

Delft University of Technology

How Is Video Game Development Different from Software Development in Open Source?

Pascarella, Luca; Palomba, Fabio; Di Penta, Massimiliano; Bacchelli, Alberto

DOI
10.1145/3196398.3196418
Publication date
2018
Document Version
Accepted author manuscript
Published in
Proceedings of the 15th International Conference on Mining Software Repositories, MSR. ACM, New York,
NY

Citation (APA)
Pascarella, L., Palomba, F., Di Penta, M., & Bacchelli, A. (2018). How Is Video Game Development
Different from Software Development in Open Source? In Proceedings of the 15th International Conference
on Mining Software Repositories, MSR. ACM, New York, NY (pp. 392-402)
https://doi.org/10.1145/3196398.3196418
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3196398.3196418
https://doi.org/10.1145/3196398.3196418

How Is Video Game Development Different from Software
Development in Open Source?

Luca Pascarella
1
, Fabio Palomba

2
, Massimiliano Di Penta

3
, Alberto Bacchelli

2

1
Delft University of Technology, The Netherlands —

2
University of Zurich, Switzerland —

3
University of Sannio, Italy

l.pascarella@tudelft.nl,palomba@ifi.uzh.ch,dipenta@unisannio.it,bacchelli@ifi.uzh.ch

ABSTRACT
Recent research has provided evidence that, in the industrial con-

text, developing video games diverges from developing software

systems in other domains, such as office suites and system utilities.

In this paper, we consider video game development in the open

source system (OSS) context. Specifically, we investigate how de-

velopers contribute to video games vs. non-games by working on

different kinds of artifacts, how they handle malfunctions, and how

they perceive the development process of their projects. To this pur-

pose, we conducted a mixed, qualitative and quantitative study on a

broad suite of 60 OSS projects. Our results confirm the existence of

significant differences between game and non-game development,

in terms of how project resources are organized and in the diversity

of developers’ specializations. Moreover, game developers respond-

ing to our survey perceive more difficulties than other developers

when reusing code as well as performing automated testing, and

they lack a clear overview of their system’s requirements.

KEYWORDS
Video Games; Mining Software Repositories; Empirical Studies

ACM Reference Format:
Luca Pascarella

1
, Fabio Palomba

2
, Massimiliano Di Penta

3
, Alberto

Bacchelli
2
. 2018. How Is Video Game Development Different from Software

Development in Open Source?. In Proceedings of MSR ’18: 15th International
Conference on Mining Software Repositories , Gothenburg, Sweden, May 28–29,
2018 (MSR ’18), 11 pages.
https://doi.org/10.1145/3196398.3196418

1 INTRODUCTION
In the last decades, several human activities (e.g., financial trans-
actions, methods of defense, healthcare, and scientific research)

have started to rely more and more on software systems to run

efficiently [20, 46]. Entertainment activities have also followed this

trend and video games are one of its most prominent outcomes [21].

Nowadays, the video game industry has reached an estimated yearly

revenue of more than $90 billion dollars [45].

Despite being a domain of software systems and being so success-

ful, video games (from hereon, games) have attracted the interest

of software engineering researchers only in the last decade. For

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00

https://doi.org/10.1145/3196398.3196418

example, among the first is the work by Tschang [48] and Tschang

& Szczypula [49] who hypothesized that game development re-

quires developers with uncommon knowledge. In the same vein,

Kultima & Alha conducted interviews reporting how game devel-

opers perceive differences in the development of their projects [28]

and Ampatzoglou & Stamelos provided an overview of the concerns

in software engineering for games, indicating that the game domain

had received little attention from software engineering research [4].

Murphy-Hill et al. are the first who conducted a “broad-based em-

pirical study to explicitly contrast traditional software engineering

and ... game development” [33] in an industrial context. Murphy-

Hill et al. conducted interviews with software engineers expert in

game development from different companies, followed by a sur-

vey sent to selected developers at Microsoft [2]. They found that

game developers perceive their development process to followAgile

methodologies more often, to require a more diverse team, and to

require better communication skills with non-engineers, compared

to non-game developers. Murphy-Hill et al. discussed compelling

implications of these findings for software engineering research,

practice, and education, thus also highlighting the importance of

conducting this kind of studies.

In this paper, we continue on the line of research on game de-

velopment, by shifting our focus to open source software (OSS)

systems. We investigate how developing OSS games is different

from developing non-game OSS systems, such as system utilities

and office suites. The know-how about practical solutions adopted

by video game developers is crucial to lead future research aimed

at improving the quality of software and at increasing developers’

productivity with practical support. From a high-level perspective,

our work is in the direction of increasing our empirical understand-

ing of how and to what extent software development is influenced

by its target (e.g., games, office suites, and system utilities) and how

research should be tailored accordingly.

Specifically, we conducted an exploratory investigation aimed at

reproducing the findings of Murphy-Hill et al. [33] and complement-

ing it through the mining of OSS repositories and the analysis of

the perception of OSS developers. We (1) mined 30 OSS games and

30 traditional OSS systems, (2) analyzed how developers commit

versioned resources, (3) measured the authorship and ownership for

specific categories, (4) analyzed the diversity in malfunctions, and

(5) challenged our findings with a survey involving 81 respondents

among the most productive developers of the chosen projects.

Our results show that developers of OSS games tend to diverge

from strict software engineering rules. They autonomously split

into teams specialized in specific tasks, yet they manage to col-

laborate with each other to achieve common goals. Moreover, the

investigation suggests that preventing malfunctions is an even

https://doi.org/10.1145/3196398.3196418
https://doi.org/10.1145/3196398.3196418

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Luca Pascarella1, Fabio Palomba2, Massimiliano Di Penta3, Alberto Bacchelli2

harder task in this domain, due to the difficulty in automating test-

ing. Finally, our results, on the one hand, confirm some findings

achieved about game development in industry [33], such as less

clear requirements, while on the other hand highlights some differ-

ences that were not found to be significant previously, such as the

likelihood that developed code is included in future releases and the

difficulty in writing automated (unit) tests. Overall, our evidence

indicates that the domain specific issues that game development

poses encompass both the industrial vs. OSS context.

2 RESEARCH GOALS AND SUBJECT
This section defines the goal of our empirical study in terms of

research questions and the subject systems we consider.

2.1 Research Questions
The final goal of our study is to explore the (potential) differences

between the development practices for games vs. non-game systems

in OSS. A great source of inspiration for us comes from the work

by Murphy-Hill et al. [33], who conducted a similarly targeted

study in the industrial context. We complement their work and

hope to be able to generalize it, by (1) considering the OSS context,

thus reaching a different set of developers and projects, and by (2)

conducting quantitative analysis on software repositories.

We start our investigation by focusing on the software reposito-

ries. In particular, we structure our first research question around

one of the six findings that was confirmed in both interviews and

survey of the study by Murphy-Hill et al.: “Game development

requires a more diverse team” [33]. Therefore, we investigate the

diversity of resources that exist in game vs. non-game source code

repositories, how prominent each type of resource is in the two

domains, and whether game developers show a higher degree of

specialization on certain resources, thus indicating the existence of

a more diverse team. This leads to our first research question:

RQ1: How do developers of OSS games vs. OSS non-game sys-

tems contribute to their projects?

We continue our quantitative investigation exploiting software

repositories by focusing on testing and malfunctions. In fact, the

sample of developers surveyed and interviewed by Murphy-Hill et
al. [33] perceived testing as another significant difference in game

vs. non-game software development; testing was reported to be

more difficult when developing games because of, e.g., the high

coupling with the user interface, the size of the state space, and

the inherent non-determinism. It is reasonable to think that this

difference may lead to how malfunctions manifest themselves in

games. We investigate this aspect in the repositories of the selected

systems, by analyzing which faults occur in games vs. non-games.

