter, starting at the state-of-the-art value and termi-
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nating when the targets are met. For each value of each parameter, we sweep also over
the protocol parameters, i.e., the cut-off time, coincidence time window (for double-click
entanglement generation with ion traps) and bright-state parameter (for single-click en-
tanglement generation).

3.4 Data availability
The data presented in this work have been made available at https://doi.org/10.4121/
19746748.

3.5 Code availability
The code that was used to perform the simulations and generate the plots in this chapter
has been made available at https://gitlab.com/softwarequtech/simulation-code-for-
requirements-for-a-processing-node-quantum-repeater-on-a-real-world-fiber-grid.
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get metric and proved the underlying theorems related to verifiable blind quantum com-
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code used in the simulations. A.T. contributed to the optimal execution of simulations on
computing clusters. G.A., F.F.S. and S.W. wrote the manuscript. All authors revised the
manuscript. S.W. conceived and supervised the project.

3.6 Setup
In this section, we elaborate on our modeling of the setup we study. We go over the topol-
ogy of the fiber network we considered, the protocols employed by the repeater nodes, the
modeling of the nodes themselves and of entanglement generation.

3.6.1 Fiber network and node placement
Deployment of quantum networks in the real world will likely make use of existent fiber
infrastructure, as we have discussed in Chapter 1. In order to accurately account for this
in our investigation of repeater hardware requirements, we used data of SURF’s fiber net-
work in our simulation. SURF is a network provider for education and research institutions
in the Netherlands. The data we have access to consists of the physical location in which
nodes are placed, the length of the fibers connecting them, the measured attenuation of
each fiber and their dispersion. We restricted the placement of quantum nodes and herald-
ing stations to existing nodes in the network, and we assumed that they were connected
by the shortest length of fiber possible. We note that in the case we studied this corre-
sponds also to the least overall attenuation. Although dispersion was not considered in
our models, an investigation of its effects would constitute an interesting extension to this
work. There are four nodes in the shortest connection between Delft and Eindhoven in
SURF’s network, as depicted in Figure 3.6. This means we are restricted to placing a single
repeater between the end nodes, as a two-repeater setup would require five nodes in to-
tal, two for the repeaters and three for the heralding stations. A single-repeater setup, on

https://doi.org/10.4121/19746748
https://doi.org/10.4121/19746748
https://gitlab.com/softwarequtech/simulation-code-for-requirements-for-a-processing-node-quantum-repeater-on-a-real-world-fiber-grid
https://gitlab.com/softwarequtech/simulation-code-for-requirements-for-a-processing-node-quantum-repeater-on-a-real-world-fiber-grid
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Figure 3.6: Satellite photo of the Netherlands overlaid with depiction of the shortest connection between the
Dutch cities of Delft and Eindhoven in SURF’s fiber network. The white circles represent locations where pro-
cessing nodes and heralding stations can be placed, and are connected to one another through white fibers. The
position of the circles in the figure roughly approximates their actual physical location. All distances are given
in kilometers.

the other hand, requires only three nodes, one for the repeater itself and two for herald-
ing stations. One of the connection’s nodes must therefore not be used, and there are
two possible choices for how this can be done, as depicted in Figure 3.7. We applied our
methodology to both of these paths and determined that the one on the left in Figure 3.7 re-
quires a smaller improvement over current hardware. Therefore, all the results presented
in Section 6.1 pertain to it. For more details, see Section 3.14.2.

3.6.2 Repeater protocol
We now elaborate on the protocol executed by the nodes. We note that the repeaters we
investigate are sequential, which means that they can only generate entanglement with
one neighbor at a time.

1. A request for end-to-end entanglement generation is placed at one of the end nodes.

2. This end node sends a classical message through the fiber to the other end node, in
order to verify whether it is ready to initiate the entanglement generation protocol.

3. If that is the case, the second end node sends a confirmation message back, as well
as an activation message for the repeater node.

The next step is the generation of elementary link states. We begin by generating en-
tanglement on the Eindhoven - Nieuwegein link, which is longest, so as to minimize
the time states remain in memory.
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Figure 3.7: Two possible choices for processing node (white circles, black circles within represent qubits) and
heralding station placement in the SURF network’s shortest connection between the Dutch cities of Delft and
Eindhoven. In the path on the left, the Rotterdam node is unused, thereby directly connecting the Delft - Rotter-
dam and Rotterdam - Utrecht links. Similarly, the Den Bosch node is unused in the path on the right.



3

44 3 Requirements for a processing-node quantum repeater on a real-world fiber grid

4. The neighboring Eindhoven and Nieuwegein nodes share classical messages sent
through the fiber connecting them to ensure that both agree to generate entangle-
ment.

5. Once they have established agreement, entanglement generation attempts begin and
continue until success.

6. Steps 4 and 5 are repeated by the repeater and the Delft end node.

7. The repeater performs a Bell-state measurement on the two qubits it holds, thereby
creating an entangled state held by the end nodes.

8. The outcome of this measurement is sent as a classical message to both end nodes.

9. The end nodes become aware that end-to-end entanglement has been established
and perform the appropriate correction on the Bell state.

We also employ a cut-off protocol. If the generation of the second entangled state
lasted longer than a predefined cut-off time, the first state, corresponding to the longer
link, is discarded. Entanglement generation then restarts along the longer link.

Such a protocol involving sequential repeaters and a cut-off timer has been studied
before, e.g., in [22]. The steps above are sufficient to generate one end-to-end entangled
state. If the generation of multiple states had been requested, steps 4-9 would be repeated
until enough pairs had been generated. We note that we do not simulate the application
of the Bell-state correction, but instead record which correction should have been applied
and handle it in post-processing.

Information on how we implemented such a protocol in a scalable and hardware-
agnostic fashion can be found in Section 3.13.

3.6.3 Quantum-computing server
After the end-to-end entangled state has been generated, we assume the end node in Delft
transfers its half of it to a powerful quantum-computing server. This is a similar setting as
the one investigated in [69], where the authors consider an architecture in which a node
contains two NV centers, one of them used for networking and the other for computing.
We assume that the state transfer process is instantaneous and noiseless and that the server
is always available to receive the state. Additionally, we assume that all quantum gates
performed by the server are noiseless and instantaneous, and that qubits stored in the
server are subject to depolarizing memory noise with a coherence time of T = 100 s.

3.6.4 Processing nodes
The quantum nodes we investigated are processing nodes, i.e. quantum nodes that are ca-
pable of storage and processing of quantum information. This processing is done through
noisy quantum gates. The specific gate set available to the nodes depends on the particular
hardware, but wemodel the gate noise of all of themwith depolarizing channels. Measure-
ments are also noisy, which is captured by a bit-flip channel, i.e. with some probability a
|0⟩ (|1⟩) is read as 1 (0). Furthermore, as alreadymentioned, all the nodes we investigate are
sequential, which means that they can only generate entanglement with one other node
at a time.

We now elaborate on the details of our modeling for each of the three nodes we study.
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3.6.5 Color centers
In Table 3.2, we present the baseline values of all color center hardware parameters rele-
vant to our simulations, as well as references reporting their experimental demonstration.

Parameter Noise Duration/Time
Visibility 0.9 [50] -
Probability of double excita-
tion 0.06 [50] -

𝑁1/𝑒 : Nuclear dephasing
during electron initializa-
tion

5300 [50] -

Dark count probability 1.5×10−7 [50] -
𝜎𝑝ℎ𝑎𝑠𝑒 : Interferometric
phase uncertainty (rad) 0.21 [50] -

Photon detection probabil-
ity excluding attenuation
losses

5.1×10−4 [50] -

Spin-photon emission F = 1 [77] 3.8 𝜇s [77]
Electron readout F=0.93(0), 0.995(1) [50] 3.7 𝜇s [48]
Carbon initialization F=0.99 [52] 300 𝜇s [81]
Carbon Z-rotation F=0.999 [82] 20 𝜇s [82]
Electron-carbon controlled
X-rotation F=0.97 [47] 500 𝜇s [47]
Electron initialization F=0.995 [52] 2 𝜇s [83]
Electron single-qubit gate F=0.995 [50] 5 ns [47]
Electron T1 - 1 hours [51]
Electron T2 - 0.5 s [50]
Carbon T1 - 10 hours [52]
Carbon T2 - 1 s [52]

Table 3.2: Baseline color center hardware parameters.

Color center nodes are modeled with a star topology, with the communication qubit in
themiddle. Thememory qubits can all interact with the communication qubit, but notwith
one another. The communication qubit owes its name to the fact that it is optically active,
which means it can be used for light-matter entanglement generation. The spin states of
the memory qubits are long-lived, so they are typically used for information storage. We
model memory decoherence in color center qubits through amplitude damping and phase
damping channels with 𝑇1 and 𝑇2 lifetimes. The effect of the amplitude (phase) damping
channel after time 𝑡 is given by equation (3.10) ((3.11)).

𝜌 →(|0⟩⟨0| + √𝑒−𝑡/𝑇1 |1⟩⟨1|)𝜌 (|0⟩⟨0| + √𝑒−𝑡/𝑇1 |1⟩⟨1|)
†

+ √1−𝑒−𝑡/𝑇1 |0⟩⟨1|𝜌 ( √1−𝑒−𝑡/𝑇1 |0⟩⟨1|)
† (3.10)

𝜌 → (1− 1
2 (1− 𝑒

−𝑡/𝑇2𝑒−𝑡/(2𝑇1)))𝜌 + 1
2 (1− 𝑒

−𝑡/𝑇2𝑒−𝑡/(2𝑇1))𝑍𝜌𝑍 (3.11)
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The 𝑇1 and 𝑇2 lifetimes of the communication qubit are different from those of the
memory qubits. An entangling gate is available in the form of a controlled X-rotation
between the communication qubit and each memory qubit. Furthermore, arbitrary single-
qubit rotations can be implemented on the communication qubit.

The constrained topology and gate set of the color center place some limitations on
the quantum circuits to be executed. First of all, the typical Bell-state-measurement circuit
must be adapted, as depicted in Figure 17 (d) of the Supplementary Information of [61].
Furthermore, since only the communication qubit can be used to generate light-matter
entanglement, the repeater node must move its half of the first entangled state it generates
from the communication qubit to a memory qubit in order to free it up to generate the
second entangled state. The circuit for this move operation can be seen in Figure 17 (a) of
the Supplementary Information of [61].

Finally, we note that it might be advantageous for the end node in Eindhoven, which
generates entanglement with the repeater first and then has to wait, to map its half of
the elementary link entangled state from the communication qubit to the memory qubit
while it waits for the repeater node to generate entanglement with the Delft node. Note
that this has nothing to do with the fact that the end node in Delft transfers its qubit to the
powerful quantum-computing server after end-to-end entanglement is established. There
is however a trade-off: while mapping the state means that it will be held in a qubit with a
longer coherence time, it will also undergo extra decoherence due to the noise in the gates
that constitute the circuit for the move operation. We have investigated this trade-off by
applying our methodology to the two situations, and found that not mapping requires a
smaller improvement over current hardware. Therefore, the color center results shown
in the main text pertain to the situation in which the Eindhoven node does not map its
half of the entangled state to a memory qubit. We must however note that this finding is
specific to both the topology we study and the baseline hardware quality we consider. For
more details on the comparison between mapping and not mapping, see Section 3.14.1.

The color center hardware model we employed builds on previous work [22, 79], and
its NetSquid implementation has been validated against experiments [61]. This includes
the model for the processor as well as for the entangled states generated through a single-
click protocol. The main novelty introduced in this work regarding color center modelling
is a model for the entangled states generated through the Barrett-Kok protocol [68]. This
is essentially the model introduced in Section 3.8, with the addition of induced dephas-
ing noise. This addition accounts for the fact that every entanglement generation attempt
induces dephasing noise on the color center’s memory qubits [34]. We simulate this ef-
fect using a dephasing channel. The dephasing probability 𝑝, accumulated after possibly
multiple entanglement generation attempts, is given by equation (3.12).

𝑝 = 1− (1−2𝑝single)𝑘
2 . (3.12)

In this equation, 𝑝single is the probability of dephasing after a entanglement generation
attempt and 𝑘 is the number of required entanglement generation attempts. In our simu-
lations, we apply a dephasing channel of parameter 𝑝 twice after entanglement has been
successfully generated, to reflect the fact that each attempt requires the emission of two
photons. 𝑝single can be related to 𝑁1/𝑒 , the number of electron spin pumping cycles after
which the Bloch vector length of a nuclear spin in the state (|0⟩ + |1⟩)/ √2 in the 𝑋 − 𝑌
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plane of the Bloch sphere has shrunk to 1/𝑒 when the electron spin state has bright-state
parameter 𝛼 = 0.5, through equation (3.13).

𝑝single = (1−𝛼)(1− 𝑒−1/𝑁1/𝑒) . (3.13)

𝑁1/𝑒 can in turn be experimentally determined, and 𝑁1/𝑒 = 5300 for state-of-the-art color
center experiments [49].

The double-click model is the only component of our color center simulations that had
not yet been compared to experimental data. With this in mind, we validated it against
the experiment reported in [45]. There, the authors demonstrated heralded entanglement
generation between two color centers separated by threemeters using the Barrett-Kok pro-
tocol. After establishing entanglement, measurements of the two entangled qubits were
performed to investigate whether the outcomes were correlated as expected. This was
repeated for the X and Z bases, and for the states |Ψ±⟩ = 1/ √2(|01⟩± |10⟩). We replicated
this setup using our color center NetSquid model and ran the experiment 10000 times per
measurement basis in order to gather relevant statistics. The results of this validation are
shown in Figure 3.8. The results obtained with our simulation model broadly replicate

(a) |Ψ+⟩ measured in X basis. (b) |Ψ−⟩ measured in X basis.

(c) |Ψ+⟩ measured in Z basis. (d) |Ψ−⟩ measured in Z basis.

Figure 3.8: Comparison of measurement outcomes of the entangled state generated using the Barrett-Kok pro-
tocol in the experiment described in [45] and our simulation of the same scenario. The plots on the left (right)
correspond to the case in which the state |Ψ+⟩ = 1/ √2(|01⟩+ |10⟩) (|Ψ−⟩ = 1/ √2(|01⟩− |10⟩)) is generated. The
plots above (below) show the outcomes when measuring in the X (Z) basis. The error bars depict the standard
error of the mean. Anti-correlation of the spin states is expected for every plot except for the one in the top left,
for which we expect to see a correlation. The smaller dimension of the simulation error bars can be attributed
to the number of executions of the protocol, which was of the order of 10000 per plot. This is two orders of
magnitude more than what was performed experimentally.

the experimental results, although they do not lie within the statistical error bars. Over-
all, the simulation results are closer to the ideal case of perfect (anti-)correlation. This
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can be explained by the fact that our model for the double-click states is quite simple and
hardware-agnostic, ignoring noise sources such as the probability of double photon emis-
sion. Further, the number of experimental data points is small, of the order of a total of
100 events for each of the plots in the figure. Nonetheless, considering the simplicity of
the model, we believe that the level of agreement is satisfactory.

3.6.6 Trapped ions
In Table 3.3, we present the baseline values of all trapped-ion hardware parameters rele-
vant to our simulations, as well as references to the articles reporting their experimental
demonstration.

Parameter Noise Duration/Time
Visibility 0.89 [54] -
Dark count probability 1.4×10−5 [55] -
Photon detection probabil-
ity excluding attenuation
losses

0.111 [55–57] -

Ion-photon emission F = 0.99 [78] 50 𝜇s [53, 56]
Readout F=0.999(0), 0.99985(1) [58] 1.5 ms [54]
Initialization F=0.999 [59] 36 𝜇s [53]
Z-rotation F=0.99 [60] 26.6 𝜇s [60]
Mølmer-Sørensen gate F=0.95 [53] 107 𝜇s [53]
Coherence time - 85 ms [53]

Table 3.3: Baseline trapped-ion hardware parameters. A detection time window of 17.5 𝜇s is assumed. For
the visibility, a coincidence time window of 0.5 𝜇s is assumed (see Section 3.6.6 for further explanation). The
photon detection probability excluding attenuation losses includes a 30% efficiency factor for quantum frequency
conversion [57]. It is based on a detection efficiency of 0.43 for a 46(1) MHz drive laser and a detection time
window of 17.5 𝜇s [56]. However, the number from [56] is based on a detector efficiency of 0.87(2) for photons at
854 nm. The detection efficiency at telecom frequency would instead be 0.75 using superconducting nanowire
detectors [55], giving an additional conversion factor of 0.75/0.87. The dark count probability is based on a 0.8
Hz dark count rate for telecom superconducting nanowire detectors [55] multiplied by 17.5 𝜇s. The ion-photon
emission fidelity has been corrected for the 1.5% infidelity due to dark counts in [78]. The initialization duration
includes time for cooling sequences and repumping (3 ms of cooling for 230 photon generation attempts on
one ion, with 40 𝜇s for repumping and optical pumping in 30 of the attempts and 20 𝜇s in 200 of the attempts,
averaging at ∼ 36𝜇s per attempt [60]).

In this work, we present for the first time a NetSquid model for trapped-ion nodes in
quantum networks. The trapped-ion nodes we model are based on the state of the art for
trapped ions in a cavity, which consists of 40Ca+ ions in a linear Paul trap [31, 55, 56, 65, 78,
84–90] (we note that promising results have also been achieved for trapped ions without
cavities, these systems are however not considered in this work [91–95]. In our model
they have all-to-all connectivity, their qubits all have the same coherence time and can
all be used to generate light-matter entanglement. However, the node can only generate
entanglement with one remote node at a time.

Decoherence in 𝑛 trapped-ion qubits is modeled through a collective Gaussian dephas-



3.6 Setup

3

49

ing channel that has the following effect on the 𝑛-qubit state 𝜌 [31]:

𝜌 →∫
∞

−∞
𝐾𝑟𝜌𝐾†𝑟 𝑝(𝑟)𝑑𝑟, (3.14)

where

𝐾𝑟 = exp(−𝑖𝑟 𝑡𝜏
𝑛
∑
𝑗=1

𝑍𝑗), (3.15)

𝑍𝑗 denotes a Pauli 𝑍 acting on qubit 𝑗, 𝜏 the coherence time and 𝑡 the storage time, and

𝑝(𝑟) = 1
√2𝜋 𝑒

−𝑟2/2. (3.16)

This can be read as follows: the qubits dephase because they undergo Z-rotations at an
unknown constant rate of −2𝑟 per coherence time 𝜏 . This is modeled by sampling the
Gaussian distribution for the dephasing rate, 𝑝(𝑟), for each ion trap each time its state is
reset. The qubits are then time-evolved by applying unitary rotations in accordance with
the sampled value for 𝑟 . The baseline value 𝜏 = 85ms included in Table 3.3 is obtained from
[53]. However, the value for the coherence time reported there is 62 ± 3 ms. The reason
for this discrepancy is a difference in convention. To see this, we can evaluate equation
(3.14) for 𝑛 = 1, i.e., for a single qubit. In that case, we find

𝜌 → 𝜆𝜌 + (1−𝜆)𝑍𝜌𝑍 , (3.17)

where

𝜆 = 1
2 (1− 𝑒

−2( 𝑡
𝜏 )

2
). (3.18)

The single-qubit dephasing model used in [53] instead has

𝜌 → 𝜆′𝜌 + (1−𝜆′)𝑍𝜌𝑍 , (3.19)

where

𝜆′ = 1
2 (1− 𝑒

−( 𝑡
𝜏′ )

2
). (3.20)

Here, 𝜏 ′ is the coherence time in their model. The models are exactly equivalent for 𝜏 =
√2𝜏 ′. Therefore, the reported value 𝜏 ′ = 62±3 ms corresponds to 𝜏 = 88±4 ms. The value
we use, 𝜏 = 85 ms, represents a conservative interpretation of the result presented in [53].
Our model for the storage of quantum states in ionic qubits has been validated against
experimental data from [53]. In this experiment, ion-photon entanglement is created with
one ion in a two-ion device. Next, ion-photon entanglement is created with the other ion
every 330𝜇s. Our simulation results are compared to the experimental results in Figure
3.9.

The entangling gate available to the trapped-ion qubits aswemodel them is theMølmer-
Sørensen gate [66]. The gate set also includes arbitrary single-qubit Z-rotations and col-
lective rotations around a tunable axis in the XY plane [65]. The Bell-state-measurement
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Figure 3.9: Validation of our trapped-ion decoherence model against an experiment in [53]. In the experiment,
a trap with two ions first emits a photon entangled with the first ion, and then keeps emitting new photons
entangled with the second ion every 330 𝜇s. The figure shows the evolution of the fidelity to the perfect Bell
state of the state shared by the first ion and the photon entangled to it as a function of time. Error bars of the
simulation results represent the standard error of the mean and are sometimes hard to distinguish because of
their size. The simulation has been conducted using the baseline coherence time 𝜏 = 85 ms, which is the value
obtained from [53]. The ion-photon emission fidelity has been set to 𝐹 = 0.97 to tune the fidelity at time zero
such that good agreement between the simulation and the experiment is obtained. All other parameters have
been set to their perfect values.

circuit is implemented as a Z-rotation of angle 𝜋/4 for one qubit and -𝜋/4 for the other, a
Mølmer-Sørensen gate and a measurement of both qubits in the computational basis. All
gates are modeled as a perfect gate followed by depolarizing channels on all partaking
qubits.

Just as for color centers, entanglement generation through the Barrett-Kok protocol
is modeled using the model introduced in Section 3.8. A difference with color centers,
however, is that the photons emitted by ions are typically temporally impure due to off-
resonant scattering [87], resulting in lowHong-Ou-Mandel visibility and hence entangled-
state fidelity. This can be counteracted by using a stringent detection time window and by
imposing a coincidence time window. A click pattern is then only heralded as a success
in case both clicks fall within the detection time window and the time between the two
clicks does not exceed the coincidence time window. The detection time window and
coincidence time window can be tuned to increase the visibility, but at the cost of having a
smaller success probability. In order to account for the effect of the detection time window,
we employ a toymodel for the temporal state of photons emitted from trapped-ion devices.
This toy model does not accurately represent the true state of the emitted photons, but as
we show in Figure 3.10, it can be used to capture the trade-off between success probability
and visibility well. In this toy model, we model photons as mixtures of pure photons
emitted at different times. The pure photons have one-sided exponential wavefunctions,
and the emission time is also distributed according to a one-sided exponential. Under
these assumptions, the detection probability, coincidence probability and visibility can all
be exactly calculated as a function of the in total two parameters that describe these two
exponentials. These calculations are performed in Section 3.9, and the results can be used



3.6 Setup

3

51

in conjunction with the model in Section 3.8 to calculate the success probability and state.
To show that this model can be used to capture the success probability and visibility with
good accuracy, we have performed a joint least-square procedure for the detection-time
probability density function, the coincidence probability and the visibility to match the
two free parameters to the data presented in [87]. This data has been produced by emitting
two photons from the same trapped-ion device, frequency converting these photons, and
then making them interfere. In Figure 3.10 (a), we show the resulting theoretical results
and compare them to the experimental results.

Instead of basing the parameters we use in our simulations on [87], we base them
on data for the interference of photons emitted by two distinct ion traps [54], as this
more accurately represents the scenario we investigate in this study. We determine again
the two parameters that describe the two exponentials by fitting to the data using the
exact same method as above. The half-life time of the fitted exponentials representing the
wave function and the emission time were found to be 3.01 𝜇s and 6.79 𝜇s respectively,
with the fits and the data shown in Figure 3.10 (b). This data has been taken using a
detection time window of 17.5 𝜇s. Therefore, for consistency, we use a fixed detection
time window of 17.5 𝜇s throughout our simulations, and hence the parameters shown in
Table 3.3 (such as, e.g., the photon detection probability excluding attenuation losses and
the dark count probability) all assume a detection time window of 17.5 𝜇s. On the other
hand, the coincidence time window is treated as a freely tunable parameter, allowing for
a trade-off between rate and fidelity. The value for the visibility reported in Table 3.3
and Table II of the main text was obtained from the model in Section 3.9 using the fitted
parameters reported above, a detection time window of 17.5 𝜇s and a coincidence time
window of 0.5 𝜇s.

We note that [87] includes a physically-motivated theoretical model for the trade-off
between coincidence probability and visibility as a function of the detection and coinci-
dence time windows. We have not used their model here as it requires numerical integra-
tion to evaluate, while our model can be rapidly evaluated using an analytical closed-form
expression. Additionally, our goal here is not to predict the behaviour of a specific physical
system but to accurately represent the trade-off between rate and fidelity without overfit-
ting to experimental data. Finally, as our toy model does not attempt to closely capture
the physics of any individual system, it can be considered to be system agnostic. It could
thus be fitted to different types of photon sources, giving it a potentially broader scope of
application.

3.6.7 Abstract nodes
The purpose of the abstract nodes is to provide a general model for processing nodes.
Therefore, their modeling is kept simple and platform-agnostic: there is all-to-all connec-
tivity between the qubits, all of them can be used to generate light-matter entanglement,
they all have the same coherence time properties and all quantum gates are available.
The Bell-state measurement circuit implemented by abstract nodes is the usual one: a
controlled-NOT gate, followed by a Hadamard on the control qubit and a measurement of
both qubits in the computational basis. We note that this model and its NetSquid imple-
mentation are not novel, having first been introduced in [80].

In order to quantify the level of accuracy that is sacrificed by considering a model
with a higher degree of abstraction, we compare the performance of a single abstract-
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(a) (b)

Figure 3.10: Comparison between data from two different experiments and the toy model introduced in Section
3.9. In both experiments, the detection probability density and coincidence probability were not conditioned on
the successful detection of two photons. To account for this, we have multiplied both the detection-probability-
density data and the coincidence-probability-density data by a different overall scaling factor. Both the scaling
factors, the parameters of the two exponentials describing the photon state and an offset for the detection prob-
ability density have been determined using a least-squares procedure. The least-squares procedure has been
performed jointly for the three data sets corresponding to the same experiment by summing the square errors
of all three. Here, the largest weight has been given to the detection probability density (106), the second largest
to the visibility (105), and the smallest to the coincidence probability (1). (a) Comparison to data from Meraner
et al. [87]. In the experiment, the Rabi pulse was terminated after approximately 9 𝜇s, therefore we have only
compared the first nine 𝜇s. Because of the terminated pulse the detection probability density falls to zero at ap-
proximately 12 𝜇s. Therefore, effectively the entire wave packet is detected. To reproduce this in our model, we
have not implemented a detection time window (or equivalently, have set the detection time window to infinite).
The fitted half-life times of the exponentials representing the wave function and emission time are 2.40 𝜇s and
2.76 𝜇s respectively. (b) Comparison to data from Krutyanskiy et al. [54] We base the modeling for the visibility
and coincidence probability of ion traps in this paper on the fit shown here. A detection time window of 17.5
𝜇s was used in the experiment. The detection-probability-density data used here corresponds to “node A” from
[54]. The fitted half-life times of the exponentials representing the wave function and emission time are 3.01 𝜇s
and 6.79 𝜇s respectively.

node repeater in the Delft-Eindhoven path to the equivalent color center and trapped ion
setups. To do so, we require a method of converting hardware parameters from the more
in-depth models to the abstract model. We therefore start by introducing this mapping.
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Color center to abstract model mapping
The emission fidelity, visibility, dark count probability and probability of photon detec-
tion excluding attenuation losses are mapped without change from the color center model
to the abstract model. An entanglement swap in an NV platform consists of one-qubit
gates on both carbon and electron, two-qubit gates and measurement and initialization of
the electron (see Figure 17 in Supplementary Note 5 of [61] for an image of the circuit).
Imperfections in gates and initialization are modelled by depolarizing channels in the NV
model, while the measurement error is modelled by probabilistic bit flips. In mapping to
the abstract model we approximate the measurement error as a depolarizing channel. All
the errors associated to the operations in the circuit are then multiplied together to obtain
a single parameter 𝑠𝑞 . 1−𝑠𝑞 is used to parameterize a depolarizing channel applied after a
perfect Bell-state measurement. The action of this depolarizing channel on a given state 𝜌
as a function of 𝑠𝑞 is given by equation (3.21), from which we can see that 𝑠𝑞 is a measure
of the quality of an entanglement swap.

𝜙(𝜌, 𝑠𝑞) = (1+3𝑠𝑞4 )𝜌 + 1− 𝑠𝑞
4 (𝑋𝜌𝑋 +𝑌𝜌𝑌 +𝑍𝜌𝑍). (3.21)

In our color center model, the coherence times of the carbon spins are different from
those of the electron spin. This subtlety is lost in the abstract model, where we take the
coherence time of all qubits to be the same as the carbon spins’. Other dephasing processes
such as induced dephasing [34], which are present in our color center model, are ignored
in the abstract model. In Table 3.4, we present the abstract model parameters obtained
from the color center baseline hardware parameters as shown in Table 3.2.

Parameter Noise Duration/Time
Visibility 0.9 -

Dark count probability 1.5×10−7 -
Photon detection probability excluding attenuation losses 5.1×10−4 -

Spin-photon emission F = 1 3.8 𝜇s
Swap quality 0.83 503.7 𝜇s

T1 - 10 hours
T2 - 1 s

Table 3.4: Baseline abstract model hardware parameters mapped from color center baseline shown in Table 3.2.

Having introduced the process by which we map color center parameters to the ab-
stract model, we now proceed with the results of validating the abstract model against the
NV model. To do so, the following steps were taken: (i) define the values of the baseline
hardware parameters for the more in-depth model and map them to the abstract model
following the procedure described above, thus obtaining the corresponding abstract model
baseline, (ii) run the simulation, (iii) improve both baselines using the improvement fac-
tor technique introduced in Section 6.3 and (iv) repeat steps (ii) and (iii) for improvement
factors in the desired range.

This analysis is done both for single and double-click entanglement generation, as we
simulated color center repeaters running both protocols.
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Color center validation
In Figure 3.11 we show the results of the validation for the abstract model against the NV
model, for single-click (top) and double-click (bottom) entanglement generation.

(a) Single-click.

(b) Double-click.

Figure 3.11: Performance of color center nodes and abstract nodes on the Delft - Eindhoven setup, with single-
click (top) and double-click (bottom) entanglement generation. The leftmost point on both plots corresponds to
the baseline hardware values. The points to the right were obtained by uniformly improving the hardware over
this baseline. The error bars represent the standard error of the mean and are often smaller than the markers.
“Average number s/success” is the average number of seconds per entangled pair that is succesfully distributed.

The agreement is similar for both protocols. The rate of entanglement generation,
shown on the plots on the right side, is identical for both models. The only source of
difference timing-wise is in how long it takes to perform an entanglement swap, with color
center taking slightly longer due to its more complex circuit. However, the low success
probability of generating entanglement means that many attempts are required, rendering
the time devoted to local operations negligible. Since the time taken per entanglement
generation attempt is equal in both models, it is to be expected that the rate is identical.

For small improvement factors, there is a sizeable gap in the average teleportation
fidelity achievable in each model, as shown on the plots on the left side. This fidelity
is significantly larger for the abstract model. We conjecture that this is due to sources of
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noise that are present in theNVmodel but not in the abstractmodel. These include induced
dephasing noise, probability of double photon excitation and deviations in interferometric
phase, the last two being single-click specific. As parameters improve, the magnitude of
these noise sources drops, and so does the gap between the fidelity achieved by the two
setups.

Overall, the abstract model captures the behavior of the more in-depth NV model rea-
sonably well. However, it does result in a more optimistic picture regarding the parame-
ter quality required to achieve certain fidelity targets. For example, in the abstract model
with double-click entanglement generation, an improvement factor of 5 suffices to reach
an average teleportation fidelity of 0.7. This same target requires an improvement factor
of 7 in the NV model. This supports the need for detailed hardware models, which take
platform-specific limitations and sources of noise into account.

Trapped ion to abstract model mapping
The visibility, dark count probability, photon detection probability excluding attenuation
losses and spin-photon emission parameters are mapped without change from the trapped
ion model to the abstract model. The process by which the swap quality parameter is
obtained is identical to the one described in Section 3.6.7. There is a notable difference
between how memory decoherence is accounted for in the two models. In our trapped
ion model, states stored in memory suffer from collective dephasing and no relaxation
is considered. Our abstract model, on the other hand, considers a 𝑇1, 𝑇2 memory noise
model, as empirically it has been found to fit well to a large variety of physical systems.
When mapping from trapped ion parameters to abstract model parameters, we take the
abstract model’s 𝑇2 to be given by the collective dephasing coherence time of the trapped
ion and we set 𝑇1 to infinity, i.e. we consider no relaxation in the abstract model. The
collective dephasing affecting trapped ion qubits follows a Gaussian shape, whereas the
dephasing in the abstract model follows a simple exponential. In Table 3.5, we present the
abstract model parameters obtained from the trapped ion baseline hardware parameters
as shown in Table 3.3.

Parameter Noise Duration/Time
Visibility 0.89 -

Dark count probability 1.5×10−5 -
Photon detection probability excluding attenuation losses 0.0288 -

Spin-photon emission F = 0.99 50 𝜇s
Swap quality 0.94 1.91 ms

T1 - -
T2 - 6 ms

Table 3.5: Baseline abstract model hardware parameters mapped from trapped ion baseline shown in Table 3.3.

Trapped ion validation
In this section, we investigate howwell the simpler abstractmodel captures the behavior of
the trapped ionmodel. We do this considering only double-click entanglement generation,
as this was the only entanglement generation protocol we considered when performing
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trapped ion simulations.

Figure 3.12: Performance of trapped ion nodes and abstract nodes on the Delft - Eindhoven setup, double-click
entanglement generation. The leftmost point on both plots corresponds to the baseline hardware values. The
points to the right were obtained by uniformly improving the hardware over this baseline. The error bars repre-
sent the standard error of the mean.

In Figure 3.12 we show the results of the validation of the abstract model against the
trapped ion model. The agreement in terms of the entanglement generation rate is per-
fect, with the rates overlapping for all values of the improvement factor. This is to be
expected, since the end-to-end entanglement generation time is dominated by the time
spent attempting to generate elementary links, and each attempt takes the same amount
of time in both models. The average teleportation fidelity follows the same trend for both
models, starting at very low values for current hardware parameters and quickly rising
as hardware parameters are improved. We note that for low improvement factors, the
abstract model achieves a higher fidelity. The opposite seems to be true for high improve-
ment factors, although there the difference is small and does not exceed one error bar. This
can be explained by the Gaussian nature of the trapped ion dephasing. In the trapped ion
model, the probability of a state stored in memory dephasing over a given period of time
𝑡 is 1− 𝑒−𝑡2/𝑇 2 , with 𝑇 being the coherence time. In the abstract model, this probability is
1− 𝑒−𝑡/𝑇 . This means that for 𝑡/𝑇 < 1, the probability of error for trapped ions is smaller,
while the opposite is true for 𝑡/𝑇 > 1. At low values of the improvement factor, the suc-
cess probability of entanglement generation is small, as are coherence times. Therefore,
the time a state is expected to stay in memory is likely larger than the coherence time, and
we expect that the error rate is higher in the trapped ion model. As parameters improve, it
becomes more likely that states remain in memory for periods of time smaller than the co-
herence time, which is the regime in which the error rate is higher in the abstract model.
This in line with what is observed in Figure 3.12. Overall, the agreement is better than
what was observed in Section 3.6.7. There, owing to noise sources present in the color
center model that were ignored in the abstract model, the latter performed better than the
former. No noise sources were ignored when mapping from the trapped ion model to the
abstract model, so this better agreement was to be expected. We conclude that the abstract
model captures the behavior of the more detailed trapped ion model almost perfectly in
the setup we considered.
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3.6.8 Entanglement generation
For near-term parameters, the success probability of entanglement generation is very low.
This means that many entanglement generation attempts are required, and that a simula-
tion of this process would spend most of its time simulating failed attempts. This is com-
putationally very inefficient, so we instead perform entangled state insertion, through a
process we call magic [96]. This process was first introduced in [79].

Magic works as follows: once two nodes have decided to generate entanglement to-
gether, we sample from a geometric distribution in order to determine howmany attempts
would have been required to succeed. The success probability of this geometric distribu-
tion is limited by the product of the probabilities of emitting the photon in the correct
mode, capturing it into the fiber, frequency-converting it, transmitting it through the fiber
and detecting it at the detector. Furthermore, imperfections such as the imperfect indis-
tinguishability of interfering photons and detector dark counts also impact the success
probability. Their effect depends on whether a single-click or double-click protocol is
used.

The elapsed time for the entanglement generation process is given by the product of
the sampled number of required attempts and the duration of one attempt, which is in
turn given by the sum of the emission time and the photon travel time.

The state generated is given by an analytical model which is different for single and
double-click entanglement generation. For more details, see Section 3.8.

3.7 Target metric
In this section, we explain the target metric used in this chapter. As discussed in the main
text, there are two conditions on end-to-end entanglement distribution that define the
target. The first is on the average fidelity with which qubits can be teleported using the
generated entangled states, and the second is on the rate at which such states are generated.
The target values for the teleportation fidelity and entangling rate are chosen such that the
quantum link would be able to support Verifiable Blind Quantum Computation (VBQC)
[36] when the server consists of a powerful quantum computer with a coherence time of
100 seconds. We show that if the targets are met, the client would be able to execute VBQC
by preparing states at the powerful quantum computer using either quantum teleportation
or remote state preparation (for remote state preparation, see Section 3.7.5).

The following results presented in this section are novel:

• the constraint equation that, when solved, guarantees VBQC is feasible (Theorems
3.1 and 3.4);

• the extension of the noise robustness theorem in [36] to guarantee that VBQC is
feasible when the average error probability can be bounded instead of themaximum
error probability, assuming that the error probabilities across different rounds are
independent and identically distributed (Theorem 3.2 and Section 3.7.4);

• a modified version of the VBQC protocol [36] that is based on remote state prepara-
tion instead of qubit transmission (Protocol 3.1) and a proof that, in the absence of
local noise, it is equivalent to the original protocol where some effective quantum
channel is used for qubit transmission (thereby guaranteeing that the correctness of
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the original protocol is inherited; we note that we have not otherwise investigated
the security of this protocol) (Theorem 3.3).

3.7.1 Teleportation fidelity
We consider the following quantum-teleportation protocol [36]. A one-qubit information
state 𝜌 is teleported using a two-qubit resource state 𝜎 shared by two parties. A Bell-state
measurement is performed between the qubit holding the information state and one of the
qubits in the resource state. If the outcome of the measurement corresponds to Bell state

|Φ𝑖𝑗⟩ ≡ 𝑋 𝑖𝑍 𝑗 |Φ+⟩ (3.22)

with |Φ+⟩ = 1
√2 (|00⟩+ |11⟩) then the Pauli correction 𝑋 𝑖𝑍 𝑗 is performed on the one remain-

ing qubit. Executing this protocol results in transmitting the information state through
the teleportation channel Λ𝜎 .

Definition 3.1 Teleportation channel. The teleportation channel associated with the two-
qubit state 𝜎 is given by the single-qubit quantum channel

Λ𝜎(𝜌) ≡∑
𝑖,𝑗

(𝑋 𝑖𝑍 𝑗 ⊗⟨Φ𝑖𝑗 |)(𝜎 ⊗𝜌)(𝑋 𝑖𝑍 𝑗 ⊗ |Φ𝑖𝑗⟩) . (3.23)

We note that if 𝜎 = |Φ00⟩⟨Φ00| then Λ𝜎 is the identity map. The average teleportation
fidelity corresponding to the resource state 𝜎 is given by 𝐹tel(𝜎).
Definition 3.2 Average teleportation fidelity. The average teleportation fidelity associated
with the two-qubit state 𝜎 is given by

𝐹tel(𝜎) ≡ ∫𝜓
⟨𝜓 ||Λ𝜎 (||𝜓⟩⟨𝜓 ||)||𝜓⟩𝑑𝜓 , (3.24)

where the integral is over the Haar measure.

We note that by the Haar measure, we here mean the uniform measure over single-qubit
quantum states, i.e. the uniformmeasure on the unit sphere in𝒞 2. It is the uniquemeasure
that is invariant under unitary transformations [97].

Finally, we note that if the sender and receiver agree on a unitary 𝑈 , then teleportation
can also be executed as follows. First, the sender applies 𝑈 to the information state. Sec-
ond, the sender teleports the resulting information state to the receiver. Last, the receiver
applies the unitary 𝑈 † to undo the original unitary and obtain the information state. The
qubit is then transmitted through a rotated teleportation channel.

Definition 3.3 Rotated teleportation channel. The rotated teleportation channel associated
with the two-qubit state 𝜎 and the unitary 𝑈 is given by

Λ𝜎,𝑈 (𝜌) = 𝑈 †Λ𝜎 (𝑈𝜌𝑈 †)𝑈 (3.25)

We remark that the average teleportation fidelity is not affected by the introduction of the
unitary 𝑈 because of the invariance of the Haar measure, i.e.

𝐹tel(𝜎) = ∫𝜓
𝑑𝜓 ⟨𝜓 ||Λ𝜎,𝑈 (||𝜓⟩⟨𝜓 ||)||𝜓⟩ , (3.26)
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Using a unitary to turn a teleportation channel into a rotated teleportation channel can
be advantageous when not every state on the Bloch sphere needs to be transmitted with
equal fidelity, and 𝜎 is such that not all states can be transmitted with equal fidelity. By
applying the unitary 𝑈 , the Bloch sphere can potentially be rotated in such a way to make
states for which high-fidelity transmission is desirable coincide with states that can be
transmitted at high fidelity.

3.7.2 Requirements from VBQC
We consider the scenario where two nodes are connected using the one-repeater quantum
connection studied in this work. These two nodes use the entanglement generated by
this quantum connection to perform VBQC. Specifically, the first node (the client) utilizes
VBQC to execute a two-qubit computation on the quantum processor of the second node
(the server) in a verified and blind fashion. It is assumed that the server is able to execute
gates without noise and has a coherence time of 100 seconds. Out target metric is chosen
such that it guarantees that the quantum connection is able to support this protocol.

A single round of the VBQC protocol involves the preparation of two qubits by the
client at the server, and the execution of a series of quantum gates and measurements on
those qubits by the server. The client can use the remote-state-preparation protocol [98] to
use one entangled state to prepare one qubit at the server. Some rounds are computation
rounds, the results of which are sent classically by the server to the client. All other rounds
are test rounds. In a test round, some of the qubits transmitted to the server are traps; if the
server tries to measure these qubits or performs another operation than the one specified
by the client, this will become apparent from the returned computation results. However,
tampering by the server is indistinguishable from noise. Only if noise is within certain
bounds can the protocol be performed successfully.

This defines minimum requirements on the quantum connection used by the client to
prepare the qubits at the server. First, the fidelity at which states can be prepared needs to
be large enough. Second, the rate at which they can be prepared needs to be large enough
as well. The reason for this is that after the first qubit is prepared at the server, it will
undergo memory decoherence while waiting for the second qubit to be prepared.

Specifically, we consider the case of depolarizing memory.

Definition 3.4 Depolarizing memory. If a single-qubit quantum state 𝜌 is stored in a depo-
larizing memory with coherence time 𝑇 for a time 𝑡 , it is subjected to a depolarizing channel

𝒟𝑝(𝜌) = 𝑝𝜌 + (1−𝑝)12 (3.27)

where the depolarizing parameter 𝑝 is given by

𝑝 = 𝑒−
𝑡
𝑇 . (3.28)

The minimum requirements are then defined by the following theorem.

Theorem 3.1 Requirements on entanglement generation for VBQC. Assume a quantum link
generates the two-qubit state 𝜎 between a client and a server with average rate 𝑅, and that
the distribution times are independent and identically distributed. Furthermore, assume that
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qubits at the server are stored in a depolarizing memory with coherence time 𝑇 . Lastly, as-
sume that all local operations are noiseless and instantaneous. If the client prepares qubits at
the server using the rotated teleportation channel Λ𝜎,𝑈 for some unitary 𝑈 , then a unitary 𝑈
exists such that the VBQC protocol proposed in [36], for a two-qubit deterministic quantum
computation, can be executed in a way that is composably secure with exponentially small 𝜖
if

𝐹tel(𝜎) >
1
2(1+

1
√2𝑒

1
2𝑅𝑇 ). (3.29)

Practically speaking, Theorem 3.1 means that VBQC with two qubits and no failure
probability that is inherent to the computation is feasible in case equation (3.83) holds. A
requirement is that the state 𝜎 is the same for each delivery of entanglement, and that the
distribution times are independent and identically distributed. We note that this is the case
for the one-repeater setup studied in this chapter. After entanglement swapping at the re-
peater node takes place, the end-to-end entangled state is removed from the end nodes and
the state of the network path is fully reset, making each entanglement delivery completely
independent from the last, with identical distributions for both delivery times and errors.
In general, the state that is delivered will depend on the amount of time entangled qubits
are stored before entanglement swapping takes place at the repeater node, resulting in a
state that is not the same each round. However, if the processing of the entangled state is
not conditioned on the amount of storage time, the final state will effectively look like a
constant mixture over all values that the storage time can take.

In this chapter, we consider two different sets of target teleportation fidelity and target
rate, namely (𝐹tel,𝑅) = (0.8717,0.1 Hz) and (0.8571,0.5 Hz). Both of these have been chosen
to satisfy Eq. (3.83) for 𝑇 = 100 seconds.

3.7.3 Proving Theorem 3.1
In [36], it is shown that the VBQC protocol is composably secure with exponentially small
𝜖 in case the noise is such that the failure probability of each individual test round can be
upper bounded. Key to proving Theorem 3.1 is a relaxation of this condition: two-qubit
VBQC is also feasible if instead the average failure probability of test rounds can be upper
bounded, in case the failure probabilities are independent and identically distributed. This
is stated in the following theorem.

Theorem 3.2 (Local correctness of VBQC protocol on Noisy Devices) Let 𝑝 denote the in-
herent error probability of the quantum computation, which is executed using a 𝑘-colorable
graph state. Assume that, for every test round, the probability that at least one of the trap-
measurement outcomes is incorrect is a random variable. Furthermore, assume that these
are independent and identically distributed for all test rounds. Let 𝑞 be the expected value
of these random variables. The VBQC protocol presented in [36] is 𝜖cor-locally-correct with
exponentially low 𝜖cor if 𝑞 < (1/𝑘)(2𝑝 −1)/(2𝑝 −2).
Theorem 3.2 is proven in Section 3.7.4 and allows us to derive the following lemma.

Lemma 3.1 Two-qubit VBQC for deterministic computations is composably secure with ex-
ponential 𝜖 if the probabilities that the trap-measurement outcome is incorrect are indepen-
dent and identically distributed for all test rounds and the average probability that the trap-
measurement outcome in a single test round is incorrect, 𝑞, satisfies 𝑞 < 1/4.
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Proof: First, we note that all two-qubit graph states are at least two-colorable, i.e., 𝑘 ≤ 2.
Second, we note that for deterministic computations the inherent error probability of the
computation is zero, i.e. 𝑝 = 0. Then, from Theorem 3.2, it follows that if 𝑞 < 1/4 is true,
then the VBQC protocol is 𝜖cor-locally-correct with exponentially low 𝜖cor. Additionally,
as shown in [36], the VBQC protocol is 𝜖bl-local-blind and 𝜖ver-local-verifiable with 𝜖ind-
independent-verification, with 𝜖bl, 𝜖ver and 𝜖ind exponentially low. Therefore, as in [36], it
follows that the protocol is composably secure with exponential 𝜖. □

During a test round, the client randomly designates one of the two qubits that it pre-
pares at the server the “dummy” qubit and the other the “trap” qubit. The client that
remotely prepares the dummy qubit in |𝑑⟩, where 𝑑 is chosen uniformly at random by the
client from {0,1}. It prepares the trap qubit in the state |+⟩𝜃 defined by

|±𝜃 ⟩ =
1
√2(|0⟩± 𝑒

𝑖𝜃 |1⟩), (3.30)

where the client chooses 𝜃 uniformly at random from Θ ≡ {𝑖𝜋/4}0≤𝑖≤7. That is, the trap
qubit will be in one of eight equidistant quantum states on the equator of the Bloch sphere.
The server will perform a CZ gate between the two qubits, measure them in the basis
{|+𝛿 ⟩ , |−𝛿 ⟩}, and send the measurement outcomes to the client. Here, 𝛿 = 𝜃 + 𝑟𝜋 , where 𝑟 is
chosen uniformly at random by the client from {0,1}. The test round is declared a success
if the measurement on the trap qubit yields 𝑑 ⊕ 𝑟 and a failure otherwise. If the server is
honest and there is no noise, test rounds are always successful. Otherwise, we show that
the following Lemma holds:

Lemma 3.2 If, during a test round of two-qubit VBQC, the trap qubit is preparedwith fidelity
𝐹trap and the dummy qubit is prepared with fidelity 𝐹dummy, then the probability that the
measurement outcome on the trap qubit is incorrect is given by

𝑝fail = 𝐹dummy(1−𝐹trap) + 𝐹trap(1−𝐹dummy). (3.31)

Proof: Consider the case 𝑑 = 𝑟 = 0. In that case, we can write

𝜌dummy, server = 𝐹dummy |0⟩⟨0| + (1−𝐹dummy) |1⟩⟨1| +𝑎 |0⟩ ⟨1| + 𝑎∗ |1⟩ ⟨0| (3.32)

for some constant 𝑎 and

𝜌trap, server = 𝐹trap |+𝜃⟩⟨+𝜃 | + (1−𝐹trap) |−𝜃⟩⟨−𝜃 | + 𝑏 |+𝜃 ⟩ ⟨−𝜃 | + 𝑏∗ |−𝜃 ⟩ ⟨+𝜃 | (3.33)

for some constant 𝑏. Here, we have made use of the fact that both {|0⟩ , |1⟩} and {|+𝜃 ⟩ , |−𝜃 ⟩}
are complete bases for the single-qubit Hilbert space.

After receiving both states, the server will perform a CZ gate between the two qubits,
and then measure the trap qubit in the {|+𝜃 ⟩ , |−𝜃 ⟩} basis. Whether the test round is suc-
cessful or not depends on whether the expected outcome 𝑑 ⊕ 𝑟 = 0, i.e. |+𝜃 ⟩, is obtained
from this measurement. In order to get the measurement statistics on the trap qubit, we
can first trace out the dummy qubit. With that in mind, let’s look at what happens with
the term

𝑎CZ |0⟩ ⟨1|𝜌trap, serverCZ+𝑎∗CZ |1⟩ ⟨0|𝜌trap, serverCZ
= 𝑎 |0⟩⟨1|𝜌trap, server𝑍 +𝑎∗ |1⟩ ⟨0|𝑍𝜌trap, server.

(3.34)



3

62 3 Requirements for a processing-node quantum repeater on a real-world fiber grid

After the CZ has been performed, the off-diagonal terms of 𝜌dummy, server are still off di-
agonal. These will vanish when tracing out the dummy qubit and can therefore be safely
ignored. Therefore, we make the substitution

𝜌dummy, server →𝐹dummy |0⟩⟨0| + (1−𝐹dummy) |1⟩⟨1| . (3.35)

Then, the effect of the CZ is easy to evaluate, giving

𝜌after CZ = 𝐹dummy |0⟩⟨0|𝜌trap, server + (1−𝐹dummy) |1⟩⟨1|𝑍𝜌trap, server𝑍 (3.36)

which, after tracing out the dummy qubit, gives

𝜌trap, after CZ =(𝐹dummy𝐹trap + (1−𝐹dummy)(1−𝐹trap)) |+𝜃⟩⟨+𝜃 |
+ (𝐹dummy(1−𝐹trap) + 𝐹trap(1−𝐹dummy)) |−𝜃⟩⟨−𝜃 |
+ 𝑐 |+𝜃 ⟩ ⟨−𝜃 | + 𝑐∗ |−𝜃 ⟩ ⟨+𝜃 | ,

(3.37)

where 𝑐 is a function of 𝑏, 𝐹dummy and 𝐹trap. Applying a POVM with elements |+𝜃⟩⟨+𝜃 |
and |−𝜃⟩⟨−𝜃 | then gives a failure probability of the test round of

𝑝fail = Tr( |−𝜃⟩⟨−𝜃 | 𝜌trap, after CZ) = 𝐹dummy(1−𝐹trap) + 𝐹trap(1−𝐹dummy). (3.38)

This calculation can be repeated for all three cases where 𝑑 = 𝑟 = 0 is false, each time giving
the exact same outcome. □

We now have a formula for the probability that a test round fails, given by equation
(3.38). However, this formula depends on the fidelity with which specific states are trans-
mitted over the teleportation channel. These states are randomly chosen during each test
round (|0⟩ or |1⟩ for the dummy qubit, |+𝜃 ⟩ for the trap qubit). This means that, in general,
the failure probability is not constant per round. Before we are able to use Lemma 3.1, we
need to know something about the average failure probability per round. Additionally,
we need to account for decoherence in the server’s memory while waiting for the second
qubit to be prepared at the server. Both are accounted for in the following lemma.

Lemma 3.3 Assume a quantum link generates the two-qubit state 𝜎 between a client and
a server with average rate 𝑅, and that the distribution times are independent and identically
distributed. Additionally assume that a unitary 𝑈 has been chosen such that dummy qubits
can be transmitted through a rotated teleportation channel with average fidelity

̄𝐹dummy ≡
1
2(⟨0|Λ𝜎,𝑈 (|0⟩⟨0|)|0⟩+ ⟨1|Λ𝜎,𝑈 (|1⟩⟨1|)|1⟩) (3.39)

and trap qubits with average fidelity

̄𝐹trap ≡
1
8 ∑
𝜃∈Θ

⟨+𝜃 |Λ𝜎,𝑈 (|+𝜃⟩⟨+𝜃 |)|+𝜃⟩ . (3.40)

Assume that the condition

̄𝐹dummy(1− ̄𝐹trap) + ̄𝐹trap(1− ̄𝐹dummy) ≤
1
2 (3.41)
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holds. Furthermore, assume that qubits received by the server are stored in depolarizing quan-
tummemory with coherence time 𝑇 . Lastly, assume that all local operations are noiseless and
instantaneous. In that case, for two-qubit VBQC, the average test-round failure probability
is bounded by

𝑞 ≤ 𝑒−
1
𝑅𝑇 [ ̄𝐹dummy(1− ̄𝐹trap) + ̄𝐹trap(1− ̄𝐹dummy)]+

1
2(1− 𝑒

− 1
𝑅𝑇 ). (3.42)

Proof: Let Δ𝑡 be the time between the generation of the first and second entangled state.
Then, the first qubit is stored for time Δ𝑡 in depolarizing memory until the second qubit
is prepared at the server. If the qubit was prepared at the server with fidelity 𝐹 , the depo-
larizing noise will have the effect

𝐹 → 𝑒−
Δ𝑡
𝑇 𝐹 + 1

2(1− 𝑒
− Δ𝑡

𝑇 ). (3.43)

We note that equation (3.31) is symmetric under interchange of 𝐹dummy and 𝐹trap. There-
fore, we can assume that the dummy qubit is prepared first without loss of generality.
Writing 𝐹dummy and 𝐹trap for the fidelities with which the qubits are teleported to the
server (i.e. excluding the effect of memory decoherence), it follows that

𝑝fail = 𝑒−
Δ𝑡
𝑇 [𝐹dummy(1−𝐹trap) + 𝐹trap(1−𝐹dummy)]+

1
2(1− 𝑒

− Δ𝑡
𝑇 ). (3.44)

Now, to calculate the average failure probability 𝑞 ≡ ⟨𝑝fail⟩, we note that 𝐹dummy, 𝐹trap and
Δ𝑡 are all independent random variables; the first depends on the choice of 𝑑 (i.e. whether
to prepare |0⟩ or |1⟩), the second depends on the choice of 𝜃 (i.e. which |+𝜃 ⟩ to prepare),
and the last depends on the probability distribution for the entanglement delivery time.
This allows us to write

𝑞 = ⟨𝑒−
Δ𝑡
𝑇 ⟩[ ̄𝐹dummy(1− ̄𝐹trap) + ̄𝐹trap(1− ̄𝐹dummy)]+

1
2(1−⟨𝑒

− Δ𝑡
𝑇 ⟩). (3.45)

Because the exponential function is convex, Jensen’s inequality [99] gives

⟨𝑒−
Δ𝑡
𝑇 ⟩ ≥ 𝑒−

⟨Δ𝑡⟩
𝑇 . (3.46)

The times between the distribution of two entangled states are by assumption all inde-
pendent and identically distributed, i.e., they are all copies of the same Δ𝑡 . The (average)
entangling rate is therefore simply equal to

𝑅 = 1
⟨Δ𝑡⟩ , (3.47)

and therefore we find
⟨𝑒−

Δ𝑡
𝑇 ⟩ ≥ 𝑒−

1
𝑅𝑇 . (3.48)

In case equation (3.41) holds equation (3.48) can be combinedwith equation (3.45) to obtain
equation (3.42). □We note that the use of Jensen’s inequality above accounts for any kind
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of potential jitter in the delivery of entangled qubits to the server. Whatever the distribu-
tion on the waiting time Δ𝑡 looks like and at however irregular intervals entanglement is
delivered, Jensen’s inequality will guarantee that Eq. (3.42) holds.

Now, we want to use the average teleportation fidelity 𝐹tel instead of the quantities
̄𝐹dummy and ̄𝐹trap to bound 𝑞. The final building block towards obtaining such a bound and

proving Theorem 3.1 is the following lemma.

Lemma 3.4 There exists a unitary 𝑈 such that

̄𝐹dummy = ̄𝐹trap = 𝐹tel, (3.49)

where ̄𝐹dummy is defined in equation (3.39), ̄𝐹trap in equation (3.40) and 𝐹tel in equation (3.24)
(with 𝜎 left implicit).

Proof: While ̄𝐹dummy and ̄𝐹trap are fidelity averages over specific subsets of the Bloch
sphere, 𝐹tel is an average over the entire Bloch sphere. This allows us to find the relation-
ship

𝐹tel =
1
3

̄𝐹dummy +
2
3

̄𝐹trap. (3.50)

To see how this relationship follows, we first note that the average fidelity over the entire
Bloch sphere can be written as an average over any six states that form a regular octa-
hedron on the Bloch sphere [100]. One example of such a octahedron is given by the six
eigenstates of the Pauli operators, which gives

𝐹tel =
1
6(⟨0|Λ𝜎,𝑈 ( |0⟩⟨0|)|0⟩)+ ⟨1|Λ𝜎,𝑈 ( |1⟩⟨1|)|1⟩

+ ⟨+0|Λ𝜎,𝑈 ( |+0⟩⟨+0| )|+0⟩+ ⟨−0|Λ𝜎,𝑈 ( |−0⟩⟨−0| )|−0⟩

+ ⟨+ 𝜋
2

|||Λ𝜎,𝑈 ( |||+ 𝜋
2
⟩⟨+ 𝜋

2

||| )
|||+ 𝜋

2
⟩+ ⟨− 𝜋

2

|||Λ𝜎,𝑈 ( |||− 𝜋
2
⟩⟨− 𝜋

2

||| )
|||− 𝜋

2
⟩)

=16(⟨0|Λ𝜎,𝑈 ( |0⟩⟨0|)|0⟩)+ ⟨1|Λ𝜎,𝑈 ( |1⟩⟨1|)|1⟩+
4
∑
𝑖=0

⟨+ 𝑖𝜋
2

|||Λ𝜎,𝑈 (
|||+ 𝑖𝜋

2
⟩⟨+ 𝑖𝜋

2

||| )
|||+ 𝑖𝜋

2
⟩).
(3.51)

Another such octahedron is obtained by rotating these six eigenstates around the Z axis
by an angle of 𝜋/4. This gives the relation

𝐹tel =
1
6(⟨0|Λ𝜎,𝑈 ( |0⟩⟨0|)|0⟩)+ ⟨1|Λ𝜎,𝑈 ( |1⟩⟨1|)|1⟩

+
4
∑
𝑖=0

⟨+ (2𝑖+1)𝜋
4

|||Λ𝜎,𝑈 (
|||+ (2𝑖+1)𝜋

4
⟩⟨+ (2𝑖+1)𝜋

4

||| )
|||+ (2𝑖+1)𝜋

4
⟩).

(3.52)

Adding equations (3.51) and (3.52) together and dividing by two then gives

𝐹tel =
1
6(⟨0|Λ𝜎,𝑈 ( |0⟩⟨0|)|0⟩)+ ⟨1|Λ𝜎,𝑈 ( |1⟩⟨1|)|1⟩)+

1
12(∑𝜃∈Θ

⟨+𝜃 |Λ𝜎,𝑈 ( |+𝜃⟩⟨+𝜃 | )|+𝜃⟩),
(3.53)
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which is equivalent to Eq. (3.50).
While the unitary 𝑈 will leave the average over the entire Bloch sphere, 𝐹tel, invari-

ant, the same does not hold for ̄𝐹dummy. The unitary rotates the Bloch sphere and thus
effectively turns ̄𝐹dummy into an average over any pair of antipodal points on the Bloch
sphere. Each pair of antipodal points can be described using only one of the two points.
The average over pairs of antipodal points can therefore be described as a function 𝑓 with
as domain one half of the Bloch sphere. This function 𝑓 maps each point on that half of
the Bloch sphere to the average fidelity of that point and its antipodal point. Now, ̄𝐹dummy
can be chosen to correspond to any of the values in 𝑓 ’s range. Additionally, the average of
𝑓 over its domain is equal to the average fidelity over all points on the entire Bloch sphere,
i.e. 𝐹tel. By the mean value theorem, we can conclude that there is a value in the range of
the function that equals the average of the function. That is, there exists a choice for the
unitary 𝑈 such that ̄𝐹dummy = 𝐹tel. Then, equation (3.50) implies that if ̄𝐹dummy = 𝐹tel, then̄𝐹trap = 𝐹tel. □

Theorem 3.1 is then finally proven by combining Lemmas 3.1, 3.3, and 3.4.

3.7.4 Proving Theorem 3.2
In Section F of [36], the authors show that their VBQC protocol is robust to noise, assum-
ing that the probability of error in each round can be upper-bounded by some maximum
probability of error 𝑝max. More specifically, they show that the protocol can be configured
in such a way that it is 𝜖cor-locally-correct with exponentially small 𝜖cor.

Here we argue that if we assume that the error probabilities are independent and iden-
tically distributed across different rounds of the protocol, then the error probability in
each round is effectively equal to the average probability of error. It then suffices that this
average be bounded to obtain local correctness per the result of [36], as the error proba-
bility becomes constant and the maximum error probability is equal to the average error
probability. We hereby prove Theorem 3.2.

We assume that for each round, there is a “true” probability of error. This true probabil-
ity of error is a random variable, with a second-order probability distribution determining
what values it takes andwithwhat probabilities [101]. Let 𝑝error𝑖 be the probability of there
being an error in round 𝑖, i.e., the value taken by the true probability of error in round 𝑖,
drawn from the second-order probability distribution. By the law of total probability, this
can be written as:

𝑝error𝑖 = ∫𝑃 (error|𝑝 = 𝑝𝑒)𝑃 (𝑝 = 𝑝𝑒)𝑑𝑝𝑒 , (3.54)

where 𝑃 (error|𝑝 = 𝑝𝑒) is the probability that there is an error given that the true probability
of error takes the value 𝑝𝑒 and 𝑃 (𝑝 = 𝑝𝑒) is the probability density that this happens. By
definition, 𝑃 (error|𝑝 = 𝑝𝑒) = 𝑝𝑒 , therefore we can rewrite the equation as:

𝑝error𝑖 = ∫𝑝𝑒𝑃 (𝑝 = 𝑝𝑒)𝑑𝑝𝑒 = 𝑝𝑒 , (3.55)

with 𝑝𝑒 being the expected value of the second-order probability distribution from which
each round’s probability of error is sampled. The second-order probability distribution
can then be ignored, and the probability that an error occurs in a given round is simply
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given by a first-order probability. It follows that the probability of error in every round is
𝑝𝑒 , i.e., the average probability of error, so it suffices that the average probability of error
be bounded.

3.7.5 Remote state preparation
Here, we introduce a modified version of the VBQC protocol [36] in which the client
“sends” qubits to the server using remote state preparation (Protocol 3.1). Remote state
preparation is experimentally simpler than teleportation. Therefore, it is likely that early
VBQC demonstrations will be more feasible when using remote state preparation than
when using teleportation. We show that, when local operations are noiseless, the modified
protocol is equivalent to the protocol introduced in [36] but using some specific effective
quantum channel to send qubits from the client to the server. This result is expressed in
Theorem 3.3. Therefore, the correctness property carries over from the protocol in [36] to
the modified protocol, showing that it is indeed possible to use remote state preparation to
execute VBQC. Additionally, we show that the conclusions about the feasibility of VBQC
found above (Theorem 3.1) also hold for the modified protocol. That is, when the rate and
fidelity of entanglement generation are good enough to support VBQC through quantum
teleportation with noiseless local operations, they are also good enough to support VBQC
through remote state preparation with noiseless local operations. This result is expressed
in Theorem 3.4.

As preliminaries to proving the above, we first introduce two definitions.

Definition 3.5 U-NOT operation. The U-NOT operation Υ is defined as [102]

Υ(𝛼 |0⟩+𝛽 |1⟩) = 𝛽∗ |0⟩ −𝛼 ∗ |1⟩ . (3.56)

That is, Υ maps any qubit state to a state that is orthogonal to it.

We note that the U-NOT operation Υ is anti-unitary and hence cannot be physically im-
plemented [102]. It maps all states on the Bloch sphere to their antipodal points, which
cannot be realized with rotations only. However, mapping a specific point on the Bloch
sphere to its antipodal point can always be achieved by rotating the Bloch sphere by 𝜋
around any axis that is orthogonal to the axis intersecting the point. Such a mapping is
provided by the following definition.

Definition 3.6 |𝜓 ⟩-NOT operations. The family of |𝜓 ⟩-NOT operations 𝒜𝜙,|𝜓 ⟩ is defined by

𝒜𝜙,|𝜓 ⟩ ≡ 𝑒−𝑖𝜙Υ(|𝜓⟩)⟨𝜓 | + 𝑒𝑖𝜙 |𝜓 ⟩(Υ(|𝜓⟩))† (3.57)

The parameter 𝜙 in 𝒜𝜙,|𝜓 ⟩ represents the freedom in choosing which axis to use for the
𝜋 rotation that maps |𝜓 ⟩ to Υ(|𝜓⟩) and vice versa. We note that 𝒜†

𝜙,|𝜓 ⟩ = 𝒜𝜙,|𝜓 ⟩. Now, we
define amodified version of the VBQC protocol that makes use of remote state preparation
instead of quantum teleportation.

Protocol 3.1 VBQC with remote state preparation. This protocol is the same as the VBQC
protocol presented in [36], except for the following.

• Before starting the protocol, the client and server agree on a one-qubit unitary operation
𝑈 .
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• Whenever the client would send a qubit 𝑣 in the state |𝜓 ⟩ to the server, it instead
measures its half of a two-qubit resource state shared with the server in the basis
{𝑈 |𝜓⟩ ,Υ(𝑈 |𝜓⟩)}. The outcome of this measurement is stored at the client as 𝑐𝑣 , with
𝑐𝑣 = 0 corresponding to outcome 𝑈 |𝜓⟩ and 𝑐𝑣 = 1 corresponding to outcome Υ(𝑈 |𝜓⟩).
The server applies the operation 𝑈 † to its local entangled qubit. This qubit held by the
server is now considered the qubit as received from the client.

• In a computation round, the measurement outcome 𝛿𝑣 obtained from qubit 𝑣 is bit
flipped by the client in case 𝑐𝑣 = 1. That is,

𝛿𝑣 →𝛿𝑣 ⊕𝑐𝑣 (computation round). (3.58)

• In a test round, for each trap qubit 𝑣 , the measurement outcome 𝛿𝑣 is bit flipped by the
client in case 𝑐𝑣 = 1, and once more for every neighboring dummy qubit 𝑤 for which
𝑐𝑤 = 1. That is,

𝛿𝑣 →𝛿𝑣 ⊕𝑐𝑣 ⊕ ⨁
𝑤∈𝑁𝐺 (𝑣)

𝑐𝑤 (test round). (3.59)

Here, 𝐺 is the computation graph used in the VBQC protocol and 𝑁𝐺(𝑣) is the neigh-
bourhood of qubit 𝑣 in graph 𝐺.

The outcomes 𝑐𝑣 are never shared with the server.

Lemma 3.5 Effective remote-state-preparation channel. Let |𝜓 ⟩ be some pure single-qubit
state and let 𝜎 be some two-qubit density matrix shared by Alice and Bob. Let 𝜙|𝜓 ⟩ be some
function mapping the single-qubit state |𝜓 ⟩ to a real number. Furthermore, let 𝑈 be some
single-qubit unitary operation. If the first of two qubits holding the state 𝜎 is measured in
the basis {𝑈 |𝜓⟩ ,Υ(𝑈 |𝜓⟩)} with measurement outcome 𝑐 (𝑐 = 0 corresponding to 𝑈 |𝜓⟩, 𝑐 = 1
corresponding to Υ(𝑈 |𝜓⟩)) after which the operation 𝑈 †𝒜 𝑐

𝜙|𝜓 ⟩,𝑈 |𝜓 ⟩ is applied to the second
qubit and the first qubit is traced out, then this is equivalent to sending a qubit in the state
|𝜓 ⟩ through the rotated effective remote-state-preparation Λ𝜙|𝜓 ⟩,𝜎 ,𝑈 channel given by

Λ𝜙|𝜓 ⟩,𝜎 ,𝑈 (|𝜓 ⟩) = 𝑈 †Λ𝜙|𝜓 ⟩,𝜎 (𝑈 |𝜓⟩)𝑈 , (3.60)

where Λ𝜙|𝜓 ⟩,𝜎 is the effective remote-state-preparation channel given by

Λ𝜙|𝜓 ⟩,𝜎 (|𝜓 ⟩) =(⟨𝜓 | ⊗1)𝜎( |𝜓⟩⊗1)
+(⟨𝜓 | ⊗1)(𝒜𝜙|𝜓 ⟩,|𝜓 ⟩ ⊗𝒜𝜙|𝜓 ⟩,|𝜓 ⟩)𝜎(𝒜𝜙|𝜓 ⟩,|𝜓 ⟩ ⊗𝒜𝜙|𝜓 ⟩,|𝜓 ⟩)( |𝜓⟩⊗1).

(3.61)

Proof: In case the state 𝑈 |𝜓⟩ is measured on the first qubit, i.e., 𝑐 = 0, the unnormalized
post-measurement state after tracing out the first qubit and applying 𝑈 †𝒜 0

𝜙|𝜓 ⟩,𝑈 |𝜓 ⟩ = 𝑈 † is

𝜌′𝑐=0 = 𝑈 †(⟨𝜓 |𝑈 † ⊗1)𝜎(𝑈 |𝜓⟩⊗1)𝑈 . (3.62)

This measurement outcome is obtained with probability 𝑝𝑐=0 = Tr{𝜌𝑐=0}, and the corre-
sponding normalized state is 𝜌𝑐=0 = 𝜌′𝑐=0/𝑝𝑐=0. In case the state Υ(𝑈 |𝜓⟩) (which is equal
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op to global phase to 𝒜𝜙|𝜓 ⟩,𝑈 |𝜓 ⟩𝑈 |𝜓⟩) is measured, i.e., 𝑐 = 1, the unnormalized state after
tracing out the first qubit and applying 𝑈 †𝒜 1𝜙|𝜓 ⟩,𝑈 |𝜓 ⟩ = 𝑈 †𝒜𝜙|𝜓 ⟩,𝑈 |𝜓 ⟩ is instead

𝜌′𝑐=1 = 𝑈 †𝒜𝜙|𝜓 ⟩,𝑈 |𝜓 ⟩(⟨𝜓 |𝑈 †𝒜𝜙|𝜓 ⟩,𝑈 |𝜓 ⟩ ⊗1)𝜎(𝒜𝜙|𝜓 ⟩,𝑈 |𝜓 ⟩𝑈 |𝜓⟩⊗1)𝒜𝜙|𝜓 ⟩,𝑈 |𝜓 ⟩𝑈
= 𝑈 †(⟨𝜓 |𝑈 † ⊗1)(𝒜𝜙|𝜓 ⟩,𝑈 |𝜓 ⟩ ⊗𝒜𝜙|𝜓 ⟩,𝑈 |𝜓 ⟩)𝜎(𝒜𝜙|𝜓 ⟩,𝑈 |𝜓 ⟩ ⊗𝒜𝜙|𝜓 ⟩,𝑈 |𝜓 ⟩)(𝑈 |𝜓⟩⊗1)𝑈

(3.63)
with measurement probability 𝑝𝑐=1 = Tr{𝜌𝑐=1} and normalized state 𝜌𝑐=1 = 𝜌′𝑐=1/𝑝𝑐=1. The
resulting state can be described as a mixture between the states corresponding to the
different measurement outcomes weighted by their respective probabilities, i.e.,

𝜌 = 𝑝𝑐=0𝜌𝑐=0 +𝑝𝑐=1𝜌𝑐=1 = 𝜌′𝑐=0 +𝜌′𝑐=1 = Λ𝜙|𝜓 ⟩,𝜎 ,𝑈 (|𝜓 ⟩). (3.64)

□
We note that the effective remote-state-preparation channel is not a true quantum

channel, i.e., it is not a completely positive trace-preserving (CPTP) map between density
matrices. In fact, it is only defined for pure states, and can not (straightforwardly) be
rephrased as a linear operator on a density matrix. However, the output state is a valid
density matrix with trace 1, as it should be as it is the result of a measurement on and
unitary evolution of the resource state 𝜎 .
Theorem 3.3 Equivalence of VBQC with remote state preparation. Assume all local oper-
ations at both the server and the client are noiseless. Then, there exists a function 𝜙|𝜓 ⟩ that
maps single-qubit states to real numbers such that Protocol 3.1 is equivalent to the unaltered
VBQC protocol described in [36] using the rotated effective remote-state-preparation channel
Λ𝜙|𝜓 ⟩,𝜎 ,𝑈 to send qubits in pure states from the client to the server. Here, 𝜎 is the resource
state used in Protocol 3.1.

Proof: In Protocol 3.1, the client performs bit flips on the measurement outcomes received
from the server. Everymeasurement the server performs is in a basis of the form {|+𝜃 ⟩ , |−𝜃 ⟩}
(defined in equation (3.30)). These states are mapped to each other by the Pauli 𝑍 operator,
which is a |+𝜃 ⟩-NOT operation

𝑍 = 𝒜−𝜃,|+𝜃 ⟩. (3.65)

Therefore, eachmeasurement performed by the server in Protocol 3.1 of which the result is
bit flipped in case some number 𝑐 is equal to one (i.e., 𝛿 →𝛿⊕𝑐 where 𝛿 is themeasurement
result) can effectively be replaced by a unitary operation 𝑍 𝑐 followed by a measurement
of which the result is not bit flipped. It is thus as if the server applies the operation 𝑍 𝑐 ,
even though the server never actually learns the value of 𝑐. This equivalence is essential
to the proof.

First, we show that a computation round in Protocol 3.1 is equivalent to a computation
round in the unaltered VBQC protocol when sending the qubits using Λ𝜙|𝜓 ⟩,𝜎 ,𝑈 in case a
specific condition on 𝜙|𝜓 ⟩ holds. In a computation round, for each of the qubits held by the
server, it first performs the unitary operation 𝑈 †. Then, it executes a number of CZ gates
between the qubit and some other qubits. We remind the reader that CZ gates are symmet-
ric in the two partaking qubits; we can thus always choose which qubit we consider the
control qubit and which we consider the target qubit as we find convenient. These gates
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are followed by a measurement in the basis {|+𝜃 ⟩ , |−𝜃 ⟩}, where the angle 𝜃 is specified by
the client. The outcome 𝛿 of the measurement is bit flipped by the client according to
𝛿 → 𝛿 ⊕ 𝑐𝑣 . In shorthand, we will write the sequence as: 𝑈 †, CZs, measurement, bit flip.
We will show that this sequence is equivalent to a sequence that we can apply Lemma 3.5
to. As a first step, we use the equivalence stated in the first paragraph of this proof to re-
place the measurement followed by a bit flip by a measurement preceded by the operation
𝑍 𝑐𝑣 . The sequence is thus equivalent to the sequence: 𝑈 †, CZs, 𝑍 𝑐𝑣 , measurement. As
a second step, because 𝑍 commutes with CZ, we rewrite the sequence as: 𝑈 †, 𝑍 𝑐𝑣 , CZs,
measurement.

Now, using equation (3.65), the sequence can be rewritten as follows: 𝑈 †, 𝒜 𝑐𝑣
−𝜃,|+𝜃 ⟩,

CZs, measurement. To enable us to move the operator 𝑈 † in this sequence, we represent
the unitary 𝑈 in general matrix form

𝑈 = [ 𝑎 𝑏
−𝑒𝑖𝜑𝑏∗ 𝑒𝑖𝜑𝑎∗] , (3.66)

where |𝑎|2 + |𝑏|2 = 1 and 𝜑 ∈ [0,2𝜋). This can be used to verify that

Υ(𝑈 |𝜓⟩) = 𝑒−𝑖𝜑𝑈Υ(|𝜓⟩). (3.67)

Therefore, for every 𝑈 , there exists a 𝜑 such that for every 𝜙 and every |𝜓 ⟩

𝑈 †𝒜𝜙−𝜑,𝑈 |𝜓⟩ =𝑈 †[𝑒−𝑖(𝜙−𝜑)𝑒−𝑖𝜑𝑈Υ(|𝜓⟩) ⟨𝜓 |𝑈 † +𝑒𝑖(𝜙−𝜑)𝑈 |𝜓⟩(𝑒−𝑖𝜑𝑈Υ(|𝜓⟩))† ]
=𝒜𝜙,|𝜓 ⟩𝑈 †.

(3.68)

From this, we conclude that there exists a 𝜑 (determined by 𝑈 ) such that the sequence
on qubit 𝑣 is equivalent to: 𝒜 𝑐𝑣

−(𝜃𝑣+𝜑),𝑈 |+𝜃𝑣 ⟩, 𝑈
†, CZs, measurement. At this point, we

are able to invoke Lemma 3.5. From this lemma, it follows that the client performing its
measurement followed by the server applying the above sequence is equivalent to the the
client sending the state |+𝜃𝑣 ⟩ through a channel Λ𝜙|𝜓 ⟩,𝜎 ,𝑈 for which 𝜙|+𝜃 ⟩ = −𝜃 − 𝜑, after
which the server applies the sequence: CZs, measurement. This is exactly the sequence
of operations in the unaltered VBQC protocol. Therefore it follows that a computation
round in Protocol 3.1 is equivalent to a computation round in the unaltered VBQC protocol
where the channel Λ𝜙|𝜓 ⟩,𝜎 ,𝑈 is used to send qubits from the client to the server in case the
condition 𝜙|+𝜃 ⟩ = −𝜃 −𝜑 is met.

It now remains to show the same equivalence between the two protocols for test
rounds. For the trap qubit 𝑣 , we can again replace the measurement followed by 𝑐𝑣 ⊕
⨁𝑤∈𝑁𝐺 (𝑣) 𝑐𝑤 ≡ ̄𝑐 bit flips by a measurement without bit flips preceded by the operator 𝑍 ̄𝑐 .
The sequence of operations on the trap then becomes: 𝑈 †, CZ gates with dummy qubits,
𝑍 ̄𝑐 , and then a measurement. Now, the identity

CZ(1⊗𝑍) = (𝑋 ⊗1)CZ(𝑋 ⊗1) (3.69)

can be used to move every bit flip due to a measurement outcome in the preparation of a
dummy qubit by the client to the corresponding qubit at the server. That is, each 𝑍 𝑐𝑤 for
𝑤 ∈ 𝑁𝐺(𝑣) is moved to the qubit 𝑤 . What remains at the trap qubit 𝑣 itself is then exactly
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the same sequence of operations as in a computation round. From what we have shown
above for computation rounds, it follows that we can treat trap qubits in test rounds of
Protocol 3.1 as if they are trap qubits in test rounds of the unaltered VBQC protocol, where
the qubits are sent from the client to the server using the channel Λ𝜙|𝜓 ⟩,𝜎 ,𝑈 if 𝜙|+𝜃 ⟩ = −𝜃 −𝜑.
It then remains only to show that the the equivalence holds for the dummy qubits.

