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Summary
Systems far from equilibrium have numerous practical uses, but chal
lenge our understanding of their underlying physics. Materials like foams,
emulsions, suspensions and granular matter can show liquidlike prop
erties or get trapped in a solidlike jammed state. The phase transition
between the flowing and static state is often referred to as the ‘jamming
transition‘.

This work focuses on the mechanical behavior of amorphous viscoelas
tic materials, close to the jamming point. In many traditional solids, the
relation between stress and strain is well described by a linear proportion
ality, known as Hooke’s law. In jammed solids, by contrast, the stress
strain relation quickly becomes nonlinear, making them much harder to
model. Here we ask how and why the linear response breaks. To an
swer the questions, we investigate the breakdown of linear response as a
function of deformation rate and amplitude.

In Ch. 2 we map out the boundaries to Hooke’s law by systematically
performing stress relaxation and shear start up tests. We then derive
scaling arguments, that define the window where linear response is valid.
Our results show that the window vanishes at the transition, meaning
that even small or slow deformations will break linear response.

In Ch. 3 we investigate the relation between viscoelasticty and nonlin
ear effects. The relaxation time is the governing time scale in the dynam
ics of viscoelastic materials. On comparatively short time scales viscous
losses are dominant. On relatively long time scales the behavior of the
material is determined mainly by elastic forces. By performing step strain
experiments, we map out the dependence of the relaxation time on strain
amplitude and the distance to jamming. We find two windows in strain
where the relaxation time is insensitive to the strain amplitude, and de
termined only by the distance to jamming. Surprisingly, even the window
at high strain is well described by theoretical predictions derived for van
ishingly small strains.

In Ch. 4 we investigate connection between nonlinearity and irreversibil
ity. By performing shear reversal tests, we observe plastic work as a
function of the maximally applied strain and the distance to jamming.
Remarkably, we find that even for small, linear deformations the plastic
work is nonzero. This means that some degree of irreversibility is already
present even when the stressstrain curve has not deviated from its linear
elastic form. We find that irreversibility grows with strain and eventu
ally saturates. From these observations we conclude, that irreversibility

ix
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precedes softening and that nonlinearity is connected only to a ‘fully de
veloped‘ irreversibility.



Samenvatting
Systemen ver uit evenwicht hebben verschillende praktische toepassin
gen. Het is echter een uitdaging om het gedrag van deze systemen goed te
begrijpen. Materialen zoals schuim, emulsies, suspensies en granulaire
materialen kunnen eigenschappen hebben van vloeistoffen, maar ook van
vaste stoffen. Dit laatste betreft de zogenaamde jammed state. De fase
overgang tussen een vloeistofachtige fase en de jammed state wordt de
jamming transitie genoemd.

Dit proefschrift beschrijft het mechanisch gedrag van amorfe visco
elastische materialen in de buurt van het jamming punt. Voor de meeste
(conventionele) vaste stoffen wordt de relatie tussen spanning en vervor
ming beschreven door de wet van Hooke, die stelt dat vervorming en span
ning recht evenredig met elkaar zijn. Voor systemen in de jammed state
zijn vervorming en spanning niet evenredig. Dit maakt de modellering
van mechanische eigenschappen een stuk lastiger. Graag willen we weten
waarom er een nietlineair verband bestaat tussen vervorming en span
ning voor systemen in de jammed state. Om dit te begrijpen wordt on
derzocht hoe de afwijking van dit lineaire verband samenhangt met de
deformatiesnelheid en amplitude van de vervorming.

In hoofdstuk Ch. 2 onderzoeken we de limiet van de toepasbaarheid
van de wet van Hooke door systematisch de initiële schuifspanning te
variëren en de spanningsrelaxatie te meten. Dit leidt tot schalingsregels
waarmee precies kan worden gedefinieerd waar lineaire respons geldig
is en waar niet. De resultaten laten zien dat het gebied waar lineaire
respons geldig is geheel verdwijnt in de buurt van het jamming point, zodat
daar zelfs hele kleine of langzame deformaties niet voldoen aan de wet van
Hooke.

De relatie tussen viscoelasticiteit en nietlineaire effecten wordt onder
zocht in hoofdstuk Ch. 3. De dynamica van viscoelastische materialen
wordt bepaald door de relaxatietijd. Op korte tijdschalen zijn visceuze ver
liezen dominant. Op lange tijdschalen wordt het gedrag van materialen
bepaald door elastische krachten. Door een stapvormige vervorming aan
te brengen wordt de invloed van de amplitude van de vervorming en de
afstand tot het jamming point op de relaxatietijd onderzocht. Er zijn twee
gebieden in het domein van mogelijke vervormingen waarbij de relaxatie
tijd vrijwel onafhankelijk is van de amplitude van de vervorming. Tot onze
verrassing wordt het gebied bij grote vervorming nauwkeurig beschreven
door theoretische voorspellingen afgeleid voor zeer kleine vervormingen.

In hoofdstuk Ch. 4 wordt het verband tussen nietlineariteit en irrever
sibiliteit onderzocht. Door het uitvoeren van omgekeerde afschuifproeven
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wordt zogenaamd plastic work waargenomen als functie van de maximaal
toegepaste vervorming en de afstand tot het jamming point. Verrassend
genoeg blijkt dat zelfs voor kleine lineaire deformaties de plastic work niet
gelijk is aan nul. Daaruit blijkt dat enige mate van irreversibiliteit reeds
aanwezig is indien de spanningvervormingscurve niet afwijkt van lineair
gedrag. Deze irreversibiliteit neemt toe met toenemende vervorming en
vlakt uiteindelijk af tot een plateauwaarde. Hieruit kan geconcludeerd
worden dat irreversibiliteit voorafgaat aan het zacht worden van het ma
teriaal, en dat nietlineariteit alleen gerelateerd is aan een volledig ont
wikkelde irreversibiliteit.
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What do shaving foam and sand on the beach have in common? If we
hold the two materials in our hands, we might not observe many simi
larities. Nevertheless, they do share particular properties. For instance,
both can behave like a liquid or solid, depending on the circumstances.

Figure 1.1: Sand flowing
through an hourglass.

Sand, a granular material, flows through
an hourglass and splashes to the bottom, in
a way that is reminiscent of water flowing out
of a faucet, visible in Fig. 1.1. However, it
does not fill up the bottom as a conventional
fluid would, but creates a solid pile. Shav
ing foam can also from a ”pile” on your hand,
but it flows when you smear it on your skin.
Sand and foams have a comparable micro
scopic structure, from which follow similar
properties. Sand is comprised of many indi
vidual grains, which are different shapes and
sizes. As all grains are different they can only
arrange in a disordered manner. Similarly,
when observed under a microscope, shaving
foam is comprised of individual, not grains,
but bubbles dispersed in water. The bub
bles are polydispersed and disordered like the
sand, and only interact when they are almost
or actually touching each other. Due to the
different shapes and sizes of the grained and
bubbles, it is impossible for them to arrange in

a ordered, crystalline structure. Instead they jam into disordered solid
like states.

Aside from granular matter and foams, there exist other materials
which also display a similar disordered liquidsolid transition. When
emulsions for example are subjected to a high enough stress, they lose
any kind of rigidness and start to flow. Think of face cream as it is taken
out of container. It does not flow down your arms, but it is possible to
smear it on your hands.

The threshold above which a material yields and flows is called the
yield stress. The yield stress changes with the volume fraction, that is
denser systems must overcome a larger threshold to flow.

We see that all these are very different materials, but nevertheless
share similar properties. In [2], Liu and Nagel presented a phase diagram,
combining observations about dense amorphous matter. (A third axis
temperature is omitted because this thesis deals only with nonBrownian
systems.) We only consider two principal axes of the phase diagram, the
stress 𝜎 and the volume fraction 𝜙, shown in Fig. 1.2. We see the bound
ary between jammed and unjammed phases. Jammed amorphous lose
their rigidity through decreasing volume fraction or yielding. Point 𝐽 in
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Figure 1.2: The jamming phase diagram. Arrow icon by [1]

this sense is quite remarkable. A material with zero stress can, at one
point, cross over to the unjammed phase. That means that at point 𝐽 , we
can speak of a critical volume fraction 𝜙(𝐽) = 𝜙𝑐. Materials in this state
are marginally stable [3].

1.1. Jamming transition in foams
Point J corresponds to the state where the volume fraction, equals that
of a random close packing. The random close packing volume fraction
is the highest that randomly assembled particles can occupy while the
external pressure is zero. In three dimensions it is 𝜙3𝐷

𝑐 = 64% and in two
dimensions it is 𝜙2𝐷

𝑐 = 84% [4–6]. If the volume fraction is increased above
RCP, by applying pressure, the material jams, and can act as a solid.

Figure 1.3: Schematic of a foam as the volume fraction changes, highlighting the specially
of the jamming transition at 𝜙𝑐

Fig. 1.3 illustrates the microscopic changes in a foam while the vol
ume fraction increases and crosses the critical point. At low 𝜙 bubbles
have enough space to spread out and do not touch. Because the bubble
interactions are short ranged and repulsive [7], the individual bubbles
are unaware of each other. The material properties are then dominated
by the continuous phase, exhibiting liquidlike behavior. At the critical
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point, 𝜙 = 𝜙𝑐, the bubbles suddenly start touching. Upon contact, they
exert repulsive force on each other, because surface tension favors spher
ical shapes.

Because the bubbles repel one another, contact is only possible when
they are confined by an external stress due to e.g walls or gravity. At 𝜙𝑐
an entire contact network is formed, spanning through the whole system.
The bubbles jam, and the material becomes rigid [8] i.e. it is capable of
resisting bulk changes to its size and/or shape. The average number of
contacts, 𝑧, is zero below critical volume fraction and jumps form zero to
a finite number, at 𝜙𝑐 [4].

What is the minimum average number of contacts per bubble, that
is needed in order for the material to jam? In [9], Maxwell introduced a
counting argument which balances degrees of freedom (particle positions)
and constraints (the contacts). The result is that the average number of
contacts at the critical point 𝑧𝑐 must be

𝑧𝑐 = 2𝑑, (1.1)

where 𝑑 is the number of spatial dimensions. A system in which 𝑧 = 𝑧𝑐 is
termed isostatic. PointJ is an isostatic point [4, 10], where the number of
contacts are just enough for the material to be rigid. Hence the distance
to isostaticty Δ𝑧 = 𝑧 − 𝑧𝑐 is also a useful quantifier of the system’s state.

1.2. Mechanics of jammed solids
As foams and emulsions are soft, they can be pushed above the jamming
volume fraction. Then bubbles are pressed into each other, abandon
ing their spherical shape as shown in Fig. 1.3. By compressing them,
the number of contacts increases. Because of this contact network, the
amorphous solid can support stress. Earlier works establish [4, 7, 11] a
scaling argument for the average number of contacts per particle that the
system has in excess of 𝑧𝑐

𝑧 − 𝑧𝑐 ∼ (𝜙 − 𝜙𝑐)1/2. (1.2)

The pressure also changes as the volume fraction increases. At 𝜙𝑐 bubbles
touch without deforming, and so

𝑝𝑐 = 0. (1.3)

Above 𝜙𝑐 bubbles deform, leading to a pressure that grows linearly with
the excess volume fraction [4],

𝑝 − 𝑝𝑐 ∼ 𝑝 ∼ 𝜙 − 𝜙𝑐. (1.4)

Where convenient, we will use 𝑝 as a measure of distance to (un)jamming.
In conventional solids, when deformations are small the stress re

sponse is linear, meaning if the strain is doubled the stress also doubles.
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However, if the deformation is reversed the material returns to its original
form. The linear approximation is mathematically simple and universally
applicable for small enough deformations. Hooke’s law [12, 13] expresses
the linear relation of strain 𝛾 and stress 𝜎,

𝜎 = 𝐺𝛾, (1.5)

where 𝐺 is the shear modulus, a material property. In jammed solids the
shear modulus depends the distance to hamming and vanishes at 𝜙𝑐,

𝐺 ∼ 𝜙 − 𝜙𝑐
1/2, (1.6)

as illustrated in Fig. 1.4 [4, 14].

Figure 1.4: Evolution of the shear modulus as a function of the volume fraction.

Figure 1.5: Collapsing of shav
ing foam in time. (top) fresh
foam, (bottom) decaying in time.

In many conventional solids, Hooke’s law
gives a good description of the stressstrain
curve up the point where they fail. Amor
phous solids, on the other hand, can easily
be pushed into the regime where Hooke’s law
is violated. There are two main ways, Hooke’s
law can break  either the deformation is too
fast or too large. We describe these in turn.

Viscoelaticty Taking some shaving foam
out of a can and simply putting it on a sur
face, it will sit on it and keep its form, like
in the top picture in Fig. 1.5. This is a hall
mark of a solid. After some time has passed
the foam will lose its shape and start to col
lapse, as seen in the bottom picture in Fig. 1.5
[15, 16]. When bubbles slide past each other,
they dissipate energy. This dissipation is vis
cous, i.e. it depends on the rate of deforma
tion. Viscous dissipation is neglected in Hooke’s law, which depends on
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strain but not on strain rate. If the system is sheared slowly enough, vis
cous effects can indeed be neglected. For higher strain rates, however,
viscous contributions to the stress become comparable to elastic contri
butions, and can no longer be neglected. The competition between elastic
storage and viscous losses is governed by a characteristic time scale, the
relaxation time. A deformation is ”fast” if the inverse strain rate is smaller
than the relaxation time. One of the main results of this thesis will be to
show that, close to the jamming transition, viscous effects grow in impor
tance and cannot be neglected.

Fig. 1.6 illustrates the process of relaxation in a jammed solid [17]. The
particles are initially displaced according to an affine profile (Fig. 1.6a).
However, these new positions are not force balanced. The particles then
move nonaffinely until mechanical equilibrium is reached. These non
affine motions are a significant source of dissipation.

(a) Affine displacement of particles. (b) Final displacement of individual particles, after
returning to an equilibrium state.

Figure 1.6: Displacement of particles on a two dimensional system as a response to an affine
displacement. Large arrow icon by [18]

Softening Small shear strains are reversible, meaning the system re
turns to its original state when an applied load is removed. But as strain
builds up and the particles undergo rearrangements, it eventually hap
pens that the system can no longer return to its initial state. The de
formation is then said to be a mixture of elastic and plastic. One could
assume that the onset of plasticity coincides with the ”yield strain”, i.e.,
the strain where 𝜎 = 𝜎𝑌 . More generally, there is some strain 𝛾†, where a
system no longer follows the linear trend of Hooke’s law, even if the strain
rate is small to remove viscous effects. We call this softening. In Ch. 2
we show that in jammed matter, 𝛾† is much smaller then the yield strain,
and even vanishes at 𝜙𝑐.



1.3. Simulations of jammed solids

1

7

1.3. Simulations of jammed solids
The results in this thesis are made based on extensive numerical simula
tions. All simulations are done using Durian’s ‘Bubble Model‘ [7, 19].

Bubble Model The model takes into account the forces acting on the
bubbles when they touch. Upon contact real bubbles flatten out at the
contact and increase the surface area of the gasliquid interface. For sim
plicity, in the bubble model, the bubbles retain their spherical shape and
the contact is characterized by comparing the sum of the radii, 𝑅𝑖 + 𝑅𝑗 of
bubbles 𝑖 and 𝑗 to their centertocenter distance r𝑖𝑗. The difference is the
overlap between two bubbles, denoted by 𝛿𝑖𝑗 = (𝑅𝑖 + 𝑅𝑗) − 𝑟𝑖𝑗.

