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Abstract

Two dimensional plasmonic back reflectors have shown the ability to match the
scattering performance of standard back reflectors. However, three dimensional
plasmonic structures have not yet been thoroughly investigated. Here, the scat-
tering properties of a 3D plasmonic structure are approached at three levels of
system. First, the scattering properties of different types of particles are inves-
tigated. An optimum particle size is found for both spherical and cylindrical
silver particles. The interaction of two particles is then studied. By comparing
numerical and analytic results, the strength of different effects is explored. It is
found that dipole-dipole interactions can not be ignored within the structure.
Finally, the effect of the lattice structure on the scattering properties is probed.
A new lattice summation method is developed, revealing that only particles near
the point of interest must be considered. Several 3D devices were fabricated to
investigate the properties of self forming metal island films. It was found that
the surface morphology of layers deposited on top of these films, do not depend
on the properties of the film.

Thank you to my mother, father, and grandparents
for supporting me during these studies.

i



ii



Contents

1 Introduction 1
1.1 Why Plasmonics? . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Current State of Research . . . . . . . . . . . . . . . . . . . . . . 4
1.3 This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Modeling Theory 9
2.1 Lattice Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Phased Array Antennas . . . . . . . . . . . . . . . . . . . 10
2.1.2 General Method . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Modeling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Mie Theory and Individual Particle Behavior . . . . . . . 16
2.2.2 Interfering Dipole Fields . . . . . . . . . . . . . . . . . . . 16
2.2.3 Numerical Models Using HFSS . . . . . . . . . . . . . . . 17

3 Modeling Results and Analysis 19
3.1 HFSS Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Single Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Mie Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Scattering Cross Section . . . . . . . . . . . . . . . . . . . 26
3.2.3 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.4 Particle Size and Radiation . . . . . . . . . . . . . . . . . 30

3.3 Two Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Non-interacting Dipoles . . . . . . . . . . . . . . . . . . . 36
3.3.2 Interacting Particles . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Radiation Analysis . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Periodic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 Lattice Sum . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 Dominant Region . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.3 Near Region Field . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Realistic System . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Modeling Conclusion 67

5 Fabrication Theory 69
5.1 Lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.1 Optical Lithography . . . . . . . . . . . . . . . . . . . . . 70
5.1.2 Ultraviolet Nanoimprint Lithography . . . . . . . . . . . . 71

iii



iv CONTENTS

5.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Fabrication Methods, Results, and Analysis 73
6.1 Optical Lithography . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1.1 Metal Island Films as Masks . . . . . . . . . . . . . . . . 74
6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Nanoimprint Lithography Stamps . . . . . . . . . . . . . . . . . . 74
6.3 Metal Island Films . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3.1 Particle Properties . . . . . . . . . . . . . . . . . . . . . . 75
6.3.2 Layer Properties . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 Angular Intensity Distribution . . . . . . . . . . . . . . . . . . . 81

7 Fabrication Conclusion 83

8 Conclusion 85

A Plasmonics 87

B Scattering 91
B.1 Mie Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

C Dipole Model 99
C.1 Frame Transformations . . . . . . . . . . . . . . . . . . . . . . . 100
C.2 Multiple Dipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

D Lattice Sum 105
D.1 Lattice Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

D.1.1 General Method . . . . . . . . . . . . . . . . . . . . . . . 106
D.1.2 An Infinite 2D Lattice of Dipoles . . . . . . . . . . . . . . 113
D.1.3 No Phase Change . . . . . . . . . . . . . . . . . . . . . . . 116
D.1.4 Incident Plane Wave . . . . . . . . . . . . . . . . . . . . . 120

D.2 Multilayered Lattice . . . . . . . . . . . . . . . . . . . . . . . . . 131
D.2.1 Virtual Lattice . . . . . . . . . . . . . . . . . . . . . . . . 134
D.2.2 Infinite 3D Lattice . . . . . . . . . . . . . . . . . . . . . . 136
D.2.3 Field From Reflections . . . . . . . . . . . . . . . . . . . . 139

D.3 The Separation Function . . . . . . . . . . . . . . . . . . . . . . . 155
D.3.1 2D Separation Function . . . . . . . . . . . . . . . . . . . 155
D.3.2 3D Separation Function . . . . . . . . . . . . . . . . . . . 157
D.3.3 Method Analysis . . . . . . . . . . . . . . . . . . . . . . . 160



Chapter 1

Introduction

1



2 CHAPTER 1. INTRODUCTION

1.1 Why Plasmonics?

As the world turns to renewable energy as it’s primary energy source, the volume
of installed solar power continues to increase. However, to make solar energy a
mainstay of global energy production several factors must be taken into account
to allow continued scaling. To allow for large volume installations, abundant
materials must be used in solar cell production, and ideally in as small amounts
as possible [1]. This can be accomplished by making the wafer of the solar cell as
thin as possible. By decreasing the wafer thickness carrier extraction efficiency
also increases.

As wafers become thinner, though, less light is absorbed. This is especially
true for wavelengths that are a significant fraction of the thickness of the ab-
sorber material. To increase the absorption of these thin wafers the optical path
length the light travels must be increased. This can be accomplished by both
reflecting and scattering the light at the back side of the solar cell. By scattering
the light at a high angle, a significant increase in the optical path length oc-
curs. Further, if the light is scattered outside the critical angle for total internal
reflection, essentially all the light can be absorbed. Thus, the ultimate goal of
a scatterer is to redirect all incident light, regardless of angle or polarization,
outside the critical angle.

There are many ways to increase light absorption, but three are especially
popular. The first is by texturing the surface of the active layer. As seen in
Fig. 1.1a, texturing the surface of the absorber layer has two effects. Not only
is the reflected light directed towards another part of the cell allowing a second
chance for absorption, it also enters the absorber at a modified angle, increasing
the optical path length and, thus, the likelihood of absorption. This method
can also be enhanced by modulating the size of the texturing, combining large
and small variations [2]. However, the sizes of the features required to achieve
light trapping effects are the same as the cell thickness for thin-films, creating
significant defects in the material, reducing their efficiency [3].

(a) (b)

Figure 1.1: Illustration of light trapping by texturing. (a) Schematic of light path
under textured surface [4, Ch. 10]. (b) Schematic of modulated surface texture, incor-
porating both large and small feature sizes [5].

The second popular method of trapping light is to paint the back surface of
the cell white. The white paint consists of titanium dioxide (TiO2) nanoparticles
suspended in a binder, as seen in Fig. 1.2a. These particles act as Mie scatterers
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over a wide range of wavelengths, scattering the light in a narrow cone about
the surface normal. Thus, although the light is reflected at the back surface,
much of it escapes after only the first reflection.

(a) (b)

Figure 1.2: (a) Illustration of light trapping with paint [6]. (b) Schematic results
showing the larger angular intensity distribution when combining metal nanoparticles
with paint [7]

Finally, and the subject of this work, metal nanoparticles can be used to trap
light. These particles act as a sea of free electrons embedded in a dielectric. This
allows the electrons to vibrate within the confines of the metal against a fixed
backdrop of the positively charged metal ions. Acting as damped oscillators,
the electrons can experience a resonant frequency when driven by the electric
field of incident light. It is this property that is exploited to create an efficient
back reflector.

Plasmonic reflectors can overcome the challenges of both the textured and
painted reflectors. Implemented through an additional layer placed on the back
of the solar cell, these reflectors do not disturb the quality of the absorber layer
as texturing does. This also allows the reflector to be easily integrated into the
production process as an additional step. Metal nanoparticles can also increase
the angular distribution of reflected light. As seen in Fig. 1.2b, when included
in the painted back reflector, the angular intensity distribution of the reflected
light widens significantly. Unfortunately, the particles also increase absorption,
so the overall reflected intensity may decrease. This is especially true as particle
size decreases or the frequency of the light increases [7]. These issues can be
overcome by tuning the particle size to interact with the electric field of light
only over a specific range of wavelengths. Further, the cross sectional area with
which the particles can interact with light can be up to ten times their geometric
cross section [8]. This allows a surface coverage of only 10% to optically cover
the entire cell, reducing material costs. Combined, these effects can improve
light trapping compared to other reflector types [9].



4 CHAPTER 1. INTRODUCTION

1.2 Current State of Research

There are a wide range of factors affecting the behavior of a plasmonic structure.
The most general is whether the structure is periodic or not. 1D and 2D periodic
structures have shown a great ability to couple light into the absorbing layer,
increasing the efficiency of an amorphous silicon cell from 4.5% to 6.2% [10].
However, both of these structures suffer from sensitivity to the angle of incident
light, losing effectiveness as the light deviates from the normal of the surface.
In addition, 1D structures are sensitive to the polarization of the incident light,
coupling only transverse electric (TE) waves. Non-periodic structures, while
not sensitive to the incident angle, can not be tuned to a specific range of
wavelengths. Thus, they will not be as effective in coupling light as their periodic
counterpart. A possible compromise to the issues of both periodic and non-
periodic structures may lie in a quasicrystal structure, however little research
has been pursued along this path [11].

The size and shape of the metal nanoparticles making up the plasmonic
structure also play a significant role in their response to light. In general, as the
particles become larger the wavelengths they interact with red-shift and their
resonant peak broadens. As particles become larger they also gain more resonant
modes due to excitations of higher order terms in the multipole expansion [12].
Both of these effects are observed in Fig. 1.3. However, the specific shape
of the particles has a more dramatic influence over how a particle behaves.
Spheroids, hemispheres, and cylinders are the most studied shapes. Spheres
can be modeled using Mie theory, giving exact solutions to Maxwell’s equations
under certain assumptions, serving as a nice baseline with which to compare
other geometries. These solutions show that spheres mostly scatter forward,
with the effect becoming more pronounced as the particle size increases, as seen
in Fig. 1.4. This effect is compounded if the particle is at the interface with a
high dielectric material [13].

(a) (b)

Figure 1.3: Illustration of how size affects a plasmonic particle’s interaction with light.
The particles were simulated in (a) air, and (b) silicon. As the particle size increases
the resonant peak red-shifts and broadens, and more resonant modes appear [12].

While most spheroids behave similarly, hemispheres show slightly different
behavior, and cylinders diverge significantly. Using finite difference time domain
(FDTD) calculations it was found that of the three shapes, cylinders are the best
scatterers, but suffer from the highest absorption losses. Interestingly though,
the albedo seems to be almost independent of particle shape [13]. It was also
found that both hemispheres and cylinders have a more pronounced coupling
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Figure 1.4: Illustration of Mie scattering with light incident from the left [14]. As the
particle becomes larger, from left to right, the incident light is experiences forward
scattering more prominently.

into the dielectric due to a stronger near field coupling of their electric fields.
This effect can be seen in Fig. 1.5 [9].

Figure 1.5: Finite difference time domain calculation showing the effect of particle
shape on light scattering [13].

Another major contributor affecting how the particles perform is the mate-
rial they are made out of and the material of the surrounding dielectric. The
noble metals have been the main area of study so far, especially gold and sil-
ver. This arises because their high conductivity allows for a large ratio between
their extinction and geometric cross-section [15]. Both these metals, however,
are relatively scarce and expensive. This will create issues if the production of
plasmonic solar cells scales up. Thus, both aluminum and copper have been pro-
posed as alternative materials that are still effective, but much more abundant
and cheaper. The surrounding material’s largest effect comes from its refractive
index. As the contrast between the refractive index of the particles and the sur-
rounding materials grows, scattering and reflection effects change significantly
[12]. This then offers another option for tuning the resonant frequency of the
plasmonic particles.

There are several other design parameters that affect how well these struc-
tures perform. For instance, the distance between the absorber layer and the
metal particles can have a significant impact on how well light is coupled into the
absorber. By properly spacing the two layers, the driving field of the particles
can be increased 14 times [16]. The coverage density of the particles also affects
how the particles behave. For a given particle type and size, there is a strong
dependence of both reflectance and absorption on surface coverage, yielding an
optimum value. If coverage is below this level, there is a steep decrease in the
absorption of light in the absorber. If this optimum is exceeded, the plasmonic
resonance of the particles is red shifted, and absorption is reduced [17]. Inter-
estingly, having sufficient coverage can also reduce the effective resistance of the
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cell, allowing more efficient collection of charge carriers [10].
These metal nanostructures can also be utilized in differing manners. If

metal particles are placed on the front side of the solar cell they can be used
as scattering elements as depicted in Fig. 1.6 (a). The scattered light has an
increased optical path through the absorber material, thereby increasing the
cell’s efficiency. In Fig 1.6 (b), it is shown how metal nanoparticles embedded
into the absorber layer can be used to create charge carriers directly. When
these particles absorb light and become excited their near-field resonance couples
energy into the absorber layer. This energy is then used to create the charge
carriers. Instead of metal nanoparticles, a periodic waveguiding structure can
also be created, as seen in Fig 1.6 (c). This structure acts as a standing wave
guide for incident light. The incoming light is effectively rotated by 90 degrees
and absorbed along the interface of the waveguide and absorbing layer [8].

Figure 1.6: (a) Metal nanoparticles at the front side of a solar cell acting as scatterers.
(b) Metal nanoparticles embedded in a semiconductor directly creating charged parti-
cles. (c) A metal nanostructure at the back of the solar cell that increases absorption
[8].

Metal nanoparticles can also be embedded on the back side of a solar cell to
act as a reflector, as seen in Fig. 1.7. This configuration has several benefits over
the others mentioned. By being on the back side, unnecessary absorption caused
by the particles is reduced as the light has already made a single pass through
the active layer. This is most apparent in a comparison with the front side
scatterer and more prominent for longer wavelengths. Another main advantage
of the back reflector is that it can be detached from the electrically active layers
of the cell. Thus, it does not interfere with the charge carriers after they are
created, as is the case with the embedded nanoparticles. Finally, because the
particles exhibit a large scattering cross-section relative to their geometry, less
material is needed to cover the cell compared to a waveguide structure. The
waveguide also suffers from high absorption losses, decreasing its appeal relative
to the back reflector [8].
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Figure 1.7: Schematic of a plasmonic back reflector.

1.3 This Work

There are still many research problems that must be tackled to fully utilize plas-
monics for use in solar cells. One of the main issues is that there is little known
about how the size, shape, and surface coverage interact to affect an incident
light field other than the general trends presented. To probe this issue further,
the plasmonic effects of an individual particle can be isolated by modeling it
in vacuum. Once these effects are understood, more particles can be added in
varying arrangements to address inter-particle interactions.

Most previous work has investigated 2D structures, leaving several degrees of
freedom untouched. By utilizing a 3D structure, more efficient light scattering
may be achieved. Using a periodic structure, interference patterns directing the
radiated power can be engineered, allowing a high percentage of the power to
be scattered outside the critical angle. A 3D structure may also allow tuning to
a wider range of frequencies through two methods. First, the periodicity in the
third dimension can be set to interact with a specific wavelength independent
of the particle’s interactions. Also, particle properties can be tuned layer-by-
layer to optimize their interaction and driving field for the specific wavelength
prominent at their location within the reflector.

To investigate how a lattice of plasmonic particles can be used to increase
light scattering, an analytic model was created. Using the model, an under-
standing of important aspects of the lattice can be gained. In parallel, a study
of how actual particles compare to an ideal plasmonic particle was performed
using numerical models. From this study particle parameters optimizing desired
effects can be obtained. Finally, several devices were fabricated to study how
the particles form, and how a random array of particles scatters light.
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Chapter 2

Modeling Theory

To investigate different aspects of the reflector, several models were used and
compared against each other. This allows the strength of different effects to be
determined. The effect of the lattice structure on the scattered field was studied
using a new lattice sum technique. This method allows the most significant areas
of the lattice to be identified, reducing the computational time required to study
a certain lattice structure, compared to a complete numerical solution. The
interaction of scattered fields from two particles was probed using a simple dipole
radiation model. This allows for quick analysis of multiple dipoles. The behavior
of an individual particle was examined using Mie Theory, which gives critical
parameters about how a particle will react to a driving field when embedded
in a given material. Both of these results were then compared with numerical
simulations. These simulations take in to account the material properties of the
particles and the environment, and their interaction with each other, giving a
more complete view of the system’s behavior.

2.1 Lattice Sum

When considering the construction of a multi-layered back reflector, the width
and length are much greater than its depth. This allows the approximation
that each layer consists of an infinite plane of plasmonic particles. It is also
likely that a carefully designed arrangement of the particles will give a more
favorable scattering profile than randomly placed particles. Further, a regular
lattice could be an ideal structure to allow a scattering profile to be engineered
due to its periodicity and reproducibility.

The proposed structure consists of several 2D layers stacked on top of each
other. Thus, there are several parameters that can be adjusted in each layer:
the size and shape of the particles, the lattice vectors, the parallel displacement
relative to the other layers, and the spacing between the layers. Trying to
optimize these parameters without an understanding of how the lattice structure
of the particles effects the radiation field would be a search in the dark. By
creating a model that illuminates the lattice’s effects, a more directed approach
to designing the reflector can be taken.

9
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2.1.1 Phased Array Antennas

As a first attempt to find the radiation pattern from a lattice of dipoles the
methods of a phased array antenna can be used. Immediately though, the
assumption is made that all distances not related to phase changes are equal
[18, Ch. 6]. This assumption holds well for points far from the radiation sources.
However, when considering points nearer the radiation sources, such as those
relevant for this study, this assumption no longer holds. An illustration of the
validity of this assumption is seen in Fig. 2.1.

(a) (b)

Figure 2.1: In the phased antenna array model, points far from the source are consid-
ered to all have the same distance unless dealing with phase. Thus, in (a) r1 = r2 = r3.
However, for the situation in this study, the point of interest is closer to the radiation
sources. Hence, in (b) r1, r2, and r3 are not equal, invalidating the results from the
phased antenna array model.

Another standard approach to solving a lattice sum of this sort would be to
use Floquet modes. Again, however this theory has been mostly developed for
the far-field regions of infinite radiating arrays. Chou has begun working on a
near-field theory, but only deals with rectangular lattices, severely limiting its
usefulness for this application [19].
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2.1.2 General Method

The full theory of this lattice summation technique is developed in Appendix
D, here only the general ideas and main results will be presented. The theory
is based around two main assumptions. Because the observation point is near
the radiating particles, the first assumption is that, far away from the obser-
vation point when looking in a particular direction φ, the change in distance
between consecutive lattice points δ r(φ) is constant. This is depicted in Fig.
2.2 where r2 � r1 + δ r(φ). The second assumption is that the driving field
of each particle is the same. This allows the simplification that the radiation
pattern of each particle is the same. Because the field of a particle only depends
on the vector between the particle and the observation point r, all the particles
can be collapsed to a single point. This is depicted in Figs. 2.3a and 2.3b.
So, instead of summing over the infinite fields produced by each particle at the
observation point, the field of a single particle can be summed over infinitely
many observation points. Although this seems like a small change it is a massive
simplification. In the original sum the coordinate system of each particle must
be considered. In the transformed lattice, though, only one coordinate system
is needed.

Figure 2.2: Far from the observation point, the distance change between consecutive
lattice points is constant.

To perform the sum, the lattice is divided into regions via a stereographic
projection as seen in Fig. 2.3c. A radius is set dividing the lattice in to a near
region and a far region. In the near region a direct sum of the lattice points is
performed. In the far region, the distance change between the points is assumed
constant. Here, all the observation points are collapsed along the midline of the
region. The number of points in the region, and their offset from the midline
are both considered. Then, the field at each of the points is summed in each
region.

The situation of interest, however, is a lattice in a layer, meaning reflections
and absorption must be accounted for. Absorption is accounted for using the
Beer-Lambert law

I = I0e
−ηr (2.1)

where the initial intensity is I0, η is the absorption constant, and r is the
distance traveled through the layer. To account for reflections, imagine laying
between two mirrors, surrounded by a 2D lattice. When looking in the mirrors
you would actually see a 3D lattice, where each point in the 2D lattice has a
1D lattice caused by the reflections associated to it. By considering the points
in the 3D lattice as “real” the field from reflections can be accounted for by
transforming the 2D lattice in to a 3D lattice. This is depicted in Fig. 2.4.
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Assuming that each particle scatters light as a dipole results in the total field
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with
ν1
i,j = exp [−ηδ r(θi, φj)] r

m′′1
1 r

m′′2
2 (2.3a)
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i,j =

ω
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δ r(θi, φj)− 2π
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i,j = − 2π sin θi
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2 )λ0
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In Eq. (2.2) the sum takes place over the regions of the stereographic pro-

jection, where θi and φj are the midline angle of the (i, j)th region. P θ̂′i,j is
the direction of the field at the observation point. The driving electric field has
frequency ω and unit strength. rβi,j is the vector from the origin to the nearest
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point in the (i, j)th region, and βi,j is the number of lattice points in the (θ, φ)
direction needed to reach the far region in that direction. the layer has absorp-
tion constant η, and reflection coefficient r1 at the top interface and r2 at the
bottom interface. m1 and m2 account for how many reflections the light expe-
riences at each observation point. The incident driving field approaches the top
interface from the (θ0, φ0) direction. p is the dipole moment and sin(θ(T θ̂′i,j))
accounts for the polar angle of the observation point relative to the dipole. ∆φ
and ∆θ account for the width of the region. Lin is the polylogarithm of order
n.

The dipole moment p is found from the plasmonic effects derived in Eq.
(A.16).

p = ε0εDαE0 = 4πε0εDa
3 ε− εD
ε+ 2εD

E0 (2.4)

where the normal font weight indicates the magnitude of the corresponding
vector (E.g. p = |p|). The field from light paths that don’t interact with
particles, free light paths, can also be accounted for using the classical geometric
series technique.
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(a)

(b)

(c)

Figure 2.3: Illustrations of the steps leading to the lattice summation process inves-
tigated. (a) The original lattice, with green lattice vectors. (b) Viewing the lattice
points shifted to the origin, creating a new conjugate lattice. The new conjugate lat-
tice vectors are in green. (c) The stereographic projection that divides the conjugate
lattice. The blue point in the lattice from which the divisions emanate is the projection
of the origin on to the lattice plane, but is not necessarily a lattice point.
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Figure 2.4: The virtual lattice created by the reflections from the real lattice. The
original lattice points are indicated by the blue points lying in the red plane with blue
layer boundaries. The virtual lattice is indicated by the green layer boundaries and
red particles.
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2.2 Modeling Methods

The effect of the lattice structure on the fields with in the reflector can be inves-
tigated using the techniques presented in Sec. D.1.1, however this ignores how
the particles interact with each other. Using both simplified analytic models,
and numerical models, these interactions can be accounted for and incorporated
into our understanding of the reflector’s behavior.

2.2.1 Mie Theory and Individual Particle Behavior

To study how an individual particle reacts to a driving field, Mie theory can be
used. Mie theory make two assumptions. First is that the particle is spherical,
allowing the scattered field to be represented naturally as spherical harmonics.
Second, the particle is assumed small enough that the driving field is constant
across the particle’s cross section.

To find the Mie theory results, MiePlot was used. It is a software package
developed by Philip Laven and based on the results of Bohren and Huffman
as discussed in Appendix B [20]. It is able to calculate scattering profiles and
cross sections for spherical particles under various conditions. By comparing
these theoretical results to those of the numerical models the validity of the
numerical models can be verified. Any deviation between the two results will
also provide insight into non-ideal processes that are occurring in the system.