Now, we focus on one of the dummy qubits, which we denote𝑤 . Consider the scenario
where the client attempts to send the qubit 𝑤 in the state |𝑑⟩, where 𝑑 ∈ {0,1}, to the server
as in Protocol 3.1. This qubit is the server’s half of the resource state 𝜎 . The client measures
its half of 𝜎 in the basis {𝑈 |𝑑⟩ ,Υ(𝑈 |𝑑⟩)}, with measurement outcome 𝑐𝑤 . At the server, the
following sequence of operations is applied to the qubit𝑤: 𝑈 †,∏𝑢∈𝑁𝐺 (𝑤)CZ𝑤,𝑢 , measure-
ment in the basis {|+𝜃 ⟩ , |−𝜃 ⟩} for some 𝜃 . Let us first consider the case where all 𝑢 ∈ 𝑁𝐺(𝑤)
are trap qubits. Then, by moving the effects of bit flips from trap qubits to dummy qubits
as described above, every CZ𝑤,𝑢 is effectively replaced by (𝑋 𝑐𝑤 ⊗ 1)CZ𝑤,𝑢(𝑋 𝑐𝑤 ⊗ 1). Be-
cause 𝑋 2 = 1, this has the effect of transforming the sequence into the following: 𝑈 †,
𝑋 𝑐𝑤 ,∏𝑢∈𝑁𝐺 (𝑤)CZ𝑤,𝑢 , 𝑋 𝑐𝑤 , measurement. The second occurrence of 𝑋 𝑐𝑤 changes the out-
come of the measurement on the dummy qubit. However, the measurement outcome of
the dummy qubits is of no consequence in the VBQC protocol (the outcome is sent by the
server to the client and then discarded by the client). Therefore, we can effectively remove
the second occurrence of 𝑋 𝑐𝑤 from the sequence. For the first occurrence, we note that 𝑋
is both a |1⟩-NOT gate and a |0⟩-NOT gate,

𝑋 = 𝒜|1⟩ = −𝒜|0⟩. (3.70)

Therefore, up to a global phase in case 𝑑 = 0, the sequence becomes equivalent to: 𝑈 †,𝒜|𝑑⟩,
∏𝑢∈𝑁𝐺 (𝑤)CZ𝑤,𝑢 , measurement. We note that the unitary 𝑈 is here the same as for the
trap qubit (it is the same for all qubits in Protocol 3.1). Therefore, we can invoke equation
(3.68) again to rewrite the sequence as: 𝒜−𝜑,𝑈 |𝑑⟩, 𝑈 †, ∏𝑢∈𝑁𝐺 (𝑤)CZ𝑤,𝑢 , measurement. It
then immediately follows from Lemma 3.5 that this is equivalent to the client sending
the qubit 𝑤 in the pure state |𝑑⟩ using a quantum channel Λ𝜙|𝜓 ⟩,𝜎 ,𝑈 for which 𝜙|𝑑⟩ = −𝜑.
After the server receives the qubit through this effective channel, the remaining sequence
is: ∏𝑢∈𝑁𝐺 (𝑤)CZ𝑤,𝑢 , measurement. This is the same as in the unaltered VBQC protocol,
and therefore we can treat dummy qubits in test rounds of Protocol 3.1 as if they are
dummy qubits in the unaltered VBQCprotocol that are transmitted usingΛ𝜙|𝜓 ⟩,𝜎 ,𝑈 with the
condition 𝜙|0⟩ = 𝜙|1⟩ = −𝜑, provided they are only adjacent to trap qubits in the computation
graph 𝐺.

As final part of our proof, we show that the above derivation for dummy qubits still
holds in case they are adjacent to other dummy qubits in the computation graph. Every
CZ with a trap qubit results in two 𝑋 𝑐𝑤 s. When the dummy qubit is only adjacent to trap
qubits, 𝑋 𝑐𝑤 s resulting from neighboring CZs then cancel out in the middle (because 𝑋 2 =
1), such that only operators at the beginning and ending of the entire sequence remain.
However, a CZ with another dummy qubit does not give any 𝑋 𝑐𝑤 s. 𝑋 𝑐𝑤 s from CZs with
trap qubits that enclose one or more CZs with dummy qubits can then no longer cancel
against one another. A way out is offered by the following identity:

(1⊗𝑋)CZ = CZ(𝑍 ⊗𝑋). (3.71)

This means that 𝑋 can be commuted through CZs at the cost of inducing a 𝑍 at the other
qubit partaking in the CZ. Now, if a 𝑍 is induced on a dummy qubit, it can be commuted
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through all CZs the dummy partakes in and placed in front of the measurement. Here, it
results in an effective bit flip on the measurement outcome. Since again the measurement
outcomes at the dummy qubits are inconsequential, the operator can safely be ignored.
This means that 𝑋 𝑐𝑤 s can safely commute through all the CZs with other dummy qubits,
allowing them to cancel out as before and get again to a sequence where there is one 𝑋 𝑐𝑤
before all the CZs and one after. The sequence then is the same as when the dummy qubit
would not be adjacent to other dummy qubits, and the same conclusion derived in the
above paragraph holds.

Combining all the above, we conclude that Protocol 3.1 is equivalent to the VBQC
protocol [36] using the channel Λ𝜙|𝜓 ⟩,𝜎 ,𝑈 to send pure state from the client to the server.
This holds for any function 𝜙|𝜓 ⟩ that satisfies

𝜙|+𝜃 ⟩ = −𝜃 −𝜑, (3.72)
𝜙|𝑑⟩ = −𝜑, (3.73)

for any 𝑑 ∈ {0,1}, for any 𝜃 ∈ [0,2𝜋), and where 𝜑 depends on the choice of unitary 𝑈
in Protocol 3.1 (it is the parameter appearing in equation (3.66)). There exists an infinite
number of functions satisfying this condition (note that it is not required that the function
is continuous; in fact it does notmatter in the least how the function behaves away from |𝑑⟩
and |+𝜃 ⟩ as these are the only states that are ever sent through the channel), and therefore
the theorem is proven. □

Lemma 3.6 Equivalence of remote state preparation and quantum teleportation. The aver-
age fidelity of the effective remote-state-preparation channel (equation (3.61)) corresponding
to the two-qubit state 𝜎 ,

𝐹RSP(𝜎) ≡ ∫𝜓
𝑑𝜓 ⟨𝜓 ||Λ𝜙|𝜓 ⟩,𝜎 (|𝜓 ⟩)||𝜓⟩ , (3.74)

is independent of the function 𝜙|𝜓 ⟩. Furthermore, it is equal to the average teleportation
fidelity corresponding to the same state 𝜎 (equation (3.24)). That is,

𝐹RSP(𝜎) = 𝐹tel(𝜎) (3.75)

Proof: First we rewrite the average teleportation fidelity defined in equation (3.24) as

𝐹tel(𝜎) =∑
𝑖,𝑗

∫𝜓
𝑑𝜓(⟨𝜓 |⊗⟨Φ00| )(𝑋 𝑖𝑍 𝑗 ⊗𝑋 𝑖𝑍 𝑗 ⊗1)(𝜎 ⊗||𝜓⟩⟨𝜓 ||)(𝑋 𝑖𝑍 𝑗 ⊗𝑋 𝑖𝑍 𝑗 ⊗1)( |𝜓⟩⊗|Φ00⟩).

(3.76)
Then we use the property

⟨Φ00| (1⊗ |𝜓⟩) =
1
√2 ⟨𝜓 | (3.77)

to find

𝐹tel(𝜎) =
1
2∑𝑖,𝑗 ∫𝜓

𝑑𝜓(⟨𝜓 | ⊗ ⟨𝜓 |)(𝑋 𝑖𝑍 𝑗 ⊗𝑋 𝑖𝑍 𝑗)𝜎(𝑋 𝑖𝑍 𝑗 ⊗𝑋 𝑖𝑍 𝑗)( |𝜓⟩⊗ |𝜓⟩). (3.78)
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Since the Haar measure is invariant under unitaries, the 𝑋 𝑖𝑍 𝑗 can be absorbed into the
state |𝜓 ⟩, giving

𝐹tel(𝜎) = 2∫𝜓
𝑑𝜓(⟨𝜓 | ⊗ ⟨𝜓 |)𝜎( |𝜓⟩⊗ |𝜓⟩). (3.79)

Similarly we can rewrite 𝐹RSP(𝜎) as

𝐹RSP(𝜎) =∫𝜓
𝑑𝜓(⟨𝜓 | ⊗ ⟨𝜓 |)𝜎( |𝜓⟩⊗ |𝜓⟩)

+∫𝜓
𝑑𝜓(⟨𝜓 | ⊗ ⟨𝜓 |)(𝒜𝜙|𝜓 ⟩,|𝜓 ⟩ ⊗𝒜𝜙|𝜓 ⟩,|𝜓 ⟩)𝜎(𝒜𝜙|𝜓 ⟩,|𝜓 ⟩ ⊗𝒜𝜙|𝜓 ⟩,|𝜓 ⟩)( |𝜓⟩⊗ |𝜓⟩).

(3.80)
The second term can be rewritten as

∫𝜓
𝑑𝜓(𝑒𝑖𝜙|𝜓 ⟩ (Υ(|𝜓 ⟩))† ⊗𝑒𝑖𝜙|𝜓 ⟩ (Υ(|𝜓 ⟩))† )𝜎(𝑒−𝑖𝜙|𝜓 ⟩Υ(|𝜓⟩)⊗ 𝑒−𝑖𝜙|𝜓 ⟩Υ(|𝜓⟩))

= ∫𝜓
𝑑𝜓((Υ(|𝜓 ⟩))† ⊗(Υ(|𝜓⟩))† )𝜎(Υ(|𝜓 ⟩)⊗Υ(|𝜓 ⟩))

= ∫𝜓
𝑑𝜓(⟨𝜓 | ⊗𝜓)𝜎( |𝜓⟩⊗ |𝜓⟩).

(3.81)

The last step here follows from the fact that an integral over all antipodal points on the
Bloch sphere is itself just an integral over all points on the Bloch sphere. We thus find

𝐹RSP(𝜎) = 2∫𝜓
𝑑𝜓(⟨𝜓 | ⊗ ⟨𝜓 |)𝜎( |𝜓⟩⊗ |𝜓⟩). (3.82)

□

Theorem 3.4 Requirements on entanglement generation for VBQC through remote state
preparation. Assume a quantum link generates the two-qubit state 𝜎 between a client and
a server with average rate 𝑅. Furthermore, assume that qubits at the server are stored in
a depolarizing memory with coherence time 𝑇 . Lastly, assume that all local operations are
noiseless and instantaneous. Then, a unitary 𝑈 exists such that Protocol 3.1 can be executed
to realize the VBQC protocol [36] for a two-qubit deterministic quantum computation in a
way that is composably secure with exponentially small 𝜖 if

𝐹tel(𝜎) >
1
2(1+

1
√2𝑒

1
2𝑅𝑇 ). (3.83)

Proof: By Theorem 3.3, there exists a function 𝜙|𝜓 ⟩ such that Protocol 3.1 is equivalent to
the VBQC protocol as presented in [36] where qubits are transmitted using the channel
Λ𝜙|𝜓 ⟩,𝜎 ,𝑈 . Therefore, we can simply repeat the proof of Theorem 3.1 but with the channel
Λ𝜎,𝑈 replaced by Λ𝜙|𝜓 ⟩,𝜎 ,𝑈 This results then exactly in Eq. (3.83), but with 𝐹tel(𝜎) replaced
by the average fidelity over Λ𝜙|𝜓 ⟩,𝜎 , i.e., 𝐹RSP(𝜎). Eq. (3.83) then follows directly from
Lemma 3.6.

We note that in order to repeat the proof ofTheorem 3.1 two properties of the effective
remote-state-preparation channel need to hold. Specifically, they need to hold in order to
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reproduce Lemma 3.4. These are properties that hold for any linear CPTP map. Λ𝜙|𝜓 ⟩,𝜎 ,𝑈
however is not linear, but the properties can still be shown to hold. First, the average
fidelity of the channel is invariant under unitary transformations. That is,

∫𝜓
𝑑𝜓 ⟨𝜓 ||Λ𝜙|𝜓 ⟩,𝜎 ,𝑈 (|𝜓 ⟩)||𝜓⟩ = 𝐹RSP(𝜎) (3.84)

for any unitary 𝑈 . This follows most evidently from Eq. (3.82), where the effect of in-
cluding a unitary 𝑈 would be just to replace |𝜓 ⟩→ 𝑈 |𝜓⟩, which leaves the Haar measure
invariant.

Second, it needs to be shown that 𝐹RSP(𝜎) can be evaluated by evaluating the fidelity
of ΛRSP,𝜎 only at six states on the Bloch sphere forming a regular octahedron. To this end,
we use the fact that six states forming a regular octahedron are the union of three mutually
unbiased bases and hence form a complex projective 2-design [103]. Therefore an integral
over the Bloch sphere of which the integrand is a second-order polynomial in ||𝜓 ⟩⟨𝜓 || can
be replaced by an average over those six states. We note that this cannot be applied to
Eq. (3.80) directly, as the dependence of 𝒜𝜙|𝜓 ⟩,|𝜓 ⟩ on |𝜓 ⟩ means that the integrand is not
necessarily a second-order polynomial. However, it can be applied directly to Eq. (3.82)
to express 𝐹RSP(𝜎) as an average over the six states. Below, we show that the resulting
expression is the same as taking the average over the six states directly in Eq. (3.80).

An octahedron is made up out of three pairs of antipodal points, so we denote the set
of six states {|𝜓𝑖⟩ ,Υ(|𝜓𝑖⟩)} for 𝑖 = 0,1,2. Then, we can write (3.82) as

𝐹RSP(𝜎) =
1
3 (∑𝑖

(⟨𝜓𝑖 | ⊗ ⟨𝜓𝑖 | )𝜎( |𝜓𝑖⟩⊗ |𝜓𝑖⟩)+∑
𝑖
((Υ(|𝜓𝑖⟩))† ⊗(Υ(|𝜓𝑖⟩))†)𝜎((Υ(|𝜓𝑖⟩)⊗ (Υ(|𝜓𝑖⟩))) .

(3.85)
It now remains to show that this is the same expression as what one would get from
directly averaging the channel fidelity over these six states. This direct average can be
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written as

1
6 (∑𝑖

⟨𝜓𝑖 |Λ𝜙|𝜓 ⟩,𝜎 (|𝜓𝑖⟩) |𝜓𝑖⟩ +∑𝑖
(Υ(|𝜓𝑖⟩))†Λ𝜙|𝜓 ⟩,𝜎 (Υ(|𝜓𝑖⟩))Υ(|𝜓𝑖⟩))

=16 (∑𝑖
(⟨𝜓𝑖 | ⊗ ⟨𝜓𝑖 | )𝜎( |𝜓𝑖⟩⊗ |𝜓𝑖⟩)+∑

𝑖
((Υ(|𝜓𝑖⟩))† ⊗(Υ(|𝜓𝑖⟩))†)𝜎((Υ(|𝜓𝑖⟩)⊗ (Υ(|𝜓𝑖⟩)))

+16(∑𝑖
(⟨𝜓𝑖 | ⊗ ⟨𝜓𝑖 | )(𝒜𝜙|𝜓𝑖 ⟩,|𝜓𝑖⟩ ⊗𝒜𝜙|𝜓𝑖 ⟩,|𝜓𝑖⟩)𝜎(𝒜𝜙|𝜓𝑖 ⟩,|𝜓𝑖⟩ ⊗𝒜𝜙|𝜓𝑖 ⟩,|𝜓𝑖⟩)( |𝜓𝑖⟩⊗ |𝜓𝑖⟩)

+∑
𝑖
((Υ(|𝜓𝑖⟩))† ⊗ (Υ(|𝜓𝑖⟩))†)(𝒜𝜙|𝜓𝑖 ⟩,|𝜓𝑖⟩ ⊗𝒜𝜙|𝜓𝑖 ⟩,|𝜓𝑖⟩)𝜎(𝒜𝜙|𝜓𝑖 ⟩,|𝜓𝑖⟩ ⊗𝒜𝜙|𝜓𝑖 ⟩,|𝜓𝑖⟩)((Υ(|𝜓𝑖⟩)⊗ (Υ(|𝜓𝑖⟩)))

=16 (∑𝑖
(⟨𝜓𝑖 | ⊗ ⟨𝜓𝑖 | )𝜎( |𝜓𝑖⟩⊗ |𝜓𝑖⟩)+∑

𝑖
((Υ(|𝜓𝑖⟩))† ⊗(Υ(|𝜓𝑖⟩))†)𝜎((Υ(|𝜓𝑖⟩)⊗ (Υ(|𝜓𝑖⟩)))

+ 1
6(∑𝑖

(𝑒−𝑖𝜙|𝜓𝑖 ⟩(Υ(|𝜓𝑖⟩))† ⊗𝑒−𝑖𝜙|𝜓𝑖 ⟩(Υ(|𝜓𝑖⟩))†)𝜎(𝑒𝑖𝜙|𝜓𝑖 ⟩Υ(|𝜓𝑖⟩)⊗ 𝑒𝑖𝜙|𝜓𝑖 ⟩Υ(|𝜓𝑖⟩))

+∑
𝑖
(𝑒𝑖𝜙|𝜓𝑖 ⟩ ⟨𝜓𝑖 | ⊗ 𝑒𝑖𝜙|𝜓𝑖 ⟩ ⟨𝜓𝑖 | )𝜎(𝑒−𝑖𝜙|𝜓𝑖 ⟩ |𝜓𝑖⟩⊗ 𝑒−𝑖𝜙|𝜓𝑖 ⟩ |𝜓𝑖⟩))

=13 (∑𝑖
(⟨𝜓𝑖 | ⊗ ⟨𝜓𝑖 | )𝜎( |𝜓𝑖⟩⊗ |𝜓𝑖⟩)+∑

𝑖
((Υ(|𝜓𝑖⟩))† ⊗(Υ(|𝜓𝑖⟩))†)𝜎((Υ(|𝜓𝑖⟩)⊗ (Υ(|𝜓𝑖⟩))) .

(3.86)
Therefore, we conclude that taking the average of the fidelity over a regular octahedron
of Λ𝜙|𝜓 ⟩,𝜎 is equivalent to taking the average over the entire Bloch sphere using the Haar
measure. We note that the above argument also holds for Λ𝜙|𝜓 ⟩,𝜎 ,𝑈 for any unitary 𝑈 . □

3.8 Double-click model
In this section, we derive an analytical model for the entangled states created on elemen-
tary links when using the double-click protocol, also known as the Barrett-Kok protocol
[104]. This model is used as one of the building blocks of our NetSquid simulations, as
mentioned in Section 3.13. To the best of our knowledge, the analytical model is a novel
result.

3.8.1 Model assumptions
The double-click protocol is a protocol for heralded entanglement generation on an ele-
mentary link. First, at each of the two nodes sharing the elementary link (designated A
and B), a photon is emitted. This photon can be in one of two different photonic modes.
For concreteness, we will here assume these two modes are horizontal and vertical polar-
ization (|𝐻 ⟩ and |𝑉 ⟩, respectively), as is the case for the trapped-ion systems we consider
in this work. However, depending on the hardware platform that is used, they could just
as well be some other modes, e.g., different temporal modes (“early” and “late”), as is the
case for the color-center systems we consider. Our model does not incorporate any effects
specific to the type of modes that are used, and therefore the assumption that the modes
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are polarization modes is made without loss of generality. The photon is emitted such that
the mode that it is in is maximally entangled with the state of the emitter, i.e. such that
the emitter - photon state after emission is (up to normalization) |0𝐻⟩ + |1𝑉 ⟩. Then, the
photons emitted at both nodes are sent to a midpoint station.

At the midpoint station, the photons from the two different nodes are interfered on
a non-polarizing beam splitter. The two output modes are then passed through a polar-
izing beam splitter, of which each output mode is impinged on a single-photon detector.
There are thus four single-photon detectors, two corresponding to horizontal polarization,
and two corresponding to vertical polarization. This setup is illustrated in Figure 3.13. If
a single photon is detected at one of the “horizontal” detectors and one at the “vertical”
detectors, assuming photons in the same polarization emitted at different nodes are in-
distinguishable, the photons are projected on the state |𝐻𝑉 ⟩ ± |𝑉𝐻⟩. This results in the
emitters being in the maximally entangled state |Ψ±⟩ = |01⟩ ± |10⟩. The + state is obtained
if the two detectors clicking are located behind the same polarizing beam splitter, while
the − state is obtained if they are located behind different polarizing beam splitters. Note:
if a different type of modes is used, this setup may look slightly different. For example,
in case temporal modes are used, there is no need for polarizing beam splitters and using
only two single-photon detectors is sufficient as the different modes can be distinguished
based on the time at which they are detected.

Figure 3.13: Setup of midpoint station in double-click entanglement generation using polarization-encoded pho-
tons. Two photonic modes (a and b) are interfered on a non-polarizing 50-50 beam splitter (BS). The output
modes (c and d) are then each led into a separate polarizing beam splitter (PBS). Each of the two output modes
of each of the two polarizing beam splitters is caught at one of four detectors (D1, D2, D3 and D4).

In our simulations, we use an analytical model to describe the success probability and
post-measurement state of the double-click scheme in the presence of several imperfec-
tions. The imperfections included in our model are

• Photon loss. Due to nonunit collection efficiency of emitters, attenuation losses in
optical fiber and inefficiency of single-photon detectors, there is often only a small
probability that an emitted photon is not lost before it partakes in the midpoint mea-
surement. This is captured by the parameters 𝑝𝐴 and 𝑝𝐵 , where 𝑝𝐴 (𝑝𝐵) denotes the
detection probability given that a photon is emitted at node 𝐴 (𝐵). These account
both for attenuation losses and for the photon detection probability excluding atten-
uation losses.

• Imperfect indistinguishability. We assume photons emitted by the different nodes
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with the same polarization are not perfectly indistinguishable. This is captured using
the Hong-Ou-Mandel visibility 𝑉 [75, 76]. We assume the visibility is the same
between two horizontally polarized photons as between two vertically polarized
photons.

• Non-photon-number-resolving detectors. In our model, we distinguish between
the case of photon-number-resolving detectors (case NR) and non-photon-number-
resolving detectors (case NNR). If the used detectors are NR, when there are two
or more photons at the same detector during a single midpoint measurement, all
photons are registered individually. However, if detectors are NNR, they cannot
distinguish between one or more photons. This model does not account for the case
when photons can sometimes, but not always, be distinguished. Such behavior oc-
curs in reality when e.g. two photons can only be resolved if the time between their
detections is large enough.

• Detector dark counts. Sometimes, single-photon detectors report the presence of a
photon when there is none. We model this using a fixed dark-count probability, 𝑝dc.
During a midpoint measurement, each single-photon detector gives a single dark
count with probability 𝑝dc, and gives none with probability 1 − 𝑝dc. Note that, in
reality, for NR detectors, there is also a nonzero probability for multiple dark counts
to occur during a single midpoint measurement in the same detector. Therefore, for
NR detectors, treating dark counts this way will only lead to an approximation. The
approximation can be expected to be accurate if the probability of multiple dark
counts is negligible. For NNR detectors, this way of treating dark counts does not
lead to an approximation but is perfectly accurate; multiple dark counts cannot be
distinguished from one dark count, and therefore the probability of two or more
dark counts and the probability of one dark count can be safely absorbed into one
number, which is 𝑝dc.

• Imperfect emission. It is possible that, directly after emission, the emitter and pho-
ton are not in the maximally entangled state |𝜙⟩ = 1

√2 (|0𝐻⟩+ |1𝑉 ⟩). To capture this,

the state is modelled as a Werner state of the form 𝜌emit = 𝑞 ||𝜙⟩⟨𝜙|| + (1 − 𝑞)14 . For
each node, the parameter 𝑞 is chosen such that 𝐹em 𝐴 (𝐹em 𝐵) is the emission fidelity
𝑞 + (1−𝑞)/4 = 1

4 (1+3𝑞) at node A (B).

3.8.2 POVMs
To derive an analytical model, we notice that the midpoint station effectively implements
a single-click midpoint measurement on each of the two different photonic modes (hori-
zontal and vertical) separately. To make use of this, we write the photonic states as Fock
states on the two different modes, such that |𝐻 ⟩ = |1⟩𝐻 |0⟩𝑉 and |𝑉 ⟩ = |0⟩𝐻 |1⟩𝑉 . Distin-
guishing also between photons arriving from side A and side B, this allows us to write
the pre-measurement state as a state in the Hilbert space that is obtained from taking the
tensor product between the Hilbert spaces of the emitters and the horizontally and verti-
cally polarized photons. That is, ℋpre-measurement = ℋ𝐴 ⊗ℋ𝐵 ⊗ℋ𝐻𝐴 ⊗ℋ𝐻𝐵 ⊗ℋ𝑉𝐴 ⊗ℋ𝑉𝐵 .
Since we are not interested in the post-measurement state of the photons, we can model
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the measurement as a POVM ∗. The POVM elements of the double-click midpoint station
can then be derived from the single-click measurement operators as

𝑀double click, 𝑖𝑗𝑘𝑙 ,= 1𝐴 ⊗1𝐵 ⊗ [𝑀single click, 𝑖𝑗]𝐻𝐴𝐻𝐵 ⊗ [𝑀single click, 𝑘𝑙]𝑉𝐴𝑉𝐵 . (3.87)

Here, 𝑀single click, 𝑖𝑗 is the POVM element corresponding to 𝑖 clicks in the first detector
and 𝑗 clicks in the second detector of a single-click setup. Thus, keeping in line with the
naming of Figure 3.13, 𝑀double click, 𝑖𝑗𝑘𝑙 is the POVM element corresponding to 𝑖 clicks in
detector 1, 𝑗 clicks in detector 3, 𝑘 clicks in detector 2, and 𝑙 clicks in detector 4, such that
detectors 1 and 3, and 2 and 4 correspond to the same polarization, and detector 1 and
2, and 3 and 4, correspond to the same polarizing beam splitter. The single-click POVM
elements can be obtained from Section D.5.2 of the supplemental material of [79]. In doing
so, we identify the square absolute value of the overlap of the two photon wave functions,
|𝜇|2 in [79], with the Hong-Ou-Mandel visibility 𝑉 . The reason for this is that these two
are the same when both photons are in a pure state [76] (we note that the photons in our
model are only mixed in the polarization degree of freedom, the wave packets themselves
are pure and therefore we can safely make the substitution). We modify the single-click
POVM elements from [79] to account for dark counts as follows (dropping the “single
click” subscript):

𝑀′10 = 𝑀10(1−𝑝dc)2 +𝑀00𝑝dc(1−𝑝dc),
𝑀′20 = 𝑀20(1−𝑝dc) +𝑀10𝑝dc(1−𝑝dc),

(3.88)

and similarly for 𝑀′01 and 𝑀′02. Note that we have absorbed the POVM element 𝑀′30 =
𝑀20𝑝dc(1−𝑝dc) into the POVM element 𝑀′20, since for neither NR and NNR detectors will
the occurrence of two and the occurrence of three detections be discriminated; for NNR
detectors, the different detection events cannot be resolved, while for NR detectors, both
the presence of two and of three detections will lead to heralded failure. Other POVM
elements (𝑀′00, 𝑀′11, 𝑀′21, ...) are not needed for our analysis, since having no detection
in one of the polarizations, or having two detections at different detectors for one of the
modes, is always heralded as a failure.

The double-click protocol heralds two different measurement outcomes as success,
namely outcome “detectors behind same polarizing beam splitter” and outcome “detectors
behind different polarizing beam splitters”. These two outcomes are henceforth abbrevi-
ated “same PBS” and “different PBS”. To determine the probability of each occurring and
the corresponding post-measurement states, we need to write down the POVM elements
corresponding to these two outcomes. Here, we note that in the case NR, the presence of
multiple detections in a single detector is always heralded as a failure, while in the case
NNR, multiple detections cannot be distinguished from a single detection. This gives the

∗Note that we are interested in the post-measurement state of the emitters. However, as long as the state of
the photons is traced out immediately after the measurement, a POVM is sufficient to accurately determine the
post-measurement state.
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POVM elements (only writing the part acting on ℋ𝐻𝐴 ⊗ℋ𝐻𝐵 ⊗ℋ𝑉𝐴 ⊗ℋ𝑉𝐵 )

𝑀same PBS, NR = 𝑀′01 ⊗𝑀′01 +𝑀′10 ⊗𝑀′10,
𝑀different PBS, NR = 𝑀′01 ⊗𝑀′10 +𝑀′10 ⊗𝑀′01,
𝑀same PBS, NNR = ∑

𝑛,𝑚=1,2
(𝑀′0𝑛 ⊗𝑀′0𝑚 +𝑀′𝑛0 ⊗𝑀′𝑚0),

𝑀different PBS, NNR = ∑
𝑛,𝑚=1,2

(𝑀′0𝑛 ⊗𝑀′𝑚0 +𝑀′0𝑛 ⊗𝑀′𝑚0).

(3.89)

3.8.3 Results without coincidence window
To derive formulas for the success probability and post-measurement state, we explicitly
calculate the probabilities and post-measurement states of the above POVM elements on
the six-qubit space using the symbolic-mathematics Python package SymPy [105]. The
corresponding code can be found in the repository holding our simulation code [106].
The results are obtained by first initializing Werner states for each node and applying
amplitude-damping channels with loss parameter 1−𝑝𝐴 on the ℋ𝐻𝐴 and ℋ𝑉𝐴 subspaces
and 1 − 𝑝𝐵 on the ℋ𝐻𝐵 and ℋ𝑉𝐵 subspaces. Then the probability and post-measurement
state for both the “same PBS” and “different PBS” measurement outcomes are calculated
from this pre-measurement state in both the cases NR and NNR. The result can be written
as

𝑝double click =𝑝𝑇 +𝑝𝐹1 +𝑝𝐹2 +𝑝𝐹3 +𝑝𝐹4,

𝜌double click =𝑞em(𝑝𝑇 ||Ψ±⟩⟨Ψ±|| + 𝑝𝐹1
|01⟩⟨01| + |10⟩⟨10|

2 +𝑝𝐹2
|00⟩⟨00| + |11⟩⟨11|

2 )

+((1−𝑞em)(𝑝𝑇 +𝑝𝐹1 +𝑝𝐹2) +𝑝𝐹3 +𝑝𝐹4)
1
4 ,

(3.90)

where 𝑝double click is the success probability and 𝜌double click is the unnormalized post-
measurement state. The different constants are defined as

𝑞em =19(4𝐹em 𝐴 −1)(4𝐹em 𝐵 −1),

𝑝𝑇 ={
1
2𝑝𝐴𝑝𝐵𝑉 (1−𝑝dc)

4 if NR,
1
2𝑝𝐴𝑝𝐵𝑉 (1−𝑝dc)

2 if NNR,

𝑝𝐹1 ={
1
2𝑝𝐴𝑝𝐵(1−𝑉 )(1−𝑝dc)

4 if NR,
1
2𝑝𝐴𝑝𝐵(1−𝑉 )(1−𝑝dc)

2 if NNR,

𝑝𝐹2 ={
0 if NR,
1
2𝑝𝐴𝑝𝐵(1+𝑉 )𝑝dc(1−𝑝dc)

2 if NNR,

𝑝𝐹3 ={
2[𝑝𝐴(1−𝑝𝐵) + (1−𝑝𝐴)𝑝𝐵]𝑝dc(1−𝑝dc)3 if NR,
2[𝑝𝐴(1−𝑝𝐵) + (1−𝑝𝐴)𝑝𝐵]𝑝dc(1−𝑝dc)2 if NNR,

𝑝𝐹4 =4(1−𝑝𝐴)(1−𝑝𝐵)𝑝2dc(1−𝑝dc)2.

(3.91)
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Furthermore, the Bell states are defined by

|Ψ±⟩ = 1
√2(|01⟩± |10⟩). (3.92)

The different terms in the equations can be interpreted as corresponding to different
possible detection cases, with 𝑝𝑖 being the probability of case 𝑖 occurring, and the density
matrix that it multiplies with the state that is created in that case. The different cases are
as follows.

• case T. This is a “true” heralded success. That is, two photons were detected at the
midpoint station (probability 𝑝𝐴𝑝𝐵) in different polarizations (probability 1

2 ), and
they behaved as indistinguishable photons (i.e. they interfered) (probability 𝑉 ). Fi-
nally, there cannot have been dark counts in any of the detectors, except for the
detectors at which the photons were detected in the case of non-number-resolving
detectors (as this doesn’t change the outcome). The resulting density matrix is one
corresponding to the Bell state |Ψ±⟩ (+ for both detections at the same polarizing
beam splitter, - for both detections at different polarizing beam splitters).

• case F1. This is the first “false” heralded success (i.e. a false positive; a “success” de-
tection pattern is observed without there being a maximally entangled state). Again,
two photons arrived at the midpoint station and were detected in different polar-
izations (probability 1

2𝑝𝐴𝑝𝐵). However, they did not behave as indistinguishable
photons (i.e. they did not interfere) (probability (1 −𝑉 )). Since the photons are in
different polarizations, the post-measurement state will be classically anticorrelated
1
2 (|01⟩⟨01| + |10⟩⟨10|).

• case F2. This is the second “false” heralded success. Two photons arrived at the
midpoint station (probability 𝑝𝐴𝑝𝐵) and are detected at the exact same detector. Ad-
ditionally, a dark count occurs, causing a click pattern that is heralded as a success.
For this, both photons need to be detected in the same polarization (probability 1

2 )
and end up at the same detector. If they behave as indistinguishable photons (prob-
ability 𝑉 ), they will bunch together due to Hong-Ou-Mandel interference and will
be guaranteed to go to the same detector. If they do not behave as indistinguishable
photons (probability 1 − 𝑉 ), there is a 1

2 probability that they happen to go to the

same detector. Combining, this gives a factor 𝑉 + 1
2 (1 − 𝑉 ) =

1
2 (1 + 𝑉 ). Since the

photons are detected with the same polarization, the post-measurement state will
be classically correlated 1

2 (|00⟩⟨00|+ |11⟩⟨11|). Note that this case cannot occur when
detectors are NR, as detecting both photons at the same detector is then heralded as
a failure.

• case F3. This is the third “false” heralded success. Only one photon arrives at the
midpoint station (probability 𝑝𝐴(1 − 𝑝𝐵) + (1 − 𝑝𝐴)𝑝𝐵), and a dark count makes the
detector click pattern look like a success. For this, either of the two detectors cor-
responding to the polarization the photon is not detected in must undergo a dark
count, while the remaining detectors do not undergo dark counts, which occurs with
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probability 2𝑝dc(1 − 𝑝dc)𝑛 , where 𝑛 = 3 in case NR and 𝑛 = 2 in case NNR (because
then it doesn’t matter whether there is a dark count in the detector that detects the
photon). There is no information about correlation between the photons, therefore
the post-measurement state is maximally mixed.

• case F4. This is the fourth and final “false” heralded success. No photons arrive
at the midpoint station (probability (1 − 𝑝𝐴)(1 − 𝑝𝐵)), and the detector click pattern
is created solely by dark counts. Since there are four distinct click patterns result-
ing in a heralded success, these dark counts occur with probability 4𝑝2dc(1 − 𝑝dc)2.
There is no information about correlation between the photons, therefore the post-
measurement state is maximally mixed.

Finally, to understand the role of the parameter 𝑞em, note that when either of the initial
emitter - photon states is maximally mixed instead of entangled, there is no correlation
between the emitter and the photon. Therefore, whatever detection event takes place at the
midpoint station, no information about correlation between the emitters is revealed. The
post-measurement state is thus a maximally mixed state in this case. The probability that
both nodes send an entangled photon instead of a maximally mixed state is exactly 𝑞em,
and thus the probability that the post-measurement state is maximally mixed regardless
which of the above cases takes place is 1−𝑞em.

3.8.4 Results with coincidence window
When performing the double-click protocol, click patterns can be accepted as a success or
instead rejected based on the time at which the two detector clicks are registered. A first
reason for this is that each round of the double-click protocol only lasts a finite amount
of time. That is, there is a detection time window corresponding to each round, and only
clicks occurring during the detection time window can result in a heralded success for
that specific round. If there is a nonzero probability that photons are detected outside of
the detection time window, e.g. because their wave functions are stretched very long, this
can be captured in the model by adjusting the detection probabilities appropriately (𝑝𝐴
and 𝑝𝐵).

However, there can also be a second reason. Sometimes, it is desirable to implement a
coincidence time window. In this case, when two clicks occur within the correct detectors
and within the detection time window, a success is only heralded if the time between the
two clicks is smaller than the coincidence time window. While this lowers the success
probability of the double-click protocol, it can increase the Hong-Ou-Mandel visibility 𝑉
(thereby increasing the fidelity of entangled states created using the protocol).

To account for protocols that implement a coincidence timewindow, we here introduce
three new parameters into our model.

• 𝑝ph-ph, the probability that two photon detections that occur within the detection
time window occur less than one coincidence time window away from each other.

• 𝑝ph-dc, the probability that a photon detection and a dark count that occur within
the detection time window occur less than one coincidence time window away from
each other.

• 𝑝dc-dc, the probability that two dark counts that occur within the detection time
window occur less than one coincidence time window away from each other.
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These parameters will be functions of photon-detection-time probability-density functions
and the coincidence time window (we calculate them for a simplified model of the photon
state in Section 3.9) Then, we make the following adjustments to the above results to
account for the coincidence time window:

𝑝𝑇 →𝑝ph-ph𝑝𝑇 ,
𝑝𝐹1 →𝑝ph-ph𝑝𝐹1,
𝑝𝐹2 →𝑝ph-dc𝑝𝐹2,
𝑝𝐹3 →𝑝ph-dc𝑝𝐹3,
𝑝𝐹4 →𝑝dc-dc𝑝𝐹4.

(3.93)

The reason for this is as follows. 𝑝𝑇 corresponds to an event where two photons are
detected, leading to a heralded success. When using a coincidence time window, the two
photons are only close enough in time to lead to a heralded success with probability 𝑝ph-ph.
The same logic holds for 𝑝𝐹1. Probability 𝑝𝐹3 corresponds to a photon detection and a dark
count leading to a heralded success; that now only happens if the photon detection and
dark count are within one coincidence timewindow, which is exactly 𝑝ph-dc. And probabil-
ity 𝑝𝐹4 corresponds to a heralded success due to two dark counts. These dark counts also
should not be separated by too much time, giving a factor 𝑝dc-dc. Less straightforward to
adjust is 𝑝F2 in the NNR case. It corresponds to an event where two photons are detected
within the same detector, but they are not independently resolved. The probability that
the time stamp assigned to this detection is within a coincidence window from a dark
count occurring in another detector, may not be exactly 𝑝ph-dc. However, we do expect
it to be a reasonable approximation, and therefore we use 𝑝ph-dc to avoid introducing a
fourth new parameter to the model.

3.9 Effect of detection and coincidence time windows
In the double-click protocol, success is declared only if there are clicks in two detectors that
measure different polarization modes. These clicks typically occur at random times, and a
prerequisite for success is that certain conditions on the detection times are met. First, in
any practical experiment, detection time windows have to be of finite duration. If a click
only occurs after the detection time window closes, it is effectively not detected. Thus,
success is only declared if two clicks occur within the detection time window. Second, it
is sometimes beneficial to also condition success on the time difference between the two
clicks. In that case, a success is only declared if the time between the clicks does not exceed
the coincidence time window. This can help boost the Hong-Ou-Mandel visibility of the
photon interference and thereby increase the fidelity of entangled states.

In Section 3.8, we present a model that allows for the calculation of the success proba-
bility of the double-click protocol and the two-qubit state that it creates. The coincidence
probabilities between two photons, two dark counts and a photon and a dark count are
free parameters in this model, just as the visibility and the photon detection probability.
To accurately account for the detection time window and coincidence time window in this
model, these parameters need to be given appropriate values. In this section, we introduce
a simplified model for the photon state that allows us to calculate the required values. We
use this simplified model to simulate double-click entanglement generation with trapped-
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ion devices, as described in Section 3.6.6. To the best of our knowledge, this is a novel
result.

Definition 3.7 Detection time window. If a detection time window of duration 𝑇 > 0 is used
in the double-click protocol, success is only heralded if both detector clicks occur within the
time interval [0,𝑇 ].
Definition 3.8 Coincidence time window. If a coincidence time window of duration 𝜏 > 0 is
used in the double-click protocol, success is only heralded if the time between both detector
clicks does not exceed 𝜏 .
Definition 3.9 Photon state described by (𝑝em(𝑡),𝜓𝑡0(𝑡)). Let 𝑝em(𝑡) be a function such that

∫
∞

0
𝑑𝑡𝑝em(𝑡) = 1 (3.94)

and let 𝜓𝑡0(𝑡) be a function such that

∫
∞

𝑡0
𝑑𝑡|𝜓𝑡0(𝑡)|2 = 1. (3.95)

Then, 𝑝em(𝑡) can be interpreted as a probability density function for the photon emission time,
and 𝜓(𝑡) can be interpreted as the temporal wave function of a photon emitted at 𝑡 = 0. The
tuple (𝑝em(𝑡),𝜓 (𝑡)) then describes a mixed photon state

𝜌 = ∫
∞

0
𝑑𝑡0𝑝em(𝑡0) ||𝜓𝑡0⟩⟨𝜓𝑡0 || (3.96)

where

|𝜓𝑡0⟩ = ∫
∞

𝑡0
𝑑𝑡𝜓𝑡0(𝑡)𝑎

†
𝑡 |0⟩ (3.97)

with 𝑎†𝑡 the photon’s creation operator at time 𝑡 .
The temporal impurity of a state described by (𝑝em(𝑡),𝜓𝑡0(𝑡)) (if 𝑝em(𝑡) is not a delta

function) can reduce the Hong-Ou-Mandel visibility of photons. The reason for this is that
photons that are emitted at very different times have small overlap. If two photons are
detected close together, they were probably not emitted at very different times (depending
on their distributions). Using a coincidence time window is then effectively applying a
temporal purification to the photons, allowing for an increase in visibility.

Definition 3.10 Double-exponential photon state (𝑎,𝑏). The double-exponential photon state
described by (𝑎,𝑏), where both 𝑎 and 𝑏 are constants with dimension time−1, is the photon
state described by (𝑝em(𝑡),𝜓𝑡0(𝑡)) where

𝑝em(𝑡) = 𝑎𝑒−𝑎𝑡Θ(𝑡) (3.98)

and
𝜓𝑡0(𝑡) = √2𝑏𝑒−𝑏(𝑡−𝑡0)Θ(𝑡 − 𝑡0). (3.99)

Here, Θ(𝑡) is the Heaviside step function. That is, both the emission-time probability density
function and the pure photon wavefunctions are one-sided exponentials.
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In this section, we model all photons emitted by processing nodes as having a double-
exponential state. The pure wave functions of photons emitted by spontaneous decay of
an excited state to a ground state in a two-level system are described well as one-sided
exponentials [107]. An example of a system where photons are emitted this way is NV
centers [49]. Similarly, pure wave functions of photons emitted using cavity-enhanced
Raman transitions (using a constant Rabi pulse), as is the case for the trapped-ion sys-
tems we study in this chapter, also look approximately exponential [108]. We note that
such trapped-ion systems are exactly the use case in this chapter for the simplified model
presented here. For solid-state sources such as color centers, temporal impurity of pho-
tons is not a limiting factor [107]. However, for cavity-enhanced Raman transitions, off-
resonant scattering causes the photon to only be emitted at a random time after a trajec-
tory through the ion-state manifold [87, 108]. We model the resulting temporal impurity
using the function 𝑝em(𝑡). We note that we do not expect this function to be exponential
for cavity-enhanced Raman transitions. For instance, the function should include a 𝛿(0)
delta-function contribution to account for the probability that not a single off-resonant
scattering takes place. However, in the toy model presented here, we will assume 𝑝em(𝑡)
is a one-sided exponential so that we have a model with a small number of parameters
in which exact closed-form expressions can be obtained for the relevant quantities. As
shown in Section 3.6.6, this model can be fitted well to experimental data for interference
between photons emitted by ion-cavity systems.

Lemma 3.7 Detection-time probability density function. Consider the case where a photon
with double-exponential state (𝑎,𝑏) is emitted directly on a photon detector. Assume this
photon detector is perfect except that it has a possibly nonunit detection efficiency 𝜂 (with
a flat response). The probability density function for the photon being detected at time 𝑡 is
given by

𝑝(𝑡) = 2𝑎𝑏𝜂
𝑎 −2𝑏 (𝑒

−2𝑏𝑡 −𝑒−𝑎𝑡)Θ(𝑡). (3.100)

This probability density function may be subnormalized, as it is also possible that no photon
is detected.

Proof: A perfect detector implements a POVM with operators 𝐸𝑡 = 𝑎†𝑡 |0⟩⟨0|𝑎𝑡 . Instead, a
detector with efficiency factor 𝜂 implements a POVMwith operators 𝐸′𝑡 = 𝜂𝐸𝑡 and 𝐹 = 1−𝜂,
where 𝐹 corresponds to no photon detection taking place. The probability density that the
photon is detected at time 𝑡 is then the probability density corresponding to the POVM
operator 𝐸′𝑡 , given by

𝑝(𝑡) = Tr(𝐸′𝑡 𝜌). (3.101)

For a photon state described by (𝑝em(𝑡),𝜓𝑡0(𝑡)), the density matrix is

𝜌 = ∫
∞

0
𝑑𝑡0∫

∞

𝑡0
𝑑𝑡1∫

∞

𝑡0
𝑑𝑡2𝑝em(𝑡0)𝜓𝑡0(𝑡1)𝜓 ∗𝑡0(𝑡1)𝑎

†
𝑡1 |0⟩⟨0|𝑎𝑡2 (3.102)
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This can be evaluated using the cyclic property of the trace to give

𝑝(𝑡) = 𝜂∫
∞

0
𝑑𝑡0∫

∞

𝑡0
𝑑𝑡1∫

∞

𝑡0
𝑑𝑡2𝑝em(𝑡0)𝜓𝑡0(𝑡1)𝜓 ∗𝑡0(𝑡1) ⟨0|𝑎𝑡𝑎

†
𝑡1 |0⟩⟨0|𝑎𝑡2𝑎

†
𝑡 |0⟩

= 𝜂∫
∞

0
𝑑𝑡0∫

∞

𝑡0
𝑑𝑡1∫

∞

𝑡0
𝑑𝑡2𝑝em(𝑡0)𝜓𝑡0(𝑡1)𝜓 ∗𝑡0(𝑡1)𝛿(𝑡 − 𝑡1)𝛿(𝑡 − 𝑡2)

= 𝜂∫
∞

0
𝑑𝑡0𝑝em(𝑡0)|𝜓𝑡0(𝑡)|2.

(3.103)

For a double-exponential photon state (𝑎,𝑏), this becomes

𝑝(𝑡) = 2𝑎𝑏𝜂𝑒−2𝑏𝑡 ∫
∞

0
𝑑𝑡0𝑒−(𝑎−2𝑏)𝑡0Θ(𝑡 − 𝑡0)

= 2𝑎𝑏𝜂𝑒−2𝑏𝑡Θ(𝑡)∫
𝑡

0
𝑑𝑡0𝑒−(𝑎−2𝑏)𝑡0

= 2𝑎𝑏𝜂𝑒−2𝑏Θ(𝑡) 1
𝑎 −2𝑏 (1− 𝑒

−(𝑎−2𝑏)𝑡 )

= 2𝑎𝑏𝜂
𝑎 −2𝑏 (𝑒

−2𝑏𝑡 −𝑒−𝑎𝑡)Θ(𝑡).

(3.104)

□

Definition 3.11 Coincidence probability. When using a detection time window 𝑇 and co-
incidence time window of 𝜏 in the double-click protocol, the coincidence probability is the
probability that given that there are two clicks within the detection time window, the clicks
are also within one coincidence time window.

Our goal now is to find the coincidence probability for two double-exponential pho-
tons. This requires us to calculate the probability that two photons arrive within a time
𝜏 of one another, conditioned on each of the photons being successfully detected within
the time interval [0,𝑇 ]. To this end, we calculate the probability density function for the
detection time of a double-exponential photon conditioned on the photon being success-
fully detected. This requires us to calculate the detection probability of the photon, i.e., the
probability that it is successfully detected within the detection time window. The detec-
tion probability is also an important result in itself, as it is required by the model presented
in Section 3.8 (it takes the role of 𝑝𝐴 and 𝑝𝐵 in this model).

Theorem 3.5 Detection probability. If a detection time window of duration 𝑇 is used, then
the probability that a photon with double-exponential state (𝑎,𝑏) is detected within the time
window is given by

𝑝det(𝑇 ) = 𝜂[1− 𝑎
𝑎 −2𝑏 𝑒

−2𝑏𝑇 + 2𝑏
𝑎 −2𝑏 𝑒

−𝑎𝑇 ]. (3.105)
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Proof: 𝑝det(𝑇 ) is given by the probability that the photon is detected in the time interval
[0,𝑇 ]. This probability can be calculated from the probability density function

𝑝det(𝑇 ) = ∫
𝑇

0
𝑑𝑡𝑝(𝑡)

= 2𝑎𝑏𝜂
𝑎 −2𝑏 ∫

𝑇

0
𝑑𝑡 (𝑒−2𝑏𝑡 −𝑒−𝑎𝑡)

= 2𝑎𝑏𝜂
𝑎 −2𝑏 [

1
2𝑏 (1− 𝑒

−2𝑏𝑇 )− 1
𝑎 (1− 𝑒

−𝑎𝑇 )]

= 𝜂
𝑎 −2𝑏 [𝑎 (1− 𝑒

−2𝑏𝑇 )−2𝑏 (1− 𝑒−𝑎𝑇 )]

= 𝜂[1− 𝑎
𝑎 −2𝑏 𝑒

−2𝑏𝑇 + 2𝑏
𝑎 −2𝑏 𝑒

−𝑎𝑇 ].

(3.106)

□

Corollary 3.1 When no detection time window is used, i.e., when the duration of the de-
tection time window 𝑇 →∞, then the photon detection probability is equal to the detector’s
detection efficiency 𝜂.

Proof: Whenwe take 𝑇 →∞ in equation (3.105), we find 𝑝det(𝑇 )→𝜂. □This corresponds
to the situation when the entire photon is within the detection time window and the only
reason why the photon would not be detected is detector inefficiency. One can think of
𝑝det(𝑇 )/𝜂 as the “additional efficiency factor” due to not capturing the entire photon in the
detection time window.

Lemma 3.8 Conditional detection-time probability density function. Consider the case where
a photon with double-exponential state (𝑎,𝑏) is emitted directly on a photon detector. Assume
this photon detector is perfect except that it has a possibly nonunit detection efficiency 𝜂 (with
a flat response). The probability density function for the photon being detected at time 𝑡 , if
the photon is in the double-exponential state (𝑎,𝑏), is given by

𝑝𝑇 (𝑡) = Θ(𝑡)Θ(𝑇 − 𝑡) 𝑝(𝑡)
𝑝det(𝑇 )

. (3.107)

Unlike 𝑝(𝑡), this probability density function is always normalized.

Proof: Let 𝑋 be the continuous random variable corresponding to the detection time of
the photon. Let it take the value −1 if no photon is detected, such that the corresponding
probability density function 𝑓𝑋 (𝑥) is normalized and 𝑋 is well-defined as a random vari-
able. It follows from Corollary 3.1 that the probability that this happens is 1−𝜂. Therefore,
the probability density function can then be writen as

𝑓𝑋 (𝑥) = (1−𝜂)𝛿(𝑥 +1)+Θ(𝑥)𝑝(𝑥). (3.108)

Additionally, we define a discrete random variable 𝑌𝑇 which takes the value 1 if the pho-
ton is detected within the detection time window 𝑇 and 0 if not. By Theorem 3.5, the
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probability distribution of 𝑌𝑇 is given by

𝑓𝑌𝑇 (𝑦) = {𝑝det(𝑇 ) if 𝑦 = 1
1−𝑝det(𝑇 ) if 𝑦 = 0. (3.109)

Note that 𝑋 and 𝑌𝑇 are not independent random variables. Now, the conditional proba-
bility density function that we are interested in is

𝑝𝑇 (𝑥) ≡ 𝑓𝑋|𝑌𝑇 (𝑥,1) =
𝑓𝑋,𝑌𝑇 (𝑥,1)
𝑓𝑌𝑇 (1)

= 𝑓𝑋,𝑌𝑇 (𝑥,1)
𝑝det(𝑇 )

. (3.110)

Here, 𝑓𝑋,𝑌𝑇 (𝑥,𝑦) is the mixed joint density of the continuous random variable 𝑋 and the
discrete random variable 𝑌𝑇 . When 𝑋 takes a value between 0 and 𝑇 , then 𝑌𝑇 takes
the value 1 with unit probability. Otherwise, 𝑌𝑇 takes the value 0 with unit probability.
Therefore,

𝑓𝑋,𝑌𝑇 (𝑥,1) = Θ(𝑥)Θ(𝑇 −𝑥)𝑓𝑋 (𝑥) = Θ(𝑥)Θ(𝑇 −𝑥)𝑝(𝑥). (3.111)

Substituting this into equation (3.110) allows us then finally to write

𝑝𝑇 (𝑡) = Θ(𝑡)Θ(𝑇 − 𝑡) 𝑝(𝑡)
𝑝det(𝑇 )

. (3.112)

□

Theorem 3.6 Coincidence probability of two photons. The coincidence probability for two
photon detections, if both photons are in the double-exponential state (𝑎,𝑏), a detection time
window of duration 𝑇 is used and the coincidence time window of duration 𝜏 is used, is given
by

𝑝ph-ph(𝑇 , 𝜏)(
𝑝det(𝑇 )

𝜂 )
2
= 𝑎2
𝑎2 −4𝑏2 (1− 𝑒

−2𝑏𝜏 ) − 4𝑏2
𝑎2 −4𝑏2 (1− 𝑒

−𝑎𝜏 )

+ 𝑎2
(𝑎 −2𝑏)2 (1− 𝑒

2𝑏𝜏 )𝑒−4𝑏𝑇 + 4𝑏2
(𝑎 −2𝑏)2 (1− 𝑒

𝑎𝜏 )𝑒−2𝑎𝑇

− 4𝑎𝑏
(𝑎 −2𝑏)2 (1−

𝑎𝑒2𝑏𝜏 +2𝑏𝑒𝑎𝜏
𝑎 +2𝑏 )𝑒−(𝑎+2𝑏)𝑇 .

(3.113)

Proof: By definition, the coincidence probability is given by

𝑝ph-ph(𝑇 , 𝜏) =∬|𝑡1−𝑡2 |≤𝜏
𝑑𝑡1𝑑𝑡2𝑝𝑇 (𝑡1)𝑝𝑇 (𝑡2). (3.114)

By Lemma 3.8, this implies

𝑝ph-ph(𝑇 ,𝜏)(
𝑝det(𝑇 )

𝜂 )
2
= 1
𝜂2 ∬|𝑡1−𝑡2 |≤𝜏

𝑑𝑡1𝑑𝑡2𝑝(𝑡1)𝑝(𝑡2). (3.115)

The region of integration is |𝑡1 − 𝑡2| ≤ 𝜏 , i.e., −𝜏 ≤ 𝑡1 − 𝑡2 ≤ 𝜏 . The integrand is symmetric
under the interchange of 𝑡1 and 𝑡2. Therefore, the region 0 ≤ 𝑡1−𝑡2 ≤ 𝜏 will give exactly the
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same contribution as −𝜏 ≤ 𝑡1 − 𝑡2 ≤ 0. This has the following physical interpretation: the
probability of photon 2 arriving a time Δ𝑡 after photon 1 is the same as the probability of
photon 1 arriving Δ𝑡 after photon 2. This can be used to simplify the integral somewhat,
giving

𝑝ph-ph(𝑇 , 𝜏)(
𝑝det(𝑇 )

𝜂 )
2
= 2
𝜂2 ∬0≤𝑡1−𝑡2≤𝜏

𝑑𝑡1𝑑𝑡2𝑝(𝑡1)𝑝(𝑡2). (3.116)

It follows from Lemma 3.7 that each 𝑝(𝑡) carries an overall factor Θ(𝑡)Θ(𝑇 ). This can be
absorbed into the integration limits to give

𝑝ph-ph(𝑇 ,𝜏)(
𝑝det(𝑇 )

𝜂 )
2
= 2
𝜂2 ∫

𝑇

0
𝑑𝑡1∫

min(𝑡1+𝜏 ,𝑇 )

𝑡1
𝑑𝑡2𝑝(𝑡1)𝑝(𝑡2)

= 2( 1
𝜂2 ∫

𝑇−𝜏

0
𝑑𝑡1∫

𝑡1+𝜏

𝑡1
𝑑𝑡2𝑝(𝑡1)𝑝(𝑡2) +

1
𝜂2 ∫

𝑇

𝑇−𝜏
𝑑𝑡1∫

𝑇

𝑡1
𝑑𝑡2𝑝(𝑡1)𝑝(𝑡2)).

(3.117)
We calculate these two integrals one by one, using Lemma 3.7. The first is

(𝑎 −2𝑏2𝑎𝑏 )
2
( 1
𝜂2 ∫

𝑇−𝜏

0
𝑑𝑡1∫

𝑡1+𝜏

𝑡1
𝑑𝑡2𝑝(𝑡1)𝑝(𝑡2))

=∫
𝑇−𝜏

0
𝑑𝑡1(𝑒−2𝑏𝑡1 −𝑒−𝑎𝑡1)∫

𝑡1+𝜏

𝑡1
(𝑒−2𝑏𝑡2 −𝑒−𝑎𝑡2)

=∫
𝑇−𝜏

0
𝑑𝑡1(𝑒−2𝑏𝑡1 −𝑒−𝑎𝑡1)(

1
2𝑏 𝑒

−2𝑏𝑡1(1− 𝑒−2𝑏𝜏 ) − 1
𝑎 𝑒

−𝑎𝑡1(1− 𝑒−𝑎𝜏 ))

=1− 𝑒
−2𝑏𝜏

2𝑏 ∫
𝑇−𝜏

0
𝑑𝑡1(𝑒−4𝑏𝑡1 −𝑒−(𝑎+2𝑏)𝑡2) −

1− 𝑒−𝑎𝜏
𝑎 ∫

𝑇−𝜏

0
𝑑𝑡1(𝑒−(𝑎+2𝑏)𝑡1 −𝑒−2𝑎𝑡1)

=1− 𝑒
−2𝑏𝜏

2𝑏 (1− 𝑒
4𝑏𝜏 𝑒−4𝑏𝑇
4𝑏 − 1− 𝑒(𝑎+2𝑏)𝜏 𝑒−(𝑎+2𝑏)𝑇

𝑎 +2𝑏 )

− 1− 𝑒−𝑎𝜏
𝑎 (1− 𝑒

(𝑎+2𝑏)𝜏 𝑒−(𝑎+2𝑏)𝑇
𝑎 +2𝑏 − 1− 𝑒2𝑎𝜏 𝑒−2𝑎𝑇

2𝑎 )

=𝑎 −2𝑏𝑎 +2𝑏 (
1− 𝑒−2𝑏𝜏

8𝑏2 − 1−𝑒−𝑎𝜏
2𝑎2 )+ −𝑒2𝑎𝜏 +𝑒𝑎𝜏

2𝑎2 𝑒−2𝑎𝑇

+ 𝑒2𝑏𝜏 −𝑒4𝑏𝜏
8𝑏2 𝑒−4𝑏𝑇 + 1

𝑎 +2𝑏 (
𝑒(𝑎+2𝑏)𝜏 −𝑒𝑎𝜏

2𝑏 + 𝑒(𝑎+2𝑏)𝜏 −𝑒2𝑏𝜏
𝑎 )𝑒−(𝑎+2𝑏)𝑇 .

(3.118)
In the last step, termswith the same exponents of 𝑇 were collected. Resolving the prefactor
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gives

1
𝜂2 ∫

𝑇−𝜏

0
𝑑𝑡1∫

𝑡1+𝜏

𝑡1
𝑑𝑡2𝑝(𝑡1)𝑝(𝑡2)

= 𝑎2
2(𝑎2 −4𝑏2) (1− 𝑒

−2𝑏𝜏 ) − 2𝑏2
2(𝑎2 −4𝑏2) (1− 𝑒

−𝑎𝜏 ) + 2𝑏2
(𝑎 −2𝑏)2 (−𝑒

2𝑎𝜏 +𝑒𝑎𝜏 )𝑒−2𝑎𝑇

+ 𝑎2
2(𝑎 −2𝑏)2 (𝑒

2𝑏𝜏 −𝑒4𝑏𝜏 )𝑒−4𝑏𝑇

+ 2𝑎𝑏
(𝑎 −2𝑏)2(𝑎 +2𝑏) (𝑎(𝑒

(𝑎+2𝑏)𝜏 −𝑒𝑎𝜏 ) + 2𝑏(𝑒(𝑎+2𝑏)𝜏 −𝑒2𝑏𝜏 ))𝑒−(𝑎+2𝑏)𝑇 .

(3.119)

The second term is

(𝑎 −2𝑏2𝑎𝑏 )
2
( 1
𝜂2 ∫

𝑇

𝑇−𝜏
𝑑𝑡1∫

𝑇

𝑡1
𝑑𝑡2𝑝(𝑡1)𝑝(𝑡2))

=∫
𝑇

𝑇−𝜏
𝑑𝑡1(𝑒−2𝑏𝑡1 −𝑒−𝑎𝑡1)∫

𝑇

𝑡1
(𝑒−2𝑏𝑡2 −𝑒−𝑎𝑡2)

=∫
𝑇

𝑇−𝜏
𝑑𝑡1(𝑒−2𝑏𝑡1 −𝑒−𝑎𝑡1)(

1
2𝑏 (𝑒

−2𝑏𝑡1 −𝑒−2𝑏𝑇 ) − 1
𝑎 (𝑒

−𝑎𝑡1 −𝑒−𝑎𝑇 ))

= 1
2𝑎𝑏 (2𝑏𝑒

−𝑎𝑇 −𝑎𝑒−2𝑏𝑇 )∫
𝑇

𝑇−𝜏
𝑑𝑡1 (𝑒−2𝑏𝑡1 −𝑒−𝑎𝑡1)+

1
2𝑏 ∫

𝑇

𝑇−𝜏
𝑑𝑡1𝑒−4𝑏𝑡1

+ 1
𝑎 ∫

𝑇

𝑇−𝜏
𝑑𝑡1𝑒−2𝑎𝑡1 −

𝑎 +2𝑏
2𝑎𝑏 ∫

𝑇

𝑇−𝜏
𝑑𝑡1𝑒−(𝑎+2𝑏)𝑡1

= 1
2𝑎𝑏 (2𝑏𝑒

−𝑎𝑇 −𝑎𝑒−2𝑏𝑇 )[𝑒
−2𝑏𝑇

2𝑏 (𝑒2𝑏𝜏 −1)− 𝑒−𝑎𝑇
𝑎 (𝑒𝑎𝜏 −1)]+ 𝑒−4𝑏𝑇

8𝑏2 (𝑒4𝑏𝜏 −1)

+ 𝑒−2𝑎𝑇
2𝑎2 (𝑒2𝑎𝜏 −1)− 𝑒−(𝑎+2𝑏)𝑇

2𝑎𝑏 (𝑒(𝑎+2𝑏)𝜏 −1)

= 1
2𝑎2 (𝑒

2𝑎𝜏 −2𝑒𝑎𝜏 +1)𝑒−2𝑎𝑇 + 1
8𝑏2 (𝑒

4𝑏𝜏 −2𝑒2𝑏𝜏 +1)𝑒−4𝑏𝑇

+ 1
2𝑎𝑏 (𝑒

𝑎𝜏 +𝑒2𝑏𝜏 −𝑒(𝑎+2𝑏)𝜏 −1)𝑒−(𝑎+2𝑏)𝑇 .
(3.120)

Again resolving the prefactor, we find

1
𝜂2 ∫

𝑇

𝑇−𝜏
𝑑𝑡1∫

𝑇

𝑡1
𝑑𝑡2𝑝(𝑡1)𝑝(𝑡2)

= 2𝑏2
(𝑎 −2𝑏)2 (𝑒

2𝑎𝜏 −2𝑒𝑎𝜏 +1)𝑒−2𝑎𝑇 + 𝑎2
2(𝑎 −2𝑏)2 (𝑒

4𝑏𝜏 −2𝑒2𝑏𝜏 +1)𝑒−4𝑏𝑇

+ 2𝑎𝑏
(𝑎 −2𝑏)2 (𝑒

𝑎𝜏 +𝑒2𝑏𝜏 −𝑒(𝑎+2𝑏)𝜏 −1)𝑒−(𝑎+2𝑏)𝑇 .

(3.121)

Finally, substituting equations (3.119) and (3.121) into equation (3.117) yields equation
(3.113). □
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Theorem 3.7 Coincidence probability of two dark counts. The coincidence probability for
two detector dark counts if the detection time window is 𝑇 and the coincidence time window
is 𝜏 is given by

𝑝dc-dc(𝑇 ,𝜏) = 1−(𝑇 −𝜏
𝑇 )

2
, (3.122)

assuming that dark counts occur uniformly throughout the detection time window.

Proof: Given that there is a dark countwithin the detection timewindow 𝑇 , the probability
density function for the time at which is occurs is given by

𝑑𝑇 (𝑡) =
1
𝑇 Θ(𝑡)Θ(𝑇 − 𝑡) (3.123)

because we assume the dark counts are uniformly distributed. The coincidence probability
is then given by

𝑝dc-dc(𝑇 , 𝜏) =∬|𝑡1−𝑡2 |≤𝜏
𝑑𝑡1𝑑𝑡2𝑑𝑇 (𝑡1)𝑑𝑇 (𝑡2)

= 2
𝑇 2 ∫

𝑇

0
𝑑𝑡1∫

min(𝑡1+𝜏 ,𝑇 )

𝑡1
𝑑𝑡2

= 2
𝑇 2 (∫

𝑇−𝜏

0
𝑑𝑡1∫

𝑡1+𝜏

𝑡1
𝑑𝑡2 +∫

𝑇

𝑇−𝜏
𝑑𝑡1∫

𝑇

𝑡1
𝑑𝑡2)

= 2
𝑇 2 (∫

𝑇−𝜏

0
𝑑𝑡1𝜏 +∫

𝑇

𝑇−𝜏
𝑑𝑡1(𝑇 − 𝑡1))

= 2
𝑇 2 ((𝑇 −𝜏)𝜏 +𝑇𝜏 − 1

2𝑇
2 + 1

2(𝑇 − 𝜏)2)

= 1
𝑇 2 (2𝑇𝜏 − 𝜏2)

= 1−(𝑇 −𝜏
𝑇 )

2
.

(3.124)

□

Theorem 3.8 Coincidence probability of a photon and a dark count. The coincidence proba-
bility for one photon detection and one dark count, if the photon is in the double-exponential
state (𝑎,𝑏), the detection time window is 𝑇 and the coincidence time window is 𝜏 is given by

𝑝ph-dc(𝑇 , 𝜏)
𝑝det(𝑇 )

𝜂 = 𝑎
2𝑏(𝑎 −2𝑏)𝑇 [1+2𝑏𝜏 − 𝑒−2𝑏𝜏 +𝑒−2𝑏𝑇 (1−2𝑏𝜏 − 𝑒2𝑏𝜏 )]

− 2𝑏
𝑎(𝑎 −2𝑏)𝑇 [1+𝑎𝜏 − 𝑒−𝑎𝜏 +𝑒−𝑎𝑇 (1−𝑎𝜏 − 𝑒𝑎𝜏 )].

(3.125)

assuming that dark counts occur uniformly throughout the detection time window.
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Proof: For the photon, we again have the probability density function 𝑝𝑇 (𝑡) as given by
Lemma 3.8, while for the dark count we have the probability density function 𝑑𝑇 (𝑡) as
given by equation (3.123). The coincidence probability is then given by

𝑝ph-dc(𝑇 ,𝜏) =∬|𝑡1−𝑡2 |≤𝜏
𝑑𝑡1𝑑𝑡2𝑝𝑇 (𝑡1)𝑑𝑇 (𝑡2). (3.126)

When calculating the other coincidence probabilities, we were able to use a symmetry
argument to simplify the integral. However, because 𝑝𝑇 (𝑡) ≠ 𝑑𝑇 (𝑡), we are unable to do
so here. Assuming for the moment that 𝜏 ≤ 1

2𝑇 and the fact that both probability density
functions are proportional to Θ(𝑡)Θ(𝑇 − 𝑡), we can write

𝑝ph-dc(𝑇 ,𝜏) = (∫
𝜏

0
𝑑𝑡1∫

𝑡1+𝜏

0
𝑑𝑡2 +∫

𝑇−𝜏

𝜏
𝑑𝑡1∫

𝑡1+𝜏

𝑡1−𝜏
𝑑𝑡2 +∫

𝑇

𝑇−𝜏
𝑑𝑡1∫

𝑇

𝑡1−𝜏
𝑑𝑡2)𝑝𝑇 (𝑡1)𝑑𝑇 (𝑡2).

(3.127)
This becomes

𝑝ph-dc(𝑇 , 𝜏)
𝑝det(𝑇 )𝑇

𝜂
𝑎 −2𝑏
2𝑎𝑏

=(∫
𝜏

0
𝑑𝑡1∫

𝑡1+𝜏

0
𝑑𝑡2 +∫

𝑇−𝜏

𝜏
𝑑𝑡1∫

𝑡1+𝜏

𝑡1−𝜏
𝑑𝑡2 +∫

𝑇

𝑇−𝜏
𝑑𝑡1∫

𝑇

𝑡1−𝜏
𝑑𝑡2)(𝑒−2𝑏𝑡1 −𝑒−𝑎𝑡1)

=(∫
𝜏

0
𝑑𝑡1(𝑡1 +𝜏)+∫

𝑇−𝜏

𝜏
𝑑𝑡12𝜏 +∫

𝑇

𝑇−𝜏
𝑑𝑡1(𝑇 + 𝜏 − 𝑡1))(𝑒−2𝑏𝑡1 −𝑒−𝑎𝑡1).

(3.128)

We calculate these three terms individually. Before doing this, we note that we can use
integration by parts to calculate

∫
𝑦

𝑥
𝑑𝑡𝑒−𝑧𝑡 𝑡 = −1𝑧 [𝑡𝑒

−𝑧𝑡]𝑡=𝑦𝑡=𝑥 +
1
𝑧 ∫

𝑦

𝑥
𝑒−𝑧𝑡𝑑𝑡 = [𝑒

−𝑧𝑡

𝑧 (𝑡 + 1
𝑧 )]

𝑡=𝑥

𝑡=𝑦
. (3.129)

Then, the first term becomes

∫
𝜏

0
𝑑𝑡1(𝑡1 +𝜏)(𝑒−2𝑏𝑡1 −𝑒−𝑎𝑡1) = [(𝜏 + 1

2𝑏 + 𝑡1)
𝑒−2𝑏𝑡1
2𝑏 ]

𝜏

0
−[(𝜏 + 1

𝑎 + 𝑡1)
𝑒−𝑎𝑡1
𝑎 ]

𝜏

0

= 1
4𝑏2 +

𝜏
2𝑏 − 1

𝑎2 −
𝜏
𝑎 −( 1

2𝑏 +2𝜏) 𝑒
−2𝑏𝜏

2𝑏 +(1𝑎 +2𝜏) 𝑒
−𝑎𝜏

𝑎 .
(3.130)

The second yields

2𝜏 ∫
𝑇−𝜏

𝜏
𝑑𝑡1(𝑒−2𝑏𝑡1 −𝑒−𝑎𝑡1) = 2𝜏 𝑒

−2𝑏𝜏

2𝑏 −2𝜏 𝑒
2𝑏(𝜏−𝑇 )

2𝑏 −2𝜏 𝑒
−𝑎𝜏

𝑎 +2𝜏 𝑒
𝑎(𝜏−𝑇 )

𝑎 . (3.131)
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The final one yields

∫
𝑇

𝑇−𝜏
𝑑𝑡1(𝑇 + 𝜏 − 𝑡1)(𝑒−2𝑏𝑡1 −𝑒−𝑎𝑡1) =[(𝑇 +𝜏 − 1

2𝑏 − 𝑡1)
𝑒−2𝑏𝑡1
2𝑏 ]

𝑇−𝜏

𝑇

−[(𝑇 +𝜏 − 1
𝑎 − 𝑡1)

𝑒−𝑎𝑡
𝑎 ]

𝑇−𝜏

𝑇

=[ 1
2𝑏 −𝜏 + 𝑒2𝑏𝜏 (2𝜏 − 1

2𝑏 )]
𝑒−2𝑏𝑇
2𝑏

−[ 1𝑎 −𝜏 + 𝑒𝑎𝜏 (2𝜏 − 1
𝑎)]

𝑒−𝑎𝑇
𝑎 .

(3.132)

We note that the second term cancels fully against the first and the third. When adding
all together, we find

𝑝ph-dc(𝑇 ,𝜏)
𝑝det(𝑇 )𝑇

𝜂
𝑎 −2𝑏
2𝑎𝑏 = 1

2𝑏 [
1
2𝑏 +𝜏 − 𝑒−2𝑏𝜏

2𝑏 + 𝑒−2𝑏𝑇 ( 1
2𝑏 −𝜏 − 𝑒2𝑏𝜏

2𝑏 )]

−1𝑎 [
1
𝑎 +𝜏 − 𝑒−𝑎𝜏

𝑎 + 𝑒−𝑎𝑇 (1𝑎 −𝜏 − 𝑒𝑎𝜏
𝑎 )]

(3.133)

and thus

𝑝ph-dc(𝑇 , 𝜏)
𝑝det(𝑇 )

𝜂 = 𝑎
2𝑏(𝑎 −2𝑏)𝑇 [1+2𝑏𝜏 − 𝑒−2𝑏𝜏 +𝑒−2𝑏𝑇 (1−2𝑏𝜏 − 𝑒2𝑏𝜏 )]

− 2𝑏
𝑎(𝑎 −2𝑏)𝑇 [1+𝑎𝜏 − 𝑒−𝑎𝜏 +𝑒−𝑎𝑇 (1−𝑎𝜏 − 𝑒𝑎𝜏 )].

(3.134)

This procedure can be repeated when making the assumption 𝜏 ≥ 𝑇
2 . In that case, the exact

same formula is found. Therefore, equation (3.125) is valid for any 0 ≤ 𝜏 ≤ 𝑇 . □

Definition 3.12 Visibility. When using a detection time window 𝑇 and coincidence time
window of 𝜏 in the double-click protocol, the Hong-Ou-Mandel visibility is defined as

𝑉 (𝑇 ,𝜏) = 1− 𝑃(two photons detected at different detectors | same mode)
𝑃(two photons detected at different detectors | different modes) . (3.135)

Here, 𝑃(two photons detected at different detectors | same mode) is the probability that if both
incoming photons are in the same mode, they will be both be detected, and these detection
events occur at different detectors. On the other hand,
𝑃(two photons detected at different detectors | different modes) is the probability that if both
incoming photons are in different modes (e.g., different polarizations), they will both be de-
tected, and these detection events occur at different detectors. Dark counts are not considered
photon detections for the definitions of these probabilities.

Note that when the two photons are in the same mode, they are able to interfere. Then, if
the two photons are pure and have the same temporal profile, they are perfectly indistin-
guishable andwill never be detected at different detectors because of the Hong-Ou-Mandel



3

92 3 Requirements for a processing-node quantum repeater on a real-world fiber grid

effect [75]. On the other hand, if the two photons are in different modes (e.g., different
polarizations), they are not able to interfere. We note that the definition here given is in
line with the definition given for the Hong-Ou-Mandel visibility in the main text.

Theorem 3.9 Visibility. The Hong-Ou-Mandel visibility for a double-click protocol with two
photons that are both in the double-exponential state (𝑎,𝑏) is given by

𝑉 (𝑇 ,𝜏)(𝑝det(𝑇 )𝜂 )
2
𝑝ph-ph(𝑇 , 𝜏) =

𝑎
𝑎 +2𝑏 (1− 𝑒

−2𝑏𝜏 ) + 2𝑎𝑏2
(𝑎 −2𝑏)2(𝑎 −𝑏) (1− 𝑒

2(𝑎−𝑏)𝜏 )𝑒−2𝑎𝑇

+ 𝑎2
(𝑎 −2𝑏)2 (1− 𝑒

2𝑏𝜏 )𝑒−4𝑏𝑇

− 16𝑎𝑏2
(𝑎 −2𝑏)2(𝑎 +2𝑏) (1− 𝑒

𝑎𝜏 )𝑒−(𝑎+2𝑏)𝑇 .
(3.136)

Proof:
First, we evaluate 𝑃(two photons detected at different detectors | different modes). Be-

cause the photons do not interfere, this probability is just the probability that both photons
are detected within the detection time window and within one coincidence time window,
multiplied by a factor of 1

2 as the probability for both photons going to different detectors
is the same as the probability for both photons going to the same detector. The probability
for a single photon falling within the detection time window is the detection probability
(Theorem 3.5), and the probability of both photons being detected within a single coinci-
dence time window is the photon-photon coincidence probability (Theorem 3.6). Thus,

𝑃(two photons detected at different detectors | different modes) = 1
2𝑝det(𝑇 )

2𝑝ph-ph(𝑇 ,𝜏).
(3.137)

The second probability can be evaluated as [87]

𝑃(two photons detected at different detectors | same mode)

= 𝜂2
4 ∫

∞

0
𝑑𝑡1∫

∞

0
𝑑𝑡2∬|𝑡′1−𝑡′2 |≤𝜏

𝑑𝑡′1𝑑𝑡′2𝑝em(𝑡1)𝑝em(𝑡2) ||𝜓𝑡1(𝑡′1)𝜓𝑡2(𝑡′2) −𝜓𝑡1(𝑡′2)𝜓𝑡2(𝑡′1)||
2 .

(3.138)
From combining equations (3.103), (3.107) and (3.114), we see that

𝜂2∫
∞

0
𝑑𝑡1∫

∞

0
𝑑𝑡2∬|𝑡′1−𝑡′2 |≤𝜏

𝑝em(𝑡2)𝑝em(𝑡2)|𝜓𝑡1(𝑡′1)|2|𝜓𝑡2(𝑡′2)|2 = 𝑝det(𝑇 )2𝑝ph-ph(𝑇 , 𝜏).
(3.139)

We use this, togetherwith the fact that for double-exponential photons it holds that𝜓 ∗𝑡0(𝑡) =𝜓𝑡0(𝑡), to find

𝑃(two photons detected at different detectors | same mode) = 1
2𝑝det(𝑇 )

2𝑝ph-ph(𝑇 , 𝜏)

− 𝜂2
2 ∫

∞

0
𝑑𝑡1∫

∞

0
𝑑𝑡2∬|𝑡′1−𝑡′2 |≤𝜏

𝑑𝑡′1𝑑𝑡′2𝑝em(𝑡1)𝑝em(𝑡2)𝜓𝑡1(𝑡′1)𝜓𝑡1(𝑡′2)𝜓𝑡2(𝑡′2)𝜓𝑡2(𝑡′1).
(3.140)
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We can then work out equation (3.135) to find

𝑉 (𝑇 ,𝜏)(𝑝det(𝑇 )𝜂 )
2
𝑝ph-ph(𝑇 , 𝜏)

= ∫
∞

0
𝑑𝑡1∫

∞

0
𝑑𝑡2∫

𝑇

0
𝑑𝑡′1∫

𝑇

0
𝑑𝑡′2Θ(|𝑡′1 − 𝑡′2| − 𝜏)𝑝em(𝑡1)𝑝em(𝑡2)𝜓𝑡1(𝑡′1)𝜓𝑡1(𝑡′2)𝜓𝑡2(𝑡′2)𝜓𝑡2(𝑡′1).

(3.141)
The integrand is symmetric under interchange of 𝑡′1 and 𝑡′2. This allows us to consider only
the region 0 ≤ 𝑡′2 − 𝑡′1 ≤ 𝜏 , giving

𝑉 (𝑇 ,𝜏)(𝑝det(𝑇 )𝜂 )
2
𝑝ph-ph(𝑇 , 𝜏)

= 2∫
∞

0
𝑑𝑡1∫

∞

0
𝑑𝑡2∫

𝑇

0
𝑑𝑡′1∫

min(𝑡′1+𝜏 ,𝑇 )

𝑡′1
𝑑𝑡′2𝑝em(𝑡1)𝑝em(𝑡2)𝜓𝑡1(𝑡′1)𝜓𝑡1(𝑡′2)𝜓𝑡2(𝑡′2)𝜓𝑡2(𝑡′1).

(3.142)
Now, we notice that each 𝜓𝑡0(𝑡) is proportional to Θ(𝑡 − 𝑡0). This can be absorbed into the
limit of integration for 𝑡1 and 𝑡2, yielding

𝑉 (𝑇 ,𝜏)(𝑝det(𝑇 )𝜂 )
2
𝑝ph-ph(𝑇 , 𝜏)

= 2∫
𝑇

0
𝑑𝑡′1∫

𝑡′1

0
𝑑𝑡1∫

𝑡′1

0
𝑑𝑡2∫

min(𝑡′1+𝜏 ,𝑇 )

𝑡′1
𝑑𝑡′2𝑝em(𝑡1)𝑝em(𝑡2)𝜓𝑡1(𝑡′1)𝜓𝑡1(𝑡′2)𝜓𝑡2(𝑡′2)𝜓𝑡2(𝑡′1)

= 8𝑎2𝑏2∫
𝑇

0
𝑑𝑡′1𝑒−2𝑏𝑡

′1 ∫
𝑡′1

0
𝑑𝑡1𝑒−(𝑎−2𝑏)𝑡1 ∫

𝑡′1

0
𝑑𝑡2𝑒−(𝑎−2𝑏)𝑡2 ∫

min(𝑡′1+𝜏 ,𝑇 )

𝑡′1
𝑑𝑡′2𝑒−2𝑏𝑡

′2

= 4𝑎2𝑏
(𝑎 −2𝑏)2 ∫

𝑇

0
𝑑𝑡′1𝑒−2𝑏𝑡

′1 (𝑒−2𝑏𝑡′1 −𝑒−2𝑏min(𝑡′1+𝜏 ,𝑇 ))(1− 𝑒−(𝑎−2𝑏)𝑡′1 )2

= 4𝑎2𝑏
(𝑎 −2𝑏)2 [∫

𝑇

0
𝑒−2𝑏𝑡 −𝑒−2𝑏𝜏 ∫

𝑇−𝜏

0
𝑒−2𝑏𝑡 −𝑒−2𝑏𝑇 ∫

𝑇

𝑇−𝜏
](𝑒−2𝑏𝑡 −2𝑒−𝑎𝑡 +𝑒−2(𝑎−𝑏)𝑡)𝑑𝑡.