This leads to our second research question:

RQ2: How do developers of OSS games vs. OSS non-game sys-

tems prevent and handle malfunctions in their projects?

Finally, we conclude our investigation by turning to OSS devel-

opers to gather their opinions on the development process in the

projects to which they are contributing. We do this by means of an

online survey. Our aim is to compare and contrast the perceptions

of OSS developers to those of the industrial developers sampled

by Murphy-Hill et al. [33], in order to understand what are the

themes that are common across these two different settings and

what, instead, differs. This leads to our last research question:

RQ3: How do developers of OSS games vs. OSS non-game sys-

tems perceive the development process of their projects?

Table 1: Overview of the analyzed software systems

Projects Genre Language(s) LOC Contributors

0 A.D. 3D game JavaScript, C, C++ 5.57M 16

Arx Libertatis 3D game C, C++ 118k 3

AssaultCube 3D game C, C++ 126k 5

Battle for Wesnoth 2D game C++ 701k 67

Blender 3D 3D game C, C++, Python 1.83M 98

Cataclysm-DDA 2D game C++ 251k 168

Chaotic Rage 3D game C++ 84k 3

Cyberdojo 2D game Objective-C and C 263k 8

Dolphin-emu 3D game C, C++ 1.23M 109

Dungeon Crawl

Stone Soup

2D game C, C++ 372k 57

FlightGear 3D game C++ 838k 23

FreeSpace 3D game C, C++ 1.13M 8

Frogatto 2D game Python, Ruby, C++ 7.4k 9

Hedgewars 2D game Pascal, Lua, C, C++ 165k 17

MAME 2D game C++ 9.14M 164

ManaPlus 2D game C++ 270k 5

MegaGlest 3D game C++ 304k 8

Minetest 3D game C, C++ 203k 163

Multitheftauto 3D game C, C++ 2.73M 24

Oolite 3D game C, Objective-C 263k 8

OpenArena 3D game C 500k 6

OpenClonk 2D game C++ 360k 16

OpenDungeons 2D game C++ 73.7k 6

OpenMW 3D game C++ 226k 48

OpenSimulator 3D game C# 1.28M 8

Orxonox 3D game Lua, C, C++ 9.28M 12

Pioneer 3D game C++ 479k 30

SuperTuxKart 3D game C, C++ 732k 29

Thousand Parsec 2D game C++ 3.7k 2

G
a
m
e
S
o
f
t
w
a
r
e
S
y
s
t
e
m

Warzone 2100 3D game C, C++ 667k 22

Calligra Suite Office suite C, C++ 1.15M 18

Chromium Browser C, C++ 18.1M 2,695

Cppcheck Utility C++ 241k 61

Doxygen Doc system C++ 275k 38

Firebird Database C, C++ 1.27M 33

GIMP Image editor C 833k 71

Gparted System utility C, C++ 44.5k 36

Iptables System utility C 52.8k 27

K3b Utility C++ 106k 17

Kate Text editor C++ 403k 56

KiCad CAD C, C++ 872k 74

Ktorrent Application C++ 102k 17

Libre Office Office suite Java, C++ 9.15M 234

Mbed SDK C 3.82M 187

MongoDB Database C++ 1.28M 133

MySQL Database JavaScript, C, C++ 3.35M 132

Node.js Framework C, C++ 3.87M 868

Notepad++ Text editor C++ 338k 64

Open-Xchang Email Java, C 3.33M 53

OpenSSL Library C 488k 124

OpenVPN System utility C 291k 28

OpenWrt Embedded Kernel C 842k 205

PowerDNS DNS deamon C++ 216k 58

Programmer’s

Notepad

Text editor C, C++ 1.35M 2

Scilab Scientific C, C++ 2.29M 18

Sumatra PDF PDF viewer C, C++ 569k 11

Synergy Application C, C++ 113k 5

TortoiseGit Version system C, C++ 368k 7

Umbrello UML Modeller C++ 264k 8

N
o
n
-
g
a
m
e
S
o
f
t
w
a
r
e
S
y
s
t
e
m

VLC Media player C, C++ 628k 82

On Video Game Development in Open Source MSR ’18, May 28–29, 2018, Gothenburg, Sweden

2.2 Selection Of The Subject Systems
To conduct our study, we consider the most popular programming

languages used for desktop video game applications (i.e., C, C++,
and Objective-C [14]) and on projects whose source code is pub-

licly available i.e., open-source software (OSS) projects. To select a

representative sample of game and non-game systems we rely on

OpenHub [1], which is an online platform that indexes open-source

projects, providing basic information (e.g., application domain) as

well as data on developers’ activities (e.g., number of commits)

and statistics on popularity (e.g., number of stargazers). We use

OpenHub to select heterogeneous projects having different charac-

teristics in terms of (i) development environment, (ii) number of

contributors, and (iii) project size, thus mitigating some threats to

external validity. We only consider active projects to be able to get

responses to our online survey.

Thus, using OpenHub, we rank projects by popularity and select

30 desktop video game systems and 30 heterogeneous non-game

applications. Table 1 reports the chosen projects describing genre,

programming language(s), size in LOC, and number of contributors.

3 RQ1 – DEVELOPMENT ACTIVITIES
Our first research question aims at studying how game and non-

game developers contribute to their projects.

3.1 RQ1 - Research Method
To answer RQ1, we start by classifying the resources (i.e., files)
contained in a repository into categories that reasonably require

different expertise and specialization (e.g., source code files and

images). Subsequently, we investigate differences between game

vs. non-games in terms of (1) the prevalence of the categories (we

expect non-games to have less multimedia files, audio, video, and

images), (2) the specialization of contributors (we expect games to

have more diverse and specialized contributors, as emerging from

the study of Murphy-Hill et al. [33]) considering authorship as well

as ownership, and (3) the evolution of categories.

Classifying the resources. Given the number of investigated

projects, a manual categorization of all the files is prohibitively

expensive. For this reason, we apply a two-step approach: (i) first,

we execute an iterative content analysis approach [30] on a subset

of six projects to let categories of files emerge and identify features

that can be used to automatically classify files; (ii) second, we devise

a tool to automatically categorize the files of the studied projects

based on the identified features.

In the first step, the first author of this paper (a software en-

gineering researcher with ten years of programming experience)

analyzed the files contained in three game and three non-game

systems. The task was to analyze the path of each file and identify

the file category, also considering the directory organization as an

additional clue, how emerged from a study of Jones et al. where
computer users use “divide and conquer” problem decomposition

[25]. Generally, the researcher was able to identify keywords in

the path that can be used to discriminate the type of file are iden-

tified (e.g., the presence of src likely indicates that the file is a

source file); in the case of ambiguities (e.g., the term image may

be related to pictures, but also to high-level system models, such

as UML diagrams), the researcher also considered the extension of

Table 2: Overview of the categories of resources

Category Description Keywords in

file path

File extension

Code Source code files, such

as sources, headers, as-

sembly files

source, src, tool,

include, etc.

cpp, cc, h,hpp, in

Utility Scripts, makefiles, build

configurations, etc.

util, test, src,

source, include,

build, comp,

etc.

py, pl, js,lua,

mk,cmake, m4

D
ev

el
op

m
en

t

Library Archives and libraries lib, data, os,

arch, etc.

a, so, lib, dll, so, zip,

rar, 7z, gz, bz2

Language Translation-related files language, lng,

i18n, transla-

tion.

po, pot, i18n, txt,

xml

Docs Documentation doc, man, li-

cense, guide,

package

tex, txt, html, htm,

xml, css, pdf, jpg,

png, ico, gif

Audio Audio files wav, ogg, mp3, dsp

Image Image files image, icon,

model, scenery,

texture,

graphic, planet,

font, etc.

png, rgb, ttf, cfg,

map, jpg, gif, ico,

svg, dds, xcf, 3ds,

txf, eff

M
ul
ti
m
ed

ia

Data Domain modeling files

or configurations files.

image, icon,

model, scenery,

texture,

graphic, planet,

etc.

properties, xml,

canvas, effects, in,

commands, elec-

trical, extensions,

desktop

Misc. General purpose config-

urations

misc, other,

tool, install, etc.

xml, conf, list, cfg,

txt, ocm, lo

No ext. Files with no extensions

O
th
er

Discarded Every discarded re-

source not in the above

categories

the file. With this approach, the researcher was able to classify the

vast majority (≃ 95%) of files in the six analyzed systems. Table 2

shows the resulting list of categories. The columns ‘Keywords in

File Path’ and ‘File extension’ report the specific keywords used to

automatically categorize files. The ‘Discarded’ category collects the

files for which it is not possible to assign any of the other categories

identified.