2.2.2 Interfering Dipole Fields

As discussed in Appendix A, plasmonic particles can be modeled as radiating
dipoles. To study how the radiation from a small number of dipoles interact
the fields can simply be summed. To accomplish this, a pure dipole radiation
model was created in Mathematica using Eq. (A.18). Because Eq. (A.18) gives
the field in the local coordinate frame of the dipole, a transformation from each
dipole’s local frame to the global system frame was needed to create a system
of dipoles. In this vein, consider a dipole p with local frame Σ′ = {e′x, e′y, e′z},
where e′z = p̂. Then the transformation from the global frame Σ to the local
frame Σ′ is

P =
1

p


pxpz
p‖

pypz
p‖

−p‖

−ppyp‖ ppxp‖ 0

px py pz

 (2.5)

where p‖ is the length of p projected into the x-y plane, p‖ =
√
p2
x + p2

y. The

transformation from Σ′ to Σ is

T =
1

p


pz +

p2y
p‖

(p− pz) −pxpyp‖
(p− pz) px

−pypxp‖
(p− pz) pz +

p2x
p‖

(p− pz) py

−px −py pz

 (2.6)
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If the origins of the two frames do not coincide then a simple translation
P (x − x0, y − y0, z − z0) = P (r − r0) remedies the situation, where r0 is the
displacement vector from the origin of Σ to Σ′. Using these transformations, the
Σ′ coordinates of a vector v in Σ are found by v′ = Pv. Conversely, the Σ coor-
dinates of a vector given in Σ′ are found by v = Tv′. Note that unprimed and
primed vectors of the same name represent the same geometric vector, while the
priming of it indicates the coordinate system of its components. The derivation
of these transformations can be found in Appendix C.

Thus, the total electric field at a point r0, of a system of pure dipoles, pi, is
obtained by summing the field from each dipole, Ei.

E(r0) =
∑
i

Ei(r0 − ri) =
∑
i

TEi(P ri) (2.7)

where ri = r0 − ri.

2.2.3 Numerical Models Using HFSS

Unfortunately, Maxwell’s equations, describing the complete set of interactions
for an EM field, can only be solved for very simple situations. Thus, for a more
complete view of how a system of these particles will behave, a numerical solver
must be used. For this, High Frequency Structural Simulator (HFSS) by Ansoft
was used. HFSS uses the Finite Element Method (FEM) to solve the system in
a self-consistent manner, within some given energy error.

Finite Element Method

There are three main steps in the finite element method. First, the system is
divided into discrete regions creating a 3D mesh of polygons. Next, polygons in
contact with the excitations are given their initial conditions, matching the ex-
citations. In each of these regions, then, the EM field is propagated through the
polygon, treating it as an area of constant dielectric properties. After propaga-
tion through the polygon, the EM field is matched at the boundaries of adjacent
polygons using Maxwell’s equations. In this way the excitation is propagated
through the entire structure. Finally, an energy error is calculated by comparing
the energy of the current solution with the previous solution. If this error is less
than a given amount the simulation stops. Otherwise the mesh is refined, and
the process is iterated again.

For this project, of interest is how the back reflector structure will respond
to incident solar light. This situation is modeled as an incident plane wave
from the top of the structure. Because HFSS only calculates the total field, the
incident and scattered fields are separated manually.

Et = Ei + Es (2.8)

Where Et is the total field, Ei is the incident field, and Es is the scattered field.
It is assumed that the incident field is a perfect plane wave, taking the form

Ei = E0e
i(k(z−h)+φ) (2.9)

where E0 is a constant vector indicating the polarization and magnitude of the
incident field, h is the excitation height of the incident wave, and φ is the phase
of interest.
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By comparing the results from these different simulation methods, the strength
of different effects can be evaluated. Individual particles can be designed to ra-
diate as an ideal dipole. The interaction of the particles from multiple layers
can be used to create a desired interference pattern. And the lattice structure
can be tuned to increase or decrease the impact of the particles far away from
a given point. The strongest effects of these can then be incorporated in to the
design of a reflector.



Chapter 3

Modeling Results and
Analysis

To build an understanding of how a reflector will behave it was divided into three
levels of subsystem. At the lowest level, the properties of individual particles
can be explored. Using Mie Theory the scattering efficiency of a single particle
embedded in different materials can be predicted. Comparing the theoretical
results to numerical results obtained with HFSS, how well particles of different
size and shape fit the theory can be assessed. Two dipole systems can then
be investigated to determine possible interference patterns. These interference
patterns can be used to direct scattered power in to directions to ultimately
increase absorption. Comparing these results with those of HFSS will reveal
how strongly the particles influence each other. Finally, the lattice structure
can be evaluated using the lattice summation technique developed. Combining
these results a reflector structure that optimally scatters light can be arrived at.

3.1 HFSS Settings

HFSS provides several parameters when solving systems. Among these are the
minimum and maximum number of passes to converge a system, the number of
passes the system should stay converged for, and the allowed energy error to de-
fine convergence. As with all numerical methods, the more accurate the desired
result, the more computation resources are required, be it time or processing
power. Thus, through early stages of trial and error a balance of the two was
struck. The nominal values for these parameters can be found in Table 3.1.

In addition, radiated fields were calculated at ten degree intervals of an

Property Value
Maximum Number of Passes 16
Minimum Number of Passes 4
Energy Error 0.02
Number of Converged Passes 2

Table 3.1: The nominal parameters used during HFSS simulations.

19
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infinite sphere in both the polar and azimuthal directions. As the polar angle
varies from 0 to 180 degrees, and the azimuthal angle varies from 0 to 360
degrees, except at the poles, this gives (17× 36 + 2) = 614 field points.

Each model in HFSS consists of the system of interest, embedded in a
medium, and surrounded by a boundary. Because the radiation pattern is of
interest, the radiation boundary was used around the entire system. This acts
as a perfect absorber, simulating an open system. The HFSS manual suggests
placing the boundary at least a quarter wavelength away from the system of
interest to reduce near-field effects [21, p25]. To keep the models conservative,
though, at least one wavelength was provided in all directions for each model.

Symmetries of a system can also be exploited using the symmetry boundary.
By dividing a model in to symmetric sections the effective volume requiring
computation can be significantly reduced, and along with it the computational
resources required to converge the system. In instances where symmetry was
exploited, a perfectly conducting boundary is place perpendicular to the driving
electric field, and a perfect magnetic boundary is placed parallel to it, both along
the corresponding planes of symmetry.

In the simulations four types of materials were used: vacuum, an ideal di-
electric, silver, and SiO2. Vacuum and the ideal dielectric were both simulated
by setting a constant relative permittivity and a relative permeability of 1. Sil-
ver was modeled using the n-k data of Johnson and Christy [22]. Although this
data is optimistic as pointed out by Pahud et al., it is the data typically found
in literature [23]. The ε1 and ε2 values are seen in Fig. 3.1. Because the real
part of the permittivity ε1 is at least one order of magnitude larger than the
imaginary part ε2, in the wavelengths above 700 nm, only ε1 will be considered
when evaluating the scattering cross sections. Finally, SiO2 was simulated using
HFSS’s native values.

3.1.1 Boundaries

Because the radiation pattern of the structure is of primary interest, the bound-
aries of the HFSS simulations are important. Both Radiation and Perfectly
Matched Layer (PML) boundaries were tested using an incident plane wave
traveling through vacuum and an ideal dielectric. The mean radiation pattern
of each boundary type is seen in Fig. 3.2. Because the wave is traveling in the
180◦ polar direction through a homogeneous medium, it would be expected that
all the radiation energy would be at 180◦. Unexpectedly though, some of the
energy is scattered. This may be a result of numerical noise or indicate that an
artificial interface is being encountered at the radiation boundary. Because the
radiation boundary is closer to the expected radiation pattern of having all the
radiation at 180◦, and because it seems to be more efficient time-wise, it will be
used for all other simulations.

3.2 Single Particles

To verify the models, as well as establish which particle size and shape to use for
further simulations, the properties of a single particle were investigated using
HFSS. In the Scattering Theory section, Appendix B, the scattering profile of
a spherical particle is discussed. It would be convenient to match simulation
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ε1

(a)

ε2

(b)

Figure 3.1: The relative permittivity (a) ε1 and (b) ε2 of silver from Johnson and
Christy [22].

results to the theory in simple cases to validate the model. Then, more com-
plex simulations could be used for the entire structure and the best actually
fabricated. However, fabricating spherical particles is quite difficult. Thus, in
addition to simulating spherical particles, cylinders were also simulated. As
will be discussed in Part 4, which addresses fabrication, cylindrical particles are
more feasible to create.

Through this study, the frequency range of interest can also be narrowed.
Because the reflector is integrated at the rear of the solar cell, longer wave-
lengths of light are of greater interest. In Table 3.2 some key wavelengths and
frequencies are shown for convenience. Assuming a silicon absorber layer, the
longest wavelength of relevant light is 1107 nm. This serves as a good maxi-
mum for the models as well because, of common absorbers, silicon has one of
the smaller band gaps. Thus, when the size of the particle is compared to the
calculated absorption, an upper bound for the frequency can be set.

Frequency [THz] 400 333 286
Wavelength [nm] 750 900 1050

Table 3.2: Frequencies and their corresponding wavelengths.
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Radiation Pattern of Different Boundary Conditions

Figure 3.2: Mean radiation pattern of a plane wave traveling through vacuum with
radiation and PML boundary conditions.

To compare how the two canonical shapes of this study react to incident
light, both were modeled in vacuum. The radius of the sphere, and the radius
and aspect ratio of the disk were varied and the absorption and scattering
profiles calculated. Using this information, the size of each shape was set for
the remainder of the models.

3.2.1 Mie Theory

From Eqs. (B.18), the absorption and scattering cross sections of a sphere are
given by a power series of Bessel functions [24]. In the small particle limit, for
a sphere with radius a and incident plane wave with wavenumber k, this power
series can be reduced to Eqs. (B.19), reproduced in Eqs. (3.1).

Csca =
8π

3
k4a6

∣∣∣∣ ε− εmε+ 2εm

∣∣∣∣2 (3.1a)

Cabs = 4πka3 Im

[
ε− εm
ε+ 2εm

]
(3.1b)

Here ε is the relative permittivity of the particle and εm is the relative permittiv-
ity of the surrounding material. The scattering cross section is the effective area
required such that if the absorbed incident power is radiated isotropically, the
power density delivered to the observation point matches the measured power
density. Similarly, the absorption cross section defines the equivalent area if all
power is absorbed. Thus, these give a measure of the interaction size of the par-
ticle. The ratio of the scattering cross section with the geometric cross section,
which is the scattering efficiency Qsca, then gives a relative measure of how well
the particle scatters.

To tune the silver particles to their plasmon frequency, the dielectric of the
surrounding medium must be chosen to minimize the denominator of the cross
sections. The dielectric function of silver, measured by Johnson and Christy, is
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seen in Fig. 3.1. For the wavelengths of interest (longer than 700 nm), ε1 is two
orders of magnitude larger than ε2, so ε2 will be ignored. Unfortunately, be-
tween 700 and 1000 nm wavelengths, ε1 varies from roughly -25 to -50, meaning
the surrounding material should have a permittivity of at least 12 to achieve
resonance. For visible light though, transparent materials have permittivity be-
tween 1 and 10, meaning only specialized materials that are both transparent
and have a high permittivity could be used.

In comparison, by using MiePlot to calculate the full series expansion in
Eq. (B.18a) a more interesting result is found. In this more complete analysis
several peaks of the scattering cross section are found. This is seen in Figs. 3.3
and 3.4 where the scattering efficiency of a silver sphere with 100 nm radius
has been plotted against the incident wavelength and surrounding permittiv-
ity, respectively. The scattering efficiency, Qsca is the scattering cross section
normalized to the geometric cross section of the particle, A.

Qsca =
Csca
A

(3.2)

As expected from the limiting case in Eq. (3.1a) , a higher permittivity of the
embedding material redshifts the peaks. However, this analysis reveals several
resonant peaks, as opposed to the singular peak of the limiting case. Fortunately,
for εm between 2 and 3, a resonance occurs around 1000 nm. This is an excellent
match for the present situation as transparent conductive oxides (TCOs) have
permittivities in this range, and, as discussed in Sec. 5.2, the ability to use a
TCO may prove very important.

Under the small particle assumption, a single resonance peak is expected
when varying them environment’s permittivity. However, the full Mie theory
calculation shows multiple peaks. This indicates that the particles under consid-
eration are not small enough for the small particle assumption. So the simple
equations in (3.1) are not sufficient to describe the particles behavior, and a
more complete approach must be used.



24 CHAPTER 3. MODELING RESULTS AND ANALYSIS

Qsca vs. wavelength for different εm

εm = 1

(a)

εm = 2

(b)

εm = 3

(c)

εm = 4

(d)

εm = 8

(e)

εm = 12

(f)

Figure 3.3: Scattering efficiency of a 100 nm silver sphere embedded in material with
relative permittivity (a) 1, (b) 2, (c) 3, (d) 4, (e) 8, (f) 12. Wavelength, on the x-axis
is in nm, and the scattering cross section on the y-axis is in relative units.
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Qsca vs. εm for different wavelengths

λ = 700nm

(a)

λ = 800 nm

(b)

λ = 900 nm

(c)

λ = 1000 nm

(d)

Figure 3.4: Scattering efficiency of a 100 nm silver sphere embedded in material with
incident wavelengths (a) 700, (b) 800, (c) 900, and (d) 1000 nm.
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3.2.2 Scattering Cross Section

To validate the HFSS results against theory, the scattering cross section, also
called the radar cross section, was computed for a 100 nm silver sphere; iden-
tical to that used in the Mie theory calculations in Sec. 3.2.1. In Fig. 3.5
the relative scattering cross section is plotted against wavelength for different
surrounding permittivities, and in Fig. 3.6 the relative scattering cross section
is plotted against permittivity for different incident wavelengths. (In Fig. 3.6c,
the permittivities with two values were caused by an overlap in HFSS evalua-
tions when an analysis parameter was changed for accuracy) Unfortunately, in
both situations there is significant disagreement between the numerical HFSS
results, and the theoretical MiePlot results. This indicates that either the small
particle assumption is being violated, or there are additional effects due to the
material properties.

Qsca vs. wavelength for different εm

εm = 2

(a)

εm = 3

(b)

εm = 4

(c)

Figure 3.5: The relative radar cross section plotted against wavelength for a 100 nm
silver sphere as computed by HFSS and MiePlot. The surrounding permittivity is (a)
2, (b) 3, and (c) 4.
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Qsca vs. εm for different wavelengths

λ = 760 nm

(a)

λ = 920 nm

(b)

λ = 1090 nm

(c)

Figure 3.6: The relative scattering cross section against relative permittivity for a 100
nm silver sphere as computed by HFSS and MiePlot. The incident wavelength is (a)
760, (b) 920, and (c) 1090 nm.

3.2.3 Absorption

To determine the size and shape of the best particles to use, the average absorp-
tion density was simulated using HFSS for spheres and cylinders of various sizes.
The average absorption density is defined as the total absorbed power divided
by the total volume of the object. The results for a sphere of varying radius are
seen in Fig. 3.7. Over the wavelengths of interest, these results show that to
reduce absorption a radius between 150 and 200 nm or 350 to 400 nm should be
used. The larger radii have two downsides though. First, their size compared to
the wavelength of light will begin to mitigate the plasmonic effects of interest.
And second, due to fabrication limitation, discussed in Sec. 4, particles of this
size could not be produced. Thus, spherical particles with radius between 150
and 200 nm should be used.

When analyzing the absorption of a sphere, only one parameter could be
tuned, namely its radius. However, there are two parameters that can vary
in the disk: the volume and the radius to height ratio. For a fixed 1:1 ratio,
varying the volume of the cylinder results in the average absorption in Fig. 3.8.
The regular downward trend with increasing volume exhibits an a−1 trend, as
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Absorption density vs. radius

Figure 3.7: Average absorption density of a silver sphere in vacuum with varying
radius at different incident frequencies.

seen in the inset. Fitting this trend to the data, the coefficient of a−1 was found
to be roughly 8 × 10−3 for all three frequencies. So for a radius of more than
90 nm, the magnitude fo the slope is less than 1. Thus 90 nm can be used as
a lower bound to mitigate absorption. For cylinders with radii smaller than 90
nm absorption increases rapidly, but for those with a radius larger than 90 nm
absorption is roughly constant.

Now, using a fixed volume of π · 1003 nm3 and varying the aspect ratio of
the cylinder results in the average absorption seen in Fig. 3.9. The ratio was
varied from 1:8 to 8:1, the former being a thin rod, and the latter resembling
a flat disk. The two higher frequencies have an almost linear trend, while 286
THz deviates from this a bit. It is difficult to tell whether the 286 THz trend
is in fact nonlinear due to the cutoff point of the plot, however. The linear
trends seen in these results are quite interesting. The two parameters changing
in these situations are the cross sectional area exposed to the incident field, and
the depth of the particle. The volume V , and aspect ratio σ of a cylinder are
given by

V = πr2h (3.3)

σ =
r

h
(3.4)

for radius r, and height h. If the absorption was dependent on only the area
exposed to the incident wave, a σ

3/2 dependence would be expected as σ ∝ A3/2.
This is not observed, though. Thus, the aspect ratio of the particle plays a
role in the absorption, especially towards the higher frequencies, and a smaller
aspect ratio should be used for less absorption.
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Absorption density vs. volume

Figure 3.8: Average absorption density of a cylinder in vacuum with a fixed aspect
ratio of 1:1 radius to height, but varying volume for different incident frequencies.
Inset: The 286 THz data plotted with trend line of the form 1 + x−1.

Absorption density vs. aspect ratio

Figure 3.9: Average absorption density of a cylinder in vacuum with a fixed volume
but varying aspect ratio.
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3.2.4 Particle Size and Radiation

In Appendix A, when deriving properties of plasmonic particles, especially in
Eq. (A.18) showing that particles act as dipoles, it is assumed that the particle
is small compared to the wavelength of the driving field. By comparing the ra-
diation pattern of the HFSS simulations with this idealization, the “dipoleness”
of a particle can be assessed and a limit for the small particle assumption can be
established. To find the size at which the dipole approximation becomes valid,
silver spheres with radius from 5 to 100 nm in 5 nm steps, from 110 to 200 nm
in 10 nm steps, and from 300 to 1000 nm in 100 nm steps were simulated. Each
particle was placed in vacuum and excited at 400, 333, and 286 THz.

As explained in Sec. 3.3.2, to make comparisons more tenable, the radiated
field is integrated around the azimuth for each polar angle measurement and
the field is normalized so the total radiated time-averaged power is 1. Under
these calculations, an ideal dipole has the radiation pattern shown in Fig. 3.10.
It should be noted that the data from HFSS is the total field, while the data
the dipole model is only the radiated field. Ideally the scattered field of the
HFSS simulations could be obtained by subtracting the incident field from the
total field Esca = Etot − Einc. Unfortunately, due to absorption of energy in
the particles and the non-ideal results of a free wave discussed in Sec. 3.1 this
resulted in negative field magnitudes.

Dipole radiation magnitude vs. polar angle

Figure 3.10: Calculated radiation pattern in the polar direction of an ideal dipole with
unit strength.

The radiation pattern of the all the simulations, is seen in Fig. 3.11. For
almost every particle size there is a significant disagreement from the ideal pat-
tern, however between 130 and 200 nm the dipole approximation holds quite
well. To investigate further, the 3D radiation patterns can be examined, a
selection of which are in Fig. 3.12. Interestingly, small particles vary signifi-
cantly from the ideal case, the opposite trend of what would be expected given
the small particle approximation. At these small sizes though, absorption is
becoming large enough that the radiation pattern is disrupted.
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Radiation intensity vs. polar angle

Figure 3.11: Radiation pattern of spheres from 5 to 1000 nm radius excited at three
different frequencies. Inset: A scaled and recolored plot showing detail of the particles
from 100 to 200 nm. The black line is the ideal dipole radiation pattern.

By scaling the ideal radiation pattern, the error between each particle radius
and the ideal pattern can be quantified. To find the scaling factor m, the root
mean square (RMS) of the data was minimized giving

m =

∑
i diei∑
i d

2
i

(3.5)

where the sums are taken over the data points of a single particle, with di
the calculated ideal value at the ith angle, and ei the simulated value. The
RMS of the relative errors for each particle can then be computed, resulting in
Fig. 3.13. As expected the longer wavelengths give a smaller error due to the
small particle approximation. Taking the average of the RMS values across each
frequency results in Fig. 3.14a, showing the particle radius behaving most like a
dipole across the range of frequencies occurs at 180 nm. It appears that the data
follows a smooth function, however, the form of this function was not obtained.
The standard deviation of these values also follows a smooth trend, as seen in
Fig. 3.14b. The decreasing deviation means that as particle increase in size
they behave more uniformly across the frequency range, so a more consistent
radiation pattern can be expected.
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(a) (b)

(c)

Figure 3.12: Radiation patterns of the (a) 50, (b) 100, and (c) 200 nm radius particles.

Relative error by radius and frequency

Figure 3.13: Interpolated RMS of the relative error for each particle and frequency
combination.
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Radiation error of spheres

(a)

(b)

Figure 3.14: The (a) mean and (b) standard deviation of the RMS of the relative
errors across frequency.
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The same analysis was carried out for disks. As discussed in Sec. 3.2.3 disks
with a fixed aspect ratio but varying volume, and a fixed volume but varying
aspect ratio were simulated. The results for the disks with a fixed aspect ratio of
σ = 1 and varying volume V = πr3 are shown in Fig. 3.15a. The same pattern
is seen here as with the spheres. Small volumes deviated quickly from the ideal
radiation pattern, and larger volume diverge more slowly. Interestingly, the
ideal volume again occurs with a radius of around 180 nm. While the volume
of the cylinder and the sphere are not the same in this case, the cross sectional
area is. This may point to the shape of the particle mattering less than its cross
sectional area.

Fig. 3.15b shows the relative errors in radiation for disks with a fixed volume
of V = π1003 nm3 and varying aspect ratio. Here a relatively steady reduction
in error is seen as the aspect ratio increases. This means that shorter, wider
cylinders are acting more like dipoles than taller thinner ones. A line of the
form (1 + σ−1) was fitted to the data. This resulted in the fitted equation
(0.52 + 0.11σ−1). Using this equation, an aspect ratio of 0.33 has a slope of −1.
So aspect ratios less than this will have a quick departure form the ideal, while
aspect ratios larger than this will depart slowly.

From these studies we have found that for both spheres and disks there is
an optimal volume to reproduce the radiation pattern of an ideal dipole. For
disks it was also found that a larger aspect ratio mimics dipole radiation more
closely.
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Radiation error of disks

(a)

(b)

Figure 3.15: The RMS of the relative errors across frequency for disks with varied (a)
volumes and (b) aspect ratios. In (b) the gray line is fitted to the data with form
1 + σ−1.
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3.3 Two Particles

3.3.1 Non-interacting Dipoles

To gain an understanding of how scattered light can be directed, the dipole ap-
proximation of the scattering particles was used. Two non-interacting dipoles
were placed at varying orientations relative to each other. To model the same
driving field for both particles, each dipole had the same orientation and magni-
tude, with a phase difference corresponding to their separation. An illustration
of this is shown in Fig. 3.16. Each of the relative positions in Table 3.3 was
modeled, where the separation was relative to the radiated wavelength. A phase
delay was also accounted for between the particles, representing the difference
in position relative to the incoming plane wave.