(3.143)
In the last step, we split up the integration region into a part where 𝑡′1 +𝜏 is smaller and a
part where 𝑇 is smaller. Furthermore, for brevity, we renamed 𝑡′1 to 𝑡 . We first calculate
the first integral to find

∫
𝑇

0
𝑑𝑡 (𝑒−4𝑏𝑡 −2𝑒−(𝑎+2𝑏)𝑡 +𝑒−2𝑎𝑡) = 1

4𝑏 (1− 𝑒
−4𝑏𝑇 ) − 2

𝑎 +2𝑏 (1− 𝑒
−(𝑎+2𝑏)𝑇 ) + 1

2𝑎 (1− 𝑒
−2𝑎𝑇 )

= 1
4𝑏 − 2

𝑎 +2𝑏 + 1
2𝑎 − 1

2𝑎 𝑒
−2𝑎𝑇 − 1

4𝑏 𝑒
−4𝑏𝑇 + 2

𝑎 +2𝑏 𝑒
−(𝑎+2𝑏)𝑇 .
(3.144)
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The second yields

𝑒−2𝑏𝜏 ∫
𝑇−𝜏

0
𝑑𝑡 (−𝑒−4𝑏𝑡 +2𝑒−(𝑎+2𝑏)𝑡 −𝑒−2𝑎𝑡)

= 𝑒−2𝑏𝜏 (− 1
4𝑏 (1− 𝑒

−4𝑏(𝑇−𝜏)) + 2
𝑎 +2𝑏 (1− 𝑒

−(𝑎+2𝑏)(𝑇−𝜏)) − 1
2𝑎 (1− 𝑒

−2𝑎(𝑇−𝜏)))

= (− 1
4𝑏 + 2

𝑎 +2𝑏 − 1
2𝑎)𝑒

−2𝑏𝜏 + 𝑒2(𝑎−𝑏)𝜏
2𝑎 𝑒−2𝑎𝑇 + 𝑒2𝑏𝜏

4𝑏 𝑒−4𝑏𝑇 − 2𝑒𝑎𝜏
𝑎 +2𝑏 𝑒

−(𝑎+2𝑏)𝑇 .

(3.145)

The final one yields

𝑒−2𝑏𝑇 ∫
𝑇

𝑇−𝜏
𝑑𝑡 (−𝑒−2𝑏𝑡 +2𝑒−𝑎𝑡 −𝑒−2(𝑎−𝑏)𝑡)

= −𝑒
2𝑏𝜏 −1
2𝑏 𝑒−4𝑏𝑇 + 2(𝑒𝑎𝜏 −1)

𝑎 𝑒−(𝑎+2𝑏)𝑇 − 𝑒2(𝑎−𝑏)𝜏 −1
2(𝑎 −𝑏) 𝑒−2𝑎𝑇 .

(3.146)

Now, it is just a matter of adding these three terms together and taking the prefactor into
account. We collect terms separately for each different exponent with a 𝑇 . The part of the
expression that is independent of 𝑇 yields

(1− 𝑒−2𝑏𝜏 ) 4𝑎2𝑏
(𝑎 −2𝑏)2 (

1
4𝑏 − 2

𝑎 +2𝑏 + 1
2𝑎)

= 𝑎
(𝑎 −2𝑏)2 (𝑎 −

8𝑎𝑏
𝑎 +2𝑏 +2𝑏)

= (1− 𝑒−2𝑏𝜏 ) 𝑎
(𝑎 −2𝑏)2(𝑎 +2𝑏) (𝑎(𝑎 +2𝑏)−8𝑎𝑏 +2𝑏(𝑎 +2𝑏))

= (1− 𝑒−2𝑏𝜏 ) 𝑎
𝑎 +2𝑏 .

(3.147)

For the terms proportional to 𝑒−2𝑎𝑇 we find

4𝑎2𝑏
(𝑎 −2𝑏)2 (1− 𝑒

2(𝑎−𝑏)𝜏 )( 1
2𝑎 − 1

2(𝑎 −𝑏))𝑒
−2𝑎𝑇 = 2𝑎𝑏

(𝑎 −2𝑏)2 (1− 𝑒
2(𝑎−𝑏)𝜏 )( 𝑎

𝑎 −𝑏 −1)𝑒−2𝑎𝑇

= 2𝑎𝑏
(𝑎 −2𝑏)2 (1− 𝑒

2(𝑎−𝑏)𝜏 ) 𝑏
𝑎 −𝑏 𝑒

−2𝑎𝑇

= 2𝑎𝑏2
(𝑎 −2𝑏)2(𝑎 −𝑏) (1− 𝑒

2(𝑎−𝑏)𝜏 ) 𝑏
𝑎 −𝑏 𝑒

−2𝑎𝑇 .
(3.148)

For the terms proportional to 𝑒−4𝑏𝑇 we find

4𝑎2𝑏
(𝑎 −2𝑏)2 (1− 𝑒

2𝑏𝜏 )( 1
4𝑏 − 1

2𝑏 )𝑒
−4𝑏𝑇 = 𝑎2

2(𝑎 −2𝑏)2 (1− 𝑒
2𝑏𝜏 )𝑒−4𝑏𝑇 . (3.149)
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Finally, for the terms proportional to 𝑒−(𝑎+2𝑏)𝑇 we find

4𝑎2𝑏
(𝑎 −2𝑏)2 (1− 𝑒

𝑎𝜏 )( 2
𝑎 +2𝑏 − 2

𝑎)𝑒
−(𝑎+2𝑏)𝑇 = 8𝑎𝑏

(𝑎 −2𝑏)2(𝑎 +2𝑏) (1− 𝑒
𝑎𝜏 ) (𝑎 − (𝑎 +2𝑏))𝑒−(𝑎+2𝑏)𝑇

= −16𝑎𝑏2
(𝑎 −2𝑏)2(𝑎 +2𝑏) (1− 𝑒

𝑎𝜏 )𝑒−(𝑎+2𝑏)𝑇
(3.150)

Adding these four different contributions together then yields equation (3.136). □
Wenote that Lemma 3.8 andTheorems 3.6 and 3.9 are compared to experimental results

obtained with a trapped-ion device in Figure 3.10.

3.10 Single-click model
In this section, we present an analytical model for the entangled states created on elemen-
tary links when using a single-click entanglement generation protocol [67]. This model
is used as one of the building blocks of our NetSquid simulations, as mentioned in Sec-
tion 3.13, and based on the models previously introduced in [47–49]. The novelty of the
model presented here lies in combining features of the three previous models [47–49] and
in additionally considering the possibility that non-number-resolving detectors may be
used (the three cited papers assume the use of number-resolving detectors).

3.10.1 Model assumptions
We model a single-click protocol for entanglement generation on an elementary link be-
tween two nodes, which we designate A and B. The protocol starts with the preparation
of an optically-active matter qubit at each of the nodes in the following state:

|𝜓𝑚⟩ = √𝛼 |↑⟩+ √1−𝛼 |↓⟩ , (3.151)

where the subscript𝑚 stands for matter, |↑⟩ is a bright state, i.e., a state that rapidly decays
via photon emission after being excited, and 𝛼 is the bright-state parameter, i.e. the frac-
tion of the matter qubit’s state that is in |↑⟩. Excitation and subsequent radiative decay of
|↑⟩ entangles the state of the matter qubit with the presence |1⟩ or absence |0⟩ of a photon
(subscript 𝑝):

|𝜓𝑚 ,𝜓𝑝⟩ = √𝛼 |↑⟩ |1⟩ + √1−𝛼 |↓⟩ |0⟩ (3.152)

The photons are then sent to a heralding station where they are interfered. Detection of a
single photon heralds the generation of a matter-matter entangled state.

In our analytical model, we account for the following imperfections when computing
the success probability and entangled state generated with the protocol:

• Double excitation of the matter qubit. Resonant laser light incident on the optically-
active matter qubit triggers its excitation. It is possible that this excitation happens
two times as the laser shines on the matter qubit, leading to the emission of two
photons. This happens with probability 𝑝dexc. We note that the excitation could in
theory also happen multiple times, but, as detailed in Section 3.10.2, the effect this
would have on the state would be the same as if two photons were emitted, so we
can absorb the probability of more than one excitation into one quantity.
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• Photon phase uncertainty. The photons interefering at the midpoint acquire a phase
during transmission over the fiber, and the difference between the phases of the two
interefering photons influences the entangled state that is generated [47]. The de-
phasing probability of the state 𝑝phase can be computed from the standard deviation
of the difference between the acquired phases 𝜎phase [48]:

𝑝phase =
1
2 (1− 𝑒

−𝜎2
phase/2) . (3.153)

Furthermore, we also account for photon loss, imperfect indistinguishability, non-photon-
number-resolving detectors and detector dark counts, as described in 3.8. Finally, we
account for the possibility of asymmetry in the placement of the heralding station, the at-
tenuation of the fibers connecting the nodes to the heralding station and the bright-state
parameters of the nodes.

3.10.2 Results
Here we present the derivation of the entangled matter-matter state generated in our
model of the single-click protocol. We split this derivation into four situations, as done
in [47–49]. Each of them corresponds to one of the different configurations of the states
of the matter qubits that can result in a heralded success.

1. Both matter qubits are in the bright state. In this case, both matter qubits emit a
photon, so this situation is heralded as a success if:

(a) Only one of the emitted photons survives. For NR detectors, there cannot be
dark counts in either of the detectors (as otherwise two photons would be
detected in the detector which also saw the actual emitted photon, and the
event would be heralded as a failure). For NNR detectors, the requirement is
just that there is no dark count in the detector that did not detect the emitted
photon. The probability of this case happening is:

𝑝1𝑎 = {𝛼𝐴𝛼𝐵(1−𝑝dc)
2(𝑝𝐴(1−𝑝𝐵) +𝑝𝐵(1−𝑝𝐴)) if NR,

𝛼𝐴𝛼𝐵(1−𝑝dc)(𝑝𝐴(1−𝑝𝐵) +𝑝𝐵(1−𝑝𝐴)) if NNR.
(3.154)

(b) No emitted photon is detected, and there is a dark count in one of the detectors.
This case is the same irrespective of whether or not the detectors are NR.There
is a factor of two because this can happen in either detector. The probability
of this case happening is:

𝑝1𝑏 = 2𝛼𝐴𝛼𝐵(1−𝑝𝐴)(1−𝑝𝐵)(1−𝑝dc)𝑝dc. (3.155)

(c) Both emitted photons make it to the midpoint and are detected, but they bunch
and go into the same detector. Furthermore, there is no dark count in the other
detector. There is a factor of two because this can happen in either detector.
This is heralded as a failure if the detectors are NR. The probability of this case
happening is:

𝑝1𝑐 = {0 if NR,
𝛼𝐴𝛼𝐵𝑝𝐴𝑝𝐵𝑝same dets(1−𝑝dc) if NNR,

(3.156)
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where 𝑝same dets is the probability that the two photons go to the same detector,
as derived in case F2 of Section 3.8:

𝑝same dets = 1− 1−𝑉
2 . (3.157)

2. Matter qubit A is in the bright state, matter qubit B is not. In this case, only matter
qubit A emits a photon, so this situation is heralded as a success if:

(a) The emitted photon survives. For NR detectors, there cannot be dark counts
in either of the detectors (as otherwise two photons would be detected in the
detector which also saw the actual emitted photon, and the event would be
heralded as a failure). For NNR detectors, the requirement is just that there is
no dark count in the detector that did not detect the emitted photon.

𝑝2𝑎 = {𝛼𝐴(1−𝛼𝐵)(1−𝑝dc)
2𝑝𝐴 if NR,

𝛼𝐴(1−𝛼𝐵)(1−𝑝dc)𝑝𝐴 if NNR.
(3.158)

(b) The emitted photon does not survive, and there is a dark count in one of the
detectors. This case is the same irrespective of whether the detectors are NR.
There is a factor of two because this can happen in either detector.

𝑝2𝑏 = 2𝛼𝐴(1−𝛼𝐵)(1−𝑝𝐴)(1−𝑝dc)𝑝dc. (3.159)

3. Matter qubit B is in the bright state, matter qubit A is not. In this case, only matter
qubit B emits a photon. This identical to case 2, interchanging 𝐴 and 𝐵.

4. Neither of the matter qubits are in the bright state. No photon is emitted. In this
case, we only get a success if there is a dark count in one of the detectors, but not
the other. This case is the same irrespective of whether the detectors are NR. There
is a factor of two because this can happen in either detector.

𝑝4 = 2(1−𝛼𝐴)(1−𝛼𝐵)(1−𝑝dc)𝑝dc. (3.160)

The overall success probability of the protocol 𝑝suc is then given by adding up the prob-
ability that each of the cases above happens, 𝑝suc = 𝑝1+𝑝2+𝑝3+𝑝4, with 𝑝1 = 𝑝1𝑎 +𝑝1𝑏 +𝑝1𝑐 ,
𝑝2 = 𝑝2𝑎 +𝑝2𝑏 and 𝑝3 = 𝑝3𝑎 +𝑝3𝑏 .

The unnormalized density matrix of the generated state 𝜌 can then be obtained by
taking the model introduced in [48] and replacing the probabilities appropriately. The
result is the following:

𝜌 =
⎛
⎜
⎜
⎝

𝑝1 0 0 0
0 𝑝2 ±√𝑉𝑝2𝑝3 0
0 ±√𝑉𝑝2𝑝3 𝑝3 0
0 0 0 𝑝4

⎞
⎟
⎟
⎠
, (3.161)

where the sign depends on which detector clicked.
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Two more dephasing channels are then applied in succession to the state in order to
account for the effect of double photon excitation and photonic phase drift.

The first channel, corresponding to double excitation, is applied to both matter qubits,
with probability 𝑝dexc/2. The light pulse used to excite the bright state to a short-lived
excited state is not instantaneous, so there is a chance that the matter qubit decays back
down to the original state and be re-excited before the pulse is complete. The first emitted
photon will be lost to the environment because it is impossible to distinguish it from the
laser light used to excite the matter qubit [48]. It must then be traced out, resulting in a
loss of coherence between the two matter qubit states. However, detection of the second
emitted photon will falsely herald entanglement, so we apply a dephasing channel with
probability 𝑝dexc/2 to account for the possibility that more than one photon is emitted.

The second one, corresponding to the photonic phase drift, is applied to only one of
them, with probability 𝑝phase. The difference in the phases acquired by the two interfering
photons results in a phase difference between the two components of the resulting Bell
state [48]. Applying a dephasing channel to only one of the matter qubits, with the correct
probability given by 𝑝phase, has the same effect.

3.11 Optimization method
In this section we provide more details regarding our optimization methodology. As men-
tioned in the main text, this methodology is based on genetic algorithms, which come in
several different flavors. Our particular implementation is heavily based on the one intro-
duced in [80], to which we refer the interested reader. The only novelty introduced here
is the use of a different termination criterion, which is explained in detail in the follow-
ing section. We note also that the code for our implementation, together with the tools
required for integration with NetSquid simulations, is publicly accessible at [109].

3.11.1 Termination criteria for genetic algorithms
The matter of choosing termination criteria for genetic algorithms (and, more generally,
evolutionary algorithms) has been the object of some study (see, e.g., [110] for a review).
If the algorithm is terminated too soon, good solutions might remain undiscovered. On
the other hand, running the algorithm for too long in case good solutions have already
been found leads to wasting computational resources. Typically-used termination criteria
can be split into two groups [110]:

1. Direct termination criteria: these can be obtained directly from the optimization,
without any extra data analysis. Examples include setting a maximum number of
generations for the optimization or imposing a threshold value on the value of the
best solution’s cost;

2. Derived termination criteria: these are a posteriori criteria, requiring that some data
analysis be performed on the outcome of the optimization. Examples include setting
a threshold on the standard deviation of the costs of the individuals in the population
or on the gap between the best and worst individuals in a given generation.

The authors of [110] applied an evolutionary algorithm to a particular cost function with
different termination criteria. They found that the only reliable termination criteria fitting
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into the groups above were one in which the algorithm terminated after a fixed, predeter-
mined number of generations, which we name GEN, and one in which the best solution
had not varied by more than a predetermined value after a predetermined number of gen-
erations, which we name VAR. For all the other criteria tested, the algorithm did not termi-
nate even though the optimal solution had already been found. GEN and VAR both have
the drawback of depending on hyperparameters for which a good choice can only be made
with knowledge of the problem at hand. By this we mean that the number of generations
or accepted variation in the best solution per generation that guarantee termination are
problem-dependent.

With this in mind, we opted to employ VAR as the termination criterion for our opti-
mization runs. Wemade this choice as usingVAR results in amore systematic, performance-
dependent process for the decision of terminating the optimization. By this we mean that
even though GEN guarantees termination (by definition) it does so in an arbitrary way
by deciding to stop the optimization without any regard for its evolution. As suggested
in [110] we terminated the algorithm if the best solution’s cost averaged over the past
fifteen generations had not varied by more than a given value. In contrast with the work
of [110], we measured the variation in percentual terms. For each setup, we ran the opti-
mization process ten times, each for two hundred generations. Then, to determine what
the tolerance for the variation should be, we swept across its values, starting at 1% and
with a step of 1%. The chosen tolerance was the one that guaranteed termination for all
ten of the optimization runs, and the best solution (i.e., the ones showed in this work),
was then the best cost found across the ten different runs, up until termination. We note
that the tolerance can be different for different setups. We further note that this offline
implementation of VAR is not good for saving computational resources, as the optimiza-
tion must anyway be run for a large number of generations, with some of them being
discarded. It was however simpler to integrate into our workflow, which weighed heavily
since we were more constrained in working hours than in computing hours.

3.11.2 Cost function
Our goal with this work was to find the minimal requirements for a quantum repeater
enabling Verifiable Blind Quantum Computation between two nodes separated by fiber
of length 226.5 km. This implies solving a multi-objective optimization problem, as we
want to minimize hardware-parameter improvement while simultaneously ensuring that
performance targets are met. There are various ways of approaching such problems, one
of them being scalarization. This consists of adding the cost functions corresponding to
different objectives together, so that effectively only one scalar quantity has to be opti-
mized. Through this process, we arrive at the cost function 𝐶 introduced in the Methods,
which we reproduce in equation (3.162).

𝐶 = 𝑤1(1+ (𝐹𝑚𝑖𝑛 −𝐹)2 )Θ(𝐹𝑚𝑖𝑛 −𝐹)+𝑤2(1+ (𝑅𝑚𝑖𝑛 −𝑅)2 )Θ(𝑅𝑚𝑖𝑛 −𝑅)+𝑤3𝐻𝐶 (𝑥1𝑐 , ..., 𝑥𝑁𝑐 )
(3.162)

We recall that 𝐻𝐶 is the hardware cost, 𝑤𝑖 are the weights of the objectives, Θ is the Heav-
iside function and 𝐹 and 𝑅 are the average teleportation fidelity and entanglement gen-
eration rate achieved by the parameter set, respectively. 𝐹𝑚𝑖𝑛 and 𝑅𝑚𝑖𝑛 are the minimal
performance requirements. Scalarization conveniently transforms multi-objective opti-
mization into their much simpler single-objective counterparts, but it does so by stowing
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away the problem in defining the weights𝑤1, 𝑤2 and𝑤3 assigned to each of the objectives.
Different choices in the weights can lead to different outcomes from the optimization pro-
cedure. In this work, just as in [80], we wanted the performance targets to be hard require-
ments, i.e. a set of hardware parameters that did not fulfill them should not be assigned a
low cost. To ensure this, we picked 𝑤1, 𝑤2 ≫𝑤3, such that 𝑤1(1+(𝐹𝑚𝑖𝑛 −𝐹)2 )Θ(𝐹𝑚𝑖𝑛 −𝐹),
𝑤2(1+(𝑅𝑚𝑖𝑛 −𝑅)2 )Θ(𝑅𝑚𝑖𝑛 −𝑅) ≫ 𝑤3𝐻𝐶 (𝑥1𝑐 , ..., 𝑥𝑁𝑐 ). We set 𝑤1 = 𝑤2 = 1×1020 and 𝑤3 = 1.
No particular heuristic was used to select these numbers. They were picked because they
ensure that the cost assigned to not meeting the performance targets is much higher than
the hardware cost, effectively making the performance targets hard requirements.

As mentioned in the main text, we picked the hardware cost function because it re-
flects the concept of progressive hardness, i.e. that parameters become harder to improve
as they approach their perfect value. Furthermore, it satisfies a composability property re-
garding the probability of no-imperfection. To see this, consider a parameter’s probability
of no-imperfection 𝑝 that can be expressed as the product of two other parameters’ proba-
bilities of no-imperfection, 𝑝 = 𝑝𝑎𝑝𝑏 . 𝑝 could for example be the probability that a photon
emitted in the correct mode is collected into a fiber, while 𝑝𝑎 and 𝑝𝑏 are the probabilities
that the photon is emitted with the right wavelength and collected into the fiber, respec-
tively. Improving 𝑝 by a factor of 𝑘 takes it to 𝑘√𝑝 = 𝑘√𝑝𝑎𝑝𝑏 = 𝑘√𝑝𝑎 𝑘√𝑝𝑏 , which is equivalent
to improving 𝑝𝑎 and 𝑝𝑏 separately by the same factor 𝑘. Therefore, hardware improve-
ment as measured by this function is invariant to the granularity at which parameters are
considered.

The last aspect we would like to highlight regarding the cost function is its squared
difference terms, i.e. 1+(𝐹𝑚𝑖𝑛 −𝐹)2 and 1+(𝑅𝑚𝑖𝑛 −𝑅)2. These were introduced in [111] and
are used to steer the algorithm towards sets of hardware parameters that are more likely
to meet the performance targets. They do this by ensuring that parameter sets which fail
to meet the targets by a large margin are assigned a higher cost, being therefore less likely
to progress into further generations.

3.11.3 Probabilities of no-imperfection
For some parameters, such as the probability that a photon is not lost when coupling to
a fiber, the conversion to probability of no-imperfection is obvious. For others, such as
coherence times, this is not so. Therefore, we show in Table 5.5 the probability of no-
imperfection for all parameters considered in our hardware models. We proceed with the
derivation of the probability of no-imperfection for some of the less obvious cases.

As mentioned in the main text, and explained in detail in Supplementary Note 4c
of [61], the initialization of an color center’s electron spin state induces dephasing of its
carbon spin states through their hyperfine coupling. This is typically modelled as the
carbon spin states dephasing with some probability each time entanglement generation
is attempted [34]. This probability can be related to 𝑁1/𝑒 as 𝑝 = 1/2(1− 𝑒−1/𝑁1/𝑒). The
corresponding probability of no-imperfection is then 𝑝𝑛𝑒 = 1−𝑝 = (1+ 𝑒−1/𝑁1/𝑒 )/2.

𝑇1 represents the timescale over which qubit relaxation occurs, with the probability of
amplitude damping occurring over a period of time 𝑡 being given by 𝑝𝑎𝑑 = 1− 𝑒−𝑡/𝑇1 . The
associated probability of no-imperfection is 𝑒−𝑡/𝑇1 . Improving 𝑇1 by a factor of 𝑘 then cor-
responds to improving the probability of no-imperfection to 𝑘√𝑒−𝑡/𝑇1 . Some algebra reveals
that this is equivalent to multiplying 𝑇1 by a factor of 𝑘, and that this holds irrespective
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Parameter Probability of no-
imperfection

Photon detection probability excluding attenua-
tion losses 𝑝det 𝑝det
Probability of double excitation 𝑝dexc 1−𝑝dexc
Gate depolarizing probability 𝑝dep 1−𝑝dep
Number of entanglement generation attempts be-
fore dephasing 𝑁1/𝑒

(1+ 𝑒−1/𝑁1/𝑒 )/2
𝑇1 𝑒−𝑡/𝑇1
𝑇2 𝑒−𝑡/𝑇2
Ion coherence time 𝑇𝑐 𝑒−𝑡/𝑇 2𝑐

Emission fidelity 𝐹em 1/3(4𝐹em −1)
Swap quality 𝑠𝑞 𝑠𝑞
Visibility 𝑉 𝑉
Dark count probability 𝑝𝑑𝑐 1−𝑝𝑑𝑐

Table 3.6: Probabilities of no-imperfection for parameters we optimized over in this work. Some parameters
were merged for brevity, e.g. the probability of no-imperfection presented for 𝑇2 holds for the abstract model
𝑇2, the carbon spin 𝑇2 and the electron spin 𝑇2. In the probability of no-imperfection for each of the coherence
times, 𝑡 is the time spent in memory.

of the chosen timescale.
𝑇2 represents the timescale over which qubit dephasing occurs, with the probability

of a 𝑍 error occurring over a period of time 𝑡 being given by 𝑝𝑧 = (1 − 𝑒−𝑡/𝑇2)/2. The
associated probability of no-imperfection is 𝑝𝑛𝑒 = 1+𝑒−𝑡/𝑇2

2 . To first order, this can bewritten
as 𝑝𝑛𝑒 = 𝑒−𝑡/2𝑇2 , and some algebra again reveals that with this approximation improving
𝑇2 by a factor of 𝑘 is equivalent to multiplying it by the same factor.

The ion coherence time 𝑇𝑐 also represents a timescale for dephasing, but in this the
case the probability of a 𝑍 error occurring is given by 1− 1

2 (1+ 𝑒
−2𝑡2/𝑇 2). To first order, the

probability of no-imperfection can thus be written as 𝑝𝑛𝑒 = 𝑒−𝑡2/𝑇 2 . In this case, improving
𝑇𝑐 by a factor of 𝑘 is equivalent to multiplying it by √𝑘.

We model noise in photon emission as a depolarizing channel of fidelity 𝐹𝑒𝑚 . The
action of the depolarizing channel on a perfect Bell state |Φ+⟩ can be written as follows:

|Φ+⟩ ⟨Φ+| → (1−𝑝dep) |Φ+⟩ ⟨Φ+| + 𝑝dep
I

4 ,
where 𝑝dep is the associated depolarizing probability and I is the identity matrix. This can
be rewritten as:

|Φ+⟩ ⟨Φ+| → (1−𝑝dep) |Φ+⟩ ⟨Φ+| + 𝑝dep
1
4 (|Φ

+⟩ ⟨Φ+| + |Φ−⟩ ⟨Φ−| + |Ψ+⟩ ⟨Ψ+| + |Ψ−⟩ ⟨Ψ−|) .

Since the Bell states are orthogonal to each other, it follows that 𝑝 = 4
3 (1 − 𝐹em) and that

the corresponding probability of no-imperfection is 1
3 (4𝐹em −1).

The derivation of the probability of no-imperfection for the remaining parameters
should be self-evident and is therefore omitted here.



3

102 3 Requirements for a processing-node quantum repeater on a real-world fiber grid

3.11.4 Optimizing over tunable parameters
As discussed in the Methods, the entanglement generation and distribution protocols em-
ployed in our simulations include parameters that can be freely varied. We name these
tunable parameters. They affect the behavior and performance of the setups we investi-
gated, and as a consequence also the minimal hardware requirements. The tunable param-
eters should thus be chosen such that the best possible performance is extracted from a
given set of hardware parameters, minimizing the cost function. The values of the tun-
able parameters that allow for this are the optimal values. This is however not trivial, as
different sets of hardware parameters perform best with different tunable parameters. To
illustrate this, we again go over the tunable parameters considered in our simulations.

We start with the cut-off time. This is the maximum duration for which a state can
be held in memory before being discarded. For details on the implementation of a cut-off
timer in our simulations, see Section 3.13. If the cut-off time is very short, states will not
be held in memory for long, and therefore the end-to-end fidelity will be high. On the
other hand, states will also be frequently discarded and regenerated, which means that
establishment of end-to-end entanglement will take longer. In contrast, a very long cut-
off is equivalent to no cut-off, in the sense that states are never discarded. This maximizes
the entanglement generation rate at the expense of lower state fidelity.

The second tunable parameter is the bright-state parameter, which is relevant in the
single-click entanglement generation protocol. This is the fraction of the superposition
that is in the optically-active state, and therefore corresponds to the probability that a
photon is emitted. A larger bright-state parameter corresponds to a higher probability
of entanglement generation, but at the expense of a lower fidelity, as it also introduces a
component orthogonal to the Bell basis in the generated entangled state. For more details
on single-click entanglement generation see Section 3.10.

The final tunable parameter is the coincidence time window, which is part of our trapped
ion double-click entanglement generation model. Two detection events arising from the
correct detectors are only heralded as a success if the time elapsed between the events
is smaller than the coincidence time window. It acts as a temporal filter, lowering the
protocol’s success probability but increasing the visibility and hence the fidelity of the
generated entangled states. For more details on our modeling of a coincidence time win-
dow, see Section 3.9.

These three parameters can be used to trade-off rate against fidelity, and their optimal
values are different for different sets of hardware parameters. For example, if the coher-
ence time is short and the detection probability is high, it will likely be beneficial to have
a short cut-off time. The opposite is true if the coherence time is long and the detection
probability is low.

In order to find good values for the tunable parameters, we included them as parame-
ters to be optimized by the genetic-algorithm-based optimization machinery. We imposed
that the values the cut-off time can take are in the interval between 0.1𝑇𝐶 and 𝑇𝐶 , where
𝑇𝐶 is the coherence time (collective dephasing coherence time for trapped ions, 𝑇2 for ab-
stract nodes and carbon 𝑇2 for NV centers). The expected entanglement generation time
grows exponentially as the cut-off time is reduced, so the lower bound was imposed to pre-
vent the simulation taking unreasonably long to run. Furthermore, we anyway expect that
a too low cut-off time would not allow the rate target to be met, so we can be reasonably
sure that no cheap hardware requirements are missed by imposing this constraint. The up-



3.12 Simulation performance

3

103

per bound is imposed as we observed that not imposing it made it hard for the algorithm
to converge, due to the reduced sensitivity of the target metrics to high values of the cut-
off time. As discussed above, employing a very long cut-off time is effectively equivalent
to not employing one at all. Therefore, in that regime the choice of cut-off time becomes
irrelevant, and the set of parameters minimizing the cost function is chosen independently
of it. We have empirically observed that the cut-off time tends to converge to around 65%
of the relevant coherence time, which is fairly distant from both bounds we imposed. A
back-of-the-envelope calculation can also be performed to argue that it is unlikely that
allowing for cut-off times which are larger than the memory’s coherence time would be
useful. We do this by computing the end-to-end fidelity in a single sequential-repeater
setup under the following assumptions:

• The cut-off time is equal to the memory dephasing time;

• There are no other noise sources.

Theworst case scenario in this setup in terms of fidelity occurs when the second entangled
state takes exactly cut-off time seconds to be generated, resulting in both qubits of the
first entangled pair to dephase for a time equal to their dephasing time. The dephasing
probability is in this case given by 𝑝𝑍 = 1−𝑒−2

2 . Assuming that the state that had been
generated was |Φ+⟩, the post-dephasing state is a mixture of |Φ+⟩ and |Φ−⟩:

𝜌 = (1−𝑝𝑍 ) |Φ+⟩ ⟨Φ+| + 𝑝𝑍 |Φ−⟩ ⟨Φ−| . (3.163)

This has a fidelity of 0.57 with the target Bell state |Φ+⟩, corresponding to a teleportation
fidelity of 0.71. This value is much lower than our lowest teleportation fidelity target,
0.8571, even with no noise sources besides dephasing noise on the memory. It is then
unlikely that picking even higher cut-off times would lead to finding better solutions to
our optimization problem.

In the single-repeater setup we investigated, there are four bright-state parameters to
be chosen, corresponding to the four different fiber segments between processing nodes
and heralding stations. We imposed that 𝛼𝑝𝑑𝑒𝑡 had to be equal for all of them, with 𝛼
is the bright-state parameter and 𝑝𝑑𝑒𝑡 the probability that a photon is not lost in the
fiber connecting the node to the midpoint station. This condition guarantees balanced
entanglement-generation success probabilities across all segments, which is a good heuris-
tic for segments connecting to the same heralding station, as it maximizes the fidelity of
the generated states [49]. Imposing it also for segments connecting to different heralding
stations was done in order to reduce the size of the search space.

There are also two coincidence time window parameters to be chosen, corresponding
to the two elementary links. We imposed that they must have the same value in order to
make the search space smaller.

3.12 Simulation performance
Each execution of our quantum-network simulations simulates the delivery of 𝑛 end-to-
end entangled states. When the protocols running on the end nodes learn through classical
communication between nodes that 𝑛 states were successfully distributed, they abort and
the simulation terminates. In Figure 3.14, we show how the runtime of our simulation of
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Figure 3.14: Performance of our simulation of the Delft - Eindhoven setup with abstract model nodes and a
cut-off timer using a machine running 40 Intel Xeon Gold cores at 2.1 GHz and 192 GB of RAM. The runtime
scales linearly with the number of entangled pairs being distributed. Distributing 100 times, which we have
empirically determined is enough to evaluate the performance of a given parameter set with reasonable accuracy,
takes roughly one second. The data point corresponding to 𝑛 pairs was obtained by running the corresponding
simulation 500 times. The error bars represent the standard error of the mean.

the Delft - Eindhoven setup scales with the number 𝑛. As expected, the scaling is linear.
A simulation with 𝑛 = 100, which we have empirically determined is enough to evaluate
the performance of a given parameter set with reasonable accuracy, takes roughly 1 s. To
be more concrete, when running a color-center double-click simulation using the minimal
hardware parameters presented in Section 6.2, we find that after distributing 100 pairs a
teleportation fidelity 𝐹tel of 0.8774 ± 0.0035 and a rate of 0.106 Hz ± 0.003 are obtained.

We note that Figure 3.14 was obtained by running the simulation without a cut-off.
Although the runtime still grows linearly with the number of distributed entagled pairs
with a cut-off, its inclusion does mean that the simulation runtime grows exponentially
as the the cut-off time becomes shorter. This is because the expected number of necessary
entanglement generation attempts also grows exponentially, as seen in Figure 3.15.

As discussed in Section 6.3 and in Section 3.11, the optimization methodology we em-
ploy requires running our simulation for many different sets of parameters. We now es-
timate a lower bound on the time required to perform optimization in one setup. We run
the optimization algorithm for 200 iterations. In each of these, there are 200 different
parameter sets, and the distribution of 100 entanled pairs is simulated for each. The com-
puting nodes in the high-performance-computing cluster we use have 128 cores, which
means that the simulation for 128 of the 200 parameter sets can be executed in parallel.
Assuming that there is no cut-off, or that it is large enough not to significantly impact the
simulation runtime, this means that we can expect 1 generation to be run in roughly 2.5
seconds. The data processing and file input and output required to generate new sets of
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Figure 3.15: Performance of our simulation of the Delft - Eindhoven setup with abstract model nodes and a cut-
off timer using a laptop running a quad-core Intel i7-8665U processor at 1.9 GHz and 8 GB of RAM. The runtime
scales exponentially as the cut-off time is reduced. The data point corresponding to 𝑛 pairs was obtained by
running the corresponding simulation 20 times. The error bars represent the standard error of the mean.

parameters take a comparable amount of time, making 𝑇 = 200 × 5 s, roughly seventeen
minutes, a good estimate for the time required to perform optimization for one setup. We
must however stress that this is a very optimistic lower bound, because as Figure 3.15
makes clear, the use of a cut-off has a huge impact on the runtime of the simulation. We
have observed that optmization of most of the setups we studied required 10 to 20 hours
to terminate.

3.13 Framework for simulating quantum repeaters
In this section, we discuss the framework that we use to evaluate the performance of
quantum repeaters. This framework is presented in this work for the first time.

The code that we have used to simulate all the quantum networks in this chapter is pub-
licly available [106]. The repository contains code that has a much broader applicability
than simulating the networks of up to three nodes presented here. In fact, the simulations
can be used to assess the performance of quantum-repeater chains with any number of
nodes, and any spacing between nodes. The currently supported types of nodes are those
containing NV centers, ion traps or abstract quantum processors, and the currently sup-
ported types of entanglement generation between neighboring nodes are the single-click
and double-click protocols. The simulation code depends on a number of other public
repositories [96, 112–116], all of which were developed in tandem with the code for this
chapter and will be explained in more detail below.
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3.13.1 Services
The primary functional unit of our quantum-network simulations is the “service”, which is
defined by an input, an output, and its intended function. An example of a service that can
be defined on a node is the measurement service. It takes as input a request to measure
a qubit, and the intended function is that the qubit is measured. As output, the service
returns the measurement outcome.

A service is distinct from its implementation, which is a protocol. Protocols make sure
the intended function is fulfilled and generate the appropriate output. Different protocols
can fulfill the same function. For example, in the case of the measurement service, a
protocol that simulates a direct measurement of the required qubit (e.g., a fluorescence
measurement) could be activated. Another possible implementation would be a protocol
that first swaps the quantum state of the required qubit to some different physical qubit
(that perhaps allows for higher-fidelity measurements), and then simulates ameasurement
of that qubit. The distinction between service and its implementation is illustrated in
Figure 3.16, which emphasizes that the same high-level functionality can be implemented
using different physical systems.

Figure 3.16: The black box represents a service, defined by a set of inputs, a set of outputs and some promised
functionality. The protocols interacting with the service need not know how this functionality is implemented.
Therefore, different implementations can be swapped in and out. In the figure, color centers and trapped ions
are depicted to emphasize that the same high-level functionality can be executed by different physical systems.

Treating services and their implementation separately has two distinct advantages for
our simulations. First, it allows us to easily run the same protocols on different types of
simulated hardware. Take as example performing an entanglement swap in the broader
context of a repeater chain. To do so, the repeater protocol will place a request with the
local entanglement-swap service. The repeater protocol does not need to know how the
swap is implemented. On an abstract quantum processor, it can be implemented using a
CNOT gate, while on an ion trap, it can be implemented using a Mølmer–Sørensen gate.
Second, it allows for amodular stack of protocols, where protocols implementing a specific
service can easily be interchanged. In the example of the repeater protocol, requests are
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made of an entanglement-generation service before the swap can be performed. If the
protocol runs on an NV node, entanglement could either be generated using a single-
click or double-click protocol. Switching between these two modes is easily realized by
changing the protocol that implements the entanglement-generation service. Again, the
repeater-node protocol does not need to be adapted.

The main interface of the repeater chain itself is also defined by a service. The service
implemented by the repeater chain is a link-layer service [79, 117], which provides robust
entanglement generation between the end nodes of the chain. These requests should be
put on the end nodes of the chain, which activates a protocol that uses a messaging service
to put requests on the SWAP-ASAP repeater services defined on the repeater nodes of the
network. When the end-node protocols confirm they share entanglement (using a protocol
that tracks entanglement in the network based on the classical communication shared by
nodes), an appropriate output message is returned by the service. This is the cue that we
use in our simulations to collect the density matrix of the created state and the time it took
to create it.

3.13.2 SWAP-ASAP protocol
A SWAP-ASAP repeater chain is one in which repeater nodes perform an entanglement
swap as soon as they hold two entangled qubits that were generated with different neigh-
bors. This is in contrast to e.g. nested repeater schemes [118, 119]. We have implemented
two different SWAP-ASAP repeater protocols. The first is suitable for repeater chains of
any length and node spacing, and for repeater nodes that can generate entanglement with
either one or both neighbors at the same time. The second, on the other hand, has been
tailored more specifically to the one-repeater scenario studied in this chapter. It assumes
that entanglement generation is limited to a single neighbor at a time. First a request is is-
sued to generate entanglement over a single connection. Once that has finished, a request
is issued for the second link, and a swap is executed as soon as entanglement is confirmed.
In case the connections are not of equal length, entanglement generation takes place on
the longer link first. The reason for this is that the longer connection is expected to be the
connection on which entanglement generation takes longer. By finishing the longer link
first, the total time that entanglement needs to be stored in quantummemory is minimized.
The second protocol is the one used to generate the results reported in this chapter.

To generate entanglement over elementary links, the repeater protocols issue requests
with the entanglement service. In the protocol that we use to implement this service,
these requests are queued. The number of requests that are processed simultaneously is
hardware-dependent, and is a free parameter in our simulations. When handling a re-
quest for entanglement the protocol will, before doing anything else, issue a request to
an agreement service. This service is in charge of synchronizing neighboring nodes that
want to generate entanglement together. This is needed as typically both nodes need to
be actively involved in generating entanglement for a state to be created between the
two. In our simulations, we use an implementation of the agreement service where even-
numbered nodes in the chain always initiate entanglement generation. These nodes will
send a classical message to their neighbors when a request for agreement is made, and
then wait for those nodes to send a classical reply indicating readiness, after which entan-
glement generation can start. On the other hand, when a request is made on an odd node,
it will check whether a classical message has been received by the neighboring even node
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in the past. If so, it will reply indicating readiness. Otherwise, the request for agreement
will be rejected. In that case, the entanglement service can try to process the next request
in the queue, and see if agreement can be reached with this node again at some later time.

In case agreement is reached between two nodes, the entanglement protocols of the
nodes will start entanglement generation. In our simulations, this is done using analytical
models that decide after how much time an entangled state should be created between the
nodes, and what this state should look like. This process is known as magic [96] and is
further discussed in Section 3.6.8.

Finally, there is a cut-off protocol active on repeater nodes. It discards qubits that
have been stored in quantum memories for too long. The exact amount of time after
which states are discarded is called the cut-off time, and is a tunable parameter that al-
lows for a trade-off between end-to-end entangling rate and fidelity. Every node runs an
entanglement-tracking protocol that keeps track of both any local entangled qubits, and
what entangled states currently exist in the network at large. Whenever the entangle-
ment service registers a new qubit at the entanglement tracker, the cut-off protocol starts
a timer. When the timer goes off, the cut-off protocol checks whether the entangled qubit
still exists in local memory. If so, the entanglement tracker is told to discard the qubit.
The entanglement tracker will also communicate classically with the entanglement track-
ers of other nodes in the network to inform them that the qubit has been discarded. If
an entanglement tracker learns that a qubit has been discarded that was entangled with
one of its local qubits, it responds by discarding that qubit as well. Links corresponding
to discarded qubits must be regenerated. We note that the cut-off protocol does not run
on the end nodes of the repeater chain. This is to prevent the possibility of one end node
believing end-to-end entanglement has been achieved, while the other end node has in
actuality discarded its qubit (but the classical message has not yet reached the first end
node).

3.13.3 Configuring quantum networks
In our simulations, quantum networks are made up of nodes. Each node represents a
single physical location, and contains an object that we refer to as “driver”. This object
provides a mapping between services and protocols that implement those services. The
driver allows access to services without knowledge of their implementations. Each node
has its own driver. Apart from drivers, nodes hold components that represent quantum
hardware, which allow for the storage and/or manipulation of quantum states. The proto-
cols running on the node can use this quantum hardware to implement specific services.
The nodes in our simulations are ready-made packages with both driver and hardware
included. In order to use them in a quantum network, they just need to be initialized
(thereby specifying their parameters) and connected to other nodes.

The simulations performed for this chapter contain three different types of nodes. The
first is the NV node. It holds an NV quantum processor, which is imported from the
Python package NetSquid-NV [113]. The second is the ion-trap node. This node holds an
ion-trap quantum processor, imported from the Python package NetSquid-TrappedIons
[115]. Finally, there is the abstract node, which contains an abstract quantum processor
imported from the Python package NetSquid-AbstractModel [120]. On initialization, each
of these takes hardware parameters specific to the type of hardware being simulated, and
a number of parameters used to configure the protocols used at the node. For example,
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the cut-off time needs to be specified, and in case of single-click heralded entanglement
generation, the bright-state parameter as well.

Nodes are connected by two types of connections. These connections are themselves
also ready-made packages, and can be found in the Python package NetSquid-PhysLayer
[114]. The first type is the classical connection, which represents optical fiber that can be
used to send classicalmessages. The second type is the heralded connection. It represents a
midpoint station connected to two nodes by optical fiber, where optical Bell-state measure-
ments can be performed on incoming photons. Such a connection can be used to perform
heralded entanglement generation. As discussed above, we do not simulate the process
of heralded entanglement generation itself, but instead use analytical models to magically
create entangled states. However, the heralded connections still perform an important
role as placeholders. Parameters passed to the heralded connection when configuring the
network are later retrieved by the analytical models to decide how long it should take be-
fore a state is created, and what that state should be exactly. One key parameter specified
in the heralded connection is whether single-click or double-click heralded entanglement
distribution is used. In the simulations presented in this chapter neighboring nodes are
always connected by both a classical connection and a heralded connection.

To put together nodes and connections for the creation of quantum networks, and to
configure their parameters, we make use of the Python package NetSquid-NetConf [112].
The tools provided in this package allow for the writing of human-readable configuration
files. These configuration files contain entries for all the different nodes and connections
in the network. Their type is specified (such as “NV node” or “heralded connection”), as
well as their parameters and how they are connected. These configuration files can also
be used to vary some of the parameters, allowing to e.g. perform a parameter scan over
one of them and observe its effect on the network performance.

3.14 Extra optimization results
In this section, we present results of optimizations we performed that were not presented
in the main text, but might still be of interest.

3.14.1 To move or not to move
As mentioned in the main text, the communication qubit of color centers has typically
shorter coherence times than the memory qubits. For the baseline hardware parameters
we investigated, the communication qubit had 𝑇1 = 1 hours [51] and 𝑇2 = 0.5 s [50], whereas
the memory qubits had 𝑇1 = 10 hours and 𝑇2 = 1 s [52]. It might then be worthwhile
for the end node that generates entanglement with the repeater first, i.e., the Eindhoven
node, to move its half of the entangled state to memory while waiting for end-to-end
entanglement to be established, even though that comes at the cost of more noise being
introduced in this operation. A diagram of the circuit used for this operation can be found
in Supplementary Note 5 B of [61]. To investigate this, we applied our methodology to
two single-repeater color-center setups performing double-click entanglement generation.
In one of the setups, which we name ”move scenario”, once the first elementary link is
established, the end node performs the move operation while the waiting for the second
link to be established. In the other setup, which we name ”no-move scenario”, the state
is kept in the electron spin until end-to-end entanglement is established. The hardware
requirements for these two scenarios are shown in Figure 3.17. Themove scenario requires
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Figure 3.17: Directions along which color-center hardware must be improved to achieve entanglement genera-
tion rate 𝑅 = 0.1Hz and teleportation fidelity 𝐹𝑇 = 0.8717, enabling VBQC betweenDelft and Eindhoven, assuming
that a double-click entanglement generation protocol is used. The blue (orange) line corresponds to the direction
of hardware improvement in case the Eindhoven end node (does not) move their half of the entangled state to
the memory qubit. Note the use of a logarithmic scale.
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that the two-qubit gate be significantly improved, which is to be expected as the move
operation requires the application of two of these gates [61]. On the other hand, the
move scenario does not require an improvement on the electron spin’s coherence time, in
contrast with the no-move scenario. This is also not surprising, as in the move scenario
entanglement is not stored in the electron spin for a significant amount of time.

The overall cost associated to the no-move scenario is slightly lower than the cost of
the move scenario, so all the NV center results presented in the main text were obtained
in the no-move scenario. We stress that this finding, although relevant for our particular
case study, is not general. It might be that different baselines, different goals or different
setups would lead to laxer hardware requirements for the move scenario.

3.14.2 Architecture comparison
As discussed in detail in Section 3.6, the fiber network we study contains four nodes in
the shortest path connecting the Dutch cities of Delft and Eindhoven. This means that
there is some freedom in how to place the two heralding stations and repeater node re-
quired for a single-repeater setup, as shown in Figure 3.7. In order to decide how to make
this placement, we determined the minimal hardware requirements for achieving an en-
tanglement generation rate 𝑅 = 0.1 Hz and a teleportation fidelity 𝐹𝑇 = 0.8717, enabling
VBQC between Delft and Eindhoven, for both possibilites. These requirements are shown
in Figure 3.18. The requirements are qualitatively similar for both architectures, with the
photon detection probability excluding attenuation losses and induced noise on memory
qubits (see Section 3.6 for details on our modeling of color-center based repeaters) being
the parameteres requiring themost improvement. The architecture on the left in Figure 3.7
required more modest improvements overall, so this was the architecture considered in
our work.

3.14.3 Connecting Delft and Eindhoven without a repeater
The main contribution of this work was the investigation of the hardware requirements
for enabling 2-qubit VBQC between two cities separated by 226.5 km of optical fiber us-
ing a single repeater node. We investigated two sets of performance targets compatible
with this goal, namely (i) 𝑅 = 0.1 Hz, 𝐹𝑇 = 0.8717 and (ii) 𝑅 = 0.5 Hz, 𝐹𝑇 = 0.8571. While
(ii) is impossible to achieve via direct transmission, i.e., without a repeater, due to fiber
loss, this is not the case for (i) if a single-click entanglement generation protocol is em-
ployed. In Figure 3.19 we show directions along which color-center hardware would have
to be improved to meet (i) without using a repeater. For comparison, we also reproduce
the improvement directions for color-center hardware to meet the same targets with a
repeater employing double-click entanglement generation, because this was the repeater
setup requiring smallest improvements as measured by our cost function.

The direct transmission setup requires less improvement in all parameters. In fact,
the only parameter that requires significant improvement is photon detection probability
excluding attenuation losses, although still less thanwhat is required for the repeater setup.
The reason for this is that the elementary link state generatedwith the single-click protocol
and state-of-the-art parameters already has high enough fidelity, so the only constraint is
that these states are generated fast enough. The required value for the photon detection
probability excluding attenuation losses is 0.39, less than the 0.73 required for the repeater
with double-click entanglement generation case, but still above the limit imposed by the
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Figure 3.18: Directions along which color-center hardware must be improved to achieve entanglement genera-
tion rate 𝑅 = 0.1Hz and teleportation fidelity 𝐹𝑇 = 0.8717, enabling VBQC betweenDelft and Eindhoven, assuming
that a double-click entanglement generation protocol is used. The blue (orange) line corresponds to the direction
of hardware improvement for the architecture shown on the left (right) in Figure 3.7. Note the use of a logarith-
mic scale.

zero-phonon line.
These results indicate that performing VBQC over this particular setup might best be

done without a repeater, but nevertheless do not detract from the main goal of the chapter,
which was to investigate hardware requirements if a repeater were to be used.

3.14.4 Hardware requirements for repeaters with single and double-
click entanglement generation

We investigated also how the hardware requirements for color centers running single and
double-click entanglement generation protocols differ. We considered a rate target of
𝑅 = 0.1 Hz and an average teleportation fidelity target of 𝐹𝑇 = 0.8717. These two sets of
hardware requirements are presented in Figure 3.20.

The hardware requirements are more stringent for a color-center repeater performing
single-click entanglement generation. This is due to the fairly demanding fidelity target,
which does not leave much room for noise in a protocol that inherently generates imper-
fect entangled states. Wemust however stress that this conclusion is specific to this partic-
ular setup and these performance targets, and does not imply that double-click should in
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Figure 3.19: Directions along which hardware must be improved to achieve entanglement generation rate 𝑅 = 0.1
Hz and teleportation fidelity 𝐹𝑇 = 0.8717, enabling VBQC between Delft and Eindhoven. The blue (orange) line
corresponds to the direction of hardware improvement for the case in which a repeater is (is not) used. The
repeater scenario employs a double-click entanglement generation protocol, whereas in the direct transmission
case single-click entanglement generation is employed. Note the use of a logarithmic scale.

general be chosen over single-click. In fact, one need only look at the second set of perfor-
mance targets we considered in the main text to understand this point. These targets are
impossible to achieve using a color-center repeater performing double-click entanglement
generation, but are feasible if single-click is employed.

3.14.5 Hardware improvement costs
In Table 3.7 we present the cost of hardware improvement associated with the minimal
hardware requirements found for every setup we investigated.
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Figure 3.20: Hardware requirements for executing 2-qubit VBQC using a color-center repeater performing
double-click (orange) and single-click entanglement generation (blue). These are the requirements for achieving
an entanglement generation rate of 𝑅 = 0.1 Hz and an average teleportation fidelity of 𝐹𝑇 = 0.8717.
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Platform Target Setup Protocol Cost

Color center
R = 0.1 Hz

Standard Double-click, no-move 26.2

Fiber network

Single-click, no-move 82.6
Single-click, move 165.5

Double-click, no-move 59.8
Double-click, move 100.1

Fiber network
(repeaterless) Single-click 20.5

Alternative fiber net-
work Double-click, no-move 116.1

R = 0.5 Hz Fiber network Single-click, no-move 153.3
Single-click, move 227.3

Trapped ions R = 0.1 Hz Fiber network Double-click 171.1

Abstract R = 0.1 Hz

Fiber network, color
center baseline

Double-click

40.7

Fiber network,
trapped ion baseline 50.1

Fiber network, con-
verted from color
center

37.2

Fiber network, con-
verted from trapped
ion

121.0

Table 3.7: Improvement cost, as defined in Section 3.11, of minimal hardware requirements for all setups we
investigated.

References
[1] J. Amirloo, M. Razavi, and A. H. Majedi, Quantum key distribution over probabilistic

quantum repeaters, Physical Review A 82, 032304 (2010).

[2] F. K. Asadi, N. Lauk, S. Wein, N. Sinclair, C. O’Brien, and C. Simon, Quantum re-
peaters with individual rare-earth ions at telecommunication wavelengths, Quantum
2, 93 (2018).

[3] N. K. Bernardes, L. Praxmeyer, and P. van Loock, Rate analysis for a hybrid quantum
repeater, Physical Review A 83, 012323 (2011).

[4] J. Borregaard, P. Komar, E. Kessler, A. S. Sørensen, and M. D. Lukin, Heralded quan-
tum gates with integrated error detection in optical cavities, Physical Review Letters
114, 110502 (2015).

[5] D. E. Bruschi, T. M. Barlow, M. Razavi, and A. Beige, Repeat-until-success quantum
repeaters, Physical Review A 90, 032306 (2014).

[6] Z.-B. Chen, B. Zhao, Y.-A. Chen, J. Schmiedmayer, and J.-W. Pan, Fault-tolerant
quantum repeater with atomic ensembles and linear optics, Physical Review A 76,
022329 (2007).



3

116 3 Requirements for a processing-node quantum repeater on a real-world fiber grid

[7] O. Collins, S. Jenkins, A. Kuzmich, and T. Kennedy, Multiplexed memory-insensitive
quantum repeaters, Physical review letters 98, 060502 (2007).

[8] S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon, and W. Tittel,
Rate-loss analysis of an efficient quantum repeater architecture, Physical Review A
92, 022357 (2015).

[9] L. Hartmann, B. Kraus, H.-J. Briegel, and W. Dür, Role of memory errors in quantum
repeaters, Physical Review A 75, 032310 (2007).

[10] L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin,
Quantum repeater with encoding, Physical Review A 79, 032325 (2009).

[11] K. Nemoto, M. Trupke, S. J. Devitt, B. Scharfenberger, K. Buczak, J. Schmiedmayer,
and W. J. Munro, Photonic quantum networks formed from nv- centers, Scientific re-
ports 6, 1 (2016).

[12] M. Razavi, M. Piani, andN. Lütkenhaus,Quantum repeaters with imperfect memories:
Cost and scalability, Physical Review A 80, 032301 (2009).

[13] M. Razavi and J. H. Shapiro, Long-distance quantum communication with neutral
atoms, Physical Review A 73, 042303 (2006).

[14] C. Simon, H. De Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin,
Quantum repeaters with photon pair sources and multimode memories, Physical re-
view letters 98, 190503 (2007).

[15] S. E. Vinay and P. Kok, Practical repeaters for ultralong-distance quantum communi-
cation, Physical Review A 95, 052336 (2017).

[16] Y. Wu, J. Liu, and C. Simon, Near-term performance of quantum repeaters with im-
perfect ensemble-based quantum memories, Physical Review A 101, 042301 (2020).

[17] N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. De Riedmatten, and N. Gisin,
Long-distance entanglement distribution with single-photon sources, Physical Review
A 76, 050301 (2007).

[18] N. Sangouard, C. Simon, B. Zhao, Y.-A. Chen, H. De Riedmatten, J.-W. Pan, and
N. Gisin, Robust and efficient quantum repeaters with atomic ensembles and linear
optics, Physical Review A 77, 062301 (2008).

[19] J. Borregaard, H. Pichler, T. Schröder, M. D. Lukin, P. Lodahl, and A. S. Sørensen,
One-way quantum repeater based on near-deterministic photon-emitter interfaces,
Physical Review X 10, 021071 (2020).

[20] D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, Overcoming lossy channel bounds
using a single quantum repeater node, Applied Physics B 122, 1 (2016).

[21] F. Rozpędek, K. Goodenough, J. Ribeiro, N. Kalb, V. C. Vivoli, A. Reiserer, R. Han-
son, S. Wehner, and D. Elkouss, Parameter regimes for a single sequential quantum
repeater, Quantum Science and Technology 3, 034002 (2018).



References

3

117

[22] F. Rozpędek, R. Yehia, K. Goodenough, M. Ruf, P. C. Humphreys, R. Hanson,
S. Wehner, and D. Elkouss, Near-term quantum-repeater experiments with nitrogen-
vacancy centers: Overcoming the limitations of direct transmission, Physical Review
A 99, 052330 (2019).

[23] P. van Loock, W. Alt, C. Becher, O. Benson, H. Boche, C. Deppe, J. Eschner,
S. Höfling, D. Meschede, P. Michler, F. Schmidt, and H. Weinfurter, Extending Quan-
tum Links: Modules for Fiber- and Memory-Based Quantum Repeaters, Advanced
Quantum Technologies 3, 1900141 (2020).

[24] L. Kamin, E. Shchukin, F. Schmidt, and P. van Loock, Exact rate analysis for quantum
repeaters with imperfect memories and entanglement swapping as soon as possible,
(2022), arXiv:2203.10318 .

[25] S. Abruzzo, S. Bratzik, N. K. Bernardes, H. Kampermann, P. Van Loock, and D. Bruß,
Quantum repeaters and quantum key distribution: Analysis of secret-key rates, Phys-
ical Review A 87, 052315 (2013).

[26] J. B. Brask and A. S. Sørensen,Memory imperfections in atomic-ensemble-based quan-
tum repeaters, Physical Review A 78, 012350 (2008).

[27] S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, Ultrafast and
fault-tolerant quantum communication across long distances, Physical review letters
112, 250501 (2014).

[28] M. Pant, H. Krovi, D. Englund, and S. Guha, Rate-distance tradeoff and resource costs
for all-optical quantum repeaters, Physical Review A 95, 012304 (2017).

[29] T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, Hybrid quan-
tum repeater based on dispersive cqed interactions between matter qubits and bright
coherent light, New Journal of Physics 8, 184 (2006).

[30] P. Van Loock, T. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. Munro, and Y. Ya-
mamoto,Hybrid quantum repeater using bright coherent light, Physical review letters
96, 240501 (2006).

[31] M. Zwerger, B. Lanyon, T. Northup, C. Muschik, W. Dür, and N. Sangouard, Quan-
tum repeaters based on trapped ions with decoherence-free subspace encoding, Quan-
tum Science and Technology 2, 044001 (2017).

[32] L. Jiang, J. Taylor, and M. Lukin, Fast and robust approach to long-distance quantum
communication with atomic ensembles, Physical Review A 76, 012301 (2007).

[33] X. Wu, A. Kolar, J. Chung, D. Jin, T. Zhong, R. Kettimuthu, and M. Suchara, Se-
QUeNCe: A customizable discrete-event simulator of quantum networks, Quantum
Science and Technology 6, 045027 (2021).

[34] N. Kalb, P. C. Humphreys, J. Slim, and R. Hanson, Dephasing mechanisms of
diamond-based nuclear-spin memories for quantum networks, Physical Review A 97,
062330 (2018).

http://dx.doi.org/ 10.1002/qute.201900141
http://dx.doi.org/ 10.1002/qute.201900141
http://dx.doi.org/10.48550/arXiv.2203.10318
http://dx.doi.org/10.48550/arXiv.2203.10318
http://arxiv.org/abs/arXiv:2203.10318
http://dx.doi.org/10.1088/2058-9565/ac22f6
http://dx.doi.org/10.1088/2058-9565/ac22f6


3

118 3 Requirements for a processing-node quantum repeater on a real-world fiber grid

[35] F. F. da Silva, G. Avis, J. A. Slater, and S. Wehner, Requirements for upgrading trusted
nodes to a repeater chain over 900 km of optical fiber, (2023), arXiv:2303.03234 .

[36] D. Leichtle, L. Music, E. Kashefi, and H. Ollivier, Verifying bqp computations on noisy
devices with minimal overhead, PRX Quantum 2, 040302 (2021).

[37] J. F. Fitzsimons and E. Kashefi,Unconditionally verifiable blind quantum computation,
Physical Review A 96, 012303 (2017).

[38] T. Morimae and K. Fujii, Blind topological measurement-based quantum computation,
Nature communications 3, 1036 (2012).

[39] H.-L. Huang, Q. Zhao, X. Ma, C. Liu, Z.-E. Su, X.-L. Wang, L. Li, N.-L. Liu, B. C.
Sanders, C.-Y. Lu, et al., Experimental blind quantum computing for a classical client,
Physical review letters 119, 050503 (2017).

[40] A. Gheorghiu, E. Kashefi, and P. Wallden, Robustness and device independence of
verifiable blind quantum computing, New Journal of Physics 17, 083040 (2015).

[41] V. Dunjko, E. Kashefi, and A. Leverrier, Blind quantum computing with weak coher-
ent pulses, Physical review letters 108, 200502 (2012).

[42] A. Broadbent, J. Fitzsimons, and E. Kashefi,Universal blind quantum computation, in
2009 50th Annual IEEE Symposium on Foundations of Computer Science (IEEE, 2009)
pp. 517–526.

[43] S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther,
Demonstration of blind quantum computing, science 335, 303 (2012).

[44] C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K.
Wootters, Remote state preparation, Physical Review Letters 87, 077902 (2001).

[45] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau,
M. Markham, D. J. Twitchen, L. Childress, et al., Heralded entanglement between
solid-state qubits separated by three metres, Nature 497, 86 (2013).

[46] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg,
R. F. Vermeulen, R. N. Schouten, C. Abellán, et al., Loophole-free bell inequality vio-
lation using electron spins separated by 1.3 kilometres, Nature 526, 682 (2015).

[47] N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. Bakermans, S. J. Kamerling, N. H. Nick-
erson, S. C. Benjamin, D. J. Twitchen, M. Markham, and R. Hanson, Entanglement
distillation between solid-state quantum network nodes, Science 356, 928 (2017).

[48] P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J.
Twitchen, M. Markham, and R. Hanson, Deterministic delivery of remote entangle-
ment on a quantum network, Nature 558, 268 (2018).

[49] M. Pompili, S. L. Hermans, S. Baier, H. K. Beukers, P. C. Humphreys, R. N. Schouten,
R. F. Vermeulen, M. J. Tiggelman, L. dos Santos Martins, B. Dirkse, et al., Realization
of a multinode quantum network of remote solid-state qubits, Science 372, 259 (2021).

http://arxiv.org/abs/arXiv:2303.03234


References

3

119

[50] S. Hermans, M. Pompili, H. Beukers, S. Baier, J. Borregaard, and R. Hanson, Qubit
teleportation between non-neighbouring nodes in a quantum network,Nature 605, 663
(2022).

[51] M. H. Abobeih, J. Cramer, M. A. Bakker, N. Kalb, M. Markham, D. J. Twitchen, and
T. H. Taminiau, One-second coherence for a single electron spin coupled to a multi-
qubit nuclear-spin environment, Nature communications 9, 1 (2018).

[52] C. Bradley, J. Randall, M. Abobeih, R. Berrevoets, M. Degen, M. Bakker, M.Markham,
D. Twitchen, and T. Taminiau, A ten-qubit solid-state spin register with quantum
memory up to one minute, Physical Review X 9, 031045 (2019).

[53] V. Krutyanskiy, M. Canteri, M. Meraner, J. Bate, V. Krcmarsky, J. Schupp, N. San-
gouard, and B. P. Lanyon, A telecom-wavelength quantum repeater node based on a
trapped-ion processor, (2022), arXiv:2210.05418 .

[54] V. Krutyanskiy, M. Galli, V. Krcmarsky, S. Baier, D. A. Fioretto, Y. Pu, A. Mazloom,
P. Sekatski, M. Canteri, M. Teller, J. Schupp, J. Bate, M. Meraner, N. Sangouard, B. P.
Lanyon, and T. E. Northup, Entanglement of trapped-ion qubits separated by 230
meters, Physical Review Letters 130, 050803 (2023).

[55] V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. Lanyon,
Light-matter entanglement over 50 km of optical fibre, npj Quantum Information 5, 1
(2019).

[56] J. Schupp, V. Krcmarsky, V. Krutyanskiy, M. Meraner, T. Northup, and B. Lanyon,
Interface between Trapped-Ion Qubits and Traveling Photons with Close-to-Optimal
Efficiency, PRX Quantum 2, 020331 (2021), publisher: American Physical Society.

[57] V. Krutyanskiy, M. Meraner, J. Schupp, and B. P. Lanyon, Polarisation-preserving
photon frequency conversion from a trapped-ion-compatible wavelength to the telecom
C-band, Applied Physics B 123, 228 (2017).

[58] A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh,
J. A. Sherman, D. N. Stacey, A. M. Steane, and D. M. Lucas, High-Fidelity Readout of
Trapped-Ion Qubits, Physical Review Letters 100, 200502 (2008).

[59] C. F. Roos, M. Chwalla, K. Kim, M. Riebe, and R. Blatt, ‘Designer atoms’ for quantum
metrology, Nature 443, 316 (2006).

[60] S. Baier, M. Galli, V. Krutyanskii, B. Lanyon, and T. Northup, private communica-
tions (2022).

[61] T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten, J. de Oliveira Filho,
M. Papendrecht, J. Rabbie, F. Rozpędek, M. Skrzypczyk, et al., Netsquid, a network
simulator for quantum information using discrete events, Communications Physics 4,
1 (2021).

[62] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Quantum repeaters: the role of imper-
fect local operations in quantum communication, Physical Review Letters 81, 5932
(1998).

http://arxiv.org/abs/arXiv:2210.05418
http://dx.doi.org/ 10.1103/PhysRevLett.130.050803
http://dx.doi.org/ 10.1103/PRXQuantum.2.020331
http://dx.doi.org/10.1007/s00340-017-6806-8
http://dx.doi.org/ 10.1103/PhysRevLett.100.200502
http://dx.doi.org/10.1038/nature05101


3

120 3 Requirements for a processing-node quantum repeater on a real-world fiber grid

[63] M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, Quantum networks based
on color centers in diamond, Journal of Applied Physics 130, 070901 (2021).

[64] M. Ruf, M. J. Weaver, S. B. van Dam, and R. Hanson, Resonant excitation and purcell
enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcav-
ity, Physical Review Applied 15, 024049 (2021).

[65] P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F.
Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt,A quantum
information processor with trapped ions, New Journal of Physics 15, 123012 (2013).

[66] K. Mølmer and A. Sørensen, Multiparticle entanglement of hot trapped ions, Physical
Review Letters 82, 1835 (1999).

[67] C. Cabrillo, J. I. Cirac, P. Garcia-Fernandez, and P. Zoller,Creation of entangled states
of distant atoms by interference, Physical Review A 59, 1025 (1999).

[68] S. D. Barrett and P. Kok, Efficient high-fidelity quantum computation using matter
qubits and linear optics, Physical Review A 71, 060310 (2005).

[69] G. Vardoyan, M. Skrzypczyk, and S. Wehner, On the quantum performance evalua-
tion of two distributed quantum architectures, Performance Evaluation 153, 102242
(2022).

[70] M. Horodecki, P. Horodecki, and R. Horodecki,General teleportation channel, singlet
fraction, and quasidistillation, Physical Review A 60, 1888 (1999), publisher: Ameri-
can Physical Society.

[71] L. Jiang, J. M. Taylor, N. Khaneja, and M. D. Lukin, Optimal approach to quantum
communication using dynamic programming, Proceedings of the National Academy
of Sciences 104, 17291 (2007).

[72] T. Coopmans, S. Brand, and D. Elkouss, Improved analytical bounds on delivery times
of long-distance entanglement, Physical Review A 105, 012608 (2022).

[73] N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, Quantum repeaters based
on atomic ensembles and linear optics, Reviews of Modern Physics 83, 33 (2011).

[74] W. Dür and H. J. Briegel, Entanglement purification and quantum error correction,
Reports on Progress in Physics 70, 1381 (2007).

[75] C. K. Hong, Z. Y. Ou, and L. Mandel,Measurement of subpicosecond time intervals be-
tween two photons by interference, Physical Review Letters 59, 2044 (1987), publisher:
American Physical Society.

[76] F. Bouchard, A. Sit, Y. Zhang, R. Fickler, F. M. Miatto, Y. Yao, F. Sciarrino, and
E. Karimi, Two-photon interference: TheHong–Ou–Mandel effect,Reports on Progress
in Physics 84, 012402 (2020).

[77] W. Pfaff, B. J. Hensen, H. Bernien, S. B. van Dam, M. S. Blok, T. H. Taminiau, M. J.
Tiggelman, R. N. Schouten, M. Markham, D. J. Twitchen, et al., Unconditional quan-
tum teleportation between distant solid-state quantum bits, Science 345, 532 (2014).

http://dx.doi.org/10.1088/1367-2630/15/12/123012
http://dx.doi.org/10.1103/PhysRevA.60.1888
http://dx.doi.org/ 10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1088/1361-6633/abcd7a
http://dx.doi.org/10.1088/1361-6633/abcd7a


References

3

121

[78] A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E.
Northup, and R. Blatt, Tunable ion–photon entanglement in an optical cavity, Nature
485, 482 (2012).

[79] A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpędek, M. Pompili,
A. Stolk, P. Pawełczak, R. Knegjens, J. de Oliveira Filho, R. Hanson, and S. Wehner,
A link layer protocol for quantum networks, in Proceedings of the ACM Special Interest
Group on Data Communication, SIGCOMM ’19 (Association for Computing Machin-
ery, New York, NY, USA, 2019) pp. 159–173.

[80] F. F. da Silva, A. Torres-Knoop, T. Coopmans, D. Maier, and S. Wehner, Optimizing
entanglement generation and distribution using genetic algorithms,Quantum Science
and Technology (2021).

[81] J. Cramer, N. Kalb, M. A. Rol, B. Hensen, M. S. Blok, M. Markham, D. J. Twitchen,
R. Hanson, and T. H. Taminiau, Repeated quantum error correction on a continuously
encoded qubit by real-time feedback, Nature communications 7, 1 (2016).

[82] T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, Uni-
versal control and error correction in multi-qubit spin registers in diamond, Nature
nanotechnology 9, 171 (2014).

[83] A. Reiserer, N. Kalb, M. S. Blok, K. J. van Bemmelen, T. H. Taminiau, R. Hanson, D. J.
Twitchen, and M. Markham, Robust quantum-network memory using decoherence-
protected subspaces of nuclear spins, Physical Review X 6, 021040 (2016).

[84] H. G. Barros, A. Stute, T. E. Northup, C. Russo, P. O. Schmidt, and R. Blatt, Deter-
ministic single-photon source from a single ion, New Journal of Physics 11, 103004
(2009).

[85] B. Casabone, A. Stute, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E.
Northup, Heralded Entanglement of Two Ions in an Optical Cavity, Physical Review
Letters 111, 100505 (2013).

[86] M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, Continuous generation
of single photons with controlled waveform in an ion-trap cavity system, Nature 431,
1075 (2004).

[87] M. Meraner, A. Mazloom, V. Krutyanskiy, V. Krcmarsky, J. Schupp, D. Fioretto,
P. Sekatski, T. E. Northup, N. Sangouard, and B. P. Lanyon, Indistinguishable photons
from a trapped-ion quantum network node, Physical Review A 102, 052614 (2020).

[88] A. Stute, B. Casabone, B. Brandstätter, D. Habicher, H. G. Barros, P. O. Schmidt, T. E.
Northup, and R. Blatt, Toward an ion–photon quantum interface in an optical cavity,
Applied Physics B 107, 1145 (2012).

[89] T.Walker, S. V. Kashanian, T.Ward, andM. Keller, Improving the indistinguishability
of single photons from an ion-cavity system, Physical Review A 102, 032616 (2020).

http://dx.doi.org/10.1038/nature11120
http://dx.doi.org/10.1038/nature11120
http://dx.doi.org/10.1088/1367-2630/11/10/103004
http://dx.doi.org/10.1088/1367-2630/11/10/103004
http://dx.doi.org/10.1103/PhysRevLett.111.100505
http://dx.doi.org/10.1103/PhysRevLett.111.100505
http://dx.doi.org/ 10.1038/nature02961
http://dx.doi.org/ 10.1038/nature02961
http://dx.doi.org/ 10.1103/PhysRevA.102.052614
http://dx.doi.org/10.1007/s00340-011-4861-0
http://dx.doi.org/10.1103/PhysRevA.102.032616


3

122 3 Requirements for a processing-node quantum repeater on a real-world fiber grid

[90] T. Walker, K. Miyanishi, R. Ikuta, H. Takahashi, S. Vartabi Kashanian, Y. Tsujimoto,
K. Hayasaka, T. Yamamoto, N. Imoto, and M. Keller, Long-Distance Single Photon
Transmission from a Trapped Ion via Quantum Frequency Conversion, Physical Re-
view Letters 120, 203601 (2018).

[91] L. J. Stephenson, D. P. Nadlinger, B. C. Nichol, S. An, P. Drmota, T. G. Ballance,
K. Thirumalai, J. F. Goodwin, D. M. Lucas, and C. J. Ballance, High-Rate, High-
Fidelity Entanglement of Qubits Across an Elementary Quantum Network, Physical
Review Letters 124, 110501 (2020).

[92] T. van Leent, M. Bock, F. Fertig, R. Garthoff, S. Eppelt, Y. Zhou, P. Malik, M. Seubert,
T. Bauer, W. Rosenfeld, W. Zhang, C. Becher, and H. Weinfurter, Entangling single
atoms over 33 km telecom fibre, Nature 607, 69 (2022).

[93] C. Crocker, M. Lichtman, K. Sosnova, A. Carter, S. Scarano, and C. Monroe, High
purity single photons entangled with an atomic qubit,Optics Express 27, 28143 (2019).

[94] I. V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, and C. Monroe, Multispecies
Trapped-Ion Node for Quantum Networking, Physical Review Letters 118, 250502
(2017).

[95] D. P. Nadlinger, P. Drmota, B. C. Nichol, G. Araneda, D. Main, R. Srinivas, D. M.
Lucas, C. J. Ballance, K. Ivanov, E. Y.-Z. Tan, P. Sekatski, R. L. Urbanke, R. Renner,
N. Sangouard, and J.-D. Bancal, Device-Independent Quantum Key Distribution, Na-
ture 607, 682 (2022).

[96] NetSquid-Magic, https://gitlab.com/softwarequtech/netsquid-snippets/
netsquid-magic (2022).

[97] J. Watrous, The Theory of Quantum Information, 1st ed. (Cambridge University
Press).

[98] C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K.
Wootters, Remote state preparation, Phys. Rev. Lett. 87, 077902 (2001).

[99] J. L. W. V. Jensen, Sur les fonctions convexes et les inégualités entre les valeurs
Moyennes, (1906).

[100] M. D. Bowdrey, D. K. L. Oi, A. Short, K. Banaszek, and J. Jones, Fidelity of single
qubit maps, Physics Letters A 294, 258 (2002).

[101] S. O. Hansson, Do we need second-order probabilities? Dialectica 62, 525 (2008).

[102] V. Bužek, M. Hillery, and R. F.Werner,Optimal manipulations with qubits: Universal-
NOT gate, Physical Review A 60, R2626 (1999).

[103] A. Klappenecker and M. Rotteler, Mutually unbiased bases are complex projective 2-
designs, in Proceedings. International Symposium on Information Theory, 2005. ISIT
2005. (2005) pp. 1740–1744.

[104] S. D. Barrett and P. Kok, Efficient high-fidelity quantum computation using matter
qubits and linear optics, 71, 060310, publisher: American Physical Society.

http://dx.doi.org/ 10.1103/PhysRevLett.120.203601
http://dx.doi.org/ 10.1103/PhysRevLett.120.203601
http://dx.doi.org/ 10.1103/PhysRevLett.124.110501
http://dx.doi.org/ 10.1103/PhysRevLett.124.110501
http://dx.doi.org/10.1038/s41586-022-04764-4
http://dx.doi.org/10.1364/OE.27.028143
http://dx.doi.org/10.1103/PhysRevLett.118.250502
http://dx.doi.org/10.1103/PhysRevLett.118.250502
http://dx.doi.org/ 10.1038/s41586-022-04941-5
http://dx.doi.org/ 10.1038/s41586-022-04941-5
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-magic
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-magic
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-magic
http://dx.doi.org/10.1017/9781316848142
http://dx.doi.org/10.1103/PhysRevLett.87.077902
http://dx.doi.org/10.1007/bf02418571
http://dx.doi.org/10.1007/bf02418571
http://dx.doi.org/10.1016/S0375-9601(02)00069-5
http://dx.doi.org/ 10.1103/PhysRevA.60.R2626
http://dx.doi.org/ 10.1109/ISIT.2005.1523643
http://dx.doi.org/ 10.1109/ISIT.2005.1523643
http://dx.doi.org/10.1103/PhysRevA.71.060310


References

3

123

[105] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar,
S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller,
F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel,
v. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz, Sympy:
symbolic computing in python, PeerJ Computer Science 3, e103 (2017).

[106] G. Avis, F. Ferreira da Silva, T. Coopmans, A. Dahlberg, H. Jirovská, D. Maier, and
J. Rabbie, Simulation code for Requirements for a processing-node quantum repeater on
a real-world fiber grid · GitLab, https://gitlab.com/softwarequtech/simulation-
code-for-requirements-for-a-processing-node-quantum-repeater-on-a-
real-world-fiber-grid.

[107] B. Kambs and C. Becher, Limitations on the indistinguishability of photons from re-
mote solid state sources, 20, 115003.

[108] D. A. Fioretto, Towards a flexible source for indistinguishable photons based on trapped
ions and cavities, .

[109] Smart-Stopos, https://gitlab.com/aritoka/smart-stopos.

[110] B. J. Jain, H. Pohlheim, and J. Wegener, On termination criteria of evolutionary al-
gorithms, in Proceedings of the 3rd Annual Conference on Genetic and Evolutionary
Computation (2001) pp. 768–768.

[111] A. Labay Mora, Genetic algorithm-based optimisation of entanglement distribution to
minimise hardware cost, (2021).

[112] NetSquid-NetConf, https://gitlab.com/softwarequtech/netsquid-snippets/
netsquid-netconf (2022).

[113] NetSquid-NV, https://gitlab.com/softwarequtech/netsquid-snippets/
netsquid-nv (2022).

[114] NetSquid-PhysLayer, https://gitlab.com/softwarequtech/netsquid-
snippets/netsquid-physlayer (2022).

[115] NetSquid-TrappedIons, https://gitlab.com/softwarequtech/netsquid-snippets/
netsquid-trappedions (2022).

[116] NetSquid-SimulationTools, https://gitlab.com/softwarequtech/netsquid-
snippets/netsquid-simulationtools (2022).

[117] M. Pompili, C. Delle Donne, I. te Raa, B. van der Vecht, M. Skrzypczyk, G. Ferreira,
L. de Kluijver, A. J. Stolk, S. L. N. Hermans, P. Pawełczak, W. Kozlowski, R. Han-
son, and S. Wehner, Experimental demonstration of entanglement delivery using a
quantum network stack, npj Quantum Information 8, 1 (2022).

[118] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Quantum Repeaters: The Role of Imper-
fect Local Operations in Quantum Communication, Physical Review Letters 81, 5932
(1998).

http://dx.doi.org/ 10.7717/peerj-cs.103
https://gitlab.com/softwarequtech/simulation-code-for-requirements-for-a-processing-node-quantum-repeater-on-a-real-world-fiber-grid
https://gitlab.com/softwarequtech/simulation-code-for-requirements-for-a-processing-node-quantum-repeater-on-a-real-world-fiber-grid
https://gitlab.com/softwarequtech/simulation-code-for-requirements-for-a-processing-node-quantum-repeater-on-a-real-world-fiber-grid
http://dx.doi.org/10.1088/1367-2630/aaea99
https://gitlab.com/aritoka/smart-stopos
https://gitlab.com/aritoka/smart-stopos
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-netconf
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-netconf
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-netconf
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-nv
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-nv
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-nv
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-physlayer
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-physlayer
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-physlayer
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-trappedions
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-trappedions
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-trappedions
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-simulationtools
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-simulationtools
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-simulationtools
http://dx.doi.org/10.1038/s41534-022-00631-2
http://dx.doi.org/10.1103/PhysRevLett.81.5932
http://dx.doi.org/10.1103/PhysRevLett.81.5932


3

124 3 Requirements for a processing-node quantum repeater on a real-world fiber grid

[119] L.-M. Duan, M. Lukin, I. Cirac, and P. Zoller, Long-distance quantum communication
with atomic ensembles and linear optics, Nature 414, 413 (2001).