Figure 1.7: Illustration of bubble interaction in the Durian bubble model

The force between two bubbles is expressed as a function of the over
lap,

fel𝑖𝑗 = {𝑘𝛿 r𝑖𝑗
𝑟𝑖𝑗

, if 𝛿 < 0
0, otherwise,

(1.7)

where 𝑘 is the spring constant, which is proportional to the surface ten
sion.

Energy is dissipated by the viscous force, which is proportional to the
relative velocity v𝑖𝑗 = v𝑗 − v𝑖 of bubbles 𝑖 and 𝑗.

fvis𝑖𝑗 = {−𝑏v𝑖𝑗, if 𝛿 < 0
0, otherwise, (1.8)

where 𝑏 is a damping coefficient, proportional to the viscosity of the con
tinuous phase. We choose units of stress and time such that the spring
constant 𝑘 and the damping coefficient 𝑏 are both equal to one. As initial
conditions packings with a fixed number of bubbles, at a fixed distance to
jamming are created. The packings are bidisperse with a ratio of 1:1.4 in
a 50:50 distribution [6]. Bubbles are placed randomly into a fixed volume.
We then use an energy minimization algorithm (see below) to find a local
energy minimum, where the gradients with respect to all particle degrees
of freedom vanish, and the gradient with respect to the shear strain is
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zero. The latter condition guarantees zero shear stress. When deforming
the packings LeesEdwards boundary conditions are applied [20].

Two types of simulations were used, molecular dynamics and qua
sistatic simulations. These have complementary strengths and weak
nesses.

Molecular Dynamics (MD) Simulations This is an efficient method to
resolve the dynamics of classical many body systems [21]. After each step,
the particles move according to Newton’s laws, which we integrate using
the velocity Verlet algorithm. This simulation method allows to describe
the time dependent dynamics of the problem. It places a high demand on
computational power, compared to quasistatic methods. The time sim
ulations take depends on the system size, 𝑁 , the distance to the critical
point (the pressure 𝑝) and the size of the deformation (strain step 𝛾). Re
sults are always ensemble averaged. For MD simulations we typically
used an ensemble size of 100 packings. For a typical stress relaxation
simulations we found that a system of 𝑁 = 1024 particles can be simu
lated in a reasonable time frame for 𝑝 as low as 10−5 and for strain step
sizes 𝛾 = 10−6 … 10−2 (these are dimensionless parameters).

Quasistatic Simulations Because MD simulations are computationally
costly, and for some measurements we are not specifically interested in
the dynamics of the system, we also use quasistatic simulations. Qua
sistatic methods are appropriate for describing the response to deforma
tions at arbitrarily slow rates. In this limit the system always sits at a local
minimum, which depends on the particle positions and the shear strain.
Applying a strain perturbs the landscape, causing the particles to move
to a new minimum. This can be found using minimization routines such
as nonlinear gradient method [5, 6] or FIRE [22]. Quasistatic simulations
typically take a fraction of the time of MD simulations, which we exploit
to generate higher ensembles. For our simulations the ensemble size is
typically between 300600.

1.4. Structure of this thesis
The work in this thesis is focused on the behavior of amorphous viscoelas
tic materials close to unjamming. We want to understand when and how
the stressstrain response becomes nonlinear and/or rate dependent.

In Ch. 2 we investigate the limits of linear stressstrain response in soft
sphere packings. Linear approximations are often used in simulations
and experiments. We have mapped out the boundaries to Hooke’s law
by systematically performing stress relaxation and shear start up tests.
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From these we derive scaling arguments that define the window where
linear response is valid. Our results show that the window vanishes at
the transition, meaning that even small or slow deformation will break
linear response.

In Ch. 3 we investigate the relation between viscoelasticty and non
linear effects. The relaxation time 𝜏∗ is the governing time scale in the
dynamics of viscoelastic materials. Deformations slower than 𝜏∗ are gov
erned by viscous forces, while for faster deformations they are negligible.
We perform step strain tests to measure the relaxation time at varying
step size. At low strains, in the linear regime the relaxation time is con
stant and increases when the response becomes nonlinear. Our results
show that the relaxation time turns constant again for sufficiently high
strains, i.e., the increase in the nonlinear regime is a crossover between
two plateau values. This particular strain dependency scales with the
distance to jamming. These results are important for interpreting experi
mental data near unjamming.

In Ch. 4 we investigate the connection between nonlinearity and irre
versibility in soft sphere packings, to gain insight into the mechanics of
softening. We perform shear reversal tests and compare the initial and
final states of the packing. From these simulations we draw conclusions
about macroscopic quantities, like plastic work and the underling mi
croscopic topology of the system. Even after small linear deformations
we find nonzero plastic work. The amount of plastic work increases as
the maximum applied strain is increased. However, our results clearly
show, that after a certain strain irreversibility saturates. Together with
the macroscopic results we draw the conclusion, that irreversibility pre
cedes softening, and that nonlinearity is connected only to a ‘fully devel
oped‘ irreversibility.





2
Beyond linear elasticity

The shear response of soft solids can be modeled with linear elasticity, pro
vided the forcing is slow and weak. Both of these approximations must
break down when the material loses rigidity, such as in foams and emul
sions at their (un)jamming point – suggesting that the window of linear elas
tic response near jamming is exceedingly narrow. Yet precisely when and
how this breakdown occurs remains unclear. To answer these questions,
we perform computer simulations of stress relaxation and shear startup
tests in athermal soft sphere packings, the canonical model for jamming.
By systematically varying the strain amplitude, strain rate, distance to jam
ming, and system size, we identify characteristic strain and time scales that
quantify how and when the window of linear elasticity closes, and relate
these scales to changes in the microscopic contact network.

This chapter is based on the following publication: J. Boschan, D. Vågberg,
E. Somfai, B.P. Tighe, Beyond linear elasticity: jammed solids at finite shear
strain and rate , Soft Matter, 12, 54505460 (2016).
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2.1. Introduction
Linear elasticity predicts that when an isotropic solid is sheared, the re
sulting stress 𝜎 is directly proportional to the strain 𝛾 and independent of
the strain rate ̇𝛾,

𝜎 = 𝐺0𝛾 , (2.1)

with a constant shear modulus 𝐺0.[12] The constitutive relation (2.1) –
a special case of Hooke’s law – is a simple, powerful, and widely used
model of mechanical response in solids. Yet formally it applies only in the
limit of vanishingly slow and weak deformations. In practice materials
possess characteristic strain and time scales that define a linear elastic
“window”, i.e. a parameter range wherein Hooke’s law is accurate. Deter
mining the size of this window is especially important in soft solids, where
viscous damping and nonlinearity play important roles.[23] The goal of the
present work is to determine when Hooke’s law holds, and what eventually
replaces it, in soft sphere packings close to the (un)jamming transition.

Jammed sphere packings are a widely studied model of emulsions and
liquid foams [7, 24–26] and have close connections to granular media and
dense suspensions. [27–29] Linear elastic properties of jammed solids,
such as moduli and the vibrational density of states, are by now well un
derstood.[30, 31] Much less is known about their viscoelastic [27, 32] and
especially their nonlinear response.[33, 34] Yet the jamming transition
must determine the linear elastic window, because the shear modulus 𝐺0
vanishes continuously at the jamming point, where the confining pressure
𝑝 goes to zero. Indeed, studies of oscillatory rheology [35] and shocks [36–
38] have shown that, precisely at the jamming point, any deformation is
effectively fast and strong, and neither viscous effects nor nonlinearities
can be neglected.

Because elasticity in foams, emulsions, and other amorphous ma
terials results from repulsive contact forces, microstructural rearrange
ments of the contact network have signatures in the mechanical response.
Namely, they lead to nonlinearity and irreversibility in the particle trajec
tories, and eventually to steady plastic flow.[39–44] Jammed packings of
perfectly rigid particles cannot deform without opening contacts; their
response is intrinsically nonlinear, and the number of contact changes
per unit strain diverges in the limit of large system size.[45, 46] Recently
Schreck and coworkers addressed contact changes inside the jammed
phase[47–50]; specifically, they asked howmany contact changes a jammed
packing undergoes before linear response breaks down. They found that
trajectories cease to be linear as soon as there is a single rearrangement
(made or broken contact) in the contact network, and contact changes
occur for vanishing perturbation amplitudes in large systems. Their find
ings caused the authors to question, if not the formal validity, then at
least the usefulness of linear elasticity in jammed solids – not just at the
jamming point, but anywhere in the jammed phase.
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There is, however, substantial evidence that it is useful to distinguish
between linear response in a strict sense, wherein particle trajectories fol
low from linearizing the equations of motion about an initial condition,
and linear response in a weak sense, wherein the stressstrain curve
obeys Hooke’s law.[51–54] Hooke’s law remains applicable close to but
above jamming because coarse grained properties are less sensitive to
contact changes than are individual trajectories. Agnolin and Roux ver
ified numerically that linearization captures the initial slope of a stress
strain curve, while Van Deen et al. showed explicitly that the slope of the
stressstrain curve is on average the same before and after the first con
tact change [51, 52]. Goodrich et al. further demonstrated that contact
changes have negligible effect on the density of states.[54] These results
verify the intuitive expectation that weak linear response remains valid
even after strict linear response is violated. This in turn raises – but does
not answer – the question of when Hooke’s law eventually does break
down.

Recent experiments [33, 41], simulations, [34, 44, 55, 56] and theory
[57] provide evidence for a two stage yielding process, where response
first becomes nonlinear (stress is no longer directly proportional to strain)
and only later establishes steady plastic flow (stress is independent of
strain). To distinguish these two crossovers, we will refer to them as soft
ening and yielding, respectively; our focus will be mainly on the softening
crossover. It remains unclear precisely how rate dependence, nonlinear
ity, and contact changes contribute to the breakdown of linear elasticity
and onset of softening. In order to unravel these effects, it is necessary
to vary strain, strain rate, pressure, and system size simultaneously and
systematically – as we do here for the first time. Using simulations of vis
cous soft spheres, we find that Hooke’s law is valid within a surprisingly
narrow window bounded by viscous dissipation at small strain and plastic
dissipation at large strain. The size of the linear elastic window displays
power law scaling with pressure and correlates with the accumulation of
not one, but an extensive number of contact changes.

The basic scenario we identify is illustrated in Fig. 2.1, which presents
ensembleaveraged shear stress versus strain. Shear is applied via a
constant strain rate ̇𝛾0 at fixed volume. We identify three characteris
tic scales, each of which depend on the initial pressure 𝑝: (i) For strains
below 𝛾∗ ≡ ̇𝛾0𝜏∗, where 𝜏∗ is a diverging time scale, viscous stresses are
significant and Eq. (2.1) underestimates the stress needed to deform the
material. This crossover strain vanishes under quasistatic shear ( ̇𝛾0 → 0,
filled squares). (ii) Above a vanishing strain 𝛾† the material softens and
Hooke’s law overestimates the stress. This crossover is rateindependent,
consistent with plastic effects. (iii) For strain rates above a vanishing scale
̇𝛾† (triangles), Eq. (2.1) is never accurate and there is no strain interval
wherein the material responds as a linear elastic solid.
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Figure 2.1: Ensembleaveraged stressstrain curves of packings sheared at varying strain
rate �̇�0. Close to the jamming point the linear stressstrain curve (dashed line) predicted by
Hooke’s law holds over a narrow interval at low strain, with deviations due to viscous and
plastic dissipation. The crossover strains 𝛾∗ and 𝛾† are indicated for the data sheared at
slow but finite rate 0 < �̇�0 < �̇�† (open circles).

2.2. Soft spheres: Model and background
We first introduce the soft sphere model and summarize prior results re
garding linear elasticity near jamming.

2.2.1. Model
We perform numerical simulations of the Durian bubble model [7], a
mesoscopic model for wet foams and emulsions. The model treats bub
bles/ droplets as nonBrownian disks that interact via elastic and viscous
forces when they overlap. Elastic forces are expressed in terms of the over
lap 𝛿𝑖𝑗 = 1−𝑟𝑖𝑗/(𝑅𝑖 + 𝑅𝑗), where 𝑅𝑖 and 𝑅𝑗 denote radii and ⃗𝑟𝑖𝑗 points from
the center of particle 𝑖 to the center of 𝑗. The force is repulsive and acts
along the unit vector ̂𝑟𝑖𝑗 = ⃗𝑟𝑖𝑗/𝑟𝑖𝑗:

⃗𝑓el
𝑖𝑗 = {−𝑘(𝛿𝑖𝑗) 𝛿𝑖𝑗 ̂𝑟𝑖𝑗 , 𝛿𝑖𝑗 > 0

⃗0, 𝛿𝑖𝑗 < 0. (2.2)



2.2. Soft spheres: Model and background

2

15

The prefactor 𝑘 is the contact stiffness, which generally depends on the
overlap

𝑘 = 𝑘0 𝛿𝛼−2 . (2.3)

Here 𝑘0 is a constant and 𝛼 is an exponent parameterizing the interaction.
In the following we consider harmonic interactions (𝛼 = 2), which provide
a reasonable model for bubbles and droplets that resist deformation due
to surface tension; we also treat Hertzian interactions (𝛼 = 5/2), which
correspond to elastic spheres.

We perform simulations using two separate numerical methods. The
first is a molecular dynamics (MD) algorithm that implements SLLOD dy
namics [58] using the velocityVerlet scheme. Energy is dissipated by
viscous forces that are proportional to the relative velocity Δ ⃗𝑣 𝑐

𝑖𝑗 of neigh
boring particles evaluated at the contact,

⃗𝑓visc
𝑖𝑗 = −𝜏0 𝑘(𝛿𝑖𝑗) Δ ⃗𝑣 𝑐

𝑖𝑗 , (2.4)

where 𝜏0 is amicroscopic relaxation time. Viscous forces can apply torques,
hence particles are allowed to rotate as well as translate.

In addition to MD, we also perform simulations using a nonlinear con
jugate gradient (CG) routine [5], which keeps the system at a local mini
mum of the potential energy landscape, which itself changes as the sys
tem undergoes shearing. The dynamics are therefore quasistatic, i.e. the
particle trajectories correspond to the limit of vanishing strain rate.

All results are reported in units where 𝑘0, 𝜏0, and the average particle
diameter have all been set to one. Each disk is assigned a uniform mass
𝑚𝑖 = 𝜋𝑅2

𝑖 , which places our results in the overdamped limit.
Bubble packings consist of 𝑁 = 128 to 2048 disks in the widely stud

ied 50:50 bidisperse mixture with a 1.4:1 diameter ratio.[6] Shear is im
plemented via LeesEdwards “sliding brick” boundary conditions at fixed
volume 𝑉 (area in two dimensions). The stress tensor is given by

𝜎𝛼𝛽 = 1
2𝑉 ∑

𝑖𝑗
𝑓𝑖𝑗,𝛼𝑟𝑖𝑗,𝛽 − 1

𝑉 ∑
𝑖

𝑚𝑖𝑣𝑖,𝛼𝑣𝑖,𝛽 , (2.5)

where ⃗𝑓𝑖𝑗 is the sum of elastic and viscous contact forces acting on par
ticle 𝑖 due to particle 𝑗, and ⃗𝑣𝑖 is the velocity of particle 𝑖. Greek indices
label components along the Cartesian coordinates 𝑥 and 𝑦. The confining
pressure is 𝑝 = −(1/𝐷)(𝜎𝑥𝑥 + 𝜎𝑦𝑦), where 𝐷 = 2 is the spatial dimension,
while the shear stress is 𝜎 = 𝜎𝑥𝑦. The second term on the righthand side
of Eq. (2.5) is a kinetic stress, which is always negligible in the parameter
ranges investigated here.