The process was repeated to ensure the completeness of the

categories. The iterations terminated when the category ‘Discarded’
contained less than 5% of all the considered files. The output con-

sisted of ten file categories, which could be grouped into three

higher-level categories: ‘development’, ‘multimedia’, and ‘other’

(first column in Table 2).

Once we identified the categories and the discriminating features

(keywords in paths and extensions), we created a Python script

to parse each file of the remaining repositories and automatically

classify them into the categories.

Determining the specialization of authors and owners. To
measure the extent towhich authors are specialized in the categories
we identified, we mine the commits performed by each developer

over the history of a project to identify the set of files each developer

worked on the most.

In addition, we consider the role of ownership. In particular, we

take into account the findings by Bird et al. [7], who reported that

even if a file may be committed by many authors, it is most of the

times touched by a single author. In other words, the ownership

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Luca Pascarella1, Fabio Palomba2, Massimiliano Di Penta3, Alberto Bacchelli2

of an author on a file describes the degree of responsibility of a

certain contributor on that file. Thus, we want to measure what

extent it is possible to identify owners specialized in contributing

to single file categories. To this purpose, we divided the analysis

into two steps. In the first step we re-implement the approach by

Bird et al. [7]: For every file, we (1) count the number of changes,

(2) associate an author to each change, (3) rank the authors by

contribution frequency, and (4) discard files without a unique author

contribution. The cutting threshold is experimentally defined to

consider only files in which an author contributes more than 75%.

In the second step, we count the number of files each developer

mainly contributed to, thus marking each developer’s ownership.

Evolution of file categories over time. To understand how

the development activities performed on each of the identified

categories evolve over time we adopt two complementary strategies

to split the time. The first strategy splits each project’s history into

fixed intervals of three months, while the second strategy splits the

history by release. The latter strategy leads to intervals of different

duration, yet better accounts for the actual volume of performed

development, since OSS projects tend to be more erratic in the

amount of work developers produce in a given time period [19].

With both strategies, for each file category fc identified, we

compute the frequency of commits that modified a file belonging

to fc for every snapshot taken in the time window considered.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

development

multimedia

other

code

utility

library

language

docs

audio

image

data

misc.

no ext.

discarded

game non-game

Figure 1: Distribution of files in categories, by domain.

3.2 RQ1 - Results
We present the results according to different angles we investigated:

(i) how systems’ files are distributed across the different kinds

of categories in games vs. non-games, (ii) how contributors are

specialized in changing and owning files in these categories, and

(iii) how categories evolve over time.

Distribution of files across categories. Figure 1 details how
files are distributed in (grouped) categories (grouped categories

show the sum of the values for the inner categories). On average

non-game projects have 80% of files related to the Development
category, while a lower percentage (15%) of files related to the

Other category and an even lower percentage (less than 5%) related

to Multimedia. Conversely, game projects have only 30% of files on

average belonging to the Development category. Furthermore, there

is a remarkable amount of files belonging to Multimedia (up to 70%

for OpenClonk project). This result gives an initial indication that

the resources game developers deal with are observably different

from those worked on by non-game developers, and regard the

management of audio, images, and game scenarios.

0% 20% 40% 60% 80% 100%

2009-05
2009-08
2009-11
2010-02
2010-05
2010-08
2010-10
2011-01
2011-04
2011-07
2011-10
2012-01
2012-04
2012-07
2012-10
2013-01
2013-04
2013-07
2013-10
2014-01
2014-04
2014-07
2014-10
2015-01
2015-04

Open Clonk 3-m
onth tim

e w
indow

, grouped categories

OtherMultimediaDevelopment
Development Multimedia Other

Figure 2: Evolution of changes to files in grouped categories,
for OpenClonk, a game project, in 3-month time windows.

Specialization of authors and owners. We observe the spe-

cialization in terms of authorship by counting the number of

changes in each file category; since this analysis implies creating

a change graph for every developer of every project, we limit the

analysis to the most active developers. The results do not highlight

particular trends. For example, one of the most active developers

of the game Chaotic Rage had contributed with more than 2, 000

commits (at the time of analysis), but the contributions are spread

over each category without highlighting a specialization. Similar

discussion for the two top contributors of the VLC Media Player

project, who performed more than 12, 000 and 6, 000 commits, re-

spectively, touching all categories of files.

Conversely, we obtain different results when considering special-

izations in terms of ownership. In fact, in games, we could identify

On Video Game Development in Open Source MSR ’18, May 28–29, 2018, Gothenburg, Sweden

specific sub-teams working on different files belonging to non-

development categories. For example, in Battle for Wesnoth

four developers mainly focused their activities on Multimedia. Re-
sults are consistent when considering the other games. Instead,

when analyzing the non-games, we clearly identify only sub-team

specialized on categories related to code files. This result corrob-

orates the statement that game development is based on a more

diverse team than non-game software development since different

game developers are in charge of the evolution of different aspects

of the game.

Evolution of the categories. In addition to analyzing the files

in the latest version of the project and the history of changes to

compute authorship and ownership, we also explore whether ob-

servable trends of changes occur in different categories of files. In

fact, one of the interviewees in the study by Murphy-Hill et al.
stated: “[In general software development,] you might be building

Word or Excel or something like that [and use] some zip... tool or

something. But you’re building... video games, you are sometimes

building the resource compiling tools or tools that are intended to

extract 3D assets from other software like Maya or Max and then

convert it into a native format that then your engine can load and

render and process. So the tool pipeline is incredibly important

to video game development and it’s probably I would say almost

larger than the game itself.” [33], but this was not confirmed by

the differences developers’ perceptions in their survey. We turn to

the source code repositories to look at this in OSS systems; if the

aforementioned statement was true, we would expect to see more

work on the source code in the first period of development, and

then more activity on the game scenarios/data (e.g., committing

more changes belonging to Audio, Image, and Data).
Figure 2 is an exemplification of the results we obtained through

this analysis. The Figure shows the trend in changes for Open-

Clonk, a game project, considering the observation interval of 3

months. In the first interval (about 18 months) developers focus

more on the source code and project development artifacts (e.g.,
build automation) and only after they spend effort on improving

the game scenarios (e.g., game worlds and audio). These results

are consistent across all games and also considering a release-by-

release observation interval. Conversely, this trend does not hold

for non-games, even considering the broad heterogeneity of the

selected projects: In this case, the vast majority of changes fall in

the Development category in every time period, while other types

of changes are a minority. This result seems to corroborate the

statement by the interviewee in the study of Murphy-Hill et al. [33],
at least in the OSS context: The development of games vs. non-

games is different and follows different trends in terms of the files

modified during the system evolution.

Result 1: Developing games involves activities on more diverse

resources than developing non-game systems. The evolution is

different: In games a ramp-up period of changes on source code

is followed by a steady work on other categories of files; in non-

games the evolution consistently involves the same categories.