[120] NetSquid-AbstractModel, https://gitlab.com/softwarequtech/netsquid-
snippets/netsquid-abstractmodel (2022).

http://dx.doi.org/10.1038/35106500
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-abstractmodel
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-abstractmodel
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-abstractmodel


4

125

4
Asymmetric node placement in
fiber-based quantum networks

Guus Avis, Robert Knegjens, Anders S.
Sørensen and Stephanie Wehner.
Restrictions imposed by existing infrastructure can make it hard to ensure an even spacing
between the nodes of future fiber-based quantum networks. We here investigate the negative
effects of asymmetric node placement by considering separately the placement ofmidpoint sta-
tions required for heralded entanglement generation, as well as of processing-node quantum
repeaters in a chain. For midpoint stations, we describe the effect asymmetry has on the time
required to perform one entangling attempt, the success probability of such attempts, and the
fidelity of the entangled states created. This includes accounting for the effects of chromatic
dispersion on photon indistinguishability. For quantum-repeater chains we numerically in-
vestigate how uneven spacing between repeater nodes leads to bottlenecks, thereby increasing
both the waiting time and the time states are stored in noisy quantum memory. We find that
while the time required to perform one entangling attemptmay increase linearly with the mid-
point’s asymmetry, the success probability and fidelity of heralded entanglement generation
and the distribution time and error rate for repeater chains all have vanishing first deriva-
tives with respect to the amount of asymmetry. This suggests resilience of quantum-network
performance against small amounts of asymmetry.

In order to build a quantum network, decisions need to be made on where its nodes
are positioned and how they are connected. These nodes include the end nodes of the
network, quantum repeaters and potentially midpoint stations as required by heralded en-
tanglement generation (as depicted in Figure 4.1) [1, 2]. For the midpoint stations, and for
quantum repeaters running at least some specific types of protocols (such as the one inves-
tigated in this chapter), optimal network performance requires the nodes to be positioned
symmetrically. That is, with an internode spacing that is the same between all neighboring
nodes. To understand why symmetric placement of repeater nodes can be favourable to

This chapter is based on the preprint arXiv:2305.09635.
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the performance, consider the following. For quantum repeaters in a chain, the end-to-
end capacity for generating entanglement is equal to the minimal capacity over all pairs
of neighboring nodes in the chain [3]. This minimal capacity is maximized by a symmetric
placement of repeater nodes, and hence a symmetric placement optimizes the end-to-end
capacity. We note however that there exist specific repeater protocols that do perform
best, according to specific performance metrics, under asymmetric node placement [4, 5].
The suboptimal capacity of such a node placement suggests that improvements on the
protocols could perhaps result in a symmetric placement being optimal again. This is
demonstrated by Ref. [6], where it is shown that the advantage found in Ref. [5] vanishes
when one further optimizes the protocol.

However, symmetric placement of nodes in a quantumnetworkmay not always be pos-
sible. For instance, if a quantum network is built using existing infrastructure this restricts
the freedom in choosing the locations of the nodes, an example of which we have seen in
Chapter 3. Therefore, in this chapter, we address the question how severely one can expect
asymmetric node placement to affect the performance of a quantum network. We do so by
investigating two separate aspects of asymmetric quantum networks: first, we consider
asymmetric placement of midpoint stations and examine how entanglement generation
between two neighboring nodes is affected (Section 4.1). We identify three independent
effects, namely on the cycle time of entanglement generation (Section 4.1.1, see the begin-
ning of Section 4.1 for a definition), on the success probability of entanglement generation
and the fidelity of generated entanglement through the introduction of imbalanced losses
(Section 4.1.2), and on the photon indistinguishability through chromatic dispersion (Sec-
tion 4.1.3). Second, we consider asymmetric placement of quantum repeaters in a chain
(Section 4.2). Here, we focus specifically on processing-node repeaters executing a SWAP-
ASAP protocol (as explained in Section 4.2 and studied in, e.g., Refs. [7, 8]). Notably, the
results presented in this chapter indicate robustness against small amounts of asymmetry.
For asymmetry in the placement of the midpoint station, we find that both the success
probability and fidelity have a vanishing first derivative with respect to how asymmetri-
cally the midpoint is positioned (granted that the photons are shaped such that the effects
of chromatic dispersion are negligible). However, the cycle time increases linearly with
the asymmetry in case the time required to exchange signals between neighboring nodes
is the limiting factor (it may be independent of asymmetry if this is not the case). Simi-
larly, we find that both the entangling rate and error rate in a SWAP-ASAP repeater chain
have vanishing first derivatives with respect to how asymmetrically the repeater nodes
are positioned. This robustness suggests that, when designing a quantum network, nodes
do not need to be placed exactly symmetrically. It furthermore suggests that the effects of
constraints on node locations imposed by existing infrastructure on network performance
may not be too severe.

4.1 Asymmetry in midpoint placement
Two popular methods for the creation of entanglement between neighboring nodes in a
quantum network are single-click heralded entanglement generation [1, 9, 10] and double-
click heralded entanglement generation (also known as the Barrett-Kok protocol) [2, 11–
14]. In both of these protocols, time is slotted. In each time slot, the nodes perform a
single attempt at entanglement generation. Such an attempt consists of both nodes send-
ing a photon entangled with a local qubit to a midpoint station, where the photons are
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Figure 4.1: Symmetric and asymmetric positioning of a midpoint station for heralded entanglement generation.
The magnitude of the parameter Δ𝐿 is a measure for how large the asymmetry is. Δ𝐿 and 𝐿tot are defined in
Equation (4.3).

interfered and measured. The midpoint then sends a message to the end nodes contain-
ing the measurement outcome. Depending on the measurement outcome, the attempt
is declared either a success or a failure. The probability that it is declared a success is
called the success probability and denoted by 𝑃succ. The duration of each time slot (i.e.,
the time required to perform one attempt) is called the cycle time and denoted by 𝑇cycle.
The (average) rate at which successes occur is then given by

𝑅 = 𝑃succ
𝑇cycle

. (4.1)

After a successful attempt a state 𝜌 is shared by the two neighboring nodes. Ideally, the
state 𝜌 is some pure maximally-entangled target state ||𝜙⟩⟨𝜙||. However, due to noise, 𝜌 will
instead be a mixed state with fidelity

𝐹 = ⟨𝜙||𝜌||𝜙⟩ . (4.2)

We will use the success probability 𝑃succ, the cycle time 𝑇cycle and the fidelity 𝐹 as perfor-
mance metrics for heralded entanglement generation.

In this section we study the effect of displacing the midpoint station from the exact
center between the nodes (as illustrated in Figure 4.1) on our performance metrics. We
do so by separately examining the effect on the cycle time, the effect that the resulting
imbalanced losses have on the success probability and the fidelity, and the effect on the
photon indistinguishability (which in turn affects primarily the fidelity but also the success
probability). In order to do so we first need a method for quantifying how far the midpoint
has been displaced. To that end, let the fiber distance between the midpoint station and
the left-hand (right-hand) node be denoted 𝐿left (𝐿right). Then we define

Δ𝐿 = 𝐿left −𝐿right,
𝐿tot = 𝐿left +𝐿right.

(4.3)
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The parameter Δ𝐿 is then a measure of the amount of asymmetry, as shown in Figure 4.1.
As we will show below, the effects of asymmetric midpoint placement on the cycle time,
success probability and fidelity are all quantified by |Δ𝐿|.

4.1.1 Cycle time
First we consider the effect of asymmetric midpoint placement on the cycle time of the
entanglement-generation protocol between neighboring nodes. During each cycle both
nodes need to emit entangled photons that reach the midpoint station simultaneously.
Then the midpoint station sends a message with the measurement result back to each of
the nodes. Assuming both the entangled photons and the messages travel with the same
velocity 𝑐, the cycle time at least includes the communication time between the midpoint
station and the node that is furthest away. That is, 𝑇cycle ≥ 2

𝑐 max(𝐿left, 𝐿right). This can be
rewritten as

𝑇cycle ≥
1
𝑐 (𝐿tot + |Δ𝐿|). (4.4)

When the cycle time is limited only by the speed-of-light communication delay the cycle
time will be exactly equal to the right-hand side of the equation. However, we note that
in practice the cycle time is often much longer (see, e.g., Refs [10, 14]), for example due
to local operations or the limited rate at which entangled photons can be emitted. In that
regime, the cycle time may be independent of Δ𝐿 until the asymmetry becomes so large
that the communication delays are again the limiting factor.

4.1.2 Imbalanced losses
As attenuation loss in fiber scales exponentially with the length of the fiber, having a mid-
point station that is off center will result in an imbalance between the losses encountered
by the photons. To be more precise, let 𝑃0 be the probability that when a node attempts
photon emission, this photon is emitted successfully, couples successfully to fiber, and is
then successfully detected at a detector at the end of the fiber, given that the fiber has
length zero. Then, the probability that photon emission at the left node leads to photon
detection at the midpoint station is given by

𝑃left = 𝑃0𝑒
− 𝐿left

𝐿att , (4.5)

where 𝐿att is the attenuation coefficient of the fiber. The same equation holds for 𝑃right,
but with 𝐿left replaced by 𝐿right. In an asymmetric setup we will have 𝑃left ≠ 𝑃right, which
is what we mean by imbalanced losses. This can affect both the success probability 𝑃succ
and the fidelity 𝐹 of heralded entanglement generation.

For both the single- and double-click protocol, expressions for 𝑃succ and 𝐹 in terms of,
among other parameters, 𝑃left and 𝑃right can be found in Chapter 3. In order to make the
effect of imbalanced losses explicit in these expressions we here introduce the parameters

𝑃tot ≡ 𝑃left𝑃right = 𝑃20 𝑒
− 𝐿tot
𝐿att ,

𝑃sum ≡ 𝑃left +𝑃right = 2√𝑃tot cosh(
|Δ𝐿|
2𝐿att

) .
(4.6)

Nontrivially, we find that for both protocols (to leading order, as discussed below) we can
eliminate 𝑃left and 𝑃right completely from the expressions for 𝑃succ and 𝐹 in favour of 𝑃tot
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and 𝑃sum. The effect of imbalanced losses is then captured entirely by the dependence of
𝑃sum on Δ𝐿. We discuss the resulting expressions and their implications for the single-
and double-click protocol separately below.

In the double-click protocol, both nodes emit a photon. The mode that the photon is
emitted in (e.g., its polarization) is entangled with the state of the emitter, and entangle-
ment between the emitters is heralded when both photons are detected in different modes
at the midpoint station after interfering on a beam splitter. By eliminating 𝑃left and 𝑃right
as described above we find (see Section 4.5)

𝑃succ, 2click =𝑑1 +2𝑝dc𝑃sum +𝒪(𝑝2dc),
𝐹2click =𝑑2 −𝑑3𝑝dc𝑃sum +𝒪(𝑝2dc).

(4.7)

The parameters 𝑑1, 𝑑2, and 𝑑3 have no direct dependence on Δ𝐿 and are given by

𝑑1 =
1
2𝑃tot −𝑝dc (4+ 𝑟 −

1
2(2− 𝑟)(1+𝑉 ))𝑃tot,

𝑑2 =(
1
2𝑞em(1+𝑉 )+

1
4(1−𝑞em))(1+8𝑝dc)

− 1
2(2− 𝑟)𝑞em𝑝dc(1+𝑉 )

2,

𝑑3 =
𝑞em
𝑃tot

(2𝑉 +1).

(4.8)

Here, 𝑝dc denotes the detector dark-count probability. The notation 𝒪(𝑥𝑛) represents any
terms that are of order 𝑛 in the parameter 𝑥 . As 𝑝dc is typically small, we have only in-
cluded leading-order terms in Equations (4.7) (the full expressions can be found in Section
4.5). 𝑉 denotes the indistinguishability of the photons, which can itself depend on the
asymmetry through the effect of chromatic dispersion as discussed in Section 4.1.3. It is
is assumed that the state shared between a node’s emitter and the photon it emits is given
by 1

3 (4𝐹 − 1)
||𝜓⟩⟨𝜓 || + 1

3 (1 − 𝐹)1, which has fidelity 𝐹 to the state |𝜓 ⟩ = 1
√2 (|00⟩ + |11⟩) and

where 𝐹 = 𝐹em, left (𝐹 = 𝐹em, right) for the left (right) node. We then have

𝑞em = 1
9(4𝐹em, left −1)(4𝐹em, right −1). (4.9)

Finally,

𝑟 = {1 for non-photon-number-resolving detectors,
2 for photon-number-resolving detectors.

(4.10)

We see that when the dark-count probability is zero, the double-click protocol is not af-
fected by imbalanced losses at all. This is explained by the fact that the probability of both
photons surviving their respective fiber segments is equal to the probability of a single
photon surviving the full fiber length 𝐿tot, which is not affected by asymmetry. The rea-
son why the protocol is affected in the presence of dark counts is that as the photon arrival
probability on the longer leg becomes of the same order as the dark-count probability, the
probability of falsely heralding successful entanglement becomes large. This results both
in an increased rate and a reduced fidelity.
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In the single-click protocol, both nodes also perform photon emission and send those
photons to the midpoint station. However, before emission starts, the emitter is prepared
in an unbalanced superposition of a bright state from which photons can be emitted and a
dark state from which emission is impossible. How large the amplitude of the bright state
is, is parameterized by the bright-state parameter 𝛼 . As a result, after emission, the state
shared by the emitter and the photon takes the form

√1−𝛼 |dark⟩ |0⟩ + √𝛼 |bright⟩ |1⟩ , (4.11)

where |0⟩ (|1⟩) indicates the absence (presence) of the photon. An attempt is then consid-
ered a success in case only one photon is detected at the midpoint station (as opposed
to two for the double-click protocol), creating an entangled state that is a superposition
of the left-node emitter being in the bright state but the right-node emitter in the dark
state and vice versa. However, in case both emitters are in the bright state but one of the
emitted photons is lost, a success is heralded without the creation of an entangled state.
Therefore, even when the only imperfection in the system is fiber attenuation, the created
entangled state is never pure. The fidelity of the created entangled state will depend on
the choice of 𝛼 ; when 𝛼 is small, the relative probability that both nodes are found in
the bright state is suppressed resulting in a good fidelity. However, using a small 𝛼 also
results in a small success probability. In case the midpoint is placed symmetrically and
there are no imperfections but losses, for 𝛼 ≪ 1, the success probability and fidelity can be
approximated as 𝑃succ ≈ 2𝛼 √𝑃tot and 𝐹 ≈ 1−𝛼 . See, e.g., Ref. [15] for a further discussion
of this effect. Thus, choosing the value of 𝛼 is a matter of trading off success probability
and fidelity. In an asymmetric setup it has been found that in case one wants to optimize
the fidelity, the equation 𝛼left𝑃left ≈ 𝛼right𝑃right should be satisfied [10]. Therefore, we here
assume the bright-state parameters are always chosen such that

𝛼left𝑃left = 𝛼right𝑃right ≡ 𝑞, (4.12)

where 𝑞 parameterizes the remaining degree of freedom. As the bright-state parameter
needs to be small in order to get a good fidelity, we will here present a result that is not
only leading order in the dark-count probability but also in the parameter 𝑞. Eliminating
𝛼left and 𝛼right in favour of 𝑞 and 𝑃left and 𝑃right in favour of 𝑃tot and 𝑃sum we find (see
Section 4.5)

𝑃succ, 1click =2𝑞 +2𝑝dc +𝒪(𝑞2, 𝑝2dc, 𝑞𝑝dc),
𝐹1click =𝑠1 − 𝑠2𝑃sum +𝒪(𝑞2, 𝑝2dc, 𝑞𝑝dc).

(4.13)

Here, the parameters 𝑠1 and 𝑠2 are defined by

𝑠1 =
1
2(1+ √𝑉 ) 𝑞

𝑞 +𝑝dc
(1+𝑞 − (1+ 𝑟)𝑝dc

+ 𝑞
𝑞 +𝑝dc

[𝑟𝑝dc −
1
4(2− 𝑟)(1+𝑉 )𝑞]),

𝑠2 =
1
2(1+ √𝑉 ) 𝑞

𝑞 +𝑝dc
1
𝑃tot

(12𝑞 −𝑝dc) .

(4.14)

Note that the success probability of the single-click scheme is not affected when Δ𝐿 is
increased, as long as the bright-state parameters are chosen to keep 𝑞 constant. This be-
haviour is not a consequence of the leading-order expansion. It is shown in Section 4.5
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that the exact expression for the success probability has no direct dependence on the asym-
metry either.

The success probability and fidelity as a function of the asymmetry are shown in Fig-
ure 4.2 for both protocols. We see that in both cases imbalanced losses do not reduce the
success probability. Additionally the fidelity falls in a similar way for both cases, with
a vanishing first derivative at Δ𝐿 = 0. The reason for this is that the hyperbolic cosine to
which 𝑃sum is proportional (see Equations (4.6)) has a vanishing first derivative at zero. As
a result, the success probability and fidelity are resilient against small amounts of asym-
metry. For instance, for the parameters considered in Figure 4.2, we see that the fidelity
is still above 99% of the value it attains for symmetric midpoint placement at Δ𝐿 = 30 km.

4.1.3 Photon indistinguishability
Light waves traveling through optical fiber are subject to chromatic dispersion, meaning
that different frequency components travel at different velocities. As a result, when per-
forming heralded entanglement generation, the photons that arrive at themidpoint station
are shaped differently than the photons that are emitted by the nodes. A key requirement
for the creation of an entangled state through the interference and measurement of the
photons is that the photons are indistinguishable, i.e., their wave packets need to be iden-
tical and arrive at the midpoint simultaneously. Although chromatic dispersion always
results in photon deformation, the indistinguishability will not be affected if both photons
are subjected to the same amount of dispersion. This is the consequence of a phenomenon
known as dispersion cancellation [16, 17]. The situation is different in case the midpoint
station is placed asymmetrically. If the photons travel through fibers of different lengths
they will undergo different amounts of dispersion and hence be deformed differently.

A wave packet 𝜙 in a one-dimensional medium emitted at time 𝑡 = 𝑡0 and location 𝑥 = 0
takes the form

𝜙(𝑥, 𝑡) = ∫𝑑𝜔𝜙(𝜔)𝑒𝑖𝜔(𝑡−𝑡0)−𝑖𝛽(𝜔)𝑥 . (4.15)

Here, 𝛽(𝜔) is the wave number corresponding to a monochromatic wave with angular
frequency 𝜔, which is determined by the medium the wave travels in. Now, let 𝜙𝑙 (𝜙𝑟 ) be
the wave packet of the photon emitted by the left (right) node. The indistinguishability 𝑉
between these photons at the midpoint station (i.e., at 𝑥 = 𝐿left for 𝜙𝑙 and at 𝑥 = 𝐿right for
𝜙𝑟 ) is then defined by

𝑉 = |𝜇|2, (4.16)
where 𝜇 is given by

𝜇 = ∫𝑑𝑡𝜙𝑙(𝐿left, 𝑡)𝜙∗𝑟 (𝐿right, 𝑡)

= ∫𝑑𝜔𝜙𝑙(𝜔)𝜙∗𝑟 (𝜔)𝑒𝑖𝛽(𝜔)Δ𝐿+𝑖𝜔Δ𝑡 .
(4.17)

Here, we haveΔ𝑡 = 𝑡𝑙 −𝑡𝑟 , where 𝑡𝑙 (𝑡𝑟 ) is the time of emission of the photon at the left (right)
node. As discussed in Section 4.1.2, the indistinguishability 𝑉 affects both the success
probability and the fidelity of the single- and double-click protocols.

We assume that the wave packets have a central frequency that is close to some fre-
quency 𝜔0. It is then useful to Taylor expand the wave number of the fiber as [18]

𝛽(𝜔) ≈ 𝛽0 +𝛽1(𝜔 −𝜔0) +
1
2𝛽2(𝜔 −𝜔0)2 +

1
6𝛽3(𝜔 −𝜔0)3. (4.18)
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Figure 4.2: Leading-order results (presented in Equations (4.7) and (4.13)) for the probability that an
entanglement-generation attempt is heralded as a success and the fidelity of entangled states created upon a
heralded success of both the single-click and double-click protocol as a function of the difference in length be-
tween the two fibers connecting the midpoint station (Δ𝐿, defined in Equation (4.3)). This figure has been created
using the parameters 𝐿tot = 100 km, 𝑝dc = 3 ⋅ 10−4, 𝑞 = 4 ⋅ 10−3 and 𝐿att ≈ 22 km. Apart from attenuation losses and
dark counts no imperfections have been included.
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Here, 𝛽0 = 1/𝑣𝑝 and 𝛽1 = 1/𝑣𝑔 , where 𝑣𝑝 and 𝑣𝑔 are the phase and group velocity in the fiber
respectively. 𝛽2 is the Group-Velocity Dispersion (GVD) parameter and 𝛽3 theThird-Order
Dispersion (TOD) parameter. As the 𝛽0 contribution will only alter the global phase of 𝜇, it
does not affect the indistinguishability and can effectively be dropped from the expression.
Furthermore, we assume Δ𝑡 = −𝛽1Δ𝐿+𝛿𝑡 , where 𝛿𝑡 is the alignment mismatch (for 𝛿𝑡 = 0,
both emissions are timed such that the photons arrive at the midpoint station exactly at
the same time). Then, using Δ𝜔 ≡ 𝜔 −𝜔0, we can effectively write

𝜇 =∫𝜙𝑙(𝜔0 +Δ𝜔)𝜙∗𝑟 (𝜔0 +Δ𝜔)

× 𝑒𝑖Δ𝐿(
1
2 𝛽2Δ𝜔

2+ 1
6 𝛽3Δ𝜔

3)+𝑖𝛿𝑡Δ𝜔𝑑Δ𝜔.
(4.19)

The value of 𝑉 and how much it is degraded by chromatic dispersion depends on the
exact shapes of the photons, i.e., on 𝜙𝑙 and 𝜙𝑟 . In general, we expect the photons to be
affected by chromatic dispersion less if their spread in frequency is small, as frequency
components that are far apart also travel at velocities that are far apart. Below, we de-
rive expressions for 𝑉 in case of two specific wave-packet shapes, namely Gaussian and
Lorentzian. (Attenuated) laser pulses are often approximated as Gaussian, and approxi-
mate Gaussian photons can, e.g., be produced using cavity quantum electrodynamics [19]
or spontaneous four-wave mixing [20]. We here take Gaussian wave packets as a generic
example of a pulse which is well localised in time and frequency, allowing us to obtain
analytical results. On the other hand, Lorentzian photons are created through the radia-
tive decay of a two-level system. In practice, photons will rarely be exactly Gaussian
or Lorentzian as they interact with other components in the system such as filters and
cavities. Yet, we can think of the two types of photons as two extremes in how spread
out their frequency distributions are, and therefore how sensitive they are to chromatic
dispersion. It was noted in Ref. [21] that a Gaussian wave packet, for a fixed value of
the time-distribution standard deviation, has a frequency-distribution standard deviation
that is as small as possibly allowed by the Heisenberg uncertainty principle. From this
the authors concluded that Gaussian photons offer the best protection against alignment
mismatch 𝛿𝑡 . Here, it leads us to expect Gaussian photons are well protected against
chromatic dispersion. Lorentzian photons on the other hand have frequency distributions
with very long tails, with |𝜙𝑙/𝑟 (𝜔)|2 only going to zero as 1

𝜔2 . It is expected that they are
therefore much more susceptible to the effects of chromatic dispersion.

Gaussian photons
The wave packets of two Gaussian photons with frequency mismatch 𝛿𝜔 can be written
as

𝜙𝑙/𝑟 (𝜔) =
1

4√2𝜋𝜎2
𝑒−

1
4𝜎2 (𝜔−𝜔0± 1

2 𝛿𝜔)
2 . (4.20)

The probability distributions |𝜙𝑙/𝑟 (𝜔)|2 are Gaussian with standard deviation 𝜎 . When
there is no TOD, the indistinguishability can be calculated exactly, giving

𝑉 |𝛽3=0 =
exp(−2( 𝛿𝜔𝜎 )

2
− (𝛿𝑡𝜎)2

1+Δ𝐿2𝛽22𝜎4 )

√1+Δ𝐿2𝛽22𝜎4
. (4.21)
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We derive this result in Section 4.6. A similar expression has been derived under the more
restrictive assumption 𝛿𝑡 = 𝛿𝜔 = 𝛽3 = 0 in Ref. [22], with which ours is consistent. In case
the photon indistinguishability is close to one, 1 −𝑉 |𝛽3=0 ≪ 1, it is well-approximated by
the leading-order expansion

𝑉 |𝛽3=0 ≈ 1−2(
𝛿𝜔
𝜎 )

2
− (𝛿𝑡𝜎)2 − 1

2Δ𝐿
2𝛽22𝜎4 (4.22)

Finding an exact solution to Equation (4.19) when the TOD is nonzero is difficult, but a
leading-order result can be readily found to yield

𝑉 =𝑉 |𝛽3=0 (1−Δ𝐿𝛽3𝛿𝑡𝜎4)
+𝒪 (Δ𝐿2𝛽23𝜎6,Δ𝐿3𝛽22𝛽3𝛿𝑡𝜎8,Δ𝐿𝛽3𝛿𝑡3𝜎6) .

(4.23)

This result as well is derived in Section 4.6. Note that, to first order, the TOD does not affect
the indistinguishability in case 𝛿𝑡 = 0. If the alignment mismatch is itself small, |𝛿𝑡𝜎 | ≪ 1,
we can expect the TOD to have only a very small effect on the indistinguishability.

Lorentzian photons
For two Lorentzian wave packets with frequency mismatch 𝛿𝜔 we can write

𝜙𝑙/𝑟 (𝜔) = √
2𝜏
𝜋

1
1−2𝑖𝜏(𝜔 −𝜔0 ± 1

2𝛿𝜔)
. (4.24)

While the corresponding frequency distributions are Lorentzian functions with 1
𝜏 as full

width at half maximum, the time distributions of these photons are one-sided exponentials
with standard deviation 𝜏 . We are not aware of an analytical method for determining the
indistinguishability for Lorentzian photons in full generality. One method to evaluate the
indistinguishability is numerical integration as done in Refs. [23, 24]. Instead we make
the simplifying assumptions that the photons arrive at the same time (𝛿𝑡 = 0), they have
the same central frequency (𝛿𝜔 = 0), and there is no TOD (𝛽3 = 0). The indistinguishability
then becomes exactly solvable, giving (see Section 4.6 for a derivation)

𝑉 |𝛿𝑡=𝛿𝜔=𝛽3=0 = 1− 2 √2
√𝜋 (𝐶 +𝑆)+ 4

𝜋 (𝐶
2 +𝑆2). (4.25)

Here, 𝐶 and 𝑆 are Fresnel integrals defined by 𝑆 = ∫𝑥0 sin(𝑡2)𝑑𝑡 and 𝐶 = ∫𝑥0 cos(𝑡2)𝑑𝑡 with

𝑥 = √
1
2 |Δ𝐿𝛽2|𝜏−2. To linear order, 𝐶 = 𝑥 and 𝑆 = 0, and therefore when the effect of dis-

persion is small we can use the approximation

𝑉 |𝛿𝑡=𝛿𝜔=𝛽3=0 = 1− 2
√𝜋

√|Δ𝐿𝛽2|
𝜏 +𝒪(|Δ𝐿𝛽2|𝜏−2). (4.26)

We stress that the assumption 𝛿𝑡 = 𝛿𝜔 = 𝛽3 = 0 is not generally expected to hold in a real
experiment; it is introduced solely to make the problem analytically more tractable. How-
ever, by comparing to results obtained through numerical integration we find that the
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assumption 𝛽3 = 0 does not greatly affect the result in conditions typical to single-mode
fiber (see the discussion below and Figure 4.4). Therefore, while the above equations may
not be able to capture the effects of 𝛿𝑡 and 𝛿𝜔, they do accurately capture the effects of
asymmetry in the placement of the midpoint station, as is the focus of this section. Fur-
thermore, we note that it may sometimes already be desirable to use frequency conversion
to convert photons to frequencies that incur relatively less attenuation losses in fiber. This
opens up the possibility for correcting any frequency mismatch and bringing 𝛿𝜔 close to
zero [25].

Requirements for indistinguishable photons
The results above describe how the indistinguishability 𝑉 is diminished through the effect
of chromatic dispersion in the case of asymmetric midpoint placement. From these results,
it becomes clear that how badly 𝑉 is reduced depends on the characteristics of the photon.
In particular, for Gaussian photons it depends on the parameter 𝜎 , while for Lorentzian
photons it depends on the parameter 𝜏 . As expected, for both photons the effect of disper-
sion is increased as the width of the frequency distribution is increased, or equivalently,
as the length of the time distribution is decreased. In Figure 4.3 we investigate how much
indistinguishability is lost as a function of the length of the photon wave packet, assum-
ing the photons are otherwise perfectly indistinguishable. We here make the simplifying
assumption that there is no TOD, thereby enabling the use of the exact analytical results
obtained above. This simplification is motivated by the fact that comparing our analytical
results in case the TOD is zero with results obtained through numerical integration for
a typical value of the TOD in single-mode optical fiber suggests that the TOD has only
a negligible effect in this case, as shown in Figure 4.4. Unsurprisingly we see in Figure
4.3 that Lorentzian photons with their long tails in frequency are affected (much) worse
by chromatic dispersion than Gaussian photons with the same length. However, even for
Lorentzian photons we see that (for standard single-mode fiber and Δ𝐿 = 40 km) the de-
crease in 𝑉 is only of the order 10−2 when the length of the wave packet is of the order of
nanoseconds.

In case the photon length and Δ𝐿 are such that the decrease in photon indistinguisha-
bility can be significant, it is clear that it is better if the photons are closer in shape to
a Gaussian than a Lorentzian. This strengthens the case for Gaussian photons made in
Ref. [21], where it was found that Gaussian photons protect favourably against alignment
mismatch. However, some sources naturally emit photons that are more Lorentzian than
Gaussian. Potentially, photon-shaping techniques could be used to convert such photons
to amore Gaussianwaveform [35–39]. A simpler solution could be to send Lorentzian pho-
tons through a filter to remove the long tails of their frequency distribution. While this
would introduce extra losses, the spread in frequency could be greatly reduced, resulting
in a much more Gaussian photon.

Lastly we point out that there are various methods for reducing the drop in indistin-
guishability in case of asymmetric midpoint placement irrespective of photon shape. The
telecom C-band (1530 nm - 1565 nm) is the band conventionally used to transmit signals
as it minimizes attenuation losses (a typical value of 0.275 dB/km in standard single-mode
fiber [26]). In contrast the telecom O-band (1260 nm - 1360 nm) incurs much heavier atten-
uation losses (typically 0.5 dB/km [26]), but as it is centered around the zero-dispersion
wavelength (1310 nm) of standard single-mode optical fiber it minimizes dispersive ef-
fects. By using the O-band instead of the C-band one can lessen the effects of chromatic
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Figure 4.3: Loss in the indistinguishability 𝑉 as a function of the temporal photon length, as measured by the
standard deviation of the time distribution |𝜙(𝑥 = 0, 𝑡)|2. We include results for both Gaussian and Lorentzian
photons (Equations (4.23) and (4.26)), for which the standard deviations are given by 1

√2𝜎 and 𝜏 respectively.
The results assume Δ𝐿 = 40 km and a GVD of 𝛽2 ≈ −21.7ps2/km (corresponding to a dispersion coefficient of 17
ps/(nm km), which is a typical value for single-mode optical fiber at 1550 nm [26]). The TOD parameter has
been set to 𝛽3 = 0. Other sources of noise are not included. That is, 𝛿𝑡 = 𝛿𝜔 = 0. The lengths of photons emitted
by some specific sources have been indicated in the figure. QD1, QD2, QD3: quantum-dot sources from Refs.
[27], [28] and [29] respectively. NV: nitrogen-vacancy centers in diamond [25, 30, 31]. (Some types of trapped
ions, such as Ba+ [32] and Sr+ [13] emit photons at a length close to the NV one.) SPDC: frequency-multiplexed
spontaneous parametric down-conversion sources that interface with atomic quantum memories [33, 34]. Ca+:
trapped calcium ions [14] (lifetime estimated in Section 3.6.6).

dispersion at the cost of incurring extra losses. This strategy is utilized in e.g., Ref. [40].
An investigation in Ref. [22] based on Gaussian photons suggests that using the O-band
may only be worth it for photons shorter than approximately 100 picoseconds. A second
potential solution is the use of dispersion-shifted fiber. Such fiber has its zero-dispersion
wavelength in the telecomC-band and provides simultaneously small dispersion and small
attenuation loss [41]. However, such fiber is not widely deployed [22, 42] and hence not
suitable when using existing fiber infrastructure to build a quantum network. Finally, one
can use dispersion-compensating modules to reduce the effects of chromatic dispersion at
the cost of incurring extra losses [42].
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Figure 4.4: A comparison between our analytical results (the lines) for the photon indistinguishability 𝑉 assum-
ing the TOD is zero (Equations (4.21) and (4.26)) and results obtained through numerical integration assuming
a nonzero TOD (the markers). The temporal photon length is used as x axis, as measured by the standard de-
viation of |𝜙(𝑥 = 0, 𝑡)|2. The results assume Δ𝐿 = 40 km, a GVD of 𝛽2 ≈ −21.7ps2/km and a TOD parameter of
𝛽3 ≈ 0.127ps3/km (corresponding to a dispersion coefficient of 17 ps/(nm km) and a dispersion slope of 0.056
ps/(nm2 km), which are typical values for single-mode optical fiber at 1550 nm [26]). Other sources of noise are
not included. That is, 𝛿𝑡 = 𝛿𝜔 = 0). Error bars for the numerical results are smaller than the marker size.

4.2 Asymmetry in repeater chains
Now we turn our attention away from the placement of midpoint stations and instead
consider the placement of repeater nodes in a quantum-repeater chain. First, in Section
4.2.1, we discuss the specific type of quantum-repeater chains we consider here. Then,
we pose two research questions about asymmetry in such repeater chains in Section 4.2.2.
These questions are made more precise in Sections 4.2.3, 4.2.4, and 4.2.5. This allows us to
address the research questions using numerical simulations in Section 4.2.6. Finally, we
reflect on the numerical results in Section 4.2.7.

4.2.1 SWAP-ASAP repeaters with parallel entanglement generation
While there exist many types of quantum repeaters [43, 44], we here focus on one specific
type, namely the processing-node quantum repeater. Such quantum repeaters are capable
of generating and storing entanglement with neighboring nodes and of executing quan-
tum gates. These gates allow processing nodes to perform deterministic entanglement
swapping, which is an operation such that if one qubit is entangled with some qubit A
and the other qubit is entangled with some qubit B, performing entanglement swapping
on those two qubits will result in qubits A and B being entangled [45]. Various proposed
repeater platforms are processing nodes, such as trapped ions [46–49], color centers in
diamond [10, 50, 51] and neutral atoms [52, 53].

We here assume that each repeater has exactly two qubits, each of which can be used
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in parallel to perform heralded entanglement generation (as discussed in Section 4.1) with
a different neighboring node. (Note that there exist also proposed repeater systems that
can only generate entanglement with one neighbouring node at a time [6, 10, 54].) A chain
of such repeaters can then create end-to-end entanglement by combining heralded entan-
glement generation and entanglement swapping. How these are combined exactly, and
what additional operations are performed, is dictated by the protocol that the repeaters ex-
ecute. Examples of additional operations that could be included are discarding entangled
states when they have been stored in memory for too long [6, 8, 55, 56] and entanglement
distillation [57–59], both of which can help mitigate the effects of noise. Optimizing re-
peater protocols is by no means an easy matter, and what protocols perform well depends
both on the specific hardware used and the performance metric employed [4, 8, 55, 60–
63]. Here, we consider the SWAP-ASAP protocol, in which no additional operations are
included. In the SWAP-ASAP protocol, each pair of neighboring nodes performs entangle-
ment generation whenever this is possible. That is, whenever at each node the qubit that
is reserved for entanglement generation along that specific link is free. As soon as both
qubits at a repeater node are entangled it performs entanglement swapping (thereby free-
ing both qubits up again). We have chosen to study this protocol as it is relatively simple
both to understand and to study numerically. Moreover, it has been found that the SWAP-
ASAP protocol outperforms schemes that include entanglement distillation for near-term
hardware quality, as measured both by the fidelity of end-to-end entangled states and the
generation duration [7]. Additionally, for the case when entanglement swapping is deter-
ministic and entanglement is never discarded, it was found that the SWAP-ASAP protocol
results in an optimal generation duration [8, 63]. Throughout the rest of this chapter, it
will be assumed that quantum repeaters can generate entanglement with two neighbours
in parallel and that they execute the SWAP-ASAP protocol.

4.2.2 Research questions
Asymmetric node placementwill result in some fiber links between repeaters being shorter
while others are longer. As attenuation losses grow exponentially with the fiber length,
the longer links generate entanglement at a slower rate, and the shorter links at a faster
rate. In other words, the entangling rates along the chain become uneven due to asym-
metric repeater placement. The slower links could then potentially become bottlenecks.
This is expected to increase not only the amount of time required to distribute end-to-
end entanglement, but also the amount of time entangled states need to be stored in the
SWAP-ASAP quantum repeaters until entanglement swapping takes place. The result of
this would be an increased amount of noise due to memory decoherence.

The above observation motivates posing the following research question: what is the
effect of uneven entangling rates in a SWAP-ASAP repeater chain in which repeaters can
generate entanglement with both neighboring nodes simultaneously, as caused by the
asymmetric distribution of the repeater nodes, on the performance of that chain? A par-
ticularly simple method that could perhaps be used to mitigate any negative effects of
asymmetric node placement is what we here refer to as the “extended-fiber method”. In
this method, spooled fiber is used at the repeater nodes to make the shorter links as long as
the longer ones, thereby effectively making the repeater chain symmetric again. However,
rather than making the bottlenecks faster, this method just makes the faster links slower.
It seems perhaps unlikely that such a strategy can lead to any improvement. Therefore, we
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pose a second research question: is the extended-fiber method effective at improving the
performance of asymmetric SWAP-ASAP repeater chains in which repeaters can gener-
ate entanglement with both neighboring nodes simultaneously? In order to address these
questions, they need to be made more precise. To that end, we first quantify how well a
repeater chain performs in Section 4.2.3. Then, we quantify how asymmetrical a repeater
chain is and how we can systematically vary the amount of asymmetry in Section 4.2.4.
Finally, we introduce a simplified model for repeater chains in Section 4.2.5.

4.2.3 Quantifying repeater performance
We quantify the performance of a repeater chain in terms of how capable it is at support-
ing Quantum Key Distribution (QKD). Specifically, we consider the rate at which a secret
key can be obtained when executing an entanglement-based implementation of the BB84
protocol [64, 65] in the asymptotic limit. The end nodes realize this protocol by keeping en-
tangled quantum states stored in memory until they learn that all required entanglement
swaps have been performed and hence end-to-end entanglement has been created. At that
time, they each measure their qubit in either the Pauli X or Z basis. The corresponding
asymptotic secret-key rate is given by [66]

SKR = 1
𝑇 max(1−2ℎ(𝑄),0). (4.27)

Here, 𝑇 is the generation duration, i.e., the average time required to distribute an end-
to-end entangled state, 𝑄 is the Quantum-Bit Error Rate (QBER), and ℎ(𝑥) = −𝑥 log2(𝑥) −(1 − 𝑥) log2(1 − 𝑥) is the binary entropy function. The QBER is defined as the probability
that, if both end nodes measure their qubits in the same basis, the parity between the
outcomes is different than would be expected for the maximally-entangled target state.
Therefore, the QBER can be considered a measure for the amount of noise. Note that,
in general, the QBER can take a different value for measurements in the X basis than in
the Z basis. However, as we will be using a depolarizing noise model (see Section 4.2.5
below), the two values will coincide. Our choice for the secret-key rate as performance
metric is motivated not only by the fact that it has a clear operational interpretation, but
also because it combines information about how quickly and how noisily entanglement
is distributed into a single convenient number. While the secret-key rate is the primary
performance metric considered here, the generation duration and QBER from which the
secret-key rate is calculated can help provide a more detailed understanding of a repeater
chain’s performance.

4.2.4 Quantifying chain asymmetry
Now, we first discuss how asymmetry in a repeater chain can be quantified. We then use
that to introduce a specific method for placing repeaters in a chain in such a way that the
amount of asymmetry can be varied. Let ℛ be the set of all repeater nodes in the chain
of interest. Then, for every 𝑛 ∈ ℛ, the node asymmetry parameter is defined by

𝒜𝑛 =
|𝐿left of 𝑛 −𝐿right of 𝑛 |
𝐿left of 𝑛 +𝐿right of 𝑛

(4.28)

and the node asymmetry sign is defined by

𝑆𝑛 = Sgn(𝐿left of 𝑛 −𝐿right of 𝑛) . (4.29)
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Here, 𝐿left of 𝑛 (𝐿right of 𝑛) is the fiber distance between node 𝑛 and its neighboring node
to the left (right) and Sgn is the sign function. We note that 𝒜𝑛 is equivalent to Δ𝐿/𝐿tot
and 𝑆𝑛 to Sgn(Δ𝐿), where Δ𝐿 and 𝐿tot are defined for that specific node as in Equation
(4.3). WhileΔ𝐿 proved convenient to describe the effects of asymmetry in the placement of
midpoint stations, we find the node asymmetry parameter more convenient in the context
of repeater chains. This is because the value of 𝐿tot can vary between different nodes in the
chain, making it hard to understand just how asymmetrically a node is placed between its
neighboring nodes from only Δ𝐿. The node asymmetry parameters and node asymmetry
signs of all repeater nodes together provide a complete parameterization of the locations
of the nodes in the chain. Now, we define the chain asymmetry parameter 𝒜chain to be the
average value of 𝒜𝑛 over all repeaters,

𝒜chain =
1
|ℛ| ∑𝑛∈ℛ

𝒜𝑛 . (4.30)

While the node asymmetry parameter𝒜𝑛 quantifies how asymmetrically one specific node
is placed between its neighboring nodes, the chain asymmetry parameter 𝒜chain aims to
capture how asymmetric the chain is as whole.

We aim to address the research questions posed in Section 4.2.2 by investigating how
the repeater-chain performance varies as a function of 𝒜chain. However, for a repeater
chain with a given total length and given number of nodes, there are many different
possible repeater placements for which the chain asymmetry parameter takes the same
value. Therefore, in order to avoid ambiguity, we here introduce a specific class of re-
peater chains for which the parameter 𝒜chain (together with the total length and number
of nodes) uniquely defines the locations of all the repeaters. These are repeater chains for
which𝒜𝑛 is the same for every repeater in the chain and 𝑆𝑛 alternates between nodes (such
that no two neighboring repeaters have the same sign). It then holds that 𝒜chain = 𝒜𝑛 for
all 𝑛 ∈ ℛ. See Figure 4.5 for an example of what such a repeater chain looks like for dif-
ferent values of 𝒜chain. Our reason for choosing this class of chains is that the chains are
relatively regular and easy to understand, while at the same time increasing𝒜chain clearly
increases the disparity between long and short links, allowing us to study the effect of
different entangling rates between different nodes as we set out to do.

Figure 4.5: Locations of nodes in a chain with 7 repeaters for which 𝒜𝑛 = 𝒜chain is the same for all nodes and 𝑆𝑛
alternates between nodes (see definitions in Equations (4.28), (4.29) and (4.30)). The chain asymmetry parameter
𝒜chain then quantifies the amount of asymmetry.
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4.2.5 Model for Repeater Chain
We consider a simplifiedmodel for the repeater nodes as well as for heralded entanglement
generation between neighboring nodes. In this model, the midpoint stations studied in
Section 4.1 are abstracted away, such that we can focus on the placement of the repeater
nodes only. We then take the cycle time for performing one attempt at generating an
entangled state between two neighboring nodes to be given by

𝑇cycle =
𝐿
𝑐 , (4.31)

where 𝐿 is the distance between the neighboring nodes and 𝑐 is again the speed of light
in fiber (here taken to be 200,000 km/s). We note that this is equivalent to the cycle time
when entanglement between neighboring nodes is generated using a symmetrically placed
midpoint (see Equation (4.4)). We model the success probability of each attempt as

𝑃succ = 𝑒−
𝐿

𝐿att , (4.32)

where 𝐿att ≈ 22 km is the attenuation length corresponding to attenuation losses of 0.2
dB/km. This model has been chosen both for simplicity and for not being overly specific
to one particular protocol for heralded entanglement generation. It reflects the exponen-
tial scaling of the success probability common to both the double-click and single-click
protocols, and also to protocols based on the direct transmission of photons between neigh-
boring nodes [67–69] (assuming dark counts do not contribute significantly). Therefore
it is expected to adequately capture, at least on a qualitative level, how uneven entan-
gling rates arise due to asymmetric node placement in repeater chains based on heralded
entanglement generation.

We model the states created by heralded entanglement generation to be noiseless.
More precisely, whenever an attempt is successful, a pure Bell state 1

√2 (|00⟩ + |11⟩) is cre-
ated. We consider the repeater nodes to be largely perfect devices at which entanglement
swapping can be performed noiselessly and deterministically. The only imperfection mod-
eled at both repeater nodes and end nodes is that while qubits are stored in quantummem-
ory, they undergo memory decoherence. For simplicity, we model memory decoherence
as depolarizing noise according to

𝜌 → 𝑒−
𝑡

𝑇coh 𝜌 + (1− 𝑒−
𝑡

𝑇coh )12 . (4.33)

Here 𝑡 is the storage time and 𝑇coh the coherence time, which we take to be one second
here (as demonstrated with nitrogen-vacancy centers in Ref. [70]). Given these assump-
tions, noise in end-to-end entangled states produced by the repeater chain has only two
sources. The first of these is repeaters storing entangled states in quantum memory un-
til entanglement swapping takes place. The second is end nodes storing entangled states
until all entanglement swaps have been completed and the measurements required by the
BB84 protocol are performed. These are exactly the sources of noise that may be affected
by uneven entangling rates in a repeater chain.

4.2.6 Numerical results
Now, we are ready to address the research questions outlined in Section 4.2.2. For con-
creteness, we consider a repeater chain with a length of 1000 km that contains 21 nodes
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(including two end nodes). The nodes are thus, in the symmetric case, spaced 50 km apart.
A distance of 1000 km can be thought of as a typical pan-continental one, corresponding to,
e.g., roughly the distance between Paris and Berlin. In order to estimate the values of the
generation duration and the QBER, we employ numerical simulations using the quantum-
network simulator NetSquid [7]. These simulations are based on the code introduced in
Ref. [54] and make use of a number of open-source libraries [71–77]. All simulation code
and data can be found in our repository [78]. After the generation duration andQBER have
been estimated, an estimate for the secret-key rate is computed using Equation (4.27). The
simulations are performed for different values of the chain asymmetry parameter 𝒜chain,
and both for asymmetric chains and chains that have been symmetrized again using the
extended-fiber method. The results of these simulations are shown in Figure 4.6. It can be
directly seen that using the extended-fiber method does not improve the performance of
the repeater chain, but instead reduces it significantly. Simulation results demonstrating
that the same conclusion holds for other numbers of repeaters, other chain lengths and
other coherence times can be found in our repository [78]. This suggests that the question
whether the extended-fiber method can be used to mitigate the adverse effects of uneven
entangling rates due to asymmetric repeater placement must be answered in the negative.

It can be observed that the performance of the repeater chain exhibits some resilience
against small amounts of asymmetry. At𝒜chain = 0.1 the secret-key rate has only fallen by
about 10%, and at 𝒜chain = 0.2 by about 50%. For the specific repeater chain we consider,
this corresponds to all the even nodes in the chain being displaced by 5 km and 10 km
respectively as compared to their position in a symmetric chain, while the odd nodes
remain in place (see also Figure 4.5). This resilience seems to be a consequence of the
fact that both the generation duration and the QBER have a vanishing first derivative at
𝒜chain = 0 in Figure 4.6. We note furthermore that the first derivatives not only appear
to vanish for the parameters considered in Figure 4.6, but also for different numbers of
nodes, chain lengths and coherence times, as demonstrated by data that can be found in
our repository [78].

4.2.7 Reflection on numerical results

It may be surprising that the first derivatives in Figure 4.6 appear to vanish. After all, when
𝒜𝑛 is nonzero, the resultant longer links may be expected to form bottlenecks. However,
we need to take into account that while the longer links become slower at generating
entanglement, the shorter links become faster. It would appear that for small values of
𝒜𝑛 the negative effect of the slower links is mostly compensated by the positive effect of
the faster links. To foster an intuitive understanding, let us introduce the following hand-
waving argument that reinforces the interpretation that first-order effects on the fast and
slow links cancel each other. Consider a single repeater node 𝑛 ∈ ℛ. This repeater is
connected to its two neighbors by fibers of lengths 1

2𝐿tot(1±𝒜𝑛), where 𝐿tot is the sum of
the two lengths. Therefore, from combining Equations (4.1), (4.31) and (4.32), we find that
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the average rates at which entanglement is generated with the two different neighbors are

𝑅± =
𝑐 exp(− 𝐿tot

2𝐿att
(1±𝒜𝑛))

𝐿tot(1±𝒜𝑛)

= 𝑐𝑒−
𝐿tot
2𝐿att

𝐿tot
(1∓ ( 𝐿tot2𝐿att

+1)𝒜𝑛)+𝒪(𝒜 2𝑛 ).

(4.34)

Initially, entanglement generation is continuously attempted with both neighbors simul-
taneously. This can be thought of as entanglement being created on one side with rate
𝑅+ and with rate 𝑅− on the other side, resulting in a “total rate” at which entanglement is
produced at this node of

𝑅sum = 𝑅+ +𝑅− = 2𝑐𝑒
− 𝐿tot
2𝐿att

𝐿tot
+𝒪(𝒜 2𝑛 ). (4.35)

Abusively treating the time required to generate entanglement on either side as being
exponentially distributed (while they are really geometrically distributed), we then have
that the time required until the first entangled state is created takes time 1/𝑅sum. This time
is invariant with respect to the node asymmetry parameter at first order.

Before entanglement swapping can take place, the second entangled state still needs
to be generated. Now, entangling attempts are only made on one side, and therefore the
“total rate” is no longer 𝑅sum but only 𝑅+ or 𝑅−, depending on with which of the two
neighbors entanglement has been established already. The probability that the longer link
is generated first (oncemore treating the times required to generate entanglement as being
exponentially distributed) is given by 𝑅+/𝑅sum, in which case it on average still takes a time
1/𝑅− to generate the second entangled state. Similarly, with probability 𝑅−/𝑅sum it still
takes a time 1/𝑅+. Therefore, the average time until entanglement is swapped at repeater
𝑛 is

𝑇swap =
1

𝑅sum
(1+ 𝑅+

𝑅−
+ 𝑅−
𝑅+

)

= 3
2
𝑐𝑒−

𝐿tot
2𝐿att

𝐿tot
+𝒪(𝒜 2𝑛 ),

(4.36)

which is just the well-known “three-over-two” approximation for symmetric repeaters
[79, 80]. Furthermore, the average time during which the first entangled state is stored in
quantum memory is then given by 𝑇swap −1/𝑅sum, which also does not contain any linear
terms in 𝒜𝑛 . This is consistent with the fact that not only the generation duration of
the repeater chain appears to be independent of the chain asymmetry parameter to linear
order, but also the QBER.

While the above argument can help understand why the performance of the repeater
chain studied here has a vanishing first derivative with respect to the asymmetry pa-
rameter, we stress that it is not a complete or accurate treatment. For one, we have ap-
proximated geometrically-distributed random variables as being exponentially distributed.
Moreover, we neglected the fact that in order to calculate the QBER we would need to cal-
culate the expected value of the exponential function occurring in Equation (4.33), which
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is not the same as the exponential function evaluated at the expected value. But perhaps
most importantly, the different repeaters cannot be considered in isolation. After the re-
peater has performed entanglement swapping, it can only start entanglement generation
again with neighbors that have themselves also performed entanglement swapping (other-
wise their qubit is still occupied). This complex interdependence is one of themain reasons
why we have turned to numerical simulations here.
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Figure 4.6: Effect of the chain asymmetry parameter 𝒜chain in a repeater chain of the type illustrated in Fig-
ure 4.5 on the asymptotic secret-key rate of entanglement-based BB84. Additionally, the QBER and average
entanglement-generation duration are shown, from which the secret-key rate is derived according to Equation
(4.27). When using the “extended-fiber method”, spooled fiber is deployed to make all links in the network
equally long, resulting in an effectively symmetric network with an increased total fiber length. The total length
of the repeater chain considered here is 1000 km and it contains 21 nodes (including 2 end nodes). Depolarizing
memory decoherence (see Equation (4.33)) with a coherence time of 𝑇coh = 1s is the only source of noise included.
Error bars represent the standard error in the estimates and are smaller than the marker size. Each data point is
based on 20,000 simulated end-to-end entangled states.
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4.3 Conclusion
We have investigated how the asymmetric placement of nodes in a quantum network
can affect network performance. Specifically, we have studied the effect of asymmet-
ric midpoint placement on heralded entanglement generation and of asymmetric repeater
placement on SWAP-ASAP repeater chains in which repeaters can generate entanglement
with both neighboring nodes in parallel. In both cases we have observed a remarkable re-
silience against small amounts of asymmetry, even though performance can be expected
to degrade significantly as asymmetry is increased further. While for the midpoint place-
ment the cycle time will be directly affected when asymmetry is introduced, the success
probability and fidelity have a vanishing first derivative. Similarly, for repeater chains,
both the generation duration and QBER appear to have vanishing first derivatives with
respect to asymmetry in repeater placement. Whether the first derivatives also vanish for
repeater chains in which parallel entanglement generation is not possible remains an open
question. The same is true for repeater chains that do not execute a SWAP-ASAP protocol
but instead, for example, execute a protocol that includes entanglement distillation.

We have also observed that asymmetry in midpoint placement can significantly affect
the indistinguishability of photons used in heralded entanglement generation because of
chromatic dispersion. Chromatic dispersion can potentially cause a bad fidelity even for
small amounts of asymmetry. The size of the effect, however, depends on the temporal
length of the photons, and we have found that as long as the photons are long enough
(on the order of nanoseconds) the effect of chromatic dispersion can be negligible even
for large asymmetries (percent level for an asymmetry of 40 km, see Figure 4.3). We have
furthermore found that Gaussian wave packets are much more resilient against chromatic
dispersion than Lorentzian wave packets which have long tails in their frequency distri-
bution. By making the shape of a wave packet to be more Gaussian than Lorentzian (e.g.,
by filtering out long tails), the effects of chromatic dispersion can be mitigated.

From all this, we conclude that while asymmetry degrades quantum-network perfor-
mance and should therefore be avoided where possible, small amounts of asymmetry are
not expected to have a large effect. This may alleviate some of the pressure in selecting
the perfect locations for nodes in a quantum network, and makes it more plausible that
existing fiber infrastructure can provide fertile ground for a future quantum internet.

4.4 Code availability
The code that was used to perform the simulations and generate the plots in this chap-
ter has been made available at https://gitlab.com/GuusAvis/reproduction-code-for-
asymmetric-node-placement-in-fiber-based-quantum-networks [78].

4.5 Single-click and double-click expressions
In this section we derive the success probability and fidelity of the single- and double-click
protocols in terms of the parameter Δ𝐿 (to first order). These derivations are based on the
expressions given in Sections 3.10 and 3.8. For both protocols, our derivation hinges on
having a set of probabilities {𝑝𝑖} and a set of states {𝜌𝑖} such that

𝑃succ =∑
𝑖
𝑝𝑖 (4.37)

https://gitlab.com/GuusAvis/reproduction-code-for-asymmetric-node-placement-in-fiber-based-quantum-networks
https://gitlab.com/GuusAvis/reproduction-code-for-asymmetric-node-placement-in-fiber-based-quantum-networks


4.5 Single-click and double-click expressions

4

147

is the success probability and

𝜌 = 1
𝑃succ

∑
𝑖
𝑝𝑖𝜌𝑖 (4.38)

is the mixed state upon success. The fidelity can then be written as

𝐹 = 1
𝑃succ

∑
𝑖
𝑝𝑖𝐹𝑖 (4.39)

where 𝐹𝑖 is the fidelity corresponding to 𝜌𝑖 . 𝑝𝑖 and 𝐹𝑖 depend on 𝑃left and 𝑃right, which we
then rewrite in terms of 𝑃tot = 𝑃left𝑃right and 𝑃sum = 𝑃left +𝑃right (see Equation (4.6)).

4.5.1 Double click
For the double-click protocol we have, using the results from Section 3.8,

𝑝𝑇 =12𝑃tot𝑉 (1−𝑝
2𝑟
dc ,

𝑝𝐹1 =
1
2𝑃tot(1−𝑉 )(1−𝑝

2𝑟
dc),

𝑝𝐹2 =
2− 𝑟
2 𝑃tot(1+𝑉 )𝑝dc(1−𝑝dc)𝑟+1,

𝑝𝐹3 =2(𝑃sum −2𝑃tot)𝑝dc(1−𝑝dc)𝑟+1,
𝑝𝐹4 =4(1−𝑃sum +𝑃tot)𝑝2dc(1−𝑝dc)2,

(4.40)

such that we have the sets {𝑝𝑖}, {𝜌𝑖} and {𝐹𝑖} with 𝑝1 = 𝑞em𝑝𝑇 , 𝜌1 = ||Ψ±⟩⟨Ψ±|| (where |Ψ±⟩ =
1
2 (|01⟩ ± |10⟩ is the target Bell state, with the sign depending on which detector clicked),

𝐹1 = 1, 𝑝2 = 𝑞em𝑝𝐹1 , 𝜌2 =
1
2 (|01⟩⟨01|+ |10⟩⟨10|), 𝐹2 =

1
2 , 𝑝3 = 𝑞em𝑝𝐹2 , 𝜌3 =

1
2 (|00⟩⟨00|+ |11⟩⟨11|),

𝐹3 = 0, 𝑝4 = (1−𝑞em)(𝑝𝑇 +𝑝𝐹1 +𝑝𝐹2)+𝑝𝐹3 +𝑝𝐹4 , 𝜌4 =
1

4 , and 𝐹4 = 1
4 . From this, it follows that

we can write
𝑃succ =𝑎 +𝑏𝑃sum,

𝐹 =
𝑐 + 1

4𝑏𝑃sum
𝑎 +𝑏𝑃sum

,
(4.41)

with

𝑎 =12𝑃tot(1−𝑝dc)
2𝑟 +𝑝dc𝑃tot(1−𝑝dc)𝑟+1 [

2− 𝑟
2 (1+𝑉 )−4]+4𝑝2dc(1+𝑃tot)(1−𝑝dc)2,

𝑏 =2𝑝dc(1−𝑝dc)𝑟+1 −4𝑝2dc(1−𝑝dc)2,
𝑐 =14𝑞em𝑃tot(1+𝑉 )(1−𝑝dc)

2𝑟 + (1−𝑞em)(
1
8𝑃tot(1−𝑝dc)

2𝑟 + 2− 𝑟
8 𝑝dc(1−𝑝dc)2𝑃tot(1+𝑉 ))

−𝑝dc𝑃tot(1−𝑝dc)𝑟+1 +𝑝2dc(1+𝑃tot)(1−𝑝dc)2.
(4.42)

Taking a first-order expansion in 𝑝dc of the success probability and the fidelity gives the
double-click results presented in Section 4.1.2.
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4.5.2 Single click
For the single-click protocol we can rewrite the expressions in Section 3.8 by substituting
the bright-state parameters by 𝑞 (see Equation (4.12)) such that we have the sets {𝑝𝑖}, {𝜌𝑖}
and {𝐹𝑖} with

𝑝1 =
𝑞2
𝑃tot

(1−𝑝dc){2𝑝dc +𝑃tot (−2(1−𝑝dc)𝑟−1 +2𝑝dc +
1
2(2− 𝑟)(1+𝑉 )))}

+𝑞2 𝑃sum𝑃tot
((1−𝑝dc)𝑟 −2𝑝dc(1−𝑝dc))

𝑝2 =𝑡1 + 𝑡2,

𝑡1 =𝑞(1−𝑞
𝑃left
𝑃tot

){(1−𝑝dc)𝑟 +2(
𝑃right
𝑃tot

−𝑞)(1−𝑝dc)𝑝dc} ,

𝑡2 =𝑞(1−𝑞
𝑃right
𝑃tot

){(1−𝑝dc)𝑟 +2(
𝑃left
𝑃tot

−𝑞)(1−𝑝dc)𝑝dc} ,

𝑝3 =2𝑝dc(1−𝑝dc)(1+
𝑞2
𝑃tot

−𝑞 𝑃sum𝑃tot
)

(4.43)

𝜌1 = |00⟩⟨00|, 𝜌3 = |11⟩⟨11|, 𝐹1 = 𝐹3 = 0,

𝜌2 =
1
𝑝2

(𝑡1 |01⟩⟨01| + 𝑡2 |10⟩⟨10| ± √𝑉 𝑡1𝑡2(|01⟩⟨01| + |10⟩⟨10|)) ,

𝐹2 =
1
2 + √𝑉 √𝑡1𝑡2

𝑝2
.

(4.44)

We note that while 𝑃left and 𝑃right cannot be eliminated in favor of 𝑃sum and 𝑃tot in the
expressions for 𝑡1 and 𝑡2, they can be eliminated in 𝑝2 = 𝑡1 + 𝑡2, giving

𝑝2 =2𝑞(1−𝑝dc)𝑟 −4𝑞𝑝dc(1−𝑝dc)(1+
𝑞
𝑃tot

)

+ 𝑃sum
𝑃tot

𝑞(2𝑝dc(1−𝑝dc) −𝑞{(1−𝑝dc)𝑟 −2(1−𝑝dc)𝑝dc})
(4.45)

The success probability is then given by

𝑃succ = 𝑝1 +𝑝2 +𝑝3. (4.46)

We refrain from writing out the exact success probability explicitly here, but note that
it can be readily verified that the terms proportional to 𝑃sum cancel out. Therefore, we
conclude that the success probability is independent of 𝑃sum, and hence the asymmetry.
To leading order we have 𝑝1 = 0, 𝑝2 = 2𝑞 and 𝑝3 = 2𝑝dc, and by adding these up the leading-
order result for the success probability in Equations (4.13) is found.

As both 𝐹1 and 𝐹3 are zero, the fidelity is given by

𝐹 = 𝑝2
𝑃succ

𝐹2 =
1
2

𝑝2
𝑃succ

+ √𝑉 √𝑡1𝑡2
𝑃succ

. (4.47)
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The product 𝑡1𝑡2 cannot be written in terms of solely 𝑃tot and 𝑃sum instead of 𝑃left and
𝑃right. However, the troublesome terms in this product are higher order. Therefore, we
can eliminate 𝑃left and 𝑃right from 𝐹 as long as we stick to leading order. Here, we consider
both 𝑞 and 𝑝dc to be of the same order, i.e., 𝑝dc = 𝒪(𝑞). We note that under realistic
settings 𝑝dc < 𝑞 as otherwisemore successes would be caused by dark counts then by actual
photons, which is a regime in which no useful entanglement can be created. Evaluating 𝐹
at leading order requires evaluating 𝑝2, 𝑃succ and √𝑡1𝑡2 up to second order, giving

𝑝2 =2𝑞(1− (2+ 𝑟)𝑝dc +
𝑃sum
𝑃tot

(𝑝dc −
1
2𝑞))+𝒪(𝑞

3),

𝑃succ =2(𝑞 +𝑝dc)(1−𝑞 −𝑝dc +
𝑞

𝑞 +𝑝dc
[14(2− 𝑟)(1+𝑉 )𝑞 −2𝑝dc])+𝒪(𝑞

3),

√𝑡1𝑡2 =𝑞(1− (2+ 𝑟)𝑝dc −
1
2(𝑞 −2𝑝dc)

𝑃sum
𝑃tot

)+𝒪(𝑞3).

(4.48)

The leading-order expression for the fidelity given in Equation (4.13) can now be obtained
by substituting these quantities into the equation for the fidelity above and disregarding
higher-order terms.

4.6 Calculating photon indistinguishability
In this section we derive the formulas for indistinguishability of Gaussian and Lorentzian
photons presented in the main text.

4.6.1 Gaussian
For the Gaussian wave packets given in Equation (4.20), 𝜇 as defined in Equation (4.19)
becomes

𝜇 = 1
√2𝜋 𝑒

−( 𝛿𝜔
𝜎 )

2

∫𝑑𝑥 exp(𝑖𝛿𝑡𝜎𝑥 − 1
2 [1− 𝑖Δ𝐿𝛽2𝜎

2]𝑥2 + 1
6 𝑖Δ𝐿𝛽3𝜎

3𝑥3) . (4.49)

By Taylor expanding in the TOD parameter 𝛽3 we can rewrite this as

𝜇 = 1
√2𝜋 𝑒

−( 𝛿𝜔
𝜎 )

2 ∞
∑
𝑛=0

𝑖𝑛(Δ𝐿𝛽3𝜎3)𝑛
𝑛!6𝑛 ∫𝑑𝑥𝑥3𝑛 exp(𝑖𝛿𝑡𝜎𝑥 − 1

2 [1− 𝑖Δ𝐿𝛽2𝜎
2]𝑥2) . (4.50)

This allows us to evaluate the indistinguishability at different orders of Δ𝐿𝛽3𝜎3 by evalu-
ating the moments of a Gaussian distribution. The 𝑛 = 0 term, which corresponds to 𝛽3 = 0,
is a simple Gaussian integral for which it holds that

∫
∞

−∞
𝑒−𝑎𝑥2+𝑏𝑥+𝑐𝑑𝑥 = 𝑒

𝑏2
4𝑎 +𝑐

√
𝜋
𝑎 . (4.51)

Therefore,

𝜇|𝛽3=0 = 𝑒−(
𝛿𝜔
𝜎 )

2 1
√1− 𝑖Δ𝐿𝛽2𝜎2)

𝑒−
(𝜎𝛿𝑡)2

2(1−𝑖Δ𝐿𝛽2𝜎2) . (4.52)
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The result in Equation (4.21) is then obtained through

𝑉 |𝛽3=0 = ||𝜇|𝛽3=0||
2
. (4.53)

To evaluate higher-order terms one can use

∫
∞

−∞
𝑥𝑛𝑒−𝑎𝑥2+𝑏𝑥+𝑐𝑑𝑥 = 𝑒

𝑏2
2𝑎 +𝑐

√
𝜋
𝑎
⎡⎢⎢
⎣
( 𝑏
2𝑎)

𝑛
+
⌊ 𝑛2 ⌋
∑
𝑗=1

(2𝑗𝑛 )(
𝑏
2𝑎)

𝑛−2𝑗 (2𝑗 −1)!!
(2𝑎)𝑗

⎤⎥⎥
⎦
. (4.54)

In fact, this allows for determining the indistinguishability to arbitrary order in the TOD.
Here, we only calculate the first order. By recognizing that the expression before the
square brackets in the equation above is equation to the result of the regular Gaussian
integral, we can then write

𝜇 = 𝜇|𝛽3=0 (1+ 𝑖𝐴Δ𝐿𝛽3𝜎3)+𝒪 ((Δ𝐿𝛽3𝜎3)2) (4.55)

with

𝐴 = (𝑖𝛿𝑡𝜎)3 +3𝑖𝛿𝑡𝜎(1− 𝑖Δ𝐿𝛽2𝜎2)
6(1− 𝑖Δ𝐿𝛽2𝜎2)3

. (4.56)

We then find

𝑉 = |𝜇|2 = 𝑉 |𝛽3=0 (1+2Δ𝐿𝛽3𝜎3Re(iA))+𝒪 ((Δ𝐿𝛽3𝜎3)2) . (4.57)

Evaluating this expression yields

𝑉 =𝑉 |𝛽3=0[1−
Δ𝐿𝛽3𝛿𝑡𝜎4

(1+Δ𝐿2𝛽22𝜎4)
2 ×(1−3Δ𝐿2𝛽22𝜎4

− 𝛿𝑡2𝜎2(1−Δ𝐿2𝛽22𝜎4)2
3(1+Δ𝐿2𝛽22𝜎4)

)]+𝒪(Δ𝐿2𝛽23𝜎6).
(4.58)

Collecting the higher-order terms gives Equation (4.23).

4.6.2 Lorentzian
Using the Lorentzian wave forms defined in Equation (4.24) for 𝛿𝜔 = 𝛿𝑡 = 𝛽3 = 0 we find

𝜇 = 1
𝜋 ∫

∞

−∞
𝑑𝑥 𝑒

±𝑖𝑐𝑥2

1+𝑥2 (4.59)

where ±𝑐 = 1
2Δ𝐿𝛽2𝜏

−2 and 𝑐 > 0 is a real number (the sign ± is the sign of Δ𝐿𝛽2). We rewrite
this as

𝜇 = 𝑒±𝑖𝑐 𝐼 (±𝑖𝑐) (4.60)

with

𝐼 (𝑦) = ∫
∞

−∞
𝑑𝑥 𝑒

−𝑦(1+𝑥2)

1+𝑥2 . (4.61)
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We can evaluate this integral by first differentiating it and then integrating it again. By
the fundamental theorem of calculus, it holds that

𝐼 (𝑦) = 𝐼 (0)+∫
𝑦

0
𝑑𝐼 (𝑧)
𝑑𝑧 𝑑𝑧. (4.62)

Both terms are readily evaluated;

𝐼 (0) = ∫
∞

−∞
𝑑𝑥

1+𝑥2 = atan(𝑥)|∞−∞ = 𝜋, (4.63)

∫
𝑦

0
𝑑𝐼 (𝑧)
𝑑𝑧 𝑑𝑧 =∫

𝑦

0
𝑑𝑧∫

∞

−∞
−𝑒−𝑧(1+𝑥2)𝑑𝑥

=∫
𝑦

0
𝑑𝑧𝑒𝑧 √

𝜋
𝑧

=−2 √𝜋 ∫
√𝑦

0
𝑒−𝑢2𝑑𝑢

=−𝜋 erf √𝑦,

(4.64)

where erf is the error function. Here we have assumed Re(z) ≥ 0 so that we could use
Equation (4.51) (which is equivalent to assuming Re(y) ≥ 0) and we made a change of
variables 𝑢 = √𝑦 , where √𝑦 is taken to mean the principal root of 𝑦. Therefore, we have
(for Re(y) ≥ 0)

𝐼 (𝑦) = 𝜋(1− erf √𝑦). (4.65)

In order to evaluate 𝜇 we need to evaluate the error function for a purely imaginary value.
In that case we can rewrite

∫
√±𝑖𝑐

0
𝑒−𝑢2𝑑𝑢 = √±𝑖∫

√𝑐

0
𝑒∓𝑖𝑣2𝑑𝑣,= 1

√2 ((1± 𝑖)𝐶( √𝑐)+ (1∓ 𝑖)𝑆( √𝑐)) .
(4.66)

Here we made the change of variable 𝑢 = √±𝑖𝑣 and we have introduced the Fresnel inte-
grals 𝐶(𝑥) = ∫𝑥0 cos(𝑡2)𝑑𝑡 and 𝑆(𝑥) = ∫𝑥0 sin(𝑡2)𝑑𝑡 . Therefore, we have

𝐼 (±𝑖𝑐) = 𝜋 − √2𝜋 ((1± 𝑖)𝐶( √𝑐)+ (1∓ 𝑖)𝑆( √𝑐)) . (4.67)

We can then find the indistinguishability as given in Equation (4.26) as

𝑉 = |𝜇|2 = |𝐼 (±𝑖𝑐)|2. (4.68)
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5
Requirements for upgrading

trusted nodes to a repeater chain
over 900 km of optical fiber

GuusAvis∗, Francisco Ferreira da Silva∗,
Joshua A. Slater and StephanieWehner.
We perform a numerical study of the distribution of entanglement on a real-world fiber grid
connecting the German cities of Bonn and Berlin. The connection is realized using a chain
of processing-node quantum repeaters spanning roughly 900 kilometers. We investigate how
minimal hardware requirements depend on the target application, as well as on the num-
ber of repeaters in the chain. We find that requirements for blind quantum computing are
markedly different than those for quantum key distribution, with the required coherence time
being around two and a half times larger for the former. Further, we observe a trade-off re-
garding how target secret-key rates are achieved when using different numbers of repeaters:
comparatively low-quality entangled states generated at a high rate are preferred for higher
numbers of repeaters, whereas comparatively high-quality states generated at a lower rate
are favored for lower numbers of repeaters. To obtain our results we employ an extensive
simulation framework implemented using NetSquid, a discrete-event simulator for quantum
networks. These are combined with an optimization methodology based on genetic algorithms
to determine minimal hardware requirements.

5.1 Introduction
In Chapter 3 we have determined hardware requirements for a single quantum repeater
on a real-world fiber grid. In this chapter, we extend these results in a number of key
ways. First, instead of only considering a single quantum repeater, we study chains of

∗These authors contributed equally.
This chapter is based on the preprint arXiv:2303.03234.
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up to seven processing-node quantum repeaters. We do so using a fiber grid that will be
used to constrcut a trusted-node network; upgrading such a network (which can be used
for QKD albeit without end-to-end security) by replacing trusted nodes by repeaters may
prove a particularly natural way of realizing early quantum-repeater networks [1]. Sec-
ond, we investigate how the requirements on the quantum hardware change depending
on how many repeaters are placed in the network. Finally, we also address the question
whether the required hardware quality depends on the application that needs to be exe-
cuted. Specifically, we consider two applications: QKD and VBQC, as discussed in Section
2.3.

5.1.1 Setup
We consider the quantum-network path depicted in Figure 5.1, with two end nodes situ-
ated in Bonn and Berlin separated by 917.1 km of optical fiber corresponding to 214.7 dB of
attenuation (at a telecomwavelength of 1550 nm). There are a total of sixteen locations be-

Figure 5.1: Map of Germany overlaid with a depiction of the fiber path connecting the German cities of Bonn and
Berlin that we investigate, provided by Deutsche Telekom (DT). The white circles represent locations where DT
plans to install trusted nodes and where, when building a repeater chain, processing nodes or heralding stations
could be placed. These locations are connected to each other through fiber drawn in black. The maximum
number of repeaters that can be placed between Bonn and Berlin in this fiber network is seven. We consider all
possible repeater placements, assuming that the heralding stations are placed as symmetrically as possible (there
are 986 such placements). The distance between Bonn and Berlin is 917.1 km via fiber, and approximately 480
km as the crow flies. The reason for such a large difference between the two values is that other major German
cities, such as Hannover and Dortmund, are connected through the fiber link as well.

tween the end nodeswhere equipment can be placed, namely repeater nodes and heralding
stations. Throughout this paper we assume that such a heralding station must be placed
between every pair or neighboring network nodes (i.e., end nodes or repeater nodes), as
these are required when entanglement is generated between those nodes through the in-
terference and measurement of entangled photons [2–9]. This data has been provided
to us by Deutsche Telekom (DT), Germany’s largest telecommunications provider, which
plans to install trusted nodes in the locations depicted in Figure 5.1.
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We assume neighboring nodes perform heralded entanglement generation [10, 11].
That is, entanglement consists of a series of attempts, and at the end of each attempt
the partaking nodes learn whether an entangled state was successfully created or not.
Examples of protocols for heralded entanglement generation are the double-click proto-
col [3, 6–9, 12], where photons are interfered and measured at a heralding station and
success is declared in case two detectors click, the single-click protocol [2, 4, 5, 13, 14],
where photons are also interfered but success is only declared in case one detector clicks,
and direct transmission of an entangled photon from one node to the next where it is
stored in heralded quantum memory [15–17]. Here, we employ a simplified model for
heralded entanglement generation. We do this so that the protocol and its interplay with
other components of the repeater chain can be readily understood and our modelling is
not overly platform specific. First of all, we assume that each node can perform heralded
entanglement generation with two neighbours in parallel, which is not currently possible
for all quantum-repeater platforms [18]. Second, we model the elementary-link states 𝜌
that are created upon the completion of a successful attempt as depolarized Bell states, i.e.,

𝜌 = 𝑊 |𝜙+⟩ ⟨𝜙+| + 1−𝑊
4 1, (5.1)

where 𝑊 is related to the fidelity 𝐹 to the ideal Bell state |𝜙+⟩ = 1
√2 (|00⟩+ |11⟩) as 𝐹 =

(1 + 3𝑊)/4 and 1 is the four-dimensional identity matrix. We note that real entangled
states generated in quantum-repeater chains are often not depolarized states [19] (see also
Chapter 3). Yet, as depolarized Bell states represent a worst-case type of noise [20], using
a depolarizing model ensures that we will not find hardware requirements that are artifi-
cially low due to this simplification. Third, we take the time 𝑡attempt required to perform
one attempt to be given by

𝑡attempt =
𝐿
𝑐 , (5.2)

where 𝐿 is the fiber distance between the two nodes and 𝑐 = 200,000 km/s is the speed of
light in fiber. That is, it corresponds to the communication time associated with sending
photons to a heralding station that is exactly in the center between two nodes and then re-
ceiving a message with the measurement outcome. This is equivalent to the time required
to directly transmit a photon from one node to the next. In reality it may be longer, as the
attempt time could be further limited by the rate of the photon source, local operations or
the synchronization of emission times [5, 21]. Finally, we take the success probability 𝑝el
of each attempt to be

𝑝el = 𝑝det ×10−
𝛼att
10 𝐿. (5.3)

Here, 𝑝det is the probability that an emitted photon that is led through fiber to a detector
is detected, given that it is not lost while travelling in fiber. This parameter combines
multiple sources of loss, such as the detector’s efficiency, the probability of emitting the
photon in the right mode and the probability of successfully sending the photon into the
fiber, but not the fiber’s attenuation losses. 𝛼att is the fiber’s attenuation coefficient (in
dB/km). Therefore, the success probability corresponds to the success probability of di-
rectly transmitting a photon between the nodes and measuring it there. We note that for
the double-click protocol the scaling with length would be the same, although the pref-
actor would be different (𝑝2det instead of 𝑝det, as two photons must be detected). For the
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single-click protocol the scaling would be more gentle (roughly replacing 𝐿 by 𝐿/2 in the
exponential), and while the prefactor would be linear in 𝑝det, there would also be a factor
that depends on the device settings (specifically on the bright-state parameters chosen at
both nodes, which tune a trade-off between success probability and state fidelity [5, 22]).
Additionally, we allow also for the possibility of multiplexed heralded entanglement gen-
eration [23–25]. This essentially consists of performing multiple attempts of generating
the same elementary-link state in parallel. Multiplexing can be done across multiple de-
grees of freedom, such as frequency, time or space. We remain agnostic regarding how
the multiplexing is performed, including it in our model as one parameter corresponding
to the number of multiplexing modes used, 𝑛. The probability of successfully generating
an elementary link assuming the use of multiplexing is then the probability that at least
one of the multiplexing modes succeeds:

𝑝multiple modes = 1−(1−𝑝el)
𝑛 . (5.4)

The nodes implement a swap-asap protocol [26, 27]. That is, as soon as a node holds
two entangled states, one shared with each of its neighbours, it performs an entanglement
swap in order to create an entangled state spanning a larger distance. We assume this swap
is realized deterministically, since we are modelling processing nodes that can implement
a swap using quantum gates and measurements on their processors. It may however in-
troduce noise, which we model as depolarizing. We quantify how well the swap can be
performed using the swap-quality parameter 𝑠𝑞 . The 𝑑-dimensional depolarizing noise
channel of parameter 𝑝 acts on a state 𝜌 as follows,

𝜌 → 𝑝𝜌 + (1−𝑝)1𝑑 . (5.5)

This means that, with probability 𝑝, 𝜌 is left unchanged, and with probability 1 − 𝑝 it is
mapped to the maximally-mixed state, i.e., all information is lost. Then, we model entan-
glement swapping as a two-qubit depolarizing channel (i.e., 𝑑 = 4) with parameter 𝑝 = 𝑠𝑞
followed by a perfect entanglement-swapping operation (i.e., a measurement in the Bell
basis [28]). We assume that the gates and measurements applied by the end nodes when
executing QKD and VBQC are noiseless and instantaneous. States stored in memory un-
dergo decoherence, which we model as exponential depolarizing noise, i.e.,

𝜌 → 𝑒−𝑡/𝑇 𝜌 +(1− 𝑒−𝑡/𝑇 ) 1

𝑑 , (5.6)

where 𝑡 is the time for which the state 𝜌 has been held in memory and 𝑇 is the memory’s
coherence time. To combat the effects of memory decoherence, entangled states are dis-
carded after a local cut-off time. The cut-off time is defined as follows: a timer starts once
a state is created in memory through the successful generation of an elementary link. If
the timer reaches the local cut-off time, the state is discarded. That is, the qubit holding
the state is reset. Additionally, the node sends a classical message along the chain so that
the qubit with which the first qubit was entangled can also be reset. As a result, a number
of elementary links in the chain must be regenerated (with the exact number depending
on how far away the entangled qubit was).
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5.1.2 Applications
Having discussed our modelling of the entanglement generation process between Bonn
and Berlin, we turn to the applications that will make use of the entanglement, QKD and
VBQC. We investigate the BB84 QKD protocol [29] (in its entanglement-based form [30])
between the end nodes situated in Bonn and Berlin. We record the entanglement genera-
tion rate and estimate the quantum bit error rate (QBER) that would have been obtained
when measuring the generated state in order to estimate the achievable asymptotic secret-
key rate (SKR) as per the following equation [31]:

SKR = 𝐸𝑅 ⋅max(0,(1−2𝐻(𝑄))), (5.7)

where 𝐸𝑅 is the entanglement-generation rate, 𝐻(𝑝) = −𝑝 log2(𝑝)− (1−𝑝) log2(1−𝑝) is the
binary entropy function and 𝑄 is the QBER. We note that all the noise sources we con-
sider are depolarizing, hence the entangled states generated will be of the form of the
state shown in Equation 5.5. Therefore, the QBER is the same irrespective of the mea-
surement basis. The end nodes do not wait until end-to-end entanglement is established
before measuring their qubits. Instead, they measure them as soon as they have estab-
lished entanglement with their nearest neighbours, as this minimizes the amount of time
states spend in memory, resulting in laxer hardware requirements.