We use the pressure 𝑝 to measure a packing’s distance to jamming.
Common alternatives are the excess volume fraction Δ𝜙 = 𝜙 − 𝜙𝑐 and ex
cess mean contact number Δ𝑧 = 𝑧 − 𝑧𝑐, where 𝜙𝑐 and 𝑧𝑐 = 2𝐷 refer to the
respective values at jamming.[4, 30, 59] We prefer to use the pressure as
an order parameter because it is easily accessed in experiments (unlike 𝑧),
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and its value at the transition, 𝑝𝑐 = 0, is known exactly (unlike 𝜙). There
fore, prior to shearing, all packings are prepared at a targeted pressure.
The equilibration procedure includes the box size and shape in addition
to the particle positions as degrees of freedom, which guarantees that the
stress tensor is proportional to the unit matrix and that the packing is
stable to shear perturbations.[60] At each pressure there are fluctuations
in 𝜙 and 𝑧, however for a given preparation protocol the probability distri
butions of 𝜙 and 𝑧 tend to a delta function with increasing 𝑁 [4, 5], and
typical values (e.g. the mean or mode) satisfy the scaling relation

𝑝
𝑘 ∼ Δ𝜙 ∼ Δ𝑧2 . (2.6)

Here 𝑘 is a typical value of the contact stiffness 𝑘(𝛿𝑖𝑗) in Eq. (2.3), which
is simply the constant 𝑘0 in the harmonic case (𝛼 = 2). For other val
ues of 𝛼, however, 𝑘 depends on the pressure. As the typical force triv
ially reflects its bulk counterpart, 𝑓 ∼ 𝑝, the contact stiffness scales as
𝑘 ∼ 𝑓/𝛿 ∼ 𝑝(𝛼−2)/(𝛼−1). In the following, all scaling relations will specify
their dependence on 𝑘 and the time scale 𝜏0. In the present work 𝜏0 is in
dependent of the overlap between particles (as in the viscoelastic Hertzian
contact problem [61]), but we include 𝜏0 because one could imagine a
damping coefficient 𝑘𝜏0 with more general overlap dependence than the
form treated here.

2.2.2. Shear modulus and the role of contact changes
In large systems the linear elastic shear modulus 𝐺0 vanishes continu
ously with pressure,

𝐺0/𝑘 ∼ (𝑝/𝑘)𝜇 , (2.7)

with 𝜇 = 1/2. Hence jammed solids’ shear stiffness can be arbitrarily
weak. The scaling of 𝐺0 has been determined multiple times, both nu
merically [4, 62, 63] and theoretically [14, 35, 64]; it is verified for our
own packings in Fig. 2.3a and c, as discussed in Section 2.3.

There are two standard approaches to determining 𝐺0. The first, which
we employ, is to numerically impose a small but finite shear strain and re
lax the packing to its new energy minimum.[4, 62] In the second approach
one writes down the 𝐷 equations of motion for each particle and linearizes
them about a reference state, which results in a matrix equation involv
ing the Hessian; solutions to this equation describe the response to an
infinitesimally weak shear.[3, 35, 60, 63–65] The latter approach allows
access to the zero strain limit, but it is blind to any influence of contact
changes.

When calculating the shear modulus using the finite difference method
over strain differences as small as 10−9, double precision arithmetic does
not provide sufficiently accurate results.[66] A straightforward but com
putationally expensive approach is to switch to quadruple precision. In
stead we represent each particle position as the sum of two double preci
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Figure 2.2: The ensembleaveraged relaxation modulus 𝐺𝑟 at pressure 𝑝 = 10−4.5 for four
values of the strain amplitude 𝛾0. In all four cases, 𝐺𝑟 displays an initial plateau corre
sponding to affine particle motion (inset a), followed by a power law decay as the particle
displacements become increasingly nonaffine (b). At long times the stress is fully relaxed
and the final particle displacements are strongly nonaffine (c).

sion variables, which gives sufficient precision for the present work and is
significantly faster than the GCC QuadPrecision Math Library. Since we
are aware of precision issues, we have taken great care to verify our re
sults. The shear modulus calculated using finite difference method agrees
with the corresponding shear modulus obtained using the Hessian ma
trix [30], provided the strain amplitude is small enough that the packing
neither forms new contacts, nor breaks existing ones.

Van Deen et al. [52] measured the typical strain at the first contact
change, and found that it depends on both pressure and system size,

𝛾(1)
cc ∼ (𝑝/𝑘)1/2

𝑁 . (2.8)

The inverse 𝑁dependence is consistent with what one would expect from
a Poisson process. Similar to the findings of Schreck et al. [47], who de
termined a critical perturbation amplitude by deforming packings along
normal modes, the strain scale in Eq. (2.8) vanishes in the large system
limit, even at finite pressure. Earlier work by Combe and Roux probed
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deformations of rigid disks precisely at jamming; they identified a dimen
sionless stress scale 𝜎(1)

cc /𝑝 ∼ 1/𝑁1.16. Naïvely extrapolating to soft spheres
would then give a strain scale 𝛾(1)

cc ∼ 𝜎(1)
cc /𝐺0 ∼ (𝑝/𝑘)1/2/𝑁1.16, in reasonable

but not exact agreement with Eq. (2.8).

2.3. Stress relaxation
We will characterize mechanical response in jammed solids using stress
relaxation and flow startup tests, two standard rheological tests. In the
linear regime they are equivalent to each other and to other common tests
such as creep response and oscillatory rheology, because complete knowl
edge of the results of one test permits calculation of the others.[23]

We employ stress relaxation tests to access the time scale 𝜏∗ over which
viscous effects are significant, and we use flow startup tests to determine
the strain scale 𝛾† beyond which the stressstrain curve becomes nonlin
ear. We consider stress relaxation first.

In a stress relaxation test one measures the timedependent stress
𝜎(𝑡, 𝛾0) that develops in a response to a sudden shear strain with ampli
tude 𝛾0, i.e.

𝛾(𝑡) = { 0 𝑡 < 0
𝛾0 𝑡 ≥ 0 . (2.9)

The relaxation modulus is

𝐺𝑟(𝑡, 𝛾0) ≡ 𝜎(𝑡, 𝛾0)
𝛾0

. (2.10)

We determine 𝐺𝑟 by employing the shear protocol of Hatano.[27] A pack
ing’s particles and simulation cell are affinely displaced in accordance
with a simple shear with amplitude 𝛾0. E.g. for a simple shear in the

̂𝑥direction, the position of a particle 𝑖 initially at (𝑥𝑖, 𝑦𝑖) instantaneously
becomes (𝑥𝑖 + 𝛾0𝑦𝑖, 𝑦𝑖), while the LeesEdwards boundary conditions are
shifted by ̂𝛾0𝐿𝑦, where 𝐿𝑦 is the height of the simulation cell. Then the
particles are allowed to relax to a new mechanical equilibrium while the
LeesEdwards offset is held fixed.

The main panel of Fig. 2.2 illustrates four relaxation moduli of a single
packing equilibrated at pressure 𝑝 = 10−4.5 and then sheared with strain
amplitudes varying over three decades. All four undergo a relaxation from
an initial plateau at short times to a final, lower plateau at long times.
The character of the particle motions changes as relaxation progresses
in time. While the particle motions immediately after the deformation are
affine (Fig. 2.2a), they become increasingly nonaffine as the stresses relax
to a new static equilibrium (Fig. 2.2b,c).

For sufficiently small strain amplitudes, linear response is obtained
and any dependence of the relaxation modulus on 𝛾0 is subdominant.
The nearperfect overlap of the moduli for the two smaller strain ampli
tudes Fig. 2.2 indicates that they reside in the linear regime. The long
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time plateau is then equal to the linear elastic modulus 𝐺0. In practice
there is a crossover time scale 𝜏∗ such that for longer times 𝑡 ≫ 𝜏∗ viscous
damping is negligible and the relaxation modulus is well approximated
by its asymptote, 𝐺𝑟 ≃ 𝐺0. For the data in Fig. 2.2a the crossover time
is 𝜏∗ ≈ 104𝜏0. In the following Section we will determine the scaling of 𝜏∗

with pressure.

2.3.1. Scaling in the relaxation modulus
We now characterize stress relaxation in linear response by measuring
the relaxation modulus, averaged over ensembles of packings prepared at
varying pressure. We will show that 𝐺𝑟 collapses to a critical scaling func
tion governed by the distance to the jamming point, thereby providing a
numerical test of recent theoretical predictions by Tighe.[35] In particular
we test the prediction that the rescaled shear modulus 𝐺/𝐺0 collapses to a
master curve when plotted versus the rescaled time 𝑡/𝜏∗, with a relaxation
time that diverges as

𝜏∗ ∼ (𝑘
𝑝 )

𝜆
𝜏0 (2.11)

for 𝜆 = 1. Both the form of the master curve and the divergence of the
relaxation time can be related to slowly relaxing eigenmodes that become
increasingly abundant on approach to jamming. These modes favor slid
ing motion between contacting particles [63], reminiscent of zero energy
floppymodes [67], and play an important role in theoretical descriptions of
mechanical response near jamming.[3, 14, 35, 64, 68] For further details,
we direct the reader to Ref. [35].

We showed in Fig. 2.2 that a packing relaxes in three stages. The
shorttime plateau is trivial, in the sense that viscous forces prevent the
particles from relaxing at rates faster than 1/𝜏0; hence particles have not
had time to depart significantly from the imposed affine deformation and
the relaxation modulus reflects the contact stiffness, 𝐺𝑟 ∼ 𝑘. We therefore
focus hereafter on the response on time scales 𝑡 ≫ 𝜏0.

To demonstrate dynamic critical scaling in 𝐺𝑟, we first determine the
scaling of its longtime asymptote 𝐺0. We then identify the time scale 𝜏∗ on
which 𝐺𝑟 significantly deviates from 𝐺0. Finally, we show that rescaling
with these two parameters collapses the relaxation moduli for a range
of pressures to a single master curve. While we address variations with
strain in subsequent Sections, the strain amplitude here is fixed to a value
𝛾0 = 10−5.5. We have verified that this strain amplitude is in the linear
regime for all of the data presented in this Section.

As noted above, at long times the relaxation modulus approaches the
linear quasistatic modulus, 𝐺𝑟(𝑡 → ∞) ≃ 𝐺0. We verify Eq. (2.7) in our
harmonic packings with two closely related tests. First we fit a power
law to data from systems of 𝑁 = 2048 particles; the best fit has a slope
of 0.48 (Fig. 2.3a, dashed line). Next, we repeat the finite size scaling
analysis of Goodrich et al. [69], who showed that finite size effects become
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Figure 2.3: (a) The linear shear modulus 𝐺0 in harmonic packings for varying pressure 𝑝
and number of particles 𝑁. (b) The relaxation time 𝜏∗ for the same range of 𝑝 and 𝑁 as
in (a). (c) Finite size scaling collapse of 𝐺0. (d) Finite size scaling collapse of 𝜏∗. (e) The
relaxation modulus 𝐺𝑟 collapses to a master curve when 𝐺𝑟 and 𝑡 are rescaled with 𝐺0 and
𝜏∗, respectively, as determined in (a) and (b). At short times the master curve decays as a
power law with exponent 𝜃 = 𝜇/𝜆 ≈ 0.44 (dashed line), using the estimates from (c) and (d).
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important when a packing has 𝑂(1) contacts in excess of isostaticity, or
equivalently when 𝑝/𝑘 ∼ 1/𝑁2 – c.f. Eq. (2.6). Consistent with their results,
Fig. 2.3a shows clear finite size effects in 𝐺0. Data for different system
sizes can be collapsed to a master curve by plotting 𝐺 ≡ 𝐺0𝑁 versus the
rescaled pressure 𝑥 ≡ 𝑝𝑁2. The master curve approaches a power law 𝑥𝜇

consistent with 𝜇 = 0.5, as shown in Fig. 2.3c. The scaling of Eq. (2.7),
and specifically the value 𝜇 = 1/2, is verified by this data collapse, together
with the requirement for the modulus to be an intensive property of large
systems. To see this, note that 𝐺0 is intensive only if 𝐺 ∼ 𝑥1/2 for large 𝑥.

Again referring to Fig. 2.2, there is clearly some time scale 𝜏∗ such
that for 𝑡 < 𝜏∗ the relaxation modulus deviates significantly from the qua
sistatic modulus. The relaxation time is determined from the point where
𝐺𝑟, averaged over an ensemble of at least 100 packings per condition, has
decayed to within a fraction Δ of its final value, 𝐺𝑟(𝑡 = 𝜏∗) = (1+Δ)𝐺0. We
present data for Δ = 1/𝑒, but similar scaling results for a range of Δ.[56]
Raw data for varying 𝑝 and 𝑁 is shown in Fig. 2.3b. Fitting a power law
to the data for 𝑁 = 2048 gives an exponent 𝜆 = 0.94. We now again seek
to refine our estimate by collapsing data to a master curve. As 𝜏∗ and
𝐺0 are both properties of the relaxation modulus, we require the rescaled
pressure to remain 𝑥 = 𝑝𝑁2, which collapses the 𝐺0 data. We then search
for data collapse in 𝜏∗ by rescaling the relaxation time as 𝜏∗/𝑁2𝜆, which
implies that 𝜏∗ diverges in large systems in accord with Eq. (2.11). While
we find reasonable data collapse for 𝜆 = 0.94, the best collapse occurs for a
larger value 𝜆 ≈ 1.13, shown in Fig. 2.3d. The theoretical prediction 𝜆 = 1
clearly falls within the range of our numerical estimates,[35] although on
the basis of the present data we cannot exclude a slightly different value
of 𝜆.