The teams are different: Only in games we could identify special-

ized owners who apply changes to non-code related categories,

thus highlighting the presence of more diverse expertise.

4 RQ2 – MALFUNCTION HANDLING
The second research question aims at investigating the ways devel-

opers in the two domains of projects handle malfunctions.

Table 3: Overview of bug categories considered in our study.

Category Bug description Search keywords/phrases

Algorithm Algorithmic or logical errors

algorithm, logic, rendering, calcula,

procedure, problem solving, math,

stack size, bench script, mistake, defect

Concurrency
Multi-threading or

multi-processing

related issues

race condition, synchronization error,

deadlock

Failure Crash or hang

reboot, crash, hang, restart, fault,

return failure, segfault, dump,

executable file, error message,

segmentation, stable, exception,

not run, not start

Graphic Graphic issues such as

overlap or rendering problems

graphic, resize, overlap, render,

shadow, gui object, frame, ground,

window, zoom, water, weapon

Memory Incorrect memory handling

memory leak, null pointer,

heap overflow, buffer overflow,

dangling pointer, double free,

segmentation fault, buf,

memleak, memory leak,

overflow, alloc

Performance Correctly runs with

delayed response

optimization, performance,

slow, fast, busy

Programming Generic programming errors

exception handling, error handling,

type error, typo, compilation error,

copy-paste error, pasting, refactoring,

missing switch case, missing check,

faulty initialization, default value,

match error, compil, autotools, build,

undefined pointer, syntax error,

instruction, 64bit, overloaded function,

translation, engine, not iniatializ

Security Exposure to dangerous

attackers

buffer overflow, security, password,

auth, ssl, exploit, injection, aes,

3des, rc4, access

Unknown Not part of the

above categories

4.1 RQ2 - Research Method
To understand how malfunctions (i.e., faults) are treated in game vs.

non-game systems in OSS, we combinedmining project repositories

and surveying expert developers. In this subsection, we report the

mining method, while the survey part is presented in Section 5.1,

together with the other questions asked to developers.

Categories of malfunctions. The categories of malfunctions

analyzed are reported in Table 3, together with a short description

and the keywords that can be used for assigning a fault to that

category. Generally, the categories reflect the ones defined by Ray

et al. [41], who studied the effect of programming languages on

software quality and proposed a catalog of malfunctions that may

appear in a software project. We add a new category, i.e., ‘graphic’,
to better distinguish issues related to the user interface (potentially

prominent in games) from other types of malfunctions (e.g., per-
formance bottlenecks). Despite the same keywords may belong

to different categories (e.g., memory leak may be part of Graphic
and Memory) we prevent this issue by defining a specific set of

keywords for each category.

Identification and classification of malfunction fixes. Be-
fore categorizing malfunctions according to the taxonomy in Ta-

ble 3, we (i) identify commits reporting faults and (ii) link them,

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Luca Pascarella1, Fabio Palomba2, Massimiliano Di Penta3, Alberto Bacchelli2

where possible, to the issue tracker to extract the note explaining

the type of fault.

To identify commits reporting faults, we follow an approach

similar to that proposed by Mockus and Votta [32] and Fischer et
al. [16], which was also followed in the studies by Ray et al. [40, 41].
This approach looks in the commit message for the existence of spe-

cific keywords (e.g., ‘error’, ‘bug’, ‘fix’, ‘issue’, ‘mistake’, ‘incorrect’,

‘fault’, ‘defect’, and ‘flaw’) and accordingly mark the commit as

fault repairing. Since the commit message may contain only a short

description of the fault fixing activity performed by a developer

(e.g., “fix bug #276”) rather than presenting the information needed

to properly categorize it, we use the issue tracker to retrieve more

detailed data on faults. To this aim, we use the explicit references

contained in a commit message to identify the issue related to it.

Afterwards, we extract the message note of the issue and apply the

categorization using the keywords reported in Table 3. However,

for projects lacking issue trackers we classify the commit messages

only. The set of keywords belonging to each category was itera-

tively improved: Starting from an initial set of keywords, the first

author of this paper manually checked whether the malfunctions

that are not possible to categorize contain additional keywords that

can be used to assign it to one of the categories considered. This

refinement reduced the risk of misclassification.

0% 10% 20% 30% 40% 50% 60% 70%

0% 10% 20% 30% 40% 50% 60% 70%

algorithm

concurrency

failure

graphic

memory

performance

programming

security

unknown

game non-game

Figure 3: Distribution of faults, by domain.

4.2 RQ2 - Results
Figure 3 reports the comparative distribution of malfunctions. The

first observation is that the category Graphic related to game

projects absorbs about three times more malfunctions with respect

to traditional software. However, this may be only a confirmation

that systems with a massive use of the Graphical User Interface

(GUI) tends to have more problems in the components implement-

ing it than any other system. Similarly, the result might be also

reflect the higher number of changes performed by developers on

files involving the Multimedia category, i.e., the higher the num-

ber of changes, the higher the likelihood to introduce faults [24].

Games have also fewer problems in components related to Pro-
gramming than non-games. Also, in this case, this might be due to

the lower activity performed on such components. Perhaps more

interesting, the number of faults are spread in several categories

when considering games, while traditional systems reach up to

62% of the problems related to the Programming category. The re-

sult for Security is quite unexpected: We observe a higher number

of security issues in games rather than non-games. This possibly

reveals the lack of awareness of game developers with respect to

vulnerabilities or, even worse, the lack of testing activities in games:

the latter conjecture is supported by (i) the higher number of Fail-
ures than traditional systems and (ii) the absence of test cases in

the considered projects. Another observation is that in the case of

games we have a minor capability to classify malfunctions using

the same set of keywords used for traditional software. Indeed, the

Unknown category for games is about one third higher than the

same category in the opposite software domain.

Result 2:Malfunctions are differently distributed in games and

non-games; while faults in games are more spread across dif-

ferent categories, in non-games faults are mainly related to the

Programming category. We also confirm that games have more

problem of Graphic than non-game systems.

5 RQ3 – DEVELOPERS’ PERCEPTIONS
The third research question of our study aims at gathering the

developers’ point of view concerning the development process

followed to develop the systems with which they are involved, with

the aim of exposing any different perceptions in game vs. non-game

developers, for aspects that could not be captured through mining

of repositories.

5.1 RQ3 - Research Method
To answer our third research question, we created an online sur-

vey and asked developers of the considered systems to participate.

As recommended by Flanigan et al. [17], we limit common issues

possibly affecting the response rate by keeping the survey short,

respecting the anonymity of participants, and preventing our in-

fluence in the answers. This part of the study is intended to be a

replication of the study by Murphy-Hill et al. [33], but in the OSS

context. In addition, the survey aims at challenging the results of

the first two research questions.

Protocol.We created an anonymous online survey (requiring

approximately 10 minutes to be filled out), extensively inspired by

that of Murphy-Hill et al. [33], to assess differences in developers’

perception of games vs. non-game software development.

The survey is organized into five sections, each of them com-

posed of three or four statements that developers are requested to

rate using 5-levels Likert Scale [35] ranging from ‘Strongly Disagree’

to ‘Strongly Agree’. The first part aims at gathering demographic

information on the expertise of participants as well as their back-

ground. The second part asks the participant opinions on software

design aspects such as the facility to reuse source code or skills

On Video Game Development in Open Source MSR ’18, May 28–29, 2018, Gothenburg, Sweden

required to develop the underlying software system. The third part

investigates the development processes asking opinions on sim-

plicity to define requirements and common support tools adopted.

The fourth part examines the developer organizations and required

skills (e.g., is creativity a requirement?), while the last part empha-

sizes the bug prevention and the testing procedure. In addition, we

left a free field to collect suggestions, opinions, and experiences.