We also investigate a two-qubit version of the VBQC protocol introduced in [32]. In
such protocols, a client wishes to delegate a computation to a powerful remote server in
a secure and verifiable fashion [33]. In particular, we investigate the repeated execution
of test rounds of the protocol, which consist of the server performing a controlled-Z gate
followed by a measurement. In these rounds the client knows the computation’s expected
outcome, and can therefore compare them to the observed outcomes. Under the assump-
tion of an honest server, wrong outcomes are a result of noise. We call this the BQC test
protocol. The fraction of successful BQC test protocol rounds is therefore a metric for the
quality of the entanglement used for transmitting qubits. We define the success rate as the
number of rounds of the protocol that can be executed with a successful result per time
unit. More concretely, if 𝑝𝑠 is the success probability of a test round and 𝑅𝑟𝑜𝑢𝑛𝑑𝑠 is the rate
at which rounds can be executed, the BQC-test-protocol success rate is given by:

𝑅BQC = 𝑅𝑟𝑜𝑢𝑛𝑑𝑠 ⋅ 𝑝𝑠 . (5.8)

While the BQC test protocol is in and of itself not an interesting application of a quantum
network, it can be considered a benchmark for howwell the network is suited to VBQC and
possibly other multi-qubit applications. The fact that, in contrast with QKD, it requires the
distribution of multiple entangled states and the storage of qubits between rounds makes
it a more meaningful benchmark for quantum-network applications that require multiple
live qubits contemporaneously. Further details on the BQC test protocol can be found in
Section 5.10.

The two applications we have just introduced define our performance targets.

5.1.3 Minimal hardware requirements
We wish to find the minimal hardware requirements that are needed to realize different
target SKRs and BQC-test-protocol success rates. These correspond to the minimal im-
provements over state-of-the-art hardware parameters that enable meeting the targets.
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We phrase the problem of finding minimal hardware requirements as a constrained op-
timization problem. Namely, we wish to minimize the hardware improvement while en-
suring that the constraint induced by the performance target is met. This constraint is
relaxed through a process known as scalarization [34, 35], resulting in a single-objective
optimization problem, in which the quantity to be minimized is the sum of the cost asso-
ciated to the hardware improvement and a penalty term for the rate target. The resulting
cost function is given by:

𝐶 = 𝑤1(1+(𝑅𝑡𝑎𝑟𝑔𝑒𝑡 −𝑅𝑟𝑒𝑎𝑙))
2

⋅Θ(𝑅𝑡𝑎𝑟𝑔𝑒𝑡 −𝑅𝑟𝑒𝑎𝑙)
+𝑤2𝐻𝐶 (𝑥1, ..., 𝑥𝑁 ) ,

(5.9)

where 𝐻𝐶 is the hardware improvement cost associated to parameter set {𝑥1, ..., 𝑥𝑁 }, 𝑤𝑖 are
the weights assigned to the objectives, Θ is the Heaviside step function, 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 is the rate
target and 𝑅𝑟𝑒𝑎𝑙 is the rate of application execution achieved by the parameter set. We
note that 𝑅𝑟𝑒𝑎𝑙 and 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 can be either a SKR or a BQC-test-protocol success rate. 𝐻𝐶
maps sets of hardware parameters to a number, the cost, which represents how large of
an improvement over the state-of-the-art they represent. In order to compute this cost
consistently across different parameters, we use no-imperfection probabilities as done in
Chapter 3. By no-imperfection probability, we mean the probability that there is no error
or loss associated to a given parameter. For example, the no-error probability associated
to a photon detection probability 𝑝det (defined in Section 7.2) of 0.1 is 0.1. For the no-error
probabilities associated to the other hardware parameters, see Section 5.9.1. We say that
a parameter is improved by a factor of 𝑘 if its no-imperfection probability becomes 𝑘√𝑝𝑛𝑖 ,
with 𝑝𝑛𝑖 being the state-of-the-art no-imperfection probability. For example, improving
the no-imperfection probability of 0.1 associated to 𝑝det = 0.1 by a factor of 5, we get a
no-imperfection probability of ≈ 0.63, corresponding to 𝑝det ≈ 0.63. The hardware cost
associated to a set of parameters is given by the sum of the improvement factors of the
parameters. The weights 𝑤𝑖 are chosen such that the term of the overall cost function
corresponding tomeeting the rate target is always larger than the one corresponding to the
hardware cost, ensuring that even though we have relaxed the constraints by scalarizing,
we are still effectively requiring that the minimal hardware requirements are such that
the performance target is met. To ensure this, we picked 𝑤1, 𝑤2 ≫ 𝑤3, such that 𝑤1(1 +
(𝑅𝑡𝑎𝑟𝑔𝑒𝑡 −𝑅𝑟𝑒𝑎𝑙)

2 )Θ(𝑅𝑡𝑎𝑟𝑔𝑒𝑡 −𝑅𝑟𝑒𝑎𝑙) ≫ 𝑤2𝐻𝐶 (𝑥1, ..., 𝑥𝑁 ). Specifically, we set 𝑤1 = 1×10100
and 𝑤2 = 1. No particular heuristic was used to select these numbers.

We note that the hardware cost is meant only to represent a measure of the hardness
of improving the hardware to a certain level, and not any form of monetary cost. At
present quantum repeater systems are research setups, with commercial solutions only
starting to emerge. Therefore, assigning any specific commercial cost numbers would be
too speculative at this point, and would require an in-depth study outside the scope of this
project.

5.1.4 State-of-the-art parameters
Computing minimal hardware requirements as described in Section 5.1.3 is done with re-
spect to a baseline over which we are improving. In this work, this baseline consists of
parameters measured for color centers in diamond, as they are physical systems using
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which various quantum-networking primitives have been demonstrated. These include
long-lived quantum memories [36], remote entanglement generation [6, 7], quantum tele-
portation [12], entanglement distillation [13], entanglement swapping [37] and a three-
node network [5]. We do not impose that all parameters must have been demonstrated
in the same experiment or even with the same color center. The parameters we consider
are shown in Table 5.1. Details on how these parameters were determined can be found

Parameter Value
Coherence time 1 s [38]

Number of multiplexing modes 1
Fidelity of elementary links 0.83 [7]
Photon detection probability 0.255 [15]

Swap quality 0.83 [13, 39]

Table 5.1: State-of-the-art color-center parameters. We note that not all of these parameter values have been
realized in a single experiment. We have number of modes as 1 without reference because to the best of our
knowledge multiplexed entanglement generation has not been demonstrated using color centers.

in Section 5.7.

5.1.5 Determining minimal hardware requirements
In order to determine minimal hardware requirements, we need to (i) be able to evaluate
how a given set of hardware parameters performs and (ii) optimize over the parameter
space to find the parameters that minimize the requirements while still performing ade-
quately (i.e., the parameters that minimize the cost function defined in Equation (5.9)).

We evaluate the performance of hardware parameters using general processing-node
repeater-chain simulations developed inNetSquid, a discrete-event based quantum-network
simulator [26]. The simulations are general in the sense that they can be used to inves-
tigate swap-asap repeater chains of arbitrary size and spacing (i.e., nodes and heralding
stations need not be equidistant). They take into account time-dependent noise, classical
control communication and the constraints imposed by a real-world fiber network. The
code for executing such simulations has been made publicly available at [40] and is largely
based on the simulations presented in Cahpter 3. Our code that utilizes these simulations
to produce the results here presented can be found at [41] (and the corresponding data
at [42]).

Given that we can evaluate the performance of any parameter set on the Bonn-Berlin
path, we perform parameter optimization using a genetic algorithm [43] to minimize the
cost function defined in Section 5.1.3 using the high-performance computing cluster Snel-
lius. For further details, see Section 5.9.

5.2 Impact of number of repeaters on hardware require-
ments

In this section we answer the question of how hardware requirements are affected by
the number of repeaters deployed in a quantum network. Specifically, we investigate the
minimal hardware requirements for performing BB84 between the German cities of Bonn
and Berlin at a key rate of 10 Hz. We assume the cities are connected by the network path
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shown in Figure 5.1. We determine what these minimal requirements are in two cases:
(i) optimizing over the number of repeaters and (ii) restricting the number of repeaters to
specific values. In both cases we optimize over the placement of the repeaters.

5.2.1 Absolute minimal number of multiplexing modes

Before determining minimal requirements, we aim to answer the question of what are the
absolute minimal number of multiplexing modes required to perform QKD between the
German cities of Bonn and Berlin at rates of 1, 10 and 100 Hz. By absolute minimal number
of multiplexing modes, we mean the minimum number of multiplexing modes that is re-
quired if the only source of imperfection in the setup is fiber attenuation. This provides a
lower bound on the number of multiplexingmodes in the minimal hardware requirements,
as the introduction of other hardware imperfections can only lead to more stringent de-
mands on the number of modes. We emphasize that for the purposes of answering this
questionwe are temporarily setting aside the real-world fiber path introduced in Figure 5.1.
Instead, we are going to consider a symmetrized version of that path. By this we mean a
path with the same total length and attenuation, but in which nodes and heralding stations
are placed equidistantly, and where the attenuation is evenly distributed throughout the
path, i.e., all elementary links have the same attenuation. The reason for doing so is that
the minimal number of modes for this path is a lower bound for the same quantity on any
other path with the same total length and attenuation. To see this, we note that it has been
shown in Chapter 4 that repeater chains of the type studied here perform best when all
nodes are positioned as symmetrically as possible. This implies that such a chain will have
less stringent hardware requirements to attain a given performance target in comparison
to chains which are subject to real-world restrictions such as the ones imposed by the fiber
path shown in Figure 5.1, and, therefore, also less stringent requirements on the number
of multiplexing modes.

Determining the absoluteminimal number of multiplexingmodes serves two purposes.
First, it allows us to limit the search space of the optimization we run for finding minimal
hardware requirements. Second, it gives us a general idea of how many repeaters might
be required to achieve the target with reasonable hardware demands. For example, if for
a specific number of repeaters hundreds of thousands of multiplexing modes are required
to meet the target without any noise sources, that may indicate that using that number of
repeaters is not practically feasible.

In Figure 5.2 we show the absolute minimal number of modes required to distribute
secret key at rates of 1, 10 and 100 Hz using BB84 in the symmetrized Bonn - Berlin path.
We find that more multiplexing modes are required for higher rate targets, and that this
number grows superexponentially as the number of repeaters decreases, so as to counter-
act the effects of photon loss in fiber. Further, we find that achieving a SKR of 10 Hz with
fewer than 3 repeaters requires hundreds of thousands of multiplexing modes even in the
absence of any sources of noise. As the hardware cost (defined in Section 5.1.3) associ-
ated with so many multiplexing modes far outweighs typical values for the minimal total
hardware cost found for three or more repeaters we limit the rest of our investigation to
configurations with three or more repeaters.
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Figure 5.2: Minimal number of multiplexing modes required to achieve 1, 10 and 100 Hz of SKR over 917.1 km of
fiber with a total of 214.7 dB of attenuation, corresponding to a symmetrized version of the path between Bonn
and Berlin that we investigate. That is, for 𝑁 repeaters, the symmetrized path has 𝑁 +1 elementary links, each of
length 917.1/(𝑁 +1) km and of attenuation 214.7/(𝑁 +1) dB.We assume that there are no hardware imperfections,
and that repeaters are uniformly spaced.

5.2.2 Minimal hardware requirements for quantum-key distribution
Wenow turn our attention to theminimal hardware requirements for performing quantum-
key distribution at a rate of 10 Hz using the BB84 protocol. In particular, we investigate
them along the path connecting Bonn and Berlin depicted in Figure 5.1. As Figure 5.2
illustrates, the number of repeaters used can have a considerable impact on the hardware
requirements. Further, it is expected that the same is true for the placement of repeaters
and heralding stations (see Chapters 3 and 4). With this in mind, we ask two questions:
(i) what are the minimal hardware requirements when allowing for the placement of up
to the largest number of repeaters that fits in the fiber path (seven) and (ii) what are the
minimal hardware requirements when restricting the maximum number of repeaters to
five. We expect that this will lead to different parameter regimes, illustrating two possible
directions towards achieving the target performance.

In Figure 5.3 we show the directions along which hardware must be improved for dis-
tributing secret key at rates of 10 Hz using BB84 in the network path connecting Bonn
and Berlin. The corresponding minimal hardware requirements can be found in Table 5.2.
In each case we find that the hardware requirements are minimized when the number of
repeaters used is maximized. That is, for seven repeaters in case (i) and five repeaters in
case (ii). Hardware requirements are more stringent in case fewer repeaters are used. In
particular, the overall photon detection probability excluding attenuation in fiber must be
improved to a much larger degree (0.79 vs 0.36) if only five repeaters are used. This is
needed to overcome the increased attenuation losses associated with the longer elemen-
tary links. The coherence time required when using five repeaters is also larger than the
time required when using seven repeaters (4.2 s vs 3.1 s). This can be explained by the fact
that keeping the entanglement-generation rate high is more costly in case of five repeaters.
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Figure 5.3: Directions along which hardware must be improved to enable attaining a secret-key rate of 10 Hz be-
tween the German cities of Bonn and Berlin. The blue (orange) line was obtained by performing an optimization
in which the algorithm was allowed to use a maximum of seven (five) repeaters. The further away the line is
from the center of the plot towards a given parameter, the more that parameter must be improved with respect
to the current state-of-the-art. Improvement is depicted for the following parameters, clockwise from the top:
overall photon detection probability excluding attenuation in fiber, number of multiplexing modes, fidelity of
entanglement swap, coherence time of memory qubits and fidelity of elementary links. Note the use of a loga-
rithmic scale.
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Application QKD BQC
Rate (Hz) 1 10 100 10

Number of repeaters 7 Max 5 Max 7 7 7
Coherence time (s) 1.81 4.23 3.14 10.1 7.99

Number of multiplexing modes 175 544 592 799 172
Fidelity of elementary links 0.989 0.995 0.987 0.996 0.845

Photon detection probability 𝑝det 0.604 0.785 0.360 0.804 0.552
Swap quality 0.996 0.996 0.997 0.997 0.881

Table 5.2: Minimal hardware requirements to achieve 1, 10 and 100 Hz of secret-key rate and 10 Hz of blind quan-
tum computing test protocol success rate between the German cities of Bonn and Berlin. The photon detection
probability 𝑝det is the probability of a photon being detected given that it is not lost in fiber. It combines multiple
sources of loss, such as the detector’s efficiency, the probability of emitting the photon in the right mode and the
probability of successfully sending the photon into the fiber. More details can be found in Section 7.2 and 5.7.

Therefore keeping the QBER small to extract as many secret bits as possible from each en-
tangled state is more valuable. Furthermore, since the entanglement-generation rate is
smaller for five repeaters, qubits are stored for longer times before they can be swapped
and hence a larger coherence time is required to achieve the same QBER. We study this
interplay further in Section 5.2.3. Finally, we notice that while the requirements on most
hardware parameters are more stringent for five repeaters as compared to seven repeaters,
this is not the case for the requirement on the swap quality. In fact, the requirement on the
swap quality is even slightly looser for five repeaters (0.996 vs 0.997). This is explained by
the fact that when there aremore repeaters, there aremore entanglement swaps associated
with every end-to-end entangled state. Therefore, when there are more repeaters the final
error rate is more sensitive to noise in the swaps, creating a larger incentive to improve
the associated parameter in the seven-repeater case as compared to the five-repeater case.

5.2.3 Secret-key rate: quantum-bit error rate and entanglement gen-
eration rate

A specific value for the SKR can be obtained through many different pairs of values for the
entanglement-generation rate and the QBER, as follows from Equation (5.7). This opens
up a trade-off between the entanglement generation rate and the QBER, as briefly dis-
cussed in Section 5.2.2. Here, we investigate this trade-off more deeply by repeating our
process for determining minimal hardware requirements to achieve an SKR of 10 Hz while
keeping the number of repeaters a fixed parameter. We did this for 4, 5, 6 and 7 repeaters.
For each case, we still optimize over all possible placements of the repeaters in the fiber
grid. In Figure 5.4 we show the QBER and entanglement-generation rate achieved with
the minimal hardware requirements for the best setup found by our optimization proce-
dure for varying number of repeaters. We observe two different regimes. For 4 and 5
repeaters, which we name the ‘few-repeater’ regime, we find a low QBER (∼ 5%) and an
entanglement-generation rate of 20 - 30 Hz. On the other hand, for 6 and 7 repeaters, i.e.,
the ‘many-repeater’ regime, we find a comparatively higher QBER (∼ 9%) and an entan-
glement generation rate of almost 80 Hz. In other words, in the many-repeater regime,
distributing many entangled pairs of comparatively lower quality requires less hardware
improvement. On the other hand, in the few-repeater regime it seems to be more feasible
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Figure 5.4: QBER and entanglement generation rate obtainedwith theminimal hardware requirements to achieve
10 Hz of SKR in the Bonn - Berlin setup with different numbers of repeaters, up to seven, the maximum allowed
in the setup we study. The error bars are given by the standard error of the mean. Each data point corresponds
to 2000 simulations of an entanglement-based BB84 protocol.

to distribute fewer pairs of comparatively higher quality. As the number of repeaters used
decreases, it becomes harder to overcome the effect of fiber attenuation, which makes im-
proving the quality of the entangled states delivered amore attractive option for increasing
the SKR.

We finalize by remarking that, perhaps surprisingly, the variance in the time it takes
to distribute one entangled state appears to grow as the number of repeaters in the chain
increases (as shown by the increasing error bar on the rate in Figure 5.4). While interesting,
further investigation is beyond the scope of this work.

We show the repeater placement corresponding to theminimal hardware requirements
found when optimizing over the number of repeaters and their placement in Section 5.8.

5.3 Impact of target on hardware requirements
We now turn our attention to the impact of the performance target on the hardware re-
quirements. We approach this from two angles: (i) the impact of varying the SKR target
and (ii) the impact of holding the required rate constant but changing the target quantum-
network application. It is clear that, given the same repeater chain, increasing the target
rate will lead to more stringent requirements. However, it is not a priori obvious if the
relative importance of the different parameters will change as the target rate is increased.
It is further not obvious how changing the target application impacts the hardware re-
quirements. These are questions of practical relevance: given that one wishes to build a
repeater chain capable of distributing entanglement to perform QKD at a rate of 100 Hz,
it seems crucial to know whether building a repeater chain for performing QKD at a rate
of 1 Hz is a step in the right direction. In other words, this investigation can shed light
on whether the process of improving hardware for quantum-repeater chains should be
approached incrementally. The same question holds for the different target applications.
It is likely that quantum repeaters will initially be used for QKD as they begin to replace
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their trusted-node predecessors, and only progressively start to be used for applications
that require multiple live qubits. We would then like to know whether the hardware im-
provements necessary to perform QKD using quantum repeaters are similar to the ones
for multi-qubit applications.

5.3.1 Requirements for different secret-key-rate targets
In Figure 5.5 we show the directions along which hardware must be improved for distribut-
ing secret key at rates of 1, 10 and 100 Hz using BB84 in the network path connecting Bonn
and Berlin. The corresponding minimal hardware requirements can be found in Table 5.2.

Figure 5.5: Directions along which hardware must be improved to enable attaining secret-key rates of 1 (blue,
full), 10 (orange, dashed) and 100 Hz (green, dotted) between the German cities of Bonn and Berlin. The further
away the line is from the center of the plot towards a given parameter, the more that parameter must be improved
with respect to the current state-of-the-art. Improvement is depicted for the following parameters, clockwise
from the top: overall photon detection probability excluding attenuation in fiber, number of multiplexing modes,
fidelity of entanglement swap, coherence time of memory qubits and fidelity of elementary links. Note the use
of a logarithmic scale.

The hardware requirements become more stringent as the SKR target grows. Further, the
coherence time requires significantly less improvement in the 1 Hz case when compared
to 10 and 100 Hz. This comes as something of a surprise, given that we expect qubits to
spend less time in memory for higher SKR values, as these should correspond to higher
entanglement-generation rates (and hence lower waiting times). In order to further inves-
tigate why this happens, we show in Figure 5.6 the QBER and entanglement generation
rate achieved with the minimal hardware requirements for the best setup found by our
optimization procedure for different SKR targets. We find that both the entanglement gen-
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Figure 5.6: QBER and entanglement generation rate obtainedwith theminimal hardware requirements to achieve
1, 10 and 100 Hz of SKR in the Bonn - Berlin setup using the configuration found to be optimal for 10 Hz. The
error bars are given by the standard error of the mean. Each data point corresponds to 2000 simulations of an
entanglement-based BB84 protocol.

eration rate and 1 −QBER increase with the target SKR. We conjecture that the increase
in coherence time observed for higher SKR targets is due to the necessary entanglement
generation rate being very high. In fact, it is so high that it requires a huge number of
multiplexing modes, which in turn imply a very high cost. This makes it comparatively
less costly to extract more key from each entangled state than to generate states faster.

5.3.2 Requirements for secret-key and blind-quantum-computing suc-
cess rates

In Figure 5.7 we show the directions along which hardware must be improved for per-
forming QKD and BQC at a rate of 10 Hz in the network path connecting Bonn and Berlin.
The corresponding minimal hardware requirements can be found in Table 5.2. It is plain
to see that the two applications require improvements in distinct parameters. In partic-
ular, we emphasize the much larger coherence time required for BQC, corresponding to
roughly a factor of 2.5 difference (7.99 vs 3.14 seconds). This can be explained by the fact
that BQC, unlike QKD, requires two entangled pairs to be alive at the same time, implying
that one entangled pair must be stored at the end nodes while the second one is generated.
Further, the fact that the minimal coherence time required for BQC is high means that
comparatively less noise will be caused by decoherence. This, in turn, means that in order
to achieve the same state quality, the swap quality and the elementary link fidelity need
not be as good.

We have also observed that there is a significant difference in the entanglement gen-
eration rates achieved by the parameter sets corresponding to the improvements shown
in Figure 5.7. The minimal hardware requirements for QKD achieve an entanglement
generation rate of almost 80 Hz, whereas the ones for the BQC-test-protocol result in an
entanglement generation rate of around 20 Hz. In the same vein as what was discussed
in Section 5.2.3, this is a result of the SKR and the BQC test protocol success rate being
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Figure 5.7: Directions along which hardware must be improved to enable attaining secret-key (QKD, blue) and
blind quantum computing (BQC, orange) test protocol rates of 10 Hz between the German cities of Bonn and
Berlin. The further away the line is from the center of the plot towards a given parameter, the more that param-
eter must be improved with respect to the current state-of-the-art. Improvement is depicted for the following
parameters, clockwise from the top: overall photon detection probability excluding attenuation in fiber, number
of multiplexing modes, fidelity of entanglement swap, coherence time of memory qubits and fidelity of elemen-
tary links. Note the use of a logarithmic scale.

composite quantities, depending not only on the rate at which entangled states are deliv-
ered, but also on the quality of these states. We believe that the difference observed in
entanglement generation rate between the two applications is due to the fact that there is
a threshold state quality to obtain non-zero secret-key (∼ 11% QBER or equivalently ∼ 0.84
fidelity, both under the assumption of depolarizing noise). Such a threshold does not ex-
ist for the BQC test protocol. This fundamental difference means that the state quality
requirements are more stringent in the QKD case, making improving the entanglement
generation rate a more attractive possibility. We do however note that even though the
BQC test protocol does not impose a threshold on state quality, the complete VBQC pro-
tocol proposed in [32] does.

5.4 Conclusion
We have determined minimal hardware requirements for generating entanglement be-
tween two nodes separated by roughly 900 km of real-world optical fiber using a chain
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of processing-node quantum repeaters. We investigated both how such requirements de-
pend on how many repeaters are employed and on the quantum-network application for
which the entanglement is used. Notably, we have found that the hardware requirements
for performing quantum key distribution and a simplified form of blind quantum comput-
ing are qualitatively different, with blind quantum computing requiring a coherence time
which is roughly a factor of 2.5 larger for the same target rate in the setup we investi-
gated. We further observed that given that most metrics one is interested in when evalu-
ating quantum-network performance depend on both the rate at which entanglement is
generated and its quality, there is room for trade-offs: for example, we found that when
employing a large number of repeaters to achieve a given secret-key rate in the setup we
studied it is easier to generate many entangled pairs of comparatively lower quality, with
the opposite being true if fewer repeaters are used.

The blind-quantum-computing requirements we determined were obtained for a sim-
plified form of the protocol, which is useful as a benchmark for quantum-network per-
formance but is not an interesting application in and of itself. It would be interesting to
learn how the results presented would change if instead a complete verified blind quantum
computing protocol such as the one introduced in [32] were studied.

5.5 Data availability
The data presented in this work have been made available at https://doi.org/10.4121/
22193539 [42].

5.6 Code availability
The code that was used to perform the simulations and generate the plots in this paper
has been made available at https://gitlab.com/softwarequtech/simulation-code-for-
requirements-for-upgrading-trusted-nodes-to-a-repeater-chain-over-900-km-of-optical-
fiber [41].

5.7 Baseline parameters
Here we discuss howwe determined the baseline hardware parameters shown in Table 5.1.
We did so by following two steps: (i) finding state-of-the-art color-center hardware pa-
rameters in the literature and (ii) converting these to the hardware model we employ. In
Table 5.3 we show the relevant state-of-the-art color center parameters we have identified
and provide their respective references. We now discuss how these are converted to the
parameters shown in Table 5.1. The elementary-link fidelity and number of modes can
be used directly without conversion. Color-center memories have both an electron qubit
(also known as communication qubits due to their optical interface) and possibly multi-
ple carbon qubits (also known as memory qubits due to being long-lived). We assume a
‘best-of-both-worlds’ situation, in which the qubits in our model are both endowed with
an optical interface that allows them to generate entanglement and a long (1s baseline)
memory lifetime. This simplification allows us to treat all qubits in the nodes equally. As
explained in Section 7.2 we combine all photon-related inefficiencies, with the exception
of fiber attenuation, into one parameter, 𝑝det. This is done as follows:

𝑝det = 𝑝photon interface ⋅ 𝑝conv, (5.10)

https://doi.org/10.4121/22193539
https://doi.org/10.4121/22193539
https://gitlab.com/softwarequtech/simulation-code-for-requirements-for-upgrading-trusted-nodes-to-a-repeater-chain-over-900-km-of-optical-fiber
https://gitlab.com/softwarequtech/simulation-code-for-requirements-for-upgrading-trusted-nodes-to-a-repeater-chain-over-900-km-of-optical-fiber
https://gitlab.com/softwarequtech/simulation-code-for-requirements-for-upgrading-trusted-nodes-to-a-repeater-chain-over-900-km-of-optical-fiber
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Parameter State-of-the-art value
Number of modes 1

Carbon coherence time 1 s [38]
Elementary-link fidelity 0.83 [7]

Electron initialization fidelity 0.995 [5]
Carbon initialization fidelity 0.99 [38]

Electron-carbon two-qubit gate fidelity 0.97 [13]
Electron single-qubit gate fidelity 0.995 [5]
Carbon single-qubit gate fidelity 0.999 [39]

Electron readout fidelity 0.93(0) 0.995(1) [37]
Photonic interface efficiency 0.855 [15]

Frequency conversion efficiency 0.3 [44]

Table 5.3: State-of-the-art color center parameters. We have number of modes as 1 without reference because to
the best of our knowledge multiplexed entanglement generation has not been demonstrated using color centers.

where 𝑝photon interface is the photonic interface efficiency and 𝑝conv is the frequency-conversion
efficiency. This results in the 0.255 number reported in Table 5.1. We note that the exper-
iment reported in [15] does not consist of entanglement generation through a heralding
station, as we assume in this paper. We have made a best guess of how the parameters
reported there would translate to a scheme where entangled photons are interfered and
measured at a heralding station. An entanglement swap in a color center (this concrete
example was demonstrated using a nitrogen-vacancy center) consists of single-qubit gates
on both carbon and electron, two-qubit gates and measurement and initialization of the
electron (see Figure 17 in Supplementary Note 5 of [26] for an image of the circuit). We
make the simplifying assumption that all errors are depolarizing. First, we convert each of
the initialization and gate fidelities in Table 5.3 to depolarizing parameters (in accordance
with Equation (5.5)), and then multiply the depolarizing parameters corresponding to all
the operations in the circuit together to obtain the swap quality (which parametrizes a
depolarizing channel as detailed in Section 7.2), i.e.,

𝑠𝑞 =(1−𝑝carbon)2 ⋅ (1−𝑝electron-carbon) ⋅ (1−𝑝electron)2
⋅ (1−𝑝electron init) ⋅ (1−𝑝electron meas)2 ⋅ (1−𝑝retrieve),

(5.11)

where 𝑝carbon is the depolarizing parameter of the carbon single-qubit gate, 𝑝electron-carbon
of the two-qubit gate, 𝑝electron of the electron single-qubit gate, 𝑝electron init of the electron
initialization, 𝑝electron meas of the electron measurement and 𝑝retrieve of the retrieve oper-
ation (maps the carbon state to the electron, see Figure 17 (b) in Supplementary Note 5
of [26]).

5.8 Repeater placement chosen by optimization method
As described in Section 5.2.2, we determined minimal hardware requirements for perform-
ing QKD at a rate of 10 Hz over the network path depicted in Figure 5.1. In doing so, we
optimized over the number of repeaters used and their placement. We then used the place-
ment our optimization method found to perform best for determining minimal hardware
requirements for other performance targets, as described in Section 5.3. In Figure 5.8 we
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show this placement. In Table 5.4 we show the lengths and attenuations of the elementary

Figure 5.8: Map of Germany overlaid with a depiction of the fiber path connecting the German cities of Bonn
and Berlin that we investigated. The white circles represent end nodes, in Bonn and Berlin, and repeater nodes
elsewhere. This placement corresponds to the best found by our optimizationmethod, in the sense that it allowed
for minimization of hardware requirements for a target secret-key rate of 10 Hz.

links defined by the repeater placement.

Link Length (km) Attenuation (dB)
Bonn - Wuppertal 138.9 32.8

Wuppertal - Münster 133.2 31.4
Münster - Warmsen 126.2 29.6
Warmsen - Hannover 97.2 22.7
Hannover - Liebenburg 122.0 28.4
Liebenburg - Magdeburg 115.5 26.9

Magdeburg - Havel 103.9 24.3
Havel - Berlin 80.2 18.6

Table 5.4: Length and attenuation of elementary links depicted in Figure 5.8.

In order to optimize over the number of repeaters and their placement, we have first
generated all the 986 possible ways repeaters can be placed in the network (such that
there is still space for the required heralding stations between repeaters and end nodes).
To each configurationwe assigned a number 𝑟 corresponding to the number of repeaters in
the network. Then, for each configuration we computed the chain asymmetry parameter
defined as (see Chapter 4)

𝒜chain =
1
𝑟

𝑟
∑
𝑖=1

|𝐿left,𝑖 −𝐿right,𝑖 |
𝐿left,𝑖 +𝐿right,𝑖

, (5.12)

where 𝐿left,𝑖 (𝐿right,𝑖) is the distance between repeater node 𝑖 and its left- (right-) hand
neighboring node. Next, we ordered all the configurations with the same value of 𝑟 by
their values of 𝒜chain, and label their position in this ordering as 𝑛. This number is then
an identifier for how asymmetric (as quantified by the chain asymmetry parameter) a con-
figuration is relative to the other configurations with the same number of repeaters. 𝑛 = 0
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corresponds to the most symmetric setup and 𝑛 =𝑚𝑟 −1 corresponds to the most asymmet-
ric setup, where 𝑚𝑟 is the number of configurations with 𝑟 repeaters. All configurations
are then stored in a table by their values for 𝑟 and 𝑛.

Then, when we optimize over the hardware parameters, we also optimize over two
additional parameters. These are 𝑟 (the number of repeaters) and 𝑎, which is a number
between zero and one. Given a pair (𝑟 ,𝑎), the configuration that is used is chosen as
follows. First, the number 𝑎 is mapped to a value of 𝑛 using

𝑛 = round(𝑎(𝑚𝑟 −1)), (5.13)

(where round denotes rounding to the closest integer) i.e., it uses 𝑛 = 0 for 𝑎 = 0 and 𝑛 =
𝑚𝑟 −1 for 𝑎 = 1. Second, the unique configuration defined by the values of 𝑟 and 𝑛 is taken
from the table and used in the simulation. The reason why we optimize over 𝑎 instead of
over 𝑛 directly is that 𝑎 quantifies how asymmetric the chosen configuration is in a way
that is independent of 𝑟 (the range is always between 0 and 1, instead of between 0 and
𝑚𝑟 −1). This makes it easier to vary 𝑟 and 𝑎 independently compared to 𝑟 and 𝑛.

5.9 Optimization method
In this section we provide more details regarding our optimization methodology. This
methodology is based on genetic algorithms, which come in several different flavors. Our
particular implementation is heavily based on the one introduced in [43] and used in [45,
46] and Chapter 3, to which we refer the interested reader. There are two things that
we do discuss in this section. First, as the parameter set we use here is different than in
[43, 45, 46] and Chapter 3, we explain in Section 5.9.1 how we define the probability of no
imperfection for each of these, as required by the definition of the hardware cost function
𝐻𝑐 in Section 5.1.3. Second, we have employed a simple local optimization performed
on the best solution found by the genetic algorithm. This local optimization method has
been used and described in [45], but has not yet appeared in a peer-reviewed publication.
We therefore explain it below in Section 5.9.2. Additionally, we also give the details of
the machine used to perform the actual optimizations in Section 5.9.3. Finally we would
like to remark that the code for our implementation, together with the tools required for
integration with NetSquid simulations, is publicly accessible at [47].

5.9.1 No-imperfection probabilities
We show in Table 5.5 the probability of no-imperfection for all parameters considered in
our hardware models.

We start by defining the quantity 𝑝surv baseline that appears in this tablemore rigorously.
It is computed as follows,

𝑝surv baseline = 10−𝛼att/10, (5.14)

with 𝛼att given by,

𝛼att = 2
𝑁

𝑁
∑
𝑖=1

𝛼att,𝑖𝐿𝑖 . (5.15)

Here, 𝐿𝑖 is the length of fiber segment 𝑖 in the fiber path under consideration, 𝛼att,𝑖 is the
attenuation coefficient of fiber segment 𝑖 (i.e., the amount of attenuation per unit length),
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Parameter Probability of no-imperfection
Photon detection probability 𝑝det 𝑝det

Coherence time 𝑇 𝑒−1/𝑇
Swap quality 𝑠𝑞 𝑠𝑞

Elementary link fidelity 𝐹𝑒𝑙 𝐹𝑒𝑙
Number of multiplexing modes 𝑁 1−(1−𝑝surv baseline)

𝑁

Table 5.5: Probabilities of no-imperfection for hardware parameters we optimized over in this work. 𝑝surv baseline
(defined in Equation (5.14)) is the probability of one photon (i.e., no multiplexing) surviving traveling an elemen-
tary link made up out of two times the average fiber segment in the fiber path we study (shown in Figure 5.1).

and 𝑁 is the total number of fiber segments in the path. For the fiber path considered in
this paper (i.e., the one depicted in Figure 5.1), 𝑁 = 17. An elementary link between two
neighboring nodes must consist of at least two fiber segments to allow for the installation
of a heralding station. 𝛼att can then be thought of as the total amount of attenuation on an
elementary link made up of two times the average fiber segment. This means 𝑝surv baseline
is the probability of a photon surviving traveling through this average elementary link.
The reason for constructing this quantity is that it provides a baseline for the photon
survival probability in fiber, which can then be improved upon by increasing the number
of multiplexing modes, thereby enabling us to associate a cost function.

The coherence time 𝑇 represents a timescale for depolarization, with the probability of
the state becoming maximally mixed over a period of time 𝑡 being given by 1−𝑒−𝑡/𝑇 , with
the respective probability of no-imperfection then being 𝑒−𝑡/𝑇 . In this case, improving 𝑇
by a factor of 𝑘 is equivalent to multiplying it by 𝑘.

For the swap quality, 𝑠𝑞 is the probability that the two-qubit state before the Bell-
state measurement is not replaced with a maximally mixed state, and therefore 𝑠𝑞 is the
corresponding probability of no imperfection. Finally, for the elementary-link fidelity we
take the fidelity itself to be the probability of no imperfection.

5.9.2 Local optimization
Genetic algorithms are derivative-free optimization algorithms that are particularly useful
when applied to functionswhose cost landscape is largely unknown but is assumed to have
many local minima [48]. Through a balancing act of exploration (i.e., investigation ofmany
different areas of parameter space) and exploitation (i.e., investigation of local optima) they
often manage to avoid being trapped in local optima as gradient-based methods are wont
to. Nevertheless, use of a genetic algorithm does not guarantee that one can find the
global optimum. Further, one can not even be sure that one has maximally exploited the
best optimum found. For this reason, we complement the exploration performed by the
genetic algorithm with a deterministic local optimization method which we apply to the
best parameter set found by the genetic algorithm. The algorithm used is a variation of
an iterative local search algorithm [49]. It consists of iteratively making small changes on
a parameter and evaluating the cost associated to the resulting parameter set. In case it
has decreased, it is kept and we again make a small change on the same parameter. If the
cost increases, we discard the change and move on to another parameter. This process is
repeated for all parameters being optimized over. We must however emphasize that this
still does not guarantee that the global optimum will be found.
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More details on this method can be found in Chapter 4.2 of [45].

5.9.3 Performing the optimization
Each optimization run was executed on a thin node of the Snellius supercomputer [50].
Each of these nodes is endowed with 2 AMD Rome 7H12 CPUs (2.6 GHz), for a total of
128 cores and a total of 256 GiB of memory.

5.10 BQC test protocol
In this section we describe the BQC test protocol that is used as a performance metric in
this paper. This protocol consists of repeated execution of test rounds as required by the
VBQC protocol presented in [32]. In each round of the VBQC protocol, a server is tasked
by a client to execute a quantum computation on qubits transmitted by the client and then
send the classical result of that computation back to the client. In test rounds, the client
has prepared the transmitted qubits in such a way that it knows the correct outcome of
the computation.

Therefore, executing test rounds allows the client to verifywhether the server is honest.
However, noise in the quantum hardware can also lead to failed test rounds. The more
often test rounds fail due to noise, the harder it is for the client to verify the server’s
honesty.

The BQC test protocol that we consider is not itself a VBQC protocol. In fact, its only
purpose is to benchmark how suited a quantum network could be to perform BQC pro-
tocols (and perhaps other applications that require multiple live qubits simultaneously).
The performance metric that we consider for this protocol is the success rate, defined as
the average number of successful test rounds that can be executed per time unit (i.e., the
product of the rate 𝑅 and success probability 𝑝𝑠 , as in Equation (5.8)). We specifically con-
sider an entanglement-based two-qubit version of the protocol. In that case, the protocol
is as follows:

1. The client chooses 𝑑 and 𝑟 uniformly at random from {0,1} and 𝜃 from {𝑗𝜋/4}0≤𝑗≤7,
and then defines two quantum states, |dummy⟩ = |𝑖⟩ and |trap⟩ = |+𝜃 ⟩, where |±𝜙⟩ ≡
1
√2 (|0⟩±𝑒

𝑖𝜙 |1⟩). Additionally, it uniformly at random designates |𝜙1⟩ to be |dummy⟩
or |trap⟩. |𝜙2⟩ is designated to be the option that was not chosen.

2. When an entangled state shared between the client and server becomes available,
the client uses quantum teleportation to transmit the state |𝜙1⟩ to the server. The
server stores the received state in quantum memory.

3. When a second entangled state becomes available, the client uses quantum telepor-
tation to transmit the state |𝜙2⟩ to the server.

4. The server performs a CZ gate between its two qubits.

5. The server measures the qubit that was used to receive the state |trap⟩ in the basis
{|+𝜃+𝑟𝜋 ⟩ , |−𝜃+𝑟𝜋 ⟩} and transmits the result back to the client.

6. The client declares the test round a success if it a receives measurement result match-
ing its expectation (i.e., if the outcome is equal to 𝑑 ⊕ 𝑟 , where ⊕ is addition modulo
two), and a failure otherwise.
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7. The client and server go back to Step 1 to start the next test round.

Alternatively, remote state preparation [51] could be used to prepare the required states at
the server, which may be easier to execute on real hardware than quantum teleportation.
In fact, we have proven in Chapter 3 that using remote state preparation for the VBQC
protocol in [32] is equivalent to using quantum teleportation in case the client and server
implement gates noiselessly. Therefore the success rate will, under these assumptions, be
the same whether quantum teleportation or remote state preparation is used.

We here assume that classical communication between the client and the server hap-
pens instantaneously and that both the client and server are able to perform gates and
measurements noiselessly and instantly. However we do not assume they are able to store
qubits indefinitely; the first teleported state undergoes depolarizing noise as described in
Equation (5.6), where the coherence time 𝑇 is the same as the coherence time of the re-
peater nodes (i.e., it is varied by the optimizations performed in this paper). Under these
assumptions, 𝑅𝑟𝑜𝑢𝑛𝑑𝑠 is simply half the rate at which entanglement can be distributed
when entanglement is being generated continuously, as one test round can be performed
for every two entangled states that are produced. In order to calculate the success proba-
bility, we use the following result from Chapter 3:

1−𝑝𝑠 = 𝑒−
Δ𝑡
𝑇 [𝐹dummy(1−𝐹trap) + 𝐹trap(1−𝐹dummy)]+

1
2(1− 𝑒

− Δ𝑡
𝑇 ). (5.16)

Here, Δ𝑡 is the time between the transmission of the first qubit and the second qubit. For
the fidelities 𝐹trap and 𝐹dummy, let the densitymatrices for the state |dummy⟩ after transmis-
sion to the server be 𝜌dummy and 𝜌trap for |trap⟩. Then 𝐹dummy = ⟨dummy| 𝜌dummy |dummy⟩
and 𝐹trap = ⟨trap| 𝜌trap |trap⟩.

We then determine the success rate as follows. First, we simulate continuous entan-
glement generation between the end nodes of a repeater chain. Each time an end-to-end
entangled state is generated it is removed from the simulation and stored as raw data, to-
gether with the time at which it was generated. Then, after the simulation has finished, we
process the raw data to determine what the success rate would have been if the entangled
states had been consumed by the BQC test protocol. To this end, we divide the data into
single test rounds, each consisting of two entangled states that were generated in succes-
sion. We assign each test round a duration 𝑡 , which is the amount of time between the
start of the round and the end of the round (i.e., when the second state was generated),
and a storage time Δ𝑡 , which is the time between when the first entangled state and the
second entangled state were generated. We furthermore calculate the 𝑝𝑠 of that round
using Equation (5.16), where we average over the two possible choices in the protocol for
how |𝜙1⟩ and |𝜙2⟩ are designated (i.e., whether the first entangled state is used to transmit
the dummy and the second to transmit the trap or vice versa). Then we calculate the rate
as

𝑅 = 1
⟨𝑡⟩ , (5.17)

where ⟨𝑡⟩ is the average value of 𝑡 over all the test rounds. Finally, we use 𝑅 and the average
value of 𝑝𝑠 to calculate the success rate according to Equation (5.8). The processing code
that realizes this calculation has been made publicly available at [52].
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6
Designing Quantum Networks

Using Preexisting Infrastructure

JulianRabbie, KaushikChakraborty∗, Guus
Avis∗ and Stephanie Wehner.
We consider the problem of deploying a quantum network on an existing fiber infrastructure,
where quantum repeaters and end nodes can only be housed at specific locations. We propose a
method based on integer linear programming (ILP) to place the minimal number of repeaters
on such an existing network topology, such that requirements on end-to-end entanglement-
generation rate and fidelity between any pair of end-nodes are satisfied. While ILPs are gen-
erally difficult to solve, we show that our method performs well in practice for networks of up
to 100 nodes. We illustrate the behavior of our method both on randomly-generated network
topologies, as well as on a real-world fiber topology deployed in the Netherlands.

In this chapter we address the question of how repeaters can best be allocated in an
existing fiber grid in order to build a quantum network, while keeping the total number
of repeaters as small as possible. In doing so we focus less on the precise devices and
protocols used to realize the quantum repeaters or their exact performance. Rather, we
focus on how a sufficient service level can be guaranteed for a large number of end nodes
in the network and search for an efficient algorithm for choosing repeater locations cor-
respondingly.

We model a classical fiber network which forms the basis of a quantum network as an
undirected, weighted graph 𝐺 = (𝒩 ,ℱ ,ℒ). The nodes𝒩 are partitioned into a set of end
nodes 𝒞 ⊂ 𝒩 and a set of potential repeater locations ℛ =𝒩 ⧵𝒞 . The goal of the quantum
network is to enable quantum communication between end nodes. Potential repeater lo-
cations are any location in the network where a quantum repeater could be placed. Such
a location could, for example, be a hub in the classical network with the facilities required
to run a quantum repeater. The edges of the graph are the fibers of the network,ℱ , where

∗These authors contributed equally.
This chapter is based on the publication npj Quantum Inf 8, 5 (2022)
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ℒ(𝑓 ) is the length of fiber 𝑓 ∈ ℱ . In case a quantum repeater is installed at a potential
repeater location, the potential repeater location becomes a quantum-repeater node. When
deploying a quantum network based on a classical fiber network, it is essential to deter-
mine which potential repeater locations should be turned into quantum-repeater nodes.

In order to have an operational quantum network, nodesmust be connected by elemen-
tary links. For many quantum-repeater schemes (such as those using heralded entangle-
ment generation as discussed in Section 2.1), elementary links consist of fibers with active
elements measuring qubits. Therefore, when deploying a quantum network based on a
classical fiber network, it must also be determined which fibers to convert into elemen-
tary links. Here, we consider that elementary links can be constructed from any number
of consecutively-adjacent fibers in the graph 𝐺 (passing through potential repeater loca-
tions). Both fibers and potential repeater locations can be part ofmultiple elementary links,
which is motivated by the fact that fibers are typically constructed in bundles (meaning
that each elementary link could, in fact, use the same fiber bundle but a different fiber).
Additionally, multiplexing over different wavelengths could be used to enable the use of
a single fiber in multiple elementary links. For an example of how a (very) small classical
fiber network can be used to create a quantum network, see Figure 6.1.

Here, we introduce the problem of determining how to construct a quantum network
using a preexisting classical fiber network as the repeater-allocation problem. We define
it as follows:
Repeater-Allocation Problem: Given a classical fiber network corresponding to the
undirected, weighted graph𝐺 = (𝒩 ,ℱ ,ℒ)with end nodes𝒞 ⊂𝒩 . Which of the potential
repeater locations ℛ =𝒩 ⧵𝒞 should be turned into quantum-repeater nodes, and which
fibers should be converted into elementary links, such that a quantum network is obtained
which satisfies a set of network requirements, while the associated costs are minimized?

In this paper we present, to the best of our knowledge for the first time, a method
which solves the repeater-allocation problem. Here, we only consider the costs associated
to installing quantum repeaters, as we expect that the first practical quantum repeaters
will come at a high cost. Furthermore, the set of network requirements that we consider
are the following:

1 Rate and fidelity.
The quantum network must be able to distribute bipartite entangled quantum states
between any pair of end nodes at some minimum rate, which we denote 𝑅min. Fur-
thermore, the states must have some minimum fidelity to a maximally entangled

Figure 6.1: Example of how a quantum network can be constructed. (a) Graph representing a simple fiber
network. Nodes A and B are end nodes, while the other two nodes are potential repeater locations. (b) Quantum
network that is constructed using the pre-existing fiber network. The first node from A is used as a quantum-
repeater node (blue hexagon) and there are two elementary links. One elementary link is made from A to the
quantum-repeater node, while the other starts at the quantum-repeater node and ends at B.
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state, which we denote 𝐹min. The network must be able to do this for every pair of
end nodes simultaneously.

In a quantum-repeater chain with fixed hardware, the rate of entanglement distri-
bution is limited by loss and noise in elementary links and in quantum repeaters.
Therefore, it is generally possible to lower bound the rate by upper bounding the
number of quantum repeaters (and thereby the number of elementary links), and
the length of each elementary link (assuming the photon loss probability per unit
length is constant). Similarly, fidelity is limited by noisy operations in quantum
repeaters, while it can also be a decreasing function of the elementary link length
(this can be, for example, due to dark counts in detectors). Therefore, fidelity too
can be lower bounded by upper bounding the number of quantum repeaters and the
elementary link length.

We use these bounds to assess whether the rate and fidelity between a pair of end
nodes is sufficient. For any 𝑅min and 𝐹min, we can find 𝑁max and 𝐿max such that a
repeater chain of 𝑁max repeaters and elementary links of length 𝐿max can deliver
entangled states at rate 𝑅min with fidelity 𝐹min. Then, we consider two end nodes
capable of receiving entangled states with at least rate 𝑅min and at least fidelity 𝐹min
if there is a free path between them which contains at most 𝑁max repeaters and of
which each elementary link is at most 𝐿max long.

How exactly 𝑁max and 𝐿max can be determined from 𝑅min and 𝐹min is specific to
the quantum-repeater architecture and depends on various performance parameters.
We give a toy-model calculation in Section 6.3.2 as an example. Note that when
considering a quantum-repeater architecture which is not based on entanglement
distribution, the method presented in this paper is still applicable if a performance
metric like rate and fidelity can be determinedwhich can be lower bounded by upper
bounding the number of repeaters and the elementary link lengths of a repeater
chain.

2 Robustness.
When a part of a quantum network breaks down, all other requirements should still
be met. We quantify this using the minimum number of quantum-repeater nodes
or elementary links (it can be any combination) that need to break down before one
of the other requirements can no longer be met. Here, we use the symbol 𝐾 to refer
to this number.

3 Repeater capacity.
Quantum-repeater nodes should never be required to operate above their capacity in
order to meet all other network requirements. We define the capacity of a quantum-
repeater node as the maximum number of quantum-communication sessions it can
facilitate simultaneously. In an entanglement-based network, this could be directly
related to the number of entangled states that can be stored in memory or the num-
ber of Bell-state measurements that can be performed simultaneously. Here, we use
the symbol 𝐷 to refer to the capacity of the quantum-repeater nodes.
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6.1 Results

In this section we present a method, detailed in Box 6.1, which aids in the design of a quan-
tum network using existing classical infrastructure. Specifically, given a fiber network, our
method makes it possible to choose at which locations quantum repeaters should be in-
stalled. This is done such that entangled states can be distributed between all pairs of end
nodes simultaneously with a minimum rate and fidelity. Furthermore, our method guar-
antees that the resulting quantum network is robust against failure of quantum repeaters
and elementary links, and can take finite capacity of quantum repeaters into account. At
the same time, our method minimizes the total number of quantum repeaters that need to
be installed. We dub the problem that our method solves the repeater-allocation problem.
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Box 6.1: Method to solve the repeater-allocation problem.

Input

• Fiber network graph 𝐺 = (𝒩 ,ℱ ,ℒ).
• Set of end nodes 𝒞 ⊂ 𝒩 .

• Minimum rate 𝑅min and fidelity 𝐹min required by end nodes.∗

• Required robustness parameter 𝐾 (number of quantum-repeater nodes and ele-
mentary links that must be incapacitated before network operation is compro-
mised).

• Capacity parameter 𝐷 (number of quantum-communication sessions that one
quantum repeater can facilitate simultaneously).

Method

1. Determine values for the parameters 𝐿max and 𝑁max such that a quantum-
repeater chain consisting of 𝑁max repeaters and elementary links of length
𝐿max is able to deliver entangled states at rate 𝑅min with fidelity 𝐹min to a max-
imally entangled state.

2. Construct the set of potential repeater locations

ℛ =𝒩 ⧵𝒞 . (6.1)

3. Construct the set

𝒬 = {(𝑠, 𝑡)|(𝑠, 𝑡) ∈𝑅 {(𝑖, 𝑗), (𝑗, 𝑖)}, 𝑖, 𝑗 ∈ 𝐶, 𝑖 ≠ 𝑗}, (6.2)

where ∈𝑅 implies picked uniformly at random.

4. For every (𝑠, 𝑡) ∈ 𝒬, construct the set

ℰ(𝑠,𝑡) = {(𝑛1, 𝑛2)|𝑛1 ∈ ℛ ∪{𝑠},𝑛2 ∈ ℛ ∪{𝑡},𝑛1 ≠ 𝑛2}, (6.3)

and then construct the set
ℰ = ⋃

𝑞∈𝒬
ℰ𝑞 . (6.4)

5. For every (𝑢,𝑣) ∈ ℰ , determine the shortest path from 𝑢 to 𝑣 in the fiber-
network graph 𝐺. Store the length of the path as 𝐿((𝑢,𝑣)) and the fibers mak-

ing it up as 𝐹((𝑢,𝑣)).
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6. Solve the link-based formulation in Box 6.3 using an ILP solver. Store the values
of the variables 𝑥𝑞,𝑘𝑢𝑣 and 𝑦𝑢 .

7. Apply the path extraction algorithm, i.e. Algorithm 1, to obtain the set𝒫 ∗. For
every (𝑢,𝑣) ∈ ℰ , set 𝑥𝑞,𝑘𝑢𝑣 = 0 if there is no 𝑝 ∈ 𝒫 ∗ such that (𝑢,𝑣) ∈ 𝑝.

Solution

• Every potential repeater location 𝑢 ∈ ℛ for which 𝑦𝑢 = 1 should be used as a
quantum-repeater node.

• For every (𝑢,𝑣) ∈ ℰ for which 𝑥𝑞,𝑘𝑢𝑣 = 1 for some value of 𝑞 and 𝑘, an elementary
link should be constructed using the fibers 𝐹((𝑢,𝑣)).

Key to our method is integer linear programming (ILP), which can be used to obtain
the optimal repeater placement with an optimization solver such as Clp [1], Gurobi [2] or
CPLEX [3]. Ourmethod has been tested both using a real fiber network and a large number
of randomized graphs, on which we report in Sections 6.2.1 and 6.2.2 respectively. The real
network contains four end nodes and 50 potential repeater locations, and a solution was
found in 74 seconds using a computer running a quad-core Intel Xeon W-2123 processor
at 3.60 GHz and 16 GB of RAM, demonstrating that the method is feasible for realistically-
sized networks.

Here, we put forward two different ILP formulations. The first, which we call the path-
based formulation (see Box 6.2), is based on enumerating and then choosing paths between
end nodes of the quantum network. It is relatively easy to show and understand that this
formulation indeed solves the repeater-allocation problem (see Section 6.3.1). However,
it is not efficient, as the number of variables and constraints in the formulation grows
exponentially with the size of the network. The second formulation is the link-based for-
mulation (see Box 6.3). This formulation is muchmore efficient than the path-based formu-
lation, as it only grows polynomially with the size of the network. Therefore, our method
as described in Box 6.1 uses the link-based formulation. It is, however, harder to see that
the link-based formulation can be used to solve the repeater-allocation problem. Yet, the
link-based formulation is equivalent to the path-based formulation, as we show in Section
6.3.3.

The structure of the paper is as follows. In the remainder of this section, we present our
method for solving the repeater-allocation problem and introduce both the intuitive path-
based formulation and the efficient link-based formulation. Next, in Section 6.2, we first
give an example of the use of our method on a real fiber network in the Netherlands. We
also study the behaviour and performance of the method on a large number of randomly-
generated network graphs. Furthermore, we present ways in which our method can be
extended, and we discuss its limitations. Finally, in Section 6.3, we argue that the path-
based formulation can indeed be used to solve the repeater-allocation problem, we give
an example of a rate-fidelity analysis, we sketch a proof of the equivalence of the path-

ᵃInstead of a minimum rate and fidelity, one can also use the minimum value(s) for other performance metric(s),
as long as these can be lower bounded by upper bounding the number of repeaters and elementary link lengths
of a quantum-repeater chain.
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based formulation and the link-based formulation, we explain how we generate random
network graphs and we present the scaling of the two ILP formulations.

6.1.1 Path-Based Formulation

The main idea behind the path-based formulation, which is shown in Box 6.2, is to enu-
merate and then choose paths for every (𝑠, 𝑡) ∈ 𝒬, where 𝒬 is the set of all ordered pairs of
end nodes as defined in Equation (6.2). A path between 𝑠 and 𝑡 is a sequence of elementary
links that does not contain any loops and connects 𝑠 and 𝑡 . Quantum-repeater nodes are
then allocated in such a way that they enable the chosen paths to be used. This can be
considered an instance of the set cover problem [4]. To guarantee a minimum rate 𝑅min
and fidelity 𝐹min, we require every chosen path to contain at most 𝑁max quantum-repeater
nodes, and we require every elementary link in the path to be at most 𝐿max long. 𝑁max
and 𝐿max are functions of 𝑅min and 𝐹min, and what these functions look like depends on
the specific quantum-repeater implementation under consideration. For an example of
how 𝑁max and 𝐿max can be derived from 𝑅min and 𝐹min, see Section 6.3.2. Furthermore, to
guarantee the network is robust, we choose 𝐾 different paths per end-node pair. They are
chosen such that none of the 𝐾 paths share a quantum-repeater node or an elementary
link. Finally, to account for the finite capacity of quantum repeaters, we choose the paths
such that every quantum-repeater node is only used by at most 𝐷 different paths. It can
be intuitively understood that any quantum network accommodating the use of all these
paths, will satisfy all network requirements considered in this paper.
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Box 6.2: Path-based formulation.

min ∑
𝑢∈ℛ

𝑦𝑢 (6.5)

s.t. 𝐿((𝑢,𝑣))𝑥𝑝 ≤ 𝐿max ∀(𝑢,𝑣) ∈ 𝑝,𝑝 ∈ 𝒫 (6.6)

|𝑝|𝑥𝑝 ≤ 𝑁max +1 ∀𝑝 ∈ 𝒫 (6.7)

∑
𝑝∈𝒫𝑞

𝑥𝑝 = 𝐾 ∀𝑞 ∈ 𝒬 (6.8)

∑
𝑝∈𝒫𝑞

𝑟𝑢𝑝𝑥𝑝 ≤ 1 ∀𝑢 ∈ ℛ,𝑞 ∈ 𝒬 (6.9)

∑
𝑝∈𝒫

𝑟𝑢𝑝𝑥𝑝 ≤ 𝐷𝑦𝑢 ∀𝑢 ∈ ℛ (6.10)

𝑥𝑝 ∈ {0,1} ∀𝑝 ∈ 𝒫 (6.11)
𝑦𝑢 ∈ {0,1} ∀𝑢 ∈ ℛ (6.12)

where (6.13)

𝑟𝑢𝑝 = {1 if 𝑝 uses 𝑢 as a repeater
0 otherwise

∀𝑢 ∈ ℛ,𝑝 ∈ 𝒫 (6.14)

Key to the path-based formulation are the binary decision variables 𝑥𝑝 , which are de-
fined for every path 𝑝 ∈ 𝒫 = ∪(𝑠,𝑡)∈𝒬𝒫(𝑠,𝑡), where 𝒫(𝑠,𝑡) is the set of all possible paths from
end node 𝑠 to end node 𝑡 . The elementary links that can be contained by a path 𝑝 ∈ 𝒫(𝑠,𝑡)
must all be in ℰ(𝑠,𝑡), which is defined in Equation (6.3). Each 𝑥𝑝 has value 1 when 𝑝 is con-
sidered part of the chosen set of paths, and 0 otherwise. Furthermore, there are the binary
decision variables 𝑦𝑢 for all 𝑢 ∈ ℛ. 𝑦𝑢 is 1 if a quantum repeater is placed at potential
repeater location 𝑢, and 0 otherwise. Constraints (6.6) to (6.10) guarantee that these vari-
ables are chosen such that all network requirements are satisfied. The objective function
(6.5) ensures that they are chosen such that the total number of quantum-repeater nodes is
minimized. It is argued that solutions to the path-based formulation are indeed solutions
to the repeater-allocation problem in Section 6.3.1.

The path-based formulation requires us to define one variable 𝑥𝑝 corresponding to each
path 𝑝 ∈ 𝒫 . Hence, the total number of variables as well as the number of constraints are
at least |𝒫 |, which is 𝑂(|𝒩 |!). Therefore the size of the input to the ILP solver scales expo-
nentially with the number of nodes. This makes the path-based formulation unsuitable for
designing quantum networks based on large fiber networks. Our implementation of the
path-based formulation in CPLEX can be found in the repository [5]. In the next section,
we give a more efficient formulation.

6.1.2 Link-Based Formulation
Here we present the link-based formulation, which can be found in Box 6.3. This formula-
tion is inspired by the capacitated facility location problem [4]. Instead of choosing which
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paths to use, we choose which elementary links to use. Quantum repeaters can then be
placed such that each chosen elementary link is enabled. To this end, for each end-node
pair 𝑞 ∈ 𝒬, for every elementary link (𝑢,𝑣) ∈ ℰ𝑞 and for 𝑘 = 1,2,…,𝐾 , we define the bi-
nary decision variable 𝑥𝑞,𝑘𝑢𝑣 . It can be thought of as indicating whether elementary link
(𝑢,𝑣) is used in the 𝑘th path used to connect end node 𝑠 to end node 𝑡 , where 𝑞 = (𝑠, 𝑡).
Furthermore, we again use the variables 𝑦𝑢 that indicate whether node 𝑢 ∈ℛ is used as a
quantum-repeater node.

Box 6.3: Link-based formulation.

min ∑
𝑢∈ℛ

𝑦𝑢 (6.15)

such that (6.16)

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

𝑥𝑞,𝑘𝑢𝑣 − ∑
𝑣

(𝑣,𝑢)∈ℰ𝑞

𝑥𝑞,𝑘𝑣𝑢 (6.17)

=
⎧
⎨
⎩

1, if 𝑢 = 𝑠
−1, if 𝑢 = 𝑡
0, if 𝑢 ∈ ℛ

∀𝑢 ∈ ℛ∪{𝑠, 𝑡},𝑞 = (𝑠, 𝑡) ∈ 𝒬,𝑘 = 1,2,…,𝐾

(6.18)

𝐿((𝑢,𝑣))𝑥𝑞,𝑘𝑢𝑣 ≤ 𝐿max ∀(𝑢,𝑣) ∈ ℰ𝑞 , 𝑞 ∈ 𝒬,𝑘 = 1,2,…,𝐾 (6.19)

∑
(𝑢,𝑣)∈ℰ𝑞

𝑥𝑞,𝑘𝑢𝑣 ≤ 𝑁max +1 ∀𝑞 ∈ 𝒬,𝑘 = 1,2,…,𝐾 (6.20)

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

𝐾
∑
𝑘=1

𝑥𝑞,𝑘𝑢𝑣 ≤ 1 ∀𝑢 ∈ ℛ,𝑞 ∈ 𝒬 (6.21)

𝐾
∑
𝑘=1

𝑥𝑞,𝑘𝑠𝑡 ≤ 1 ∀𝑞 ∈ 𝒬 (6.22)

∑
𝑞∈𝒬

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

𝐾
∑
𝑘=1

𝑥𝑞,𝑘𝑢𝑣 ≤ 𝐷𝑦𝑢 ∀𝑢 ∈ ℛ (6.23)

𝑥𝑞,𝑘𝑢𝑣 ∈ {0,1} ∀(𝑢,𝑣) ∈ ℰ𝑞 , 𝑞 ∈ 𝒬,𝑘 = 1,2,…,𝐾 (6.24)
𝑦𝑢 ∈ {0,1} ∀𝑢 ∈ ℛ (6.25)

Because the number of elementary links scales polynomially with the number of nodes,
both the number of variables and the number of constraints also scale polynomially with
the number of nodes |𝒩 |. In particular, they are 𝑂(|𝒩 |2) (see Section 6.3.5 for a deriva-
tion). Our implementation of the link-based formulation in CPLEX can be found in the
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repository [5].
In Section 6.3.3, we sketch the proof of the equivalence of the path-based formulation

and the link-based formulation. Furthermore, we sketch why the variables 𝑥𝑞,𝑘𝑢𝑣 and 𝑦𝑢 still
provide a solution to the link-based formulation after performing step 7 of Box 6.1. The
reason this step is included in our method is because, otherwise, elementary links could
be included in the solution which are not necessary to meet the network requirements.
The detailed version of the proof can be found in the supplementary material. Since the
link-based formulation scales much more favourably with the size of the fiber network
under consideration, it is more efficient to use this formulation when solving the repeater-
allocation problem for large networks.

6.2 Discussion
In this section we illustrate our method as implemented by the link-based formulation
using the Python API of CPLEX version 12.9 [3]. The corresponding code can be found in
the repository [5]. Furthermore, we investigate the effect of varying network-requirement
parameters and discuss possible extensions and limitations of our method.

6.2.1 Example on a Real Network
Here, we demonstrate our method by solving the repeater-allocation problem for a real
fiber network. The fiber network that we consider is the core network of SURFnet. The lat-
ter is a network provider for Dutch educational and research institutions and has provided
us with the network data, which is available in the repository [5]. The network graph is
depicted in Figure 6.2.

As end nodes of the network, we have chosen the cities of Delft, Enschede, Groningen
and Maastricht. In this example, we consider an entanglement-based quantum network
utilizing massive multiplexing as described in e.g. [6]. For the end nodes, we require a
minimum rate of 𝑅min = 1Hz (one entangled state per second) and a fidelity to a maximally
entangled state 𝐹min = 0.93. Furthermore, we set the robustness parameter to 𝐾 = 2 (thus
requiring that any single quantum repeater or elementary link in the network can break
down without compromising network functionality), and we set the capacity parameter
to 𝐷 = 4 (which, in this case, means that we assume each quantum repeater can perform
four Bell-state measurements simultaneously).

The first step of our method requires us to calculate the 𝐿max and 𝑁max corresponding
to the minimal rate and fidelity we have chosen. This requires us to study the behaviour
of a quantum-repeater chain consisting of 𝑁 +1 elementary links of length 𝐿 each. 𝐿max
and 𝑁max then have to be chosen as the largest possible values for 𝐿 and 𝑁 respectively
such that the repeater chain still achieves the required rate and fidelity. Here, we make a
couple of simplifying assumptions to make the calculations more tractable. Particularly,
we assume elementary links generate Werner states, and we assume that the only losses
are due to fiber attenuation and probabilistic Bell-state measurements (which we take to
have a 50% success probability). In Section 6.3.2, we perform the calculation and find that
for an elementary-link fidelity 𝐹link = 0.99, number of multiplexing modes𝑀 = 1000, speed
of light in fiber 𝑐fiber = 200,000 km/s and attenuation length 𝐿att = 22 km, we have 𝑁max = 6
and 𝐿max = 136 km.

The rest of the steps of the method in Box 6.1 have been performed using a Python
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Figure 6.2: Graph representation of SURFnet core network. Node locations roughly correspond to geographical
locations but have been adjusted for readability. Lengths of fibers connecting nodes are not shown. Nodes that
are used as end nodes are shown as orange squares. Potential repeater locations are shown as white circles.
A’dam and R’dam are used as abbreviations for Amsterdam and Rotterdam respectively.

script and CPLEX [5]. The resulting solution is shown graphically in Figure 6.3. All cho-
sen repeater nodes are shown as blue hexagons, while all fibers that are used in elemen-
tary links are drawn as thick lines. We see that repeaters are placed around Groningen
in order to bridge the large distance to the other end nodes without exceeding the max-
imum elementary-link length 𝐿max. Additionally, placing quantum-repeater nodes close
to Groningen means they can be used for several of Groningen’s outgoing connections.
There are multiple such nodes close together because each only has a limited capacity
(𝐷 = 4), and the redundancy increases the robustness of the network.

On our setup (see Section 6.1), it took us approximately 74 seconds to find the optimal
solution to the link-based formulation for this network. Note that a feasible solution is a
combination of decision variable values that satisfy all the constraints, while the optimal
solution is a feasible solution that also minimizes the objective function.

6.2.2 Effect of Network-Requirement Parameters
Here, we demonstrate and investigate the effect of the different network-requirement pa-
rameters on the outcome of our method. The network-requirement parameters are, in
principle, the minimum rate 𝑅min, the minimum fidelity 𝐹min, the robustness parameter
𝐾 and the capacity parameter 𝐷. However, since 𝑅min and 𝐹min are translated into a
maximum number of repeaters 𝑁max and a maximum elementary-link length 𝐿max in our
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Figure 6.3: Solution to the repeater-allocation problem for 𝑅min = 1Hz, 𝐹min = 0.93, 𝐾 = 2 and 𝐷 = 4. The network
graph used as input corresponds to the SURFnet network, depicted in Figure 6.2. End nodes are shown as orange
squares, quantum-repeater nodes are shown as blue hexagons and the fibers that are used in the elementary
links are highlighted with thick lines.

method, we here consider the network-requirement parameters to be 𝐿max, 𝑁max, 𝐾 and
𝐷. This way, we can keep our discussion agnostic about the exact hardware used to create
a quantum network and how 𝑅min and 𝐹min are mapped to 𝑁max and 𝐿max.

First we give a visual demonstration on how the different network-requirement pa-
rameters affect the repeater placement. To this end, we have created a network graph
with end nodes in the corners of the network and 10 possible repeater locations randomly
distributed in between the end nodes. For details on how the graph was obtained, see
Section 6.3.4. While keeping the network fixed, we vary the network-requirement param-
eters 𝐷, 𝐾 and 𝐿max. In Figures 6.4a to 6.4c, we explore how the robustness parameter
influences the total number of required quantum repeaters. Since each repeater has a ca-
pacity of 𝐷 = 6 to distribute entanglement between the six end-node pairs, and because
the network is set up in such a way that each path needs exactly one quantum-repeater
node to connect end nodes without elementary links exceeding 𝐿max = 0.9, the optimal
solution always contains 𝐾 repeaters. In Figures 6.4d to 6.4f on the other hand, we see
that as the capacity of quantum repeaters is varied from 𝐷 = 1 to 𝐷 = 3, the required num-
ber of quantum repeaters decreases when 𝐷 increases. Note that since 𝐾 = 1, the optimal
solution here always happens to contain |𝒬|/𝐷 repeaters. Finally, in Figures 6.4g to 6.4i we
see that as we allow for longer elementary links to be used, the total number of repeaters
is decreased. If we would increase 𝐿max even further, at a certain point every end node
can be connected to another end node with a direct elementary link and hence the number
of repeaters will drop to zero. The degeneracy of the optimal solution is visible from the
fact that the solutions with two repeaters for 𝐾 = 2 (Figure 6.4b), 𝐷 = 3 (Figure 6.4f) and
𝐿max = 0.75 (Figure 6.4h) are not equal. In Section 6.2.4, it is discussed how this degeneracy
can be lifted. We do not show the effect of 𝑁max. Since the total number of repeaters is
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already minimized, changing the value of 𝑁max does not change the repeater allocation,
but only determines whether a feasible solution exists at all.

Considering how the repeater placement on a single network varies with the network-
requirement parameters can offer insight into how our method operates. However, it
does not provide a general investigation into the properties of our method. In order to
make more general and quantitative statements about our method, we will next consider
the effect of varying network-requirement parameters on the repeater allocation for an
ensemble of random networks. In this work, we construct random network graphs using
random geometric graphs. That is, network graphs are constructed by scattering nodes
randomly on a unit square. Edges are put only between nodes if the Euclidean distance
separating them is smaller than some number, which is called the radius of the random
geometric graph. The nodes which form the convex hull of the network are chosen as
end nodes, so that the others are potential repeater locations. This choice is motivated
by the fact that any potential-repeater locations that do not lie between end nodes would
probably not play an important role anyway. For a more elaborate account of how we
generate random network graphs, see Section 6.3.4.
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Figure 6.4: Solutions obtained using our method for an example network graph using the network-requirement
parameters 𝐿max = 0.9, 𝑁max = 3, 𝐾 = 1 and 𝐷 = 6, unless noted otherwise in the caption of a specific solution.
(a)-(c) Visualization of the effect of 𝐾 . A higher robustness implies that we require more repeaters. (d)-(f)
Visualization of the effect of 𝐷. As the capacity of quantum-repeater nodes increases, multiple paths can use
the same repeater and hence the overall number of repeaters decreases. (g)-(i) Visualization of the effect of
𝐿max. When longer elementary-link lengths are allowed, less quantum-repeater nodes are required to bridge the
distance between end nodes.

We here report how the number of placed repeaters and the (vertex) connectivity
of quantum networks designed using our method vary as a function of the network-
requirement parameters. The number of placed repeaters is interesting to consider since
the aim of our method is to minimize this. On the other hand, the connectivity is interest-
ing since it lower bounds the minimum number of quantum repeaters that need to break
down before any pair of end nodes becomes disconnected, thereby giving an indication
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of how robust a quantum network is. Note that connectivity is not the same as the ro-
bustness parameter 𝐾 , which lower bounds the minimum number of quantum repeaters
or elementary links that need to break down before end nodes can no longer distribute
entanglement with a minimum rate and fidelity, while at the same time taking repeater
capacity into account. We have first generated 1000 random network graphs for which
our method was able to find solutions for the parameter values 𝐿max = 0.9, 𝑁max = 6, 𝐾 = 6
and 𝐷 = 4. Then, while keeping all other parameters constant, we have varied each of the
parameters 𝐷, 𝐾 and 𝐿max. This has been done in such a way that all considered values
are less restrictive than the original values, such that we can be sure that a solution exists
for each parameter value. Of each resulting quantum network, we determine the number
of repeaters and the connectivity, and for each parameter value we determine the average
number of repeaters and the average connectivity over all 1000 quantum networks.

In Figure 6.5 (a) and (b), we show the number of repeaters and the connectivity as a
function of the repeater capacity 𝐷. We see that both the number of repeaters and the
connectivity decrease as 𝐷 increases, and they both accurately follow an exponential fit
in the domain under consideration. In Figure 6.5 (c) and (d), we show how the number
of repeaters and connectivity vary as a function of the robustness parameter 𝐾 . We see
that both increase linearly in the domain under consideration. For 𝐷 (𝐾 ) the number of re-
peaters decreases (increases) following the same line of reasoning as we mentioned above
for the visual demonstration. Generally, we expect the connectivity to follow the change
in the number of repeaters, because a network with less quantum repeaters is easier to dis-
connect. Finally, in Figure 6.5, we investigate the effect of 𝐿max on the number of repeaters
and connectivity. While the number of repeaters decreases, the connectivity increases, al-
though they both flatten from 𝐿max = 1.2. The number of repeaters does not decrease to
zero because 𝐾 = 6. Therefore, even if 𝐿max is large enough to allow for paths between
end nodes with zero quantum-repeater nodes, there are still at least five quantum-repeater
nodes required to make the network robust against the breakdown of direct elementary
links between end nodes. On the other hand, the connectivity increases since it also takes
paths through other end nodes into account in its computation, and with an increasing
value of 𝐿max, we expect more direct elementary links to appear.

6.2.3 Computation Times
Even though the link-based formulation has a scaling of 𝑂(|𝒩 |2) in terms of the number
of variables and constraints, it remains an ILP. In general, ILP’s are NP-hard and thus
generally require an exponential amount of time to solve. In order to investigate the per-
formance of our method for varying network sizes, we determined the computation time
for finding an optimal solution as a function of the number of nodes. The result is shown
in Figure 6.6, in which we see that the computation time indeed increases exponentially.
Nonetheless, instances on random geometric graphs with 100 nodes can be solved to op-
timality in about one minute on our setup (see Section 6.1).

The computation time can be strongly affected by the network topology and the chosen
parameter values, since these can alter the difficulty of finding an optimal solution as well
as the number of variables and constraints (see Section 6.3.5). However, the parameters
that we use for Figure 6.6 are neither very strict nor loose and provide us with insight into
the approximate scaling of the computation time, rather than the worst-case behavior.
Note that we expect that, in practical use cases, the topology and the parameter values
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will be determined once and remain more or less fixed, which implies that the repeater-
allocation problemwill not need to be solved repeatedly. This makes the increasingly large
computation time for sizable graphs or stringent parameters less problematic.

6.2.4 Extensions

There are various ways in which our method can be extended. Here, we present two possi-
ble extensions. Such extensions change the ILP formulation in Box 6.3. The result of these
is the generalized link-based formulation, which is presented in Box 6.4. To incorporate
the extensions into the method in Box 6.1, the generalized link-based formulation must be
used where otherwise the link-based formulation would be used.
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Box 6.4: Generalized link-based formulation.

min ∑
𝑢∈ℛ

(𝑦𝑢+ 𝛼 ∑
𝑞∈𝒬

∑
(𝑢,𝑣)∈ℰ𝑞

𝐾𝑞

∑
𝑘=1

𝐿((𝑢,𝑣))𝑥𝑞,𝑘𝑢𝑣 ) (6.26)

such that (6.27)

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

𝑥𝑞,𝑘𝑢𝑣 − ∑
𝑣

(𝑣,𝑢)∈ℰ𝑞

𝑥𝑞,𝑘𝑣𝑢

=
⎧
⎨
⎩

1, if 𝑢 = 𝑠
−1, if 𝑢 = 𝑡
0, if 𝑢 ∈ ℛ

∀𝑢 ∈ ℛ∪{𝑠, 𝑡},𝑞 = (𝑠, 𝑡) ∈ 𝒬,𝑘 = 1,2,…,𝐾𝑞

(6.28)

𝐿((𝑢,𝑣))𝑥𝑞,𝑘𝑢𝑣 ≤ 𝐿𝑞max ∀(𝑢,𝑣) ∈ ℰ𝑞 , 𝑞 ∈ 𝒬,𝑘 = 1,2,…,𝐾𝑞

(6.29)

∑
(𝑢,𝑣)∈ℰ𝑞

𝑥𝑞,𝑘𝑢𝑣 ≤ 𝑁 𝑞
max +1 ∀𝑞 ∈ 𝒬,𝑘 = 1,2,…,𝐾𝑞 (6.30)

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

𝐾𝑞

∑
𝑘=1

𝑥𝑞,𝑘𝑢𝑣 ≤ 1 ∀𝑢 ∈ ℛ,𝑞 ∈ 𝒬 (6.31)

𝐾𝑞

∑
𝑘=1

𝑥𝑞,𝑘𝑠𝑡 ≤ 1 ∀𝑞 ∈ 𝒬 (6.32)

∑
𝑞∈𝒬

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

𝐾𝑞

∑
𝑘=1

𝑥𝑞,𝑘𝑢𝑣 ≤ 𝐷𝑢𝑦𝑢 ∀𝑢 ∈ ℛ (6.33)

𝑥𝑞,𝑘𝑢𝑣 ∈ {0,1} ∀(𝑢,𝑣) ∈ ℰ𝑞 , 𝑞 ∈ 𝒬,𝑘 = 1,2,…,𝐾𝑞
(6.34)

𝑦𝑢 ∈ {0,1} ∀𝑢 ∈ ℛ (6.35)

The first extension we can make is solving the repeater-allocation problem in case of
heterogeneous network requirements. So far, we have considered the network require-
ments to be homogeneous, i.e. the same throughout the network. However, it can be the
case that some end nodes require a higher rate and fidelity, that some end nodes need ac-
cess to more robust quantum communication, or that quantum repeaters with a larger ca-
pacity can be placed at some potential repeater locations than at other. Then, we can define
the network-requirement parameters on a per-end-node-pair or per-node basis. Specifi-
cally, for every pair of end nodes 𝑞 ∈ 𝒬, we define the minimum rate 𝑅𝑞min and fidelity 𝐹𝑞min
of entanglement generation, and the required robustness parameter 𝐾𝑞 (in order to break
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communication between the end nodes 𝑞, at least 𝐾𝑞 quantum repeaters or elementary
links must be incapacitated). Furthermore, for every potential repeater location 𝑢 ∈ℛ, we
define the quantum-repeater capacity 𝐷𝑢 . To incorporate this into the method, the input
parameters must be adapted accordingly, and the maximum number of repeaters and max-
imum elementary-link length must be calculated for every pair of end nodes separately
(i.e. 𝐿𝑞max and 𝑁 𝑞

max must be determined from 𝑅𝑞min and 𝐹𝑞min for each 𝑞 ∈ 𝒬).
A second extension has to do with the fact that the link-based formulation in Box

6.3 typically has a highly-degenerate optimal solution. That is, often there are multiple
possible quantum-repeater placements for which all constraints are satisfied and the total
number of quantum-repeater nodes is minimal. However, it might be the case that some
solutions are more desirable than others. To pick out these solutions, one can define a
secondary objective. This secondary objective can then be taken into account by defining
a corresponding objective function, and adding it to the existing objective function, while
scaling it such that it does not influence the optimal number of repeaters. In particular, the
scale factor 𝛼 should be chosen such that the secondary objective value does not exceed 1.
This can be seen as a form of weighted goal programming [7]. As an example, in Box 6.4,
we use as secondary objective to minimize the total length of all used elementary links.
Other secondary objectives, such as minimizing the largest elementary-link length, could
be implemented in a similar fashion.