We now use the linear quasistatic modulus 𝐺0 and the characteristic
time scale 𝜏∗ to collapse the relaxation modulus to a master curve 𝑅(𝑠).
Fig. 2.3c plots 𝑅 ≡ 𝐺𝑟/𝐺0 versus 𝑠 ≡ 𝑡/𝜏∗ for a range of pressures and
system sizes; data from the trivial affine regime at times 𝑡 < 10𝜏0 have been
excluded. The resulting data collapse is excellent, and the master curve
it reveals has two scaling regimes: 𝑅 ≃ 1 for 𝑠 ≫ 1, and 𝑅 ∼ 𝑠−𝜃 for 𝑠 ≪ 1.
The plateau at large 𝑠 corresponds to the quasistatic scaling 𝐺𝑟 ≃ 𝐺0.
The power law relaxation at shorter times corresponds to 𝐺𝑟 ∼ 𝐺0(𝑡/𝜏∗)−𝜃

for some exponent 𝜃. By considering a marginal solid prepared at the
jamming point, one finds that the prefactor of 𝑡−𝜃 cannot depend on the
pressure. Invoking the pressure scaling of 𝐺0 and 𝜏∗ in the large 𝑁 limit,
identified above, we conclude that 𝜃 = 𝜇/𝜆. Hence in large systems the
relaxation modulus scales as

𝐺𝑟(𝑡)
𝑘 ∼ { (𝜏0/𝑡)𝜃 1 ≪ 𝑡/𝜏0 ≪ (𝑘/𝑝)𝜆

(𝑝/𝑘)𝜇 (𝑘/𝑝)𝜆 ≪ 𝑡/𝜏0 . (2.12)

with 𝜇 = 1/2, 𝜆 ≈ 1, and 𝜃 = 𝜇/𝜆 ≈ 0.5. These findings are consistent with
the theoretical predictions in Ref. [35].
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Anomalous stress relaxation with exponent 𝜃 ≈ 0.5 was first observed
in simulations below jamming [27] and is also found in disordered spring
networks.[70, 71] It is related via Fourier transform to the anomalous scal
ing of the frequency dependent complex shear modulus 𝐺∗ ∼ (𝚤𝜔)1−𝜃 found
in viscoelastic solids near jamming.[35] We revisit the scaling relation of
Eq. (2.12) in Section 2.4.6.
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Figure 2.4: Averaged stressstrain curves under quasistatic shear at varying pressure 𝑝.
Solid and dashed curves were calculated using different strain protocols. Dashed curves:
fixed strain steps of 10−3, sheared to a final strain of unity. Solid curves: logarithmically
increasing strain steps, beginning at 10−9 and reaching a total strain of 10−2 after 600 steps.

When does linear elasticity break down under increasing strain, and
what lies beyond? To answer these questions, we now probe shear re
sponse at finite strain using flow startup tests.
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2.4.1. Flow startup
In a flow startup test, straincontrolled boundary conditions are used to
“turn on” a flow with constant strain rate ̇𝛾0 at time 𝑡 = 0, i.e.

𝛾(𝑡) = { 0 𝑡 < 0
̇𝛾0𝑡 𝑡 ≥ 0 (2.13)

To implement flow startup in MD, at time 𝑡 = 0 a packing’s particles
and simulation cell are instantaneously assigned an affine velocity profile
⃗𝑣𝑖 = ( ̇𝛾0 𝑦𝑖, 0)𝑇 in accordance with a simple shear with strain rate ̇𝛾0; the
LeesEdwards images of the simulation cell are assigned a commensurate
velocity. Then the particles are allowed to evolve according to Newton’s
laws while the LeesEdwards boundary conditions maintain constant ve
locity, so that the total strain 𝛾(𝑡) grows linearly in time.

We also perform quasistatic shear simulations using nonlinear CG
minimization to realize the limit of vanishing strain rate. Particle posi
tions are evolved by giving the LeesEdwards boundary conditions a se
ries of small strain increments and equilibrating to a new minimum of the
elastic potential energy. The stress 𝜎 is then reported as a function of the
accumulated strain. For some runs we use a variable step size in order
to more accurately determine the response at small strain.

Fig. 2.1 illustrates the output of both the finite strain rate and qua
sistatic protocols.

2.4.2. Quasistatic stressstrain curves
To avoid complications due to ratedependence, we consider the limit of
vanishing strain rate first.

Fig. 2.4 plots the ensembleaveraged stressstrain curve 𝜎(𝛾) for har
monic packings at varying pressure. Packings contain 𝑁 = 1024 particles,
and each data point is averaged over at least 600 configurations. Several
features of the stressstrain curves stand out. First, there is indeed a win
dow of initially linear growth. Second, beyond a strain of approximately 5
 10% the system achieves steady plastic flow and the stressstrain curve
is flat. Finally, the end of linear elasticity and the beginning of steady plas
tic flow do not generally coincide; instead there is an interval in which the
stressstrain curve has a complex nonlinear form. We shall refer to the
end of the linear elastic regime as “softening” because the stress initially
dips below the extrapolation of Hooke’s law. (In the plasticity literature the
same phenomenon would be denoted “strain hardening”.) Moreover, for
sufficiently low pressures there is a strain interval over which the stress
increases faster than linearly. This surprising behavior is worthy of fur
ther attention, but the focus of the present work will be on the end of
linear elasticity and the onset of softening. This occurs on a strain scale
𝛾† that clearly depends on pressure.



2

24 2. Beyond linear elasticity

10−3 10−2 10−1 100 101 102

γ/p

10−2

10−1

100

101
σ
/G

0
γ

N = 1024

p

p = 10−5.0

p = 10−4.5

p = 10−4.0

p = 10−3.5

p = 10−3.0

p = 10−2.5

p = 10−2.0

10−6 10−5 10−4 10−3 10−2

p

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

γ
†

∆ = 0.7
∆ = 0.6
∆ = 0.5

∆ = 0.4
∆ = 0.3
slope = 1

Figure 2.5: (main panel) Data from Fig. 2.4, expressed as a dimensionless effective shear
modulus 𝜎/𝐺0𝛾 and plotted versus the rescaled strain 𝛾/𝑝. (inset) The crossover strain 𝛾†

where the effective shear modulus has decayed by an amount Δ in a system of 𝑁 = 1024
particles.

2.4.3. Onset of softening
We now determine the pressure and system size dependence of the soft
ening (or nonlinear) strain scale 𝛾†.

Fig. 2.5 replots the quasistatic shear data from Fig. 2.4 (solid curves),
now with the linear elastic trend 𝐺0𝛾 scaled out. The rescaling collapses
data for varying pressures in the linear regime and renders the linear
regime flat. The strain axis in Fig. 2.5b is also rescaled with the pressure,
a choice that will be justified below. The onset of softening occurs near
unity in the rescaled strain coordinate for all pressures, which suggests
that 𝛾† scales linearly with 𝑝 in harmonic packings (𝛼 = 2).

Unlike the linear relaxation modulus in Fig. 2.3c, the quasistatic shear
data in Fig. 2.5 do not collapse to a master curve; instead the slope im
mediately after softening steepens (in a loglog plot) as the pressure de
creases. As a result, it is not possible to unambiguously identify a corre
lation 𝛾† ∼ 𝑝𝜈 between the crossover strain and the pressure. To clarify
this point, the inset of Fig. 2.5 plots the strain where 𝜎/𝐺0𝛾 has decayed
by an amount Δ from its plateau value, denoted 𝛾†(Δ). This strain scale
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is indeed approximately linear in the pressure 𝑝 (dashed curves), but a
power law fit gives an exponent 𝜈 in the range 0.87 to 1.06, depending
on the value of Δ. Bearing the above subtlety in mind, we nevertheless
conclude that an effective power law with 𝜈 = 1 provides a reasonable de
scription of the softening strain. Section 2.3.1 presents further evidence
to support this conclusion.

2.4.4. Hertzian packings
In the previous section the pressuredependence of 𝛾† was determined for
harmonic packings. We now generalize this result to other pair potentials,
with numerical verification for the case of Hertzian packings (𝛼 = 5/2).

Recall that the natural units of stress are set by the contact stiffness 𝑘,
which itself varies with pressure when 𝛼 ≠ 2. Based on the linear scaling
of 𝛾† in harmonic packings, we anticipate

𝛾† ∼ 𝑝
𝑘 ∼ 𝑝1/(𝛼−1) , (2.14)

which becomes 𝛾† ∼ 𝑝2/3 in the Hertzian case. To test this relation, we
repeat the analysis of the preceding Section; results are shown in Fig. 2.6.
We again find a finite linear elastic window that gives way to softening.
Softening onset can again be described with a Δdependent exponent (see
inset). Its value has a narrow spread about 2/3; power law fits give slopes
between 0.63 and 0.74.

2.4.5. Relating softening and contact changes
Why does the linear elastic window close when it does? We now seek to
relate softening with contact changes on the particle scale.[41–44, 47, 52]
Specifically, we identify a correlation between the softening strain 𝛾†, the
cumulative number of contact changes, and the distance to the isostatic
contact number 𝑧𝑐. In so doing we will answer the question first posed
by Schreck and coworkers [47], who asked how many contact changes a
packing can accumulate while still displaying linear elastic response.

We begin by investigating the ensembleaveraged contact change den
sity 𝑛cc(𝛾) ≡ [𝑁make(𝛾)+𝑁break(𝛾)]/𝑁 , where 𝑁make and 𝑁break are the num
ber of made and broken contacts, respectively, accumulated during a
strain 𝛾. Contact changes are identified by comparing the contact net
work at strain 𝛾 to the network at zero strain.

In Fig. 2.7a we plot 𝑛cc for packings of harmonic particles at pressure
𝑝 = 10−4 and varying system size. The data collapse to a single curve,
indicating that 𝑛cc is indeed an intensive quantity. The effect of varying
pressure is shown in Fig. 2.7b. There are two qualitatively distinct regimes
in 𝑛cc, with a crossover governed by pressure.

To better understand these features, we seek to collapse the 𝑛cc data to
a master curve. By plotting 𝑁 ≡ 𝑛cc/𝑝𝜏 versus 𝑦 ≡ 𝛾/𝑝, we obtain excellent
collapse for 𝜏 = 1/2, as shown in Fig. 2.7b for the same pressures as in
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Figure 2.6: (main panel) The dimensionless shear modulus of quasistatically sheared
Hertzian packings plotted versus the rescaled strain 𝛾/𝑝2/3. (inset) Pressuredependence
of the crossover strain 𝛾†.

Fig. 2.7a and system sizes 𝑁 = 128 … 1024. The scaling function 𝑁 ∼ 𝑦
for small 𝑦, while 𝑁 ∼ 𝑦𝜏 for 𝑦 ≳ 1. The rescaled strain 𝑦 provides further
evidence for a crossover scale 𝛾† ∼ 𝑝/𝑘, now apparent at the microscale.
Moreover, the fact that data for varying system sizes all collapse to the
same master curve is an important indicator that 𝛾† is an intensive strain
scale that remains finite in the large system size limit.

The scaling collapse in Fig. 2.7c generalizes the results of Van Deen
et al. [52], who determined the strain scale 𝛾(1)

cc ∼ (𝑝/𝑘)1/2/𝑁 associated
with the first contact change. To see this, note that the inverse slope
(d𝛾/d𝑛cc)/𝑁 represents the average strain interval between contact
changes at a given strain. Hence the initial slope of 𝑛cc is fixed by 𝛾(1)

cc ,

𝑛cc(𝛾) ≃ 1
𝑁 ( 𝛾

𝛾(1)
cc

) (2.15)

as 𝛾 → 0. From Fig. 2.7 it is apparent that 𝑛cc remains linear in 𝛾 up to the
crossover strain 𝛾†. We conclude that 𝛾(1)

cc describes the strain between
successive contact changes over the entire interval 0 < 𝛾 < 𝛾†. In the
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Figure 2.7: The contact change density shown for (a) varying system size and (b) varying
pressure. (c) Data collapse for pressures 𝑝 = 10−2 … 10−5 in half decade steps and system
sizes 𝑁 = 128 … 1024 in multiples of 2. Dashed lines indicate slopes of 1 and 1/2.

softening regime the strain between contact changes increases; it scales
as 𝑛cc ∼ 𝛾1/2 (see Fig. 2.7c). This corresponds to an increasing and strain
dependent mean interval 𝛾1/2/𝑁 between contact changes.

Let us now reinterpret the softening crossover strain 𝛾† ∼ Δ𝑧2 (c.f. Eq.
(2.6)) in terms of the coordination of the contact network. We recall that
Δ𝑧 = 𝑧 − 𝑧𝑐 is the difference between the initial contact number 𝑧 and the
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isostatic value 𝑧𝑐, which corresponds to the minimum number of contacts
per particle needed for rigidity. The excess coordination Δ𝑧 is therefore
an important characterization of the contact network. The contact change
density at the softening crossover, 𝑛†

cc, can be related to Δ𝑧 via Eq. (2.15),
while making use of Eq. (2.6),

𝑛†
cc ≡ 𝑛cc(𝛾†) ∼ Δ𝑧 . (2.16)

Hence we have empirically identified a topological criterion for the onset of
softening: an initially isotropic packing softens when it has undergone an
extensive number of contact changes that is comparable to the number
of contacts it initially had in excess of isostaticity. Note that this does
not mean the packing is isostatic at the softening crossover, as 𝑛cc counts
both made and broken contacts.

2.4.6. Ratedependence
To this point we have considered nonlinear response exclusively in the
limit of quasistatic shearing. A material accumulates strain quasistati
cally when the imposed strain rate is slower than the longest relaxation
time in the system. Because relaxation times near jamming are long and
deformations in the lab always occur at finite rate, we can anticipate
that quasistatic response is difficult to achieve and that ratedependence
generically plays a significant role. Hence it is important to consider shear
at finite strain and finite strain rate. We now consider flow startup tests
in which a finite strain rate ̇𝛾0 is imposed at time 𝑡 = 0, cf. Eq. (2.13).

Fig. 2.8 displays the mechanical response to flow startup for varying
strain rates. To facilitate comparison with the quasistatic results of the
previous section, data are plotted in terms of the dimensionless quantity
𝜎(𝑡; ̇𝛾0)/𝐺0𝛾, which we shall refer to as the effective shear modulus. The
data are for systems of 𝑁 = 1024 particles, averaged over an ensemble of
around 100 realizations each. Here we plot data for the pressure 𝑝 = 10−4;
results are qualitatively similar for other pressures. For comparison, we
also plot the result of quasistatic shear (solid circles) applied to the same
ensemble of packings.

Packings sheared sufficiently slowly follow the quasistatic curve; see
e.g. data for ̇𝛾0 = 10−11. For smaller strains, however, the effective shear
modulus is stiffer than the quasistatic curve and decays as 𝜎/𝛾 ∼ 𝑡−𝜃 (see
inset). This is ratedependence: for a given strain amplitude, the modulus
increases with increasing strain rate. Correspondingly, the characteristic
strain 𝛾∗ where curves in the main panel of Fig. 2.8 reach the linear elastic
plateau (𝜎/𝐺0𝛾 ≈ 1) grows with ̇𝛾0. For sufficiently high strain rates there
is no linear elastic plateau; for the data in Fig. 2.8 this occurs for ̇𝛾0 ≈ 10−8.
Hence there is a characteristic strain rate, ̇𝛾†, beyond which the linear
elastic window has closed: packings sheared faster than ̇𝛾† are always
ratedependent and/or strain softening.
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Figure 2.8: The effective shear modulus during flow startup for packings of 𝑁 = 1024
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To understand the ratedependent response at small strains, we revisit
the relaxation modulus determined in Section 2.3. In linear response the
stress after flow startup depends only on the elapsed time 𝑡 = 𝛾/ ̇𝛾0,

𝜎
𝛾 = 1

𝑡 ∫
𝑡

0
𝐺𝑟(𝑡′)d𝑡′ . (2.17)

Employing the scaling relations of Eq. (2.12), one finds

𝜎
𝛾 ∼ 𝑘 (𝜏0

𝑡 )
𝜃

, 𝜏0 < 𝑡 < 𝜏∗ , (2.18)

as verified in Fig. 2.8 (inset). Linear elasticity 𝜎/𝛾 ≃ 𝐺0 is only established
at longer times, when 𝛾 > ̇𝛾0𝜏∗ ∼ (𝑘/𝑝)𝜆 ̇𝛾0𝜏0. Hence the relaxation time 𝜏∗

plays an important role: it governs the crossover from ratedependent to
quasistatic linear response. The system requires a time 𝜏∗ to relax after a
perturbation. When it is driven at a faster rate, it cannot relax fully and
hence its response depends on the driving rate.
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We can now identify the characteristic strain rate ̇𝛾† where the lin
ear elastic window closes. This rate is reached when the bound on qua
sistaticity, 𝛾 > ̇𝛾0𝜏∗, collides with the bound on linearity, 𝛾 < 𝛾†, giving

̇𝛾† ∼ (𝑝/𝑘)1+𝜆

𝜏0
, (2.19)

with 1 + 𝜆 ≈ 2. This strain rate vanishes rapidly near jamming, hence
packings must be sheared increasingly slowly to observe a stressstrain
curve that obeys Hooke’s law.