In Fig. 3.17, two of the radiation patterns from these configurations are seen.
From these preliminary results it is clear that, at least in the non-interacting
dipole idealization, quite interesting scattering patterns can be obtained. By
comparing these non-interacting results to results of interacting particles in the
same configurations, the divergence from the ideal case can be evaluated. This
can reveal how strongly the presence of one particle effects the radiation pattern
of the other.

Figure 3.16: An example of
the two dipole system.

Separation 0.1 - 3.0 in 0.1 steps
Angle 0, 20, 30, 40, 50, 60,

80
Polarization TE, TM

Table 3.3: The combinations of parameters
used to investigate two particle systems.
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Radiation of two ideal dipoles

(a) (b)

Figure 3.17: Two examples of a radiation pattern that two dipoles can create. The
interference pattern allows power to be directed. Both dipoles are separated by 0.7λ
and have (a) θ = 0, and (b) θ = 60 degrees.

3.3.2 Interacting Particles

To compare the realistic scattering patterns of two plasmonic particles with
those of the idealized radiating dipole model discussed in Sec. 3.3.1, both canon-
ical shapes were simulated in HFSS. Using the same combinations as in Table
3.3, and surroundings of varying permittivity, each situation can be compared
against the ideal dipole model. This will reveal how strong the dipole-dipole
interaction is between the two particles.

To facilitate the comparison between the two sets of results, each set was
normalized such that the total radiated time-averaged power was 1. Because
only the radiation in the polar direction is of interest, to reduce the complexity
of the situation the power of all the azimuthal angles at a given polar angle was
summed together. This reduced the dimensions of each comparison from 614
field points, found in Sec. 3.1, to 19 field points, each representing a 10 degree
step in the polar direction. Then, by comparing the amount of power radiated
at each polar angle the radiation patterns were compared. Some examples of
these comparisons can be seen in Fig. 3.18 where the two examples in the left
column match relatively well, and the two on the right are mismatched. By
computing the absolute and relative differences in radiation at each angle, and
taking the root sum squared (RSS) of these values, as in Eq. (3.6), several
measures of how well the radiation patterns matched were calculated.

Mabs =

√∑
θ

(EDipole − EHFSS)
2
∣∣∣
θ

(3.6a)

Mrel =

√√√√∑
θ

(
EDipole − EHFSS

EHFSS

)2
∣∣∣∣∣
θ

(3.6b)
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Polar plots of radiation intensity

(a) (b)

(c) (d)

Figure 3.18: Examples of the radiation pattern comparison used for comparing the
ideal dipole to the HFSS results. (a) and (c) match fairly well, while the (b) and (d)
do not resemble each other much.

Spheres in Vacuum

Plotted in Figs. 3.19a and 3.19b are the magnitude of the absolute and relative
errors of every orientation combination, with the mean value indicated by the
disks. The first thing to notice is that the largest absolute mismatches occur
near polar angles of 0 and 180 degrees. This occurs because the HFSS field
values near these angle is much larger than those seen in the dipole model.
When viewing the relative errors, though, the largest mismatches occur near
120 degrees. The absolute value of the relative errors over all angles have a
mean value of (47 ± 56)%, indicating that the spheres do not match the ideal
dipole model well.

Disks in Vacuum

Moving towards the more realizable particle structures, disks in vacuum were
modeled in HFSS and compared to the ideal dipole model. The same analysis
as was carried out for the spheres was carried out for the disks, and the errors
are seen in Figs. 3.20a and 3.20b. The absolute value of the relative errors over
all angles have a mean value of (40± 47)%, indicating that the disks match the
ideal model no better than the spheres. Interestingly though, the shape of the
errors for the disks and the spheres maintain roughly the same shape, with the
largest absolute errors occurring near 0 and 180 degrees, and the largest relative
errors near 120 degrees.

There may be the possibility that instead of a situation in HFSS matching
the same situation in the dipole model, it may better match a situation with
different parameters. For example, the HFSS model at 286 THz (1050 nm)
with a 1.0λ separation and 30 degree angle between the particles may match
the dipole simulation at 1.0λ but a 40 degree offset. To evaluate this, the
relative errors for each dipole simulation were computed against each HFSS
simulation. Then, the RSS of the errors where computed for each comparison as
in Eq. (3.6), as resulting in a single value to compare how well the simulations
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matched. The results of this comparison are seen in Fig. 3.21a, where each
dipole model represents a row, and each HFSS simulation represents a column.
The simulations are organized such that TE polarization occupy the the first
half of the rows and columns, and TM the second half. Within each of these
quadrants smaller separations are first, with increasing angle. Once all angles
at that separation have been listed, then the separation is increased by one step.
If the same situations matched best, diagonal lines of low error values would
be expected within each of these sub-blocks. Instead of diagonal lines, though,
horizontal and vertical lines of high and low error values seem to be present.
In general the top-left corners of each sub-block appear to have higher error
values indicating that the HFSS results match the ideal results better when the
bottom particle is not being shaded.

A histogram of the RSS errors with a matching extreme value distribution
(EVD) is shown in Fig. 3.21b. The errors follow closely the EVD which rep-
resents the distribution of extremum points of independent populations with
identically distributed random variables. The EVD takes the form of

e
(α − x)/β

ee(α − x)/β
(3.7)

where α = 7.0 is the location parameter, and β = 2.7 is the scale parameter.
Given the origins of the error data and the EVD, it is unclear why they match
so well.

Because no strong patterns were easily found in the RSS data, DBSCAN
was used to cluster the results. A seven dimensional space was used to classify
the data points, with parameters of the HFSS particle separation, angle, and
frequency; the difference between the HFSS and ideal model’s separation, angle,
and polarization; and with the error value. This resulted in 83 clusters, too many
clusters to easily recognize any patterns in. To simplify the dataset dimensional
reduction was used, projecting the cluster centers to both a 2- and 3D subspace.
However, still no trends were observed. Due to the lack of easily identifiable
trends it does not appear that there is a correlation between the HFSS and
dipole models.
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Spheres in vacuum

(a)

(b)

Figure 3.19: (a) Absolute and (b) relative error in radiation between of spheres in
vacuum and ideal dipoles in the same arrangement. Each line represents a single
arrangement. Mean values across all arrangements are indicated by the pink disks.
Insets: Scaled images to show detail.
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Disks in vacuum

(a)

(b)

Figure 3.20: (a) Absolute and (b) relative error in radiation by direction of disks in
vacuum. Mean values are indicated by the disks. Insets: Scaled images to show
detail.
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Relative error for every pair of simulations

(a)

(b)

Figure 3.21: (a) RSS error in radiation by direction of disks in vacuum. The rows are
the mathematical model and the columns are HFSS models. (b) A histogram of the
RSS error values with the matching extreme value distribution.
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Disks in Dielectric

Adding in a dielectric surrounding with relative permittivity of 1, 2, 3, or 4 to
the disks, the same analysis carried out for the spheres was performed again.
The results of the absolute and relative errors can be seen in Figs. 3.22a and
3.22b, respectively. Again, no clear pattern emerges for the error’s dependence
on the situation of the particles, or the relative permittivity. The mean of the
absolute value of the relative error of all the permittivities was (400± 2300)%,
with the individual permittivity statistics seen in Table 3.4. While a relative
permittivity of 4 matches the ideal dipole model significantly better than the
other situations, the matching is still quite bad.

Rel. Permittivity 1 2 3 4
Mean Rel. Error (%) 600± 3700 300± 900 600± 2600 100± 100

Table 3.4: Absolute value of the relative errors for disks embedded in materials of
different permittivity.

Conclusion

By comparing HFSS results to an ideal dipole model of two particle in differing
situations of separation, relative angle, embedding permittivity, polarization,
and driving frequency it was found that significant errors between the radiation
patterns exist. Further, by comparing the results of different situations together,
it does not appear that there is a correlation between any of the HFSS results
and the ideal model. There may have been the opportunity to add an extra
component to the results of one of the models to allow easier modeling of these
situations using the ideal dipole setup, however, due to the lack of consistency
in the errors, it does not appear a simple term like this exists. However, the
errors at 0 and 180 degrees are significantly larger in every situation than the
intermediate angles. Therefore, it appears that using an ideal dipole model will
not provide strong insight into how either an HFSS or actual model will behave.
Due to the discrepancy between the ideal dipole model and the HFSS results,
one must be chosen as “correct”. As HFSS intrinsically accounts for more effects
than the ideal dipole model, it will be used.
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Disks in dielectric

(a)

(b)

(c) (d)

Figure 3.22: (a) Absolute and (b) relative error in radiation by direction of disks in a
dielectric medium with varying relative permittivities. Insets: Scaled plots showing
detail of lower error values. Mean value of the (c) absolute and (d) relative errors.
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3.3.3 Radiation Analysis

Using the HFSS results, examining the two disk system in dielectric may provide
insight into which array structures will yield the best scattering results. Fig.
3.23 shows the radiation patterns of each set up under differing permittivities
of the surrounding material. All of the situations have high radiation in the
forward (180 degrees) and backwards (0 degrees) directions with a relatively
low scattering at the mid angles of interest. The ε = 4 case does show a slight
increase in towards π/2 but this is accompanied by a trade off in a smaller
scattering cross section as discussed in Sec. 3.2.2, thus the effectiveness may
be mitigated. It is somewhat surprising how similar the scattering patterns of
these differing situations are, given that both the scattering cross section and
wavelength of the radiated waves are affected.

Disks surrounded by different permittivities

(a)

(b)

Figure 3.23: Selected data of the (a) raw and (b) mean radiation patterns by surround-
ing permittivity. Each line in (a) is the radiation pattern of a single simulation with
a different set of separation and relative angle parameters. Insets: A scaled version
of the plots to reveal detail.

In Figs. 3.24 radiation patterns from a selection of particle separations are
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seen. While some data was excluded for illustrative purposes, the conclusions
drawn used all available data. As with the permittivity, there is a strong forward
and back scattering component of the radiation patterns, with much less towards
the π/2 directions. There also doesn’t appear to be any correlation of the
particle separation and the radiation pattern, with little variation of the mean.

Disks separated by different lengths

(a)

(b)

Figure 3.24: Selected data of the (a) raw and (b) mean radiation patterns by particle
separation relative to the incident wavelength. Each line in (a) is the radiation pattern
for a single simulation. Insets: A scaled version of the plots to reveal detail.

Figs. 3.25 shows the radiation patterns of selected particle angles. Again, il-
lustrated data was limited for illustrative purposes, but conclusions were drawn
for all data. The same pattern is seen with the correlation of angle and radia-
tion pattern as with permittivity and separation. There is no general trend of
the pattern that depends on the particle angle, with a low intermediate angle
scattering and large scattering components at 0 and 180 degrees.
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Disks at different relative angles

(a)

(b)

Figure 3.25: Selected data of the (a) raw and (b) mean radiation patterns by the
relative angle of the particles. Each line in (a) is the radiation pattern for a single
simulation. Insets: A scaled version of the plots to reveal detail.

Ideal Dipole Model

The same analysis that was carried out for the HFSS data was performed on
the ideal dipole radiation patterns. Because permittivity only affects the wave-
length of the radiated fields in the ideal model, it is not relevant as this is
already accounted for via the separation parameter. Thus, an increasing par-
ticle separation parameter can be interpreted as either the particle separation
being increased for a constant driving field frequency, or as the driving field
frequency being increased for a constant article separation.

Fig. 3.26 shows the mean radiation patterns based on particle separation. As
the separation increases there is a clear shift from back to forward scattering.
Thus, as the particles move further apart, or the driving frequency becomes
faster, more forward scattering is expected. In Fig. 3.27 the mean radiation
pattern is seen as the angle between the particles varies. Here it is seen that
as the angle of the particles increases there is a shift from forward scattering to
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backscattering. Both of these results are in stark contrast to the HFSS results
which showed no clear trend. This is another indication that the HFSS models
are taking into account a more complicated situation than the dipole model,
and that the dipole model is insufficient to model the actual situation.

Dipoles with different separation

(a) 0.1 (b) 0.2

(c) 0.3 (d) 0.4 (e) 0.5

(f) 0.6 (g) 0.7 (h) 0.8

(i) 0.9 (j) 1.0 (k) 1.1

Figure 3.26: Mean radiation pattern of ideal dipoles with varying separation. The
separation, given in the caption, is relative to the radiated wavelength.
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Dipoles at different relative angles

(a) 0

(b) 10 (c) 20 (d) 30

(e) 40 (f) 50 (g) 60

Figure 3.27: Mean radiation pattern of ideal dipoles with varying angle relative to
each other.

3.4 Periodic Systems

3.4.1 Lattice Sum

When developing the lattice summation technique for both 2D and 3D lattices
is Secs. D.1.1 and D.2.2, it is easy to get confused by the details and long
equations1. Thus it pays off to examine an overview of the process that was
followed in these derivations. To begin, space was broken into near and far
regions, and the far region was further divided into regions ρ. In each region
ρ the radiation function of interest f was placed at origin points γ creating a
1D lattice. This function only depended on the distance to the observation
point r, giving f(r). f was then multiplied by a magnitude function M which
depended on the lattice point and the position vector r. This resulted in a

1When deriving these equations in Appendix D, a formal approach was taken and terms
were labeled precisely. However, these notations make the equations more cumbersome. At
this point a bit of comfort is assumed with how the notation is being used, and some of the
notation will be suppress in exchange for readability.
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general equation of the form

E =
∑
ρ

∑
γ

f(r)M(γ, r) (3.8)

For each ρ, f̂ was considered constant and f took the form cρ · exp(ih(r))/r
for cρ = c(δ r, ρ) constant and real in each region, and linear function h. The
magnitude function could be divided into a part that only depends on γ and a
part that only depends on r̂, M(γ, r) = M ′( r̂)×M ′′(γ).

E ∼
∑
ρ

cρM
′( r̂)̂f

∑
γ

M ′′(γ)
exp (ih(r))

r (3.9)

r was then approximated by r ∼ rβ + γδ r as r →∞, and rβ ≈ βδ r was used
in the magnitude giving

E ∼
∑
ρ

cρM
′( r̂)̂f

∑
γ=0

M ′′(γ)
exp (ih(rβ + γδ r))

(β + γ)δ r

=
∑
ρ

cρM
′( r̂)̂f

∑
γ=β

M ′′(γ − β)
exp (ih(rβ + (γ − β)δ r))

γδ r

=
∑
ρ

cρM
′( r̂)

exp (ih(rβ − βδ r))

δ r f̂
∑
γ=β

M ′′(γ − β)
exp (iγh(δ r))

γ
(3.10)

As the observation point changes rβ is the only parameter in the expression
that changes. So each lattice region has a constant magnitude, regardless of the
observation point, but a varying phase.

Field Evolution

To see how the phase of the field changes through the structure, recall that
rβ = |r0−rβ | with rβ = αiβai. The evolution of the field can then be determined
by taking the derivative of it relative to the observation point.

∂E

∂r0
=
∑
ρ

Eρ × i
∂

∂r0
h(rβ)

=
∑
ρ

Eρ × i
∂

∂r0
h

([(
rj0 − αiβa

j
i

)2

1j

]1/2
)

(3.11)

where Eρ is the electric field from region ρ. In both the 2D and 3D cases h is a
constant within each region, h(rβ) = hρ rβ . So

∂

∂r0
h

([(
rj0 − αiβa

j
i

)2

1j

]1/2
)

= hρ
∂

∂r0

[(
rj0 − αiβa

j
i

)2

1j

]1/2
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Finding the gradient for the directional derivative gives

∂

∂rj00

[(
rj0 − αiβa

j
i

)2

1j

]1/2

=
rj00 − αiβa

j0
i[(

rj0 − αiβa
j
i

)2

1j

]1/2

=
rj00 − αiβa

j0
i

rβ

=
rj0β
rβ (3.12)

Yielding

∇
[(
rj0 − αiβa

j
i

)2

1j

]1/2

= r̂β (3.13)

So changing r0 by v changes the electric field as

∂E

∂r0

∣∣∣∣
v

=
∑
ρ

Eρ × ihρ r̂β · v (3.14)

If v is perpendicular to r̂β , this means the Eρ does not change. Thus, fields
from the far region are constant along spheres with centers at the β points in
the lattice. Also, due to the factor of i, only a phase change can occur and there
is no reliance on the distance the field is being observed from the source point.
Note that this is different from a traveling EM spherical wave as the direction
of the fields is also constant along these surfaces, as seen in Fig. 3.28.

Considering the separation function, Eqs. (D.120) and (D.130), the sym-
metry of the lattice is such that the separation from opposing directions is
equal. In the 2D lattice this gives δ r(φ) = δ r(φ + π), and in the 3D case
δ r(θ, φ) = δ r(π − θ, π + φ). Because the field strength is constant, and only a
phase change occurs depending on the observation point, this halves the number
of regions that must be considered when finding the total far region field.

Component Analysis and Region Limits

As the boundary between the near and far regions of the sum are pushed away
from the origin more directions are included in the far region sum, making the
model more accurate. If the β point for each lattice vector is the same β0, then
there are (2β0)3 lattice points in the near region and the number of directions
included in the far region is the number of co-prime triplets with all elements
less than or equal to β0. This seems to grow exponentially fast, as seen in Fig.
3.29, so a balance between accuracy and required computational resources must
be found [25].

In Figs. 3.30 the near region electric field magnitude is plotted for β0 from 1
to 3. Comparing the square from (−1,−1) to (1, 1) across the cases shows that
the general radiation pattern remains the same across the three cases. However,
the maximum magnitude of the field is much larger in β0 = 2 than β0 = 1, and
roughly the same for β0 = 2 and β0 = 3.

In Figs. 3.31 the far region electric field magnitude as for the near region
field, and in Figs. 3.32 the magnitude of the field from each region is shown.
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Figure 3.28: The constant spherical field emanating from a β point of the lattice. The
field vectors, in green, are constant on the surface and only change phase between
surfaces.

Number of far region direction vs. β point selection

Figure 3.29: The number of directions in the far region sum when each lattice vector
has the same bound.

Again, moving from β0 = 1 to β0 = 2 shows a significant change, especially in
the region magnitudes, while moving from β0 = 2 to β0 = 3 does not have a
significant impact. Combining the near region field and the far region field gives
the total field, seen in Figs. 3.33 Here, the same pattern is seen when change
the β0 value.

The computational resources required to calculate the fields in the near and
far region scale roughly linearly with the number of points in that region. Thus,
if the time to calculate the fields with β0 = i is ti, then t2 = 2t1 and t3 = 4t1.
Balancing the the gain inaccuracy with the resources, it was decided to use
β0 = 2 for further results, unless specified.
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Near region field

(a) (b)

(c)

Figure 3.30: The electric field magnitude of the near region, computed directly, with
each lattice vector have the equal β points of (a) 1, (b) 2, and (c) 3. The black points
indicate the position of the lattice points in the XY plane.
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Far region field

(a) (b)

(c)

Figure 3.31: The electric field of the far region with each lattice vector have the equal
β points of (a) 1, (b) 2, and (c) 3. The black points indicate the position of the lattice
points in the XY plane.
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Far region field magnitudes

(a) (b)

(c)

Figure 3.32: The electric field magnitude of the far regions, with each lattice vector
have the equal β points of (a) 1, (b) 2, and (c) 3. The white space is a large region
without a direction.
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Total lattice field

(a) (b)

(c)

Figure 3.33: The total electric field magnitude, with each lattice vector have the equal
β points of (a) 1, (b) 2, and (c) 3. The black points indicate the position of the lattice
points in the XY plane.



3.4. PERIODIC SYSTEMS 57

3.4.2 Dominant Region

In the far region each direction has a maximum magnitude given by cρM
′( r̂).

However, this magnitude is scaled by∑
γ

M ′′(γ)
exp(ih(r))

r (3.15)

This term takes into account the phase shift between particles in the given
direction, accounting for the interference of their fields. So by adjusting the
lattice parameters to minimize or maximize this term for a given direction, the
relevance of the far region field from that direction can be tuned. To determine
when the far region terms dominate the field and when the near region terms
dominate the maximum field magnitudes from each can be evaluated.

From Eq. (2.2), the maximum magnitude for a given region occurs when
ν1 = 1, corresponding to the case of no absorption and perfect reflection at both
interfaces, and when ζ2 = 0 mod 2π. Recalling the equations for ζ1 and ζ2 are

ζ1 =
ω

c
δ r(θ, φ)− 2π

δ r(θ, φ) sin θ

λ0
sin θ0 cos(φ− φ0) (3.16a)

ζ2 = − 2π sin θ

2δ r(θ, φ+ π
2 )λ0

sin θ0 sin(φ0 − φ) (3.16b)

ζ2 can be substituted in to the second term of ζ1, giving

ζ1 =
ω

c
δ r(θ, φ) + 2

δ r(θ, φ)δ r(θ, φ+ π
2 )

tan(φ0 − φ)
ζ2 (3.17)

Assuming that φ0 6= φ, then

ζ1 =
ω

c
δ r(θ, φ) (3.18)

So ζ1 represents how in-phase the particles are due to their separation. It will
also be assumed that rβ and r are such that the factors involving them are
maximized, and constants will be ignored. With these assumptions the first
two term in the brackets of Eq. (2.2) are equal, and thus cancel, leaving the
maximum angle for a region of

Emax = − eiζ
1β

δ r(θ, φ)
(3.19)

×



[
Li1

(
eiζ

1
)

+

β−1∑
γ=1

eiζ
1γ

γ

]

+

[
Li2

(
eiζ

1
)

+

β−1∑
γ=1

eiζ
1γ

γ2

]

+
1

3

[
Li3

(
eiζ

1
)

+

β−1∑
γ=1

eiζ
1γ

γ3

]


(3.20)

where Li1(z) = ln(1− z).
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Figs. 3.34 show the real part, imaginary part, and norm of the polylogarithm
functions. Both Li2 and Li3 stay finite, however Li1 diverges for arguments equal
to 0 mod 2π. The summation term corresponding to the Li1 component adds
an oscillatory behavior to the real and imaginary parts but leaves the shape of
the norm unaffected. The summation terms for the Li2 and Li3 components do
not drastically change their behavior, only modifying their amplitude.

Polylogarithm functions

(a) (b)

(c) (d)

Figure 3.34: The real part, imaginary part, and norm of (a) Li1(eix) = ln(1− eix), (b)
Li1(eix) +

∑
γ e

ix/γ with γ = 5, (c) Li2(eix), and (d) Li3(eix).