6.2.5 Limitations
In this section we discuss some of the limitations of the method we present in this work.
Each limitation represents a way that our method could be further extended, but is beyond
the scope of this paper.

A first major limitation is the complexity of ILP’s. While we provide an efficient ILP
formulation, in which the number of variables and constraints scales polynomially with
the network size, it remains an ILP. This cannot be helped, as choosing whether a repeater
should be placed at a certain potential repeater location is inherently binary. In general,
it is NP-hard to solve an ILP. While we indeed observe exponential scaling of the com-
putation time in Section 6.2.3, we are able to find optimal solutions of realistically-sized
networks within tractable time using CPLEX, which is also demonstrated using a real net-
work in Section 6.2.1. Conceivably, one can use heuristics or approximation algorithms to
obtain solutions faster, although the solutions then may no longer be optimal.

Another limitation that we consider here is the fact that our method is agnostic about
how elementary links are constructed. We assume that any number of fibers can be com-
bined to form an elementary link. However, quantum-repeater protocols relying on her-
alded entanglement generation typically require the presence of a midpoint station with
the capability to perform Bell-state measurements [8]. If there are constraints on the place-
ment of such stations, our method is insufficient. Conceivably, if such stations can only
be placed at potential repeater locations, a modified version of our method could be used.
Furthermore, we assume that an elementary link between two nodes is always constructed
from the fibers which minimize the elementary-link length such that rate and fidelity are
maximized. However, if one would like to incorporate the number of fibers (rather than
elementary links) that need to be disabled before the quantum network is incapacitated
as an additional network requirement (thereby guaranteeing more robustness), this may
no longer be a useful assumption. It may then be better to try to construct different ele-
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mentary links from different fibers as much as possible, such that individual fibers do not
become too critical.
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Figure 6.5: Simulation on 1000 random geometric graphs with a radius of 0.9 and 𝑛 = 25 nodes for varying
network parameters. We use 𝐿max = 0.9, 𝑁max = 6, 𝐾 = 6 and 𝐷 = 4, and except for the varied parameter. In
the plots, each of the points represents the average number of placed repeaters or average connectivity over
all samples for each value of (a)-(b) the capacity parameter 𝐷, (c)-(d) the robustness parameter 𝐾 or (e)-(f) the
maximum elementary-link length 𝐿max. We either use a linear or an exponential function for the fits. The error
bars represent one standard deviation of the mean. Solving an instance to optimality requires approximately 30
seconds on average.

Figure 6.6: Computation time in seconds for 100 random geometric graphs with 𝐿max = 1, 𝑁max = 6, 𝐾 = 2 and
𝐷 = 8 for varying number of nodes 𝑛. The error bars represent one standard deviation of the mean. For the fit
we have used an exponential function of the form 𝑎(𝑒𝑏𝑛3 −1), where 𝑎 and 𝑏 are free parameters.
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6.3 Methods
6.3.1 Explanation of the Path-Based Formulation
In Section 6.1.1, we introduced the path-based formulation. This ILP formulation can be
found in Box 6.2, and we claim that solutions to the path-based formulation can be used
to construct solutions to the repeater-allocation problem. Here, we show how and why
this can be done.

The idea behind the path-based formulation is to choose a combination of feasible
paths that minimize the overall number of utilized repeaters. If a path is chosen that
uses potential repeater location 𝑢 ∈ ℛ as a quantum-repeater node, a repeater should be
placed at 𝑢. The binary variables 𝑥𝑝 are used to parameterize the chosen paths, while the
binary variables 𝑦𝑢 are used to parameterize where quantum repeaters should be placed.
A coupling between these variables is realized by Constraints (6.10): if a path 𝑝 ∈ 𝒫 is
chosen in which a node 𝑢 ∈ ℛ is used as quantum-repeater node, the corresponding 𝑦𝑢
variables must have value 1. Conversely, when 𝑦𝑢 = 1 for a given repeater node 𝑢 ∈ℛ, up
to 𝐷 paths can use this repeater node in order for the corresponding constraint to hold,
thereby also imposing a limit on the repeater capacity. After all, if ∑𝑝∈𝒫 𝑟𝑢𝑝𝑥𝑝 > 𝐷 then
more than 𝐷 paths are chosen in which node 𝑢 ∈ ℛ is used as a repeater, which renders
the solution infeasible.

Paths are moreover only considered useful if they can be used to deliver entanglement
between end nodes with the minimum required rate 𝑅min and fidelity 𝐹min. In the path-
based formulation, this is implemented by requiring chosen paths to contain atmost𝑁max+
1 elementary links, each with a length of at most 𝐿max. The values of 𝑁max and 𝐿max
can be determined from 𝑅min and 𝐹min as detailed in Box 6.1. These requirements are
straightforwardly enforced by Constraints (6.6) and (6.7). Constraints (6.6) can only hold
when 𝑥𝑝 = 0 for all paths that contain an elementary link ((𝑢,𝑣) ∈ 𝑝) which is too long
(𝐿((𝑢,𝑣)) > 𝐿max). Similarly, Constraints (6.7) can only hold when 𝑥𝑝 = 0 for all paths for
which the number of elementary links (|𝑝|) exceeds the maximum (𝑁max +1).

Furthermore, the choice of paths must be such that it is guaranteed that up to 𝐾 poten-
tial repeater nodes or elementary links can break down before there is no path available
between any pair of end nodes that can deliver entanglement at the required rate and fi-
delity. This is implemented by choosing, per pair of end nodes, 𝐾 different paths. All of
these paths are chosen such that none of them share a quantum-repeater node. Since ele-
mentary links connect quantum-repeater nodes, this automatically also means that none
of the paths share an elementary link. Therefore, when a quantum-repeater node or ele-
mentary link becomes incapacitated, this can disrupt at most one path between a pair of
end nodes. When there are 𝐾 break downs, in the worst case, this can disrupt all paths
between a pair of end nodes. But as long as there are fewer break downs, there will be at
least one path available.

Since every chosen path can deliver entanglement at the required rate and fidelity,
this guarantees robustness of the quantum network against up to 𝐾 break downs. It is
enforced by Constraints (6.8) that there are exactly 𝐾 paths chosen between every pair
of end nodes. Furthermore, Constraints (6.9) make sure that the number of chosen paths
connecting a pair of end nodes using 𝑢 as a quantum-repeater node (∑𝑝∈𝒫𝑞 𝑟𝑢𝑝𝑥𝑝) is at
most one, thereby guaranteeing that all 𝐾 paths are disjoint. Note that, when considering
the quantum-repeater capacity, all chosen paths are taken into account. In other words,
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Constraints (6.10) guarantee that the repeater capacity is not exceeded when all paths
are used simultaneously. Therefore, if one path between a pair of end nodes is disrupted
and they are forced to switch to another path, it is guaranteed that none of the quantum
repeaters along that path are overloaded.

It is now easy to obtain a solution to the repeater-allocation problem from the solution
to the path-based formulation. Every potential repeater location 𝑢 ∈ ℛ for which 𝑦𝑢 = 1
in the solution to the path-based formulation should be used as a quantum-repeater node.
Furthermore, each elementary link which is part of a chosen path ((𝑢,𝑣) ∈ 𝑝 such that
𝑥𝑝 = 1) should be constructed. This is done using the fibers making it up (𝐹((𝑢,𝑣))). Then,
the resulting quantum network will be such that all network requirements are satisfied.
Furthermore, the number of quantum-repeater nodes will be minimal. This is because this
number, which is exactly∑𝑢∈ℛ 𝑦𝑢 , is minimized by the objective function (6.5) of the path-
based formulation. Therefore, the path-based formulation can indeed be used to solve the
repeater-allocation problem.

6.3.2 Toy-Model Calculation of 𝑁max and 𝐿max from 𝑅min and 𝐹min
In this section we calculate the maximum number of repeaters and maximum elementary-
link length from the minimum required rate 𝑅min and fidelity 𝐹min using a toy model of
a quantum-repeater chain. The quantum-repeater architecture that we consider is of the
massively-multiplexed type as described in e.g. [6]. The toy model that we consider here
makes the following simplifying assumptions:

• the states distributed over elementary links are Werner states,

• the noise in the states distributed over elementary links is the only noise,

• the only sources of photon loss are fiber attenuation and non-deterministic Bell-state
measurements,

• all processes except light traveling through fiber are instantaneous.

It is shown in the supplementary material that in this model, a repeater chain with 𝑁
quantum repeaters,𝑀 entanglement-distribution attempts per round per elementary link,
elementary-link length 𝐿, elementary-link fidelity 𝐹link, speed of light in fiber 𝑐fiber and a
50% Bell-state measurement success probability has the following end-to-end rate 𝑅 and
fidelity 𝐹 :

𝑅 = 𝑐fiber
𝐿 (12)

𝑁
[1−(1− 1

2𝑒
−𝐿/𝐿att)

𝑀
]
𝑁+1

, (6.36)

𝐹 = 1
4[1+3(

4𝐹link −1
3 )

𝑁+1
]. (6.37)

𝑁max can now be obtained from the fidelity. Specifically, it is the lowest-integer solution
to the equation

𝐹 > 𝐹min. (6.38)

To find 𝐿max, we can put the resulting value of 𝑁max into the equation

𝑅 > 𝑅min. (6.39)
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The smallest value for 𝐿 that solves Equation (6.39) is then 𝐿max. Note that the calculation
here is somewhat simplified because the fidelity is not a function of 𝐿max. If both fidelity
and rate would be functions of 𝑁 and 𝐿, there would not exist a unique solution. In that
case, there is some freedom in choosing 𝑁max and 𝐿max.

The calculation of 𝑁max and 𝐿max for the example parameters 𝐹min = 0.93, 𝑅min = 1
Hz, 𝐹link = 0.99, 𝑐fiber = 200,000 km/s, 𝑀 = 1000 and 𝐿att = 22 km results in 𝑁max = 6 and
𝐿max = 136 km (rounded down).

6.3.3 Proof of Equivalence
In this section we briefly outline the proof of why the path-based formulation and the link-
based formulation are equivalent. The main idea is to use an optimal solution to the path-
based formulation to construct a feasible solution to the link-based formulation and vice
versa. We prove that this is always possible in such a way that the value of the objective
function of the constructed feasible solution is the same as that of the original optimal
solution. This can be used to show that the optimal objective values of both formulations
are always the same. Therefore, the feasible solution to one formulation constructed from
an optimal solution to another formulation is itself an optimal solution. We say that two
ILP formulations are equivalent if optimal solutions to one can be obtained from the other
and vice versa, and therefore we conclude that the path-based formulation and the link-
based formulation are equivalent.

To construct a solution to the link-based formulation using a solution to the path-based
formulation, we use the elementary links that appear in chosen paths. More specifically,
for each 𝑞 = (𝑠, 𝑡) ∈ 𝒬 and 𝑘 = 1,2,…,𝐾 , we set 𝑥𝑞,𝑘𝑢𝑣 = 1 if elementary link (𝑢,𝑣) ∈ ℰ𝑞 is in
the 𝑘th chosen path connecting 𝑠 and 𝑡 . Conversely, Constraints (6.18) guarantee that, for
every 𝑞 = (𝑠, 𝑡) ∈ 𝒬 and 𝑘 = 1,2,…,𝐾 , the elementary links (𝑢,𝑣) ∈ ℰ𝑞 for which 𝑥𝑞,𝑘𝑢𝑣 = 1
can be used to form exactly one path between 𝑠 and 𝑡 . These paths can be obtained by
using Algorithm 1, which outputs the set 𝒫 ∗ that contains the extracted paths over all
𝑞 ∈ 𝒬 and 𝑘 = 1,2,…,𝐾 . Thus, we can construct a solution to the path-based formulation
from a solution to the link-based formulation by setting 𝑥𝑝 = 1 for all 𝑝 ∈ 𝒫 ∗. Further-
more, the repeater-placement variables 𝑦𝑢 are kept the same when translating between
formulations.

By comparing the different constraints, it can be understood that if a solution to one
formulation is feasible, the solution to the other formulation that can be obtained from it is
also feasible. Constraints (6.6) and (6.19) both guarantee that elementary-link lengths do
not exceed 𝐿max, while Constraints (6.7) and (6.20) both guarantee that each path includes
𝑁max quantum-repeater nodes at maximum. Constraints (6.8) and (6.18) make sure there
are 𝐾 paths between each pair of end nodes. These paths are guaranteed to be disjoint
for the path-based formulation by Constraints (6.9) and for the link-based formulation by
Constraints (6.21) and (6.22). Lastly, Constraints (6.10) and (6.23) couple the 𝑥 variables to
the 𝑦 variables and make sure the quantum-repeater capacity is taken into account.

In step 7 of Box 6.1, we manually set 𝑥𝑞,𝑘𝑢𝑣 = 0 for all elementary links (𝑢,𝑣) ∈ ℰ which
are not in one of the paths 𝑝 ∈ 𝒫 ∗. We do this because, on some occasions, the variables
𝑥𝑞,𝑘𝑢𝑣 are allowed to have value 1 in such a way that they form loops (which are disjoint
from the path between 𝑠 and 𝑡). For example, it could be the case that for some 𝑞 ∈ 𝒬 and
𝑘 = 1,2,…,𝐾 , it holds that 𝑥𝑞,𝑘𝑢1𝑢2 = 𝑥𝑞,𝑘𝑢2𝑢1 = 1, which does not violate any of the constraints in
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Box 6.3, and also does not influence the objective function (6.15). Since these loops do not
connect end nodes, they do not contribute to realizing any of the network requirements.
Therefore, any variable 𝑥𝑞,𝑘𝑢𝑣 with value 1 such that it is part of a loop can safely be set to 0
without violating any constraint. This is shown rigorously in the supplementary material.
Only allowing for elementary links which are part of paths between end nodes realizes
the removal of such loops. Since the method in Box 6.1 recommends the construction of
elementary link (𝑢,𝑣) ∈ ℰ if 𝑥𝑞,𝑘𝑢𝑣 = 1, setting them to 0 whenever this is possible helps
to prevent the construction of unnecessary elementary links. One way in which the ap-
pearance of loops in optimal solutions can be prevented in the first place by is to use the
generalized link-based formulation in Box 6.4. In this formulation, the minimization of
the total elementary-link length is used as secondary objective.

6.3.4 Generating Random Networks
Here, we describe how we generate random network graphs based on random geomet-
ric graphs. These networks are used to demonstrate our method and study the effect of
different network-requirement parameters in Section 6.2.2.

The recipe for generating a random geometric graph on a two-dimensional Euclidean
space with 𝑛 nodes and radius 𝑑 is as follows [9]. First, 𝑛 points are distributed uniformly
at random on a unit square, by sampling both their horizontal and vertical coordinates uni-
formly at random. To every two points 𝑝1, 𝑝2 we associate 𝑟(𝑝1, 𝑝2), which is the Euclidean
distance between the two points. From this, an undirected weighted graph is constructed
in which every node corresponds to one of the points, and edges between nodes corre-
sponding to points 𝑝1, 𝑝2 are added if 𝑟(𝑝1, 𝑝2) ≤ 𝑑 . The weight that is given to the edge is
𝑟(𝑝1, 𝑝2).

To turn a random geometric graph into a suitable network graph, it must be decided
which of the nodes are end nodes, and which are potential repeater locations. To this end,
we determine the convex hull of the graph. We choose to use nodes corresponding to
vertices of the convex hull of the graph as end nodes, i.e. they make up the set 𝒞 . All
other nodes are thus considered potential repeater locations, i.e. they make up the set ℛ.
This method is used because it is expected that potential repeater locations lying outside
of the area spanned by the end nodes will only rarely be chosen as quantum-repeater
nodes. When the end nodes form the convex hull, there are no such potential repeater
locations, and the number of nodes that are not of relevance to the repeater-allocation
problem is minimized. We generate the random geometric graphs using NetworkX [10]
and determine the convex hull using an algorithm [11] which is included in SciPy [12].

The random network graph used in Figure 6.4 has been based on a random geometric
graph with 𝑛 = 10 and 𝑑 = 0.6, but has been further edited to be made suitable for demon-
stration purposes. Some nodes were displaced manually. Additionally, end nodes have
been added at the corners of the unit square and connected to the three closest potential
repeater locations.

6.3.5 Scaling of the Formulations
The path-based formulation relies on the enumeration of all the paths between two end
nodes. For every pair (𝑠, 𝑡) ∈ 𝒬 wemust consider all possible permutations of intermediate
nodes in which 𝑟 repeaters are placed on a path. For 𝑟 = 0, we get a single path directly
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from 𝑠 to 𝑡 and for 𝑟 = 1 we should consider all possible paths that utilize one repeater,
which are |ℛ| in total. Next, when 𝑟 = 2 we must consider all paths that contain exactly
two repeaters and additionally all permutations of the repeater placements in these paths,
which gives |ℛ|(|ℛ|−1) paths in total, et cetera. The number of 𝑦𝑢 variables is |ℛ|, so that
the number of variables 𝑛pbfvar of the path-based formulation is given by

𝑛pbfvar = |ℛ|+ |𝒬||𝒫𝑞 | (6.40)

= |ℛ|+ |𝒬|
|ℛ|
∑
𝑟=0

|ℛ|!
(|ℛ|− 𝑟)! . (6.41)

If |ℛ| > 1, this simplifies to [13]

𝑛pbfvar = |ℛ|+ |𝒬| [𝑒|ℛ|!] , (6.42)

where 𝑒 denotes Euler’s number and [⋅] represents the rounding operator. We assume that
the number of end nodes |𝒞 |, and therefore the number of end-node pairs |𝒬| = |𝒞 |(|𝒞 | −
1)/2, is constant so that this does not scale with the total number of nodes |𝒩 | in our graph.
This implies that the number of possible repeater locationsℛ =𝒩 ⧵𝒞 scales linearly with
the number of nodes. The number of variables, as well as the number of constraints, is
thus 𝑂 (|𝒩 |!).

One important detail of our implementation of the path-based formulation is that we
take Constraints (6.6) and (6.7) into account while enumerating all the paths. If we en-
counter a pathwhich contains an elementary linkwith a length that exceeds 𝐿max orwhich
uses more than 𝑁max repeaters, we simply exclude it from the set 𝒫 . This can greatly re-
duce the total number of variables, although it will remain to scale exponentially with
|𝒩 |.

In the link-based formulation, we need to enumerate all the elementary links in the
network. To this end, we need to count every elementary link from 𝑠 to every node 𝑣 ∈
ℛ∪{𝑡}, and from 𝑢 ∈ℛ to 𝑡 which results in 2|ℛ|+1 elementary links. Next, we also need
to consider the elementary link from every node 𝑢 ∈ ℛ to 𝑣 ∈ ℛ and back, in order to
allow for directional paths from 𝑠 to 𝑡 , which are |ℛ|(|ℛ|−1) in total. Additionally, since
we use the index 𝑘 for our 𝑥𝑞,𝑘𝑢𝑣 variables in order to keep track of the redundant paths that
are required for the given level of robustness, we need to make a copy of these variables
for every value of 𝑘 = 1,2,…,𝐾 . When we combine this with the |ℛ| 𝑦𝑢 variables, we get
that the total number of variables of the link-based formulation is given by

𝑛lbfvar = |ℛ|+𝐾|𝒬||ℰ𝑞 | (6.43)
= |ℛ|+𝐾|𝒬|(|ℛ|2 + |ℛ|+1), (6.44)

which is 𝑂 (|𝒩 |2), if we assume that 𝐾 is a fixed constant. Note that the link-based for-
mulation therefore also has 𝑂 (|𝒩 |2) constraints.
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Algorithm 1 Path extraction algorithm.
𝒫 ∗ = ∅
for 𝑞 = (𝑠, 𝑡) ∈ 𝒬 do

for 𝑘 = 1,2,…,𝐾 do
𝑢0 = 𝑠
𝑛 = 0
while 𝑢𝑛 ≠ 𝑡 do

Find the unique node 𝑣 ∈ ℛ ∪{𝑡} for which 𝑥𝑞,𝑘𝑢𝑛𝑣 = 1
𝑛 = 𝑛+1
𝑢𝑛 = 𝑣

end while
𝑝 = ((𝑠,𝑢1), (𝑢1,𝑢2),… , (𝑢𝑛−1, 𝑡)) 𝒫 ∗ = 𝒫 ∗ ∪𝑝

end for
end for
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Data Availability
All the data and code we used for generating the results can be found in the Github repos-
itory [5].

Author Contributions
This work is based on the master thesis of J.R. which was devised by S.W. and supervised
by S.W. and G.A.; K.C. introduced some key conceptual and proof ideas. J.R. proposed
the use of linear programming and implemented both formulations with CPLEX and G.A.
wrote most of the code for the simulations. All authors contributed to the manuscript.

6.4 Toy-Model Calculation of Rate and Fidelity
In this section, we calculate the rate and fidelity of a quantum-repeater chain using a toy
model described in Section 6.3.2. The quantum-repeater architecture under consideration
is of the massively-multiplexed type as described in e.g. [6]. In such a repeater chain, dur-
ing every round of time, entanglement distribution is attempted a large number of times
on each elementary link (using e.g. spectral multiplexing). If at the end of the round a
quantum repeater has at least succeeded once at entanglement generationwith each neigh-
bour, a successfully-entangled state is selected from each side and entanglement swapping
is performed between the two (through a Bell-state measurement). Otherwise, all entan-
glement is discarded and a new attempt is made during the next round. Our toy model of
such a quantum-repeater chain is based on the following simplifying assumptions:

• the states distributed over elementary links are Werner states,

• the noise in the states distributed over elementary links is the only noise,

• the only sources of photon loss are fiber attenuation and non-deterministic Bell-state
measurements,

• all processes except light traveling through fiber are instantaneous.

First, we investigate the final end-to-end fidelity of entangled quantum states cre-
ated by a repeater chain. Let us consider a repeater chain with 𝑁 quantum repeaters,
𝑀 entanglement-distribution attempts per round per elementary link, elementary-link
length 𝐿 and elementary-link fidelity 𝐹link. In the toy model, entangled states shared over
elementary links are Werner states, which can be parametrized as

𝜌𝑝link = 𝑝link |Φ+⟩⟨Φ+| + 1−𝑝link
4 1. (6.45)

This state has fidelity to the maximally-entangled Bell state |Φ+⟩ = 1
√2 (|00⟩+ |11⟩) of 𝐹link =1

4 (1+3𝑝link), and therefore 𝑝link = 1
3 (4𝐹link −1).

Entanglement swapping between Werner states 𝜌𝑝1 and 𝜌𝑝2 is performed through a
Bell-state measurement on one qubit from the first state and one qubit from the second
state. The quantum state after this operation (after tracing out the measured qubits and
ignoring possible Pauli corrections) is a newWerner state, 𝜌𝑝1,2 , with 𝑝1,2 = 𝑝1𝑝2. Repeated
use of this equation reveals that, if entanglement distribution is successful at least once
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in each of the 𝑁 + 1 elementary links, and if all entanglement swaps are successful, the
Werner state 𝜌𝑝𝑓 is obtained with 𝑝𝑓 = 𝑝𝑁+1

link . Thus, the final fidelity is

𝐹 = 1+3𝑝𝑁+1
link

4 = 1
4[1+3(

4𝐹link −1
3 )

𝑁+1
]. (6.46)

Now we consider the rate at which end-to-end entanglement can be established. First,
we calculate the probability that a single attempt at entanglement distribution in a single
elementary link is successful. Entanglement is generated by sending entangled photons
from both repeaters to a station in the center of the elementary link, where a probabilistic
Bell-state measurement is performed with 50% success probability. In the toy model, the
only other source of photon loss in the elementary link is attenuation in optical fiber, which
we assume to be characterized by the attenuation length 𝐿att. In that case, the probability
that both photons reach the midpoint and the Bell-state measurement in successful is

Pr(one attempt) = (𝑒−𝐿/(2𝐿att))
2
× 1
2 = 1

2𝑒
−𝐿/𝐿att . (6.47)

Then, the probability that at least one of the 𝑀 attempts in an elementary link in a single
round is successful is

Pr(elementary link) = 1−(1−Pr(one attempt))𝑀 . (6.48)

Finally, the end-to-end success probability is given by the probability that each link is
successful, and that each entanglement swap in the repeaters is successful. Since entan-
glement swapping in repeaters has a 50% success probability, this gives

Pr(repeater chain) = Pr(elementary link)𝑁+1(12)
𝑁
= (12)

𝑁
[1−(1− 1

2𝑒
−𝐿/𝐿att)

𝑀
]
𝑁+1

.
(6.49)

To determine the rate, we now need to know how long every round takes. In the
toy model, the only aspect of entanglement generation that takes any time is the photons
traveling to the midpoints stations, and the messages heralding success or failure of the
entanglement attempts traveling from the midpoint stations back to the repeaters. We as-
sume both are light traveling through fiber. Thus, every round takes as long as it takes for
light to travel the distance 𝐿 through fiber. Denoting the speed of light in fiber 𝑐fiber, this
gives a round time of 𝐿/𝑐fiber, so that the repetition rate is 𝑐fiber/𝐿. The end-to-end entan-
glement distribution rate is obtained by multiplying the repetition rate with the success
probability, given by

𝑅 = 𝑐fiber
𝐿 Pr(repeater chain) = 𝑐fiber

𝐿 (12)
𝑁
[1−(1− 1

2𝑒
−𝐿/𝐿att)

𝑀
]
𝑁+1

. (6.50)

6.5 Proof of Equivalence
In this section, we prove the equivalence between the link-based formulation and path-
based formulation. In order to make this material self-contained, in Table 6.1 we rein-
troduce some of the notations. Next, in Section 6.5.1, we briefly re-describe both of the
formulations. After that, in Sections 6.5.2 and 6.5.3, we show how to construct a feasible
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solution to the link-based formulation from the optimal solution to the path-based formu-
lation and vice versa. By combining this result with the proof that the optimal objective
values are equal, we conclude that the two formulations are equivalent. Here, we consider
two ILP formulations to be equivalent if an optimal solution to one formulation can be
used to obtain an optimal solution to the other and vice versa.

𝒬 Set of all ordered pairs (𝑠, 𝑡) of end-nodes.
𝒫𝑞 Set of all possible paths for a pair 𝑞 ∈ 𝒬.
𝒫 Set of all possible paths between all of the pairs 𝑞 ∈ 𝒬.
ℰ𝑞 Set of all elementary links that can be used by a pair 𝑞 ∈ 𝒬.
ℛ Set of potential repeater locations in the network.
𝐿max Maximum length of an elementary link.
𝑁max Maximum number of repeaters in a path.
𝐾 The robustness parameter, which denotes the minimum number of

quantum-repeater nodes or elementary links
(it can be any combination) that need to break down before one of the other

requirements can no longer be met.
𝒦 Set of all integers from 1 to 𝐾 (inclusive).
𝐷 The capacity parameter, which denotes the number of

quantum-communication sessions that one quantum repeater
can facilitate simultaneously.

Table 6.1: Overview of the sets and parameters that are relevant for the proof.

6.5.1 Formulations

Here we will restate both the path-based and link-based formulation for completeness. In
the path-based formulation, we define the binary decision variables 𝑥𝑝 corresponding to
a path 𝑝 ∈ 𝒫 = ∪(𝑠,𝑡)∈𝒬𝒫(𝑠,𝑡), where 𝒫(𝑠,𝑡) is the set of all possible paths from end node 𝑠 to
end node 𝑡 . A path itself is a sequence of elementary links reaching from 𝑠 to 𝑡 that does
not contain any loops. They have value 1 when 𝑝 is considered part of the set of chosen
paths, and 0 otherwise. Furthermore, we use the binary decision variables 𝑦𝑝𝑢 for all 𝑢 ∈ℛ.
Note that we introduce the superscript 𝑝 here to more clearly distinguish between the two
formulations, which differs from the main text. The variable 𝑦𝑝𝑢 is 1 if a quantum repeater
is placed at potential repeater location 𝑢, and 0 otherwise. The exact formulation is given
in Box 6.5.
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Box 6.5: Restated path-based formulation.

min ∑
𝑢∈ℛ

𝑦𝑝𝑢 (6.51)

s.t. 𝐿((𝑢,𝑣))𝑥𝑝 ≤ 𝐿max ∀(𝑢,𝑣) ∈ 𝑝,𝑝 ∈ 𝒫 (6.52)

|𝑝|𝑥𝑝 ≤ 𝑁max +1 ∀𝑝 ∈ 𝒫 (6.53)

∑
𝑝∈𝒫𝑞

𝑥𝑝 = 𝐾 ∀𝑞 ∈ 𝒬 (6.54)

∑
𝑝∈𝒫𝑞

𝑟𝑢𝑝𝑥𝑝 ≤ 1 ∀𝑢 ∈ ℛ,𝑞 ∈ 𝒬 (6.55)

∑
𝑝∈𝒫

𝑟𝑢𝑝𝑥𝑝 ≤ 𝐷𝑦𝑝𝑢 ∀𝑢 ∈ ℛ (6.56)

𝑥𝑝 ∈ {0,1} ∀𝑝 ∈ 𝒫 (6.57)

𝑦𝑝𝑢 ∈ {0,1} ∀𝑢 ∈ ℛ (6.58)

where 𝑟𝑢𝑝 = {1 if 𝑝 uses 𝑢 as a repeater
0 otherwise

∀𝑢 ∈ ℛ,𝑝 ∈ 𝒫 (6.59)

On the other hand, in the link-based formulationwe define the binary decision variable
𝑥𝑞,𝑘𝑢𝑣 for each pair of end nodes 𝑞 = (𝑠, 𝑡) ∈ 𝒬, every elementary link (𝑢,𝑣) ∈ ℰ𝑞 and 𝑘 ∈
𝒦 = {1,2,…𝐾}. These variables can be interpreted as indicating whether an elementary
link (𝑢,𝑣) is used in the 𝑘th path connecting the end nodes 𝑠 and 𝑡 . Furthermore, in the
link-based formulation we use the variables 𝑦 𝑙𝑢 to indicate whether node 𝑢 ∈ℛ is used as
a quantum-repeater node. The exact formulation is given in Box 6.6.
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Box 6.6: Restated link-based formulation.

min ∑
𝑢∈ℛ

𝑦 𝑙𝑢 (6.60)

such that (6.61)

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

𝑥𝑞,𝑘𝑢𝑣 − ∑
𝑣

(𝑣,𝑢)∈ℰ𝑞

𝑥𝑞,𝑘𝑣𝑢 (6.62)

=
⎧
⎨
⎩

1, if 𝑢 = 𝑠
−1, if 𝑢 = 𝑡
0, if 𝑢 ∈ ℛ

∀𝑢 ∈ ℛ∪{𝑠, 𝑡},𝑞 = (𝑠, 𝑡) ∈ 𝒬,𝑘 ∈ 𝒦 (6.63)

𝐿((𝑢,𝑣))𝑥𝑞,𝑘𝑢𝑣 ≤ 𝐿max ∀(𝑢,𝑣) ∈ ℰ𝑞 , 𝑞 ∈ 𝒬,𝑘 ∈ 𝒦 (6.64)

∑
(𝑢,𝑣)∈ℰ𝑞

𝑥𝑞,𝑘𝑢𝑣 ≤ 𝑁max +1 ∀𝑞 ∈ 𝒬,𝑘 ∈ 𝒦 (6.65)

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

∑
𝑘∈𝒦

𝑥𝑞,𝑘𝑢𝑣 ≤ 1 ∀𝑢 ∈ ℛ,𝑞 ∈ 𝒬 (6.66)

∑
𝑘∈𝒦

𝑥𝑞,𝑘𝑠𝑡 ≤ 1 ∀𝑞 ∈ 𝒬 (6.67)

∑
𝑞∈𝒬

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

∑
𝑘∈𝒦

𝑥𝑞,𝑘𝑢𝑣 ≤ 𝐷𝑦 𝑙𝑢 ∀𝑢 ∈ ℛ (6.68)

𝑥𝑞,𝑘𝑢𝑣 ∈ {0,1} ∀(𝑢,𝑣) ∈ ℰ𝑞 , 𝑞 ∈ 𝒬,𝑘 ∈ 𝒦 (6.69)

𝑦 𝑙𝑢 ∈ {0,1} ∀𝑢 ∈ ℛ (6.70)

6.5.2 From the Path-Based Formulation to the Link-Based Formula-
tion

In this section we will construct a solution to the link-based formulation from the opti-
mal solution to the path-based formulation. We then proceed by proving that this newly
constructed solution is indeed a feasible solution to the link-based formulation, i.e. that it
satisfies all constraints.

From the optimal solution to the path-based formulation we can use the values of the
variables 𝑥𝑝 and 𝑦𝑝𝑢 to assign values to our new binary decision variables �̃�𝑞,𝑘𝑢𝑣 and �̃� 𝑙𝑢 ,
which presumably give a solution to the link-based formulation, using Algorithm 2.
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Algorithm 2 Methodology for assigning the values of �̃�𝑞,𝑘𝑢𝑣 and �̃� 𝑙𝑢 .
For all 𝑞 ∈ 𝒬, 𝑘 ∈ 𝒦 and (𝑢,𝑣) ∈ ℰ𝑞 , set �̃�𝑞,𝑘𝑢𝑣 = 0 and for all 𝑢 ∈ ℛ, set �̃� 𝑙𝑢 = 𝑦𝑝𝑢
for 𝑞 ∈ 𝒬 do 𝑘 = 1

for 𝑝 ∈ 𝒫𝑞 do
if 𝑥𝑝 = 1 then

for (𝑢,𝑣) ∈ 𝑝 do
�̃�𝑞,𝑘𝑢𝑣 = 1

end for
𝑘 = 𝑘 +1

end if
end for

end for

From Algorithm 2, we can see that for each pair 𝑞 ∈ 𝒬 and value of 𝑘 ∈ 𝒦 , we select
a single, unique path 𝑝 for which 𝑥𝑝 = 1 (because there are exactly 𝐾 paths with 𝑥𝑝 = 1
in 𝒫𝑞 , due to Constraints (6.54)) and use its elementary links to assign the corresponding
�̃�𝑞,𝑘𝑢𝑣 variables to have value 1. Let us denote this path by 𝑝𝑞,𝑘 for ease of notation in the
remainder of this section.

Next, we will prove that the newly constructed solution is indeed feasible, by showing
that all of the �̃�𝑞,𝑘𝑢𝑣 and �̃� 𝑙𝑢 variables satisfy all constraints of the link-based formulation.

Proposition 1 The variables �̃�𝑞,𝑘𝑢𝑣 that we obtain with Algorithm 2 satisfy Constraints (6.63)
of the link-based formulation, i.e.

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

�̃�𝑞,𝑘𝑢𝑣 − ∑
𝑣

(𝑣,𝑢)∈ℰ𝑞

�̃�𝑞,𝑘𝑣𝑢 =
⎧
⎨
⎩

1, if 𝑢 = 𝑠
−1, if 𝑢 = 𝑡
0, if 𝑢 ∈ ℛ

∀𝑢 ∈ ℛ∪{𝑠, 𝑡},𝑞 = (𝑠, 𝑡) ∈ 𝒬,𝑘 ∈ 𝒦. (6.71)

Proof: Consider the path 𝑝𝑞,𝑘 for specific values of 𝑞 = (𝑠, 𝑡) ∈ 𝒬 and 𝑘 ∈𝒦 , for which
𝑥𝑝𝑞,𝑘 = 1.. This path starts at 𝑠 and ends at 𝑡 by construction, so there is exactly one node
𝑣 ∈ℛ∪{𝑡} for which �̃�𝑞,𝑘𝑠𝑣 = 1 and hence∑𝑣∶(𝑠,𝑣)∈ℰ𝑞 �̃�

𝑞,𝑘𝑠𝑣 = 1. Additionally, since the set ℰ𝑞
only contains outgoing edges from 𝑠, ∑𝑣∶(𝑣,𝑠)∈ℰ𝑞 �̃�

𝑞,𝑘𝑣𝑠 is an empty sum and thus, trivially,

∑𝑣∶(𝑣,𝑠)∈ℰ𝑞 �̃�
𝑞,𝑘𝑣𝑠 = 0. This implies that

∑
𝑣

(𝑠,𝑣)∈ℰ𝑞

�̃�𝑞,𝑘𝑠𝑣 − ∑
𝑣

(𝑣,𝑠)∈ℰ𝑞

�̃�𝑞,𝑘𝑣𝑠 = 1. (6.72)

In a similar fashion, it must hold that there exists exactly one node 𝑣 ∈ 𝑅 ∪ {𝑠} such that
�̃�𝑞,𝑘𝑣𝑡 = 1 and hence ∑𝑣∶(𝑣,𝑡)∈ℰ𝑞 �̃�

𝑞,𝑘
𝑣𝑡 = 1. Furthermore, since the set ℰ𝑞 also only contains
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the incoming edges to 𝑡 , it follows trivially that ∑𝑣∶(𝑡,𝑣)∈ℰ𝑞 �̃�
𝑞,𝑘
𝑡𝑣 = 0, which implies that

∑
𝑣

(𝑡,𝑣)∈ℰ𝑞

�̃�𝑞,𝑘𝑡𝑣 − ∑
𝑣

(𝑣,𝑡)∈ℰ𝑞

�̃�𝑞,𝑘𝑣𝑡 = −1. (6.73)

If 𝑝𝑞,𝑘 visits any other node 𝑢 ∈ ℛ, it holds that there is exactly one incoming edge and
one outgoing edge from this node, since a path cannot start nor end here and neither can a
path contain loops by definition. In other words, there must be exactly one node 𝑣 ∈ℛ∪{𝑠}
for which �̃�𝑞,𝑘𝑣𝑢 = 1 and one node 𝑣′ ∈ℛ∪{𝑡} (where 𝑣 ≠ 𝑣′) for which �̃�𝑞,𝑘𝑢𝑣′ = 1. This results
in

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

�̃�𝑞,𝑘𝑢𝑣 − ∑
𝑣

(𝑣,𝑢)∈ℰ𝑞

�̃�𝑞,𝑘𝑣𝑢 = 0 ∀𝑢 ∈ ℛ. (6.74)

Finally, if a node 𝑢 ∈ℛ is not visited by 𝑝𝑞,𝑘 , there are no incoming and no outgoing edges.
Thus, �̃�𝑞,𝑘𝑣𝑢 = 0 for all 𝑣 ∈ℛ∪{𝑠}, and �̃�𝑞,𝑘𝑢𝑣′ = 0 for all 𝑣′ ∈ℛ∪{𝑡}. As a result, Equation (6.74)
is also satisfied in this case. The combination of (6.72), (6.73) and (6.74) for all 𝑞 ∈ 𝒬 and
𝑘 ∈ 𝒦 concludes the proof. □

Proposition 2 The variables �̃�𝑞,𝑘𝑢𝑣 that we obtain with Algorithm 2 satisfy Constraints (6.64)
of the link-based formulation, i.e.

𝐿((𝑢,𝑣))�̃�𝑞,𝑘𝑢𝑣 ≤ 𝐿max ∀(𝑢,𝑣) ∈ ℰ𝑞 , 𝑞 ∈ 𝒬,𝑘 ∈ 𝒦. (6.75)

Proof: Consider the path 𝑝𝑞,𝑘 for specific values of 𝑞 = (𝑠, 𝑡) ∈ 𝒬 and 𝑘 ∈ 𝒦 . Because
𝑥𝑝𝑞,𝑘 = 1 by definition, it follows from Constraints (6.52) that any elementary link (𝑢,𝑣) ∈
𝑝𝑞,𝑘 has length 𝐿((𝑢,𝑣)) ≤ 𝐿max. Since �̃�𝑞,𝑘𝑢𝑣 = 1 only if (𝑢,𝑣) is in 𝑝𝑞,𝑘 , it follows that
every elementary link for which �̃�𝑞,𝑘𝑢𝑣 = 1must have a length smaller than or equal to 𝐿max.
Because this argument can be made for any 𝑞 ∈ 𝒬 and any 𝑘 ∈ 𝒦 , Constraints (6.64) are
satisfied whenever �̃�𝑞,𝑘𝑢𝑣 = 1. Furthermore, they are trivially satisfied when �̃�𝑞,𝑘𝑢𝑣 = 0. □

Proposition 3 The variables �̃�𝑞,𝑘𝑢𝑣 that we obtain with Algorithm 2 satisfy Constraints (6.65)
of the link-based formulation, i.e.

∑
(𝑢,𝑣)∈ℰ𝑞

�̃�𝑞,𝑘𝑢𝑣 ≤ 𝑁max +1 ∀𝑞 ∈ 𝒬,𝑘 ∈ 𝒦. (6.76)

Proof: Consider the path 𝑝𝑞,𝑘 for specific values of 𝑞 = (𝑠, 𝑡) ∈ 𝒬 and 𝑘 ∈𝒦 , for which
𝑥𝑝𝑞,𝑘 = 1. According to Algorithm 2, �̃�𝑞,𝑘𝑢𝑣 = 1 only if (𝑢,𝑣) ∈ 𝑝𝑞,𝑘 . Hence, the number of
(𝑢,𝑣) ∈ ℰ𝑞 for which �̃�𝑞,𝑘𝑢𝑣 = 1 is the same as the number of elementary links in 𝑝𝑞,𝑘 , which
is |𝑝𝑞,𝑘 |. Thus,

|𝑝𝑞,𝑘 | = |𝑝𝑞,𝑘 |𝑥𝑝𝑞,𝑘 = ∑
(𝑢,𝑣)∈ℰ𝑞

�̃�𝑞,𝑘𝑢𝑣 , (6.77)
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where the first equality holds because 𝑥𝑝𝑞,𝑘 = 1 by definition of 𝑝𝑞,𝑘 . According to Con-
straints (6.53),

|𝑝|𝑥𝑝 ≤ 𝑁max +1 ∀𝑝 ∈ 𝒫 . (6.78)
which implies

|𝑝𝑞,𝑘 |𝑥𝑝𝑞,𝑘 ≤ 𝑁max +1 ∀𝑞 ∈ 𝒬,𝑘 ∈ 𝒦. (6.79)

If we substitute (6.77) into (6.79) we directly get that

∑
(𝑢,𝑣)∈ℰ𝑞

�̃�𝑞,𝑘𝑢𝑣 ≤ 𝑁max +1 ∀𝑞 ∈ 𝒬,𝑘 ∈ 𝒦. (6.80)

□

Proposition 4 The variables �̃�𝑞,𝑘𝑢𝑣 that we obtain with Algorithm 2 satisfy Constraints (6.66)
and (6.67) of the link-based formulation, i.e.

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

∑
𝑘∈𝒦

�̃�𝑞,𝑘𝑢𝑣 ≤ 1 ∀𝑢 ∈ ℛ,𝑞 ∈ 𝒬 (6.81)

and
∑
𝑘∈𝒦

�̃�𝑞,𝑘𝑠𝑡 ≤ 1 ∀𝑞 ∈ 𝒬. (6.82)

Proof: Consider the path 𝑝𝑞,𝑘 for specific values of 𝑞 = (𝑠, 𝑡) ∈ 𝒬 and 𝑘 ∈𝒦 , for which
𝑥𝑝𝑞,𝑘 = 1. According to Equation (6.59), the parameter 𝑟𝑢𝑝𝑞,𝑘 = 1 if the potential repeater
location 𝑢 ∈ ℛ is in 𝑝𝑞,𝑘 . If this is the case, the path 𝑝𝑞,𝑘 contains exactly one outgoing
elementary link at 𝑢, and thus ∑𝑣∶(𝑢,𝑣)∈ℰ𝑞 �̃�

𝑞,𝑘𝑢𝑣 = 1. Otherwise, there are no outgoing

elementary links, and ∑𝑣∶(𝑢,𝑣)∈ℰ𝑞 �̃�
𝑞,𝑘𝑢𝑣 = 0. Therefore,

𝑟𝑢𝑝𝑞,𝑘 = ∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

�̃�𝑞,𝑘𝑢𝑣 . (6.83)

Furthermore, we note that
∑
𝑝∈𝒫𝑞

𝑟𝑢𝑝𝑥𝑝 = ∑
𝑘∈𝒦

𝑟𝑢𝑝𝑞,𝑘 , (6.84)

since the paths 𝑝 ∈ 𝒫𝑞 for which 𝑥𝑝 = 1 are exactly the paths that were labeled 𝑝𝑞,𝑘 for
some 𝑘 ∈ 𝒦 . Combining Equations (6.83) and (6.84), and repeating this argument for
every 𝑢 ∈ ℛ and 𝑞 ∈ 𝒬 then gives

∑
𝑝∈𝒫𝑞

𝑟𝑢𝑝𝑥𝑝 = ∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

∑
𝑘∈𝒦

�̃�𝑞,𝑘𝑢𝑣 ∀𝑢 ∈ ℛ,𝑞 ∈ 𝒬. (6.85)

We can then substitute (6.85) directly into (6.55), in order to get

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

∑
𝑘∈𝒦

�̃�𝑞,𝑘𝑢𝑣 ≤ 1 ∀𝑢 ∈ ℛ,𝑞 ∈ 𝒬, (6.86)
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which are exactly Constraints (6.66).
Additionally, the set 𝒫𝑞 for 𝑞 = (𝑠, 𝑡) ∈ 𝒬 contains the path consisting of the direct

elementary link (𝑠, 𝑡) exactly once. Furthermore, no other paths containing (𝑠, 𝑡) can exist
because there exist no incoming edges to 𝑠 nor outgoing edges from 𝑡 in ℰ𝑞 . If the path
𝑝𝑞,𝑘′ is this direct path, then �̃�𝑞,𝑘′𝑠𝑡 = 1. But because 𝑝𝑞,𝑘 cannot contain (𝑠, 𝑡) for 𝑘 ≠ 𝑘′, it
holds that �̃�𝑞,𝑘𝑠𝑡 = 0 for 𝑘 ≠ 𝑘′. Therefore,

∑
𝑘∈𝒦

�̃�𝑞,𝑘𝑠𝑡 = �̃�𝑞,𝑘′𝑠𝑡 + ∑
𝑘∈𝒦
𝑘≠𝑘′

�̃�𝑞,𝑘𝑠𝑡 = 1. (6.87)

On the other hand, if there is no 𝑘′ such that 𝑝𝑞,𝑘′ is the direct path,

∑
𝑘∈𝒦

�̃�𝑞,𝑘𝑠𝑡 = 0. (6.88)

In any case, the sum evaluates to smaller than or equal to 1. Since this argument holds for
any 𝑞 ∈ 𝒬, we can conclude that

∑
𝑘∈𝒦

�̃�𝑞,𝑘𝑠𝑡 ≤ 1 ∀𝑞 ∈ 𝒬. (6.89)

□

Proposition 5 The variables �̃�𝑞,𝑘𝑢𝑣 and �̃� 𝑙𝑢 that we obtain with Algorithm 2 satisfy Con-
straints (6.68) of the link-based formulation, i.e.

∑
𝑞∈𝒬

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

∑
𝑘∈𝒦

�̃�𝑞,𝑘𝑢𝑣 ≤ 𝐷�̃� 𝑙𝑢 ∀𝑢 ∈ ℛ. (6.90)

Proof: If we sum over all 𝑞 ∈ 𝒬 on both sides of (6.85), we get

∑
𝑞∈𝒬

∑
𝑝∈𝒫𝑞

𝑟𝑢𝑝𝑥𝑝 = ∑
𝑝∈𝒫

𝑟𝑢𝑝𝑥𝑝 = ∑
𝑞∈𝑄

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

∑
𝑘∈𝒦

�̃�𝑞,𝑘𝑢𝑣 ∀𝑢 ∈ ℛ. (6.91)

Substituting (6.91) into (6.56) then results in

∑
𝑞∈𝑄

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

∑
𝑘∈𝒦

�̃�𝑞,𝑘𝑢𝑣 ≤ 𝐷𝑦𝑝𝑢 ∀𝑢 ∈ ℛ. (6.92)

Finally, since we assign all the values of �̃� 𝑙𝑢 to have the same values as 𝑦𝑝𝑢 for all 𝑢 ∈ ℛ in
Algorithm 2, we conclude that

∑
𝑞∈𝑄

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

∑
𝑘∈𝒦

�̃�𝑞,𝑘𝑢𝑣 ≤ 𝐷�̃� 𝑙𝑢 ∀𝑢 ∈ ℛ. (6.93)

□
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This concludes the proof that the variables we obtain from the optimal solution to the
path-based formulation using Algorithm 2 provide a feasible solution to the link-based
formulation. One important statement we make about the objective value of this newly
constructed feasible solution is that

∑
𝑢∈ℛ

𝑦𝑝𝑢 = ∑
𝑢∈ℛ

�̃� 𝑙𝑢 ≥ ∑
𝑢∈ℛ

𝑦 𝑙𝑢 , (6.94)

where ∑𝑢∈ℛ 𝑦 𝑙𝑢 represents the optimal objective value of the link-based formulation.
In other words, the objective value of the newly constructed feasible solution will always
be greater than or equal to the objective value of the optimal solution, since we are solving
a minimization problem.

6.5.3 From the Link-Based Formulation to the Path-Based Formula-
tion

In this section we will go the other way around and construct a solution to the path-
based formulation from the optimal solution to the link-based formulation using the path
extraction algorithm, outlined in Algorithm 1. First, we show that the application of this
algorithm indeed leads to valid paths, after which we proceed by proving that this newly
constructed solution is a feasible solution to the path-based formulation.

From the optimal solution to the link-based formulation, we can use the values of the
variables 𝑥𝑞,𝑘𝑢𝑣 and 𝑦 𝑙𝑢 to assign the values to our new binary decision variables �̃�𝑝 and �̃�𝑝𝑢 ,
which presumably give a solution to the path-based formulation. We do this by setting
�̃�𝑝𝑢 = 𝑦 𝑙𝑢 for all 𝑢 ∈ ℛ, �̃�𝑝 = 1 for all 𝑝 ∈ 𝒫 ∗ and �̃�𝑝 = 0 for all 𝑝 ∈ 𝒫 ⧵𝒫 ∗, where the set
𝒫 ∗ is obtained from the path extraction algorithm. It follows from Proposition 6 that this
can always be done. Note that in the path extraction algorithm, to every 𝑞 ∈ 𝒬 and 𝑘 ∈𝒦
there is a single path associated. We label this path 𝑝𝑞,𝑘 for the remainder of this section.
It follows that 𝑥𝑝𝑞,𝑘 = 1 for all 𝑞 ∈ 𝒬 and 𝑘 ∈ 𝒦 .

Proposition 6 Algorithm 1 is always successful. That is, it is always able to construct the
set 𝒫 ∗ such that 𝒫 ∗ ⊆ 𝒫 .

Proof: Wewill prove this proposition by proving that Algorithm 3 can always successfully
construct a sequence ̄𝑝𝑞,𝑘 and moreover that this sequence forms a valid path (i.e. ̄𝑝𝑞,𝑘 ∈
𝒫 ). Because Algorithm 1 is nothing but the repeated application of Algorithm 3 (with
𝒫 ∗ = ∪𝑞,𝑘𝑝𝑞,𝑘 ), it then follows that this proposition holds.
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Algorithm 3 Path extraction sub-algorithm.
𝑢0 = 𝑠
𝑛 = 0
while 𝑢𝑛 ≠ 𝑡 do

Find the unique node 𝑣 ∈ ℛ ∪{𝑡} for which 𝑥𝑞,𝑘𝑢𝑛𝑣 = 1
𝑛 = 𝑛+1
𝑢𝑛 = 𝑣

end while
̄𝑝𝑞,𝑘 = ((𝑢0,𝑢1), (𝑢1,𝑢2),… , (𝑢𝑛1 ,𝑢𝑛))

The first time when the algorithm enters the while loop, it has to find the single node
𝑣 for which 𝑥𝑞,𝑘𝑠𝑣 = 1. To prove that there exists exactly one such node, we consider Con-
straints (6.63) for 𝑢 = 𝑠. Because there is no incoming elementary link at 𝑠, i.e. there is no
𝑣′ such that (𝑣′, 𝑠) ∈ ℰ𝑞 , the second summation is empty and the equation reduces to

∑
𝑣

(𝑠,𝑣)∈ℰ𝑞

𝑥𝑞,𝑘𝑠𝑣 = 1. (6.95)

Since the variables 𝑥𝑞,𝑘𝑢𝑣 are binary, this implies that there is exactly one 𝑣 such that 𝑥𝑞𝑘𝑠𝑣 = 1.

Now, we assume that 𝑢 = 𝑢𝑖 such that 𝑢𝑖 ≠ 𝑠 and 𝑢𝑖 ≠ 𝑡 and show there is a unique 𝑣
such that 𝑥𝑞,𝑘𝑢𝑖𝑣 = 1. First, we combine Constraints (6.66) with the fact that

∑
𝑣

(𝑢𝑖 ,𝑣)∈ℰ𝑞

𝑥𝑞,𝑘𝑢𝑖𝑣 ≤ ∑
𝑣

(𝑢𝑖 ,𝑣)∈ℰ𝑞

∑
𝑘∈𝒦

𝑥𝑞,𝑘𝑢𝑖𝑣 , (6.96)

to find that
∑
𝑣

(𝑢𝑖 ,𝑣)∈ℰ𝑞

𝑥𝑞,𝑘𝑢𝑖𝑣 ≤ 1. (6.97)

From Constraints (6.63) with 𝑢𝑖 ∈ ℛ we find that

∑
𝑣

(𝑢𝑖 ,𝑣)∈ℰ𝑞

𝑥𝑞,𝑘𝑢𝑖𝑣 = ∑
𝑣

(𝑣,𝑢𝑖)∈ℰ𝑞

𝑥𝑞,𝑘𝑣𝑢𝑖 . ∀𝑞 ∈ 𝑄,𝑘 ∈ 𝒦. (6.98)

We know that the left-hand side of this equation is upper bounded by 1 because of Equation
(6.97). Furthermore, because node 𝑢𝑖 was selected by Algorithm 3 (when entering the
while loop for 𝑢 = 𝑢𝑖−1), we know that 𝑥𝑞,𝑘𝑢𝑖−1𝑢𝑖 = 1. This implies that the right-hand side is
at least one. Therefore, both sides must be equal to one. Because the variables are binary,
the equality of the right-hand side to 1 implies there is exactly one 𝑣 such that 𝑥𝑞,𝑘𝑢𝑖𝑣 = 1.

This procedure only concludes if there is an 𝑛 such that 𝑢𝑛 = 𝑡 . This must be the case,
as there is only a finite number of nodes in 𝒩 , and two nodes 𝑢𝑘 , 𝑢𝑙 cannot be the same
unless 𝑘 = 𝑙. To see that this last property holds, assume for the moment that there are a
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𝑘 and 𝑙 > 𝑘 such that 𝑢𝑘 = 𝑢𝑙 . In that case, by virtue of how Algorithm 3 works, it must
be the case that 𝑥𝑞,𝑘𝑢𝑘−1𝑢𝑘 = 𝑥𝑞,𝑘𝑢𝑙−1𝑢𝑘 = 1. Since we concluded earlier that there can only be
one 𝑣 such that 𝑥𝑞,𝑘𝑣𝑢 = 1, this implies that 𝑢𝑙−1 = 𝑢𝑘−1. Then, the above argument can be
repeated to find 𝑢𝑙−2 = 𝑢𝑘−2. This can be continued until we find that 𝑢𝑙−𝑘 = 𝑢𝑘−𝑘 = 𝑢0 = 𝑠.
Because 𝑙 −𝑘 > 0, 𝑢𝑙−𝑘 can only be in ̄𝑝𝑞,𝑘 if 𝑥𝑞,𝑘𝑢𝑙−𝑘−1𝑢𝑙−𝑘 = 𝑥𝑞,𝑘𝑢𝑙−𝑘−1𝑠 = 1. However, this variable
is not defined, because there is no elementary link (𝑣, 𝑠) ∈ ℰ𝑞 for any 𝑣 ∈ 𝒩 . We have
thus reached a contradiction, and we can conclude that 𝑢𝑘 ≠ 𝑢𝑙 as long as 𝑘 ≠ 𝑙 and thus
Algorithm 3 must eventually terminate.

At this point we can conclude that Algorithm 3 creates the sequence

̄𝑝𝑞,𝑘 = ((𝑢0,𝑢1), (𝑢1,𝑢2), (𝑢2,𝑢3),… , (𝑢𝑛−1,𝑢𝑛)) (6.99)

for some integer 𝑛, where 𝑢0 = 𝑠 and 𝑢𝑛 = 𝑡 . Clearly, this is a sequence of adjacent elemen-
tary links which connect the end node 𝑠 to the end node 𝑡 . Furthermore, since we con-
cluded that 𝑢𝑘 ≠ 𝑢𝑙 for 𝑘 ≠ 𝑙, there are no loops, and thus ̄𝑝𝑞,𝑘 is in fact a path ̄𝑝𝑞,𝑘 = 𝑝𝑞,𝑘 ∈𝒫 .
Since 𝑝𝑞,𝑘 ∈ 𝒫 , the variable �̃�𝑝𝑞,𝑘 is well-defined and can be set to 1.
□
Next, we address the fact that optimal solutions to the link-based formulation can

contain chosen elementary links that form loops, which do not contribute to satisfying
constraints, but also do not violate them. To avoid the construction of ineffective elemen-
tary links, we define the variables ̄𝑥𝑞,𝑘𝑢𝑣 for all 𝑞 ∈ 𝒬, 𝑘 ∈𝒦 and (𝑢,𝑣) ∈ ℰ𝑞 . We set ̄𝑥𝑞,𝑘𝑢𝑣 = 1
if (𝑢,𝑣) ∈ 𝑝 for some 𝑝 ∈ 𝒫 ∗ and ̄𝑥𝑞,𝑘𝑢𝑣 = 0 otherwise for all 𝑞 ∈ 𝒬 and 𝑘 ∈ 𝒦 , where 𝒫 ∗ is
the output of Algorithm 1 when applied to the variables 𝑥𝑞,𝑘𝑢𝑣 (which are part of an optimal
solution to the link-based formulation). In other words, ̄𝑥𝑞,𝑘𝑢𝑣 represent a choice of elemen-
tary links that corresponds to the optimal solution, but with all links that are not in any
of the paths 𝑝 ∈ 𝒫 ∗ removed.

Proposition 7 The variables ̄𝑥𝑞,𝑘𝑢𝑣 and 𝑦 𝑙𝑢 form an optimal solution to the the link-based
formulation.

Proof: If the variables form a feasible solution, they also form an optimal solution,
since the variables 𝑦 𝑙𝑢 are defined to be part of an optimal solution and the objective func-
tion is independent of the values of ̄𝑥𝑞,𝑘𝑢𝑣 .

The variables form a feasible solution if they satisfy all constraints in Box 6.6 (but with
𝑥𝑞,𝑘𝑢𝑣 substituted by ̄𝑥𝑞,𝑘𝑢𝑣 everywhere). It is easily verified that Constraints (6.64 - 6.68)
are satisfied. Each of these set an upper bound on sums over (linear functions of) ̄𝑥𝑞,𝑘𝑢𝑣
variables. Since ̄𝑥𝑞,𝑘𝑢𝑣 is either equal to 𝑥𝑞,𝑘𝑢𝑣 or set to 0, it always holds that ̄𝑥𝑞,𝑘𝑢𝑣 ≤ 𝑥𝑞,𝑘𝑢𝑣 .
Thus, replacing 𝑥𝑞,𝑘𝑢𝑣 variables by ̄𝑥𝑞,𝑘𝑢𝑣 variables can only decrease the summations. Since
the 𝑥𝑞,𝑘𝑢𝑣 variables satisfy all constraints by assumption (and the bounds are unaltered), we
can conclude that all of these constraints are also satisfied by the ̄𝑥𝑞,𝑘𝑢𝑣 variables.

To show that Constraints (6.63) are satisfied as well, consider the path 𝑝𝑞,𝑘 for some
specific 𝑞 = (𝑠, 𝑡) ∈ 𝒬 and 𝑘 ∈𝒦 . By definition, ̄𝑥𝑞,𝑘𝑢𝑣 = 1 if and only if (𝑢,𝑣) ∈ 𝑝𝑞,𝑘 . By virtue
of Proposition 6, we know that 𝑝𝑞,𝑘 is a valid path between 𝑠 and 𝑡 , i.e.

𝑝𝑞,𝑘 = ((𝑢0,𝑢1), (𝑢1,𝑢2),… , (𝑢𝑛1 ,𝑢𝑛)) (6.100)
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for some integer 𝑛, where 𝑢0 = 𝑠, 𝑢𝑛 = 𝑡 , 𝑢𝑖 ∈ ℛ for 0 < 𝑖 < 𝑛, and 𝑢𝑖 ≠ 𝑢𝑗 for 𝑖 ≠ 𝑗.
Consider Constraints (6.63) for 𝑢 = 𝑠. 𝑥𝑞,𝑘𝑠𝑣 = 1 holds if and only if 𝑣 = 𝑢1, and thus

∑𝑣∶(𝑠,𝑣)∈ℰ𝑞 ̄𝑥𝑞,𝑘𝑠𝑣 = ̄𝑥𝑞,𝑘𝑠𝑢1 = 1. Furthermore, since there are no incoming elementary links at

𝑠, i.e. (𝑣, 𝑠) ∉ ℰ𝑞 for all 𝑣 ∈ ℛ ∪{𝑠, 𝑡}, ∑𝑣∶(𝑣,𝑠)∈ℰ𝑞 ̄𝑥𝑞,𝑘𝑣𝑠 = 0 trivially. Therefore,

∑
𝑣

(𝑠,𝑣)∈ℰ𝑞

̄𝑥𝑞,𝑘𝑠𝑣 − ∑
𝑣

(𝑣,𝑠)∈ℰ𝑞

̄𝑥𝑞,𝑘𝑣𝑠 = 1 (6.101)

and therefore, Constraints (6.63) hold for 𝑢 = 𝑠.
When 𝑢 = 𝑡 , we can make a similar argument: ̄𝑥𝑞,𝑘𝑣𝑡 = 1 holds if and only if 𝑣 = 𝑢𝑛−1, and

thus ∑𝑣∶(𝑣,𝑡)∈ℰ𝑞 𝑥
𝑞,𝑘
𝑣𝑡 = 1. Furthermore, there are no elementary links leaving 𝑡 , i.e. there

is no 𝑣 ∈ ℛ ∪ {𝑠, 𝑡} such that (𝑡,𝑣) ∈ ℰ𝑞 . Therefore, ∑𝑣∶(𝑡,𝑣)∈ℰ𝑞 ̄𝑥𝑞,𝑘𝑡𝑣 = 0 trivially. Thus we
can conclude Constraints (6.63) hold for 𝑢 = 𝑡 , i.e.

∑
𝑣

(𝑡,𝑣)∈ℰ𝑞

̄𝑥𝑞,𝑘𝑡𝑣 − ∑
𝑣

(𝑣,𝑡)∈ℰ𝑞

̄𝑥𝑞,𝑘𝑣𝑡 = −1. (6.102)

When 𝑢 ∈ ℛ, it can be the case that there is an 𝑖 such that 𝑢 = 𝑢𝑖 for 1 < 𝑖 < 𝑛. Then,
̄𝑥𝑞,𝑘𝑢𝑖𝑣 = 1 holds if and only if 𝑣 = 𝑢𝑖+1, and therefore ∑𝑣∶(𝑢𝑖 ,𝑣)∈ℰ𝑞 ̄𝑥𝑞,𝑘𝑢𝑖𝑣 = ̄𝑥𝑞,𝑘𝑢𝑖𝑢𝑖+1 = 1. Further-

more, ̄𝑥𝑞,𝑘𝑣𝑢𝑖 = 1 holds if and only if 𝑣 = 𝑢𝑖−1, and therefore∑𝑣∶(𝑣,𝑢𝑖)∈ℰ𝑞 ̄𝑥𝑞,𝑘𝑣𝑢𝑖 = ̄𝑥𝑞,𝑘𝑢𝑖−1𝑢𝑖 = 1. On
the other hand, if there is no 𝑖 such that 𝑢 = 𝑢𝑖 , 𝑢 is not on the path. It then holds by
definition that ̄𝑥𝑞,𝑘𝑢𝑣 = ̄𝑥𝑞,𝑘𝑣𝑢 = 0 for all 𝑣 ∈ ℛ ∪{𝑠, 𝑡}. In both cases, it follows directly that

∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

̄𝑥𝑞,𝑘𝑢𝑣 − ∑
𝑣

(𝑣,𝑢)∈ℰ𝑞

̄𝑥𝑞,𝑘𝑣𝑢 = 0. (6.103)

Therefore, Constraints (6.63) also holds for 𝑢 ∈ ℛ. We conclude that all constraints hold,
and thus ̄𝑥𝑞,𝑘𝑢𝑣 and 𝑦 𝑙𝑢 together form an optimal solution to the link-based formulation. □

Note that, by definition, for all 𝑞 ∈ 𝒬 and 𝑘 ∈𝒦 , there are no elementary links (𝑢,𝑣) ∈
ℰ𝑞 such that ̄𝑥𝑞,𝑘𝑢𝑣 = 1 which are not in the path 𝑝𝑞,𝑘 . This property, together with Propo-
sition 7, makes it easier to show that all constraints of the path-based formulation are
satisfied for the variables �̃�𝑝 .
Proposition 8 The variables �̃�𝑝 that we obtain satisfy Constraints (6.52) of the path-based
formulation, i.e.

𝐿((𝑢,𝑣))�̃�𝑝 ≤ 𝐿max ∀(𝑢,𝑣) ∈ 𝑝,𝑝 ∈ 𝒫 . (6.104)

Proof: Every path 𝑝 for which �̃�𝑝 = 1 is equal to 𝑝𝑞,𝑘 for some 𝑞 ∈ 𝒬 and 𝑘 ∈ 𝒦 .
For every elementary link (𝑢,𝑣) that makes up 𝑝𝑞,𝑘 it holds that ̄𝑥𝑞,𝑘𝑢𝑣 = 1. Therefore,
due to Constraints (6.64), each elementary link (𝑢,𝑣) ∈ 𝑝𝑞,𝑘 must have length 𝐿((𝑢,𝑣)) =
𝐿((𝑢,𝑣))�̃�𝑝𝑞,𝑘 ≤ 𝐿max. For all paths 𝑝 which are not equal to 𝑝𝑞,𝑘 for some 𝑞 ∈ 𝒬 and 𝑘 ∈𝒦 ,
�̃�𝑝 = 0 and 𝐿((𝑢,𝑣))�̃�𝑝 = 0 ≤ 𝐿max. Therefore, 𝐿((𝑢,𝑣))�̃�𝑝 ≤ 𝐿max holds for any (𝑢,𝑣) ∈ 𝑝 for
any path 𝑝 ∈ 𝒫 . □
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Proposition 9 The variables �̃�𝑝 that we obtain satisfy Constraints (6.53) of the path-based
formulation, i.e.

|𝑝|�̃�𝑝 ≤ 𝑁max +1 ∀𝑝 ∈ 𝒫 . (6.105)

Proof: Consider the path 𝑝𝑞,𝑘 for specific values of 𝑞 = (𝑠, 𝑡) ∈ 𝒬 and 𝑘 ∈ 𝒦 . By
definition, the number of elementary links in 𝑝𝑞,𝑘 is the same as the number of elementary
links for which ̄𝑥𝑞,𝑘𝑢𝑣 = 1. Thus,

∑
(𝑢,𝑣)∈ℰ𝑞

̄𝑥𝑞,𝑘𝑢𝑣 = |𝑝𝑞,𝑘 | = |𝑝𝑞,𝑘 |�̃�𝑝𝑞,𝑘 . (6.106)

Substituting (6.106) into (6.65) then gives

|𝑝𝑞,𝑘 |�̃�𝑝𝑞,𝑘 ≤ 𝑁max +1. (6.107)

Furthermore, for any path 𝑝 ∈ 𝒫 which is not equal to 𝑝𝑞,𝑘 for some 𝑞 ∈ 𝒬 and 𝑘 ∈ 𝒦 , it
holds that �̃�𝑝 = 0 and thus |𝑝|�̃�𝑝 = 0 ≤ 𝑁max + 1. Therefore, we can conclude that |𝑝|�̃�𝑝 ≤
𝑁max +1 for any 𝑝 ∈ 𝒫 . □

Proposition 10 The variables �̃�𝑝 that we obtain satisfy Constraints (6.54) of the path-based
formulation, i.e.

∑
𝑝∈𝒫𝑞

�̃�𝑝 = 𝐾 ∀𝑞 ∈ 𝒬. (6.108)

Proof: Consider the set 𝒫𝑞 for a specific value of 𝑞 ∈ 𝒬. Every path 𝑝 ∈ 𝒫𝑞 has �̃�𝑝 = 1
if it is equal to 𝑝𝑞,𝑘 for some 𝑘 ∈ 𝒦 and �̃�𝑝 = 0 otherwise. Therefore,

∑
𝑝∈𝒫𝑞

�̃�𝑝 = ∑
𝑘∈𝒦

�̃�𝑝𝑞,𝑘 = ∑
𝑘∈𝒦

1 = 𝐾 ∀𝑞 ∈ 𝒬. (6.109)

□

Proposition 11 The variables �̃�𝑝 that we obtain satisfy Constraints (6.55) of the path-based
formulation, i.e.

∑
𝑝∈𝒫𝑞

𝑟𝑢𝑝 �̃�𝑝 ≤ 1 ∀𝑢 ∈ ℛ,𝑞 ∈ 𝒬. (6.110)

Proof: Consider the path 𝑝𝑞,𝑘 for specific values of 𝑞 = (𝑠, 𝑡) ∈ 𝒬 and 𝑘 ∈ 𝒦 . The
parameter 𝑟𝑢𝑝𝑞,𝑘 is defined in Equation (6.59), and takes the value 1 if the path 𝑝𝑞,𝑘 passes
the potential repeater location 𝑢 ∈ ℛ and 0 otherwise. Since 𝑝𝑞,𝑘 can only pass 𝑢 if there
is an outgoing elementary link from 𝑢 in 𝑝𝑞,𝑘 , and since the elementary links in 𝑝𝑞,𝑘 are
exactly those elementary links (𝑢,𝑣) for which ̄𝑥𝑞,𝑘𝑢𝑣 = 1, 𝑟𝑢𝑝𝑞,𝑘 = 1 if and only if ̄𝑥𝑞,𝑘𝑢𝑣 = 1 for
some 𝑣 such that (𝑢,𝑣) ∈ ℰ𝑞 . Therefore,

𝑟𝑢𝑝𝑞,𝑘 = ∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

̄𝑥𝑞,𝑘𝑢𝑣 . (6.111)
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Since 𝑥𝑝𝑞,𝑘 = 1, this directly implies that

𝑟𝑢𝑝𝑞,𝑘 �̃�𝑝𝑞,𝑘 = ∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

̄𝑥𝑞,𝑘𝑢𝑣 . (6.112)

Furthermore, since for every path 𝑝 ∈ 𝒫𝑞 , �̃�𝑝 = 1 if 𝑝 is equal to 𝑝𝑞,𝑘 for some 𝑘 ∈ 𝒦 and
�̃�𝑝 = 0 otherwise,

∑
𝑝∈𝒫𝑞

𝑟𝑢𝑝 �̃�𝑝 = ∑
𝑘∈𝒦

𝑟𝑢𝑝𝑞,𝑘 �̃�𝑝𝑞,𝑘 . (6.113)

Combining Equation (6.112) and Equation (6.113) then gives

∑
𝑝∈𝒫𝑞

𝑟𝑢𝑝 �̃�𝑝 = ∑
𝑣

(𝑢,𝑣)∈ℰ𝑞

∑
𝑘∈𝒦

̄𝑥𝑞,𝑘𝑢𝑣 . (6.114)

Substituting (6.114) into (6.66) gives

∑
𝑝∈𝒫𝑞

𝑟𝑢𝑝 �̃�𝑝 ≤ 1. (6.115)

Repeating this argument for every every 𝑢 ∈ ℛ and 𝑞 ∈ 𝒬 results in Constraints (6.55).
□

Proposition 12 The variables �̃�𝑝 and �̃�𝑝𝑢 that we obtain satisfy Constraints (6.56) of the
path-based formulation, i.e.

∑
𝑝∈𝒫

𝑟𝑢𝑝 �̃�𝑝 ≤ 𝐷�̃�𝑝𝑢 ∀𝑢 ∈ ℛ. (6.116)

Proof: If we substitute (6.114) into (6.68) (with every 𝑥𝑞,𝑘𝑢𝑣 replaced by ̄𝑥𝑞,𝑘𝑢𝑣 ), we get
that

∑
𝑞∈𝒬

∑
𝑝∈𝒫𝑞

𝑟𝑢𝑝 �̃�𝑝 = ∑
𝑝∈𝒫

𝑟𝑢𝑝 �̃�𝑝 ≤ 𝐷𝑦 𝑙𝑢 ∀𝑢 ∈ ℛ. (6.117)

Additionally, we assign all the values of �̃�𝑝𝑢 to have the same value as 𝑦 𝑙𝑢 for all 𝑢 ∈ℛ, such
that we can replace 𝑦 𝑙𝑢 with �̃�𝑝𝑢 in (6.117) to get

∑
𝑝∈𝒫

𝑟𝑢𝑝 �̃�𝑝 ≤ 𝐷�̃�𝑝𝑢 ∀𝑢 ∈ ℛ. (6.118)

□
This concludes the proof that the variables we obtain from the optimal solution to the

link-based formulation provide a feasible solution to the path-based formulation. Another
important observation we can make about the objective value of this newly constructed
feasible solution is that

∑
𝑢∈ℛ

𝑦 𝑙𝑢 = ∑
𝑢∈ℛ

�̃�𝑝𝑢 ≥ ∑
𝑢∈ℛ

𝑦𝑝𝑢 . (6.119)
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If we now combine (6.94) and (6.119), we reach the conclusion that

∑
𝑢∈ℛ

𝑦 𝑙𝑢 = ∑
𝑢∈ℛ

𝑦𝑝𝑢 , (6.120)

i.e. the optimal objective values of the path-based formulation and link-based formulation
are equal. This implies that the feasible solution to the link-based formulation we obtain
from the path-based formulation and vice versa are actually optimal solutions. We thus
conclude that the two formulations are equivalent.
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7
Analysis of multipartite

entanglement distribution using a
central quantum-network node

GuusAvis, FilipRozpędek and Stephanie
Wehner.
We study the performance (rate and fidelity) of distributing multipartite entangled states in
a quantum network through the use of a central node. Specifically, we consider the scenario
where the multipartite entangled state is first prepared locally at a central node, and then
transmitted to the end nodes of the network through quantum teleportation. As our first
result, we present leading-order analytical expressions and lower bounds for both the rate and
fidelity at which a specific class of multipartite entangled states, namely Greenberger-Horne-
Zeilinger (GHZ) states, are distributed. Our analytical expressions for the fidelity accurately
account for time-dependent depolarizing noise encountered by individual quantum bits while
stored in quantum memory, as verified using Monte Carlo simulations. As our second result,
we compare the performance to the case where the central node is an entanglement switch
and the GHZ state is created by the end nodes in a distributed fashion. Apart from these
two results, we outline how the teleportation-based scheme could be physically implemented
using trapped ions or nitrogen-vacancy centers in diamond.

7.1 Introduction
While the previous chapters all focus on the distribution of bipartite entangled states, in
this chapter we instead focus on the distribution of multipartite entanglement. Various
investigations have been performed into how specific multipartite entangled states can
best be distributed in a quantum network [1–22]. A recurring theme that can be discerned
in prior work is the use of a central node that establishes bipartite entanglement with a
number of end nodes, and then executes local operations to transform the bipartite states

This chapter is based on the publication Phys. Rev. A 107, 012609 (2023).
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into a single multipartite entangled state between those end nodes [3, 8, 12, 15, 16, 20–22].
Notably, such a scheme is a key ingredient for different efficient protocols and network
architectures for distributing multipartite entanglement [3, 16, 20–22].

In this chapter, we consider the case where a multipartite entangled state is distributed
in a quantum network by first creating the target state locally at the central node, and then
transmitting the qubits of the state to the end nodes through quantum teleportation using
preshared Bell states [23]. Teleportation is realized by executing a Bell-state measurement
(BSM) on the to-be teleported qubit and a qubit in a Bell state. Here, we refer to a node
capable of creating and teleporting multipartite entangled states as a factory node. The
function of a factory node is illustrated in Figure 7.1.

Figure 7.1: A factory node can be used to distribute some multipartite entangled target state (for example, a
graph state) between a set of end nodes. This is done by preparing the target state locally at the factory node and
teleporting it. Quantum teleportation of the target state is realized using Bell states shared between the factory
node and the end nodes and Bell-state measurements (BSMs).

Understanding the performance of factory nodes in the presence of hardware imper-
fections allows for the assessment of the different proposed protocols and network archi-
tectures that incorporate such central nodes. Metrics that quantify the performance of
multipartite entanglement distribution are the rate at which states can be distributed, and
the fidelity of distributed states to the target state. Developing a good understanding of
the rate and fidelity is of special relevance to the work done in [21]. Here, the authors
present a protocol to decide which node in a larger network to select as the central node
for the distribution of GHZ states. This protocol relies on an analytical model of the rate
and fidelity with which the states can be distributed for different possible placements of
the central node. We contribute to understanding the rate and fidelity in Section 7.3. Fur-
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thermore, we remark that it is not only of interest to quantify the performance of factory
nodes in an absolute sense. It is also of interest to understand how the performance of
factory nodes compares to other schemes that also allow for distributing multipartite en-
tangled states, such that statements about their relative performance can be made. We
contribute to this by considering different types of central nodes in Sections 7.1.3 and 7.4.

In this chapter, we specifically study the use of factory nodes to distribute GHZ states
in a symmetric star-shaped network. In such a network, depicted in Figure 7.2, a central
node is connected to 𝑁 end nodes through, in total, 𝑁 identical quantum connections.
These quantum connections can be used to distribute Bell states. We will model the dis-
tribution of Bell states using quantum connections as a series of attempts of constant du-
ration and success probability. When such an attempt is successful, the series terminates
and a Bell state is created. When a quantum connection creates a Bell state, it is shared
between the central node and the corresponding end node, and can be stored in quantum
memory. These Bell states can be used as a resource to create multipartite entangled states
shared by the end nodes.

7.1.1 Summary of results
In this chapter, we present two main results. As our first result, in Section 7.3, we pro-
vide analytical leading-order expressions and lower bounds for both the rate and fidelity
of GHZ-state distribution in a symmetric star-shaped network using a factory node, and
additionally an exact expression for the rate. The leading-order expressions become exact
in the limit when the success probability of a single attempt at Bell-state distribution us-
ing a quantum connection is small, and the probability of losing a qubit due to memory
decoherence during the time span of a single such attempt is small. As our second result,
in Section 7.4, we provide a comparison between the performance of GHZ-state distribu-
tion on a symmetric star-shaped network when the central node is a factory node, and
when the central node is instead a “2-switch” capable of performing BSMs to create Bell
states shared between end nodes [14]. A key advantage to the use of factory nodes is an
increased resilience to noise in Bell-state distribution. However, a disadvantage is reduced
resilience to noise in BSMs. Additionally, the factory node is typically outperformed by
the 2-switch in terms of rate.

7.1.2 Comparison of analytical results to prior work
Here, we compare the analytical results for the rate and fidelity that we present in Section
7.3 to existing results. First, we note that we are aware of only one prior analytical result
for the fidelity of distributed GHZ states in a similar scheme, which is found in [21]. How-
ever, the authors make the simplifying assumption that Bell states cannot be stored in
quantum memory between attempts at Bell-state distribution. Therefore, all connections
need to be successful simultaneously. When the success probability for distributing Bell
states is small, this is a very inefficient scheme. In contrast, we assume entangled qubits
are stored within the factory node until all Bell states are in place and the GHZ state can
be teleported. Here, we are able to accurately account for the time-dependent noise due to
qubits being stored in noisy quantum memory for random periods of time. Additionally,
it is assumed in [21] that local operations are always noiseless, which is not an assumption
made in this chapter.

Second, we compare our results with the study of the “entanglement switch”. An en-
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tanglement switch, first defined in [14], is a quantum-network node capable of generating
and storing Bell states with 𝑘 end nodes, and executing GHZ-state measurements on 𝑛
local qubits, thereby creating GHZ states shared by 𝑛 out of 𝑘 end nodes. From this per-
spective, a factory node that distributes GHZ states, as studied in this chapter, can be
described as an 𝑛 = 𝑘 entanglement switch. An entanglement switch for which 𝑛 = 2 is
referred to as “2-switch” throughout this chapter.