2.5. Implications for experiment
The time scale 𝜏∗, strain scales 𝛾∗ and 𝛾†, and strain rate ̇𝛾† all place
bounds on the window of linear elastic response. Which of these quan
tities are most relevant depends on the particular rheological test one
performs. For example, in a flow startup test Hooke’s Law is accurate
within the window 𝛾∗ < 𝛾 < 𝛾†, provided the strain rate ̇𝛾0 < ̇𝛾†. This
is the scenario depicted in Fig. 2.1; it is also illustrated schematically in
Fig. 2.9. In a stress relaxation test, however, the strain amplitude and
test duration can be varied independently. Hooke’s law is then accurate
for 𝛾0 < 𝛾† provided one waits for a time 𝑡 > 𝜏∗ for the system to relax.
(We have verified that the softening onset still occurs at 𝛾† when the full
strain 𝛾0 is applied in one step, as opposed to a quasistatic series of small
steps.) Similar parameter ranges can be constructed for other rheological
tests.

What experimental scales do these quantities correspond to? Most
importantly, one must collect data in the scaling regime near jamming.
Quantities such as the excess coordination and moduli show gradual
deviations from scaling when the excess volume fraction exceeds Δ𝜙 ≈
10−1.[72] Determining the volume fraction with an accuracy better than
1% is difficult[59, 73, 74], hence the experimentally accessible scaling
regime is typically just one decade wide in Δ𝜙.

The onset of softening occurs at a strain scale 𝛾† ∼ (𝑝/𝑘) ∼ Δ𝜙. If we
take the smallest experimentally accessible value of Δ𝜙 to be 10−2, then
Hooke’s law can (potentially) be observed for strains on the order of 1%
and smaller.

To estimate the scales 𝜏∗, 𝛾∗, and ̇𝛾†, one must know the microscopic
time scale 𝜏0, which arises from a balance between viscous and elastic
forces. Simple dimensional analysis then suggests a time scale on the or
der of 𝜂𝑑/𝛾𝑠, where 𝜂 is the viscosity of the continuous phase, 𝑑 is a typical
bubble size, and 𝛾𝑠 is the surface tension.[75] In dishwasher detergent,
for example, viscosities are on the order of 1 mPa⋅s and surface tensions
𝛾𝑠 ∼ 10 mN/m, while bubble sizes can from 100 𝜇m to 1 cm.[76, 77] Hence
microscopic time scales fall somewhere in the range 10−5 … 10−3 s. For Δ𝜙
on the order 10−2, the time scale 𝜏∗ ∼ 𝜏0/(𝑝/𝑘) ∼ 𝜏0/Δ𝜙 remains shorter
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than 0.1 s at accessible values of Δ𝜙, while ̇𝛾† ∼ Δ𝜙2/𝜏0 can be as low as
0.1 s−1.

We offer a note of caution when considering bounds involving the time
scale 𝜏0. First, experiments find power law relaxation at volume fractions
deep in the jammed phase.[78] There is an associated time scale that can
be on the order of 1 s depending on sample age, which is significantly
longer than our estimates of 𝜏0 above. This suggests that coarsening and
details of the continuous phase flow within thin films and Plateau bor
ders may play an important role – in addition to the strongly nonaffine
motion associated with proximity to jamming [35, 79] – yet neither are in
corporated in Durian’s bubble model.[7] Second, while we have considered
dissipation proportional to the relative velocity of contacting particles, the
viscous force law need not be linear. In foams, for example, the dominant
source of damping depends sensitively on microscopic details such as the
size of the bubbles and the type of surfactant used.[76] Often one finds
Brethertontype damping proportional to (relative) velocity to the power
2/3.[77, 80] We anticipate that nonlinear damping would impact the re
laxation dynamics [25, 81, 82] and alter the value of the exponents 𝜃 and
𝜆. For sufficiently long times or slow shearing above 𝜙𝑐, however, we ex
pect particles to follow quasistatic trajectories and the differences between
various methods of damping to become negligible.

2.6. Discussion
Using a combination of stress relaxation and flow startup tests, we have
shown that soft solids near jamming are easily driven out of the linear
elastic regime. There is, however, a narrow linear elastic window that
survives the accumulation of an extensive number of contact changes.
This window is bounded from below by viscous dissipation and bounded
from above by the onset of strain softening due to plastic dissipation.
Close to the transition these two bounds collide and the linear elastic win
dow closes. Hence marginal solids are easily driven into ratedependent
and/or strain softening regimes on at volume fractions and strain scales
relevant to the laboratory. Fig. 2.9 provides a qualitative summary of our
results for the case of flow startup.

While our simulations are in two dimensions, we expect the scaling
relations we have identified to hold for 𝐷 > 2. To the best of our knowledge,
all scaling exponents near jamming that have been measured in both 2D
and 3D are the same. There is also numerical evidence that 𝐷 = 2 is the
transition’s upper critical dimension.[54, 69]

Our work provides a bridge between linear elasticity near jamming,
viscoelasticity at finite strain rate, and nonlinearity at finite strain am
plitude. The measured relaxation modulus 𝐺𝑟 is in good agreement with
the linear viscoelasticity predicted by Tighe,[35] as well as simulations by
Hatano conducted in the unjammed phase.[27] Our findings regarding
the crossover to nonlinear strain softening can be compared to several
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with a crossover strain 𝛾∗ that depends on both pressure and strain rate. Softening sets in
for higher strains, with a crossover 𝛾† that depends only on the pressure. The intersection
of the ratedependent and softening crossovers defines a strain rate �̇�† above which there is
no quasistatic linear response, i.e. the shaded region closes.

prior studies. The granular experiments of Coulais et al. show softening,
although their crossover strain scales differently with the distance to jam
ming, possibly due to the presence of static friction.[33] The emulsions of
Knowlton et al. are more similar to our simulated systems, and do indeed
display a crossover strain that is roughly linear in Δ𝜙, consistent with our
𝛾†.[41] A recent scaling theory by Goodrich et al.[57], by contrast, predicts
a crossover strain 𝛾† ∼ Δ𝜙3/4, which is excluded by our data. Nakayama et
al.[55] claim agreement between their numerical data and the theoretical
exponent 3/4, although they note that their data is also compatible with
a linear scaling in Δ𝜙. A recent study by Otsuki and Hayakawa [34] also
finds a strain scale proportional to Δ𝜙 in simulations of large amplitude
oscillatory shear at finite frequency. The agreement between the crossover
strains in our quasistatic simulations and these oscillatory shear simula
tions is surprising, as most of the latter results are for frequencies higher
than ̇𝛾†, where viscous stresses dominate. There are also qualitative dif
ferences between the quasistatic shear modulus, which cannot be col
lapsed to a master curve (Fig. 2.5), and the storage modulus in oscillatory
shear, which can.[34, 56] We speculate that there are corresponding mi
crostructural differences between packings in steady state and transient
shear, [40] similar to those which produce memory effects.[83]
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Soft sphere packings near jamming approach the isostatic state, which
also governs the rigidity of closely related materials such as biopolymer
and fiber networks.[84–87] It is therefore remarkable to note that, whereas
sphere packings soften under strain, quasistatically sheared amorphous
networks are strain stiffening beyond a crossover strain that scales as
Δ𝑧 [88], which vanishes more slowly than 𝛾† ∼ Δ𝑧2 in packings. Hence
nonlinearity sets in later and with opposite effect in networks.[89] We
expect that this difference is attributable to contact changes, which are
absent or controlled by slow binding/unbinding processes in networks.

We have demonstrated that softening occurs when the system has ac
cumulated a finite number of contact changes correlated with the system’s
initial distance from the isostatic state. This establishes an important link
between microscopic and bulk response. Yet further work investigating
the relationship between microscopic irreversibility, softening, and yield
ing is needed. The intercycle diffusivity in oscillatory shear, for example,
jumps at yielding [41, 44], but its pressure dependence has not been stud
ied. Shear reversal tests could also provide insight into the connection
between jamming and plasticity.

While the onset of softening can be probed with quasistatic simula
tion methods, rate dependent effects such as the strain scale 𝛾∗ should
be sensitive to the manner in which energy is dissipated. The dissipa
tive contact forces considered here are most appropriate as a model for
foams and emulsions. Hence useful extensions to the present work might
consider systems with, e.g., lubrication forces or a thermostat.





3
Stress Relaxation

We report the results of molecular dynamics simulations of stress relaxation
tests in athermal viscous soft sphere packings close to their unjamming
transition. By systematically and simultaneously varying both the ampli
tude of the applied strain step and the pressure of the initial condition,
we access both linear and nonlinear response regimes and control the dis
tance to jamming. Stress relaxation in viscoelastic solids is characterized
by a relaxation time 𝜏∗ that separates short time scales, where viscous loss
is substantial, from long time scales, where elastic storage dominates and
the response is essentially quasistatic. We identify two distinct plateaus
in the strain dependence of the relaxation time, one each in the linear and
nonlinear regimes. The height of both plateaus scales as an inverse power
law with the distance to jamming. By probing the time evolution of particle
velocities during relaxation, we further identify a correlation between me
chanical relaxation in the bulk and the degree of nonaffinity in the particle
velocities on the micro scale.

This chapter is based on the following publication: J. Boschan, S.A. Va
sudevan, P.E. Boukany, E. Somfai, B.P. Tighe, Stress relaxation in viscous
soft spheres, Soft Matter, 13, 68706876, (2017).
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3.1. Introduction
Viscoelasticity is associated with one or more time scales that reflect the
changing balance between viscous loss and elastic storage as a material’s
response to mechanical perturbations evolves in time.[23, 90] Here we
implement a standard rheometric test of viscoelasticity, namely stress re
laxation in response to an instantaneous step strain, and apply it to a
minimal numerical model for foams, emulsions, and soft colloidal sus
pensions. [7]

Our focus is on athermal systems close to the nonequilibrium (un)jam
ming transition, where the material develops rigidity under compression.
[4, 24, 30] Because the shear modulus vanishes continuously at the jam
ming point, weakly jammed states near the transition can be arbitrarily
soft.[4] Intuition then suggests that their linear response window should
also be narrow – small changes in strain amplitude should suffice to drive
weakly jammed materials from linear to nonlinear response. Numerics
confirm this expectation; under quasistatic shear, for example, the strain
scales where the first contact change occurs and where bulk softening
sets in both vanish as power laws with the pressure.[52, 91, 92] While
there has recently been considerable interest in nonlinear response near
jamming,[33, 34, 36, 45–47, 52, 88, 89, 91–96] the form of the relaxation
time for large strain steps remains an important open question. Here
we demonstrate for the first time that, as the system passes from linear
to nonlinear response, relaxation times depend not only on the material
constitution, but also on the amplitude of a shear perturbation.

A diverging relaxation time is an important mechanical property of soft
amorphous matter near jamming.[3, 35, 97] In the jammed phase, the
stress relaxation time 𝜏∗ describes the time needed to reach a new me
chanical equilibrium after a sudden shear strain.[92] In linear response,
the divergence of 𝜏∗ as the confining pressure 𝑝 is sent to zero signals
the loss of rigidity.[35] The unjammed phase displays a similarly growing
time scale, which marks a crossover from power law to exponential stress
relaxation.[27] Both linear and nonlinear stress relaxation can be char
acterized with the relaxation modulus 𝐺𝑟(𝑡, 𝛾0), which describes the time
evolution of the shear stress 𝜎(𝑡, 𝛾0) after a step strain with amplitude 𝛾0,

𝐺𝑟(𝑡, 𝛾0) = 𝜎(𝑡, 𝛾0)
𝛾0

. (3.1)

For infinitesimal 𝛾0, the stress is directly proportional to the strain and 𝐺𝑟
is a function of time alone. In this limit the relaxation modulus is equiv
alent (i.e. related by standard mathematical transformations) to other
common rheometric tests, including small amplitude oscillatory shear
and flow startup.[23] In the nonlinear regime this equivalence generally
breaks down.

Existing theoretical [35] and numerical[92] studies of 𝐺𝑟 near jamming
are valid only in the linear response regime. Its typical form is illus
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trated in Fig. 3.1. After a brief plateau at short times, 𝐺𝑟 undergoes a
power law decay before reaching a quasistatic plateau. The relaxation
time is the time needed to reach the quasistatic plateau. In linear re
sponse it diverges as an inverse power law with 𝑝.[35, 70, 92, 98] Numer
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Figure 3.1: The time evolution of the shear relaxation modulus 𝐺𝑟, calculated for a step
strain with amplitude 𝛾0 = 10−6 at pressure 𝑝 = 10−4 and 𝑁 = 1024. The characteristic
relaxation time 𝜏∗ is identified as the point where 𝐺𝑟 reaches 1 + 1/𝑒 times its quasistatic
plateau value.

ical studies of nonlinear response near jamming typically neglect rate
dependent effects by focusing on quasistatic shear.[34, 52, 91, 92, 94]
They have identified two important lineartononlinear crossover strain
scales. The first corresponds to the breakdown of linear response on the
scale of individual particle trajectories, which is driven by changes to the
contact network.[45–47, 52, 91, 92] The contact change strain scales as
𝛾cc ∼ 𝑝1/2/𝑁 .[52, 91, 92] The second characteristic strain corresponds to
softening, i.e. the loss of linearity in the average stressstrain curve. It
scales as 𝛾† ∼ 𝑝.[34, 92, 94] Note that these two strains scale differently
with 𝑝; we will revisit this observation below.

In the present work we study the linear and nonlinear relaxation time of
weakly jammed solids over a wide range in pressure and strain amplitude
𝛾0 connecting linear and nonlinear response. Our central finding is that
the relaxation time as a function of 𝛾0 displays two plateaus: one in the
linear regime, and a second, higher plateau at larger strains. The pressure
dependence of these two plateaus is identical, i.e. they diverge as power
laws with the same exponent. This is a surprising result, as there is no
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a priori reason for their exponents to be the same. We further relate the
form of 𝜏∗ to the time evolution of floppylike, nonaffine particle motions
during relaxation.