Participants. To gather responses from developers who are ac-

tually experts of the subject systems, we considered the top ten con-

tributors of each project. We selected the name and email address

of these developers by mining the 60 studied software repositories.

When the email address of the contributor was not reported or

the service returned a delivery error, we selected the next expert

developer of the project, to try to achieve at least ten working

email addresses for each project, for a total of 600 invitations. We

received answers from 45 game developers (15% resp. rate) and

36 non-game ones (12% resp. rate); the response rate is above the

suggested minimum response rate for survey studies [5].

5.2 RQ3 - Results
Figure 4 summarizes the results for our survey, by reporting for each

statement a pair of bars: the first one refers to answers from game

developers, the second one to answers from non-game developers.

Each bar chart depicts the number of answers for each possible rate

(i.e., the 5-points Likert scale). Figure 4 also reports results of the

statistical comparison, performed using theWilcoxon rank sum test

[12], between the distributions of response values (mapped on the

1-5 ordinal scale) for games and non-games. Note that since we test

the null hypothesis "there is no significant difference between games
and non games" multiple times, we adjust the p-values using the

Benjamini-Hochberg correction [6]. Such a correction procedure

adjusts p-values by ranking them in ascending order and then

multiplying each p-value by the total number of p-values divided
by the rank. Finally, we also report the Cliff’s delta effect size [23].

Generally, the results tend to confirm what found by Murphy-

Hill et al. [33] in the industrial context: Developers perceive the

development of games to be different than non-game development.

Looking at Figure 4 we see that: (1) difficulties in reusing their code
(Q1). Murphy-Hill et al. found that game developers have more

difficulties in reusing code than non-game developers, although the

difference was not statistically significant. In our case, the differ-

ence is even less evident. This could possibly depend on the OSS

context. (2) Game developers have a less clear view of the project
requirements (Q5). This result can be explained with the findings

by Kultima and Alha [28], who showed that requirements in game

projects are imposed by end users that are more prone to call for

new requirements. (3) Games are tested manually by external testers
(Q10), as much as non-games. This result is aligned with the findings

reported by Murphy-Hill et al., in which the difference between

games and non-games was not significant in their survey nor in

ours. (4) Game developers perceive less pressure on the evolution
of the software architecture (Q6). This is in line with the results

reported by Murphy-Hill et al.: The motivation is that game de-

velopers do not spend time in evolving the architecture of one-off

games that will be not updated anymore. (5) Game developers have

22128

Q01: From a technical perspective, it is easy
to reuse other's code in my software.

315144
3

2282

Q02: Most of the code I wrote is
included in next release.

2312
13

1

16

Q03: Developing software requires very specific
knowledge that not all developers have.

1022
13124

31

7

Q04: The requirements of the software I
developed were clear to me since the beginning.

11
29207

3994

18

Q05: Whether requirements are
met in my software is highly subjective.

9
7515

4192 2

15

Q06: My software's architecture evolves
significantly when the software gets more mature.

19
1982

5
1

84

24

Q07: Creativity is highly important
when developing traditional software.

19
146

9
1

431

17

Q08: Creating my software requires
people with a broad set of skills.

18
312

4851
121

24

Q09: Creating my software requires
people with specific skills.

22
99

68
3

13

Q10: My software is mainly
tested manually by external testers.

7
44

27
1410

1010

10

Q11: My software is mainly
tested by manual simulation.

10
10

55
1510

87

8

Q12: My software is mainly
tested by unit tests.

10
9

48
1810

122

19

Q13: Users contribute
finding bugs.

11
5

612
3
33

171

14

Q14: Importance of
the beta testing.

11 9933
198

2

22

Strongly disagree Disagree Borderline Agree Strongly Agree

Medium-0.4120.008

MagnitudeDp-value

Negligible0.0030.984

MagnitudeDp-value

Small-0.1670.238

MagnitudeDp-value

Small-0.2560.097

MagnitudeDp-value

Small0.3130.037

MagnitudeDp-value

Small0.2680.082

MagnitudeDp-value

Negligible0.1100.448

MagnitudeDp-value

Small-0.1910.189

MagnitudeDp-value

Negligible-0.0260.891

MagnitudeDp-value

Negligible0.0990.505

MagnitudeDp-value

Small-0.2280.185

MagnitudeDp-value

Medium-0.3430.029

MagnitudeDp-value

Small0.3150.029

MagnitudeDp-value

Negligible0.1880.154

MagnitudeDp-value

Game

Strongly disagree Disagree Borderline Agree Strongly AgreeNon-game

Figure 4: Likert Distributions of survey results.

difficulties in performing unit tests (Q12). This can be due to the char-

acteristics of games as well as the massive presence of GUI-related

components that are more difficult to test [42]. This is significant in

our OSS study, but it was not for the industrial context investigated

of Murphy-Hill et al. [33].

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Luca Pascarella1, Fabio Palomba2, Massimiliano Di Penta3, Alberto Bacchelli2

The results of our RQ1 about the presence of specialized sub-

teams composing game systems seem aligned with the developers’

perception. For instance, one of the game developer surveyed stated:

“I should note that most of my experience comes from modding

rather than developing games from scratch. Therefore I’m usually

bound to the engine and things available. This includes reading a lot

of code to understand how things work. Furthermore, it’s usually

small teams, therefore it helps a lot to be able to tackle problems

in multiple divisions (graphics, actual code, ...).” In other words,

this comment suggests that building a game from scratch may

be complex, however, the organization of specialized sub-teams

facilitates developers in designing and developing a game.

A similar idea comes from another game developer: “You can

kind of draw a continuum between cloning games and creating

completely new games. The first one requires relatively little it-

eration and understanding of game design, and the second one

requires a lot of iteration and understanding of game design.”

We conclude the analysis of the results by reporting the comment

left by a game developer who reports his/her experience as an OSS

game programmer: “Video game development is a specific project

type and thus needs a specific experience. Without speaking of

deadlines that aren’t existing in Open source development. The

design goals have to be refined every mid-milestone development

cycle to the least. All this makes Agile development and extreme

programming fit that kind of development well. And with such

development management type, a dynamic and proactive team is

also a must. Also, on open source projects, whenever the team is

unable to commit itself to make compromise and find common

acceptable goals, the project is hampered and is threatened to die

or stall.”

Result 3: Game developers find it difficult to reuse their code,

have less pressure on evolving their systems’ architecture, and

are less able to properly have an overview of the requirements

of a project. Furthermore, they report more difficulties in per-

forming automated unit tests than non-game developers.

6 DISCUSSION & IMPLICATIONS
After presenting the results of our study, in this section we focus

on (i) a discussion of the results also comparing our findings with

those reported by Murphy-Hill et al. [33] and on (ii) an analysis

of the direct implications that our study has for both practitioners

and researchers. Table 4 presents a summary of the comparison

between our findings and those of Murphy-Hill et al. [33].

6.1 Discussion
Our results highlighted a number of points to be further discussed,

and in particular:

The development of games is different. While the differences

between the two types of software were already pointed out by

Murphy-Hill et al. through surveys and interviews, we extended

existing knowledge by tracking developers’ activities on files. We

observed that programmers involved in the two types of software

mainly perform activities on different categories of resources,

Table 4: Our findings and those achieved by Murphy-Hill et
al. [33]. ‘✓✓’ stands for strong differences measured in the
study, ‘✓’ for modest differences, ‘—’ for irrelevant/absent
differences, and no mark for a not comparable task.