In [12–15, 24], the entanglement switch is studied analytically using Markov-chain
techniques. In [15], it is discussed that a minimum fidelity can be guaranteed by incorpo-
rating a cutoff time after which qubits are discarded frommemory in the protocol, and the
effects of the cutoff time on the rate are studied for 𝑛 = 2. However, there are no expres-
sions for the actual fidelity (with or without cutoff time), and in case there is no cutoff time
there is also no lower bound. Additionally, none but [12] consider the case 𝑛 > 3, where
the only result that is presented for 𝑛 = 𝑘 is that no steady-state solution exists in case
the switch is able to store an infinite number of entangled qubits. This is in contrast to
this chapter, where we present analytical results for the fidelity in the absence of a cutoff
time, the parameter 𝑛 can take any value, and we assume there is only one qubit of buffer
memory available per end node. Our results are limited to 𝑛 = 𝑘, but we discuss in Section
7.6 how the results can be extended to 𝑛 < 𝑘.

A paper that does derive results for an entanglement switch of general 𝑛 = 𝑘 with
only a single qubit of buffer memory is [10]. The authors provide analytical tools for
understanding and bounding the rate, but do not consider the fidelity. Finally, numerical
results for the fidelity obtained fromMonte Carlo simulations can be found in [11]. While
Monte Carlo simulations can be used to study a larger range of setups than our analytical
results (e.g., they can be used to study asymmetric star-shaped networks), they may need
to be evaluated many times in order to obtain results with small error bars. Doing so can
be computationally expensive. This is especially the case when there is a large number of
end nodes, as quantum states in the system will be large and therefore hard to simulate.
On the other hand, our analytical results are computationally cheap to evaluate and have
no error bars. Furthermore, analytical results are often more suited to understand how a
quantity scales and gain intuition.

7.1.3 Different central nodes
In order to understand howwell factory nodes perform relative to other schemes that allow
for the distribution of multipartite entangled states, a comparison needs to be performed.
This allows us to put the rate and fidelity that factory nodes can achieve into context, and
can help determine under what circumstances it is best to use a factory node, and under
what circumstances it may be better to consider a different scheme. Here, we provide a
non-exhaustive comparison by discussing two alternative strategies for distributing multi-
partite entangled states on the symmetric star-shaped network depicted in Figure 7.2. The
first of these utilizes a central node without quantum memory, while the second uses a
2-switch as central node.

The first alternative method to factory nodes for the distribution of multipartite en-
tanglement in a star-shaped network is to utilize a central node that does not have any
quantummemory. This memoryless scheme requires connections through which photons
can be directly transmitted, e.g. they can be optical fibers. To distribute a multipartite en-
tangled state, the end nodes emit entangled photons that are sent through the connections
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Figure 7.2: Symmetric star-shaped network studied in this chapter. 𝑁 identical end nodes are each connected
to a central node through one of, in total, 𝑁 identical quantum connections. These quantum connections can
be used to distribute Bell states, which can be stored in quantum memory and provide a resource to create a
multipartite entangled states shared by the end nodes. An example of a possible central node is a factory node.

to the central node. Here, the photons are interfered and measured, resulting in the cre-
ation of the target state on the end nodes. Such schemes exist for the distribution of GHZ
states [4, 25] and W states [26, 27], and they are illustrated in Figure 7.3.

An advantage of these schemes is that the central node can be very simple, requir-
ing only linear-optics components and single-photon detectors. A downside however,
when distributing GHZ states, is that all photons need to arrive at the central station si-
multaneously, making it very sensitive to photon losses; if each of the 𝑁 connections
transmits photons successfully with probability 𝜂 (the transmittance of the connection),
the distribution rate will scale as 𝜂𝑁 . On the other hand, a factory node could be used to
distribute states with a rate that falls only logarithmically with 𝑁 , and linearly with the
success probability of Bell-state distribution (see Section 7.3.1). How this success proba-
bility scales with 𝜂 depends on the nature of the connection and the specific method used
to distribute Bell states. When using direct transmission of entangled photons, the scaling
will be linear in 𝜂, but schemes with better scaling exist. For example, single-click her-
alded entanglement generation [28] can be used for √𝜂 scaling, and the scaling could be
further improved using quantum repeaters, with the exact scaling depending on how they
are implemented [29]. No further comparison between memoryless schemes and the use
of a factory node is performed in this chapter.

The second alternative method to using factory nodes for the distribution of multipar-
tite entanglement in a star-shaped network, is to use a 2-switch as a central node. The
2-switch functions as an intermediary, allowing the end nodes to share Bell states with
one another even though they are not directly connected. By executing the appropriate
local operations at the end nodes, these Bell states can be transformed into the target mul-
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Figure 7.3: Some multipartite entangled states, such as GHZ states and W states, can be distributed between end
nodes through the interference and measurement of entangled photons. Each of the end nodes needs to emit
a photon that is entangled to a qubit held in local quantum memory, and transmit it to a central node. At this
node, the photons originating from all the different nodes are interfered.

tipartite entangled state. One downside to this option is that it imposes the requirement
that end nodes must be able to store multiple qubits within their quantum memory, and
that they must be able to execute multipartite entangling operations. An additional down-
side is that, even if each end node is able to store and exert full control over two qubits,
there still exist multipartite entangled states that the nodes would be able to store but can-
not create in their limited quantum memory using only bipartite entangled states shared
between them [19]. On the other hand, when utilizing a factory node, any multipartite en-
tangled state that the end nodes have enough quantummemory to store can be distributed
among them. Generally, when using a factory node, advanced quantum capabilities are
required only of the dedicated network device, not of the end nodes.

In section 7.4, we present our second main result. This result is a comparison, based
on Monte Carlo simulations, of the rate and fidelity of GHZ-state distribution on the sym-
metric star-shaped network using a factory node and using a 2-switch. Here, we assume
the 2-switch follows a specific protocol under which BSMs are not executed whenever
possible, but only when they result in a Bell state that directly contributes to the creation
of a GHZ state.

7.1.4 Outline
The remainder of this chapter is set up as follows. First, in Section 7.2, we introduce
the exact factory-node setup and noise model we study. Next, in Section 7.3, we provide
analytical results for the rate and fidelity with which GHZ states can be distributed on
this setup. In Section 7.4, we use Monte Carlo simulations to compare the performance of
GHZ-state distribution using a factory node and using a 2-switch. We provide examples
of how a factory node could be physically implemented using trapped ions or nitrogen-
vacancy centers in diamond in Section 7.5. Finally, we conclude in Section 7.6, where we
discuss how the results presented in this chapter could be generalized and used for further
study.
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7.2 Setup, Protocol and Model
In this section, we discuss in detail the factory-node setup that we study in this chapter.
Additionally, we introduce the exact protocol used to distribute GHZ states on this setup,
and the model that we use to account for noise and losses.

We consider a symmetric star-shaped quantum network. Such a network, depicted in
Figure 7.2, consists of𝑁 end nodes, and one central node that shares a single quantum con-
nection with each of the end nodes. For the factory-node setup discussed in this section,
this central node is a factory node. The quantum connections can be used to distribute
Bell states of the form

|𝜙00⟩ =
1
√2 (|00⟩+ |11⟩) . (7.1)

Each end node contains a single qubit. On the other hand, the factory node contains 2𝑁
qubits. 𝑁 of these can be used to store the local halves of Bell states that are distributed
using the quantum connections. The other 𝑁 can be used to prepare and store a target
quantum state to be distributed among the end nodes. Furthermore, for each of the first
𝑁 qubits, the node is able to execute a BSM with exactly one of the second 𝑁 qubits. In
our modeling, we allow for probabilistic BSMs. A BSM is probabilistic e.g. when it is
implemented using linear optics [30, 31]. When a BSM has success probability 𝑞BSM, we
model this as raising a “fail” flag with probability 1− 𝑞BSM, and executing a perfect BSM
otherwise. On this setup, any 𝑁 -partite target state can be distributed between the end
nodes by creating the target state locally, and then teleporting it to the end nodes using Bell
states. Specifically, we consider the distribution of an 𝑁 -partite GHZ state using Protocol
7.1, which is illustrated in Figure 7.4. Such a state is defined by

|GHZ⟩ = 1
√2 (|0⟩

⊗𝑁 + |1⟩⊗𝑁 ) . (7.2)

Protocol 7.1 GHZ-State Distribution Using Factory Node

1. Repeatedly attempt Bell-state distribution over each of the 𝑁 quantum connections
shared between the factory node and the 𝑁 different end nodes, until the factory node
shares a Bell state with each end node.

2. Create an 𝑁 -partite GHZ state on the 𝑁 remaining free memory qubits in the factory
node.

3. Perform 𝑁 BSMs at the factory node, each between one qubit that holds part of the
GHZ state, and one qubit that holds part of a Bell state.

4. Send a classical message from the factory node to each of the end nodes containing the
results of the BSMs.

5. If any of the BSMs was unsuccessful, all end nodes reset their memory qubits. Return
to Step 1. Otherwise, the end nodes perform Pauli corrections based on the outcomes of
the BSMs, such that, in the absence of noise, the end nodes now share a GHZ state.

Each step in the protocol is performed after the previous step has been concluded. In
case the BSMs are all successful, the last three steps of Protocol 7.1 implement quantum
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Figure 7.4: Illustration of GHZ-state distribution through a factory node, using Protocol 7.1. (a) There is one
factory node, and there are 𝑁 = 3 end nodes. (b) Bell states are distributed between the factory node and each
of the end nodes (Step 1 of Protocol 7.1). (c) After all Bell states are in place, a GHZ state is created locally (Step
2 of Protocol 7.1). (d) BSMs are executed between qubits in Bell states and qubits in the GHZ state (Step 3 of
Protocol 7.1). (e) If all BSMs were successful and the corresponding Pauli corrections have been applied, the end
nodes share a GHZ state (Steps 4 and 5 of Protocol 7.1).

teleportation of the 𝑁 qubits sharing a GHZ state from the factory node to the end nodes.
Therefore, in the absence of noise, this results in the 𝑁 end nodes sharing an 𝑁 -partite
GHZ state.

In this study, we assume the time it takes to distribute a Bell state over a quantum
connection follows a geometric distribution. That is, Bell-state distribution is a series of
attempts, where each attempt is of constant duration Δ𝑡 , and where the probability that
an attempt is successful is described by the constant 𝑞link. To be more precise, Δ𝑡 is the
time it takes after starting an attempt until both the end node and factory node know
whether it was successful or not. Only after they have obtained this knowledge, they
can decide whether they want to reset their local qubits and start again, or whether they
should instead keep the created quantum state stored in memory. We use this time, i.e.
Δ𝑡 after the start of the attempt, as the start of the storage time of the Bell state that is
generated if the attempt is successful. Describing Bell-state distribution as a sequence of
independent attempts is accurate when the quantum connection consists of, for example,
heralded entanglement generation through either direct transmission [32, 33] or photon
interference [28, 34–44], or a quantum-repeater chain with fixed-time quantum memory
[45, 46].

Another assumption made here is that all quantum connections are identical, i.e. Δ𝑡
and 𝑞link are the same for each of the 𝑁 connections between the factory node and the
end nodes. Therefore, Δ𝑡 is used as the standard time unit throughout the rest of this
chapter, and one time step of duration Δ𝑡 during which attempts at Bell-state distribution
take place is sometimes referred to as a “round”.

The time that it takes to send a classical message between the factory node and any
of the end nodes is denoted 𝑡cl. Since Step 4 of Protocol 7.1 consists of sending classical
messages, it will take 𝑡cl to finish that step. How large 𝑡cl is compared to Δ𝑡 depends on
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how the quantum connections are implemented. For example, in the case of heralded
entanglement generation through photon interference, Δ𝑡 includes the time required to
send photons to a midpoint station, and the time required to send back the measurement
outcome to the nodes. Assuming classical signals travel at the same speed of light (in
fiber) as the photons used to generate entanglement, this time is exactly equal to 𝑡cl. Δ𝑡
may be further limited by, among others, the rate at which entangled photons can be
emitted and by classical overhead due to e.g. synchronizing emission times [38, 47, 48].
In that case, 𝑡cl < Δ𝑡 . In this chapter, we focus on the case 𝑞link ≪ 1. In that regime, the
number of attempts required to successfully distribute a Bell state is typically very large.
Then, as long as 𝑡cl is not much larger than Δ𝑡 , classical communication will only take up
a negligibly small part of both the time required to distribute one GHZ state and qubit
storage times. Therefore, we use 𝑡cl = 0 throughout the rest of this chapter. Additionally,
we assume that all local operations executed at the factory node and the end nodes are
instantaneous. These operations do not suffer from any speed-of-light delay, and their
execution time will always become comparatively small for small enough 𝑞link. Because
both classical communication and local operations are modeled as instantaneous, Step 1
is the only step of Protocol 7.1 with nonzero duration.

All noise in the network is modeled by depolarizing channels, described by the action
[49]

𝒟ℋ𝐴,𝑝(𝜌) = 𝑝𝜌 + (1−𝑝)Trℋ𝐴(𝜌)⊗
1ℋ𝐴

Tr1ℋ𝐴
. (7.3)

Here, 𝜌 is a densitymatrix in the Hilbert spaceℋ =ℋ𝐴⊗ℋ𝐵 ,ℋ𝐴 is the subspace ofℋ that
describes the system that the depolarizing channel acts on, 1ℋ𝐴 is the identity operator
of ℋ𝐴, Trℋ𝐴 is the partial trace over ℋ𝐴, and 𝑝 is the so-called depolarizing parameter.
It can be interpreted as losing all information about the system described by ℋ𝐴 with
probability 1−𝑝. Specifically, we consider the following sources of noise:

• Noisy connections. Whenever a Bell state is created, a depolarizing channel with
parameter 𝑝link acts on the two qubits that hold the Bell state (i.e. ℋ𝐴 has dimen-
sion 4). We note that, because of the symmetry of the Bell state, this is equivalent
to a single-qubit depolarizing channel acting with parameter 𝑝link on either of the
individual qubits.

• Noisy memory. For every time unit Δ𝑡 that a quantum state is stored in a memory
qubit, a depolarizing channel with parameter 𝑝mem acts on that qubit (i.e. ℋ𝐴 has
dimension 2).

• Noisy BSMs. Whenever a BSM is executed, it is preceded by two depolarizing chan-
nels with parameter 𝑝BSM, one on each of the participating qubits (i.e. ℋ𝐴 has
dimension 2). This measurement itself, following the depolarizing channels, is then
modeled as being noiseless.

• Noisy GHZ states. Whenever a GHZ state is created, a depolarizing channel with
parameter 𝑝GHZ acts on the𝑁 qubits that hold the GHZ state (i.e. ℋ𝐴 has dimension
2𝑁 .)

Local Pauli corrections are modeled as noiseless.
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7.3 Analytical Results
Here, we present analytical results for the rate and fidelity of GHZ-state distribution using
Protocol 7.1. For the rate, we provide three analytical results: an exact expression, a lower
bound, and a leading-order expression. For the fidelity, we present two analytical results: a
lower bound and a leading-order expression. The accuracy of the leading-order expression
for the rate, and of both the leading-order expression and the lower bound for the fidelity,
is verified against a numerical model built using the quantum-network simulator NetSquid
[11] in Section 7.9.

7.3.1 Rate
We denote the time required to distribute a single GHZ state using Protocol 7.1 by 𝑇 ,
which is a random variable. The (average) rate at which GHZ states are distributed is then
defined by

𝑅 = 1/⟨𝑇⟩ . (7.4)
Thus, to calculate the rate, we need to know the expected value of the distribution time.
To this end, we decompose the distribution time as

𝑇 = 𝑛teleport𝑇teleport. (7.5)

Here, 𝑛teleport is the number of attempts at teleporting a GHZ state until such an attempt
is successful. That is, it is the number of times Steps 1 through 4 of Protocol 7.1 need to
be executed for the protocol to finish. Such an attempt at teleportation may fail in case
the BSMs are probabilistic, i.e. 𝑞BSM < 1. On the other hand, 𝑇teleport is the time required
to perform Steps 1 through 4 once. Both these quantities are random variables. Because
under the present assumptions only Step 1 of Protocol 7.1 has a nonzero duration, 𝑇teleport
can be further dissected into

𝑇teleport = 𝑛allΔ𝑡, (7.6)
where 𝑛all is again a random variable, corresponding to the number of rounds of Bell-state
distribution required to share Bell states between the factory node and all of the end nodes.
That is, it is the number of rounds required to finish Step 1 of Protocol 7.1. Combining the
two expressions yields

𝑇 = 𝑛teleport𝑛allΔ𝑡. (7.7)
Because the expected value of a product of two independent random variables is the prod-
uct of their expected values, we find

⟨𝑇⟩ = ⟨𝑛teleport⟩⟨𝑛all⟩Δ𝑡. (7.8)

Since each teleportation attempt succeeds with a fixed success probability of 𝑞𝑁BSM (tele-
portation succeeds if and only if all 𝑁 BSMs are successful), 𝑛teleport is geometrically dis-
tributed with ⟨𝑛teleport⟩ = 1/𝑞𝑁BSM. Thus,

𝑅 = 𝑞𝑁BSM
⟨𝑛all⟩Δ𝑡

. (7.9)

The probability distribution of 𝑛all is more complicated: the number of rounds required
to distribute Bell states with all𝑁 end nodes is the number of rounds required to distribute
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the Bell state that takes the longest. Writing 𝑛𝑖 for the number of attempts required to
distribute a Bell state with end node 𝑖, we have

𝑛all =max{𝑛1, 𝑛2, ..., 𝑛𝑁 }. (7.10)

Each of the 𝑛𝑖 is geometrically distributed with ⟨𝑛𝑖⟩ = 1/𝑞link. It can be evaluated exactly
using [50]

⟨𝑛all⟩ =
𝑁
∑
𝑗=1

(−1)𝑗+1(𝑁𝑗 )
1

1− (1−𝑞link)𝑗
. (7.11)

This can be substituted into Eq. (7.9) to obtain an exact expression for the rate. However,
we also report here a known leading-order expression [10, 51, 52],

⟨𝑛all⟩ ≈
𝐻𝑁
𝑞link

, (7.12)

where 𝐻𝑁 is the 𝑁 th harmonic number,

𝐻𝑁 ≡
𝑁
∑
𝑖=1

1
𝑖 = 𝛾 + ln𝑁 +𝒪( 1

𝑁 ). (7.13)

Here, 𝛾 ≈ 0.5772 is the Euler-Mascheroni constant. Substituting this into Equation (7.9)
yields

𝑅 ≈ 𝑞𝑁BSM𝑞link
𝐻𝑁Δ𝑡

, (7.14)

which is valid up to leading order in 𝑞link.
There are two reasons why we report the leading-order approximation (7.14) even

though an exact expression is available. First, in the regime 𝑞link ≪ 1, Eq. (7.14) is accurate
and easier to evaluate. Second, Eq. (7.14) more clearly shows how the rate scales with 𝑞link,
𝑁 and 𝑞BSM, thereby providing more intuition. We additionally note that there exists an
upper bound [10, 53],

⟨𝑛all⟩ < 1+ 𝐻𝑁
− ln(1−𝑞link)

. (7.15)

Therefore, Eq. (7.14) is a lower bound on the actual rate if

𝐻𝑁
𝑞link

> 1+ 𝐻𝑁
− ln(1−𝑞link)

. (7.16)

This is the case for any 𝑁 > 3. Additionally, it is true for 𝑁 = 3 if 𝑞link � 0.42. Therefore,
using the simpler leading-order expression usually does not lead to overestimating the
performance of Protocol 7.1. In Section 7.9, for 𝑁 = 5, we find that Eq. (7.14) is indeed a
tight lower bound for small values of 𝑞link, while underestimating the rate up to a factor
of two for 𝑞link ∼ 1.
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7.3.2 Fidelity
In this section, we calculate the fidelity of the state shared by the end nodes after a success-
ful execution of Protocol 7.1. This fidelity is defined with respect to the perfect GHZ state.
The first step is to determine the density matrix of that state, which we denote 𝜌. In the
absence of noise, 𝜌 would simply be a perfect GHZ state. However, due to the depolarizing
noise in the creation of the local GHZ state within the factory node, the performance of
BSMs, the distribution of Bell states and the storage of qubits, 𝜌 is generally not a GHZ
state and is a function of the noise parameters 𝑝GHZ, 𝑝BSM, 𝑝link and 𝑝mem. Additionally,
we note that each individual execution of the protocol is characterized by the values that
the random variables 𝑛1, 𝑛2, ..., 𝑛𝑁 take. Just like above, the random variable 𝑛𝑖 represents
the number of rounds it takes to distribute a Bell state between the factory node and end
node 𝑖. How much decoherence due to the storage of qubits in quantum memories is suf-
fered, will depend on the value that each 𝑛𝑖 takes. Therefore, 𝜌 is additionally a function
of the random variables 𝑛1, 𝑛2, ..., 𝑛𝑁 .

We derive 𝜌 as a function of the noise parameters and random variables in Section 7.10.
Here, we briefly summarize how this derivation is performed. First, we note that there are
single-qubit depolarizing channels acting on three groups of qubits. First, there are the
qubits that are part of the locally created GHZ state in the factory node. Second, there
are the qubits stored at the GHZ factory that are entangled to those at the end nodes and
partake in BSMs together with the GHZ-state qubits. Finally, there are the qubits stored
at the end nodes. Because of the symmetry of Bell states, and by extension of BSMs,
it is possible to “move” all these single-qubit depolarizing channels to only the qubits
stored at the end nodes. That is, the state 𝜌 can be derived correctly by pretending that
as the protocol is executed, there is no single-qubit depolarizing noise within the factory
node, but instead there are only single-qubit depolarizing channels acting at the end nodes.
Because the composition of depolarizing channels is itself a depolarizing channel, each end
node 𝑖 only undergoes a single depolarizing channel with parameter

𝑝𝑖 = 𝑝link 𝑝2BSM 𝑝2Δ𝑛𝑖mem, (7.17)

where
Δ𝑛𝑖 ≡ 𝑛all −𝑛𝑖 (7.18)

is the number of rounds the Bell state shared with end node 𝑖 is stored until it partakes in
a BSM. Describing the protocol in this way is very convenient, because it then amounts to
performing perfect quantum teleportation of a noisy GHZ state to the end nodes, followed
by depolarizing channels on each of the𝑁 individual qubits of the state. Resolving all these
depolarizing channels gives the result

𝜌 = 1−𝑝GHZ
2𝑁 1𝒩

+𝑝GHZ[∏
𝑖∈𝒩

𝑝𝑖( |GHZ⟩⟨GHZ| )𝒩 +∏
𝑖∈𝒩

1−𝑝𝑖
2 1𝒩

+ 1
2 ∑

𝑈⊂𝒩
1<|𝑈 |<𝑁

(∏
𝑖∈𝑈

1−𝑝𝑖
2 ∏

𝑗∈𝒩 ⧵𝑈
𝑝𝑗)1𝑈 ⊗𝒫𝒩 ⧵𝑈 ].

(7.19)
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Here, we have defined 𝒩 = {1,2, ...,𝑁 }, and 𝒫 is the classically correlated, unnormalized
state

𝒫1,2,…,𝑘 ≡ ( |0⟩⟨0|)⊗𝑘 +( |1⟩⟨1|)⊗𝑘 . (7.20)
The different terms in the density matrix correspond to all different combinations of some
of the qubits being lost due to single-qubit depolarizing noise, and some being unscathed.

Using Eq. (7.19), the fidelity can be efficiently written as

𝐹rand ≡⟨GHZ|𝜌|GHZ⟩
=1−𝑝GHZ

2𝑁
+𝑝GHZ ∑

𝑈⊆𝒩
2𝛿|𝑈 |,0+𝛿|𝑈 |,𝑁 −1∏

𝑖∈𝑈
(1−𝑝𝑖2 ) ∏

𝑗∈𝒩 ⧵𝑈
𝑝𝑗 ,

(7.21)

where |𝑈 | is the cardinality of set 𝑈 and 𝛿𝑖,𝑗 denotes the Kronecker delta function. As the
fidelity is a function of the random variables Δ𝑛𝑖 , it is itself a random variable: it depends
on how quickly one after another the different Bell states are distributed. This is the reason
why the fidelity above is denoted with the subscript “rand”. The delta functions are there
to account for the fact that there is “one less” factor of 1

2 in the fidelity when no qubits are
lost, andwhen all qubits are lost. The reason for this is that losing a single qubit (i.e. tracing
that qubit out and then replacing it by a maximally mixed state) in a GHZ state does not
only destroy the information held by that qubit, but also reduces the correlation between
the remaining qubits to classical correlation instead of quantum correlation. Therefore,
the first qubit that is lost accounts for a larger drop in fidelity than subsequent qubits.
Additionally, the last qubit that is lost does not account for any drop in fidelity, as losing
𝑁 −1 qubits of the GHZ state will already result in an 𝑁 -qubit maximally mixed state, the
fidelity of which cannot be further decreased by depolarizing noise.

Here, we are assuming no post-selection on distributed GHZ states takes place. There-
fore, we can describe the state produced by execution of Protocol 7.1 as a mixture between
all 𝜌’s corresponding to different values of Δ𝑛𝑖 . This state is then independent of the ran-
dom variables, and the same for each execution of the protocol. The mixed state is the
expected value of the density matrix 𝜌, and its fidelity is the expected value of 𝐹rand, which
can be written as

𝐹 = ⟨𝐹rand⟩ =
1−𝑝GHZ

2𝑁
+𝑝GHZ ∑

𝑈⊆𝒩
2𝛿|𝑈 |,0+𝛿|𝑈 |,𝑁 −1⟨∏

𝑖∈𝑈

1−𝑝𝑖
2 ∏

𝑗∈𝒩 ⧵𝑈
𝑝𝑗⟩.

(7.22)

In Section 7.11 we work out the combinatorics to rewrite the fidelity as

𝐹 = 1−𝑝GHZ
2𝑁 +𝑝GHZ ∑

𝑈⊆𝒩
𝐴|𝑈 |⟨∏

𝑖∈𝑈
(𝑝2mem)Δ𝑛𝑖⟩, (7.23)

where

𝐴|𝑈 | = {(𝑝link𝑝
2
BSM)|𝑈 | ( 1

2𝑁 + 1
2𝛿|𝑈 |,𝑁 ) if |𝑈 | is even,

1
2 (𝑝link𝑝

2
BSM)|𝑈 | 𝛿|𝑈 |,𝑁 if |𝑈 | is odd.

(7.24)
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Now, we note that after Bell states have been distributed between the factory node and
all end nodes, it is possible to order the end nodes based on the order in which they were
connected to the factory node. That is, to each end node 𝑖 ∈ 𝒩 we assign 𝑑𝑖 ∈ 𝒩 such that
if 𝑑𝑖 > 𝑑𝑗 , then end node 𝑖 shared a Bell state with the factory node at the same time as or
later than end node 𝑗. For example, if end node 4 shared a Bell state first, we assign 𝑑4 = 1.
If such an ordering is given, it is possible to use the results from Section 7.12 to evaluate
expressions like Eq. (7.23). However, in general, such an ordering cannot be imposed a
priori; it is only well-defined after executing the protocol. Because the order in which Bell
states are shared is random, each 𝑑𝑖 is a random variable. Therefore, to apply the results
from Section 7.12, an average should be taken over all possible orders in which Bell states
can be distributed. Because of the symmetry of the setup under consideration, however,
we need not worry about that. The success probability is 𝑞link for all quantum connections,
so all orderings are equally likely. Furthermore, since the effective depolarizing probability
per round is 𝑝2mem for all end nodes, the fidelity is invariant under changes in the ordering
(it does notmatter if end node 4 shares a Bell state first and end node 6 last, or the otherway
around). Therefore, we can safely pretend the order in which Bell states are distributed is
fixed. Furthermore, we set our labeling to coincide with this order. That is, we set it such
that 𝑑𝑖 = 𝑖.

It follows from Eq. (7.114) in Section 7.12 that, to leading order in 𝑞link and (1−𝑝2mem),

⟨∏
𝑖∈𝑈

(𝑝2mem)Δ𝑛𝑖⟩ ≈
𝑁
∏
𝑘=1

(𝑁 +1−𝑘)𝑞link
|𝑈𝑘 |(1−𝑝2mem) + (𝑁 +1−𝑘)𝑞link

, (7.25)

where
𝑈𝑘 ≡ {𝑢 ∈ 𝑈 |𝑢 < 𝑘}. (7.26)

For example, if 𝑈 = {1,3}, then 𝑈1 = ∅, 𝑈2 = 𝑈3 = {1} and 𝑈4 = 𝑈 . Since the expression is
to leading order in 1−𝑝2mem and 1−𝑝2mem ≥ 1−𝑝mem, we consider the approximation to be
valid up to leading order in 1 − 𝑝mem. A leading-order expression for the fidelity is then
obtained by combining Eq. (7.23) with Eq. (7.25).

Themain reason whyworking to leading order in 𝑞link and 1−𝑝2mem allows us to derive
Eq. (7.25), is that in this approximationwe can neglect the possibility of multiple Bell states
being generated at the same time. For 𝑞link ≪ 1, the probability of more than one Bell state
being generated during a single round is very small; most likely, there are many rounds
between one success and the next. Additionally, when 1 − 𝑝2mem ≪ 1, the drop in fidelity
per extra round that qubits have to wait in memory is small. If that were not the case, the
fidelity can be still high in case all Bell states succeed in quick succession, including some at
the same time, while the fidelity would already be small in case there is some waiting time
between different successes. Therefore, the contribution to the average fidelity of cases
with multiple simultaneous successes would be relatively large despite them occurring
with small probability, and neglecting their contribution would be inaccurate.

We see in Section 7.9 that the real fidelity of Protocol 7.1 is typically larger than the
leading-order expression given by Eq. (7.25). This is explained by the fact that we ignore
cases where multiple Bell states are generated simultaneously: we are effectively calcu-
lating the average of 𝐹rand over a sub-normalized probability distribution. However, this
does not prove Eq. (7.25) is a lower bound on the fidelity. The reason for this is that, in
Section 7.12, in order to work consistently at leading order in 𝑞link and 1−𝑝mem we have
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also neglected terms that would lower the calculated fidelity if they were included, and
we do not know if these neglected terms generally outweigh the terms corresponding to
multiple simultaneously distributed Bell states. When not throwing these higher-order
terms out, a strict lower bound is obtained. However, it typically approximates the real
fidelity (far) worse than the leading-order expression, as discussed below. The bound is
calculated in Section 7.12 (Eq. (7.121)) and yields

⟨∏
𝑖∈𝑈

(𝑝2mem)Δ𝑛𝑖⟩ ≥

𝑁
∏
𝑘=1

(𝑁 +1−𝑘)𝑞link(1−𝑞link)𝑁−𝑘(1−𝑝2mem)|𝑈𝑘 |

1− (1−𝑞link)𝑁+1−𝑘(1−𝑝2mem)|𝑈𝑘 | .
(7.27)

The lower bound on the fidelity is obtained by using Eq. (7.27) to evaluate Eq. (7.23).
In Section 7.9, we compare the analytical results to a Monte Carlo simulation of Pro-

tocol 7.1. One such comparison figure is also included here, see Figure 7.5. In Section
7.9, we find that both the leading-order expression and lower bound closely approximate
simulation results for small values of 𝑞link and 1 − 𝑝mem. Remarkably, the leading-order
expression remains reasonably accurate all the way up to 𝑞link ∼ 1, where deviations are
on the percent level. This can be explained by the fact that as 𝑞link grows, the effect of
memory decoherence slowly becomes negligible in case 1 − 𝑝mem ≪ 1, and the leading-
order expression happens to be accurate up to the point where the fidelity becomes ap-
proximately constant. The lower bound however becomes very loose for larger values of
𝑞link. When instead 1−𝑝mem is increased, we find that the leading-order expression stays
accurate and the lower bound remains tight until the fidelity becomes close to that of a
maximally mixed state.

To calculate both the approximate and bounded values of 𝐹 , we use a Python script
that evaluates Eq. (7.23) using either Eq. (7.25) (for an approximation) or Eq. (7.27) (for a
lower bound). This script has been made public and can be found in our repository [54].
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Figure 7.5: Comparison between simulation result and analytical expressions for the fidelity of Protocol 7.1. The
parameters are 𝑁 = 5, 𝑞BSM = 0.95, 𝑝BSM = 𝑝link = 1− 10−2 and 𝑝mem = 1− 10−4. GHZ states are locally prepared
with a fidelity of 0.9, which corresponds to 𝑝GHZ ≈ 0.872. The lower bound is tight for small values of 𝑞link, but
not for larger values. The leading-order expression on the other hand stays accurate also for larger values of 𝑞link.
Each data point represents the average over 10,000 simulated executions of Protocol 7.1. Error bars represent the
standard deviation of the mean and are smaller than the markers. Note that the lines showing the leading-order
result and the simulation result can be hard to distinguish because of their overlap.

7.4 Comparison
In this section, we compare the performance of GHZ-state distribution on a symmetric
star-shaped network (depicted in Figure 7.2) in case the central node is a factory node
to the performance in case the central node is not a factory node. Specifically, we will
compare the performance of Protocol 7.1 as described in Section 7.2 to the performance
of Protocol 7.2, which requires the central node to be a 2-switch. The 2-switch serves as
an intermediary in the creation of Bell states between end nodes by performing BSMs on
pairs of entangled qubits. Protocol 7.2 is illustrated in Figure 7.6.

There are two differences between the factory-node setup discussed in Section 7.2,
and the 2-switch setup considered here. The first difference is in the central node. The
central node is the 2-switch, and it is able to store a maximum of 𝑁 qubits in quantum
memory (one per end node). The only way this node can manipulate qubits, is through
the execution of BSMs on any pair of the qubits in its memory. When the node executes
a BSM between a qubit that is entangled to one end node and a qubit that is entangled
to another end node, this results in a Bell state shared between the two end nodes. The
second difference is in the end nodes. As discussed in Section 7.1, end nodes that only have
access to bipartite entangled resource states among themselves cannot create multipartite
entangled states if they can only store a single qubit. Therefore, in order to enable the
distribution of GHZ states through the use of a 2-switch, end nodes in the 2-switch setup
have a quantum memory of two qubits each. Additionally, they are able to execute CNOT
gates and Z-basis measurements.

We model the 2-switch setup largely the same as the factory-node setup. Each attempt
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Figure 7.6: Illustration of GHZ-state distribution through a 2-switch, using Protocol 7.2. (a) There is one 2-
switch, and there are 𝑁 = 3 end nodes. (b) Bell states are distributed between the 2-switch and end nodes (Step 1
of Protocol 7.2). (c)When there are two Bell states, a BSM is executed (Step 2 of Protocol 7.2). (d) If the BSM was
successful and the corresponding Pauli corrections have been applied, the two end nodes now share a Bell state
(Steps 3 and 4 of Protocol 7.2). (e) Bell states are distributed until the 2-switch is entangled to two end nodes that
are not themselves already entangled. A BSM is executed on the corresponding entangled qubits (Steps 1 - 3 of
Protocol 7.2). (f) If the BSM was successful and the corresponding Pauli corrections have been applied, one end
node is now entangled to the two other end nodes, but those other end nodes are not themselves entangled to
each other (Step 4 of Protocol 7.2). (g)A fusion operation (which involves a CNOT gate and Z-basis measurement)
is executed in the end node holding two qubits (Steps 5 and 6 of Protocol 7.2). (h) As a consequence of the fusion
operation, the three end nodes now share a GHZ state together.
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at Bell-state distribution takes a time Δ𝑡 . Exchanging a classical message between the cen-
tral node and an end node takes time 𝑡cl, which we assume to be zero. An attempt at Bell-
state distribution succeeds with probability 𝑞link, a BSM succeeds with probability 𝑞BSM.
Whenever a Bell state is distributed by a quantum connection, the qubits are depolarized
with parameter 𝑝link. Qubits stored in memory undergo depolarization with parameter
𝑝mem once during each time unit Δ𝑡 . Finally, whenever a BSM is executed, both qubits
first undergo depolarization with parameter 𝑝BSM. We model CNOT gates and Z-basis
measurements as noiseless.

Protocol 7.2 Bipartite GHZ-state distribution.

1. Repeatedly attempt Bell-state distribution over all quantum connections for which there
is a free qubit at the 2-switch until the first success occurs.

2. At the 2-switch, execute BSMs randomly between pairs of entangled qubits, on the
condition that the end nodes that are entangled to those qubits are not yet part of the
same (noisy) GHZ state. If no BSMs are executed, go back to Step 1.

3. Send a classical message from the 2-switch to each of the end nodes, informing them
about which BSMs have been executed, and what the results of the measurements are.

4. Each end node that was entangled to a qubit that has partaken in a BSM, checks the
result of that BSM. If the BSM failed, the qubit is reset. If it succeeded, a Pauli correction
(chosen based on the outcome of the BSM) is applied to the qubit to ensure this qubit
and the qubit it is entangled with are in the |𝜙00⟩ Bell state (in the absence of noise).

5. Each end node that now holds two qubits in its quantum memory executes a CNOT
gate between those qubits followed by a Z-basis measurement on the target qubit.

6. Each end node that has executed a Z-basis measurement sends a classical message
with the result to all other end nodes. These end nodes then perform single-qubit Pauli
corrections, chosen based on the measurement outcomes, to transform each entangled
state that is shared between end nodes into a GHZ state (in the absence of noise).

7. If there is a GHZ state shared between all end nodes, the protocol has finished. Other-
wise, go back to Step 1.

We now make some remarks about Protocol 7.2.

• In Step 1 of Protocol 7.1, Bell-state distribution is attempted until there has been one
success for each of the 𝑁 quantum connections. In contrast, in Step 1 of Protocol
7.2, Bell-state distribution is only attempted until there is a round during which as
least one success occurs.

• Steps 5 and 6 together implement a fusion operation [9]. Such an operation com-
bines two GHZ states into one, at the cost of measuring out a single qubit. Here, the
|𝜙00⟩ Bell state is considered a two-qubit GHZ state. Each time a fusion operation
is executed, a larger GHZ state is created, until eventually all 𝑁 end nodes share in
the GHZ state.
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• For each time Step 1 is executed, classical communication takes up a time 3𝑡cl (one
𝑡cl to send BSM results from the 2-switch to the end nodes, one 𝑡cl to send Z-basis-
measurement results from the end nodes to the 2-switch, and one 𝑡cl to forward
those measurement results from the 2-switch to the end nodes). When 𝑞link ≪ 1,
Step 1 requires many rounds and therefore both the completion time and the qubit
storage times are dominated by entanglement distribution, assuming 𝑡cl is not much
larger than Δ𝑡 . The classical communication time can then be safely neglected, just
as for Protocol 7.1. This motivates the choice to consistently set 𝑡cl = 0 throughout
this chapter.

• Protocol 7.2 is inefficient in terms of the amount of classical communication it re-
quires. Specifically, the protocol could be altered such that all Pauli corrections are
only performed after creating a GHZ-like state shared between all end nodes. Ad-
ditionally, in the case of deterministic BSMs, the 2-switch does not need to inform
the end nodes about the success of the measurements. In this chapter, however,
we make the assumption that the exchange of classical messages is instantaneous
(𝑡cl = 0). Therefore, any inefficiency with respect to classical communication does
not affect the results presented here.

We have studied the performance of Protocol 7.2 numerically using quantum-network
simulator NetSquid [11]. NetSquid is able to track time-dependent noise accurately by
jumping through a timeline consisting of discrete events, at which quantum states are
acted upon to account for errors. On top of NetSquid, our simulations utilize user-contributed
NetSquid snippets [55, 56]. Apart from using NetSquid to study Protocol 7.2, we also set up
a NetSquid simulation to study Protocol 7.1. This simulation model serves two purposes.
First, it is used to verify the accuracy of the analytical results presented in Section 7.3. This
verification is described in Section 7.9. Second, simulations of Protocol 7.1 are used in this
section to compare the performance of Protocols 7.1 and 7.2. Note that it would also have
been possible to compare simulations of Protocol 7.2 to our leading-order expressions for
Protocol 7.1. Instead, we are comparing simulations to simulations. This makes the results
of this section independent of the importance of subleading terms that are not included in
the leading-order expressions.

Every numerical value that is reported in this chapter, either for Protocol 7.1 or for
Protocol 7.2, is based on the simulation of 10,000 protocol executions. Error bars on the
rate and fidelity represent the standard deviation of the mean, and are sometimes smaller
than the marker size. Additionally, we remark that when simulating Protocol 7.2, the
network state is not reset between executions of the protocol. It can happen that there are
Bell states in the network, generated during Step 1, that never feed into a BSM during Step
2 and are thus not used to create a GHZ state. Then, there are already Bell states present
in the network at the start of the next protocol execution. This entanglement is used as a
resource to create the next GHZ state.

While comparing Protocols 7.1 and 7.2, we observe the relative sensitivity of their per-
formance to the various parameters describing their setups. This comparison can help
us understand in what parameter regimes the use of a factory node can be beneficial.
Throughout the comparison, we use Δ𝑡 = 1 to make the results independent of specific
time scales. As a result, the rate is a dimensionless quantity, and can be interpreted as
“average number of GHZ states distributed per round”. Our comparison will focus on the
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regime 𝑞link ≪ 1. Only at the end of this Section will we briefly study what happens for
𝑞link ∼ 1.

First, we compare the rates of the two protocols. Since noise parameters of the setups
cannot affect the rate at which GHZ states are distributed (only the fidelity), we limit our
attention to the effects of the success probability of Bell-state distribution 𝑞link, the BSM
success probability 𝑞BSM, and the number of end nodes 𝑁 . Their effects are shown in
Figure 7.7. From this figure, we must conclude that for small 𝑞link Protocol 7.2 typically
has a higher rate than Protocol 7.1. It is notable that the difference in rate becomes large
especially for probabilistic BSMs, as the rate of Protocol 7.1 drops exponentially as 𝑞BSM
is decreased. However, also for deterministic BSMs Protocol 7.1 tends to be slower than
Protocol 7.2, especially for larger values of 𝑁 . This can be surprising, considering that
Protocol 7.2 requires a larger total number of Bell states to be distributed than Protocol
7.1 (2(𝑁 − 1), as opposed to 𝑁 for Protocol 7.1). The reason for this is that, as discussed
above, Bell states that are generated but not used during one execution of Protocol 7.2 can
still be used during the next execution. In Protocol 7.2, BSMs are executed continuously at
the central node, thereby freeing up qubits. This allows quantum connections to generate
multiple Bell states during a single execution of Protocol 7.2, which is not the case for
Protocol 7.1. Combining this with the possibility to distribute Bell states ahead of time for
the next GHZ state allows Protocol 7.2 to use its quantum connections more efficiently
than Protocol 7.1, to such a degree that the larger number of Bell states can be distributed
in a smaller amount of time.

Now, we compare the fidelities of the two protocols. From Figure 7.8, we see that
Protocol 7.2 is more sensitive to the noise parameter 𝑝link. This is explained by the fact
that it requires more Bell states between the central node and end nodes to distribute a
single GHZ state (2(𝑁 − 1) instead of 𝑁 ). Additionally, we see that Protocol 7.1 is more
sensitive to 𝑝BSM. The reason for this, is that the protocol executes more successful BSMs
per GHZ state than Protocol 7.2 (𝑁 vs 𝑁 − 1). We note though that Protocol 7.2 also
requires the execution of fusion operations at the end nodes, consisting of a CNOT gate
and one Z-basis measurement. As a deterministic BSM can be implemented using a CNOT
gate, a Hadamard gate, and two Z-basis measurements, it could very well be the case that
the noise in the fusion operations is of similar magnitude as the noise in the BSMs. If
we would have modeled the fusion operation as also inflicting depolarizing channels with
parameter 𝑝BSM on the involved qubits, we would likely instead have found that Protocol
7.2 is more sensitive to 𝑝BSM, as it requires 𝑁 −1 successful BSMs and 𝑁 −2 fusions, giving
a total of 2𝑁 −3 instances at which the noise is suffered.

The final source of noise that the two setups have in common is the memory deco-
herence, 𝑝mem. How much decoherence enters into the final GHZ state depends on the
amount of time qubits are stored while executing the protocol. Therefore, it is reasonable
to expect that the amount of memory decoherence behaves similar to the rate. Comparing
Figures 7.7 and 7.9 reveals that indeed for both the rate and the memory decoherence, both
setups perform comparably well for small 𝑞link, 𝑁 = 5 and 𝑞BSM = 1 (and small 1− 𝑝mem).
For the rate, increasing 𝑁 is in favor of Protocol 7.2. Similarly, the amount of memory
decoherence seems to scale more favourably with 𝑁 for Protocol 7.2 than for Protocol 7.1,
although the difference is not as pronounced as for the rate. The effect of 𝑞BSM, however,
is reversed between the rate and memory decoherence. While the amount of memory
decoherence suffered in Protocol 7.1 is unaffected by decreasing 𝑞BSM, it does affect the
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Figure 7.7: Sensitivity of the rate of Protocols 7.1 (“Factory”) and 7.2 (“2-switch”) to the success probability of Bell-
state distribution 𝑞link, the number of end nodes 𝑁 , and the BSM success probability 𝑞BSM. When the parameters
are not varied over, their values are 𝑞link = 0.01, 𝑁 = 5 and 𝑞BSM = 1. We see that for small values of 𝑞link, the
rates are of similar magnitude for 𝑞BSM = 1 and 𝑁 = 5, with Protocol 7.2 slightly outperforming Protocol 7.1. If
either 𝑞BSM is decreased or 𝑁 is increased, this difference becomes more pronounced. Note that the lines in the
top figure can be hard to distinguish because of their overlap. The rate is dimensionless as the round time Δ𝑡 has
been set to 1.
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Figure 7.8: Sensitivity of the fidelity of Protocols 7.1 (“Factory”) and 7.2 (“2-switch”) to the noise in Bell states
shared between the central node and the end nodes (𝑝link) and the noise in BSMs (𝑝BSM). Apart from the parameter
varied over, there are no sources of noise (𝑝link = 𝑝BSM = 𝑝mem = 𝑝GHZ = 1). The other parameters have the values
𝑞link = 0.01, 𝑁 = 5 and 𝑞BSM = 1. While Protocol 7.1 is more resilient against noise in Bell states, Protocol 7.2 is
more resilient against noise in BSMs.

performance of Protocol 7.2. The reason for this, is that while Protocol 7.1 is reset upon a
failed BSM, the same is not true for Protocol 7.2. This makes Protocol 7.2 more resilient to
failing BSMs in terms of rate, but less so in terms of fidelity.

Finally, we observe what happens to both the rate and the memory decoherence if 𝑞link
is increased beyond the 𝑞link ≪ 1 regime we have studied so far. It is seen in Figure 7.10
that the similarity in performance for 𝑁 = 5 and 𝑞BSM = 1 observed for small values of 𝑞link
disappears for larger values; here, Protocol 7.1 outperforms Protocol 7.2 with respect to
both metrics. We note that for 𝑞link = 1, the rate of Protocol 7.1 becomes one, as it takes
exactly one round to distribute all 𝑁 Bell states. On the other hand, the rate of Protocol
7.2 becomes approximately one half, as it takes one round to distribute 𝑁 Bell states, and
then another round to distribute the remaining 𝑁 − 2 Bell states. This also explains the
difference in fidelity for large values of 𝑞link. Note that Protocol 7.2 had the advantage of
using quantum connections more efficiently for small 𝑞link because an excess number of
Bell states can be distributed during one protocol execution to be used during the next.
However, this advantage largely disappears for large values of 𝑞link. When all Bell states
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Figure 7.9: Sensitivity of the fidelity of Protocols 7.1 (“Factory”) and 7.2 (“2-switch”) to the memory depolarizing
parameter 𝑝mem, the number of end nodes 𝑁 , and the BSM success probability 𝑞BSM, when the only source of
noise is memory decoherence (𝑝link = 𝑝BSM = 𝑝GHZ = 1). When the parameters are not varied over, their values
are 𝑝mem = 1 − 10−4, 𝑞link = 0.01, 𝑁 = 5 and 𝑞BSM = 1. We see that when both 𝑞link and 1 − 𝑝mem are small, the
fidelities are approximately equal for 𝑞BSM = 1 and 𝑁 = 5. When 𝑞BSM is decreased, this is in favor of Protocol 7.1.
However, if 𝑁 is increased, this is slightly in favor of Protocol 7.2. Note that the lines in the top (and to lesser
degree, the bottom) figure can be hard to distinguish because of their overlap.
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required to create a GHZ state are generated in quick succession, there is not much “spare
time” during which these excess Bell states can be generated. We remark that for 𝑞link ∼ 1,
the classical-communication time 𝑡cl could have a large effect on both the rate and the
amount of memory decoherence. We have assumed it to be zero because for 𝑞link ≪ 1,
the classical communication time becomes negligible compared to the time required to
distribute a Bell state successfully. This might or might not be true for larger values of
𝑞link. Therefore, we cannot draw definitive conclusions about the relative performance
between the two protocols for large values of 𝑞link from Figure 7.10.

Figure 7.10: Sensitivity of both the rate and fidelity of Protocols 7.1 (“Factory”) and 7.2 (“2-switch”) to the success
probability of Bell-state distribution 𝑞link, when the only source of noise is memory decoherence (𝑝link = 𝑝BSM =
𝑝GHZ = 1). The other parameters are set to 𝑝mem = 1−10−2, 𝑁 = 5 and 𝑞BSM = 1. We see that while both protocols
have similar performance for 𝑞link ≪ 1, Protocol 7.1 wins out both in terms of rate and fidelity for 𝑞link ∼ 1. The
rate is dimensionless as the round time Δ𝑡 has been set to 1.

7.5 Physical Implementation
In this section, we discuss different ways factory nodes capable of creating GHZ states
could be physically realized. First, we discuss how they could be implemented using
trapped ions in Section 7.5.1, and then we discuss in Section 7.5.2 how they could be im-
plemented using nitrogen-vacancy centers in diamond.
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7.5.1 Trapped Ions
The first physical implementation we discuss is based on trapped ions [57]. In an ion trap,
charged atoms are suspended in an electromagnetic field. The energy levels of the ions
can be used to define qubits, and these qubits can be manipulated by driving them with
laser pulses. Trapped ions have properties that would make them suitable to implement
a factory node, such as long coherence times [58–60], high-fidelity state preparation and
readout [61–63], and a good optical interface [64–70] that has allowed for the generation
of entanglement with remote nodes [39, 40, 71].

One quantum gate that can be executed on trapped ions is the Mølmer-Sørensen (MS)
gate [72, 73]. This gate affects all qubits in the trap, and can be used to map maximally en-
tangled GHZ-like states to computational-basis states. In combination with single-qubit
Z-basis measurements, the MS gate can therefore be used to execute a GHZ-basis mea-
surement on all qubits. We note that throughout this chapter we have assumed the fac-
tory node creates a GHZ state locally, and then executes BSMs between qubits of the GHZ
state and qubits that are entangled to qubits at the end nodes. However, the same result is
acquired (i.e., the creation of a GHZ state shared between the end nodes) when executing
a GHZ-basis measurement on the qubits that are entangled to the end nodes, given that
appropriate Pauli corrections are performed at the end nodes based on the outcome of the
measurement.

We note that an additional challenge when using trapped ions to realize a factory node
is that 𝑁 different ionic qubits in the same device need to participate in simultaneous Bell-
state distribution with end nodes. One potential method to allow for a good photonic
interface with individual ions is to use shuttling techniques [74–80]. This way, ions could
be physically moved to separate cavities, where they can be made to emit entangled pho-
tons suitable for Bell-state distribution. After ions have been successfully entangled, they
can be shuttled to an interaction region where the GHZ-basis measurement is executed.
This setup is illustrated in Figure 7.11. Potentially, different ion species could be used for
generating and storing entanglement, such that for each task the species can be selected
with the most favourable properties [81, 82].

7.5.2 Nitrogen-Vacancy Centers
The second physical implementation of factory nodes we discuss is based on nitrogen-
vacancy (NV) centers in diamond [35–38, 83–85]. An NV center provides an electronic
communication qubit that can be used as optical interface, and is surrounded by Carbon-
13 nuclear spins that can be used as memory qubits. NV centers were used to perform the
first loophole-free Bell test [84], have been used to demonstrate entanglement distillation
between remote nodes [37], and have recently been used to construct the first three-node
quantum network [38].

A downside to NV centers is that they only provide a single communication qubit.
Although entanglement can in principle be stored in 𝑁 memory qubits, 𝑁 Bell states can-
not be distributed simultaneously, which is a prerequisite for Protocol 7.1. If the time
required to perform a single attempt at Bell-state distribution with a remote node, Δ𝑡 , is
much larger than the time it takes to emit an entangled photon and transfer a state to a
carbon atom, temporal multiplexing could potentially be used to perform 𝑁 entangling
attempts during a single round [86]. After Bell states have been established with all 𝑁 end
nodes, a GHZ-basis measurement can be executed within the NV center [87].
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Figure 7.11: Implementation example of a factory node capable of distributing GHZ states based on trapped ions.
(a) Single ions in cavities provide optical interfaces, allowing for Bell-state distribution with all 𝑁 = 3 end nodes.
After all ions are entangled, they are shuttled to an interaction region. (b) At the interaction region, a GHZ
measurement is executed using an MS gate and single-qubit measurements, which has the effect of creating a
GHZ state shared by the end nodes.
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If temporal multiplexing is not feasible, however, a factory node could be realized from
𝑁 separate NV centers. Each NV center can then be dedicated to creating and storing Bell
states with a single end node. When all Bell states are in place, a GHZ state needs to be
distributed between the 𝑁 NV centers, after which deterministic BSMs can be executed.
We here discern two methods of generating this GHZ state. The first is to interfere and
measure entangled photons emitted by all 𝑁 NV centers [4, 25]. This is illustrated in Fig-
ure 7.12 (a). However, the success probability of such schemes drops exponentially with
𝑁 , and thus many attempts may be needed to generate a single GHZ state. Apart from
having a negative influence on the rate of GHZ-state distribution for large 𝑁 , this can also
be expected to severely degrade the fidelity of the final GHZ state, as the memory qubits
undergo decoherence each time the communication qubit is interfaced with [88]. An al-
ternative method that circumvents this exponential scaling, is to add one more NV center
to the factory node. After all Bell states are in place, each of the 𝑁 outward facing NV
centers can generate a Bell state with the extra NV center. Then, the extra NV center can
execute a GHZ-basis measurement on the entangled qubits it has stored, thereby creating
a GHZ state between the 𝑁 outward-facing NV centers. Because Bell states can be gener-
ated with each outward-facing NV center sequentially, the number of required attempts
will scale linearly with 𝑁 . This can be thought of as a “factory within a factory” approach,
and is illustrated in Figure 7.12 (b). Using a single NV center as a factory within a factory
could be feasible even when using a single NV center as the entire factory node is not. The
reason for this is that Bell-state distribution between NV centers located within the same
node can happen at smaller time scales than with remote end nodes.
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Figure 7.12: Implementation examples of factory nodes capable of distributing GHZ states based on NV centers
in diamond. Within the factory node, 𝑁 = 3 NV centers distribute and store entanglement with the end nodes.
When all these NV centers are entangled, a GHZ state is distributed between them, after which each executes a
BSM to teleport the GHZ state to the end nodes. (a)TheGHZ state can be distributed between the NV centers by
emitting entangled photons, interfering these photons, andmeasuring them. (b)TheGHZ state can be distributed
between the NV centers by first creating Bell states between all𝑁 NV centers and one additional NV center. Then,
a GHZ measurement is executed at this NV center.
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7.6 Conclusion
In this chapter, we have studied the distribution of multipartite entangled states in net-
works through local preparation of the target state at a factory node, and subsequent
quantum teleportation of the state to a set of end nodes. We have presented two main
results. First, we have derived analytical results for the rate and fidelity of GHZ-state dis-
tribution on a symmetrical star-shaped network, with a factory node at the center. Second,
we have compared the rate and fidelity to what is achievable on the same setup without a
factory node, using a 2-switch that is only capable of executing BSMs instead.

From the comparison, we found that the use of a factory node provides more resilience
to noise in Bell states that are distributed between the central node and end nodes. Further-
more, when BSMs at the central node are not deterministic, using a factory node provides
better protection against memory decoherence. We note that two additional advantages
of using a factory node are that it only requires the end nodes to store a single qubit, while
using a 2-switch requires more quantum capabilities of the end nodes, and that it can be
used to distribute any multipartite target state using the same method, while the 2-switch
protocol is specific to GHZ states. However, the results are not all in favor of the fac-
tory node. The 2-switch attains exponentially higher rates when BSMs are probabilistic,
is less sensitive to noise in BSMs, and both the rate and (to lesser extent) the sensitivity
to memory decoherence scale more favourably with the number of end nodes. We note
that no thorough search for an optimal protocol utilizing a 2-switch has been performed,
and doing so could boost performance even further. For example, it might be possible to
increase performance by incorporating cutoff times in the protocol, that is, by discarding
Bell states when they have undergone too much memory decoherence [89–92]. Cutoff
times are expected to increase the fidelity, but at the cost of having a smaller rate. How-
ever, it must be noted that we have also not optimized the factory-node protocol. Also for
this protocol e.g. cutoff times could be introduced. As discussed in Section 7.1, various
protocols and network architectures that have been proposed in earlier work make use
of factory nodes. We conclude that when hardware limitations are present, depending on
the nature and severity of those limitations, it could be worthwhile to consider other types
of central nodes instead.

One of our motivations for studying the factory node is to allow for assessment of
proposed schemes involving factory nodes in the presence of hardware limitations. We
consider the analytical results presented in this chapter a first step towards better assess-
ment. However, we have made various assumptions that limit the scope of applicability.
Here, we discuss how some of these assumptions could be removed. First, all the results in
this chapter assume the star-shaped network is symmetric, meaning that noise parameters
are the same for each end node (same coherence time, same Bell-state fidelity, and same
quality of BSMs), and that attempts at Bell-state distribution take the same amount of time
and have the same success probability for each end node. With respect to the calculation
of fidelity, the assumption of same noise parameters can straightforwardly be removed
within the framework of the analysis presented in this chapter. In Section 7.3.2, when
evaluating Eq. (7.23), an average should be taken over all possible orderings in which end
nodes generate a Bell state with the factory node. Because of the assumption of symmetry,
we were able to avoid performing such an average explicitly, but in principle there is noth-
ing preventing us from doing so. Then, each of the terms in this average can be evaluated
using the Eqs. (7.114) and (7.121) (or Eqs. (7.25) and (7.27) in case 𝑝mem is the same for



7

258 7 Analysis of multipartite entanglement distribution using a central quantum-network node

each qubit in the network). On the other hand, it is a key assumption in the results of
Section 7.12 that the success probability of Bell-state distribution is the same for each con-
nection. Removing this assumption, therefore, would be less straightforward and could
provide an interesting subject for future research. The same holds for the assumption that
the attempt durations are the same for each connection.

Second, all the results in this chapter are specific to the distribution of GHZ states.
However, Protocol 7.1 could also be used to distribute other states, as long as they can
be prepared locally and consist of exactly one qubit per end node. The analytical results
for the rate that are presented in Section 7.3.1 are applicable for the distribution of any
such state, as the time that each step takes in Protocol 7.1 does not depend on the spe-
cific quantum state, nor does the success probability of the teleportation procedure. For
the analytical fidelity results that are presented in Section 7.3.2, we note that the final dis-
tributed state will be equal to the target state but with the individual qubits depolarized
with the parameters 𝑝𝑖 given by Eq. (7.17), and the full state depolarized with a parameter
that was called 𝑝GHZ in the GHZ case (analogously to Eq. (7.19)). The fidelity of this state
as a random variable is a weighted sum over products of depolarizing parameters (analo-
gously to Eqs. (7.22) and (7.24)). Here, the weights depend on the fidelity of the state after
specific sets of qubits undergo depolarizing errors. The expected values of these products
of depolarizing parameters can be evaluated using Eqs. (7.25) and (7.27). Therefore, the
only ingredient missing to determine the lower bound or leading-order expression for the
fidelity in case of a different target state, are the weights that appear in the fidelity. We
note that in case the target state is not invariant under qubit permutations, the symmetry
of the setup is broken. In that case, an explicit average should be taken over the different
orders in which Bell states can be distributed, as discussed above.

The leading-order expressions and lower bounds presented in this chapter are accu-
rate when the success probability per attempt at Bell-state distribution (𝑞link) is small, and
when the probability of losing a qubit to the environment when storing it in memory
during a single attempt (1− 𝑝mem) is small. When the first assumption holds, the second
typically also holds; otherwise, qubits need to be stored in memory during many attempts
as new states are generated, and if the probability of losing the qubit is large already for
a single attempt, then the final distributed state will not be entangled. The parameter
regime of small 𝑞link but large 1 − 𝑝mem is therefore not very interesting to study. E.g.
for heralded entanglement generation, the success probability per attempt is expected to
be small because of photon (attenuation) losses. However, there are also physical setups
for which the assumption does not hold, such as quantum-repeater chains making use of
error correction [29, 93–99] or massive multiplexing [45, 46, 100], for which the success
probability is close to one. For such setups, the approximations presented in this chapter
are not applicable, although we have found that our leading-order expression for the fi-
delity is remarkably accurate for large values of 𝑞link. Additionally, we note that setups
for which the quantum connections are near deterministic can be approximated by assum-
ing they are fully deterministic. In this case, the protocol becomes easy to analyze, as no
probabilities need to be accounted for.

Now, we discuss how the techniques presented in this chapter can be used to study
the performance of quantum-network protocols different from the one we have studied.
An entanglement switch is a central node that is able to generate Bell states shared with 𝑘
end nodes, and executes local GHZ-state measurements on groups of 𝑛 entangled qubits.
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As remarked in Section 7.1, the factory-node setup studied in this chapter is equivalent
to an entanglement switch with 𝑛 = 𝑘. A possible extension of the calculations in this
chapter is to apply them also to entanglement switches for which 𝑛 < 𝑘. In Section 7.13,
we present a leading-order expression for the maximum switching rate for any value of 𝑛
when there is a single qubit of buffer memory per end node. However, it would be espe-
cially interesting to study the fidelity of states produced by the entanglement switch, as
there are almost no known results about this. Such an extension of the fidelity calculation,
assuming a symmetric star-shaped network and one qubit of buffer memory per end node,
could be realized by repeating the calculation in Section 7.3.2 and replacing the parameter
𝑁 (the number of end nodes, equal to 𝑘) by 𝑛 < 𝑁 in Eq. (7.23), but not replacing it in Eq.
(7.25) (which is needed to evaluate Eq. (7.23)). Evaluating this expression and verifying it
(against a Monte Carlo simulation) is beyond the scope of this chapter.

Another possible extension of the work done in this chapter, is the approximation
of the rate and fidelity of Bell states distributed by specific types of quantum-repeater
chains. In the factory-node setup, there are 𝑁 Bell states that are distributed according to
geometric distributions. Entangled states that are established need to be stored in memory
until all states are distributed, after which they are transformed into some target state
through BSMs. If any of the BSMs fails, the protocol is restarted. The target state is a
GHZ state. Now consider a quantum-repeater chain consisting of 𝑁 elementary links,
where entanglement swapping (i.e. BSMs) is only executed after entangled states have
been distributed on all links. If any of the BSMs fail, all entanglement is discarded and
Bell-state distribution starts anew. This is then exactly the same scenario as for the factory
node, only the target state is not a GHZ state but a bipartite state. For the rate of such a
repeater chain, analytical results similar to ours already exist [10, 51, 52].

The fidelity of Bell states distributed by such a repeater protocol can however also be
analyzed using the techniques presented in this chapter. The expression for the state’s
fidelity in terms of different depolarizing parameters (Eq. (7.23) for the factory node) will
look different (simpler, as all depolarizing noise can be “moved” to a single qubit), but the
same type of expected values will need to be evaluated, allowing for the direct use of Eqs.
(7.25) and (7.27) to obtain a leading-order expression and a lower bound respectively. Ex-
amples of repeater protocols where swapping is only performed after all links are present
are schemes that use error correction to protect against operational errors in the repeater
nodes [101], such as the ones studied for NV centers in [102]. In [102], it is remarked that
accounting for depolarizing noise in individual memories is no easy task, and the authors
instead assume each qubit decoheres an amount of time equal to the average waiting time.
In contrast, our techniques, although approximate, do account for the depolarizing noise
in each individual qubit. A similar approach to [102] is taken in [52], where the case of
all swaps occurring only in the end is considered to calculate analytical bounds on the
decoherence suffered when swaps are performed earlier. This approximation provides a
lower bound on the fidelity by Jensen’s inequality. An interesting direction for further
study is to compare the tightness of Jensen’s inequality to the lower bound presented in
this chapter.

7.7 Data Availability
The data presented in this chapter has been made available at https://doi.org/10.4121/
19235937 [103]. Scripts that generate all the plots presented in this chapter can also be

https://doi.org/10.4121/19235937
https://doi.org/10.4121/19235937


7

260 7 Analysis of multipartite entanglement distribution using a central quantum-network node

found here.

7.8 Code Availability
All the code used to evaluate the analytical results presented in this chapter, and to perform
NetSquid simulations of Protocol 7.1 and Protocol 7.2, has been made available at https:
//gitlab.com/softwarequtech/netsquid-snippets/netsquid-factory [54].

7.9 Verification of Analytical Expressions for Rate and
Fidelity

In this section we verify the analytical results for the rate and fidelity of Protocol 7.1, as
presented in Section 7.3, against Monte Carlo simulations of the protocol. These simu-
lations have been performed using the quantum-network simulator NetSquid [11] and
user-contributed NetSquid snippets [55, 56]. The simulation code can be found in the pub-
lic repository [54]. Just like in Section 7.4, we use Δ𝑡 = 1 to make the results independent
of specific time scales, each data point is the result of 10,000 simulated executions of the
protocol, and error bars represent the standard deviation of the mean. Often, the error
bars are smaller than the marker size, making them hard to see.

There are three parameters that can influence the rate of GHZ-state distribution. These
are the success probability of Bell-state distribution 𝑞link, the number of end nodes 𝑁
and the BSM success probability 𝑞BSM. First, we examine the influence of 𝑞link on the
accuracy of the leading-order expression for the rate (Eq. (7.14)). On the left in Figure
7.13 we verify that the difference between the leading-order expression and its simulated
value becomes negligible for 𝑞link ≪ 1. For larger values of 𝑞link it is much larger, with a
maximum deviation of a factor ∼ 2 for 𝑞link = 1. While not shown here, we have checked
that the leading-order expression is accurate for small values of 𝑞link for the number of
end nodes 3 ≤ 𝑁 ≤ 8 (larger values become computationally demanding to simulate). The
corresponding data can be found in our data repository [103]. Finally, we note that our
treatment of the effect of 𝑞BSM on the rate in Section 7.3 is exact. Therefore, we do not
explicitly investigate the influence of this parameter on the accuracy of the leading-order
result here. However, we do note that the leading-order result is accurate for at least one
nontrivial value of 𝑞BSM, as the parameter was set to 0.95 for Figure 7.13.

On the right in Figure 7.13, we do the same but for the fidelity, but apart from the
leading-order expression (obtained from combining Eq. (7.23) with Eq. (7.25)) we also
include the lower bound (obtained from combining Eq. (7.23) with Eq. (7.27)). Again we
see close agreement for the leading-order expression for small values of 𝑞link. Remarkably,
it remains highly accurate even for 𝑞link ∼ 1. The lower bound does not attain the same
level of agreement. While it is tight for very small values of 𝑞link, the lower bound on the
fidelity starts decreasing at 𝑞link ≈ 0.015, even though the fidelity itself is a monotonically
increasing function. Consequently, the bound is very loose already for 𝑞link � 0.015.

On the left in Figure 7.14, the fidelity is considered as a function of 𝑝mem, for a small
value of 𝑞link (0.01). Both the leading-order expression and lower bound remain remark-
ably close as 1 − 𝑝mem grows, up to the point where the fidelity becomes close to that of
a maximally-mixed state. This seems to suggest that as long as 𝑞link is small, the analyti-
cal expressions are accurate for all values of 𝑝mem that allow for the generation of useful
entanglement. We note that the other noise parameters, 𝑝GHZ, 𝑝BSM and 𝑝link, have a

https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-factory
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-factory
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Figure 7.13: Comparison between simulation results and analytical expressions for the performance of Protocol
7.1 for different values of 𝑞link. On the left, the simulated rate is compared to the leading-order expression in Eq.
(7.14). On the right, the simulated fidelity is compared to the leading-order expression and lower bound from
Section 7.3.2. The parameters are 𝑁 = 5, 𝑞BSM = 0.95, 𝑝BSM = 𝑝link = 1−10−2 and 𝑝mem = 1−10−4. GHZ states are
locally prepared with a fidelity of 0.9, which corresponds to 𝑝GHZ ≈ 0.872. We see that there is close agreement
between analytical results for small values of 𝑞link. As 𝑞link is increased up to a value of one, deviations in the
rate grow up to a factor of ∼ 2 while the leading-order estimate for the fidelity remains accurate. The lower
bound for the fidelity is tight for approximately 𝑞link ≤ 0.05 (which is hard to see in this figure) but not for larger
values, eventually even dropping below the fidelity of the maximally mixed state. The rate is dimensionless as
the round time Δ𝑡 has been set to 1. Note that the lines showing analytical results and simulation results can
sometimes be hard to distinguish because of their overlap.

much simpler effect on the fidelity as their effect does not depend on the times at which
entanglement is distributed between the factory node and the different end nodes. This
has allowed our treatment of these parameters to be exact and therefore verification plots
where these parameters are varied are not required. We note though that in Figure 7.13 the
accuracy of the analytical expressions is verified for nontrivial values of these parameters.

Finally, on the right in Figure 7.14, we consider the fidelity as a function of the number
of end nodes 𝑁 . We observe that the leading-order expression is accurate in the range
3 ≤ 𝑁 ≤ 8, while the lower bound deviates already for small values of 𝑁 . The lower bound
becomes increasingly loose as 𝑁 increases. As it is computationally demanding to sim-
ulate large quantum states, we have not investigated the accuracy of the leading-order
expression or lower bound beyond 𝑁 = 8.



7

262 7 Analysis of multipartite entanglement distribution using a central quantum-network node

Figure 7.14: Comparison between simulation result and the analytical leading-order expression and lower bound
from Section 7.3.2 for the fidelity of Protocol 7.1. The parameters, when they are not varied over, are 𝑞link = 0.01,
𝑁 = 5, 𝑞BSM = 1, 𝑝mem = 1 − 10−4 and 𝑝BSM = 𝑝link = 𝑝GHZ = 1. On the left, we see that when 𝑞link is sufficiently
small, the lower bound is tight and the leading-order expression remains accurate as 1 − 𝑝mem becomes large,
even as the fidelity becomes close to that of a maximally mixed state. On the right, we see that while the lower
bound is never very tight, the leading-order expression remains accurate up to at least 𝑁 = 8. Note that the lines
showing the leading-order result, lower bound and the simulation result can be hard to distinguish because of
their overlap.

7.10 Deriving the DensityMatrix Created by Protocol 7.1
In this section, we formally derive the density matrix 𝜌 that is shared after executing
Protocol 7.1. To this end, we first define three relevant Hilbert spaces. Letℋ𝐴 be the space
spanned by the 𝑁 qubits used by the factory node to create GHZ states locally. Let ℋ𝐵
be the space spanned by the 𝑁 qubits used by the factory node to store Bell states shared
with end nodes. Finally, let ℋ𝐶 be the space spanned by the 𝑁 qubits at the 𝑁 different
end nodes. Then, Protocol 7.1 does the following. First, a state 𝜎𝐴⊗𝜏𝐵𝐶 is prepared, where
𝜎 is a noisy 𝑁 -qubit GHZ state, and where 𝜏 is a noisy entangled state between 2𝑁 qubits.
Specifically, it contains depolarizing noise due to noise in the distribution of Bell states and
storage of those Bell states in noisy memory. Secondly, noisy BSMs are executed between
the qubits of ℋ𝐴 and ℋ𝐵 . The measurement outcomes are sent to the end nodes, where
Pauli corrections are performed in accordance with the measurement outcomes. The final
state on ℋ𝐶 shared between the end nodes is 𝜌𝐶 .

The four Bell states are defined by

|𝜙𝑖𝑗⟩ = (1⊗𝑋 𝑖𝑍 𝑗) |𝜙00⟩ = ±(𝑋 𝑖𝑍 𝑗 ⊗1) |𝜙00⟩ . (7.28)

for 𝑖, 𝑗 = 0,1. As is apparent from this equation, the Bell states have the special property
that it does not matter (up to a global sign) on which of the two qubits the Pauli operator
𝑋 𝑖𝑍 𝑗 acts. This means that Pauli operators in the system can be “moved” through Bell
states: (𝑃 ⊗1) |𝜙𝑖𝑗⟩ = ±(1⊗𝑃) |𝜙𝑖𝑗⟩ for any Pauli operator 𝑃 . We combine this with the fact
that the single-qubit depolarizing channel is a Pauli channel. That is, its Kraus operators
are Pauli operators. The consequence is that also single-qubit depolarizing noise can be
moved through Bell states. We can make use of this in the following way:

1. When a BSM is executed between a pair of qubits (one in ℋ𝐴, one in ℋ𝐵), we use
the measurement operators (which are projectors onto the Bell states) to move all
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the single-qubit depolarizing noise from ℋ𝐴 to ℋ𝐵 .

2. Now, because before the measurement every qubit in ℋ𝐵 is (up to single-qubit de-
polarizing noise) in the state |𝜙00⟩ with a qubit in ℋ𝐶 , we move all single-qubit
depolarizing noise and the operator 𝑋 𝑖𝑍 𝑗 in the definition of each measurement
operator from ℋ𝐵 to ℋ𝐶 .

Atℋ𝐶 the operators 𝑋 𝑖𝑍 𝑗 from the measurement operators cancel exactly against the
Pauli corrections that are applied at Step 5 of Protocol 7.1, which are chosen to match the
measurement outcome. Therefore, all measurement operators effectively become the same
projector on |𝜙00⟩, and each BSM can therefore be modelled as a projection of two qubits
on the state |𝜙00⟩. Additionally, as the probability of a measurement outcome occuring
is determined by the corresponding measurement operator and all outcomes effectively
have the same measurement opertor, each of the four outcomes must occur with equal
probability 1

4 . This means that the normalization factor in the post-measurement state is
given by 4. We define the maximally entangled state |𝜔⟩ as the tensor product of 𝑁 copies
of |𝜙00⟩, i.e.,

|𝜔⟩ ≡ |𝜙00⟩⊗𝑁 = 1
2𝑁/2 ∑

𝑖∈{0,1}⊗2𝑁
|𝑖⟩ ⊗ |𝑖⟩ . (7.29)

Then, we can write the post-measurement state on ℋ𝐶 (and thus the final state produced
by the protocol) as

𝜌𝐶 = 22𝑁 ⟨𝜔|𝐴𝐵 𝜎𝐴 ⊗𝜏𝐵𝐶 |𝜔⟩𝐴𝐵 . (7.30)

Furthermore, the effect of moving all the single-qubit depolarizing channels to the system
ℋ𝐶 results in the pre-measurement states 𝜎 and 𝜏 to effectively become

𝜎 = 𝑝GHZ |GHZ⟩⟨GHZ| + 1
2𝑁 (1−𝑝GHZ)1, (7.31)

𝜏𝐵𝐶 = ℰ𝒞 ( |𝜔⟩⟨𝜔|𝐵𝐶 ), (7.32)

where ℰ is a quantum channel applying single-qubit depolarizing noise to 𝑁 different
qubits. This quantum channel accounts for the noisy BSMs, the noisy distributed Bell
states, and noise due to the storage of Bell states in memory. As can be seen, the noise in
the GHZ state prepared within the factory is the only source of noise that is not contained
in the channel ℰ . Instead, this source of noise is contained by the expression for 𝜎 .

Now, we notice that the state 𝜏 is exactly the Choi state [104, 105] of the quantum
channel ℰ . Additionally, Eq. (7.30) is exactly the expression for the effect of a quantum
channel in terms of its Choi state [106]. Therefore, we can immediately conclude that

𝜌 = ℰ(𝜎). (7.33)

Using the fact that the maximally-mixed component of 𝜎 will remain maximally mixed by
the effect of ℰ , we can write

𝜌 = 𝑝GHZℰ(|GHZ⟩⟨GHZ| ) + 1−𝑝GHZ
2𝑁 1. (7.34)
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The final remaining step towards determining 𝜌 is thus evaluating the quantum channel
ℰ .

Because depolarizing channels have the property

𝒟ℋ𝐴,𝑝1 ∘𝒟ℋ𝐴,𝑝2 = 𝒟ℋ𝐴,𝑝1𝑝2 , (7.35)

all the depolarizing noise that has been moved to the qubits of ℋ𝐶 can be combined into
a single depolarizing channel per qubit, giving

ℰ(|GHZ⟩⟨GHZ| ) = 𝒟ℋ1,𝑝1 ∘𝒟ℋ2,𝑝2 ∘… ∘𝒟ℋ𝑁 ,𝑝𝑁 ( |GHZ⟩⟨GHZ| ). (7.36)

Here, ∘ indicates the composition (i.e., subsequent application) of the channels and ℋ𝑖
denotes the Hilbert space of the qubit at the 𝑖th end node. The combined depolarizing pa-
rameter 𝑝𝑖 accounts for noise due to one BSM, one noisy distributed Bell state andmemory
decoherence at both the factory node and the end node itself, and is given by Eq. (7.17).
Each depolarizing channel 𝒟ℋ𝑖 ,𝑝𝑖 gives one term proportional to 𝑝𝑖 where nothing hap-
pens to the ℋ𝑖 subspace, and one term proportional to 1 − 𝑝𝑖 where ℋ𝑖 is traced out of
the GHZ state and then put into the state 1𝑖/2. Thus, evaluating Eq. (7.36) comes down
to accounting for all different combinations of terms. Tracing out one qubit from a GHZ
state results in

Tr𝑖 ( |GHZ⟩⟨GHZ| )1,2,…,𝑘 =
1
2𝒫1,2,…,𝑖−1,𝑖+1,…,𝑘 , (7.37)

where 𝒫 is the classically correlated, unnormalized state defined in Eq. (7.20). Tracing
out a qubit from 𝒫 yields

Tr𝑖𝒫1,2,…,𝑘 = 𝒫1,2,…,𝑖−1,𝑖+1,…,𝑘 , (7.38)

unless 𝑘 = 1, in which case
Tr1𝒫1 = Tr111 = 2. (7.39)

Now, we define the set 𝒩 = {1,2,…,𝑁 } as the set of all qubit indices. Working out the
combinatorics, we find

𝜌 = 1−𝑝GHZ
2𝑁 1𝒩 +𝑝GHZ[∏

𝑖∈𝒩
𝑝𝑖( |GHZ⟩⟨GHZ| )𝒩 +∏

𝑖∈𝒩

1−𝑝𝑖
2 1𝒩

+ 1
2 ∑

𝑈⊂𝒩
1<|𝑈 |<𝑁

(∏
𝑖∈𝑈

1−𝑝𝑖
2 ∏

𝑗∈𝒩 ⧵𝑈
𝑝𝑗)1𝑈 ⊗𝒫𝒩 ⧵𝑈 ].

(7.40)

Note that due to the factors appearing when taking traces in Eqs. (7.37), (7.38), and (7.39),
the terms where more than 0 but less than 𝑁 of the qubits are traced out effectively have
an “extra” factor of 1

2 .

7.11 Coefficients of Fidelity Function
In this section, we derive the coefficients in the expression for the fidelity of GHZ states
distributed by Protocol 7.1. That is, we show that Eq. (7.22) can be rewritten into the form
of Eq. (7.23), with the coefficients 𝐴|𝑈 | given by Eq. (7.24).



7.11 Coefficients of Fidelity Function

7

265

First, we collect products of 𝑝𝑖 ’s such that we may write

∑
𝑈⊆𝒩

2𝛿|𝑈 |,0+𝛿|𝑈 |,𝑁 −1⟨∏
𝑖∈𝑈

1−𝑝𝑖
2 ∏

𝑗∈𝒩 ⧵𝑈
𝑝𝑗⟩ = ∑

𝑈⊆𝒩
𝐵𝑈 ⟨∏

𝑖∈𝑈
𝑝𝑖⟩ (7.41)

for some constants 𝐵𝑈 . To find these constants, we start by expanding

∏
𝑖∈𝑊

1−𝑝𝑖
2 = (12)

|𝑊 |
∑
𝑉⊆𝑊

(−1)|𝑉 |∏
𝑖∈𝑉

𝑝𝑖 , (7.42)

giving

∑
𝑊⊆𝒩

2𝛿|𝑊 |,0+𝛿|𝑊 |,𝑁 −1⟨∏
𝑖∈𝑊

1−𝑝𝑖
2 ∏

𝑗∈𝒩 ⧵𝑊
𝑝𝑗⟩ = ∑

𝑊⊆𝒩
2𝛿|𝑊 |,0+𝛿|𝑊 |,𝑁 −1−|𝑊 | ∑

𝑉⊆𝑊
(−1)|𝑉 |⟨ ∏

𝑖∈𝑉 ∪(𝒩 ⧵𝑊)
𝑝𝑖⟩.