3.2. Methods and Model
Foams are modeled with the Durian bubble model [7] in two dimensions.
Bubbles are represented as disks that repel elastically when they overlap,
with an additional dissipative force proportional to their relative velocity.
The elastic force between particles 𝑖 and 𝑗 is proportional to their overlap
𝛿𝑖𝑗 = (𝑅𝑖 +𝑅𝑗)−𝑟𝑖𝑗, where 𝑅𝑖 and 𝑅𝑗 denote the radii and 𝑟𝑖𝑗 is the length of
the vector ⃗𝑟𝑖𝑗, pointing from the center of particle 𝑖 to the center of particle
𝑗,

⃗𝑓el
𝑖𝑗 = {−𝑘(𝛿𝑖𝑗)𝛿𝑖𝑗 ̂𝑟𝑖𝑗, if 𝛿𝑖𝑗 > 0

⃗0, otherwise.
(3.2)

The viscous force depends on the relative velocity 𝑣𝑖𝑗 of the touching par
ticles evaluated at the contact,

⃗𝑓v
𝑖𝑗 = {−𝜏0𝑘v𝑖𝑗, if 𝛿𝑖𝑗 > 0

⃗0, otherwise,
(3.3)

where 𝜏0 is the microscopic relaxation time. All material properties are
expressed in dimensionless units constructed from 𝑘, 𝜏0, and the mean
bubble size.

The stress tensor is

𝜎𝛼𝛽 = 1
2𝑉 ∑

𝑖𝑗
f𝑖𝑗,𝛼r𝑖𝑗,𝛽 − 1

𝑉 ∑
𝑖

𝑚𝑖v𝑖,𝛼v𝑖,𝛽, (3.4)

where Greek indices denote Cartesian coordinates. The contact stress
term contains the total force at each contact, f𝑖𝑗 = f el𝑖𝑗 + f v𝑖𝑗. The inertial
stress is dictated by the center of mass velocity v𝑖. Each particle has unit
density, so its mass 𝑚𝑖 is proportional to its area. 𝑉 is the total area of
the unit cell. The inertial stress term is negligible for times longer than
the damping time 𝜏0.

Initial conditions are created by randomly populating the simulation
box and then using an energy minimization protocol to quench instanta
neously to a local minimum of the elastic potential energy at fixed volume.
The box is then allowed to undergo small changes in size and shape to
achieve a target pressure 𝑝 and zero shear stress – these are called “shear
stabilized” packings in the nomenclature of DagoisBohy et al.[60] The
pressure provides a convenient measure of proximity to the (un)jamming
point at 𝑝 = 0. Packings are bidisperse to avoid crystallization; we use
the standard[4, 6] 5050 mixture of small and large particles and a ra
dius ratio of 1:1.4. Once the initial state is prepared, we use molecular



3.3. Stress relaxation at finite strain

3

39

dynamics simulations to apply shear, which allows us to resolve the time
evolution of the system. Newton’s laws are integrated using a velocity
Verlet algorithm.

3.3. Stress relaxation at finite strain
In order to describe the mechanical relaxation of soft sphere packings,
we investigate the system’s shear stress in response to an instantaneous
step strain of amplitude 𝛾0 applied at time 𝑡 = 0. The strain is imposed
using LeesEdwards periodic boundary conditions while displacing the
particles’ coordinates (𝑥𝑖, 𝑦𝑖) affinely according to (𝑥𝑖, 𝑦𝑖) → (𝑥𝑖 +𝛾0𝑦, 𝑦𝑖). In
order to stay clear of any spurious periodic signatures in our results, we
restrict applied strains to 𝛾0 < 0.01; this is still large enough to observe
the softening crossover for the highest pressure we simulate, as discussed
below. For times 𝑡 > 0 after the instantaneous shear, the periodic bound
aries are kept fixed in their strained position and the particles are allowed
to relax to a new mechanical equilibrium. The resulting stress relaxation
is illustrated in Fig. 3.1, which shows the relaxation modulus 𝐺𝑟(𝑡, 𝛾0) as
a function of time 𝑡 for a single strain amplitude and pressure.
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Figure 3.2: (a) The time evolution of the shear relaxation modulus 𝐺𝑟 for 𝑝 = 10−4 and 𝑁 =
1024 at different strain amplitudes (see legend). (b) The quasistatic, long time shear modulus
𝐺 as a function of strain. The data points show the long time response to instantaneous
step strains. The lines are results from a separate set of simulations that reach the same
total strain via a series of incremental steps applied using a quasistatic shear protocol.

The relaxation modulus displays several noteworthy features. There is
an initial plateau at times shorter than the damping time 𝜏0 ≡ 1, which
occurs because viscous forces inhibit the system from relaxing at a rate
faster than 1/𝜏0. On longer time scales, the shear modulus decreases as a



3

40 3. Stress Relaxation

power law 1/𝑡𝜃 with an exponent 𝜃 = 1/2.[35, 92] This relaxation continues
until the stress reaches a second, long time plateau. The height of the
plateau defines a quasistatic modulus 𝐺(𝛾0), which approaches the linear
elastic shear modulus 𝐺0 = 𝐺(0) in the limit of vanishing strain amplitude.
The crossover between power law relaxation and the quasistatic plateau
defines the relaxation time 𝜏∗(𝛾0).

Fig. 3.2a illustrates the evolution of the relaxation modulus with in
creasing strain amplitude at a pressure 𝑝 = 10−4, which is representative
of the entire range of pressures simulated here. All curves show qualita
tively similar time evolution. However, there is a crossover with increasing
𝛾0. For the small values 𝛾0 = 10−6 and 10−5 (solid and dashed curves), the
relaxation modulus collapses, which is indicative of linear response. For
higher strain amplitudes, beginning here around 𝛾0 = 10−4, the entire
curve shifts downward. This is strain softening. Softening is also evident
in the quasistatic modulus 𝐺(𝛾0), estimated from 𝐺𝑟(𝑡 = 106, 𝛾0), which
we plot in Fig. 3.2b for varying pressures (symbols). At low strains the
modulus remains constant, consistent with linear response. Softening
corresponds to a subsequent decrease in 𝐺(𝛾0) with increasing 𝛾0. This
general trend is evident at all pressures.

Strain softening has been explored previously in Ref. [92], where it was
found that the onset of softening occurs at a strain scale proportional to
𝑝, after a finite fraction of the particles have undergone contact changes.
There shear was built up incrementally using a quasistatic protocol, so
that the final amplitude 𝛾0 was reached via a large number of small steps
Δ𝛾. Once linear response has broken down and the system has begun
to soften, however, there is no fundamental reason that the result of an
incremental quasistatic protocol should correspond to the long time limit
of viscoelastic relaxation after a single large step strain. It is therefore
surprising that when we overplot the results for incremental strain from
Ref. [92] (solid curves), we find near perfect agreement between the two
data sets. This suggests that, on average, the two protocols reach the
same minimum in the energy landscape of the sheared system.

3.4. Relaxation time and strain dependence
We now investigate the time 𝜏∗(𝛾0) needed to reach the quasistatic plateau
after a strain of amplitude 𝛾0. While linear response can be accessed
with careful numerical experiments,[35, 92] one would prefer to have a
complete characterization of the dependence of the relaxation time, not
just on 𝑝, but also on the amplitude 𝛾0 of the strain step. Our main result
is the observation of a plateau in 𝜏∗ at large 𝛾0, with pressure dependence
comparable to the relaxation time in linear response.

We identify 𝜏∗ as the time when the relaxation modulus reaches a value
1 + Δ times its value in the long time plateau. In the following we set
Δ = 1/𝑒; we have verified that our results are representative of a range of
values for Δ. We simulate relaxation time measurements for stress relax
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ation over three decades in pressure, 𝑝 = 10−2 … 10−5, and four decades in
strain amplitude, 𝛾0 = 10−6 … 10−2. Results are averaged over at least 500
realizations per condition. In MD simulations the total simulated time is
limited by the available computational resources; especially for the lowest
pressures and largest strain amplitudes, one can ask if the system might
relax yet more at longer times. To exclude this possibility, we have also
performed quasistatic simulations using the FIRE algorithm [22] to deter
mine the long time limit of the shear modulus. We then recalculate the
relaxation time using the quasistatic plateau value, in combination with
the time evolution of the MD simulation. These results are in good agree
ment with the relaxation times calculated directly from MD. Hence we are
confident that our results are representative of fully relaxed packings.

The evolution of the relaxation time, plotted in Fig. 3.3, can be sep
arated into three stages. At low strains, the response is linear and the
plot of 𝜏∗ versus 𝛾0 plateaus, with the height of the plateau determined
by the pressure. Next there is a second, intermediate regime, where lin
ear response breaks down and the relaxation time begins to grow with
increasing strain amplitude. The crossover causes the relaxation time
to increase by approximately one order of magnitude. Finally, there is a
regime at comparably high strains where 𝜏∗ develops a second plateau.
This trend continues throughout the studied pressure range, with the
crossover shifting to higher strains with increasing pressure. As a result,
the linear response window is at the edge of the sampled strain range
for the lowest pressures, while the nonlinear plateau is only beginning to
develop for the highest pressure.

In order to highlight pressure dependence, we seek to collapse the re
laxation time data by plotting 𝜏∗/𝑝𝜆 versus 𝛾0/𝑝𝜈. We select 𝜆 = 0.85, which
is the relaxation time exponent identified numerically in our prior study of
strictly linear response,[92] and close to the theoretically predicted value
of 1.[35] For the strain axis rescaling we select 𝜈 = 0.5, which is charac
teristic of the contact change strain scale 𝛾cc discussed above.[52, 91, 92]
This choice is motivated by comparing Figs. 3.2b and 3.3, where one ob
serves that the upturn in 𝜏∗ for increasing 𝛾0 always occurs at a strain
where the quasistatic shear modulus is still approximately flat, i.e. before
the onset of softening. The rescaled data, plotted in Fig. 3.4, show good
collapse over the entire range of strains and pressures. There is a small
departure for the lowest pressure (i.e. closest to jamming) at the highest
strain amplitudes, which may be associated with finite size effects.

The data collapse in Fig. 3.4 indicates one of our central results, namely
that the relaxation time plateaus at low and high strains diverge as inverse
power laws with 𝑝, with the same characteristic exponent 𝜆. We consider
this result surprising, as there is no fundamental reason that the diver
gence of the relaxation times at finite strains should comply with the form
for infinitesimal strain. The rescaling of the strain axis with 𝑝0.5, and the
position of the crossover at a value 𝛾0/𝑝0.5 ∼ 𝑂(1/𝑁), strongly suggest



3

42 3. Stress Relaxation

10−6 10−5 10−4 10−3 10−2

γ0

102

103

104

105

106

τ
∗

p

10−2.0

10−2.5

10−3.0

10−3.5

10−4.0

10−4.5

10−5.0

Figure 3.3: The relaxation time 𝜏∗ as a function of strain 𝛾0 for system size 𝑁 = 2048 and
varying pressures, 𝑝 = 10−5 … 10−2 (see legend).

that the increase in relaxation time is associated with the onset of con
tact changes, and therefore the breakdown of linearity in the particles’
trajectories. We have verified that a plot with 𝛾0/𝑝 on the 𝑥axis produces
significantly worse collapse, and also that reducing the system size shifts
the crossover to higher strains.

3.5. Relaxation and nonaffine particle motion
When jammed solids are sheared, particles primarily slide past their con
tacting neighbors, rather than interpenetrating.[35, 63, 70, 88] This
“floppylike” motion is a precursor of true floppy modes, or zero frequency,
nonrigid body eigenmodes, that appear below the jamming transition.
Floppylike motion is the physical origin of nonaffine fluctuations. Dur
ing floppylike motion, relative displacements are predominantly perpen
dicular to the bond vector ̂r𝑖𝑗 pointing from the center of particle 𝑖 to the
center of particle 𝑗, not parallel to it. Floppy and nonaffine motion is
well understood in linear elastic response.[3, 63] However, little is known
about how these displacements evolve in time, and/or in nonlinear re
sponse. Here we study the time evolution of the relative velocity of con
tacting particles during linear and nonlinear stress relaxation.

In order to analyze particle motions during relaxation, it is convenient
decompose each relative velocity v𝑖𝑗 into longitudinal and transverse parts
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Figure 3.4: Data collapse of the relaxation time. Data are identical to Fig. 3.3.

according to
v𝑖𝑗 = 𝑣‖,𝑖𝑗 ̂r𝑖𝑗 + 𝑣⟂,𝑖𝑗 ̂t𝑖𝑗, (3.5)

where the longitudinal velocity 𝑣‖ is parallel to the ̂r𝑖𝑗 direction, and the
transverse velocity 𝑣⟂ isalong ̂t𝑖𝑗 = ̂r𝑖𝑗 × ̂𝑧, defined with respect to the
unit vector ̂𝑧 pointing out of the plane. By construction the particles
have zero velocity at 𝑡 = 0, and they approach a new static state at long
times. During the relaxation process we follow the full statistics of the
longitudinal and transverse velocities.

Fig. 3.5 shows the probability distribution functions (PDF’s) of |𝑣‖| and
|𝑣⟂| for one pressure 𝑝 = 10−3 and several times, presented in units of
the relaxation time 𝜏∗ (see legend). For both longitudinal and transverse
velocities, the distribution grows as 𝑃𝐷𝐹 ∼ 𝑣 for small 𝑣. The tails at
large 𝑣 are approximately exponential for short times 𝑡/𝜏∗ ≪ 1. At longer
times the distributions decay slower than an exponential and faster than
a power law. Attempts to fit a stretched exponential do not yield a good
fit. Rescaling velocities by their average value ⟨𝑣∥,⟂⟩ at each time provides
an approximate collapse for times 𝑡 > 𝜏∗, although some scatter remains.
Due to this rough collapse, in the remainder we focus on average quanti
ties, namely on the root mean squared (rms) velocities 𝑣rms

‖ ≡ ⟨𝑣2
‖ ⟩1/2 and

𝑣rms
⟂ ≡ ⟨𝑣2

⟂⟩1/2.
A representative example of the time evolution of the rms velocities is

plotted in Fig. 3.6 for pressure 𝑝 = 10−3 and strain 𝛾0 = 10−4, averaged over
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Figure 3.5: PDF’s of longitudinal and transverse relative velocities at different times 𝑡/𝜏∗

(see legend) in loglog and semilog representations at 𝑝 = 10−3 and 𝛾0 = 10−4.

an ensemble of 100 packings. Note that 𝑣⟂ is substantially larger than 𝑣‖
at all times, indicating that transverse motion is always dominant. After
reaching their peak value at a time on the order of 𝜏0, the velocities steadily
decrease as the packing relaxes, until eventually they drop sharply and
simultaneously due to a fraction of the packings that fully arrest. This
drop occurs long after the relaxation time, which is of the order 𝜏∗ ∼ 𝑂(103)
for this value of 𝑝 and 𝛾0. Our interest here is primarily in the relaxation
time 𝜏∗, so in the remainder we focus on data at times prior to the drop.

To further assess the character of the particle motions at finite time,
we introduce the ratio of rms velocities

Γ = √⟨𝑣2
⟂⟩

⟨𝑣2
‖ ⟩ . (3.6)

Γ measures the balance between motion that leads to sliding versus inter
penetration. The value of Γ is of order unity for an affine velocity profile,
while significantly larger values of Γ indicate strongly nonaffine motion.
In the following, we demonstrate that the relaxation of 1/Γ is strongly cor
related with the relaxation of bulk stresses.
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Figure 3.6: Longitudinal and transverse velocities versus time for 𝑝 = 10−3 and 𝛾0 = 10−4.