To determine how precisely the separation of the particles must be to be
in resonance something similar to the half width at half maximum (HWHM)
can be computed. Here, though, the divergence does not allow a maximum
to be calculated. Instead the half width will be calculated at a multiple of
the minimum value of the norm (HWMN). A somewhat arbitrary, but natural,
choice of the multiple is e. The minimum value of

∣∣Li1(eix)
∣∣ occurs at x = π

and has value ln 2. Thus the half width will be determined at e ln 2. Using

a =
∣∣∣1− eiζ1∣∣∣ =

√
(1− cos ζ1)2 + sin2 ζ1

b = arg
(

1− eiζ
1
) (3.21)
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For an arbitrary value c

c =
∣∣∣Li1 e

iζ1
∣∣∣

=
∣∣∣ln(1− eiζ

1

)
∣∣∣

=
∣∣ln(aeib)

∣∣
=
√

ln2 a+ b2 (3.22)

Because the resonant peak is of interest ζ1 will be small mod 2π, ζ1 → 0
mod 2π. Taking the first order Taylor expansion of the trigonometric functions
in Eqs. (3.21) has a → (1 − cos ζ1) and b → 0. This assumption allows Eq.
(3.22) to be solved, but also underestimates the HWMN.

c =
√

ln2 a+ b2

≤
√

ln2 a

≤ |ln a|

Because a =
(
1− cos ζ1

)
< 1, ln a < 0, so

c ≤ − ln a

e−c ≤ 1− cos ζ1

ζ1 ≤ arccos
(
1− e−c

)
(3.23)

Fig. 3.35a shows the HWMN for a given multiplier c. For c = e ln 2, the
HWMN is 32 degrees. Assuming that the values of the separation function
are randomly distributed mod 2π, as shown in Fig. 3.35b, the percentage of
regions that are considered in-phase for a given frequency is HWMN/π. So for
c = e ln 2, 17.8% of the regions will be in phase. Thus, to make the far region
relevant, a lattice structure that concentrates the separation function within the
HWMN mod 2π should be constructed.

In this vein, 500 lattices were randomly generated. The angle between the
lattice vectors was uniformly distributed between 0.001 and π, and the ratio
of their norms between 1 and 15, as seen in Fig. 3.35d. Fig. 3.35c shows a
histogram of lattices by the percent of far regions within the HWMN of c = e ln 2
centered at 0. On average, (17.8±1.5)% of the far regions fell within the HWMN,
matching the random distribution extremely closely. This analysis was run for
several other lattice parameter distribution with no significant change to this
number. Thus, it appears regardless of the lattice, the separation function is
evenly distributed mod 2π. If φ0 = φ, the same analysis holds because only a
phase shift is incurred.

So far only the maximum possible magnitude for each region has been an-
alyzed. One of the largest factors that has been ignored in this analysis is the
reflection coefficients. In an actual reflector, although the bottom interface will
be mirrored, the top interface, with the absorbing layers, will have a small re-
flection coefficient to allow light to be re-absorbed. This further diminished the
role of the far regions. Combined with the analysis, this points to the far region
only being of consequence under extremely specific conditions. Thus, only the
near region should be considered to design the back reflector.
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Half width minimum norm statistics

(a) (b)

(c) (d)

Figure 3.35: (a) The half width min norm (HWMN) for different multiplier values, with
the gray line indicating e ln 2. (b) The separation for regions in a square lattice with
unit vectors and lattice constants up to 40. (c) The percentage of lattice direction
within the HWMN of randomly generated lattices. (d) The distribution of lattice
parameters for the randomly generated lattices.

3.4.3 Near Region Field

Considering only the near region field, a preliminary investigation in to the
possible fields was performed. Several structures with two particle layers were
modeled. An example of the near region virtual lattice for one of these devices
is seen in Fig. 3.36. The fields for several of these devices are seen in Figs.
3.37. From the limited set of examples explored, all the fields were similar to
the ones shown. Unfortunately none of these fields showed promise to scatter
in an efficient manner.

3.5 Realistic System

To mimic the realistic systems measured in Sec. 6.3.1 a model with particles
mimicking the statistics of sample 1.6 in Table 6.1 was created. Two of these
layers were created so the devices fabricated in Table 6.2 could be simulated.
Images of these layers are in Fig. 3.38, and the statistics are in Table 3.5. All
particles had a height of 20 nm.

The simulated model varies from the realistic devices in several ways. First,
the surface morphology of the SiO2 was not replicated. This is because it is
unknown how the particles form on a rough surface, discussed in Sec. 6.3.2.
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Figure 3.36: The virtual lattice of a device with two particle layers. Both layers have a
square unit cell with unit side length. The bottom layer is offset by (1/2, 1/2) relative
to the top layer.

Possible examples are shown in Fig. 3.39. This is also why the particle statistics
for particles on a flat surface were used for both layers. As discussed in Sec.
6.3, the top layer of particles in the fabricated devices actually have a smaller
particle radius than the first layer of particles.

The model consisted of a half infinite air and a half infinite SiO2 layers. The
particles were embedded in the SiO2 layer with the top layer either 50 or 100
nm from the interface with air, called the buffer length. The bottom layer of
particles had a center-to-center distance of either 50 or 100 nm from the top
layer, known as the layer separation. Simulations were run between 750 and
1050 nm at 50 nm steps to be compared with the angular intensity distribution
measurements discussed in Sec. 6.4. Table 3.6 provides the frequencies of the
relevant wavelengths.

In Fig. 3.40a the radiation pattern of each of the four simulation config-

Layer Radius [nm] Coverage [%]
Top 159± 39 61.2
Bottom 159± 38 61.3

Table 3.5: Layer properties for realistic simulation.
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urations at each wavelength is visible. All of the simulations follow the same
general shape with a small amount of back scattering up to 30◦, then a slowly
increasing intensity through 140◦, and finally a greater intensity increase to for-
ward scattering at 180◦. Fig. 3.40b shows the radiation patterns of the samples
averaged over frequency. There is no significant difference of trends in the data,
showing that the frequency does not have an overall effect on the radiation pat-
tern. Fig. 3.40c shows the radiation pattern averaged over the separation and
buffer thickness, listed respectively in the legend. Here a trend does appear.
The simulations with the same separation have roughly equivalent radiation
patterns, with the large separation leading to more scattering.

Frequency [THz] 286 300 315 333 353 375 400
Wavelength [nm] 1050 1000 950 900 850 800 750

Table 3.6: A conversion table for selected wavelengths.
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Fields of multi-layered structures

(a) (b)

(c) (d)

Figure 3.37: The electric field magnitudes for varying devices with two lattices. The
top lattice in each case had a unit length square unit cell. The bottom layer in (a),
(b), and (d) had the same unit cell, but was offset by (a) (0, 0), (b) (0.25, 0), (d)
(0.25, 0.25). In (c) the bottom lattice is not offset, but has lattice vectors each with
unit length, but with 45 degrees between them. The field in the XY-plane is the field
at the top interface of the device.



64 CHAPTER 3. MODELING RESULTS AND ANALYSIS

Particle Schematic

(a) (b)

Figure 3.38: Layout of the (a) top and (b) bottom layer used in the HFSS simulations.

(a) (b)

Figure 3.39: Schematics of possible particle morphologies when deposited on a rough
surface.
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Radiation patterns

(a)

(b)

(c)

Figure 3.40: (a) Radiation pattern of all simulations. (b) Radiation pattern of the
simulations averaged by frequency. (c) Radiation pattern averaged over separation
and buffer thickness, represented respectively in the legend. Lines are the mean values
and shaded areas represent errors.
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Chapter 4

Modeling Conclusion

To better understand how a reflector made from layers of plasmonic particles
behaves, the system was decomposed into several parts. First, the behavior of
individual particles were investigated using Mie Theory and HFSS simulations.
Through these investigations it was found that there is an optimal particle size
to produce ideal dipole radiation. If the particles become too small absorption
effects quickly take over, while particles that are too large slowly deviate from
the ideal case. For cylinders, it was also found that the radius to height ratio
of the particle affects its radiation pattern, with a larger radius to height ratio
leading to more absorption. The scattering cross sections were also investigated
with the HFSS results showed a significant divergence from Mie theory.

A two dipole system was then considered so the effects of interference could
be evaluated. Comparing an ideal dipole model to HFSS results showed that
the field from each particle affects the radiation of the other significantly. The
radiation patterns of the HFSS results and ideal dipole model were then consid-
ered separately. The HFSS results showed that forward scattering to 180◦ and
backscattering to 0◦ are most dominant regardless of the particle orientations.
The ideal dipole model, however, showed that as the orientation of the parti-
cles relative to each other change, the radiation pattern varies as well. While
forward scattering remained most dominant, a relatively large amount of power
could also be back scattered.

To investigate the effect of the lattice, the lattice summation technique de-
veloped in Appendix D was used. By taking the extreme values for each far
region in a lattice it was determined that the field from the far regions are only
significant in very specific situations. Thus, only the field in the near region,
which is calculated directly, must be considered.

Finally, using parameters measured from fabricated devices, a realistic HFSS
model of a two-layered lattice structure was simulated. The simple model
matched the radius and distribution of particle sizes but did not take in to
account the surface morphology. The results showed a similar radiation pat-
tern regardless of incident wavelength or buffer layer thickness. However, the
separation between the bottom and top layer of particles played a role in the
radiation pattern, with a larger separation scattering more strongly.
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Chapter 5

Fabrication Theory
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5.1 Lithography

Lithography allows the creation of nanoscale structures, using a masking method
to create layers of different patterns.

5.1.1 Optical Lithography

One of the major lithography processes, optical lithography, uses light exposure
to alter the properties of a material. This material can then be etched away in
a negative or positive pattern, allowing only parts of the desired material to be
manipulated. There are four major steps in this lithographic process. First the
sample is spin coated in resist. The sample is then placed under a mask of the
desired pattern and illuminated for a brief period suing short wavelength light.
If a positive resist pattern is used, the bonds in the exposed are of the resist
are weakened. In a negative resist the exposed area are strengthened. After
the exposure, the sample is washed in developer, removing the more weakly
bound resist areas. Thus, the resist of a positive pattern remains in the unex-
posed areas, while a negative pattern retains its resist in the exposed areas. An
illustration of this difference can be seen in Fig. 5.1.

(a)

(b) (c)

Figure 5.1: The mask in blue, resin in red, and substrate in black (a) before etching,
and after etching of a (b) positive resist, and (c) negative resist.

After the resist is in place, the sample can receive a deposition. The mask
acts to block the deposition on certain areas of the sample. Finally, after the
deposition, the resist is then etched away in a chemical bath, leaving behind
the desired pattern of deposited material. By repeating this process, layers of
different patterns can be constructed on a sample.

There are several considerations that must be taken in to account during the
lithographic process, here though, only the two most relevant will be addressed.
First, by modifying the thickness of the resist and exposure time different ver-
tical patterns can be created during the development phase. If the exposure is
longer than the minimum amount of time to modify the resist’s bonds, called
the critical dose, spill over occurs. This modifies the vertical angle of the walls
at the boundary of development, called the contrast. A longer exposure will
cause more spill over and a lower contrast. However, spill over can also be used
to increase the pattern size relative to the mask, effectively causing an exposure
under the masked area. This technique is known as dose to size.

Second, as light penetrates through the mask it is absorbed. Thus, the
bottom of the mask will receive a lower dose than the top. If this effect is strong
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enough, a low contrast boundary is developed resulting in pyramidal structure
as with the spill over effect. If a positive resist is used this results in upright
pyramids. However, if a negative resist is used, the pyramids are inverted,
resulting in undercuts. So, as material is deposited it becomes discontinuous
at the undercuts. When the resist is then etched away, a clean pattern is left
behind. This technique, shown in Fig. 5.2, is known as lift off.

(a) (b)

Figure 5.2: The resist pattern left behind due to overexposure of a (a) positive and
(b) negative resist using the same mask pattern as in Fig. 5.1a.

5.1.2 Ultraviolet Nanoimprint Lithography

Ultraviolet nanoimprint lithography (UV-NIL) uses essentially the same pro-
cessing techniques as optical lithography, described in Section 5.1.1. The only
difference comes when curing the photoresist. After the photoresist is deposited
on the substrate, instead of placing an optical mask over the resist to prevent
it from curing, a stamp is used to mold the resist to the desired shape. The
stamp, made of material transparent to the relevant wavelengths, is pressed into
the resist layer. The sample is then cured as normal and the stamp is removed.
Processing then continues as normal.

Because the resist is removed mechanically by the stamp from the positions
where it is unwanted, this process only uses negative resist. The mechanical
nature of UV-NIL also means that the inverted pyramid structures that could
be formed using optical lithography for a clean lift off process can no longer be
manufactured. However, NIL has some key advantages over optical lithography,
especially for use in solar cells. Because the process is mechanical, and the same
stamp can be re-used many times UV-NIL is much cheaper, more reproducible,
and allows for smaller feature sizes [26]. Thus, when scaling up production
UV-NIL is often a better choice.
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(a) (b)

Figure 5.3: Depending on the conductivity of the embedding material, the back re-
flector may need to use vias to connect the absorbing layers to the back contact, as
in (a). If a conductive material is used for embedding, electron transport can occur
directly through the embedding material, as in (b).

5.2 Structure

There are two possible constructions for a back reflector of this type depending
on the embedding material. If the embedding material is a dielectric, then
connections from the absorbing layers to the back contact must be made with
vias through the embedded layer, as seen in Fig. 5.3. If, however, the embedding
material is conductive vias are no longer required.
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6.1 Optical Lithography

Due to time constraints, only masks that could be created quickly were available
for testing. This limited the options to creating a mask through the formation
of metal island films, or using a mask that was already made.

6.1.1 Metal Island Films as Masks

To create a mask for lithography, metal island films were created in the vein of
Tan and Santbergen [15, 27]. Using plasma deposition, a 12 nm layer of silver
was deposited at 0.1 nm s−1 onto five SiO2 substrates. Two of the samples were
annealed for 1 hour, two for 1.5 hours, and one for 0.5 hours, all at 400◦ C.
One of the 1 hour and one of the 1.5 hour annealed samples then received an
SiO2 deposition of 100 nm at 0.5 nm s−1 to prevent oxidation. These films then
constitute a random arrangement of particles that can be used to create the 3D
structure.

Using an NTEGRA Prima AFM machine with NOVA 1508 software, mea-
surements of the films were obtained. For each mask a statistical average of
each property was calculated over five samples regions.

6.1.2 Results

Using the masks several attempts were made to create a resist pattern. AZ
2020 negative photoresist was deposited on to a glass substrate with thicknesses
ranging from 700 nm to 1.5 µm. Samples were then dried for 1 minute at 100◦

C. Using a Karl Suss MA6 for exposure, times for each thickness were varied
between 5.0 and 30.0 seconds, after which the samples were dried for one more
minute. The samples were then developed in MF322 solution for between 30
seconds and 1 minute.

Unfortunately, no resist remained on the substrate after any of these trials.
This occurred because the wavelength of the exposure light is more than 400
nm from a mercury lamp, while particle sizes were found to be at most 250
nm from AFM measurements. So, due to diffraction effects the particle did not
prevent any exposure. This means that when the samples were developed the
bonding strength over the entire sample was uniform, and the developer simply
removed all the resist with the same characteristic development time.

6.2 Nanoimprint Lithography Stamps

The issues that arose using optical lithography, discussed in Section 6.1, can be
overcome using NIL. Unfortunately, an NIL stamp could not be obtained. How-
ever, given the advantages discussed in Section 5.1.2, NIL is a strong candidate
for not only prototyping 3D plasmonic back reflectors, but also producing them
at scale.
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6.3 Metal Island Films

Because optical lithography was unsuccessful and an NIL mask could not be
obtained, the use of self-forming metal island films directly on the substrate
was used to create the plasmonic particles. Unfortunately, this comes with
several downsides. Most prominently this means a controlled structure in the
plane could not be created. Also, because an annealing process must occur for
each layer, all previously deposited layers are annealed again. Thus, if there
are three layers of plasmonic particles, the first layer is annealed two additional
times. This may cause diffusion of the plasmonic material into the embedding
material, or may lead to oxidation.

Using this method, there are three properties that can be controlled: the
average particle size, the area coverage, and the distance between plasmonic
layers. From Tan and Santbergen’s work, it was found that varying the amount
of deposited silver affects the area coverage, and the annealing time affects
particle size [28, Ch. 3]. The best coverage results for a single layer reflector
are obtained for a 12 nm film deposition, which will be held constant to narrow
the investigation.

6.3.1 Particle Properties

To establish the fabrication process for the reflectors, self-forming particles were
created varying several parameters using a similar process as in Sec. 6.1. To
begin, 12 nm of silver was deposited on glass. Samples were then heated to 400◦

C in a Carbolite AAF 1100 oven with a nitrogen flow of 20 liters per minute
to prevent oxidation. After cooling, a buffer layer of SiO2 of different depths
was deposited. A schematic of the samples are seen in Figs. 6.1. The samples
were measured with the NTEGRA AFM and analyzed using Gwyddion and
NOVA. Example AFM scans are seen in Fig. 6.2, and analysis results are in
Table 6.1. Samples 1.1, 1.2, and 1.3 were used as controls to determine how the
morphology of the SiO2 depends on the underlying nanoparticles, so no silver
was deposited on them. To validate the AFM measurements, samples 1.1, 1.2,
and 1.3 were also measured using a Hitachi s4800 SEM, confirming the results.

(a) (b)

Figure 6.1: Schematic of the single layered device (a) without and (b) with an SiO2

deposition on top of the particles

There are three properties of primary concern for the particles: coverage,
particle radius, and aspect ratio. Coverage is the percentage of the surface
covered by particles. Particles were delineated using a height threshold mask in
Gwyddion. This is not the best technique as the particle properties are quite
sensitive to the mask, however an effort was made to represent the particle
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consistently by varying the threshold value. The particles are quite densely
packed as seen in Figs. 6.2, which is in agreement with the results of Tan and
Santbergen [29, 27]. There also isn’t any significant difference between the 45,
60 and 120 minute anneal times, having coverage (59 ± 4)%, (61 ± 2)%, and
(61± 4)%, respectively.

Particle radius was determined from samples 1.4, 1.6, and 1.8. The radius
was calculated by

r =

√
Aσ

πN
(6.1)

where r is the radius, A is the area of the scan, 5x5 µm2 in these cases, σ is the
area coverage , and N is the number of particles. The number of particles with
a given radius follows a normal distribution quite closely, as expected. A typical
example of this is seen in Fig. 6.3. From Sec. 3.2, the optimal particle radius
for scattering was found to be between 100 and 200 nm, so even the minimum
annealing time of 45 minutes is sufficient, as seen in Table 6.1.

In Sec. 3.2 it was found that the aspect ratio of the particles plays a critical
role in the absorption, with a lower radius to height ratio having less absorption.
The height of the particles is given by the average roughness in Table 6.1, and
reveals that while a small height change occurs between 45 and 60 minutes,
there is no change between 60 and 120 minutes of annealing time. The aspect
ratios for the annealing times are (8.2 ± 2.4), (8.3 ± 1.5), and (10.3 ± 2.1),
respectively, showing a longer annealing time leads to larger aspect ratio (i.e.
flatter particles). From Sec. 3.2.3 it was found that a smaller aspect ratio leads
to less absorption, so a shorter annealing time should be used to limit this. The
best choice for annealing time when considering the particle radius and aspect
ratio, and the variance of these values, then is 60 minutes. This time will be
used for further device fabrication.

(a) (b) (c)

Figure 6.2: Examples of the AFM scans of sample (a) 1.4, (b) 1.6, and (c) 1.8 in Table
6.1. Images are of a 5x5 µm2 area.
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Sample
Anneal
Time
[m]

SiO2

Thickness
[nm]

Avg.
Roughness

[nm]

Avg. Mean
Slope [deg]

Avg. Radius
[nm]

Substrate - - 5± 2 1.8± 0.5 -
1.1 - 25 17.1± 0.4 22.2± 1.1 144± 32
1.2 - 50 6.5± 3.8 2.5± 0.5 -
1.3 - 100 3.8± 2.1 1.4± 0.9 -
1.4 45 0 18.8± 0.3 25.8± 0.5 155± 45
1.5 45 100 21.1± 0.7 27.0± 1.7 126± 52
1.6 60 0 19.9± 0.4 20.5± 0.8 164± 30
1.7 60 100 21.0± 0.6 26.1± 0.5 140± 6
1.8 120 0 19.2± 2.4 24.0± 2.5 197± 31
1.9 120 100 16.5± 1.5 24.7± 1.8 107± 19

Table 6.1: Particle and layer properties for varied annealing times and buffer layer
thicknesses.

Figure 6.3: A typical histogram of particle radii and fitted normal distribution.

6.3.2 Layer Properties

The first layer of particles is deposited on a flat surface, however all subsequent
layers will be affected by the morphology of the embedding material between
the layers. Figs. 6.4 depict the two extreme scenarios of how underlying particle
properties affect the layers on top of them. One extreme, in Fig. 6.4a, is that
the deposition of embedding material, in this case SiO2, will fill in the gaps
between the particles, resulting in a flat surface for the next layer. In this case
it would be expected that there is no correlation between particle positions of
consecutive layers, and that the particle properties in each layer will be the
same. In the other extreme, in Fig. 6.4b, the deposition of embedding material
is equal across the surface, resulting in the pattern of the underlying particles
being transfered to the next layer. This would result in a correlation between
the position of the underlying particles and the particles in the next layers, and
affect the properties of the newer particles.

Samples 1.5, 1.7, and 1.9 have a 100 nm layer of SiO2 deposited on top
of particles with the same fabrication parameters as samples 1.4, 1.6, and 1.8
respectively, allowing the surface morphology of the buffer layer to be exam-
ined. From this, insights about how particles in successive layers will deposit
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(a) (b)

Figure 6.4: Two possible results from deposition on top of nanoparticles. (a) The
deposition fills the gaps between the particles, resulting in a flat surface for the next
deposition. (b) The deposition occurs at an equal rate across the substrate resulting
in the underlying particle pattern being transfered to the deposition affecting the
properties of the next layer.

themselves may be gained. In Fig. 6.5a particle radius on the buffer layer is
plotted against the radius of the underlying particles. There is clearly no trend
in this limited dataset, however the buffer layer particles have a bit smaller
radius than the underlying particles. Fig. 6.5b shows the same sort of plot
for roughness. Again there is no trend correlating the underlying roughness to
the surface roughness on the buffer layer. So it appears that the underlying
particle size, with a 100 nm deposition on top, does not correlate to the surface
morphology of the deposited layer.

Particle comparison

(a) (b)

Figure 6.5: The (a) radius and (b) roughness of the surface particles after a 100 nm
buffer deposition against the underlying particles.

Looking at the roughness of samples 1.1, 1.2, and 1.3 do show an interesting
result though. In sample 1.1, which is 25 nm of SiO2 deposited on the glass sub-
strate, there is a significant roughness, which is not present in samples 1.2 and
1.3 with 50 and 100 nm of SiO2 respectively. This indicates that with more than
50 nm of SiO2 the substrate is completely covered, and the deposited layer has
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Sample 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10
Layer Separation [nm] 50 50 50 100 100 100 150 150 200 200
Buffer Thickness [nm] 0 50 100 0 50 100 0 150 0 200

Table 6.2: Fabrication parameters for two-layered devices.

the same morphology as the substrate. With the underlying particles though,
the buffer layer surface remains rough. Thus, although the underlying particles
don’t have a correlatable effect on the buffer layer surface morphology, they do
change it relative to having no underlying particles by creating roughness.