Murphy-Hill et al.
(industry)

This study

(OSS)

Interviews Survey Repositories Survey

Software requirements ✓✓ ✓✓ ✓✓
Software design ✓ — ✓ ✓✓

Software construction,

tools, and methods

✓ — — —

Software testing and quality ✓ ✓ ✓✓ ✓
Software maintenance ✓ ✓ — ✓
Software configuration

management

✓ ✓ — ✓

Problem solving

and skill variety

✓✓ ✓✓ ✓

Distribution of files ✓✓
Specialization of authors ✓
Specialization of owners ✓✓

Categorization of malfunctions ✓✓
Planning of releases ✓ ✓ — ✓✓

with files related to Multimedia mainly modified by game devel-

opers and files associated with the Development category as the

main target of non-game developers.

The way resources evolve is different. Differently from previ-

ous analyses [33], we could observe the artifacts evolution during

the history of software projects. Game developers focus more

on the underlying code base during the first development phase,

while they have more work later on the maintenance and evo-

lution activities of audio, images, and multimedia-related data.

Conversely, non-gamed developers equally evolve the code dur-

ing the entire software lifecycle. More importantly, our survey let

emerge statistically significant differences between the two types

of systems with respect to the amount of code usually included

in future releases of the system: Game developers report to spend

more effort in code that is not directly put into production.

The game teams have more diverse expertise. We could cor-

roborate quantitatively, observing the ways game and non-game

developers apply changes on their systems, the qualitative finding

reported by Murphy-Hill et al.: The teams are different. Specifi-

cally, in game systems, we could detect specialized developers

who apply changes to non-code related categories; in non-games,

instead, we could not identify developers specializing on a spe-

cific non-code category.

Game development and testing. Our survey respondents re-

ported that that games are mainly tested by relying on external

people that manually exercise the system. While Murphy-Hill

et al. already identified some alarm signals on the way game

developers perform testing, we found statistically significant dif-

ferences between games and non-games when considering the

difficulties of game developers to write automated tests.

Malfunctions are handled differently. Faults are located in dif-

ferent areas of game and non-game systems. Our quantitative

analysis on the systems’ repositories showed that: On the one

hand, games exhibit malfunctions in different file categories; on

the other hand, non-games have a notably higher percentage of

bug fixes in the Programming category.

On Video Game Development in Open Source MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Less clear release planning. For games, it is less clear whether

developed features will be included in the next release than for

non-games. This can be due to a more evident proneness to ex-

perimenting new features (including changing the game story or

users’ experience) that may or may not turn out to be success-

ful. Interestingly this seems to be more evident for OSS projects,

where we observe significant differences with respect to non-

games. This could be because in industrial context there is a

stricter or more anticipated release planning.

More difficulties in handling requirements. OSS game devel-

opers report to not being able to easily manage the evolution of

the requirements. As a consequence, they cannot properly assess

whether they have been met or not. Also in this case, this is some-

thing common between open source and industrial projects [33],

however we identified statistical significant differences between

the two domains.

6.2 Implications
The aforementioned findings have a number of implications for

researchers, practitioners, and education. The former are called to

the definition of a new, ad-hoc branch of software engineering, i.e.,
game-oriented software engineering. More specifically:

(1) Specializing requirement engineering for games.
Given the different audience and different expectations

that end users have for games, new methodologies should

be investigated to better support the activities of game

developers during the management and the evolution of

such user-driven requirements.

(2) Game-specific source code reuse patterns. Our results
reported that developers are not able to reuse the source

code of a game, likely because of system-dependent factors

that make it hard to move in other projects. This represents

an opportunity for researchers with respect to the definition

of novel design patterns and methodologies that game de-

velopers can adopt to make the source code more extensible

and reusable.

(3) Game-specific fault localization. Current approaches for
detecting faults mainly target source code artifacts [13, 24,

36], while game development calls for different approaches

in order to properly support developers in preventively adopt

corrective actions.

(4) Game-specific testing. The use of manual testing and the

challenges with automated testing in game systems highlight

the need for a new set of methodologies to ease the develop-

ers’ ability to identify malfunctions and to enable automatic

testing activities for games. Studies could be conducted to

investigate new generation record-replay tools, automated

test data generators, etc.

Practitioners need to find appropriate ways to handle require-

ments, possibly closely involving end users during the whole soft-

ware lifecycle, e.g., by finding ways to ease communication with

them as also mandated by Agile methodologies. Similarly, practi-

tioners must be aware that faults can be not only hidden in the

source code, but also in other types of resources: they are therefore

called to adopt suitable tools supporting their activities.

Finally—confirming previous results of Murphy-Hill et al. [33]—
our results suggest that game development requires skills that are

strongly different from those required for the development of tradi-

tional software. Developers are indeed called to be more creative

and able to work on a different variety of resources, e.g., domain

modeling files. Thus, it would be beneficial for students to have

dedicated courses where gathering the required skills to approach

game development.

7 THREATS TO VALIDITY
In this section we discuss possible threats to the validity of our

study and how we mitigated them.

File and bug classification validity. A first threat might be

related to howwe identified the file categories in the context of RQ1.

To ensure the comprehensiveness of the taxonomy, we adopted

an iterative content analysis approach [30] on six projects of the

dataset. However, we cannot exclude themissing analysis of specific

file types out of the categories identified. For what concerns fault

classification, we rely on a taxonomy by Ray et al. [41] and verified

that, besides the need for adding one category (Algorithmic faults),

such a taxonomy fits with the range of faults found in the analyzed

projects.

Survey validity. Although maintaining high response rates is

always desirable in a survey, research evidence indicates that open-

source developers are massively assailed by interview and survey

requests, therefore the response rate is lower than other contexts,

e.g., industrial participants [33]. Another considerable factor is

that the response ratio decreases year by year how highlighted

by Bartel [44]. In our study we tried to mitigate a low response

rate typical of the open-source context reaching the most active

developers of each project for a total of 600 invitations. Furthermore,

as recommended by Flanigan et al. [17], we kept the survey as short
as possible, so that participants could fill out it in no more than ten

minutes. As a result, we obtained a response rate up to 15%, which

is satisfactory for a study conducted with open-source subjects

and in line with the minimum response rate suggested for survey

studies [5].

Sample validity. A potential threat to validity of a research

study conducted on a small sample of subjects is that it could de-

liver little knowledge. Even if there are historical evidence that

shows otherwise (e.g., Flyvbjerg [18] gave many examples where

singular entity contributes to important discoveries in physics, eco-

nomics, and social science) we selected a considerable amount of

projects creating a sample of 60 heterogeneous open-source sys-

tems. Precisely, we selected 30 open-source games and 30 non-game

projects with more than 1, 000 active contributors per month for

games and more than 4, 000 active contributors per month for non-

games. Moreover, these projects involve a representative population

up to 40 millions of source lines for game projects and up to 45

millions of source lines for non-game projects.

Conclusion validity. Whenever appropriate, we support our

claims with suitable statistical procedures. While in RQ1 and RQ2

we mainly report and discuss results through descriptive statistics,

in RQ3 we corroborate the comparisons depicted with asymmetric

stacked bar charts withWilcoxon sum rank tests (adjusting p-values

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Luca Pascarella1, Fabio Palomba2, Massimiliano Di Penta3, Alberto Bacchelli2

using the Benjamini-Hochberg procedure [6]) and Cliff’s delta effect

size.

8 RELATEDWORK
In the past, researchers have studied software development method-

ologies with the aim of improving the software development process

and software quality in general. In the specific area of game devel-

opment, researchers mainly focused on two aspects, (i) productivity

[15, 26, 50] and (ii) social interaction [11, 22, 51].