Fig. 3.7 depicts 1/Γ for three values of the pressure and three values
of the shear strain, for time intervals 10−3 ≤ 𝑡/𝜏∗ ≤ 10. In all cases 1/Γ
decays, indicating that nonaffinity increases with time. For further com
parison, we overplot the corresponding 𝐺𝑟 in each panel (dashed lines).
There is an evident similarity in their decay profiles; this strongly suggests
a correlation between the mechanical relaxation time 𝜏∗ and the relaxation
of floppylike, nonaffine fluctuations.

In order to further probe the correlation between stress relaxation and
nonaffine fluctuations, we investigate the time evolution of 1/Γ for three
pressures and two values of the strain amplitude, as shown in Fig. 3.8.
The first strain amplitude, 𝛾0 = 10−6, is in the linear regime for all values of
𝑝, while the second, 𝛾0 = 4×10−3, is in the second plateau of 𝜏∗ in Fig. 3.4.
For both low and high strain amplitudes, we find reasonable data collapse
when time is rescaled by 𝜏∗ and Γ is rescaled with 𝑝0.4. This data collapse
is further evidence that the same physics governs the relaxation of non
affine fluctuations and stress, in both the linear and nonlinear regimes.

The data of Figs. 3.7 and 3.8 indicate a strong correlation between
nonaffinity at the micro scale, and stress response on the macro scale.
They establish a microscopic interpretation of the relaxation time: it is
the time scale beyond which floppylike sliding motion (and hence non
affinity) fully dominates particle motion.
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Figure 3.7: A comparison of the shear relaxation modulus 𝐺𝑟 (dashed curves) with 1/Γ (solid
curves) at three distinct pressures and strain amplitudes (see row and column labels).

3.6. Conclusion
We have used stress relaxation tests to determine the relaxation time
of jammed solids as a function of strain and pressure. For sufficiently
low strains, linear response is valid and the relaxation time approaches a
plateau determined solely by the pressure. Close to jamming, the strains
needed to access linear response are extremely small, and many exper
imental protocols are likely to probe nonlinear response even if care is
taken to apply small strain. Beyond linear response, contact changes ac
cumulate leading to softening, and the relaxation time grows. We find a
second plateau in which 𝜏∗ is approximately independent of strain. To
within the precision of our numerical measurement, this second plateau
diverges at jamming with the same exponent that characterizes linear
response. The crossover is associated with the onset contact changes,
and hence the postcrossover plateau should be accessible experimen
tally. Rheometry and simultaneous particle tracking in bubble rafts[77,
99, 100] could also access measures of nonaffinity.

In order to relate 𝜏∗ to microscopic properties of the system, we have
studied the statistics of floppylike, nonaffine motion, characterized by
the timedependent ratio Γ of the rms longitudinal and transverse veloci
ties between particles in contact. We observe a strong correlation between
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Γ and the relaxation of shear stress in time. We infer that 𝜏∗ can be under
stood as the time needed to observe fullydeveloped nonaffine response;
once nonaffinity has reached its maximum, the system’s subsequent re
sponse is quasistatic.

There are several likely directions for future work. A natural question
is whether the observed behavior of the relaxation time persists in 𝐷 = 3
spatial dimensions. 𝐷 = 2 is the upper critical dimension for the jam
ming transition [54, 69], so we do not anticipate qualitative differences.
One can also ask how the relaxation time develops for larger strains, up
to and including the yielding crossover to steady plastic flow, which oc
curs for strains on the order of 10%.[92] We speculate that there exists
some strain scale beyond which the instantaneously applied step strain
is tantamount to thermalization of the system, hence it may be possible
to make connections to the late stages of relaxation after a temperature
quench.[32] Finally, it is also interesting to ask if there is any relationship
between the relaxation time studied here and the duration of rearrange
ment events in steady plastic flow.[101, 102]





4
Jamming and
Irreversibility

We investigate irreversibility in soft frictionless disk packings on approach
to the unjamming transition. Using simulations of shear reversal tests, we
study the relationship between plastic work and irreversible rearrange
ments of the contact network. Infinitesimal strains are reversible, while
any finite strain generates plastic work and contact changes in a suffi
ciently large packing. The number of irreversible contact changes grows
with strain, and the stressstrain curve displays a crossover from linear
to increasingly nonlinear response when the fraction of irreversible contact
changes approaches unity.

This chapter is based on the following publication: J. Boschan, S. Luding,
B.P. Tighe, Jamming and irreversibility, Granular Mat ter, 21, 58, (2019).
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Packings of soft spheres prepared at small but finite pressure are mar
ginal solids – while their response to infinitesimal strains is elastic [4], a
small shear stress suffices to instigate quasistatic plastic flow [25, 103].
Recently there has been considerable interest in how the ensemble aver
aged stressstrain curve for shear becomes nonlinear, and in particular
on how the crossover from linear to nonlinear response depends on the
distance to jamming [33, 34, 41, 89, 92, 94, 104–107]. The shear strain
required to make or break a contact vanishes in the limit of large system
sizes, so finite deformations necessarily involve topological changes to the
contact network [45, 47, 52, 91, 108]. It is therefore natural to ask about
the relationship between nonlinearity and plasticity, especially when one
approaches (un)jamming. More precisely, we ask whether there is a corre
lation between the lineartononlinear crossover and (ir)reversibile contact
changes.

To probe nonlinearity and irreversibility near jamming, we study shear
reversal in marginally jammed packings of athermal, frictionless, purely
repulsive soft spheres. We begin from an isotropic state prepared at a
targeted pressure 𝑝. We use this initial pressure (prior to shearing) to
quantify the distance to unjamming at 𝑝 = 0. After preparation, the sys
tem is subjected to simple shear in small quasistatic steps to a maximum
strain 𝛾𝑚. The shearing direction is then reversed, and the system is re
turned to zero strain. A load is reversible if the stress follows the loading
curve back to its initial value at zero strain. Reversible and irreversible
deformations are illustrated in Fig. 4.1 with data from our simulations.
This complements similar irreversibility under volumetric strain as ob
served in [105] and interpreted in terms of a historydependent critical
packing fraction.

The present work builds on results from Boschan et al. [92, 109], who
studied the loading curve but did not consider shear reversal. The loading
curve was found to be linear up to a strain scale 𝛾† ∼ 𝑝. After 𝛾† the stress
continues to grow, albeit more slowly than an extrapolation of the initial
linear trend. The crossover to steady plastic flow occurs later, at a distinct
strain scale 𝛾𝑦 ≃ 0.05. Simulations of large amplitude oscillatory shear
at finite rate also showed two distinct crossovers with identical scaling
properties [106].

Boschan et al. [92] also studied contact changes, i.e. made and bro
ken contacts during shearing. They found that the lineartononlinear
crossover at 𝛾† is also evident in the contact change statistics, as de
tailed in Section 4.3. It is plausible that contact changes are a proxy for
irreversible rearrangements, but this must be verified – while rearrange
ments involve contact changes, not all rearrangements are irreversible
[39, 40, 106, 110–113].

Here we probe nonlinearity and and irreversibility during a loading
unloading cycle. We first monitor the plastic work performed during the
cycle, and then correlate these results to the statistics of contact changes
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Figure 4.1: Sample output from a loadingunloading cycle in simulations. (a) If deforma
tion is reversible, the loading curve 𝜎(𝛾↑) and unloading curve 𝜎(𝛾↓) coincide. (b) In an
irreversible deformation there is hysteresis, and the enclosed area is equal to the plastic
work.

at the particle scale. We find, first, that there is finite plastic work even
when the ensembleaveraged stressstrain curve is linear. Consistent
with this observation, we also find that irreversible contact changes ac
crue prior to the loss of linearity. Second, prior to 𝛾†, some fraction of the
contact changes are reversible. After 𝛾†, when the stressstrain curve is
nonlinear, essentially all contact changes are plastic.

4.1. Model and Methods
We perform twodimensional simulations of athermal frictionless disks,
a standard model with a jamming transition [30]. Particles experience a
springlike force proportional to their overlap 𝛿𝑖𝑗 = (𝑅𝑖 +𝑅𝑗)−𝑟𝑖𝑗, where 𝑅𝑖
and 𝑅𝑗 denote the radii and 𝑟𝑖𝑗 is the length of the vector ⃗𝑟𝑖𝑗 pointing from
the center of particle 𝑖 to 𝑗. The contact force on particle 𝑖 due to particle 𝑗
is purely repulsive, and there is no interaction when the particles are not
in contact,

⃗𝑓el
𝑖𝑗 = {−𝑘(𝛿𝑖𝑗)𝛿𝑖𝑗 ̂⃗𝑟𝑖𝑗 𝛿𝑖𝑗 ≥ 0

⃗0 𝛿𝑖𝑗 < 0 (4.1)

where a hat indicates a unit vector. We fix the units of stress by setting
the spring constant 𝑘 and mean particle size to unity. The stress tensor
is

𝜎𝛼𝛽 = − 1
2𝑉 ∑

𝑖𝑗
f𝑖𝑗,𝛼r𝑖𝑗,𝛽, (4.2)

where Greek indices denote Cartesian coordinates, and 𝑉 is the total area
of the unit cell.
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Initial conditions are created by randomly populating the biperiodic
simulation box and then using a nonlinear conjugate gradient energy min
imization protocol to quench instantaneously to a local minimum of the
elastic potential energy at fixed volume [6]. The box is then allowed to
undergo small changes in size and shape to achieve a target pressure 𝑝
and zero shear stress – these are called “shearstabilized” packings in the
nomenclature of DagoisBohy et al. [54, 60]. Packings are bidisperse to
avoid crystallization; we use the standard [4, 6] 50:50 mixture of small
and large particles and a radius ratio of 1:1.4.

Once the initial state is prepared, we apply quasistatic simple shear us
ing LeesEdwards boundary conditions with small logarithmicallyspaced
steps ranging between Δ𝛾 = 10−8 … 10−3. After each strain step the energy
is reminimized [6] while holding the strain fixed, so particles follow qua
sistatic trajectories. Once a maximum strain 𝛾𝑚 is reached, the direction
of shear is reversed and the system is returned to zero strain, again via a
series of small logarithmicallyspaced steps.

In order to quantify irreversibility, we calculate the plastic work 𝑊𝑝 of
the loading/unloading cycle,

𝑊𝑝 = ∮ 𝜎 d𝛾 = ∫
𝛾𝑚

0
𝜎↑ d𝛾↑ − ∫

𝛾𝑚

0
𝜎↓ d𝛾↓ , (4.3)

where upwards and downwards pointing arrows are used to indicate the
loading and unloading curves, respectively. Clearly 𝑊𝑝 is zero when the
response is reversible.

The phenomenology of a shear reversal test in weakly jammed soft
spheres is illustrated in Fig. 4.1. In panel (a), the maximum shear strain
𝛾𝑚 = 10−5 is so small that no contact changes occur [52, 91]. The stress
strain curve is linear and the loading and unloading curves coincide. In
panel (b), the maximum shear strain 𝛾𝑚 = 10−2 is substantially larger.
On reversal the stress decreases but does not retrace the loading curve.
The loading and unloading curves are both nonlinear. Because there is
hysteresis, there is an associated plastic work. In addition to the plastic
work, irreversibility can be quantified by the plastic strain 𝛾𝑝 and a plastic
stress 𝜎𝑝, corresponding to the intercepts of the unloading curve with the
𝑥 and 𝑦axis, respectively.

4.2. Plastic Work
We perform shear reversal tests for a range of preparation pressures 𝑝 and
varying maximum strain 𝛾𝑚. Fig. 4.2 illustrates loading and unloading
curves for 𝑝 = 10−4 and 𝛾𝑚 ranging from 10−5 to 10−2 in halfdecade steps.
The result is representative of other pressures.

To quantify the appearance of irreversibility, we analyze the plastic
work as a function of 𝛾𝑚 and 𝑝, as shown in Fig. 4.3. We find nonzero
𝑊𝑝 for all investigated maximum strains, which are as small as 10−5. (As
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Figure 4.2: Shear reversal tests for varying maximum strains 𝛾𝑚 (see legend) at pressure
𝑝 = 10−4 and system size 𝑁 = 1024.

noted above, packings of finite size can be sheared reversibly if the contact
network remains unchanged, but this strain interval vanishes in the large
system size limit [52, 91].) For each pressure 𝑊𝑝 has an approximately
power law growth with 𝛾𝑚, with an apparent exponent that varies with
pressure.

To better understand the pressure dependence of 𝑊𝑝, we seek to col
lapse the data to a master curve. Anticipating a correlation with the onset
of nonlinearity, we plot the rescaled variable 𝑥 ≡ 𝛾𝑚/𝑝 ∼ 𝛾𝑚/𝛾†. On the
other axis we plot the rescaled work 𝑊 ≡ 𝑊𝑝/𝑝𝜌 for some exponent 𝜚. To
motivate 𝜚, we note that for small values of 𝛾𝑚, the loading curve is as
sociated with work 𝑊↑ ∼ 𝐺0𝛾2

𝑚, where 𝐺0 ∼ 𝑝1/2 is the shear modulus for
Hookean particles near jamming [4, 14, 35]. If we assume 𝐺0 also sets the
relevant scale for 𝑊𝑝 at small 𝛾𝑚, then we expect 𝑊𝑝 ∼ 𝑝1/2𝛾2

𝑚. Rearrang
ing in favor of 𝛾𝑚/𝑝 gives 𝑊𝑝/𝑝5/2 ∼ (𝛾𝑚/𝑝)2, which requires 𝜚 = 5/2. This
prediction is tested in the loglog plot of Fig. 4.3b, where we find data col
lapse to a curve with an initial slope of 2. When 𝑥 ≫ 𝑥∗ ∼ 𝑂(1) the plastic
work grows more slowly with 𝛾𝑚, with an exponent of roughly 3/2,

𝑊 ∼ {𝑥2 𝑥 < 𝑥∗

𝑥3/2 𝑥 > 𝑥∗ . (4.4)

Plasticity is indeed sensitive to 𝛾†, because data for 𝑊𝑝 collapse with
the rescaled variable 𝑥. But irreversibility does not “turn on” when the
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ensembleaveraged stressstrain curve becomes nonlinear, as indicated
by measurable 𝑊𝑝 even when the curve is linear.

4.3. Contact changes
We now seek to relate irreversibility to the evolution of contact changes
during loading and unloading.

As first shown in Ref. [92] and verified below, the scale 𝛾† is apparent
in the evolution of the number of made and broken contacts per particle,
which we refer to as the contact change density 𝑛𝑐𝑐(𝛾). We now moni
tor contact changes during unloading to see to what extent the original
contact network is recovered (i.e. broken contacts are remade and made
contacts are rebroken). Contact changes are always identified with re
spect to the initial condition, even during unloading. The “plastic contact
change density” 𝑛𝑝

𝑐𝑐, equal to 𝑛𝑐𝑐 at the end of the unloading curve, is a
measure of irreversible (i.e. plastic) contact changes.

Fig. 4.4 depicts loading and unloading curves for three values of 𝛾𝑚
and three different initial pressures 𝑝 = 10−5, 10−4 and 10−3. For the lowest
𝛾𝑚, in panel (a), most contact changes are recovered at the end of the cycle
and 𝑛𝑐𝑐 has a nonzero slope. 𝑛𝑝

𝑐𝑐 is nevertheless nonzero, and it increases
as 𝑝 tends to zero. Plastic contact changes also increase with increasing
𝛾𝑚 (panels (b) and (c)). In the final panel a large fraction of the contact
changes are unrecoverable, 𝑛𝑐𝑐 hits the vertical axis with zero slope, and
𝑛𝑝

𝑐𝑐 is nearly equal to 𝑛𝑐𝑐(𝛾𝑚).