To study how the particles deposited on the first buffer layer behave with
the rough surface, the samples in Table. 6.2 were fabricated. In these devices
the first layer of particles was deposited on the substrate. Then an SiO2 layer
with thickness Layer Separation was deposited. After forming the top layer of
particles, another SiO2 layer of Buffer Thickness was deposited. Each particle
layer was annealed for 60 minutes. This results in devices with the schematics
presented in Fig. 6.6.

Measurements of samples 2.1, 2.4, 2.7, and 2.9, seen in Table 6.3 can be
used to determine any effects of the rough surface. Again, no trends are present
correlating the thickness of the buffer layer to the particle properties. However,
taking the average of these samples, the result can be compared to the parti-
cles created with the same fabrication parameters deposited on the substrate,
sample 1.6. This shows that the top layer of particles has the same roughness,
a higher slope, and a smaller radius than the particles deposited on the sub-
strate. Due to the limited nature of this study, and the large variance in particle
properties, though, a solid conclusion can not be drawn. Thus, it appears that
the morphology of the surface the particles are deposited on does not play a
significant role in the particle properties, and particles in different layers will
have similar properties if the same fabrication parameters are used.

(a) (b)

Figure 6.6: Schematic of the two-layered device (a) without and (b) with an SiO2

deposition on top of the particles
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Sample
SiO2

Thickness
[nm]

Avg.
Roughness

[nm]

Avg. Mean
Slope [deg]

Avg. Radius
[nm]

2.1 50 20.9± 0.4 21.2± 0.4 142± 27
2.4 100 19.2± 1.4 25.6± 0.4 113± 22
2.7 150 20.9± 0.2 27.7± 0.3 123± 10
2.9 200 16.8± 1.0 22.9± 0.5 102± 11

Average - 19.5± 0.9 24.3± 0.3 120± 19

Table 6.3: Properties of the top layer of particles with different underlying layers.
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6.4 Angular Intensity Distribution

The angular intensity distribution (AID) of samples 2.2, 2.3, 2.5, 2.6, and 2.10
were measured using a PerkinElmer Lambda 950 spectrophotometer. (Sample
2.8 was not measured due to contamination.) Light of wavelengths between 700
and 1050 nm in 50 nm steps was normally incident to the sample begin measured.
The results of the measurements are plotted in Fig. 6.7a. For each sample,
regardless of wavelength, there is a significant forward scattering component.
No other trends appear though. Fig. 6.7b shows the mean scattering intensity
over all wavelengths. Here, samples 2.2 and 2.3, and 2.5 and 2.6 appear to be
similar to each other. Comparing their fabrication parameters, this indicates
that the top layer of SiO2 does not affect the scattering, but the separation
between the particles does have an effect. The trend indicates that as the
particle separation increases more light is scattered. Light is scattered almost
equally across all wavelengths, except at 140◦, where a systematic dip occurs
in all samples. This was likely caused by a measurement error, as there is no
reason for light to not be scattered at this angle. Fig. 6.7c shows the AID
averaged across samples. Here it becomes clear that wavelengths shorter than
900 nm are only scattered at 180◦. Such an abrupt change in behavior between
850 and 900 nm may also indicate that the measurements taken are not reliable.

Comparing these results to those found in the HFSS models, discussed in
Sec. 3.5, reveals a significant difference in the radiation patterns. In the fabri-
cated devices, light is equally scattered across angles between 10 an 170 degrees,
while in the HFSS simulations the amount of light scattered in a direction in-
creases with the polar angle. In the HFSS simulations the frequency also did
not play a major role in the radiation pattern, while in the fabricated devices
wavelengths below the 900 nm threshold were not scattered at all. In both the
simulated and fabricated devices the buffer layer did not impact the radiation
patterns strongly, as expected. The mismatch between the simulated and mea-
sured radiation patterns indicate that the model is not accurate enough. The
largest improvement to be made here would be to investigate how the particles
formed on a rough surface develop. Examples of possible effects are shown in
Figs. 3.39.
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(a)

(b)

(c)

Figure 6.7: Angular intensity distribution of samples in Table 6.2. (a) shows all
wavelengths, and (b) shows the mean of each sample across all wavelengths, with the
shading indicating the error. Insets: Scaled plots showing detail. (c) The mean
intensity calculated across samples with errors. Inset: Scaled plot of all samples.



Chapter 7

Fabrication Conclusion

To study the parameters of a fabricated reflector, one and two layer devices
of self forming, silver island films were made. From the one layer devices it
was found that for a buffer deposition providing sufficient coverage, the surface
morphology of buffer layer does not depend on the underlying particles. Unlike
the substrate, the buffer layer is quite rough though. This affects the particles
of subsequent layers. Comparing the one and two layered devices, it was found
that the flat substrate allows particle of larger radii to form.

The scattering properties of the two-layered devices were also investigated.
For each device, a uniform scattering between 0 and 170 degrees was found,
with a strong tendency to scatter at 180 degrees. Surprisingly, it was also
found that all wavelength below 900 nm are only scattered to 180◦, showing
an abrupt change of behavior for the devices between 850 and 900 nm. This
is likely caused by an inaccuracy in the measurements though. Comparing the
measured results to HFSS simulations revealed that the simplification that the
particles are cylinders resting on a flat surface do not represent the fabricated
devices. A model incorporating the surface morphology and related particle
shapes may overcome these disagreements.
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Chapter 8

Conclusion

Plasmonic back reflectors have been shown to be as good as other sorts of back
reflectors [7]. However, only two dimensional structures have been investigated.
To understand the potential of a three dimensional structure the scattering
properties were investigated. Multiple modeling methods were used to study
different effects from the structure. First, the properties of a single particle
were modeled using Mie theory and HFSS. From this, an optimal particle size,
and constraints on the particle shape were found. Then the radiation pattern of
two particles were simulated. Comparing the interference pattern from a system
of ideal dipoles and that of an HFSS simulation showed that particle-particle
interactions play a significant role in the scattering properties of the particles. It
was also found that the scattering in the HFSS simulations remained relatively
constant regardless of the particle’s orientation to each other. On the other
hand, the ideal dipole model showed that both the separation and relative angle
of the particles play a role in the overall radiation pattern.

The effect of the lattice structure on the scattered field was then investi-
gated. Using a new lattice summation technique it was found that the field
from particles far away from the point of interest can be ignored. This allows
the lattice to be designed only considering the field from nearby particles. A pre-
liminary investigation of the fields from the near region was conducted, however
no conclusions could be drawn due to its limited scope.

Several one and two layered devices were fabricated with self forming metal
island films. The size and shape of the particles in these films showed a large
dependence on the roughness of the deposition surface. However, the layers
deposited on top of the films were not affected by the underlying particles.
The devices showed a uniform scattering pattern between 10 and 170 degrees,
with a large increase at 180 degrees. This shows that the random films are not
strong scatterers. These results were compared with a simple HFSS model, also
revealing that the surface morphology and subsequent particle shapes can not
be ignored.
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Appendix A

Plasmonics

Of interest is how metal nanoparticles interact with light. For the systems
in this research, the properties of localized surface plasmons (LSP) are most
relevant. To investigate this phenomena the path of Maier is followed [30].
LSPs are non-propagating excitations of the free electron gas. To model this,
two major assumptions are made. The first is that the particle size is small
compared ot the wavelength of light. From this, the electric field is assumed
constant over the extent of the particle. Second, the particles are assumed to
consist of a free electron gas against a fixed background of positively charged
nuclei. Also assumed is that the materials being used are non-magnetic, simple
media, meaning they respond isotropically, and linearly to an incident electric
field. From these assumptions, the electric field from incident light will drive
the system as a harmonic oscillator, with all free electrons moving as one. The
kinematics equation of a damped oscillator is

mẍ +mγẋ = −eE (A.1)

where m is the effective mass of the electrons, x is the displacement of electron
γ is a damping term representing collision of the electrons, and −eE(t) is the
driving force caused by the incident light. If the light is a plane wave, E =
E0e

−iωt, for constant vector E0 the response will be

x = x0e
−iωt, x0 =

eE0

m(ω2 + iωγ)
(A.2)

In the material, the polarization caused by a single electron is p = −ex. If the
density of free electrons is n, a macroscopic polarizability arises with

P = −nex = − −ne2

m(ω2 + iγω)
E (A.3)

From the assumption of linear media, the macroscopic displacement field, D,
can be related to the electric field and polarizability as

D = ε0E + P (A.4)

Where ε0 is is permittivity of free space. Using equation (A.3),

D = ε0εE = ε0(1−
ω2
p

ω2 + iγω
)E, ω2

p =
ne2

ε0m
(A.5)
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Where ε is the relative permittivity, and ωp is the plasma frequency. Splitting
the relative permittivity into its real and imaginary components

ε = 1−
ω2
p

ω2 + iγω
= ε1 + iε2, (A.6a)

ε1 = 1−
ω2
pτ

2

1 + ω2τ2
, (A.6b)

ε2 =
ω2
pτ

ω(1 + ω2τ2)
(A.6c)

Where τ = γ−1 is the characteristic time between collision events. The dielectric
function is related to the complex index of refraction, ñ = n+ iκ, as

ñ =
√
ε (A.7)

Where κ is the extinction coefficient, related to absorption. Combining equa-
tions (A.6) and (A.7) gives

ε1 = n2 − κ2 (A.8a)

ε2 = 2nκ (A.8b)

n2 =
1

2

[
ε1 ±

√
ε21 + ε22

]
(A.8c)

κ =
ε2
2n

(A.8d)

For metals to retain their normal optical properties the frequency of the light
driving them must be lower than the plasma frequency. Above this limit, the
metals become transparent. Remaining in the ω < ωp regime, there are two
extremes that can be examined. In the low collision limit ωτ � 1, giving

ε ∼ 1−
ω2
p

ω2
(A.9)

Because ε is dominantly real, κ ≈ 0 and little absorption occurs. In the high
collision limit ωτ � 1 , giving

ε ∼ 1 + i
ω2
pτ

ω
(A.10)

In which case n and κ are of similar magnitude, and significant absorption
occurs. A small, implicit assumption has been made for these calculation that
the energy of the incident light is less than that of the inter-band transitions of
the material. For metals driven by optical frequencies, this assumption holds.

Consider now a small, spherical particle of radius a embedded in a medium
with dielectric function εD and incident field E = E0ẑ. From Maxwell’s equa-
tions with no sources, the electric potential, φ, must satisfy Laplace’s equation

∇2φ = 0 (A.11)
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Due to the spherical symmetry of the particle, φ can be expressed as an expan-
sion in Legendre polynomials, Pl

φin =

∞∑
l=0

Alr
lPl(cos θ) (A.12a)

φout(r, θ) =

∞∑
l=0

[Blr
l + Clr

−(l+1)]Pl(cos θ) (A.12b)

Where φin is the potential inside the sphere, and φout is the potential outside the
sphere. The coefficients can be determined by matching boundary conditions at
the surface of the sphere, and as r →∞. Far away from the sphere the potential
should be unaffected by the particle so as r → ∞, φout → E0ẑ. At the surface
of the sphere, the tangential and perpendicular components of the potential are
required to be continuous yields. These result in

Al = Bl = Cl = 0 for l 6= 1 (A.13a)

A1 =
−3εD
ε+ 2εD

E0 (A.13b)

B1 = −E0 (A.13c)

C1 =
ε− εD
ε+ 2εD

E0a
3 (A.13d)

Plugging these into the expression for φout, with P1(x) = x, gives

φout = −E0r cos θ +
ε− εD
ε+ 2εD

a3 cos θ

r2
E0 (A.14)

Which is a superposition of the incident field’s potential and the potential of a
radiating dipole, d. This allows the potential to be written as

φout = −E0r cos θ +
d · r

4πε0εD

1

r3
(A.15)

Where

d = ε0εDαE0 = 4πε0εDa
3 ε− εD
ε+ 2εD

E0 (A.16)

With

α = 4πa3 ε− εD
ε+ 2εD

(A.17)

α is the polarizability of the particle’s dipole expansion, and exhibits a resonance
at ε = −2εD. This is known as the Frölich condition. In a solar cell, this
surrounding material will be transparent, so εD can be taken as a real number.
Under this assumption, as εD increases, R[ε] must increase as well to maintain
resonance. Examining (A.6b), R[ε] ∝ (1− ω−1), so the resonance redshifts.

Under illumination, then, the particle will exhibit dipole radiation, with
electric field

E =
k2

4πε0εD
(r̂× d)× r̂

eikr

r
= − k2

4πε0εD
sin θ

eikr

r
θ̂ (A.18)
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Where k is the magnitude of the wave vector of the incident light, r is the
position vector to the location of interest with r its magnitude, θ is the angle
between d and r, and θ̂ is the polar direction in spherical coordinates with the
dipole aligned to the z-axis.



Appendix B

Scattering

There are two main processes of interest when considering light for this problem.
The first is scattering, which indicates how an incident light ray is scattered upon
interaction with an object. The second is absorption. Absorption can occur in
two forms. When passing through a homogeneous medium, some of the energy
of light is absorbed according to Beer’s Law

I ∝ e−αd (B.1)

where α is the absorption constant, and d is the distance traveled through the
medium. Absorption can also occur when light is incident on a sea of free
electrons, such as those found in a metal. In this case the electrons act as an
oscillator, and if the frequency of the incident light is matched to the natural
frequency of the electron sea, the energy of the light can be absorbed.

These two processes result in the parameters of interest for this situation,
the scattering, absorption, and extinction cross-sections. These represent the
effective area of the particle for each property. Scattering represents power
density diverted from its original path, absorption is difference between the
total power in and total power out, and extinction is the sum of the two.

B.1 Mie Theory

Consider an incident plane wave interacting with a spherical particle. As the
electromagnetic field of the light and the particle interact, the field will devi-
ate from its plane wave characteristic, scattering some of the light in different
directions. To see exactly how this process occurs the course of Bohren and
Huffman is followed, beginning with satisfying Maxwell’s equations [24]. To
simplify matters, the four four Maxwell equations can be reduced to two wave
equations. Because no sources are present in the system these equations are

∇2E + k2E = 0 (B.2a)

∇2H + k2H = 0 (B.2b)

These equations can be further reduced to scalar wave equation. To see this
first consider a vector field M that represents E or B with

M = ∇× cψ (B.3)
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where c is a constant vector, and ψ is a scalar field. Then

∇ ·M = 0 (B.4)

satisfying the divergence requirements of Maxwell without sources, and

∇2M + k2M = ∇× [c(∇2ψ + k2ψ)] (B.5)

Thus, M will satisfy the vector wave equations only when ψ satisfies the scalar
wave equation

∇2ψ + k2ψ = 0 (B.6)

Further, if another vector field N is related to M as

N =
1

k
∇×M (B.7)

then M and N have all the characteristics of the electric and magnetic fields,
respectively.

Adhering to the geometry of the situation, the wave equation (B.6) is written
in spherical coordinates with polar angle θ and azimuthal angle φ as

1

r2
∂r[r

2∂rψ] +
1

r2 sin θ
∂θ[sin θ∂θψ] +

1

r2 sin θ
∂2
φψ + k2ψ (B.8)

Using separation of variables with ψ = R(r)Θ(θ)Φ(φ) the Legendre polynomials
Pmn (cos θ) and the spherical Bessel and Henkel functions Jν , Yν , Hν all satisfy
Eq. (B.8). This results in even solution ψemn and odd solutions ψomn

ψemn = cos(mφ)Pmn (cos θ)Fn(kr) (B.9a)

ψomn = sin(mφ)Pmn (cos θ)Fn(kr) (B.9b)

where F is any of Jν , Yν , or Hν . The harmonic decomposition of M and N can
then be found plugging Eqs. B.9 in to Eqs. (B.3) and (B.7). If the incident
plane wave is polarized in the x̂ direction then it can be written in spherical
coordinates as

Ei = E0e
ikr cos θêx (B.10)

êx = sin θ cosφêr + cos θ cosφêθ − sinφêφ

and expanded in terms of the spherical harmonics as

∞∑
m=0

∞∑
n=0

BemnMemn +BomnMomn +AemnNemn +AomnNomn (B.11)

with coefficients A and B. From orthogonality conditions only Bo1n and e1n

survive though, resulting in the fields for the incident wave as

Ei = E0

∞∑
n=1

2n+ 1

n(n+ 1)
(Mo1n − iNe1n) (B.12a)

H1 =
−k
µω

E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
(Me1n + iNo1n) (B.12b)
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At the interface of the sphere and the surrounding environment E and H
must satisfy the boundary conditions

(Ei + Es + E1)× êr = 0 (B.13a)

(Hi + Hs + H1)× êr = 0 (B.13b)

where Mi is the incident field, Ms is the scattered field, and M1 is the internal
field of the particle. The scattered field can then be written in harmonics as

Es =

∞∑
n=1

En(ianNe1n − bnMo1n) (B.14a)

Hs =
k

µω

∞∑
n=1

En(ibnNo1n + anMe1n) (B.14b)

From the symmetry of the problem only the θ direction should matter. In this
vain, let

πn =
P 1
n

cos θ
(B.15a)

τn =
dP 1

n

dθ
(B.15b)

Then (τn + πn) and (τn − πn) are orthogonal functions that E and H can be
decomposed as. The first few harmonics of these functions are seen in Fig. B.1.
Notice that as n increases the number of lobes increases and the lobe at 0◦

narrows, and that lobes at 180◦ only occur in every other n. As the size of the
sphere increase, more of the π and τ harmonics must be included in the solution.
This results in a larger and narrower scattering profile, as seen in Fig. 1.4.
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Figure B.1: Polar plots of the first five π and τ functions. The plots are to the same
scale and plotted from 0 to 2π, instead of π, for ease of viewing [24, 4, p. 96].
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The scattering cross section of a particle can also be determined by calcu-
lating the net rate at which electromagnetic energy crosses a spherical surface
centered at the particle. This power is found to be

Ws =
π|E0|2

kωµ

∞∑
n=1

(2n+ 1) Re(gn)(|an|2 + |bn|2) (B.16)

where an and bn are the expansion coefficients of Eq. (B.14), π is 3.14 . . . (not
to be confused with the functions πn), and the gn are

gn = (χ∗nψ
′
n − ψ∗nχ′n)− i(ψ∗nψ′n + χ∗nχ

′
n) (B.17)

with χn the Riccati-Bessel functions. This gives scattering and extinction cross-
sections of

Csca =
Ws

Ii
=

2π

k2

∞∑
n=1

(2n+ 1)
(
|an|2 + |bn|2

)
(B.18a)

Cext =
We

Ii
=

2π

k2

∞∑
n=1

(2n+ 1) Re(an + bn) (B.18b)

where Ii is the intensity of the incident wave.
In the limiting case that the sphere is small compared to the wavelength of

incident light, the electric field can be considered constant over the volume of the
sphere and the expressions for the cross-sections can be simplified. Specifically,
the Bessel functions can be expanded in their power series representation, and
only the first few terms included. This gives simple expressions for an and bn
resulting in the cross-sections

Csca =
8π

3
k4a6

∣∣∣∣ ε− εmε+ 2εm

∣∣∣∣2 (B.19a)

Cabs = 4πka3 Im

[
ε− εm
ε+ 2εm

]
(B.19b)

Evaluating the fields from this limit also gives the angular distribution of scat-
tered light and the polarization of scattered light, seen in Figs. B.2 and B.3,
respectively.
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Figure B.2: From [24, Ch. 5.2]
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Figure B.3: From [24, Ch. 5.2]
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Appendix C

Dipole Model

To find the electric field of a system of radiating dipoles pi
1, the field from each

dipole, Ei, is found at the point of interest r0, then summed together. In the
local frame of an individual dipole, Σ′i, the radiated electric field is given by

E′i(r′) = −piω
2µ0

4π
sin θ′

exp
(
i[ω( r′

c − t) + ψ]
)

r′ θ̂′ (C.1)

where p defines the z-axis of Σ′, ω is its oscillation frequency, r′ is the vector
from the dipole to the point of interest in Σ′, ψ is an arbitrary phase change, θ′

the polar angle of r′, and θ̂′ the polar direction unit vector. Normal weighted
fonts represent the magnitude of the corresponding vector (E.g. v = |v|). An
image of the system, and an individual dipole can be seen in Fig. C.1.

(a) (b)

Figure C.1: (a) Depiction of an arbitrary dipole system, and (b) a focus on an indi-
vidual dipole within the system.

In the global frame Σ, each dipole is displaced from the origin by ri. This
gives the relevant position vector from pi to r0 as ri = r0 − ri. ri, then,
relocates pi to the origin of Σ.

1As we all know, I is everybody’s favorite word. It also happens to make a wonderful
indexing variable, and pops its head up as

√
−1. To remain humble about this work, however,

here it has only been used in the latter two contexts. Thus, an i appearing in a subscript
position acts as an index, while an i appearing inline is

√
−1.
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C.1 Frame Transformations

Because of the use of two coordinate frames, it is important to consider the role
of vectors as objects in themselves. A vector ~v is a geometric object in itself,
not requiring subjugation to a coordinate system, however, for manipulation
a coordinate system is imposed upon it. This choice of coordinates system is
arbitrary though, and does not affect ~v. In this notation then, v represents the
components of ~v in Σ, while v′ represents the coordinates of ~v in Σ′.

Figure C.2: The global frame Σ in black, and local dipole frame Σ′ in red. As will
be discussed during the construction, the angles in green are the same, and x̂′ and ẑ′

have the same azimuthal angle.

Because p defines the z-axis of Σ′, a canonical transformation from Σ to Σ′

would take ẑ to ẑ′. A preview of the final Σ′ frame can be seen in Fig. C.2 To
rotate a vector v in 3D, a rotation axis t must be defined. v is then rotated
counter-clockwise around t by an angle γ. This can be accomplished by noting
that only the projection of v onto the plane defined by t must change, while
the component parallel to t is invariant.

v‖ =
v · t
t2

t (C.2)

v⊥ = v − v‖ = vi(1−
( ti
t

)2

)ei (C.3)

where ei are the coordinate vectors of Σ, and the Einstein summation notation
has been used. The final rotated vector u, can then be constructed by u =
R(γ)v⊥ + v‖, where Rt(γ) is the 2D rotation around t by γ. In the t-plane,
define the coordinate axis to be the unit vectors

f̂a =
v⊥
v⊥

, f̂b =
t× v⊥
tv⊥

Rotating in the t-plane is now simple.