(7.43)
We now equate Eqs. (7.41) and (7.43). Each is the expected value of a polynomial in the
independent random variables 𝑝𝑖 . They are equal if the coefficients of all terms in the
polynomial are equal. Therefore, we determine 𝐵𝑈 by collecting all parts of the sum in Eq.
(7.43) that are proportional to ⟨∏𝑖∈𝑈 𝑝𝑖⟩ and thus contribute to the same term. Writing as
a shorthand 𝑊 =𝒩 ⧵𝑊 , this gives

𝐵𝑈 = ∑
𝑊⊆𝒩

2𝛿|𝑊 |,0+𝛿|𝑊 |,𝑁 −1−|𝑊 | ∑
𝑉⊆𝑊

(−1)|𝑉 |𝛿𝑉∪𝑊 ,𝑈 , (7.44)

where we are slightly abusing notation by using the Kronecker delta for two sets. It is
defined by

𝛿𝑈 ,𝑉 = {1 for 𝑈 = 𝑉 ,
0 otherwise, (7.45)

where 𝑈 and 𝑉 are sets. The delta function ensures that we are adding together exactly
those coefficients of (7.44) that contribute to the right term of the polynomial.

We note that the equation 𝑉 ∪𝑊 = 𝑈 implies that 𝑊 ⊆ 𝑈 . Therefore, the Kronecker
delta will always be zero when this condition does not hold, allowing us to refine the
summation limit and write

𝐵𝑈 = ∑
𝑊

𝑊⊆𝑈

2𝛿|𝑊 |,0+𝛿|𝑊 |,𝑁 −1−|𝑊 | ∑
𝑉⊆𝑊

(−1)|𝑉 |𝛿𝑉∪𝑊 ,𝑈 . (7.46)

The Kronecker delta now limits the sum to values of 𝑉 and 𝑊 where 𝑉 ∪𝑊 = 𝑈 holds.
Because 𝑉 ⊆ 𝑊 for all terms in the sum, it always holds that 𝑉 ∩𝑊 = ∅, i.e. there is no
overlap between the two sets. Therefore, the equation 𝑉 ∪𝑊 = 𝑈 implies that 𝑉 = 𝑈 ⧵𝑊 .
Additionally, because 𝑊 ⊆ 𝑈 for all terms in the sum, the equation 𝑉 = 𝑈 ⧵𝑊 implies
that 𝑉 ∪𝑊 = 𝑈 . It follows that the two equations are equivalent given the conditions
imposed on 𝑉 and 𝑊 by the summation limits, and we can safely rewrite the Kronecker
delta function to obtain

𝐵𝑈 = ∑
𝑊

𝑊⊆𝑈

2𝛿|𝑊 |,0+𝛿|𝑊 |,𝑁 −1−|𝑊 | ∑
𝑉⊆𝑊

(−1)|𝑉 |𝛿𝑉 ,𝑈⧵𝑊 . (7.47)
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Since 𝑈 ⧵𝑊 contains only elements not in 𝑊 , and since 𝑊 contains all elements in 𝒩
that are not in 𝑊 , it follows that 𝑈 ⧵𝑊 ⊆ 𝑊 . If this were not always the case, it could
be the case for some 𝑊 that the sum over 𝑉 ⊆ 𝑊 contains no terms for which the delta
function is nonzero. But since it is the case, for every 𝑊 there is exactly one value of
𝑉 , namely 𝑉 = 𝑈 ⧵𝑊 , for which the delta function has a nonzero value. For this value,
|𝑉 | = |𝑈 | − |𝑊 |, and therefore the equation becomes

𝐵𝑈 = ∑
𝑊

𝑊⊆𝑈

2𝛿|𝑊 |,0+𝛿|𝑊 |,𝑁 −1−|𝑊 |(−1)|𝑈 |−|𝑊 |. (7.48)

To further resolve the equation, we note that when the cardinality of 𝑊 is equal to
|𝑊 | = 𝑖, there are exactly |𝑈 | choose 𝑖 different ways 𝑊 can be chosen from 𝑈 . Since only
the cardinalities of𝑊 and𝑊 (with |𝑊 | = 𝑁 −𝑖) appear in the sums, this allows us to write

𝐵𝑈 =
|𝑈 |
∑
𝑖=0

(|𝑈 |
𝑖 )2𝛿𝑁−𝑖,0+𝛿𝑁−𝑖,𝑁 −1−𝑁+𝑖(−1)|𝑈 |−𝑖 =

|𝑈 |
∑
𝑖=0

(|𝑈 |
𝑖 )2𝛿𝑖,𝑁 +𝛿𝑖,0−1−𝑁+𝑖(−1)|𝑈 |−𝑖 . (7.49)

Now, we make a change of variable, 𝑖 → |𝑈 | − 𝑖. Conveniently, the binomial coefficient is
invariant under this transformation, giving

𝐵𝑈 =
|𝑈 |
∑
𝑖=0

(|𝑈 |
𝑖 )2𝛿|𝑈 |−𝑖,𝑁 +𝛿|𝑈 |−𝑖,0−1−𝑁+|𝑈 |−𝑖(−1)𝑖 = (12)

𝑁+1−|𝑈 | |𝑈 |
∑
𝑖=0

(|𝑈 |
𝑖 )2𝛿|𝑈 |,𝑁 𝛿𝑖,0+𝛿𝑖,|𝑈 |(−12 )

𝑖
.

(7.50)
By the binomial theorem,

|𝑈 |
∑
𝑖=0

(|𝑈 |
𝑖 )(−12 )

𝑖
= (1− 1

2)
|𝑈 |

= (12)
|𝑈 |

. (7.51)

By adding the contributions from when the delta functions are nonzero separately on top
of that, we find

𝐵𝑈 = (12)
𝑁+1−|𝑈 |

{(12)
|𝑈 |

+𝛿|𝑈 |,𝑁 +(−12 )
|𝑈 |

} , (7.52)

which can be rewritten as (using the fact that 𝑁 − |𝑈 | = 0 whenever the remaining delta
function is nonzero)

𝐵𝑈 = (12)
𝑁+1

(1+ (−1)|𝑈 |)+ 1
2𝛿|𝑈 |,𝑁 . (7.53)

Noticing furthermore that the value of 𝐵𝑈 only depends on the cardinality of the set 𝑈 ,
we write

𝐵|𝑈 | = {
1
2𝑁 + 1

2𝛿|𝑈 |,𝑁 if |𝑈 | is even,
1
2𝛿|𝑈 |,𝑁 if |𝑈 | is odd. (7.54)
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Now, we can derive the coefficients 𝐴|𝑈 | in Eq. (7.23). To this end, we substitute Eq.
(7.17) into Eq. (7.41) to find

∑
𝑈⊆𝒩

2𝛿|𝑈 |,0+𝛿|𝑈 |,𝑁 −1⟨∏
𝑖∈𝑈

1−𝑝𝑖
2 ∏

𝑗∈𝒩 ⧵𝑈
𝑝𝑗⟩ = ∑

𝑈⊆𝒩
𝐵|𝑈 | (𝑝link𝑝2BSM)|𝑈 |⟨∏

𝑖∈𝑈
(𝑝2mem)

Δ𝑛𝑖⟩

= ∑
𝑈⊆𝒩

𝐴|𝑈 |⟨∏
𝑖∈𝑈

(𝑝2mem)
Δ𝑛𝑖⟩

(7.55)

where 𝐴|𝑈 | is exactly as defined in Eq. (7.24). Therefore, Eq. (7.23) indeed follows from Eq.
(7.22).

7.12 Expected Values for Memory Decoherence
In this section, we derive both a leading-order expression and a lower bound for the effect
of memory decoherence on the fidelity of GHZ states produced using Protocol 7.1. These
results allow us towrite down a leading-order expression for the fidelity of states produced
using this protocol (Eq. (7.25)), and a lower bound ((7.27)). To this end, we first derive
more general results for the case where the decoherence rate is different for each quantum
memory.

7.12.1 Indices
Trying to establish a Bell state happens according to discrete rounds, with the probability
of succeeding during each round being 𝑞link for all end nodes. When all Bell states are in
place, a GHZ state is generated locally and then teleported by the factory node towards
the end nodes after which, in case all BSMs are successful, the protocol terminates. While
the BSM success probability influences the rate with which GHZ states can be distributed
(see Section 7.3.1), it will not influence the fidelity, since all states are discarded whenever
a BSM fails and the protocols starts again from the beginning. Therefore, without loss of
generality, we will henceforth assume BSMs are deterministic. In that case, each execution
of the protocol is uniquely defined bywhich end node established a Bell state duringwhich
attempt. This can be described by assigning indices 𝑖 ∈ 𝒩 to the different end nodes (where
𝒩 = {1,⋯,𝑁 } as before), and denoting the round during which end node 𝑖 established a
Bell state by 𝑛𝑖 .

For any given realization of the protocol, an ordering can be imposed on the indices
in correspondence with the order in which the different Bell states were distributed. We
denote the ordered index corresponding to end node 𝑖 by 𝑑𝑖 , and they have the property

𝑛𝑖 ≥ 𝑛𝑗 if 𝑑𝑖 > 𝑑𝑗 . (7.56)

for 𝑖, 𝑗 = 1,2, ...,𝑁 . That means that if 𝑑5 = 1, end node with label 5 was the first end node
to share a Bell state with the factory node, while if 𝑑1 = 𝑁 , end node with label 1 was the
last to do so.

What we want to calculate, are expected values including only the waiting times of a
specific subset of the end nodes. We denote this subset 𝑉 ⊆ 𝒩 , with |𝑉 | ≡ 𝑀 , and define
the indices 𝑣1, 𝑣2,⋯ ,𝑣𝑀 as the ordered elements of the subset 𝑉 . That is, 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑀 }
and

𝑑𝑣𝑖+1 > 𝑑𝑣𝑖 (7.57)
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for 𝑖 = 1,2,⋯,𝑀 −1. To simplify our notation, we now introduce the symbols

𝑐𝑖 ≡ 𝑑𝑣𝑖 ,
𝑚𝑖 ≡ 𝑛𝑣𝑖 .

(7.58)

We note that Eq. (7.56) and (7.57) together imply that

𝑚𝑖+1 ≥ 𝑚𝑖 (7.59)

for 𝑖 = 1,2,⋯,𝑀 −1.
An example of the values these different indices can take, let us consider the case𝑁 = 4.

For a specific realization of the protocol, it might be that the end node with index 2 shared
a Bell state with the factory node first during 𝑛2 = 3, then 3 during 𝑛3 = 5, then 1 at 𝑛1 = 10
and finally 4 at 𝑛4 = 17. In that case, 𝑑2 = 1, 𝑑3 = 2, 𝑑1 = 3, and 𝑑4 = 4. Now, if we take
𝑉 = {1,3}, then 𝑣1 = 3 and 𝑣2 = 1. This gives, 𝑐1 = 𝑑3 = 2 and 𝑐2 = 𝑑1 = 3, which correctly
satisfies 𝑐2 > 𝑐1. Furthermore, 𝑚1 = 𝑛3 = 5 and 𝑚2 = 𝑛1 = 10.

7.12.2 Probability Building Blocks
At the start of Protocol 7.1, there are 𝑁 quantum connections simultaneously distributing
Bell states between the factory node and end nodes 1,2,⋯,𝑁 . Each of these will follow a
geometric distribution. That is,

Pr(Bell state 𝑖 is successfully distributed during round 𝑛) = 𝑞link(1−𝑞link)𝑛−1, (7.60)

for 𝑖 = 1,2, ...,𝑁 , and 𝑛 = 1,2,3, ... .
Now, we introduce some probabilities based on this that will be useful later on:

𝑃𝑖/𝑁 (𝑛) ≡ Pr(during round 𝑛, the 𝑖th Bell state is distributed,

given that there were zero before round 1,

and distribution takes place on 𝑁 quantum connections),
(7.61)

𝑃 ′𝑖/𝑁 (𝑛) ≡ Pr(after round 𝑛, exactly 𝑖 Bell states are distributed,

given that there were zero before round 1,
and distribution takes place on 𝑁 quantum connections;

the 𝑖th Bell state was established during round 𝑛).

(7.62)

Note that the difference between 𝑃𝑖/𝑁 (𝑛) and 𝑃 ′𝑖/𝑁 (𝑛) is that the first also includes the prob-
ability for the case that, during round 𝑛, more Bell states are simultaneously established
than was required to reach 𝑖. The first of these two is a properly normalized probability
distribution, and has the random variable 𝑛𝑖/𝑁 associated to it, representing the number
of rounds needed to distribute 𝑖 Bell states using 𝑁 quantum connections. A special case
is the variable 𝑛1/𝑁 , as it is a geometrically distributed random variable. The reason for
this is that the probability that the first Bell state is distributed during round 𝑛, is equal
to the probability that all quantum connections failed up until round 𝑛, and that not all
quantum connections fail during round 𝑛. That is,

𝑃1/𝑁 (𝑛) = [1− (1−𝑞link)𝑁 ](1−𝑞link)𝑁(𝑛−1), (7.63)
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which is geometric with 1/⟨𝑛1/𝑁 ⟩ = 1− (1−𝑞link)𝑁 .
Furthermore, we define

𝑃 𝑗𝑖/𝑁 (𝑛) ≡ Pr(after round 𝑛, exactly 𝑖 Bell states are distributed,

given that there were zero before round 1,
and distribution takes place on 𝑁 quantum connections;

𝑗 of those 𝑖 Bell states were distributed during round 𝑛).

(7.64)

Here, 𝑗 ≤ 𝑖 ≤ 𝑁 , and 𝑗 ≥ 1. This allows us to be more specific about the number of success
events during the last round. Since for 𝑃 ′𝑖/𝑁 (𝑛) the number of success events at round 𝑛
can be any number larger than zero (and, of course, smaller or equal to 𝑖), we can write
down the relation

𝑃 ′𝑖/𝑁 (𝑛) =
𝑖
∑
𝑙=1

𝑃 𝑙𝑖/𝑁 (𝑛). (7.65)

Similar, since 𝑃𝑖/𝑁 (𝑛) is the same as 𝑃 ′𝑖/𝑁 (𝑛) but also includes to possibility that “too many”
successes occurred during round 𝑛, bringing the number of entangled states above 𝑖, we
can write

𝑃𝑖/𝑁 (𝑛) =
𝑁−𝑖
∑
𝑘=0

𝑖
∑
𝑙=1

𝑃𝑘+𝑙(𝑖+𝑘)/𝑁 (𝑛) = 𝑃 ′𝑖/𝑁 (𝑛)+
𝑁−𝑖
∑
𝑘=1

𝑖
∑
𝑙=1

𝑃𝑘+𝑙(𝑖+𝑘)/𝑁 (𝑛). (7.66)

Note however that both equations only hold for 𝑖 > 0.
It is possible to derive a recursive relation for 𝑃 𝑗𝑖/𝑁 (𝑛). We can express the probability

as

𝑃 𝑗𝑖/𝑁 (𝑛) =(
𝑁 − (𝑖 − 𝑗)

𝑗 )Pr(during round 𝑛, out of 𝑁 −(𝑖 − 𝑗) quantum connections

trying to establish a Bell state, exactly 𝑗 succeed)
×Pr(after round 𝑛−1, there were 𝑖 − 𝑗 Bell states).

(7.67)

The first probability is simply 𝑞𝑗link(1−𝑞link)𝑁−𝑖 . The second probability depends on what
𝑖 − 𝑗 is. If it is zero, it is simply the probability that there have been no success events up
to and including round 𝑛−1, i.e. (1−𝑞link)𝑁(𝑛−1). If 𝑖 − 𝑗 ≠ 0, we must distinguish between
the different cases in which the final Bell state is established during different rounds. This
gives

Pr(after round 𝑛−1, there were 𝑖 − 𝑗 Bell states)

=
𝑛−1
∑
𝑛′=1

𝑃 ′(𝑖−𝑗)/𝑁 (𝑛′) ×Pr(none out of 𝑁 −(𝑖 − 𝑗) active quantum connections distribute a

Bell state after round 𝑛′ up to round 𝑛−1)

=
𝑛−1
∑
𝑛′=1

𝑃 ′(𝑖−𝑗)/𝑁 (𝑛′)(1−𝑞link)[𝑁−(𝑖−𝑗)][(𝑛−1)−𝑛′].
(7.68)
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Now, we note that the definition of 𝑃 ′𝑖/𝑁 (𝑛) is somewhat ambiguous for 𝑖 = 0 and 𝑛 = 0.
Therefore, we here define it explicitly for these values, in such a way that we can extend
the above relation to the cases 𝑗 = 𝑖 and 𝑛 = 1. The definition is as follows:

𝑃 ′0/𝑁 (𝑛) ≡ 𝛿𝑛,0. (7.69)

This allows us to extend the above sum to include 𝑛′ = 0, which gives exactly what we
need for 𝑗 = 𝑖 and vanishes anyway for 𝑗 < 𝑖, i.e.

𝑃 𝑗𝑖/𝑁 (𝑛) = (𝑁 − 𝑖 + 𝑗
𝑗 )

𝑛−1
∑
𝑛′=0

𝑞𝑗link(1−𝑞link)(𝑛−𝑛
′)(𝑁−𝑖+𝑗)−𝑗𝑃 ′(𝑖−𝑗)/𝑁 (𝑛′). (7.70)

We can rewrite this equation into a form that makes it easier to deal with later on. Using
Eq. (7.63) we can write

𝑃 𝑗𝑖/𝑁 (𝑛) = (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗link(1−𝑞link)𝑁−𝑖

1− (1−𝑞link)𝑁−𝑖+𝑗
𝑛−1
∑
𝑛′=0

𝑃1/(𝑁−𝑖+𝑗)(𝑛 −𝑛′)𝑃 ′(𝑖−𝑗)/𝑁 (𝑛′). (7.71)

Furthermore, to turn this into a true recursion relation, we also fill in Eq. (7.65) to find

𝑃 𝑗𝑖/𝑁 (𝑛) = (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗link(1−𝑞link)𝑁−𝑖

1− (1−𝑞link)𝑁−𝑖+𝑗
𝑛−1
∑
𝑛′=0

𝑃1/(𝑁−𝑖+𝑗)(𝑛 −𝑛′)
𝑖
∑
𝑙=1

𝑃 𝑙𝑖/𝑁 (𝑛). (7.72)

However, we must be aware of the fact that this equation only covers the 𝑖 > 0 cases. If
𝑖 = 𝑗 = 0, there are no Bell states distributed at all, and thus we can also not split up the
success events as we did in our arguing above. Analogues to 𝑃 ′0/𝑁 (𝑛) = 𝛿𝑛,0, we define
𝑃00/𝑁 (𝑛) = 𝛿𝑛,0. Furthermore, while 𝑃 𝑗𝑖/𝑁 (𝑛) is technically undefined for 𝑗 = 0 and 𝑖 > 0,
we define it to be zero for later convenience. Note that therefore 𝑃0𝑖/𝑁 (𝑛) for 𝑖 > 0 is not
equal to the probability that there are 𝑖 Bell states after round 𝑛, of which there where 0
distributed during round 𝑛, since this would be a nonzero quantity.

Finally, we will abuse notation to write

∞
∑
𝑛=0

𝑛𝑃 𝑗𝑖/𝑁 (𝑛) = ⟨𝑛𝑗𝑖/𝑁 ⟩ , (7.73)

even though 𝑃 𝑗𝑖/𝑁 (𝑛) is not a normalized probability distribution and thus 𝑛𝑗𝑖/𝑁 is not a
well-defined random variable.

7.12.3 Probability Distribution of Links
Now, we introduce the probability distribution

𝑃(𝑚1 = 𝑚′1,𝑚2 = 𝑚′2,⋯ ,𝑚𝑀 = 𝑚′𝑀 ), (7.74)

which is the probability that, if Protocol 7.1 is executed once, and labels are defined and
ordered as described above, that𝑚𝑖 has the value𝑚′𝑖 for each 𝑖 = 1,2,⋯,𝑀 . Below, we will



7.12 Expected Values for Memory Decoherence

7

271

use this probability distribution to write down expected values of the type we need to ac-
count for memory decoherence. First, wewill investigate what the probability distribution
looks like.

Then, what is the probability that Bell state 𝑐𝑖 is distributed at round 𝑚𝑖? Consider
the fact that Bell state 𝑐𝑖−1 was distributed at round 𝑚𝑖−1. During this round, many Bell
states could have been distributed simultaneously, as multiple quantum connections are
attempting to distribute them in parallel. However, assume for the moment that only
Bell state 𝑐𝑖−1 was distributed at round 𝑚𝑖−1. In that case, the probability that 𝑐𝑖 succeeds
during round 𝑚𝑖 is equal to the probability that 𝑐𝑖 − 𝑐𝑖−1 Bell states are distributed us-
ing 𝑁 − 𝑐𝑖−1 parallel quantum connections in 𝑚𝑖 −𝑚𝑖−1 rounds, which is the probability
𝑃(𝑐𝑖−𝑐𝑖−1)/(𝑁−𝑐𝑖−1)(𝑚𝑖 −𝑚𝑖−1) defined above. Now assume that there were in fact multiple
successes during round𝑚𝑖−1. Specifically, let it be such that there were so many successes
that after round𝑚𝑖−1, the number of distributed Bell states is 𝑐𝑖−1 +𝑘𝑖−1. That is, 𝑘𝑖−1 is the
“overshoot” during round 𝑚𝑖−1. Then, we can distinguish two different cases. In the first
case, 𝑘𝑖−1 < 𝑐𝑖 − 𝑐𝑖−1, and Bell state number 𝑐𝑖 is not yet distributed after round 𝑚𝑖−1. We
can then repeat the logic above: the probability of distributing Bell state 𝑐𝑖 during round
𝑚𝑖 is 𝑃(𝑐𝑖−𝑐𝑖−1−𝑘𝑖−1)/(𝑁−𝑐𝑖−1−𝑘𝑖−1)(𝑚𝑖 −𝑚𝑖−1). However, in the second case, 𝑘𝑖−1 ≥ 𝑐𝑖 −𝑐𝑖−1; the
overshoot is so large that Bell state 𝑐𝑖 was already distributed during round 𝑚𝑖−1, and the
probability can be written as the Kronecker delta function 𝛿𝑚𝑖 ,𝑚𝑖−1 .

Using this logic, the probability distribution can be completely characterized using
𝑃 𝑗𝑖/𝑁 (𝑛)-type probabilities that were defined above. For each 𝑐𝑖 , we can put a Heaviside
step function 𝜃(𝑐𝑖 − 𝑐𝑖−1 −𝑘𝑖−1 −1) to account for the case where the overshoot was small
enough to ensure𝑚𝑖 ≠𝑚𝑖−1, and 𝜃(𝑐𝑖−1+𝑘𝑖 −1−𝑐𝑖)when they are the same. The Heaviside
step function is defined as

𝜃(𝑥) = {0 if 𝑥 < 0,
1 if 𝑥 ≥ 0. (7.75)

There are just two additional aspects we need to consider. First of all, the number of
successes during round 𝑚𝑖−1 is not necessarily equal to 𝑘𝑖−1; 𝑘𝑖−1 is just the overshoot. It
could e.g. be the case that 𝑐𝑖−1 = 6 and 𝑘𝑖−1 = 3. That means that after 𝑚𝑖−1, the number
of distributed Bell states is 9. But it says nothing about the number of Bell states before
that round. It could e.g. be 4, in which case there were 5 successes during round 𝑚𝑖−1.
We denote the number of “additional” successes that did not go into the overshoot by 𝑙𝑖−1.
Thus, the number of successes during round 𝑚𝑖−1 is 𝑙𝑖−1 + 𝑘𝑖−1. In the example, 𝑙𝑖−1 = 2.
Secondly, we need to consider the fact that if 𝑘𝑖−1 is large enough that 𝑚𝑖 = 𝑚𝑖−1, then
the overshoot 𝑘𝑖 must be equal to 𝑘𝑖−1 − (𝑐𝑖 − 𝑐𝑖−1), which can be accounted for using a
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Kronecker delta. Combining all this into a single equation, we find

Pr(𝑚1 = 𝑚′1,𝑚2 = 𝑚′2,⋯ ,𝑚𝑀 = 𝑚′𝑀 )

=
𝑀
∏
𝑖=1

𝑁−𝑐𝑖
∑
𝑘𝑖=0

[𝜃(𝑐𝑖 −𝑐𝑖−1 −𝑘𝑖−1 −1)
𝑐𝑖−𝑐𝑖−1−𝑘𝑖−1

∑
𝑙𝑖=1

𝑃𝑘𝑖+𝑙𝑖(𝑐𝑖+𝑘𝑖−𝑐𝑖−1−𝑘𝑖−1)/(𝑁−𝑐𝑖−1−𝑘𝑖−1)(𝑚
′𝑖 −𝑚′𝑖−1)

+ 𝜃(𝑐𝑖−1 +𝑘𝑖−1 −𝑐𝑖)𝛿𝑘𝑖 ,𝑐𝑖−1+𝑘𝑖−1−𝑐𝑖𝛿𝑚′𝑖 ,𝑚′𝑖−1]

=
𝑀
∏
𝑖=1

[
𝑁−𝑐𝑖
∑
𝑘𝑖=0

𝑐𝑖−𝑐𝑖−1−𝑘𝑖−1
∑
𝑙𝑖=−𝑘𝑖

(𝜃(𝑙𝑖 −1)+𝛿𝑘𝑖 ,𝑐𝑖−1+𝑘𝑖−1−𝑐𝑖)

×𝑃𝑘𝑖+𝑙𝑖(𝑐𝑖+𝑘𝑖−𝑐𝑖−1−𝑘𝑖−1)/(𝑁−𝑐𝑖−1−𝑘𝑖−1)(𝑚
′𝑖 −𝑚′𝑖−1)],

(7.76)

where we set 𝑚′0 ≡ 𝑐0 ≡ 𝑘0 ≡ 0 by definition to allow for the more compact form of the
equation.

7.12.4 Expected Value
In order to calculate the expected values for the amount of decoherence in quantum mem-
ory, what we need is a probability distribution not for at what time each Bell state was
distributed, but for how long each Bell state had to sit in memory before Protocol 7.1 ter-
minated. Luckily, the second can be easily obtained from the first. First, we define 𝑛𝑓 to
be the round during which the final Bell state is distributed. Then, we define Δ𝑚𝑖 = 𝑛𝑓 −𝑚𝑖
as the number of rounds Bell state 𝑣𝑖 waits in memory until all Bell states are distributed.
The probability distribution we are then interested in is

Pr(Δ𝑚1 = Δ𝑚′1,Δ𝑚2 = Δ𝑚′2,⋯ ,Δ𝑚𝑀 = Δ𝑚′𝑀 ), (7.77)

which can be written as

Pr(Δ𝑚1 = Δ𝑚′1,Δ𝑚2 = Δ𝑚′2,⋯ ,Δ𝑚𝑀 = Δ𝑚′𝑀 )

=
∞
∑
𝑛′𝑓 =1

𝑀
∏
𝑖=1

(
∞
∑
𝑚′𝑖=1

𝛿𝑛′𝑓 −𝑚′𝑖 ,Δ𝑚′𝑖 )Pr(𝑚1 = 𝑚′1,𝑚2 = 𝑚′2,⋯ ,𝑚𝑀 = 𝑚′𝑀 , 𝑛𝑓 = 𝑛′𝑓 ).
(7.78)

The latter probability distribution is the one from Eq. 7.76, except for the additional
condition 𝑛𝑓 = 𝑛′𝑓 . However, this condition can be easily incorporated by extending the set
𝑉 of end nodes under consideration slightly, such that we include 𝑣𝑀+1 which corresponds
to the last Bell state that is distributed. That is,

𝑐𝑀+1 = 𝑁 , (7.79)
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and 𝑚𝑁+1 = 𝑛𝑓 . In that case, we can directly use Eq. 7.76 to write down

Pr(Δ𝑚1 = Δ𝑚′1,Δ𝑚2 = Δ𝑚′2,⋯ ,Δ𝑚𝑀 = Δ𝑚′𝑀 )

=
∞
∑

𝑚′𝑀+1=1

𝑀
∏
𝑖=1

(
∞
∑
𝑚′𝑖 =1

𝛿𝑛′𝑓 −𝑚′𝑖 ,Δ𝑚′𝑖 )Pr(𝑚1 = 𝑚′1,𝑚2 = 𝑚′2,⋯ ,𝑚𝑀 = 𝑚′𝑀 ,𝑚𝑀+1 = 𝑚′𝑀+1)

=
∞
∑

𝑚′𝑀+1=1

𝑀
∏
𝑖=1

(
∞
∑
𝑚′𝑖 =1

𝛿𝑚′𝑀+1−𝑚′𝑖 ,Δ𝑚′𝑖 )
𝑀+1
∏
𝑖=1

[
𝑁−𝑐𝑖
∑
𝑘𝑖=0

𝑐𝑖−𝑐𝑖−1−𝑘𝑖−1
∑
𝑙𝑖=−𝑘𝑖

(𝜃(𝑙𝑖 −1)+𝛿𝑘𝑖 ,𝑐𝑖−1+𝑘𝑖−1−𝑐𝑖)

×𝑃𝑘𝑖+𝑙𝑖(𝑐𝑖+𝑘𝑖−𝑐𝑖−1−𝑘𝑖−1)/(𝑁−𝑐𝑖−1−𝑘𝑖−1)(𝑚
′𝑖 −𝑚′𝑖−1)].

(7.80)

First, we resolve the Kronecker delta functions. If Δ𝑚′𝑖 = 𝑚′𝑀+1 −𝑚′𝑖 , then 𝑚′𝑖 −𝑚′𝑖−1 =
Δ𝑚𝑖−1 −Δ𝑚𝑖 . Therefore, if we define Δ𝑚′𝑀+1 ≡ 0 and write Δ𝑚′0 = 𝑚′𝑀+1, we find

Pr(Δ𝑚1 = Δ𝑚′1,Δ𝑚2 = Δ𝑚′2,⋯ ,Δ𝑚𝑀 = Δ𝑚′𝑀 )

=
∞
∑

Δ𝑚′0=0

𝑀+1
∏
𝑖=1

[
𝑁−𝑐𝑖
∑
𝑘𝑖=0

𝑐𝑖−𝑐𝑖−1−𝑘𝑖−1
∑
𝑙𝑖=−𝑘𝑖

(𝜃(𝑙𝑖 −1)+𝛿𝑘𝑖 ,𝑐𝑖−1+𝑘𝑖−1−𝑐𝑖)

×𝑃𝑘𝑖+𝑙𝑖(𝑐𝑖+𝑘𝑖−𝑐𝑖−1−𝑘𝑖−1)/(𝑁−𝑐𝑖−1−𝑘𝑖−1)(Δ𝑚
′𝑖−1 −Δ𝑚′𝑖 )].

(7.81)

Now, we will use these results to calculate the expected value

𝐺(𝑟1, 𝑟2,⋯ , 𝑟𝑀 ) ≡ ⟨
𝑀
∏
𝑖=1

(1− 𝑟𝑖)Δ𝑚𝑖⟩

=
𝑀
∏
𝑖=1

[
∞
∑

Δ𝑚′𝑖 =0
(1− 𝑟𝑖)Δ𝑚′𝑖 ]Pr(Δ𝑚1 = Δ𝑚′1,Δ𝑚2 = Δ𝑚′2,⋯ ,Δ𝑚𝑀 = Δ𝑚′𝑀 )

(7.82)
Here, the 𝑟𝑖 are some numbers between zero and one. The fidelity of GHZ states created
by Protocol 7.1 is expressed as a sum over such expected values in Eq. (7.23). Therefore, if
we are able to evaluate Eq. (7.82), we are able to evaluate the fidelity using the substitution
𝑟𝑖 = 1−𝑝2mem for all 𝑖 (i.e. 𝑟𝑖 becomes the probability that a quantum state is lost in memory
per round of Bell-state distribution). We make two remarks about the expected value 𝐺.
First, an evaluation of𝐺 is a more general result thanwhat we need to calculate the fidelity,
as here we allow each 𝑟𝑖 to take a different value. As discussed in Section 7.6, this makes
such a result suitable to study asymmetric quantum networks. Second, in the definition
of 𝐺, a product over quantities of the form 1− 𝑟𝑖 appears. We could just as well make the
redefinition 𝑟𝑖 →1−𝑟𝑖 . This wouldmake the definition of𝐺 more compact, andwould lead
to the perhaps more natural mapping 𝑟𝑖 = 𝑝2mem in order to calculate the fidelity. However,
we are ultimately interested in the regime 1−𝑝2mem ≪ 1, where the probability of losing a
quantum state when storing it in memory for a single round is small. This translates here
to 𝑟𝑖 ≪ 1. Therefore, if we want to calculate the fidelity to leading order in 1 − 𝑝2mem, we
need to evaluate 𝐺 to leading order in the variables 𝑟𝑖 . This is easier to do than working
to leading order in 1− 𝑟𝑖 .
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First of all, we substitute Eq. (7.81) into Eq. (7.82). By defining 𝑟0 ≡ 0, we can conve-
niently write the result as

𝐺(𝑟1, 𝑟2,⋯ , 𝑟𝑀 )

=
∞
∑

Δ𝑚′0,Δ𝑚′1,⋯,Δ𝑚′𝑀=0

𝑀+1
∏
𝑖=1

[
𝑁−𝑚𝑖
∑
𝑘𝑖=0

𝑚𝑖−𝑚𝑖−1−𝑘𝑖−1
∑
𝑙𝑖=−𝑘𝑖

(𝜃(𝑙𝑖 −1)+𝛿𝑘𝑖 ,𝑚𝑖−1+𝑘𝑖−1−𝑚𝑖)

× (1− 𝑟𝑖−1)Δ𝑛𝑖−1𝑃𝑘𝑖+𝑙𝑖(𝑚𝑖+𝑘𝑖−𝑚𝑖−1−𝑘𝑖−1)/(𝑁−𝑚𝑖−1−𝑘𝑖−1)(Δ𝑚
′𝑖−1 −Δ𝑚′𝑖 )],

(7.83)

To evaluate it, we can make use of the fact that probability 𝑃 𝑗𝑖/𝑁 (𝑛) is only nonzero for
𝑛 ≥ 0, and that the sum only contains terms for which Δ𝑚′𝑖 ≥ 0. Thus, for some number
0 < 𝑎 < 1,

∞
∑

Δ𝑚′𝑖−1=0
𝑎Δ𝑚′𝑖−1𝑃 𝑗𝑖/𝑁 (Δ𝑚′𝑖−1 −Δ𝑚′𝑖 )

=
∞
∑

Δ𝑚′𝑖−1=Δ𝑚′𝑖
𝑎Δ𝑚′𝑖−1𝑃 𝑗𝑖/𝑁 (Δ𝑚′𝑖−1 −Δ𝑚′𝑖 )

=
∞
∑
𝑛=0

𝑎𝑛+Δ𝑚′𝑖 𝑃 𝑗𝑖/𝑁 (𝑛)

= ⟨𝑎𝑛𝑗𝑖/𝑁 ⟩𝑎Δ𝑚′𝑖 .

(7.84)

This shows that the summation over Δ𝑚′𝑖 cannot be resolved independently from the sum-
mation over Δ𝑚′𝑖−1. However, the summation over Δ𝑚′𝑖−1 can be safely performed before
the summation over Δ𝑚′𝑖 , as shown above. Thus, our strategy is to sum over the Δ𝑚′𝑖 ’s in
the order of their index (i.e. Δ𝑚′0 first, Δ𝑚′𝑀 last). For Δ𝑚′0, we get

⟨(1− 𝑟0)𝑛
𝑘1+𝑙1
𝑚1+𝑘1−𝑚0−𝑘0/(𝑁−𝑚0−𝑘0)⟩(1− 𝑟0)Δ𝑚′1 . (7.85)

Before performing the sum over Δ𝑚′1, we must remember to also include the (1 − 𝑟0)Δ𝑚′1

that came out of the sum over Δ𝑚′0 and thus we get

⟨[(1− 𝑟0)(1− 𝑟1)]𝑛
𝑘2+𝑙2
𝑚2+𝑘2−𝑚1−𝑘1/(𝑁−𝑚1−𝑘1)⟩[(1− 𝑟0)(1− 𝑟1)]Δ𝑚′2 . (7.86)

Then, for the sum over Δ𝑚′3, we should not forget to add the [(1 − 𝑟0)(1 − 𝑟1)]Δ𝑚′2 to the
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(1− 𝑟2)Δ𝑚′2 already present. And so on. The result is

𝐺(𝑟1, 𝑟2, ..., 𝑟𝑀 )

=
𝑀+1
∏
𝑖=1

[
𝑁−𝑐𝑖
∑
𝑘𝑖=0

𝑐𝑖−𝑐𝑖−1−𝑘𝑖−1
∑
𝑙𝑖=−𝑘𝑖

(𝜃(𝑙𝑖 −1)+𝛿𝑘𝑖 ,𝑐𝑖−1+𝑘𝑖−1−𝑐𝑖)

×⟨(
𝑖−1
∏
𝑗=0

(1− 𝑟𝑗))
𝑛𝑘𝑖+𝑙𝑖(𝑐𝑖+𝑘𝑖−𝑐𝑖−1−𝑘𝑖−1)/(𝑁−𝑐𝑖−1−𝑘𝑖−1)⟩]

=
𝑀+1
∏
𝑖=1

[
𝑁−𝑐𝑖
∑
𝑘𝑖=0

𝑐𝑖−𝑐𝑖−1−𝑘𝑖−1
∑
𝑙𝑖=−𝑘𝑖

(𝜃(𝑙𝑖 −1)+𝛿𝑘𝑖 ,𝑐𝑖−1+𝑘𝑖−1−𝑐𝑖)

×⟨(1− ̄𝑟𝑖−1)
𝑛𝑘𝑖+𝑙𝑖(𝑐𝑖+𝑘𝑖−𝑐𝑖−1−𝑘𝑖−1)/(𝑁−𝑐𝑖−1−𝑘𝑖−1)⟩],

(7.87)

where we defined

̄𝑟𝑖 = 1−
𝑖

∏
𝑗=0

(1− 𝑟𝑗). (7.88)

The next step is to calculate the expected values of the form encountered in the above
equation. That is, we need to calculate

⟨(1− 𝑟)𝑛𝑗𝑖/𝑁 ⟩ =
∞
∑
𝑛=0

𝑃 𝑗𝑖/𝑁 (𝑛)(1− 𝑟)𝑛 . (7.89)

We can use equation (7.72) to write down the recursive relation

⟨(1− 𝑟)𝑛𝑗𝑖/𝑁 ⟩

= (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗link(1−𝑞link)𝑁−𝑖

1− (1−𝑞link)𝑁−𝑖+𝑗
∞
∑
𝑛=0

𝑛−1
∑
𝑛′=0

(1− 𝑟)𝑛𝑃1/(𝑁−𝑖+𝑗)(𝑛 −𝑛′)
𝑖−𝑗
∑
𝑙=0

𝑃 𝑙(𝑖−𝑗)/𝑁 (𝑛′)

= (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗link(1−𝑞link)𝑁−𝑖

1− (1−𝑞link)𝑁−𝑖+𝑗
𝑖−𝑗
∑
𝑙=0

∞
∑
Δ𝑛=1

∞
∑
𝑛′=0

(1− 𝑟)𝑛′+Δ𝑛𝑃1/(𝑁−𝑖+𝑗)(Δ𝑛)𝑃 𝑙(𝑖−𝑗)/𝑁 (𝑛′)

= (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗link(1−𝑞link)𝑁−𝑖

1− (1−𝑞link)𝑁−𝑖+𝑗 ⟨(1− 𝑟)𝑛1/(𝑁−𝑖+𝑗)⟩
𝑖−𝑗
∑
𝑙=0

⟨(1− 𝑟)𝑛𝑙(𝑖−𝑗)/𝑁 ⟩.

(7.90)

Since 𝑛1/𝑁 is geometric with 1/⟨𝑛1/𝑁 ⟩ = 1− (1−𝑞link)𝑁 , and since

⟨𝑎𝑥⟩ = 𝑎𝑞/(1−𝑎[1−𝑞]) (7.91)

for any geometric variable 𝑥 with 1/⟨𝑥⟩ = 𝑞 and 0 < 𝑎 < 1, we can write

⟨(1− 𝑟)𝑛𝑗𝑖/𝑁 ⟩ = (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗link(1−𝑞link)𝑁−𝑖(1− 𝑟)

1− (1− 𝑟)(1−𝑞link)𝑁−𝑖+𝑗
𝑖−𝑗
∑
𝑙=0

⟨(1− 𝑟)𝑛𝑙(𝑖−𝑗)/𝑁 ⟩. (7.92)

for 𝑖 > 0.



7

276 7 Analysis of multipartite entanglement distribution using a central quantum-network node

7.12.5 Recursive Relation
We will now proceed in the limit 𝑞link, 𝑟 ≪ 1, since this is the regime that we are mostly
interested in, and since this allows for some convenient approximations. Throwing out
higher-order terms in both 𝑟 and 𝑞link, we get

⟨(1− 𝑟)𝑛𝑗𝑖/𝑁 ⟩ ≈ (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗link

𝑟 + (𝑁 − 𝑖 + 𝑗)𝑞link
𝑖−𝑗
∑
𝑙=0

⟨(1− 𝑟)𝑛𝑙(𝑖−𝑗)/𝑁 ⟩. (7.93)

Now, we will argue that to leading order in 𝑞link and 𝑟 , we only need to consider the term
for which 𝑙 = 1, making it much easier to resolve the recurrence relation.

Let us for the moment represent ⟨(1− 𝑟)𝑛𝑏𝑎/𝑁 ⟩ schematically by the tuple (𝑎,𝑏). Then,
any (𝑖, 𝑗) is expressed as a sum over (𝑖 − 𝑗, 𝑙1)’s, for 𝑙1 = 0,1, ..., 𝑖 − 𝑗. In turn each (𝑖 − 𝑗, 𝑙1)
will be a sum over (𝑖 − 𝑗 − 𝑙1, 𝑙2)’s for 𝑙2 = 0,1, ..., 𝑖 − 𝑗 − 𝑙1. Therefore, each term in the sum
can be represented by a sequence

term in sum = ((𝑎0, 𝑏0), (𝑎1, 𝑏1), (𝑎2, 𝑏2),⋯) (7.94)

following the rule 𝑎𝑖+1 = 𝑎𝑖 −𝑏𝑖 and the boundary condition 𝑎0 = 𝑖,𝑏0 = 𝑗. Now, since

⟨(1− 𝑟)𝑛0𝑖 /𝑁 ⟩ =
∞
∑
𝑛=0

𝑃0𝑖/𝑁 (𝑛)(1− 𝑟)𝑛 =
∞
∑
𝑛=0

𝛿𝑖,0𝛿𝑛,0(1− 𝑟)𝑛 = 𝛿𝑖,0, (7.95)

tuples of the form (𝑎,0) can only occur in the sequence if 𝑎 = 0. That means 𝑏𝑖 > 0 for each
tuple where 𝑎𝑖 ≠ 0. As a result, 𝑎𝑖+1 ≤ 𝑎𝑖 −1 unless 𝑎𝑖 = 0. Furthermore, the (0,0) term itself
does not contain a reference other (𝑎,𝑏); it simply has the value one. Thus, the recurrence
relation terminates when 𝑎𝑖 = 0 is reached.

As a consequence, we can rewrite the sequence above as

term in sum = ((𝑖, 𝑗), (𝑖 − 𝑗, 𝑙1), (𝑖 − 𝑗 − 𝑙1, 𝑙2),⋯, (𝑖 − 𝑗 −
𝐾−1
∑
𝑖=1

𝑙𝑖 , 𝑙𝐾 ), (0,0)), (7.96)

for some 𝑙𝑖 > 0 for 𝑖 = 1,2,⋯,𝐾 and for some value 𝐾 . This sequence can be thought of as
a “path” from (𝑖, 𝑗) to (0,0). Each path is uniquely defined by a sequence (𝑙1, 𝑙2,⋯ , 𝑙𝐾 ), and
each such sequence uniquely defines a path as long as it satisfies the condition

𝐾
∑
𝑖=1

𝑙𝑖 = 𝑖 − 𝑗. (7.97)

Note that as 𝑙𝑖 ≥ 1, this automatically imposes 𝐾 ≤ 𝑖 −𝑗. We denote the set of all sequences
(𝑙1, 𝑙2,⋯ , 𝑙𝐾 ) that define a path from (𝑖, 𝑗) to (0,0) by ℒ𝑖,𝑗 , which allows us to expand the
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recurrence relation as

⟨(1− 𝑟)𝑛𝑗𝑖/𝑁 ⟩ ≈ ∑
(𝑙1,...,𝑙𝐾 )∈ℒ𝑖,𝑗

(𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗link

𝑟 + (𝑁 − 𝑖 + 𝑗)𝑞link
⟨(1− 𝑟)𝑛00/𝑁 ⟩

×
𝐾
∏
𝑘=1

(𝑁 −(𝑖 − 𝑗 −∑𝑘−1
𝑎=1 𝑙𝑎) + 𝑙𝑘

𝑙𝑘
) 𝑞𝑙𝑘link
𝑟 + (𝑁 − (𝑖 − 𝑗 −∑𝑘−1

𝑎=1 𝑙𝑎) + 𝑙𝑘)𝑞link

= ∑
(𝑙1,...,𝑙𝐾 )∈ℒ𝑖,𝑗

𝑞𝑗+∑
𝐾
𝑘=1 𝑙𝑘

link
𝑟 + (𝑁 − 𝑖 + 𝑗)𝑞link

𝐾
∏
𝑘=1

1
𝑟 + (𝑁 − (𝑖 − 𝑗 −∑𝑘−1

𝑎=1 𝑙𝑎) + 𝑙𝑘)𝑞link

×(𝑁 − 𝑖 + 𝑗
𝑗 )

𝐾
∏
𝑘=1

[(𝑁 − (𝑖 − 𝑗 −∑𝑘−1
𝑎=1 𝑙𝑎) + 𝑙𝑘

𝑙𝑘
)

= ∑
(𝑙1,...,𝑙𝐾 )∈ℒ𝑖,𝑗

𝑞𝑖link
𝒪((𝑟 +𝑞link)𝐾)

×𝒪(𝑟0𝑞0link).

(7.98)

For 𝑟 ,𝑞link ≪ 1, this sum will be dominated by paths that have the largest 𝐾 . As ex-
plained above, the maximum value that 𝐾 can take is 𝑖 − 𝑗. Furthermore, there is exactly
one path that realizes this value, which is defined by 𝑙𝑎 = 1 for 𝑎 = 1,2,⋯, 𝑖 − 𝑗. When we
keep only this path in the above equation, we find

⟨(1− 𝑟)𝑛𝑗𝑖/𝑁 ⟩ ≈ (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑖link

𝑟 + (𝑁 − 𝑖 + 𝑗)𝑞link

×
𝑖−𝑗
∏
𝑘=1

(𝑁 −(𝑖 − 𝑗 − (𝑘 −1))+1
1 ) 1

𝑟 + (𝑁 − (𝑖 − 𝑗 − (𝑘 −1))+1)𝑞link

= (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗−1link

𝑁 − 𝑖 + 𝑗
𝑁
∏

𝑘=𝑁−𝑖+𝑗

𝑘𝑞link
𝑟 +𝑘𝑞link

.

(7.99)

We must note that all of the above is only valid for 𝑖 > 0, since the recursive relation (7.92)
is not applicable for 𝑖 = 0. In order to also incorporate equation (7.95), we write

⟨(1− 𝑟)𝑛𝑗𝑖/𝑁 ⟩ ≈ (𝜃(𝑗 −1)+ (𝑟 +𝑁𝑞link)𝛿𝑖,0)(
𝑁 − 𝑖 + 𝑗

𝑗 ) 𝑞𝑗−1link
𝑁 − 𝑖 + 𝑗

𝑁
∏

𝑘=𝑁−𝑖+𝑗

𝑘𝑞link
𝑟 +𝑘𝑞link

. (7.100)

How can we interpret the dominance of terms corresponding to the “longest path”?
What it means is that realizations of Protocol 7.1 for which multiple successes occur dur-
ing the same round occur with suppressed probability, as shown by the fact that we only
include 𝑃 𝑗𝑖/𝑁 ’s for which 𝑗 = 1. This can also be intuitively expected: if for each quantum
connection the probability of distributing a Bell state per round is very small (𝑞link ≪ 1),
there will be a large spread in the rounds during which the different Bell states are dis-
tributed. It will then be very unlikely that two Bell states are distributed during the exact
same round. However, when 𝑟 is large (close to 1), the quantity (1−𝑛)𝑛 will decrease very
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quickly with 𝑛. The average will then have much larger weight for small 𝑛 than for large 𝑛.
However, these terms with small 𝑛 are exactly those that are excluded by the large spread
implied by 𝑞link ≪ 1. In fact, if 𝑟 = 1 − 𝜖 with 𝜖 ≪ 1, the only linear term in the average
is the one corresponding to 𝑛 = 1, which implies all Bell states being distributed collec-
tively during the first round ( 𝑃 𝑗𝑖/𝑁 with 𝑗 = 𝑖). This explains why neglecting simultaneous
successes requires both 𝑞link and 𝑟 to be small.

Finally, before we move on, we are interested to know whether equation (7.100) also
holds for 𝑟 = 0. This does not follow from the above, because the use of equation (7.91)
required 0 < 𝑟 < 1. For 𝑟 = 0, Eq. (7.89) yields

⟨(1− 𝑟)𝑛𝑗𝑖/𝑁 ||𝑟=0⟩ =
∞
∑
𝑛=0

𝑃 𝑗𝑖/𝑁 (𝑛). (7.101)

Using again equation (7.72) we find

⟨(1− 𝑟)𝑛𝑗𝑖/𝑁 ||𝑟=0⟩ = (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗link(1−𝑞link)𝑁−𝑖

1− (1−𝑞link)𝑁−𝑖+𝑗
∞
∑
𝑛=0

𝑛−1
∑
𝑛′=0

𝑃1/(𝑁−𝑖+𝑗)(𝑛 −𝑛′)𝑃 ′(𝑖−𝑗)/𝑁 (𝑛′)

= (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗link(1−𝑞link)𝑁−𝑖

1− (1−𝑞link)𝑁−𝑖+𝑗
∞
∑
Δ𝑛=0

𝑃1/(𝑁−𝑖+𝑗)(Δ𝑛)
𝑖−𝑗
∑
𝑙=0

∞
∑
𝑛′=0

𝑃 𝑙(𝑖−𝑗)/𝑁 (𝑛′)

= (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗link(1−𝑞link)𝑁−𝑖

1− (1−𝑞link)𝑁−𝑖+𝑗
𝑖−𝑗
∑
𝑙=0

⟨(1− 𝑟)𝑛𝑙(𝑖−𝑗)/𝑁 ||𝑟=0⟩
(7.102)

which is exactly recursive relation (7.92) but with 𝑟 = 0. Because

⟨(1− 𝑟)𝑛0𝑖 /𝑁 ||𝑟=0⟩ = 𝛿𝑖,0, (7.103)

the recursive relation expresses any (𝑖, 𝑗) in terms of (0,0)’s, and these are expressed the
same for both 𝑟 = 0 and 0 < 𝑟 < 1. Because both the recursive relation and the final term
(0,0) can be written the same, we conclude that it does not matter whether 𝑟 is set to zero
before or after resolving the recursion relation. Therefore,

⟨(1− 𝑟)𝑛𝑗𝑖 /𝑁 |𝑟=0⟩ = ⟨(1− 𝑟)𝑛𝑗𝑖 /𝑁 ||0<𝑟<1⟩
||𝑟=0. (7.104)

Thus, equation (7.100) is valid for 0 ≤ 𝑟 ≪ 1. This means that we do not need to treat the
𝑟0 that we defined to be zero before any differently from the other 𝑟𝑖 ’s when calculating
𝐺((𝑟1, 𝑟2,⋯ , 𝑟𝑀 ), and our results are still valid if 𝑟𝑖 = 0 for some 0 < 𝑖 < 𝑀 .

7.12.6 Counting Orders
Now, we can in principle substitute Eq. (7.100) into Eq. (7.87). However, if we limit
ourselves to leading order in 𝑞link and the various 𝑟𝑖 variables (which we denote as all
being of order 𝒪(𝑟)), this allows us to disregard part of the summation. In this section, we
count orders to find that only 𝑙𝑖 = 1 and 𝑘𝑖 = 0 terms contribute to 𝐺 at leading order. This
allows us to more easily calculate 𝐺 to leading order in the next section.
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First of all, note that

̄𝑟𝑖 ≡ 1−
𝑖

∏
𝑗=0

(1− 𝑟𝑗) =
𝑖
∑
𝑗=0

𝑟𝑗 +𝒪(𝑟2). (7.105)

Therefore, each ̄𝑟𝑖 is of order 𝒪(𝑟). Furthermore, from Eq. (7.100) we see that

⟨(1− 𝑟)𝑛𝑗𝑖/𝑁 ⟩ = (𝜃(𝑗 −1)+𝛿𝑖,0𝒪(𝑟 +𝑞link))𝒪(
𝑞𝑖link

(𝑟 +𝑞link)𝑖−𝑗+1
). (7.106)

Substituting this into equation (7.87) yields

𝐺(𝑟1, 𝑟2,⋯ , 𝑟𝑀 )

=
𝑀+1
∏
𝑖=1

[
𝑁−𝑐𝑖
∑
𝑘𝑖=0

𝑐𝑖−𝑐𝑖−1−𝑘𝑖−1
∑
𝑙𝑖=−𝑘𝑖

(𝜃(𝑙𝑖 −1)+𝛿𝑘𝑖 ,𝑐𝑖−1+𝑘𝑖−1−𝑐𝑖)

×(𝜃(𝑘𝑖 + 𝑙𝑖 −1)+𝛿𝑐𝑖+𝑘𝑖−𝑐𝑖−1−𝑘𝑖−1,0𝒪(𝑟 +𝑞link))

×𝒪( 𝑞𝑐𝑖+𝑘𝑖−𝑐𝑖−1−𝑘𝑖−1link
(𝑟 +𝑞link)𝑐𝑖−𝑐𝑖−1−𝑘𝑖−1−𝑙𝑖+1

)]

=
𝑀+1
∏
𝑖=1

[
𝑁−𝑐𝑖
∑
𝑘𝑖=0

𝑐𝑖−𝑐𝑖−1−𝑘𝑖−1
∑
𝑙𝑖=−𝑘𝑖

(𝜃(𝑙𝑖 −1)+𝛿𝑘𝑖 ,𝑐𝑖−1+𝑘𝑖−1−𝑐𝑖𝒪(𝑟 +𝑞link))

×𝒪( 𝑞𝑐𝑖+𝑘𝑖−𝑐𝑖−1−𝑘𝑖−1link
(𝑟 +𝑞link)𝑐𝑖−𝑐𝑖−1−𝑘𝑖−1−𝑙𝑖+1

)].

(7.107)

Here, we have used the fact that for every term in the sum, 𝑘𝑖 ≥ 0, and thus 𝜃(𝑙𝑖 −1)𝜃(𝑘𝑖 +
𝑙𝑖 −1) = 𝜃(𝑙𝑖 −1). Furthermore, the delta functions are the same, and squaring it gives the
same delta function again. Cross terms 𝜃 ×𝛿 vanish, because the only term for which the
delta function does not vanish has 𝑙𝑖 = −𝑘𝑖 ≤ 0, making the step function vanish. Now, we
make use of the identity

𝑁
∏
𝑖
(∑

𝑥𝑖
𝑓 (𝑥𝑖)) =∑

𝑥1
∑
𝑥2

⋯∑
𝑥𝑁

𝑓 (𝑥1)𝑓 (𝑥2)⋯𝑓 (𝑥𝑁 ) =∏
𝑖
(∑

𝑥𝑖
)∏

𝑖
(𝑓 (𝑥𝑖)) (7.108)

to split the product in “three parts” and hence collect part of the order counting in a way
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that is very convenient, giving

𝐺(𝑟1, 𝑟2,⋯ , 𝑟𝑀 )

=
𝑀+1
∏
𝑖=1

[
𝑁−𝑐𝑖
∑
𝑘𝑖=0

]
𝑀+1
∏
𝑖=1

[𝒪(( 𝑞link
𝑟 +𝑞link

)
𝑐𝑖+𝑘𝑖−𝑐𝑖−1−𝑘𝑖−1

)]

×
𝑀+1
∏
𝑖=1

[
𝑐𝑖−𝑐𝑖−1−𝑘𝑖−1

∑
𝑙𝑖=−𝑘𝑖

(𝜃(𝑙𝑖 −1)+𝛿𝑘𝑖 ,𝑐𝑖−1+𝑘𝑖−1−𝑐𝑖𝒪(𝑟 +𝑞link))𝒪((𝑟 +𝑞link)𝑙𝑖+𝑘𝑖−1)]

=
𝑀+1
∏
𝑖=1

[
𝑁−𝑐𝑖
∑
𝑘𝑖=0

]𝒪(( 𝑞link
𝑟 +𝑞link

)
∑𝑀+1

𝑖=1 (𝑐𝑖+𝑘𝑖−𝑐𝑖−1−𝑘𝑖−1))
)

×
𝑀+1
∏
𝑖=1

𝑐𝑖−𝑐𝑖−1−𝑘𝑖−1
∑
𝑙𝑖=−𝑘𝑖

(𝜃(𝑙𝑖 −1)+𝛿𝑘𝑖 ,𝑐𝑖−1+𝑘𝑖−1−𝑐𝑖𝒪(𝑟 +𝑞link))𝒪((𝑟 +𝑞link)𝑙𝑖+𝑘𝑖−1).

(7.109)

This then allows us to make use of
𝑀+1
∑
𝑖=1

(𝑐𝑖 +𝑘𝑖 −𝑐𝑖−1 −𝑘𝑖−1) = 𝑐𝑀+1 +𝑘𝑀+1 −𝑐0 −𝑘0 = 𝑁 , (7.110)

since we manually defined 𝑚0 = 𝑘0 = 0 and 𝑚𝑀+1 = 𝑁 , and since the sum over 𝑘𝑀+1 only
runs over 𝑘𝑀+1 = 0 (the last success cannot “overshoot” as all Bell states are already in
place). Thus, this quantity is the same for every term and can safely be taken out of the
sum.

Now, working out the 𝜃 and 𝛿 parts separately, we get

𝐺(𝑟1, 𝑟2,⋯ , 𝑟𝑀 )

= 𝒪(( 𝑞link
𝑟 +𝑞link

)
𝑁
)
𝑀+1
∏
𝑖=1

[
𝑁−𝑐𝑖
∑
𝑘𝑖=0

]
𝑀+1
∏
𝑖=1

[

𝑐𝑖−𝑐𝑖−1−𝑘𝑖−1
∑
𝑙𝑖=1

𝒪((𝑟 +𝑞link)𝑙𝑖+𝑘𝑖−1)+𝛿𝑘𝑖 ,𝑐𝑖−1+𝑘𝑖−1−𝑐𝑖].

(7.111)

The part where we sum over 𝑙𝑖 now is clearly dominated by the term for which 𝑙𝑖 is lowest,
since a larger 𝑙𝑖 means a larger order in 𝑟 +𝑞link. Since this is 𝑙𝑖 = 1, we find

𝐺(𝑟1, 𝑟2,⋯ , 𝑟𝑀 )

= 𝒪(( 𝑞link
𝑟 +𝑞link

)
𝑁
)
𝑀+1
∏
𝑖=1

[
𝑁−𝑐𝑖
∑
𝑘𝑖=0

]
𝑀+1
∏
𝑖=1

[

𝜃(𝑐𝑖 −𝑐𝑖−1 −𝑘𝑖−1 −1)𝒪((𝑟 +𝑞link)𝑘𝑖)+𝛿𝑘𝑖 ,𝑐𝑖−1+𝑘𝑖−1−𝑐𝑖],

(7.112)

where the step function is due to the summation over 𝑙𝑖 being empty and hence zero for
𝑐𝑖 − 𝑐𝑖−1 − 𝑘𝑖−1 < 1. This quantity will be dominated by terms which are products of 𝛿 ’s,
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and of 𝜃 ’s with 𝑘𝑖 = 0, since these terms do not carry an additional 𝒪(𝑟 +𝑞link). Now note
that the Kronecker 𝛿 function 𝛿𝑘𝑖 ,𝑐𝑖−1+𝑘𝑖−1−𝑐𝑖 enforces 𝑘𝑖−1 ≥ 𝑐𝑖 − 𝑐𝑖−1 > 0. This implies two
things. Firstly, it implies that any term that contains a 𝜃(𝑐𝑖 − 𝑐𝑖−1 −𝑘𝑖−1 −1) for 𝑖 = 𝑗 but a
𝛿𝑘𝑖 ,𝑐𝑖−1+𝑘𝑖−1−𝑐𝑖 for 𝑖 = 𝑗 + 1 will be of higher order in 𝑟 + 𝑞link. Secondly, because 𝑘0 = 0 by
definition, it implies that all nonzero terms of the sum must “start” with a 𝜃 , i.e. include
a 𝜃(𝑐𝑖 − 𝑐𝑖−1 −𝑘𝑖−1 −1) for 𝑖 = 1. Together, these two implications mean any leading terms
cannot contain a 𝛿 ; they only contain 𝜃 ’s. The only leading term with only 𝜃 ’s is the one
for which all 𝑘𝑖 ’s are 0. Combining this with what we found for the 𝑙𝑖 ’s, we can conclude
that the leading contribution to 𝐺 has 𝑙𝑖 = 1 and 𝑘𝑖 = 0 for 𝑖 = 0,1,2, ...,𝑀 + 1. This can
again be interpreted as neglecting the possibility that multiple Bell states are distributed
simultaneously.

7.12.7 Calculating 𝐺
Now, we are ready to calculate 𝐺 to leading order. Only keeping 𝑙𝑖 = 1, 𝑘𝑖 = 0 in Eq. (7.87)
and then filling in Eq. (7.100), we find

𝐺(𝑟1, 𝑟2,⋯ , 𝑟𝑀 )

≈
𝑀+1
∏
𝑖=1

⟨(1− ̄𝑟𝑖−1)
𝑛1(𝑐𝑖−𝑐𝑖−1)/(𝑁−𝑐𝑖−1)⟩

≈
𝑀+1
∏
𝑖=1

[(𝜃(1−1)+ ( ̄𝑟𝑖−1 +𝑁𝑞link)𝛿𝑐𝑖−𝑐𝑖−1,0)

×(𝑁 −𝑐𝑖 +1
1 ) 1

𝑁 −𝑐𝑖 +1
𝑁−𝑐𝑖−1
∏

𝑘=𝑁−𝑐𝑖+1

𝑘𝑞link
̄𝑟𝑖−1 +𝑘𝑞link

]

=
𝑀
∏
𝑖=1

𝑐𝑖+1
∏

𝑘=𝑐𝑖+1

(𝑁 +1−𝑘)𝑞link
̄𝑟𝑖 + (𝑁 +1−𝑘)𝑞link

≈
𝑀
∏
𝑖=1

𝑐𝑖+1
∏

𝑘=𝑐𝑖+1

(𝑁 +1−𝑘)𝑞link
∑𝑖

𝑗=1 𝑟𝑗 + (𝑁 +1−𝑘)𝑞link
.

(7.113)

Here, we have used the fact that 𝑟0 ≡ 0 (and thus ̄𝑟1 = 0) to drop the lowest term in the
product. This can also be rewritten as

𝐺(𝑟1, 𝑟2,⋯ , 𝑟𝑀 ) ≈
𝑁
∏
𝑘=1

(𝑁 +1−𝑘)𝑞link
∑𝑐𝑖<𝑘 𝑟𝑖 + (𝑁 +1−𝑘)𝑞link

. (7.114)

7.12.8 Lower Bound
Apart from the leading-order approximation of the function 𝐺 derived above, we can also
derive a lower bound. At the core of the approximation lies the fact that, to leading order
in 𝑞link and 𝑟 , we are able to ignore all events for which multiple Bell states are distributed
during the same round. That function 𝐺 obtained by ignoring these events is an average
over a sub-normalized probability distribution, and thus provides a lower bound on the
real function. In turn, using a lower bound of the function 𝐺 to evaluate the fidelity
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(Eq. (7.23)) gives a lower bound on the real fidelity. Even so, the result Eq. (7.114) is
not necessarily a lower bound on the function 𝐺. The reason for this is that, in order to
work consistently at leading order, we have thrown out some additional terms that are not
linked to ignoring multiple simultaneous successes. Some of these terms would lower the
function G if they were kept, and thus Eq. (7.114) is only a lower bound if the effect of
throwing out these terms is smaller than the effect of throwing out events corresponding
to multiple simultaneous successes. We do not know if this is generally the case.

In this section, we derive a lower bound by repeating the above calculation without
throwing out these additional terms. That means that we are not working at leading order,
but just deriving a lower bound by throwing out all contributions to 𝐺 due to multiple
distributed Bell states during the same round. We start by lower-bounding the expected
value ⟨(1− 𝑟)𝑛𝑗𝑖/𝑁 ⟩. To this end, we use the recursive relation Eq. (7.92). Because the factor
in front of the summation is a positive quantity, and because each term of the sum is
ultimately expressed in terms of ⟨(1− 𝑟)𝑛00/𝑁 ⟩ = 1 (see Eq. (7.95)), we can conclude that

⟨(1− 𝑟)𝑛𝑗𝑖/𝑁 ⟩ ≥ 0. (7.115)

Because of this, Eq. (7.92) tells us

⟨(1− 𝑟)𝑛𝑗𝑖/𝑁 ⟩ ≥ (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗link(1−𝑞link)𝑁−𝑖(1− 𝑟)

1− (1− 𝑟)(1−𝑞link)𝑁−𝑖+𝑗 ⟨(1− 𝑟)𝑛
1
(𝑖−𝑗)/𝑁 ⟩. (7.116)

This inequality can be applied recursively until reaching

⟨(1− 𝑟)𝑛11/𝑁 ⟩ = 1
𝑁

𝑞link(1−𝑞link)𝑁−1(1− 𝑟)
1− (1− 𝑟)(1−𝑞link)𝑁

. (7.117)

This is exactly the “leading order path” discussed in Section 7.12.5 and yields, in analogue
to Eq. (7.99),

⟨(1− 𝑟)𝑛𝑗𝑖/𝑁 ⟩ ≥ (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗link(1−𝑞link)𝑁−𝑖(1− 𝑟)

1− (1− 𝑟)(1−𝑞link)𝑁−𝑖+𝑗

×
𝑖−𝑗
∏
𝑘=1

(𝑁 − 𝑖 + 𝑗 +𝑘
1 )𝑞link(1−𝑞link)

𝑁−𝑖+𝑗+𝑘−1(1− 𝑟)
1− (1− 𝑟)(1−𝑞link)𝑁−𝑖+𝑗+𝑘 .

(7.118)

We will now focus on the case 𝑗 = 1, since this will ultimately be the only type of term oc-
curring in the lower bound for 𝐺 (after all, 𝑗 > 1would correspond to distributing multiple
Bell states during the same round). We then find

⟨(1− 𝑟)𝑛1𝑖/𝑁 ⟩ ≥
𝑖−𝑗
∏
𝑘=0

(𝑁 − 𝑖 +𝑘 +1) 𝑞link(1−𝑞link)
𝑁−𝑖+𝑘(1− 𝑟)

1− (1− 𝑟)(1−𝑞link)𝑁−𝑖+𝑘+1

=
𝑁
∏

𝑘=𝑁−𝑖+1

𝑘𝑞link(1−𝑞link)𝑘−1(1− 𝑟)
1− (1− 𝑟)(1−𝑞link)𝑘

.
(7.119)
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Now, we can use Eq. (7.119) in combination with Eq. (7.87) to bound 𝐺. Because all
terms in the sum of Eq. (7.87) are positive, we can write (analogously to Eq. (7.113))

𝐺(𝑟1, 𝑟2,⋯ , 𝑟𝑀 ) ≥
𝑀+1
∏
𝑖=1

⟨(1− ̄𝑟𝑖−1)
𝑛1(𝑐𝑖−𝑐𝑖−1)/(𝑁−𝑐𝑖−1)⟩

≥
𝑀+1
∏
𝑖=1

𝑁−𝑐𝑖−1
∏

𝑘=𝑁−𝑐𝑖+1

𝑘𝑞link(1−𝑞link)𝑘−1(1− ̄𝑟𝑖−1)
1− (1− ̄𝑟𝑖−1)(1−𝑞link)𝑘

=
𝑀
∏
𝑖=0

𝑐𝑖+1
∏

𝑘=𝑐𝑖+1

(𝑁 +1−𝑘)𝑞link(1−𝑞link)𝑁−𝑘(1− ̄𝑟𝑖)
1− (1− ̄𝑟𝑖)(1−𝑞link)𝑁+1−𝑘 .

(7.120)

This can be rewritten as

𝐺(𝑟1, 𝑟2,⋯ , 𝑟𝑀 ) ≥
𝑀
∏
𝑘=1

(𝑁 +1−𝑘)𝑞link(1−𝑞link)𝑁−𝑘∏𝑐𝑖<𝑘(1− 𝑟𝑖)
1− (1−𝑞link)𝑁+1−𝑘∏𝑐𝑖<𝑘(1− 𝑟𝑖)

. (7.121)

7.13 Expected Value of Distribution Time
In this section, we use the tools developed in Section 7.12 to prove the equation

⟨𝑛𝑖/𝑁 ⟩ ≈
1

𝑞link
𝑁
∑

𝑘=𝑁+1−𝑖

1
𝑘 (7.122)

is true up to leading order in 𝑞link. Here, 𝑛𝑖/𝑁 is the number of rounds required to dis-
tribute 𝑖 Bell states over 𝑁 quantum connections. That is, it is the 𝑖th largest value out
of {𝑛1, 𝑛2, ..., 𝑛𝑁 }, where we remind the reader that each 𝑛𝑗 is a geometrically-distributed
random variable with mean 1

𝑞link
. Additionally, we provide the upper bound

⟨𝑛𝑖/𝑁 ⟩ ≤
𝑁
∑

𝑘=𝑁+1−𝑖

1
1− (1−𝑞link)𝑘

. (7.123)

We note that it directly follows from Eq. (7.122) that

⟨𝑛𝑁/𝑁 ⟩ ≡ ⟨𝑛all⟩ ≡ ⟨max{𝑛1, 𝑛2, ..., 𝑛𝑁 }⟩ ≈
𝐻𝑁
𝑞link

, (7.124)

where 𝐻𝑁 is the 𝑁 th harmonic number, is valid up to leading order in 𝑞link. This is a well-
known result [10, 51, 52]. Additionally, Eq. (7.123) can be used to upper bound ⟨𝑛𝑁/𝑁 ⟩.
However, the bound is less tight than the existing bound given in Eq. (7.15).

We now explain the intuition behind Eq. (7.122). If 𝑘 > 1 connections try to establish
entanglement, the first success will occur sooner than when only one connection is trying.
For one connection, the time it takes is on average 1

𝑞link
(this is the expected value of the

geometric distribution). But when there are 𝑘 connections trying, there is a “boost factor”;
entanglement is generated exactly 𝑘 times faster, and therefore the time required is on
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average only 1
𝑘𝑞link

. In the limit 𝑞link →0, it is very unlikely that multiple Bell states are
distributed during the same round, and therefore one can repeatedly use this argument
to go from success to success. The rest of this section is dedicated to proving Eq. (7.122),
thereby making the intuitive argument exact.

7.13.1 Exact Recursion Relation
The random variable 𝑛𝑖/𝑁 follows the probability distribution 𝑃𝑖/𝑁 defined in Eq. (7.61).
Key to deriving Eq. (7.122), is to determine the difference between ⟨𝑛(𝑖+1)/𝑁 ⟩ and ⟨𝑛𝑖/𝑁 ⟩,
as it allows us towrite a recursion relation. To this end, we first take the difference between
their probability distributions. Using Eq. (7.66) yields

𝑃(𝑖+1)/𝑁 −𝑃𝑖/𝑁 =
𝑁−𝑖−1
∑
𝑘=0

𝑖+1
∑
𝑙=1

𝑃𝑘+𝑙(𝑘+𝑖+1)/𝑁 −
𝑁−𝑖
∑
𝑘=0

𝑖
∑
𝑙=1

𝑃𝑘+𝑙(𝑘+𝑖)/𝑁

=
𝑁−𝑖
∑
𝑘=1

𝑃𝑘(𝑘+𝑖)/𝑁 −
𝑖
∑
𝑙=1

𝑃 𝑙𝑖/𝑁

=
𝑁−𝑖
∑
𝑘=1

𝑃𝑘(𝑘+𝑖)/𝑁 −𝑃 ′𝑖/𝑁 .

(7.125)

From linearity of the average, it then follows directly that

⟨𝑛(𝑖+1)/𝑁 ⟩− ⟨𝑛𝑖/𝑁 ⟩ =
𝑁−𝑖
∑
𝑘=1

⟨𝑛𝑘(𝑘+1)/𝑁 ⟩−⟨𝑛′𝑖/𝑁 ⟩ . (7.126)

To evaluate Eq. (7.126), we first give an expression for ⟨𝑛𝑘(𝑘+1)/𝑁 ⟩. We use Eq. (7.72)
to write

⟨𝑛𝑗𝑖/𝑁 ⟩ = (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗link(1−𝑞link)𝑁−𝑖

1− (1−𝑞link)𝑁−𝑖+𝑗
∞
∑
𝑛=1

𝑛−1
∑
𝑛′=0

𝑛𝑃1/(𝑁−𝑖+𝑗)(𝑛 −𝑛′)𝑃 ′(𝑖−𝑗)/𝑁 (𝑛′). (7.127)

This can be calculated by making the change of variables 𝑛 = 𝑛′ +Δ𝑛 and using the fact
that 𝑃1/(𝑁−𝑖+𝑗)(𝑛) is a normalized probability distribution, giving

⟨𝑛𝑗𝑖/𝑁 ⟩ = (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗link(1−𝑞link)𝑁−𝑖

1− (1−𝑞link)𝑁−𝑖+𝑗
∞
∑
𝑛′=0

∞
∑
Δ𝑛=1

(𝑛′ +Δ𝑛)𝑃1/(𝑁−𝑖+𝑗)(Δ𝑛)𝑃 ′(𝑖−𝑗)/𝑁 (𝑛′)

= (𝑁 − 𝑖 + 𝑗
𝑗 ) 𝑞𝑗link(1−𝑞link)𝑁−𝑖

1− (1−𝑞link)𝑁−𝑖+𝑗 (⟨𝑛1/(𝑁−𝑖+𝑗)⟩𝑇(𝑖−𝑗)/𝑁 +⟨𝑛′(𝑖−𝑗)/𝑁 ⟩).
(7.128)

Here, we have defined

𝑇𝑖/𝑁 ≡
∞
∑
𝑛=0

𝑃 ′𝑖/𝑁 (𝑛), (7.129)
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which is the total probability mass of the sub-normalized probability distribution 𝑃 ′𝑖/𝑁 (and
therefore always smaller than one). Then, resolving the summation in Eq. (7.126) yields

𝑁−𝑖
∑
𝑘=1

⟨𝑛𝑘(𝑘+1)/𝑁 ⟩ = (⟨𝑛1/(𝑁−𝑖)⟩𝑇𝑖/𝑁 +⟨𝑛′𝑖/𝑁 ⟩)
𝑁−𝑖
∑
𝑘=1

(𝑁 − 𝑖
𝑘 )𝑞

𝑘
link(1−𝑞link)𝑁−𝑖−𝑘

1− (1−𝑞link)𝑁−𝑖 . (7.130)

To deal with the final summation, we use the binomial theorem to write

𝑁−𝑖
∑
𝑘=0

(𝑁 − 𝑖
𝑘 )𝑞𝑘link(1−𝑞link)𝑁−𝑖−𝑘 = (𝑞link + (1−𝑞link))

𝑁−𝑖
= 1. (7.131)

Therefore,

𝑁−𝑖
∑
𝑘=1

(𝑁 − 𝑖
𝑘 )𝑞𝑘link(1−𝑞link)𝑁−𝑖−𝑘 = 1−𝑞0link(1−𝑞link)𝑁−𝑖−0 = 1− (1−𝑞link)𝑁−𝑖 (7.132)

(note that the lower limit of the summation is one here as opposed to zero). From this, we
conclude conveniently that

𝑁−𝑖
∑
𝑘=1

(𝑁 − 𝑖
𝑘 )𝑞

𝑘
link(1−𝑞link)𝑁−𝑖−𝑘

1− (1−𝑞link)𝑁−𝑖 = 1. (7.133)

This brings Eq. (7.126) into the form

⟨𝑛(𝑖+1)/𝑁 ⟩− ⟨𝑛𝑖/𝑁 ⟩ = ⟨𝑛1/(𝑁−𝑖)⟩𝑇𝑖/𝑁 . (7.134)

This recursive relation can be written down in a closed form, as long as we leave the 𝑇𝑖/𝑁
explicit. We then find

⟨𝑛𝑖/𝑁 ⟩ = ⟨𝑛1/𝑁 ⟩+
𝑖−1
∑
𝑘=1

𝑇𝑘/𝑁 ⟨𝑛1/𝑁−𝑘⟩ . (7.135)

It was remarked in Section 7.12.2 that ⟨𝑛1/𝑁 ⟩ is geometrically distributed with 1/⟨𝑛1/𝑁 ⟩ =
1− (1−𝑞link)𝑁 . Therefore, we can also write this result at

⟨𝑛𝑖/𝑁 ⟩ =
1

1− (1−𝑞link)𝑁
+
𝑖−1
∑
𝑘=1

𝑇𝑘/𝑁
1− (1−𝑞link)𝑁−𝑘 . (7.136)

7.13.2 Upper Bound
Now, we use Eq. (7.136) to derive an upper bound on ⟨𝑛𝑖/𝑁 ⟩. Because 𝑇𝑖/𝑁 is the total
probability mass of a sub-normalized probability function, we have 𝑇𝑖/𝑁 ≤ 1. From this, it
follows directly that Eq. (7.123) is true.

7.13.3 Leading Order
Finally, we use Eq. (7.136) to show that Eq. (7.122) is valid up to leading order in 𝑞link.
Because, to leading order,

1
1− (1−𝑞link)𝑁

≈ 1
𝑁𝑞link

, (7.137)
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to leading order we can write Eq. (7.136) as

⟨𝑛𝑖/𝑁 ⟩ ≈
1

𝑞link
( 1
𝑁 +

𝑖−1
∑
𝑘=1

𝑇𝑘/𝑁
𝑁 −𝑘 ). (7.138)

This exactly reduces to Eq. (7.122) if we can show that 𝑇𝑘/𝑁 ≈ 1 to leading order in 𝑞link.
To calculate 𝑇𝑖/𝑁 , we use yet another recursion relation. First, using Eq. (7.65), we can

write (for 𝑖 ≥ 1)

𝑇𝑖/𝑁 =
𝑖
∑
𝑙=1

∞
∑
𝑛=1

𝑃 𝑙𝑖/𝑁 (𝑛). (7.139)

Then, using Eq. (7.72), making once more the change in variables 𝑛→𝑛′+Δ𝑛, and making
use of the normalization of 𝑃1/𝑁 (𝑛),

𝑇𝑖/𝑁 =
𝑖
∑
𝑙=1

(𝑁 − 𝑖 + 𝑙
𝑙 ) 𝑞

𝑙
link(1−𝑞link)𝑁−𝑖

1− (1−𝑞link)𝑁−𝑖+𝑙
∞
∑
𝑛=1

∞
∑
𝑛′=0

𝑃1/(𝑁−𝑖+𝑙)(𝑛 −𝑛′)𝑃 ′(𝑖−𝑙)/𝑁 (𝑛′)

=
𝑖
∑
𝑙=1

(𝑁 − 𝑖 + 𝑙
𝑙 ) 𝑞

𝑙
link(1−𝑞link)𝑁−𝑖

1− (1−𝑞link)𝑁−𝑖+𝑙
∞
∑
Δ𝑛=1

𝑃1/(𝑁−𝑖+𝑙)(Δ𝑛)
∞
∑
𝑛′=0

𝑃 ′(𝑖−𝑙)/𝑁 (𝑛′)

=
𝑖
∑
𝑙=1

(𝑁 − 𝑖 + 𝑙
𝑙 ) 𝑞

𝑙
link(1−𝑞link)𝑁−𝑖

1− (1−𝑞link)𝑁−𝑖+𝑙 𝑇(𝑖−𝑙)/𝑁 .

(7.140)

This recursion relation can be completely resolved if 𝑇0/𝑁 is known. From the definition
of 𝑃 ′0/𝑁 (Eq. (7.69)), we have

𝑇0/𝑁 =
∞
∑
𝑛=0

𝛿𝑛,0 = 1. (7.141)

Now we will resolve the recursion relation to leading order in 𝑞link. We note that

(1−𝑞link)𝑁−𝑖

1− (1−𝑞link)𝑁−𝑖+𝑙 =
1

(𝑁 − 𝑖 + 𝑙)𝑞link
+𝒪(𝑞0link), (7.142)

and therefore

𝑇𝑖/𝑁 = (1+𝒪(𝑞link))𝑇(𝑖−1)/𝑁 +
𝑖
∑
𝑙=2

𝒪(𝑞link)𝑇(𝑖−𝑙)/𝑁 . (7.143)

Thus,
𝑇𝑖/𝑁 ≈ 𝑇(𝑖−1)/𝑁 (7.144)

to leading order. This holds for every 𝑖 ≥ 1 until we hit 𝑇0/𝑁 = 1. Therefore,

𝑇𝑖/𝑁 ≈ 1 (7.145)

up to leading order in 𝑞link. This is exactly what we needed to show, and therefore we can
conclude that Eq. (7.122) is indeed valid up to leading order in 𝑞link.
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