Video games productivity. In the first direction, Kultima and

Alha [28] explored how developers perceive the development pro-

cess, interviewing 28 expert game programmers. They found that

in this kind of software practitioners have different priorities than

traditional systems, which are mainly imposed by end-users. This

directly impacts on software requirements, enforcing engineers to

work more on non-functional attributes than functional.
Another study aimed at understanding how developers build

computer games has been conducted by Stacy and Nandhaku-

mar [47]. Relying on the responses achieved conducting 20 in-

terviews, they found that games are perceived as “special” kind of

software. Therefore, applying traditional development processes to

a game project may be dangerous with the consequence of having

a low productivity. Callele et al. [10] investigated 50 dead projects,

finding the reasons of their failure, discovering the issues that

should be addressed with formal processes (e.g., the transition from

game design to formal requirements). Cristiano et al. [39] investi-
gated the processes of software engineering in game development

by analyzing 20 postmortem games. They discovered that iterative

processes are the common techniques (such as Agile and Waterfall)
adopted in game development.

Kasurinen et al. [27] interviewed 27 game developers to under-

stand what are their expectations on tools aimed at supporting

productivity. Even if many developers are concerned about the

adaptability of development supporting tools, they are generally

pleased with such instruments. Musil et al. [34] found that the Agile
model is the most popular solution to support productivity. Fábio

et al. [37] confirm the same findings on the Agile model.

A different perspective is given in the study by Lewis et al. [29],
who aimed at producing a hierarchical taxonomy of faults that

can appear in a game project. Differently from the taxonomy of

malfunctions used in our study, Lewis et al. mainly focused on

faults occurring in the Graphical User Interface rather than on

the application logic. Therefore, we preferred the use of the more

comprehensive taxonomy proposed by Ray et al. [41].
Lin et al. [31] studied the phenomenon of 0-day updates, i.e.,

updates aimed at fixing bugs immediately after issuing a release,

in the context of games present on the Steam platform. As a key

result, they found that 0-day updates are more frequent in games

having a frequent update release strategy. Fábio et al. [38] surveyed
game developers to understand the common problems emerged

during game development.

Video games as a social interaction. Burger-Helmchen and

Cohendet [9] explored the mutual relationship between expert

developers of industrial companies and communities of players.

They found that games benefit of deep collaborations between firms

and end users more than other software. Amin and Cohendet [3]

conducted a large study having as object the importance for firms to

recognize internal communities and derivable profit when members

of different communities share knowledge. Similarly, Brown and

Duguid [8] described how internal communities are viewed as

suppliers of sense and collective beliefs for employees of firms.

Scacchi [43] investigated how free and open-source (FOSS) soft-

ware communities interact to develop complex game projects. How-

ever, he found that FOSS community tend to ignore modern soft-

ware engineering processes.

A different perspective is followed in the study by Murphy-Hill

et al. [33]. They combined two studies to find possible gaps that

are present in the development of games. In the first part of the

study they interviewed 14 expert game developers, while in the

second part they analyzed 364 surveys conducted in Microsoft.

The results showed that developers recognize themselves in cate-

gories and such categories are defined based on their background.

This observation somehow confirms previous findings about the

creation of community with specialized background.

Our study has differences and commonalities with the work by

Murphy-Hill et al. [33]. On the one hand, our qualitative analysis

has the goal to compare the findings achieved in an industrial

context with those obtained when considering open-source games.

On the other hand, our study performs an additional quantitative

analysis of 60 projects with the aim of looking at change and bug

fixing activities performed by developers and comparing games

with other kinds of software.

9 CONCLUSION
Game development has been shown as different with respect to that

of non-game development for the industrial context [33]. In this

paper, we further investigate this line of research by providing a

large-scale empirical analysis on whether and how game developers

perform different activities in the OSS context. We started with a

software repository mining analysis involving 60 systems, aimed

at measuring (i) how developers working in game and traditional

software development contribute to their projects and (ii) how they

handle malfunctions. Subsequently, we performed a survey target-

ing a total of 81 developers (45 developing games and 36 working

on non-game systems), aimed at evaluating the developers’ percep-

tion of their development process and activities, and differences

between game vs. non-game systems.

Our findings highlight a number of points that can inspire the

research community to define a new generation of software engi-

neering tools, which explicitly target games and can help developers

with the development, maintenance, and evolution of this special

and widespread type of software systems.

ACKNOWLEDGMENTS
Bacchelli and Palomba gratefully acknowledges the support of the

Swiss National Science Foundation through the SNF Project No.

PP00P2 170529.

On Video Game Development in Open Source MSR ’18, May 28–29, 2018, Gothenburg, Sweden

REFERENCES
[1] [n. d.]. Black Duck Open Hub. https://www.openhub.net. ([n. d.]). [Online;

accessed 30-Jan-2019].

[2] [n. d.]. Microsoft Corporation. https://www.microsoft.com. ([n. d.]). [Online;

accessed 30-Jan-2019].

[3] Ash Amin and Patrick Cohendet. 2004. Architectures of knowledge: Firms, capa-
bilities, and communities. Oxford University Press on Demand.

[4] Apostolos Ampatzoglou and Ioannis Stamelos. 2010. Software engineering re-

search for computer games: A systematic review. Information and Software
Technology 52, 9 (2010), 888–901.

[5] Yehuda Baruch. 1999. Response rate in academic studies—A comparative analysis.

Human relations 52, 4 (1999), 421–438.
[6] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the False Discovery Rate:

A Practical and Powerful Approach to Multiple Testing. Journal of the Royal
Statistical Society. Series B (Methodological) 57, 1 (1995), 289–300.

[7] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and

Premkumar Devanbu. 2011. Don’t touch my code!: examining the effects of

ownership on software quality. In Proceedings of the 19th ACM SIGSOFT sympo-
sium and the 13th European conference on Foundations of software engineering.
ACM, 4–14.

[8] John Seely Brown and Paul Duguid. 2001. Knowledge and organization: A social-

practice perspective. Organization science 12, 2 (2001), 198–213.
[9] Thierry Burger-Helmchen and Patrick Cohendet. 2011. User communities and

social software in the video game industry. Long Range Planning 44, 5 (2011),

317–343.

[10] David Callele, Eric Neufeld, and Kevin Schneider. 2005. Requirements engineering

and the creative process in the video game industry. In Requirements Engineering,
2005. Proceedings. 13th IEEE International Conference on. IEEE, 240–250.

[11] Philip A Chan and Terry Rabinowitz. 2006. A cross-sectional analysis of video

games and attention deficit hyperactivity disorder symptoms in adolescents.

Annals of General Psychiatry 5, 1 (2006), 16.

[12] W. J. Conover. 1998. Practical Nonparametric Statistics (3rd edition ed.). Wiley.

[13] Dario Di Nucci, Fabio Palomba, Giuseppe De Rosa, Gabriele Bavota, Rocco Oliveto,

and Andrea De Lucia. 2018. A developer centered bug prediction model. IEEE
Transactions on Software Engineering 44, 1 (2018), 5–24.

[14] Nick Diakopoulos and Stephen Cass. 2017. The Top Program-

ming Languages 2017. IEEE Spectrum http://spectrum.ieee.org/static/

interactive-the-top-programming-languages-2017 (Jul 2017).

[15] Melissa A Federoff. 2002. Heuristics and usability guidelines for the creation
and evaluation of fun in video games. Ph.D. Dissertation. Indiana University

Bloomington.

[16] Michael Fischer, Martin Pinzger, and Harald C. Gall. 2003. Populating a Release

History Database from Version Control and Bug Tracking Systems. In 19th
International Conference on Software Maintenance (ICSM 2003), The Architecture
of Existing Systems, 22-26 September 2003, Amsterdam, The Netherlands. 23.

[17] Timothy S Flanigan, Emily McFarlane, and Sarah Cook. 2008. Conducting survey

research among physicians and other medical professionals: a review of cur-

rent literature. In Proceedings of the Survey Research Methods Section, American
Statistical Association, Vol. 1. 4136–47.