Rt(γ) = (cos γ, sin γ) (C.4)

Solving for u now gives

u = v‖ + cos γv⊥f̂a + sin γv⊥f̂b

= cos γv +
sin γ

t
t× v +

v · t
t2

(1− cos γ)t (C.5)
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This result is known as Rodrigues’ rotation formula.
If p does not coincide with the z-axis, then a natural choice for the rotation

vector, whose unit vector will also define the y-axis of Σ′, is

t = ẑ× p =

−pypx
0

 (C.6)

With t̂ = ŷ′. The third coordinate axis of Σ′ can then be defined as

x̂′ = ŷ′ × ẑ′ = t̂× p̂ = (̂̂z× p)× p̂ (C.7)

Thus, Σ′ has coordinate axes

{x̂′, ŷ′, ẑ′} = {(̂̂z× p)× p̂, ̂̂z× p, p̂} (C.8)

In this situation, then, a vector in Σ must be rotated an angle γ around t
where γ is the angle between ẑ and p. Using (C.5) and the definition of γ gives

cos γ =
ẑ · p
p

, sin γ =
|ẑ× p|
p

=
t

p
(C.9)

Resulting in

u =
ẑ · p
p

v +
t× v

p
+

v · t
t2

(
1− ẑ · p

p

)
t (C.10)

Using a test vector, v = (vx, vy, vz) and general dipole vector p = (px, py, pz),
in (C.10) results in

ux =
[pz
p

+
p2
y

p2
x + p2

y

(
1− pz

p

)]
vx +

[ −pxpy
p2
x + p2

y

(
1− pz

p

)]
vy +

[px
p

]
vz

uy =
[ −pxpy
p2
x + p2

y

(
1− pz

p

)]
vx +

[pz
p

+
p2
x

p2
x + p2

y

(
1− pz

p

)]
vy +

[py
p

]
vz

uz =
[−px
p

]
vx +

[−py
p

]
vy +

[pz
p

]
vz

where the components of u have been split in to their relation to the components
of v. These equations can now be represented in matrix form, giving

u = Pv =



pz
p

+
p2
y

p2
x + p2

y

(
1− pz

p

) −pxpy
p2
x + p2

y

(
1− pz

p

) px
p

−pxpy
p2
x + p2

y

(
1− pz

p

) pz
p

+
p2
x

p2
x + p2

y

(
1− pz

p

) py
p

−px
p

−py
p

pz
p





vx

vy

vz


(C.11)

Thus, to transform Σ to Σ′, P is applied to each basis vector of Σ.
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To find the coordinates of a vector ~v in Σ given its components in Σ′, we
first describe ~v in Σ′.

v′ = ~vΣ′ = vx′ x̂
′ + vy′ ŷ

′ + vz′ ẑ
′ (C.12)

Decomposing Σ′ in terms of Σ gives

x̂′ = x′xx̂ + x′yŷ + x′z ẑ

ŷ′ = y′xx̂ + y′yŷ + y′z ẑ

ẑ′ = z′xx̂ + z′yŷ + z′z ẑ

(C.13)

where e′a is the component of ê′ in Σ and ê is a basis vector in Σ. Plugging
(C.13) into (C.12) and gathering terms according the their coordinate in Σ gives
a matrix equation

v = ~vΣ =

x′x y′x z′x
x′y y′y z′y
x′z y′z z′z

v′xv′y
v′z

 (C.14)

where the first matrix is recognized as the components of ê′ represented in Σ,
given in Eq. (C.8), and the second matrix is v′. Thus, given the components of
a vector ~v in Σ′, v′, its representation in Σ is

v = [x̂′Σŷ
′
Σẑ
′
Σ]v′ (C.15)

Similarly, given ~v in Σ, the coordinates in Σ′ can be found by rotating Σ′ to Σ
while working in Σ′

v′ = ~vΣ′ =

xx′ yx′ zx
′

xy′ yy′ zy
′

xz′ yz′ zz
′

vxvy
vz

 (C.16)

To begin, notice that ẑ′ can be rotated to ẑ by rotating around t̂ = ŷ′ by an
angle −γ. Using Rodrigues’ formula (C.5) with

cos−γ = cos γ =
pz
p

(C.17)

sin−γ = − sin γ = −
(p2
x + p2

y)
1/2

p
(C.18)

ẑΣ′ =


−

(p2
x + p2

y)
1/2

p

0

pz
p

 (C.19)

To find x̂Σ′ and ŷΣ′ note that by construction t = ŷ′ must lie in the xy-
plane. Furthermore, if p has azimuthal angle φ then t has azimuth φt = (π2 +φ).
Using these relations a new frame, Σ′′ can be defined in the xy-plane with
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Σ′′ = {ŵ′, ŷ′} and

ŵ′ = t̂Σ′ × ẑΣ′ = ŷ′ × ẑΣ′ =


pz
p

0

(p2
x + p2

y)
1
2

p

 (C.20)

where ŵ has azimuth φ in Σ. Thus, x̂Σ′ and ŷΣ′ are related to ŵ by

x̂Σ′ = cosφŵ′ − sinφŷ′

ŷΣ′ = cos(
π

2
− φ)ŵ′ + sin(

π

2
− φ)ŷ′

= sinφŵ′ + cosφŷ′

(C.21)

Using

cosφ =
px

(p2
x + p2

y)1/2
, sinφ =

py
(p2
x + p2

y)1/2
(C.22)

yields

x̂Σ′ =



pxpz
p(p2

x + p2
y)1/2

− py
(p2
x + p2

y)1/2

px
p


(C.23)

ŷΣ′ =



pypz
p(p2

x + p2
y)1/2

px
(p2
x + p2

y)1/2

py
p


(C.24)

Thus, given ~v ’s components in Σ, its components in Σ′ are

v′ = Tv =



pxpz
p(p2

x + p2
y)1/2

pypz
p(p2

x + p2
y)1/2

−
(p2
x + p2

y)
1/2

p

− py
(p2
x + p2

y)1/2

px
(p2
x + p2

y)1/2
0

px
p

py
p

pz
p


vxvy
vz

 (C.25)

Vectors can now be easily represented in either the local dipole frame Σ′,
given its components in Σ by using T , or represented in the global frame Σ,
given the components in Σ′ by using P .
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C.2 Multiple Dipoles

Using the frame transformations P and T , any vector-valued function f ′(r′)
defined in a local frame Σ′ that is displaced from the global origin by r can be
represented using vectors only in the global frame. To accomplish this the local
position vector to the point is interest, represented in Σ, is r = r0 − r. r can
then be transformed to Σ′ by r′ = P r. f ′ is then applied to r′, resulting in the
value of the local field at r0. This value must then be transformed back to Σ
using T . Thus,

f(r0) = T f ′(P r) (C.26)

Returning to the original problem now, if multiple dipoles, pi, are present in
a system, then by using (C.26) the electric field from each one, given in (C.1),
can be related to a global coordinate system, allowing them to be summed.

E(r0) =
∑
i

E′i(r′i) =
∑
i

TE′i(P ri) (C.27)

where ri = r0 − ri, and ri is the displacement vector to pi.



Appendix D

Lattice Sum

D.1 Lattice Sum

When considering the construction of a multi-layered back reflector, the width
and length are much greater than its depth. This allows the approximation that
each layer consists of an infinite plane of plasmonic particles. It is also likely
that a carefully designed arrangement of the particles will give a more favorable
scattering profile than randomly placed particles. Further, a regular lattice is
likely to be an ideal structure to allow a scattering profile to be engineered due
to its periodicity and reproducibility.

The proposed structure consists of several 2D layers stacked on top of each
other. Thus, there are several parameters that can be adjusted in each layer:
the size and shape of the particles, the lattice vectors, the parallel displacement
relative to the other layers, and the spacing between the layers. One of the major
issues with optimizing these parameters is that the layers are large enough to be
considered infinite, creating issues when trying to find the field of even a single
layer. However, if a single expression for the electric field of a single layer can
be found, then the field of the whole structure, assuming each layer is decoupled
from the rest, can be found with a finite sum.

In Appendix C it is shown how, given a function f ′(r′) defined in a local frame
Σ′, it is possible to find its value in a global frame Σ given the displacement
of Σ′ from the global origin, the rotation of the z′- from the z-axis, and the
point of interest in Σ, r0. This situation then, is restricted compared to that
of Appendix C in that the displacement of each local frame Σ′i is located at a
lattice point instead of an arbitrary point.
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D.1.1 General Method

To begin, consider a vector field f ′(r) defined in a local frame Σ′. This function
is then placed at each point in a 2D lattice L̃, defined by the vectors {ã1, ã2} ∈
R3, with global reference frame Σ̃. Thus, each lattice point can be written as
r̃i = α1

i ã1 + α2
i ã2, with α1, α2 ∈ Z. An illustration of this is seen in Fig.

D.1a. Although we begin with a 2D lattice for simplicity, all of the ideas, and
most of the calculations will be kept general enough to be expanded to a 3
dimensional lattice later on. Note, in this section indices appear as subscripts
and superscripts allowing for more compact notation using Einstein’s summation
notation. In cases where it may be unclear as to whether a superscript is an
exponent or an index, the indexed term will be placed in square brackets, e.g.
[α1]2 is α1 squared.

To find the sum of all the f ′i at a vector r̃0 in Σ̃, the local vector from each
lattice point

ri = r̃0 − r̃i (D.1)

must be considered. However, because the Σ̃i only differ by a displacement, Eq.
(D.1) can be thought of as collapsing each local frame to the origin as visualized
in Fig. D.1b. This results in a conjugate lattice L with points defined by
ri = α1

i ã1 +α2
i ã2− r̃0. At this point, to make the picture of this structure more

clear, two assumptions are made without loss of generality. The first is that
in images of the structure the lattice plane will be drawn horizontally, this is
simply a rotation of the entire structure made for easier viewing. Second, due
to the periodicity of the structure, it is assumed that the projection of r̃0 into
L̃ lies in the first unit cell, i.e. in the parallelogram defined by the vectors ã1

and ã2.
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(a)

(b)

(c)

Figure D.1: Illustrations of the steps leading to the lattice summation process inves-
tigated. (a) The original lattice, with green lattice vectors. (b) Viewing the lattice
points as collapsed to the origin creating a new conjugate lattice. The new conjugate
lattice vectors are in green. (c) The stereographic projection that divides the conju-
gate lattice. The blue point in the lattice from which the divisions emanate is the
projection of the origin on to the lattice plane, but is not necessarily a lattice point.
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There are two main realizations driving this summation method. Underlying
both is that as r →∞ in any direction the distance the lattice is from the origin
becomes negligible, h � r 1. The first realization, then, is that as r → ∞ in
some direction φ the distance between lattice points is constant. There are quite
interesting subtleties regarding these distance that are discussed in Section D.3.
Next, consider a unit sphere S centered at the origin of Σ with its own coordinate
system Σ† such that the z†-axis is directed towards and perpendicular to L, and
the x†-axis is aligned with the x-axis. Then φ† = φ, and as r →∞, r intersects
this sphere along its equator E .

Using a stereographic projection between S and L, lattice points in L are
then related to points on S. Next, S is divided into m regions of azimuthal
width ∆φi, and n regions of polar width ∆θi creating a grid. These grid regions
can then be indexed, let them be called ρi. The center point of each ρi, ρ̄i, can
be taken as a representative point for the entire region. This also divides L in
to corresponding regions. These steps are illustrated in Fig. D.1.

As r →∞ then either α1 →∞ or α2 →∞, or both. Consider now tanφ.

tanφ =
r1

r2
=
r2
0 − α1a2

1 − α2a2
2

r1
0 − α1a1

1 − α2a1
2

(D.2)

So either r2
0 � (α1a2

1 + α2a2
2), r1

0 � (α1a1
1 + α2a1

2), or both. If α1/α2 = κ is
constant with α1, α2 6= 0, then

tanφ ∼ α1a2
1 + α2a2

2

α1a1
1 + α2a1

2

=
κa2

1 + a2
2

κa1
1 + a1

2

(D.3)

is constant. If α2 →∞ while α1 remains constant, then κ ∼ 0 and tanφ ∼ a2
2/a

1
2

is a constant. On the other hand, if α1 → ∞ while α2 remains constant then
κ−1 ∼ 0 and tanφ ∼ a2

1/a
1
1 is constant. Inverting Eq. (D.3) gives the ratio that

must be maintained to remain in the φ direction.

κ(φ) = −a
2
2 − a1

2 tanφ

a2
1 − a1

1 tanφ
(D.4)

To find the distance between lattice points in a given direction, first consider
the change in distance if one of the α’s, αj0 , is incremented by one as r →∞ in
the φ direction. To clarify the notation, j ∈ J = {1, 2}, j′ ∈ J \j0, k ∈ {1, 2, 3},
∆r/∆αj0 is the change in distance as αj0 is incremented by one, r(α) is r given

1This is the strict meaning of � from asymptotic analysis, i.e. f � g (as n → ∞) ⇐⇒
lim
n→∞

f(n)/g(n) = 0. The ∼ symbol will also be used in the strict sense, such that f ∼
g (as n→∞) ⇐⇒ lim

n→∞
f(n)/g(n) = 1
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α1, α2, and 1 is used to indicate a sum, i.e. ak1k =
∑
k a

k.

∆r
∆αj0

= r(αj
′
; αj0 + 1)− r(α)

=
([
αj
′
akj′ + (αj0 + 1)akj0

]2
1k

)1/2

−
([
αjakj

]2
1k

)1/2

=
([
αjakj + akj0

)2

1k

)1/2

−
([
αjakj

]2
1k

)1/2

=
([

[αjakj ]2 + [akj0 ]2 + 2[αjakj a
k
j0 ]
]
1k

)1/2

−
([
αjakj

]2
1k

)1/2

=
([
αjakj

]2
1k

)1/2{
1 +

(2αjakj a
k
j0

+ [akj0 ]2)1k

[αjakj ]21k

}1/2

−
([
αjakj

]2
1k

)1/2

Because either α1 →∞, α2 →∞, or both

[akj0 ]2 � [αjakj a
k
j0 ]� [αjakj ]2 (D.5)

First using the binomial expansion then the relations in Eq. (D.5) gives

∆r
∆αj0

∼
([
αjakj

]2
1k

)1/2{
1 +

1

2

(2αjakj a
k
j0

+ [akj0 ]2)1k

[αjakj ]21k

}
−
([
αjakj

]2
1k

)1/2

=
1

2

(2αjakj a
k
j0

+ [akj0 ]2)1k

([αjakj ]21k)1/2

∼
(αjakj a

k
j0

)1k

([αjakj ]21k)1/2

=
(rkakj0)1k

r
=

r1a1
j0

+ r2a2
j0

+ r3a3
j0

r
=

r · aj0
r

= r̂ · aj0
So if αj0 is increased by one, then r will change by r̂ · aj0 , in the limit as
r →∞. Because this approximation is only valid as r →∞ the lattice must be
broken into a near region and a far region. In the near region, this assumption
does not hold, so a direct sum of the fields will be computed. In the far region
an asymptotic approximation of the field can be computed using this assump-
tion. Remembering that S has been broken in to regions, a natural choice for
the boundary between the near and far regions is the boundary of the region
containing E . Thus, all lattice points whose projection on to S is in the region
also containing E will be considered “far away”, and all other will be considered
“close”. This also defines the shortest distance to the far region in each direc-
tion rβi , dictating the smallest {α1, α2} required to enter the far region. For
each ρi, then, choose the azimuth φi as that of ρ̄i and define {β1

i , β
2
i } to be this

minimal set of α’s.
There are now (m + 1) regions that must be summed over: the single near

region, and the m far regions. As mentioned, in the near region the sum is found
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directly. And now, in each of the far regions, the distance between adjacent
points in the aj0 direction is constant with value ∆r/∆αj0 = δ rj0 . Considering
the sum of the points in the ith region, the projection of ρi on to L is an isosceles
trapezoid with infinite height. If the sides are traced back to the projection of
the origin on to L, as in Fig. D.2, they meet at an angle

η = 2 arcsin

(
sin

(
∆φi

2

)
1

cos ξ

)
(D.6)

where ξ is the angle between E and the polar angle at the distance of interest.
Thus, at the γth point in ρi, cos ξ = (rβi + γ · δ rφ)/r . However, because this sum
is taking place in the far region ξ → 0, so η → ∆φi.

Figure D.2: The stereographic projection of one region on to to conjugate lattice. The
black “square” is the region on the sphere to which the projection belongs.

In the φi direction, δ rj0 is constant, so the region can be broken into isosceles
trapezoids of constant height δ rj0 . However, as r increases, so does the width of
the corresponding trapezoid, and thus more lattice points are contained within
the area. To account for this, the density of points when viewing the lattice
in the φi direction, denoted σφi , can be found and multiplied by the area of
the trapezoid A at that distance. This product represents the magnitude of f
created by points in each trapezoid. The magnitude can then be assigned to a
representative point creating a new lattice LR mimicking the original, but with
radial symmetry rather than lattice symmetry.

To find the density of points along an arbitrary direction, σ(φ), the area each
point occupies must be found. It is already known that along the φ direction
δ rj0 is constant. Thus, the distance between adjacent points can be found by

δ r(φ) = δ r1 +
1

κ(φ)
δ r2 =

∆r
∆α1

+
α2

α1

∆r
∆α2

(D.7)

This gives a linear density of points along φ equal to [δ r(φ)]−1. σ(φ) then, is
the inverse of the area that each point occupies, given by

σ(φ) = [δ r(φ) · δ r(φ+ π/2)]−1 (D.8)

The area of a trapezoid is given by h
2 (b1 + b2), where h is the height, and

b1, b2 are the length of the bases. In this situation the height has been defined
as the distance between two points in the φ direction, h = δ r(φ), and the bases
are the width of the region of interest at r and

(r + δ r(φ)
)
. Relating these

distances to lattice points in region ρi gives

r(α1, φ) ∼ rβi + (α1 − β1
i )δ r(φ)

= rβi + γ · δ r(φ)

∼ α1δ r(φ), (as r →∞)

(D.9)
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for γ = (α1 − β1) ∈ N. Under the current assumptions r → ∞ and η = ∆φi,
so the bases can be taken as the arc length of the circle at their respective
distances. This results in

A(α1, φ) ∼ δ r(φ)

2

(
α1δ r(φ) · η + (α1 + 1)δ r(φ) · η

)
= [δ r(φ)]2 ∆φi (α1 +

1

2
) (D.10)

Thus, the magnitude to be assigned to each point in LR is given by

M(α1, φ) = A(φ, α1)σ(φ)

∼ δ r(φ)

δ r(φ+ π/2)
∆φi

(
α1 +

1

2

)
(D.11)

=
δ r(φ)

δ r(φ+ π/2)
∆φi

(
γ + β +

1

2

)
(D.12)

Finally, the situation has become suitable to perform the actual sum over all
the lattice points. However, before moving on a summary of the current steps
seems in order. Originally a function f was placed at each point in a lattice ri,
and the sum of the functions at some point r0 was to be found. First, a conjugate
lattice L was created in a frame Σ by realizing that for the given function only
r = r0 − ri is important. Then a unit sphere S was placed around the origin of
Σ and divided into regions of angular size ∆φi and ∆θi. Using a stereographic
projection the divisions of S were used to divide L in to corresponding regions.
It was then noticed that as r →∞ in any direction r̂ → E . L was then divided
in to one near region and m far regions using the boundary of the S-region
containing E as the dividing line. This dividing line was characterized by lattice
constants βi and distance rβi .

It was then found that as r → ∞ in a certain direction the ratio of lattice
constants κ = α1/α2, and the spacing between lattice points are constant. This
was used to determine the density of points when viewing the lattice in a given
direction σ(φ), and combined with the divisions of L to determine the area of
a trapezoid with height δ r(φ), at a distance r, denoted A(α1, φ). Combining σ
and A allowed a magnitude M to be assigned to each trapezoid. At this point a
radial “lattice” LR was constructed that mimics L by assigning the magnitude
M(r, φ) to points at angle φ = φi and distances

(rβi + γδ r(φi)
)
, where φ is

the azimuthal angle in the middle of each limiting region of S, ρi, and γ ∈ N.

Thus, the lattice sum has been transformed into a single finite sum within
the near region, and m infinite sums in the far region. Further, in the far regions
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because r̂ becomes constant as r →∞, f̂ is constant.

F =
∑
i

f(r0 − ri)

∼
∑
i∈Near

f(ri) +

m∑
i=1

∞∑
γ=0

M(r, φi) · f
(
(rβi + γ · δ r(φi)) r̂) , (as r →∞)

=
∑
i∈Near

f(ri)

+

m∑
i=1

∞∑
γ=0

δ r(φi)

δ r(φi + π
2 )

∆φi

(
γ + βi +

1

2

)
f
(
(rβi + γ · δ r(φi)) r̂)

=
∑
i∈Near

f(ri)

+

m∑
i=1

∆φi
δ r(φi)

δ r(φi + π
2 )

f̂i

∞∑
γ=0

(
γ + βi +

1

2

)
f
(
(rβi + γ · δ r(φi)) r̂)

(D.13)

So the complexity of the lattice sum has been reduced to performing a single
infinite sum over one index γ.
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D.1.2 An Infinite 2D Lattice of Dipoles

Of interest now is what field is produced if a dipole p is located at each lattice
point driven by a plane wave. In this scenario the dipoles do not affect each
other’s driving field, and the waves are assumed to travel through free space.
The orientation and magnitude of every dipole is the same, and they only differ
in their position, as was assumed when arriving at Eq. (D.13). Letting

E′(r′) = −pω
2µ0

4π
sin θ′

exp
(
i
[
ω( r′

c − t) + ψ
])

r′ θ̂′ (D.14)

as in Eq. (A.18), then the transformations P and T from Eqs. (C.11) and
(C.25) respectively, can be used to transform vectors from p’s reference frame
into Σ. Plugging Eq. (D.14) in to Eq. (D.13) results in a total field

Et =
∑
i∈Near

E(ri)

+

m∑
i=1

∆φi
δ r(φi)

δ r(φi + π
2 )
P θ̂′i

∞∑
γ=0

(
γ + βi +

1

2

)
× E

(
(rβi + γ · δ r(φi))T r̂i

)
=
∑
i∈Near

E(ri) +

m∑
i=1

∆φi
δ r(φi)

δ r(φi + π
2 )
P θ̂′i · S

0
i (D.15)

where S0
i is the value of the sum.

S0
i =

∞∑
γ=0

(
γ + βi +

1

2

)
· E
((rβi + γ · δ r(φi)

)
T r̂i

)
=

∞∑
γ=0

(
γ + βi +

1

2

)
−pω2µ0

4π
sin
[
θ(T r̂i)

]

×
exp

(
i
[
ω
c

(rβi + γ · δ r(φi)
)
− ωt+ ψ(φi, γ)

])
rβi + γ · δ r(φi)

=
−pω2µ0

4π
sin
[
θ(T r̂i)

]
exp

( iω rβi
c

)
exp(−iωt)

×
∞∑
γ=0

(
γ + βi +

1

2

) exp
(
i
[
ω
c γ · δ r(φi) + ψ(φi, γ)

])
rβi + γ · δ r(φi)

(D.16)

=
−pω2µ0

4π
sin
[
θ(T r̂i)

]
exp

( iω rβi
c

)
exp(−iωt) · S1

i
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where S1
i is the value of the sum.