4.3. Contact changes

4

55

0.00 0.25 0.50 0.75 1.00
0.000

0.001

0.002

0.003

0.004

0.005

0.006

n
cc

a)

γm = 10−5

0.00 0.25 0.50 0.75 1.00
γ/γm

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
b)

γm = 10−4

0.00 0.25 0.50 0.75 1.00
0.0

0.1

0.2

0.3

0.4 c)

γm = 10−2

pressure

10−3

10−4

10−5

Figure 4.4: The contact change density 𝑛𝑐𝑐 as a function of 𝛾/𝛾𝑚 for a) 𝛾𝑚 = 10−5, b)
𝛾𝑚 = 10−4 and c) 𝛾𝑚 = 10−2 each at pressures 𝑝 = 10−5, 10−4 and10−3 at 𝑁 = 1024. The
solid lines indicate the loading the dashed lines the unloading curves.

4.3.1. Contact changes during loading
Fig. 4.5 depicts 𝑛𝑐𝑐 during loading. The figure shows that data for different
pressures can be collapsed to a master curve by plotting 𝑁 ≡ 𝑛𝑐𝑐/(𝛾†)1/2 ∼
𝑛𝑐𝑐/𝑝1/2 as a function of 𝑦 = 𝛾/𝑝 ∼ 𝛾/𝛾†. This collapse was first demon
strated in Ref. [92]; for completeness we present it in Fig. 4.5 using data
from the present study. We find

𝑁 ∼ {𝑦 𝑦 < 𝑦∗

𝑦1/2 𝑦 > 𝑦∗ . (4.5)

The crossover 𝑦∗ ∼ 𝑂(1) is compatible with 𝑥∗ from the plastic work. For
later reference, we note that

𝑛𝑐𝑐 ≃ 𝑎𝑚𝛾1/2
𝑚 (4.6)

when 𝛾𝑚 > 𝛾† = 𝑦∗ 𝑝. We estimate 𝑎𝑚 ≈ 3.7 ± 0.1 by fitting Eq. (4.6) to 𝑁
for 𝑦 > 10.

We note that, by definition, 𝑛𝑐𝑐 changes by an amount 1/𝑁 when the
system has undergone a strain 𝛾𝑐𝑐 sufficient to produce one contact change.
Hence

d𝑛𝑐𝑐
d𝛾 ≈ 1/𝑁

𝛾𝑐𝑐
, (4.7)

and the average strain interval between contact changes, 𝛾𝑐𝑐 can be read
off from the slope of the curves in Fig. 4.4. (Alternatively, the probability
of a contact change in the interval [𝛾, 𝛾 +d𝛾) is 1/𝛾𝑐𝑐.) In particular, when
the loading curve is linear, there is a typical strain interval 𝛾𝑐𝑐 ∼ 𝑝1/2/𝑁
between contact changes. Van Deen et al. [52, 91] reached compatible
results by directly resolving contact changes. As noted above, 𝛾𝑐𝑐 vanishes
in the large system size limit.
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collapses to a master curve when plotted as a function of 𝛾/𝑝.

4.3.2. Contact changes after reversal
To quantify to what extent the initial contact network can be recovered
under reversal, we now monitor the plastic contact change density 𝑛𝑝

𝑐𝑐.
Clearly 𝑛𝑝

𝑐𝑐 = 0 if the initial contact network is fully recovered. Fig. 4.6
plots 𝑛𝑝

𝑐𝑐 as a function of 𝛾𝑚 for three pressures and system sizes 𝑁 = 128,
512, and 1024. We find 𝑛𝑝

𝑐𝑐 is an increasing function of 𝛾𝑚, and for a given
𝛾𝑚 it is larger at smaller pressures. There is also dependence on 𝑁 .

The system sizedependence in 𝑛𝑝
𝑐𝑐 suggests that the contact change

strain 𝛾𝑐𝑐 ∼ 𝑝1/2/𝑁 plays a dominant role, as opposed to 𝛾† ∼ 𝑝. To test
this hypothesis, we attempt to collapse data to a master curve by plotting
as a function of 𝑧 ≡ 𝛾𝑚𝑁/𝑝1/2 ∼ 𝛾𝑚/𝛾𝑐𝑐. We find collapse plotting 𝑃 ≡
𝑛𝑝

𝑐𝑐𝑁1/2/𝑝1/4 versus 𝑝1/2/𝑁 , as shown in Fig. 4.6b. The master curve is

𝑃 ∼ {𝑧 𝑧 < 𝑧∗

𝑧1/2 𝑧 > 𝑧∗ . (4.8)

The crossover value 𝑧∗ ∼ 𝑂(102). Therefore

𝑛𝑝
𝑐𝑐 ≃ 𝑎𝑝𝛾1/2

𝑚 (4.9)

after the system has undergone on the order of one hundred contact
changes. The constant 𝑎𝑝 ≈ 3.5 ± 0.1.
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varying pressures 𝑝 and system sizes 𝑁. b) Data collapse to a master curve. Dashed lines
indicate the slopes 1 and 1/2.

4.3.3. Relating nonlinearity and irreversibility
We can use the above observations to interpret the strain scale 𝛾† in terms
of irreversibility. To this end, it is useful to introduce the “plastic fraction”

𝑓𝑝(𝛾𝑚) = d𝑛𝑝
𝑐𝑐

d𝑛𝑚𝑐𝑐
, (4.10)

where 𝑛𝑚
𝑐𝑐 is the value of 𝑛𝑐𝑐 at the end of loading. 𝑓𝑝 quantifies the extent

to which marginal contact changes tend to be plastic. If 𝑓𝑝(𝛾𝑚) = 0, then
all marginal contact changes in an infinitesimal interval around 𝛾𝑚 are
reversible. If 𝑓𝑝 = 1, all contact changes are plastic.

While a direct numerical evaluation of 𝑓𝑝 is noisy, we can infer its scal
ing properties by noting that

𝑓𝑝 = (d𝑛𝑝
𝑐𝑐

d𝛾𝑚
) (d𝑛𝑚

𝑐𝑐
d𝛾𝑚

)
−1

. (4.11)

From Eq. (4.9) it follows that

d𝑛𝑝
𝑐𝑐

d𝛾𝑚
≃ 𝑎𝑝

𝛾1/2
𝑚

(4.12)

in the 𝑁 → ∞ limit. Similarly, Eq. (4.6) implies that

d𝑛𝑚
𝑐𝑐

d𝛾𝑚
≃ 𝑎𝑚

𝛾1/2
𝑚

(4.13)

when 𝛾𝑚 > 𝛾†. Thus 𝑓𝑝 plateaus at a value 𝑎𝑝/𝑎𝑚 ≈ 0.95 when 𝛾𝑚 > 𝛾†.
In other words, after the lineartononlinear crossover, around 95% of the
subsequent contact changes are plastic. By contrast, for smaller values
of 𝛾𝑚 the plastic fraction evolves with strain.
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4.3.4. From contact changes to the stressstrain curve
A remaining challenge is to determine how plastic events impact stress
buildup. Here we make a first attempt. We expect irreversible contact
changes to have an associated stress drop Δ𝜎𝑝/𝑁 due to an eigenvalue
of the Hessian matrix going to zero [17, 114]. Then we assume that the
infinitesimal stress d𝜎 generated by a strain d𝛾 has both an elastic con
tribution and an offsetting stress release due to irreversible events

d𝜎 = 𝐺0 d𝛾 − Δ𝜎𝑝 d𝑛𝑝
𝑐𝑐(𝛾) . (4.14)

Using Eq. (4.9) and rewriting in dimensionless form gives

1
𝐺0

d𝜎
d𝛾 = 1 − Δ𝜎𝑝

𝑝1/2 𝐺0
( 𝑝

𝛾 )
1/2

. (4.15)

It remains to determine the typical stress drop amplitude, Δ𝜎𝑝. The
scaling relation Δ𝜎𝑝 ∼ 𝑝 suggests itself purely on dimensional grounds.
Assuming this form then predicts that the right hand side of Eq. (4.15)
depends on 𝛾 and 𝑝 only via their ratio 𝛾/𝑝. Reassuringly, this is con
sistent with the lineartononlinear crossover at 𝛾† ∼ 𝑝, and with recent
measurements of the secant modulus during shear startup [92] and the
storage modulus in oscillatory shear [34, 106]. We conclude that the typ
ical stress drop is indeed linear in 𝑝. Eq. (4.15) can then be integrated to
find

𝜎 ∼ {𝑝1/2 𝛾 𝛾 < 𝛾†

𝑝 𝛾1/2 𝛾 > 𝛾† . (4.16)

This stressstrain curve is compatible with 𝑊𝑝 in Fig. 3b, including the
𝛾3/2 scaling beyond 𝛾 ≈ 𝛾†.

The approach presented above is semiempirical. A more fundamental
motivation would require directly identifying plastic events to determine
their frequency and associated stress drops. The necessary theoretical
tools were recently developed in Refs. [95, 114, 115].

4.4. Discussion
We have investigated irreversibility at the macro and micro scale in sys
tems near jamming, evidencing irreversibility in both the plastic work and
the contact change statistics for small shear strains. Initially the average
loading curve is linear and most contact changes are reversible. Increas
ing the maximum strain increases the number and fraction of plastic con
tact changes. For 𝛾 > 𝛾†, the loading curve becomes nonlinear and nearly
all contact changes are plastic. The onset of nonlinearity therefore corre
sponds not to the onset of irreversibility (as commonly assumed in con
tinuum elastoplastic theories), but to “fully developed” irreversibility, as
reflected in the saturation of the plastic fraction 𝑓𝑝. This crossover occurs
earlier for smaller 𝛾† ∼ 𝑝.
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With hindsight, the above scenario is apparent in the contact change
statistics. For small 𝛾𝑚, as in Fig. 4.4(a), the plastic contact change den
sity is much smaller than 𝑛𝑚

𝑐𝑐, and the unloading branch of the 𝑛𝑐𝑐 curve
ends with a nonzero slope – indicating that shearing the system “a little
bit further” to 𝛾↓ < 0 would bring the system closer to its initial contact
topology, i.e. fewer net contact changes. In contrast, for large 𝛾𝑚, as in
Fig. 4.4c, 𝑛𝑝

𝑐𝑐 is nearly equal to 𝑛𝑚
𝑐𝑐, and the unloading curve is flat – the

system has effectively lost all memory of its initial condition.
Our work has correlated the onset of nonlinearity at the macro scale to

a particle scale crossover from reversible to irreversible contact changes.
Both of these crossovers are sensitive to the proximity to jamming. We
have also suggested a phenomenological approach to relate irreversible
rearrangements to the form of the loading curve, highlighting the need for
a deeper understanding of the statistics of stress drops during loading.
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In this thesis we focused on linear stressstrain response in disordered
athermal solids, close to the jamming transition (𝑝𝑐 = 0). We discussed
linearity in terms of Hooke’s law, where the ratio of stress 𝜎 and strain 𝛾
is a constant, the shear modulus 𝐺 = 𝜎/𝛾. We did different type of sim
ulations to investigate the validity of linear response in soft sphere pack
ings. By combining macroscopic properties with investigation of changes
in the contact network topology, we described how and why linear re
sponse breaks.

There are two ways for linear elasticity to break down: one, shearing
‘too far’ and two shearing ‘too fast’. This thesis explored these two effects
and their causes. We showed that together they set the boundaries to lin
ear response and as (un)jamming is approached, the boundaries become
narrower. In the following we will discuss our results in more detail.

Shearing ‘too far’: When a solid is strained it builds up stress to with
stand the deformation. How well it can do that is captured by its shear
modulus. In Ch. 2 we performed step strain simulations of soft sphere
packings to describe the stressstrain relationship in the nonlinear regime.
We have shown that for small strains the shear modulus is indeed con
stant, but when pushed too far, the material softens and the shear modu
lus decreases. A characteristic strain scale determines the crossover from
linear to nonlinear response. Our simulations showed that the charac
teristic strain is proportional to the pressure for the system:

𝛾† ∼ 𝑝.
This shows that close the transition, the smallest deformation can break
linear response. One might expect that the onset of nonlinearity corre
sponds with irreversibility in the stressstrain curve. In Ch. 4 we mea
sured irreversibility on a macro and micro scale by applying strain in
one direction and reversing to zero strain. Afterwards the initial and fi
nal states were compared. We found that even for small deformations
the plastic work is nonzero and it steadily increases with the maximum
strain applied. While the plastic work is sensitive to 𝛾†, there is measur
able plastic dissipation prior to the onset of softening.

To complete the picture we examined the system on the micro scale.
We related softening to changes in the contact network, by asking how
many contact changes are needed until linear response breaks. In Ch. 2
we counted the number of made and broken contacts, at each applied
strain, and concluded that an initially isotropic material softens This gives
a topological criterion for the onset of softening.

In Ch. 4 we extended our conclusions about the contact network by
measuring howmuch of it can be recovered after shear reversal. We found
that the number of plastic (nonrecoverable) contact changes grows with
the maximum strain, until the initial contact network has been fully wiped
out. We saw that softening is associated with this “saturation” of the
plastic contact changes.
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Shearing ‘too fast’: In viscoelastic materials deformations are followed
by internal dynamics, which in time result in a return to mechanical equi
librium. The relaxation happens on a characteristic time scale, the relax
ation time, 𝜏∗. For deformations that are faster than 𝜏∗ viscous losses
dominate the dynamics while they become negligible compared to elastic
forces for deformations slower than 𝜏∗. The relaxation time diverges at
the jamming transition [35]. In Ch. 2 we performed flow start up tests,
to measure the dependence of linear response on strain rate ̇𝛾 and the
distance to jamming. Hooke’s law was recovered.

By systematically varying the strain rate, we identified three different
regimes, dependent on strain rate. 1) For slow rates the response is qua
sistatic, right from the start. In that case viscous effects are vanishingly
slow and linear response breaks, only when the material softens. 2) For
higher rates we first see ratedependence, which at characteristic strain
𝛾∗ = ̇𝛾𝜏∗, crosses over to quasistatic linear response. 3) If the rate is in
creased even more, 𝛾∗ is higher than the characteristic strain scale for
softening. The ratedependent stressstrain curve misses quasistatic lin
ear response entirely. We concluded that there is no strain window over
which Hooke’s law holds when the system is sheared faster than a certain
strain rate:

̇𝛾† ∼ 𝑝2.
In many experiments finite strain rates are applied. Our scaling argu
ments provide important guidelines for setup and interpretation of such
experiments.

We have seen that the relaxation time controls the appearance of rate
dependent effects, and that ratedependent and nonlinear effects interact.
Therefore in Ch. 3 we performed stress relaxation tests, systematically
varying step strain size and the distance to jamming. When plotting the
relaxation time as a function of strain amplitude, we found two plateaus,
where the relaxation time was roughly constant. Both plateaus scale with
the distance to jamming. This is an important result, as the relaxation
time connected to linear response is likley to be inaccessible in experi
ments. Experimental strain rates are likely to probe the second regime.

From investigations done on the micro scale we saw that the relax
ation is due to nonaffine motions of the particles. We interpret the relax
ation time as the time needed for the system to fully develop nonaffine
response.
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