[18] Bent Flyvbjerg. 2006. Five misunderstandings about case-study research. Quali-
tative inquiry 12, 2 (2006), 219–245.

[19] Karl Fogel. 2005. Producing open source software: How to run a successful free
software project. " O’Reilly Media, Inc.".

[20] Joseph F Francois and Kenneth A Reinert. 1997. Applied methods for trade policy
analysis: a handbook. Cambridge University Press.

[21] Jeanne B Funk. 1993. Reevaluating the impact of video games. Clinical pediatrics
32, 2 (1993), 86–90.

[22] Tobias Greitemeyer. 2014. Intense acts of violence during video game play make

daily life aggression appear innocuous: A new mechanism why violent video

games increase aggression. Journal of Experimental Social Psychology 50 (2014),

52–56.

[23] Robert J. Grissom and John J. Kim. 2005. Effect sizes for research: A broad practical
approach (2nd edition ed.). Lawrence Earlbaum Associates.

[24] Ahmed E Hassan. 2009. Predicting faults using the complexity of code changes.

In Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference on.
IEEE, 78–88.

[25] William Jones, Ammy Jiranida Phuwanartnurak, Rajdeep Gill, and Harry Bruce.

2005. Don’t take my folders away!: organizing personal information to get ghings

done. In CHI’05 extended abstracts on Human factors in computing systems. ACM,

1505–1508.

[26] Jesper Juul. 2011. Half-real: Video games between real rules and fictional worlds.
MIT press.

[27] Jussi Kasurinen, Jukka-Pekka Strandén, and Kari Smolander. 2013. What do game

developers expect from development and design tools?. In Proceedings of the 17th
International Conference on Evaluation and Assessment in Software Engineering.
ACM, 36–41.

[28] Annakaisa Kultima and Kati Alha. 2010. “Hopefully everything I’m doing has

to do with innovation”: Games industry professionals on innovation in 2009.

In Games Innovations Conference (ICE-GIC), 2010 International IEEE Consumer
Electronics Society’s. IEEE, 1–8.

[29] Chris Lewis, JimWhitehead, and NoahWardrip-Fruin. 2010. What went wrong: a

taxonomy of video game bugs. In Proceedings of the fifth international conference
on the foundations of digital games. ACM, 108–115.

[30] William Lidwell, Kritina Holden, and Jill Butler. 2010. Universal Principles of
Design, Revised and Updated: 125 Ways to Enhance Usability, Influence Perception,
Increase Appeal, Make Better Design Decisions, and Teach through Design (2nd ed.).

Rockport Publishers.

[31] Dayi Lin, Cor-Paul Bezemer, and Ahmed E. Hassan. 2017. Studying the urgent

updates of popular games on the Steam platform. Empirical Software Engineering
22, 4 (2017), 2095–2126.

[32] A Mockus and LG Votta. 2000. Identifying reasons for software changes us-

ing historic databases. In Software Maintenance, 2000. Proceedings. International
Conference on. 120–130.

[33] Emerson Murphy-Hill, Thomas Zimmermann, and Nachiappan Nagappan. 2014.

Cowboys, ankle sprains, and keepers of quality: How is video game development

different from software development?. In Proceedings of the 36th International
Conference on Software Engineering. ACM, 1–11.

[34] J Musil, A Schweda, D Winkler, and S Biffl. 2010. A Survey on a State of the

Practice in Video Game Development. Technical report, QSE-IFS-10/04 (2010).
[35] A. N. Oppenheim. 1992. Questionnaire Design, Interviewing and Attitude Measure-

ment. Pinter Publishers.
[36] Fabio Palomba, Marco Zanoni, Francesca Arcelli Fontana, Andrea De Lucia,

and Rocco Oliveto. 2017. Toward a Smell-aware Bug Prediction Model. IEEE
Transactions on Software Engineering (2017).

[37] Fabio Petrillo and Marcelo Pimenta. 2010. Is agility out there?: agile practices in

game development. In Proceedings of the 28th ACM International Conference on
Design of Communication. ACM, 9–15.

[38] Fábio Petrillo, Marcelo Pimenta, Francisco Trindade, and Carlos Dietrich. 2009.

What went wrong? A survey of problems in game development. Computers in
Entertainment (CIE) 7, 1 (2009), 13.

[39] Cristiano Politowski, Lisandra Fontoura, Fabio Petrillo, and Yann-Gaël

Guéhéneuc. 2016. Are the Old Days Gone? A Survey on Actual Software Engi-

neering Processes in Video Game Industry. In Games and Software Engineering
(GAS), 2016 IEEE/ACM 5th International Workshop on. IEEE, 22–28.

[40] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto

Bacchelli, and Premkumar Devanbu. 2016. On the naturalness of buggy code. In

Proceedings of the 38th International Conference on Software Engineering. ACM,

428–439.

[41] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.

A large scale study of programming languages and code quality in github. In

Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 155–165.

[42] Per Runeson. 2006. A survey of unit testing practices. IEEE software 23, 4 (2006),
22–29.

[43] Walt Scacchi. 2004. Free and open source development practices in the game

community. IEEE software 21, 1 (2004), 59–66.
[44] Kim Bartel Sheehan. 2001. E-mail survey response rates: A review. Journal of

Computer-Mediated Communication 6, 2 (2001), 0–0.

[45] Brendan Sinclair. 2015. Gaming will hit $91.5 bil-

lion this year. http://www.gamesindustry.biz/articles/

2015-04-22-gaming-will-hit-usd91-5-billion-this-year-newzoo (2015).

[46] Michael G Stabin. 1996. MIRDOSE: personal computer software for internal

dose assessment in nuclear medicine. Journal of Nuclear Medicine 37, 3 (1996),
538–546.

[47] Patrick Stacey and Joe Nandhakumar. 2009. A temporal perspective of the

computer game development process. Information Systems Journal 19, 5 (2009),
479–497.

[48] F Ted Tschang. 2007. Balancing the tensions between rationalization and creativ-

ity in the video games industry. Organization Science 18, 6 (2007), 989–1005.
[49] F Ted Tschang and Janusz Szczypula. 2006. Idea creation, constructivism and evo-

lution as key characteristics in the videogame artifact design process. European
Management Journal 24, 4 (2006), 270–287.

[50] MichaelWashburn Jr, Pavithra Sathiyanarayanan, Meiyappan Nagappan, Thomas

Zimmermann, and Christian Bird. 2016. What went right and what went wrong:

an analysis of 155 postmortems from game development. In Proceedings of the
38th International Conference on Software Engineering Companion. ACM, 280–289.

[51] Dmitri Williams, Nicole Martins, Mia Consalvo, and James D Ivory. 2009. The

virtual census: Representations of gender, race and age in video games. New
Media & Society 11, 5 (2009), 815–834.

https://www.openhub.net
https://www.microsoft.com
http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
http://www.gamesindustry.biz/articles/2015-04-22-gaming-will-hit-usd91-5-billion-this-year-newzoo
http://www.gamesindustry.biz/articles/2015-04-22-gaming-will-hit-usd91-5-billion-this-year-newzoo

	Abstract
	1 Introduction
	2 Research Goals and Subject
	2.1 Research Questions
	2.2 Selection Of The Subject Systems

	3 RQ1 – Development Activities
	3.1 RQ1 - Research Method
	3.2 RQ1 - Results

	4 RQ2 – Malfunction Handling
	4.1 RQ2 - Research Method
	4.2 RQ2 - Results

	5 RQ3 – Developers' Perceptions
	5.1 RQ3 - Research Method
	5.2 RQ3 - Results

	6 Discussion & Implications
	6.1 Discussion
	6.2 Implications

	7 Threats to validity
	8 Related work
	9 Conclusion
	References