S1
i =

∞∑
γ=0

(
γ + βi +

1

2

) exp
(
i
[
ω
c γ · δ r(φi) + ψ(φi, γ)

])
rβi + γ · δ r(φi)

∼
∞∑
γ=0

(
γ + βi +

1

2

) exp
(
i
[
ω
c γ · δ r(φi) + ψ(φi, γ)

])
(βi + γ) · δ r(φi)

, (as r →∞)

=

∞∑
γ=βi

(
γ +

1

2

) exp
(
i
[
ω
c (γ − βi) · δ r(φi) + ψ(φi, γ)

])
γ · δ r(φi)

=
exp

(
− iωc βiδ r(φi)

)
δ r(φi)

∞∑
γ=βi

(
γ +

1

2

) exp
(
i
[
ω
c δ r(φi)γ + ψ(φi, γ)

])
γ

=
exp

(
− iωc βiδ r(φi)

)
δ r(φi)

×



∞∑
γ=βi

exp
(
i
[ω
c
δ r(φi)γ + ψ(φi, γ)

])

+
1

2

∞∑
γ=βi

exp
(
i
[
ω
c δ r(φi)γ + ψ(φi, γ)

])
γ


(D.17)

=
exp

(
− iωc βiδ r(φi)

)
δ r(φi)

{
S2
i +

1

2
S3
i

}

With the sums S2
i and S3

i as

S2
i =

∞∑
γ=βi

exp
(
i
[ω
c
δ r(φi)γ + ψ(φi, γ)

])
(D.18)

S3
i =

∞∑
γ=βi

exp
(
i
[
ω
c δ r(φi)γ + ψ(φi, γ)

])
γ

(D.19)
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Combining these results give the total field as

Et =
∑
i∈Near

E(ri) (D.20)

+

m∑
i=1

∆φi
δ r(φi)

δ r(φi + π
2 )
P θ̂′i (D.21)

× −pω
2µ0

4π
sin
[
θ(T r̂i)

]
(D.22)

× exp

(
iω rβi
c

)
exp(−iωt) (D.23)

×
exp

(
−iωc βiδ r(φi)

)
δ r(φi)

{
S2
i +

1

2
S3
i

}
=
∑
i∈Near

E(ri) (D.24)

+
−pω2µ0

4π
e−iωt (D.25)

×
m∑
i=1

∆φi
exp

(
iωc [rβi − βiδ r(φi)]

)
δ r(φi + π

2 )
· sin

[
θ(T r̂i)

]
P θ̂′i (D.26)

×
{
S2
i +

1

2
S3
i

}
(D.27)

Analyzing the components of the total field is quite illuminating now.
exp

(
iωc [rβi − βiδ r(φi)]

)
accounts for the error in the phase change from the

assumption that the distance between lattice points in the near region are integer
multiples of δ r(φi). sin

[
θ(T r̂i)

]
P θ̂′i accounts for the magnitude and direction

of the radiated field relative to the dipole’s local frame. Also of note is the

[δ r(φi+
π
2 )
]−1

term which account for the density of points near the φi direction.
From this point, though, no further progress can be made without explicitly
knowing ψ(φi, γ), the phase change between lattice points, which is contained
in S2

i and S3
i .
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D.1.3 No Phase Change

Assume there is no phase change between lattice points, i.e. ψ = 0. This would
be a zeroth-order model of an incident plane wave normal to the lattice and
linearly polarized driving the dipoles.

Finding S3
i

From Eq. (D.19)

S3
i =

∞∑
γ=βi

exp
(
i
[
ω
c δ r(φi)γ

])
γ

=

∞∑
γ=βi

eikiγ

γ

=

∞∑
γ=1

eikiγ

γ
−
βi−1∑
γ=1

eikiγ

γ
(D.28)

where ki = ω
c δ r(φi). The first term on the RHS of Eq. (D.28) is recognized as

the Taylor series for the natural logarithm.

ln (1 + x) =

∞∑
n=1

(−1)n+1

n
xn (D.29)

So

∞∑
n=1

ecn

n
= −

∞∑
n=1

(−1)n · (−1)n+1

n
ecn

= −
∞∑
n=1

(−1)n+1

n
(−ec)n

= − ln (1− ec) (D.30)

Thus

S3
i = − ln

(
1− eiki

)
−
βi−1∑
γ=1

eikiγ

γ
(D.31)

The logarithmic term in the RHS of Eq. (D.31) diverges exponentially fast as
ki → 2πq, for q ∈ Z. This occurs if the spacing between lattice points in the
φi direction is an integer multiple of the radiation wavelength. However, if the
spacing is even slightly off, the value quickly converges. Because −1 ≤ eiki ≤ 1
the argument of the logarithm is bound between 0 and 2. Also of note is that
as βi →∞, S3

i → 0. Intuitively, this occurs because the finite sum contains the
largest magnitude terms in the expansion of the logarithm.

When ki = 0 mod 2π in Eq. (D.28), the S3
i term has a harmonic series as
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the first term

S3
i |ki=0 =

∞∑
γ=1

ei2πγ

γ
−
βi−1∑
γ=1

ei2πγ

γ

=

∞∑
γ=1

1

γ
−
βi−1∑
γ=1

1

γ
(D.32)

Using Ramanujan summation or the Cauchy principle value of the Riemann
zeta function evaluated at 1, ζ(1), the harmonic series is evaluated to the Euler-
Mascheroni constant γem = 0.57721 . . .. So

S3
i |ki=0 = γem −

βi−1∑
γ=1

1

γ
(D.33)

If βi is large, the Hurwitz zeta function can be used to approximate the second
term.

Finding S2
i

From Eq. (D.18)

S2
i =

∞∑
γ=βi

exp
(
i
ω

c
δ r(φi)γ

)
=

∞∑
γ=βi

eikiγ (D.34)

which is a sum of unit vectors whose angle relative to the previous vector’s is ki
and beginning at an angle βiki . There are two situations that may occur here:
either ki is a rational multiple of 2π, or it isn’t. If it is, then ki = 2πp/q for p/q
in reduced form and {p, q} ∈ Z \ 0. The sum then will create a closed loop with
period q and cover 2πp radians. If ki is not a rational multiple of 2π then the
cycle will never close, however the values of the partial sums are still bounded.
This can be thought of as the limiting case of the first situation in that both
p and q go to infinity. In either case the sum will be assigned the value of the
geometric center of the shape defined by the partial sums.

To find the center, the complex plane will temporarily be though of as R2.
First, a circle is circumscribed around the shape of the partial sums. To find
the center of the circle, which is also the center of the partial sums, three points
on the circle can be defined. The origin will always be on the circle, as well
as the point corresponding to eikiβi . To find the third point, observe that the
tangent of the circle at the origin will pass through the point corresponding to
ei[kiβi−

ki/2]. From symmetry then, the third point will be taken as the point
corresponding to ei[kiβi−(ki+π)] = −eiki(βi−1).

Now, given three points in the plane {(x1, y1), (x2, y2), (x3, y3)}, the circle
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Figure D.3: A geometric series of complex exponentials and its circumscribed circle.

passing through them has center

x0 =
1

2

[x3]2(y2 − y1) + [x2]2(y1 − y3)− (y2 − y3)[[x1]2 + (y1 − y2)(y1 − y3)]

x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1)

y0 =
1

2

[x1]2(x3 − x2) + x1([x2]2 + [y2]2 − [x3]2 − [y3]2)

+ x3([y1]2 − [y2]2) + x2([x3]2 + [y3]2 − [y1]2)− [x2]2x3

x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)
(D.35)

Using the points defining the circle{(
0, 0
)
,
(

cos(kiβi), sin(kiβi)
)
,
(

cos(ki[βi − 1]), sin(ki[βi − 1])
)}

the center reduces to

x0 = −1

2
csc(ki)

[
sin(ki[βi − 1]) + sin(kiβi)

]
y0 =

1

2
csc(ki)

[
cos(ki[βi − 1]) + cos(kiβi)

] (D.36)

Transforming this point back in to C gives the center point of the shape as

−1

2
csc(ki)

([
sin(ki[βi − 1]) + sin(kiβi)

]
− i
[

cos(ki[βi − 1]) + cos(kiβi)
])

= (D.37)

i

2
csc

(
ki
2

)
eiki(βi−

1
2 )

So

S2
i =

i

2
csc

(
ki
2

)
eiki(βi−

1
2 ) (D.38)

Interestingly, a pathological case arises in the Cartesian form of S2
i if ki =

qπ with q an odd integer, i.e. the spacing between lattice points is a half-
wavelength. In this case the partial sums oscillate between 0 and (−1)βi , so
S2
i (ki = qπ) = 1

2 (−1)βi , which is correctly attributed in the complex exponential
form of Eq. (D.38).
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The Total Field

Now that S2
i and S3

i have been found, Eqs. (D.38) and (D.31) can be plugged
in to Eq. (D.27) to find the total field.

Et =
∑
i∈Near

E(ri)

+
−pω2µ0

4π
e−iωt

×
m∑
i=1

∆φi
2

exp
(
iωc [rβi − βiδ r(φi)]

)
δ r(φi + π

2 )
· sin

[
θ(T r̂i)

]
P θ̂′i

×


i csc

(
ki
2

)
eiki(βi−

1
2 )

+

[
ln
(
1− eiki

)
+

βi−1∑
γ=1

eikiγ

γ

]


(D.39)

To gain insight on how the far field behaves, consider a direction where the
lattice spacing approaches a quarter, half, or whole wavelength.

Quarter Wavelength If ki = π/2

csc

(
ki
2

)
=
√

2

eiki(βi−
1
2 ) =

iβi(1− i)√
2

ln
(
1− eiki

)
= ln

√
2− iπ

4
βi−1∑
γ=1

eikiγ

γ
=

βi−1∑
γ=1

iγ

γ

Half Wavelength If ki = π

csc

(
ki
2

)
= 1

eiki(βi−
1
2 ) = i2βi−1

ln
(
1− eiki

)
= ln 2

βi−1∑
γ=1

eikiγ

γ
=

βi−1∑
γ=1

(−1)γ

γ

In both cases the sum over the gamma values oscillates between an envelope
function, meaning that the value depends somewhat heavily on the choice of βi.
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D.1.4 Incident Plane Wave

In the previous section we assumed there was no phase change between the
driving field at the lattice points. However, if a plane wave is incident on the
lattice but is not normal to it, the driving field’s phase will vary across the
lattice. To pursue how this affects the field, consider an incident plane wave
with wavelength λ0, polar angle θ0, and azimuthal angle φ0. The phase change
at a distance r and angle φ is then

ψ(φ, r) = −2π
r
λ0

sin θ0 cos(φ− φ0) (D.40)

In the far region, because lattice points are reassigned, a correction must be
made for the approximations used. To find this error consider adding two com-
plex exponentials with different phase changes.

ei(a+χ1) + ei(a+χ2) = eia
(
eiχ1 + eiχ2

)
(D.41)

Thinking about the lattice, assume that the lattice points are symmetric about
the direction φi as seen in Fig. D.4. Then the phase change of the points relative
to φi is also symmetric.

χ1 = χi + ∆χ

χ2 = χi −∆χ
(D.42)

where χi is the distance dependent phase along φi. Plugging Eqs. (D.42) in to
Eq. (D.41) gives

ei(a+χ1) + ei(a+χ2) = ei(a+χi)
(
ei∆χ + e−i∆χ

)
= 2ei(a+χi) cos ∆χ (D.43)

So an additional factor of cos ∆χ must be included to account for the phase
change between the points. In the lattice, these phase changes accumulate as
the width of region being summed over is traversed. This occurs in the (φi+π/2)
direction, so

∆χ = ψ
(
δ r
(
φi +

π

2

)
,
(
φi +

π

2

))
= −2π

δ r(φi + π
2 )

λ0
sin θ0 cos(φi +

π

2
− φ0)

= −2π
δ r(φi + π

2 )

λ0
sin θ0 sin(φ0 − φi) (D.44)

At a distance r, the width of this region is r∆φi. Thus, there are approxi-
mately

Np =
r ∆φi

δ r(φi + π
2 )

(D.45)

points across the region. Again assuming the points are symmetric about φi,
then there are (Np/2) pairs of points that must be considered. Additionally, each
pair is at a distance ξjδ r(φi + π/2) from φi, with ξj ≤ (Np/2) ∈ N. This leads to
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Figure D.4: Particles in the lattice are effectively reassigned along the chosen φi
directions, but the phase change due to the driving field can be accounted for by
considering their offset from this direction.

a total corrected phase of

∆χt = 2ei(a+χi)

Np/2∑
ξ=1

cos(ξ∆χ)

= 2ei(a+χi)

 sin
(

2(Np/2)+1
2 ∆χ

)
2 sin

(
∆χ
2

) − 1

2


= ei(a+χi)

 sin
(
Np+1

2 ∆χ
)

sin
(

∆χ
2

) − 1

 (D.46)

Because the magnitude of the sum, Np, has already been accounted for in this
method from Eq. (D.11), only the ratio between the corrected value and the
magnitude is needed. This gives the needed correction as

δχ =
∆χt

Npei(a+χi)

=
1

Np

 sin
(
Np+1

2 ∆χ
)

sin
(

∆χ
2

) − 1

 (D.47)

An issue arises if ∆χ = 0 mod 2π corresponding to the situation in which the
particle offset corresponds to a whole wavelength. Using L’Hôpital’s rule this
results in

δχ = 1 (D.48)

as expected, though.

Using this correction to more accurately account for the phase change caused
by the angle of the incident wave, S3

i and S2
i can now be found. The procedure

is the same as that taken in Sec. D.1.3, but much messier.
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Finding S3
i

From Eq. (D.19)

S3
i =

∞∑
γ=βi

exp
(
i
[
ω
c δ r(φi)γ + ψ(φi, γ)

])
γ

≈
∞∑
γ=βi

exp
(
i
[
ω
c δ r(φi)γ − 2π r

λ0
sin θ0 cos(φi − φ0)

])
γ

× 1

Np

 sin
(
Np+1

2 ∆χ
)

sin
(

∆χ
2

) − 1



=

∞∑
γ=βi

exp
(
i
[
ω
c δ r(φi)γ − 2π r

λ0
sin θ0 cos(φi − φ0)

])
γ

δ r(φi + π
2 )

r∆φi

×



sin


r ∆φi

δ r(φi + π
2 )

+ 1

2

−2πδ r(φi + π
2 )

λ0
sin θ0 sin(φ0 − φi)



sin

−2π
δ r(φi + π

2 )

λ0
sin θ0 sin(φ0 − φi)

2


− 1



=

∞∑
γ=βi

exp
(
i
[
ω
c δ r(φi)γ − 2π r

λ0
sin θ0 cos(φi − φ0)

])
γ

δ r(φi + π
2 )

r∆φi

×


sin

([r ∆φi + δ r(φi + π
2 )
] −2π sin θ0 sin(φ0 − φi)

2λ0

)
sin

(
δ r(φi + π

2 )
−2π sin θ0 sin(φ0 − φi)

2λ0

) − 1



=

∞∑
γ=βi

exp
(
i
[
ω
c δ r(φi)γ + 2rζ1

i

])
γ

δ r(φi + π
2 )

r∆φi

×

{
sin
([r ∆φi + δ r(φi + π

2 )
]
ζ2
i

)
sin
(
δ r(φi + π

2 )ζ2
i

) − 1

}
(D.49)
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where

ζ1
i =
−2π sin θ0

2λ0
cos(φi − φ0)

ζ2
i =
−2π sin θ0

2λ0
sin(φ0 − φi)

(D.50)

Now, in the far region r can be approximated as

r(φ) ∼ rβi + (γ − βφ)δ r(φ), (as r →∞)

=
(rβi − βφδ r(φ)

)
+ γδ r(φ)

(D.51)

And as βi → ∞, (rβi − βφδ r(φ)) → 0. Because phases are sensitive to small
changes, the full r expression will be used, however, when appearing in the
magnitude r ∼ γδ r(φ) will be used. This gives
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S3
i ∼

∞∑
γ=βi

exp
(
i
[
ω
c δ r(φi)γ + 2

[(rβi − βiδ r(φi)
)

+ γδ r(φi)
]
ζ1
i

])
γ

×
δ r(φi + π

2 )

γδ r∆φi

×

{
sin
([

(rβi − βiδ r(φi) + γδ r(φi)) ∆φi + δ r(φi + π
2 )
]
ζ2
i

)
sin
(
δ r(φi + π

2 )ζ2
i

) − 1

}
,

(as r →∞)

=

∞∑
γ=βi

exp
(
i2ζ1

i [rβi − βiδ r(φi)]
) exp

(
iγδ r(φi)

[
ω
c + 2ζ1

i

])
γ

δ r(φi + π
2 )

γδ r∆φi

×

{
sin
([rβi∆φi − βiδ r(φi)∆φi + δ r(φi + π

2 )
]
ζ2
i + γδ r(φi)∆φi ζ

2
i

)
sin
(
δ r(φi + π

2 )ζ2
i

) − 1

}

=

∞∑
γ=βi

ei2ζ
1
i [rβi−βiδr(φi)] e

iγν1
i

γ

δ r(φi + π
2 )

γδ r∆φi

×

{
sin
(
ν2
i + γν3

i

)
sin
(
δ r(φi + π

2 )ζ2
i

) − 1

}

= ei2ζ
1
i [rβi−βiδr(φi)] δ r(φi + π

2 )

δ r∆φi

×

 1

sin
(
δ r(φi + π

2 )ζ2
i

) ∞∑
γ=βi

eiγν
1
i

γ2
sin
(
ν2
i + γν3

i

)
−
∞∑
γ=βi

eiγν
1
i

γ2



= ei2ζ
1
i [rβi−βiδr(φi)] δ r(φi + π

2 )

δ r∆φi

×



1

sin
(
δ r(φi + π

2 )ζ2
i

) ∞∑
γ=βi

1

2i

[
eiν

2
i
eiγ(ν1

i+ν3
i )

γ2
− e−iν

2
i
eiγ(ν1

i−ν
3
i )

γ2

]

−
∞∑
γ=βi

eiγν
1
i

γ2


= ei2ζ

1
i [rβi−βiδr(φi)] δ r(φi + π

2 )

δ r∆φi

×



csc
(
δ r(φi + π

2 )ζ2
i

)
2i

eiν
2
i

∞∑
γ=βi

eiγ(ν1
i+ν3

i )

γ2

−
csc
(
δ r(φi + π

2 )ζ2
i

)
2i

e−iν
2
i

∞∑
γ=βi

eiγ(ν1
i−ν

3
i )

γ2

−
∞∑
γ=βi

eiγν
1
i

γ2


(D.52)
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where

ν1
i = δ r(φi)

[ω
c

+ 2ζ1
i

]
ν2
i =

[
rβi∆φi − βiδ r(φi)∆φi + δ r

(
φi +

π

2

)]
ζ2
i

ν3
i = δ r(φi)∆φi ζ

2
i

(D.53)

Each of the sums in Eq. (D.52) are now of the form

∞∑
γ=βi

eiγx

γ2
=

∞∑
γ=1

eiγx

γ2
−
βi−1∑
γ=1

eiγx

γ2
(D.54)

The first term on the right hand side (RHS) is the Taylor series of the poly-
logarithm function of degree 2 Li2(eix), also called the Dilogarithm or Spence’s
function. The values of Li2(z) are seen in Fig. D.5. Compared to log(z), Li2 is
well behaved as it is convergent for all values in the complex plane.

(a) (b)

Figure D.5: (a) Dilogarithm in the complex plane [31]. The color indicates phase, and
the saturation magnitude. (b) The phase and magnitude of Li2(eix) with respect to
x.

This results in

S3
i ∼ ei2ζ

1
i [rβi−βiδr(φi)] δ r(φi + π

2 )

δ r∆φi

×



csc
(
δ r(φi + π

2 )ζ2
i

)
2i

eiν
2
i

[
Li2

(
ei(ν

1+ν3)
)
−
βi−1∑
γ=1

eiγ(ν1
i+ν3

i )

γ2

]

−
csc
(
δ r(φi + π

2 )ζ2
i

)
2i

e−iν
2
i

[
Li2

(
ei(ν

1−ν3)
)
−
βi−1∑
γ=1

eiγ(ν1
i−ν

3
i )

γ2

]

−

[
Li2

(
ei(ν

1+ν3)
)
−
βi−1∑
γ=1

eiγν
1
i

γ2

]


(D.55)

Limiting Cases If θ0, the polar angle of the incident wave, is 0 then ζ1 and
ζ2 = 0 causing ν2, ν3 = 0, and ν1 = ki. This creates a divergence due to the
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csc() terms for all regions. However, taking the limit as θ0 → 0 reveals that the
terms with csc() cancel out.

S3
i →

δ r(φi + π
2 )

δ r∆φi

×



csc
(
δ r(φi + π

2 )ζ2
i

)
2i

[
Li2
(
eiki
)
−
βi−1∑
γ=1

eiγki

γ2

]

−
csc
(
δ r(φi + π

2 )ζ2
i

)
2i

[
Li2
(
eiki
)
−
βi−1∑
γ=1

eiγki

γ2

]

−

[
Li2
(
eiki
)
−
βi−1∑
γ=1

eiγki

γ2

]


= −

δ r(φi + π
2 )

δ r∆φi

[
Li2
(
eiki
)
−
βi−1∑
γ=1

eiγki

γ2

]
(D.56)

In contrast to the S3 term derived when no phase change was taken into ac-
count, Eq. (D.31), this appears to be a great improvement as the term is now
convergent when ki = 0 mod 2π.

The csc() = 1/ sin() terms will also diverge if φi = φ0, meaning the direction
of interest and the azimuth of the incident light are the same. In this case ζ2

i ,
ν2
i and ν3

i = 0. This results in almost the same result as Eq. (D.56) with ν1

remaining unchanged. Taking the limit as φi → φ0 gives

S3
i → −ei2ζ

1
i [rβi−βiδr(φi)] δ r(φi + π

2 )

δ r∆φi

[
Li2

(
eiν

1
i

)
−
βi−1∑
γ=1

eiγν
1
i

γ2

]
(D.57)

Finding S2
i

Because S3
i and S2

i only differ by a factor of γ−1, most of the hard work has
already been done when solving from S3

i , and a usable form of S2
i can be arrived

at in the same manner. From Eq. (D.18), using Eqs. (D.50), (D.51), and (D.53),
and including the phase correction term gives
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S2
i ∼

∞∑
γ=βi

exp
(
i
[ω
c
δ r(φi)γ + 2

[(rβi − βiδ r(φi)
)

+ γδ r(φi)
]
ζ1
i

])
×
δ r(φi + π

2 )

γδ r∆φi

×

{
sin
([

(rβi − βiδ r(φi) + γδ r(φi)) ∆φi + δ r(φi + π
2 )
]
ζ2
i

)
sin
(
δ r(φi + π

2 )ζ2
i

) − 1

}
,

(as r →∞)

= ei2ζ
1
i [rβi−βiδr(φi)] δ r(φi + π

2 )

δ r∆φi

×

 1

sin
(
δ r(φi + π

2 )ζ2
i

) ∞∑
γ=βi

eiγν
1
i

γ
sin
(
ν2
i + γν3

i

)
−
∞∑
γ=βi

eiγν
1
i

γ



= ei2ζ
1
i [rβi−βiδr(φi)] δ r(φi + π

2 )

δ r∆φi

×



csc
(
δ r(φi + π

2 )ζ2
i

)
2i

eiν
2
i

∞∑
γ=βi

eiγ(ν1
i+ν3

i )

γ

−
csc
(
δ r(φi + π

2 )ζ2
i

)
2i

e−iν
2
i

∞∑
γ=βi

eiγ(ν1
i−ν

3
i )

γ

−
∞∑
γ=βi

eiγν
1
i

γ


(D.58)

Just as in Sec. D.1.3, these sums are the power series of logarithms, as in Eq.
(D.30), resulting in

S2
i = −ei2ζ

1
i [rβi−βiδr(φi)] δ r(φi + π

2 )

δ r∆φi

×



csc
(
δ r(φi + π

2 )ζ2
i

)
2i

eiν
2
i

[
ln
(

1− ei(ν
1+ν3)

)
+

βi−1∑
γ=1

eiγ(ν1
i+ν3

i )

γ

]

−
csc
(
δ r(φi + π

2 )ζ2
i

)
2i

e−iν
2
i

[
ln
(

1− ei(ν
1−ν3)

)
+

βi−1∑
γ=1

eiγ(ν1
i−ν

3
i )

γ

]

−

[
ln
(

1− eiν
1
)

+

βi−1∑
γ=1

eiγν
1
i

γ

]


(D.59)
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Limiting Cases Again, the csc() terms diverge if θ0 = 0, as occurred for S3.
Taking the limit θ0 → 0 reveals

S2
i → −

δ r(φi + π
2 )

δ r∆φi

×



csc
(
δ r(φi + π

2 )ζ2
i

)
2i

[
ln
(
1− eiki

)
+

βi−1∑
γ=1

eiγki

γ

]

−
csc
(
δ r(φi + π

2 )ζ2
i

)
2i

[
ln
(
1− eiki

)
+

βi−1∑
γ=1

eiγki

γ

]

−

[
ln
(
1− eiki

)
+

βi−1∑
γ=1

eiγki

γ

]



=
δ r(φi + π

2 )

δ r∆φi

[
ln
(
1− eiki

)
+

βi−1∑
γ=1

eiγki

γ

]
(D.60)

This limit still diverges if ki = 0 mod 2π. In this case though the Euler-
Mascheroni constant, γem, can be used as was explained in Sec. D.1.3.

Taking the limit φi → φ0 gives

S2
i → ei2ζ

1
i [rβi−βiδr(φi)] δ r(φi + π

2 )

δ r∆φi

[
ln
(

1− eiν
1
i

)
+

βi−1∑
γ=1

eiγν
1
i

γ

]
(D.61)

which has the same behavior as the case when θ0 → 0 with an additional phase
factor.

Note that in both limiting cases of S2 and S3 that if the limit is taken using
the power series expansion of the dilogarithmic and logarithmic terms, then by
using L’Hôpital’s rule, the no phase change results are recovered exactly.
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The Total Field

Plugging Eqs. (D.55) and (D.59) in to Eq. (D.27) gives

Et =
∑
i∈Near

E(ri)

+
−pω2µ0

4π
e−iωt

×
m∑
i=1

∆φi
exp

(
iωc [rβi − βiδ r(φi)]

)
δ r(φi + π

2 )
exp

(
i2ζ1 [rβi − βiδ r]

)
×
δ r(φi + π

2 )

δ r(φi)∆φi
sin
[
θ(T r̂i)

]
P θ̂′i

×





− csc
(
δ r(φi + π

2 )ζ2
i

)
2i

eiν
2
i

×

[
ln
(

1− ei(ν
1+ν3)

)
+

βi−1∑
γ=1

eiγ(ν1
i+ν3

i )

γ

]

+
csc
(
δ r(φi + π

2 )ζ2
i

)
2i

e−iν
2
i

×

[
ln
(

1− ei(ν
1−ν3)

)
+

βi−1∑
γ=1

eiγ(ν1
i−ν

3
i )

γ

]

+

[
ln
(

1− eiν
1
)

+

βi−1∑
γ=1

eiγν
1
i

γ

]



+
1

2
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(
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2 )ζ2
i

)
2i
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2
i

×

[
Li2

(
ei(ν

1+ν3)
)
−
βi−1∑
γ=1

eiγ(ν1
i+ν3

i )

γ2

]

−
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(
δ r(φi + π

2 )ζ2
i

)
2i

e−iν
2
i

×

[
Li2

(
ei(ν

1−ν3)
)
−
βi−1∑
γ=1

eiγ(ν1
i−ν

3
i )
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]

−

[
Li2

(
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1+ν3)
)
−
βi−1∑
γ=1

eiγν
1
i
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]
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Et =
∑
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At this point it pays to reflect on what these results mean. The main thing
to notice is that in both cases, whether a phase change is considered or not,
there are situations for the far region that diverge. The easiest case of this
to recognize is if the incident wave is normal to the lattice and the spacing of
the lattice points is equal to an integer multiple of the incident wavelength.
However, in this same situation it is likely that the near-region lattice points
will be out of phase with each other. This is caused by the non-linear change
in distance between lattice points near the observation point. Hence, it appears
that the far-region can have a significant impact on the total field.
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D.2 Reflections and Scattering of a Multilay-
ered Lattice

In Section D.1 the radiation from a 2D lattice was considered. The radiation in
that case did not interact with anything in the environment after being emitted.
However, the actual back reflector will consist of plasmonic particles embedded
in a layer of homogeneous material with a mirror on the bottom and the absorb-
ing layers on top, as seen in Fig. D.6. Thus, reflections from the interfaces must
be considered when determining the field within the back reflector’s layers.

Figure D.6: Schematic of the back reflector embedded in the solar cell. The red layer
represents all top layer of the cell including front-side coatings and the absorber layer.
The blue layer represents the back reflector, and the silver layer is the mirror.

Each incident path that reaches the point of interest, either interacts with
no particles or with at least one particle. A path that is able to reach the
observation point without interacting with any particles will be called a free light
path. Fig. D.7 illustrates one situation such that no free light paths exist due to
the orientation of the incident light, the point of observation, and the particle
lattice, and another situation where a free light path does exist. Assuming the

(a) (b)

Figure D.7: (a) There are no free light paths if the incident light, observation point,
and particle lattice are arranged such that all light paths must pass through a particle
position to reach the observation point. (b) A free light path exists.

lattice is made of point particles the condition that there are no free light paths
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is
cI = r − pi (D.63)

for some lattice point pi, where c is a scalar, I is the incident light vector,
and r is the observation point. Because only the angle of the incident light
is important, indicated by the arbitrary scaling factor c, this condition can be
re-written as

tan (θI) =

([r1 −
(
α1
i a

1
1 + α2

i a
1
2

)]2
+
[r2 −

(
α1
i a

2
1 + α2

i a
2
2

)]2)1/2

r3 − z1
(D.64)

tan (φI) =

[r2 −
(
α1
i a

2
1 + α2

i a
2
2

)]
[r1 − (α1

i a
1
1 + α2

i a
1
2)]

(D.65)

So when considering the field at a point that satisfies these conditions no free
light path term must be considered. If the field point does not satisfy this
though, a free light path contribution must be added to the total field. This
contribution can be calculated using the classical method resulting in a geomet-
ric sequence, discussed in Sec. D.2.3.

If a light path does interact with a particle the geometric series approach will
not work. Instead, the path of the each light ray can be “unfolded”, as seen in
Fig. D.8a. When performing this unfolding, the original layer is inverted with
respect to the normal of the interface, causing a mirroring effect. This creates
two 1D sub-lattices, one with an even number of reflections in its path, and the
other with an odd number of reflections. This situation is seen in Fig. D.8b.
Because these 1D sub-lattices occur for each particle, a 3D virtual lattice can
be created.
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(a) (b)

Figure D.8: (a) Example of unfolding the layer. The green and purple rays are scat-
tered from the particle and subsequently reach the point of observation. The arrows
on the left indicate the positive z-direction, which is inverted in every reflection. The
numbers on the right indicate the virtual layer number, the absolute value of which
indicates the number of reflections which have occurred. (b) The two 1D sub-lattices
created from the unfolding process. The even lattice points are highlight in red, while
the odd points are in green.
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D.2.1 Virtual Lattice

Consider a set of point sources within a layer where each point scatters incident
light the same way, given by the scattering function, S. Through the unfolding
process, a 3D virtual lattice is created, with each real lattice point having an
infinite string of virtual lattice points above and below it, as seen in Fig. D.9.

Figure D.9: The virtual lattice created by unfolding the reflections from the real lattice.
The original lattice points are indicated by the blue points lying in the red plane with
blue layer boundaries. The virtual lattice is indicated by the green layer boundaries
and red particles.

If the height of the layer is h, then the vertical spacing between the points
in each sub-lattice is 2h. Thus, the two virtual lattices created are defined by
the original lattice vectors a′1 = a1 and a′2 = a2, and the third vector

a′3 = 2h
a1 × a2

|a1 × a2|
(D.66)

The only difference between the even and odd lattices is the observation point
relative to them, depicted in Fig. D.10. The observation point of the even
sub-lattice being r0, and the observation point of the odd sub-lattice being

r′0 = r0 + r3
0

a1 × a2

|a1 × a2|
(D.67)

Assuming the a1 and a2 vectors lie in the x-y plane, this means

r′0 = r0 +
(
0, 0, r3

0

)
=
(r1

0, r2
0, 2r3

0

) (D.68)
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Figure D.10: The observation point relative to the even lattice, with origin indicated
by the red circle, and odd lattice, with origin in green.

Caution must be taken when thinking about the coordinate system of the
odd lattice though. Because it was created through an inversion process the
handedness of the coordinate system is opposite to the original (i.e. If the
original coordinate system was right-handed, the coordinate system of the odd
lattice is left-handed.). Luckily none of the relevant parameters depend on the
handedness of the coordinate system, but it is something to keep in mind.
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D.2.2 Infinite 3D Lattice

In section D.1.1 the general method for summing the field of a 2D lattice was
considered. However, nothing in the discussion there was inherently 2 dimen-
sional. Thus, using the same line of reasoning the 3D analog of this method can
be established.

1. Move problem to conjugate lattice with vectors ri = r0 − ri, where r0 is
the point of interest and ri is the ith lattice point.

2. Define a distance that separates the near and far regions, rβ .

3. Define angular divisions of a sphere, ∆θi and ∆φj , centered at the origin.
Project these divisions onto the far region of the lattice.

4. Sum over the volumes, called pyramidal frustums, within each division
whose height is equal to the separation of lattice points in that direction.

There are only two difference in these steps between the 3D and 2D cases. First
is that the sum is now taking place in both the θ and φ directions where as in
the 2D case the sum only occurred in the φ direction. And second is that the
shapes created by the lattice division is a right pyramidal frustum, seen in Fig.
D.11 rather than a trapezoid.

Figure D.11: A right pyramidal frustum with base areas A1 and A2.

In analogy to using the area of the trapezoid to define the magnitude of each
mocked lattice point, the volume of a right pyramidal frustum with height hand
base areas A1 and A2 is

V =
h

3

(
A1 +A2 +

√
A1A2

)
(D.69)

with

A1 = [r∆θ] [r∆φ]

= r2∆φ∆θ (D.70a)

A2 = [(r + δ r)∆θ] [(r + δ r)∆φ]

= (r + δ r)2∆φ∆θ (D.70b)
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So the volume of a frustum at the γth lattice point in the (θ, φ) direction is

V =
δ r
3

[
(r2∆θ∆φ+ r + δ r)2∆θ∆φ+

[r2∆θ∆φ · (r + δ r)2∆θ∆φ
]1/2]

= δ r∆θ∆φ

(
r2 + rδ r +

δ r2

3

)
(D.71)

It pays to pause here and think about how the far region boundary is chosen.
In the 2D case the observation point could move perpendicular to the lattice
infinitely far away, as in Fig. D.12. This made the choice of β significant, such
that the lateral distance rβ , and the actual distance r, to the far region were
similar. This became the case when the distance from the observation point to
the lattice became negligible compared to the lateral distance of the far field.
In this case, though, the lattice is 3D so the observation point is periodically
bound in all directions. There is no perpendicular direction to move into. Thus,
β should be chosen such that the size of the unit cell of the lattice is small
compared to the rβ .

Figure D.12: The distance the observation point is from the lattice plays a significant
role in the 2D case, however in the 3D case this freedom is removed.

So, just as in the 2D case

r → rβ + γδ r
→ (β + γ)δ r (as r →∞) (D.72)

giving

V = δ r∆θ∆φ

(
(β + γ)2δ r2 + (β + γ)δ r · δ r +

δ r2

3

)
= ∆θ∆φδ r3

(
γ2 + (2β + 1)γ + (β2 + β +

1

3
)

)
Continuing with the process developed for the 2D lattice, the volume of a

single point in the (θ, φ) direction is

v = δ r(θ, φ) δ r(θ + π/2, φ) δ r(θ, φ+ π/2) (D.73)

giving a point density of ρ = v−1. So the magnitude of the γth volume in the
(θ, φ) direction is

M(γ, θ, φ) = V ρ

=
δ r2(θ, φ)∆θ∆φ

δ r(θ + π/2, φ)δ r(θ, φ+ π/2)

×
(
γ2 + (2β + 1)γ + (β2 + β +

1

3
)

)
(D.74)



138 APPENDIX D. LATTICE SUM

Now, to find the sum over in the (θ, φ) direction,

F (θ, φ) =

∞∑
γ=0

M(γ, θ, φ)f(r)

=

∞∑
γ=0

δ r2(θ, φ) ·∆θ∆φ
δ r(θ + π/2, φ)δ r(θ, φ+ π/2)

×
(
γ2 + (2β + 1)γ + (β2 + β +

1

3
)

)
f(r)

=
δ r2(θ, φ) ·∆θ∆φ

δ r(θ + π/2, φ)δ r(θ, φ+ π/2)
f̂(θi, φj)

×
∞∑
γ=0

(
γ2 + (2β + 1)γ + (β2 + β +

1

3
)

)
f(r) (D.75)

giving the sum of the entire lattice as

F =
∑
i∈Near

Fi +
∑
θi

∑
φj

F (θ, φ)

=
∑
i∈Near

Fi +
∑
θi

∑
φj

δ r2(θi, φj) ·∆θi∆φj
δ r(θi + π/2, φj)δ r(θi, φj + π/2)

f̂(θi, φj)

×
∞∑
γ=0

(
γ2 + (2βi,j + 1)γ + (β2

i,j + βi,j +
1

3
)

)
f(r)

(D.76)
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D.2.3 Field From Reflections

Free Light Paths

To determine whether a free light path exists the angles of the near and far re-
gions are considered. If there are no near region particles or far region directions
with the same angles as the incident light, then a free light path is considered
to exist. This is a simplification that ignores both the geometric and scattering
cross section of the particles. To include these effects, a radius around each
lattice point could be considered to shade the observation point.

Consider an incident plane wave with normal vector at angle (θ0, φ0) with
wavelength λ0 and traveling through a medium with index of refraction n0, as in
Fig. D.13. Two possible 1D sub-lattices are created, L′, having an even number
of reflections, and L′′ having an odd number of reflections, before reaching the
observation point.

From Eq. (D.40), the phase change of the incident light with distance is

δψ(d, φ) = −2π
d

λ0
sin θ0 cos(φ− φ0) (D.77)

The distance between origin points of incident light in both lattices is

∆d = 2h tan θ (D.78)

where h = z1 +z2. This gives a lattice change between consecutive lattice points
of

∆ψ = δψ(∆d, φ0) = −2π
2h tan θ

λ0
sin θ0 (D.79)

As the light propagates through the layer a distance `, it transforms as

R(`,m1,m2) = e−η` · eik` · rm1
1 rm2

2 (D.80)

where the first term is the absorption of energy from the Beer-Lambert Law with
absorption constant η, the second term is the phase change of the light due to
its optical path with k the wavenumber, and the third term is the absorption
due to reflection, described by Fresnel’s equation, with m1 and m2 the number
of reflections off the top and bottom interfaces, respectively.

Because of the regular spacing of origin points, the distance traveled and
number of reflections is simple to calculate. For each complete cycle of the of
the light traveling through the layer it travels a total distance of

∆` = 2
h

cos θ
(D.81)

Now, consider a ray, in either lattice, traveling from the jth origin point to the
zeroth origin point, which has the direct path to the observation point. This
path will have originated a distance dj = j∆d away from the zeroth origin point,
traveled `j = j∆` and undergone n1 = n2 = j reflections off each interface.
Using Eq. (D.80), this results in the field

E′j = E′0 · eij∆ψ · e−jη∆` · eijk∆` · rj1r
j
2

= E′0C
j

(D.82)
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(a)

(b)

Figure D.13: The paths leading to a free light path in (a) 2D, viewed from the side, and
(b) 3D perspectives. The yellow paths, with origin points constituting L′, will always
have an even number of reflections before reaching the observation point, while the
green path will always have an odd number of reflections, with origin points making
up L′′.

where D = 0 because there have been 2j total reflections, and

C = ei∆ψe−η∆` · eik∆` · r1r2 (D.83)

The total field at the 0th origin point is then

E0 =

∞∑
j=0

E′j

=

∞∑
j=0

E′0 · Cj

= E′0
1

1− C
(D.84)

Because the magnitude of C < 1 due to the absorption and reflection terms, the
sum of a geometric series is valid to use. For a general complex number AeiB

[
1−AeiB

]−1
=
[
1 +A2 − 2A cosB

]−1/2
exp

(
i arctan

[
A sinB

1−A cosB

])
(D.85)

In this case
A = e−η∆`r1r2

B = ∆ψ + k∆`
(D.86)
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Limiting Case In (D.85) an issue arises if A = 1 and B = 0 mod 2π
indicating there is no energy loss form reflections or absorption, and the driven
phase change and optical path phase change are coordinated such that each
origin point is in phase. Using a power series expansion to the quadratic term
sinB/(1 − cosB) → ±∞ as B → 0. Whether the term approaches positive or
negative infinity depends on which direction B approaches zero. As B → ±∞
the arctan term goes to ±π/2. However, the (1 + A2 − 2A cosB) term, in this
case, goes to 0, resolving the issue.

From the 0th origin point the light must still travel to the observation point.
For L′ this path has no further reflections and a distance

`′−1 =
z1

cos θ
(D.87)

For L′ there is an additional reflection off the bottom interface, n2 = 1, and has
a distance of

`′′−1 =
z1 + 2z2

cos θ
(D.88)

The direction of the electric field in the L′ lattice the E-field will have the same
orientation as the incident light. However, the E-field in the L′′ path will be
rotated 180◦ around the normal vector of the interface. Finally, there will be a
phase shift of the incident light of the two lattices because of the spatial offset
of their origin points. From the observation point, the 0th origin point in the L
lattice has a lateral distance of

d′−1 = z1 tan θ (D.89)

and in the L′′ lattice of

d′′−1 = (z1 + 2z2) tan θ (D.90)

Thus, the phase change of the incident light caused by the(
d′′−1 − d′−1

)
= 2z2 tan θ offset is

ψ′′ = ψ′ − 2π
2z2 tan θ

λ0
sin θ0 cos (φ− φ0) (D.91)

So, the final fields from the free light path lattices of L′ and L′′, respectively
are

E′ = E0 · e−η`
′
eik`

′
eiψ
′
ê (D.92a)

E′′ = E0 · e−η`
′′
eik`

′′
eiψ
′′
r2 ê
′′ (D.92b)

where ê is the unit vector of the incident electric field, and ê′′ is the reflected
unit vector found by rotating ê by (π − 2θ0) around the incident plane normal.
Plugging these into the fields at the observation point gives

E′ = E′0
e−η`

′
eik`

′
eiψ
′

1− ei∆ψe−η∆` · eik∆` · r1r2
ê (D.93a)

E′′ = E′0
e−η`

′′
eik`

′′
eiψ
′′
r2

1− ei∆ψe−η∆` · eik∆` · r1r2
ê′′ (D.93b)
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E′0 is the electric field just after the incident field is transmitted through the
interface, so is given by

E′0 = Einct (D.94)

where t represents the transmission. Both the reflection and transmission terms
come from the Fresnel equations

rs =
n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

(D.95a)

ts =
2n1 cos θi

n1 cos θi + n2 cos θt
(D.95b)

rp =
n2 cos θi − n1 cos θt
n1 cos θt + n2 cos θi

(D.95c)

tp =
2n1 cos θi

n1 cos θt + n2 cos θ1
(D.95d)

for s- and p-polarized light respectively. Thus, the total electric field of the free
paths is given by

Efree = E′ + E′′

=
∑

ε∈{s,p}

E′0,ε
e−η`

′
eik`

′
eiψ
′

1− ei∆ψe−η∆` · eik∆` · r1,εr2,ε
êε

+ E′0,ε
e−η`

′′
eik`

′′
eiψ
′′
r2,ε

1− ei∆ψe−η∆` · eik∆` · r1,εr2,ε
ê′′ε

= Einc
∑

ε∈{s,p}

Aεtε
1− ei∆ψe−η∆` · eik∆` · r1,εr2,ε

×
[
e−η`

′
eik`

′
eiψ
′
êε + e−η`

′′
eik`

′′
eiψ
′′
r2,εê

′′
ε

]
(D.96)

where Aε is the fraction of incident light polarized in the ε direction.

Interacting Paths

We again consider a field of radiating dipoles as in Sec. D.1.2. It is important
to realize here, to stay consistent with the free lights paths, that the orientation
of the dipole is the same as that of the incident field. When thinking of the path
the light makes to reach the observation point, there is also a major difference
between this case and the 2D case considered in Sec. D.1. In the 2D case,
it was implicitly assumed that the observation point lay outside the lattice
plane. Thus, once a wave was emitted from a lattice point, it did not interact
with anything else. In this case however, all radiation coming from a certain
direction in the virtual lattice must interact with each particle having a point
in the virtual lattice in that that direction as well. This is depicted in Fig.
D.14. In reality, in both cases, the radiation scattered in other directions will
be re-scattered back in the direction of the observation point. This leads to a
discretized version of Feynman’s path integral formulation. Instead of going this
route though, a first order approximation will be taken such that re-scattered
fields are considered weak and neglected. Scattered fields will also be considered
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Figure D.14: In the virtual lattice, if a light path must pass through a lattice point it
indicates that in the real lattice it interacted with a particle.

weak compared to the incident driving field, so the radiation from each of the
lattice points will be a dipole driven by the incident field.

Using dipole radiation, Eq. (D.14), as the scattering function in Eq. (D.76)
and accounting for reflections and absorption using (D.80) gives

Eint =
∑
i

∑
j

δ r2(θi, φj) ·∆θi∆φj
δ r(θi + π/2, φj)δ r(θi, φj + π/2)

P θ̂′i,j

×
∞∑
γ=0

(
γ2 + (2βi,j + 1)γ + (β2

i,j + βi,j +
1

3
)

)
× E

((rβi,j + γ · δ r(θi, φj)
)
T r̂i,j

)
× exp

[
−η
(rβi,j + γδ r(θi, φj)

)]
rm1
1 rm2

2

=
∑
i

∑
j

δ r2(θi, φj) ·∆θi∆φj
δ r(θi + π/2, φj)δ r(θi, φj + π/2)

P θ̂′i,jS0
i,j (D.97)
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with

S0
i,j = e−iωt

∞∑
γ=0

(
γ2 + (2βi,j + 1)γ + (β2

i,j + βi,j +
1

3
)

)

× −pω
2µ0

4π
sin (θ(T ri,j))

×
exp
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i
[
ω
c

(rβi,j + γδ r(θi, φj)
)

+ ψ(φj , r)
])

rβi,j + γδ r(θi, φj)

× exp
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−η
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)]
rm1
1 rm2

2

= e−iωt exp
[
i
ω

c
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]
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[
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× −pω
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4π
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×
∞∑
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(
γ2 + (2βi,j + 1)γ + (β2
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1

3
)

)

×
exp

(
i
[
ω
c γδ r(θi, φj) + ψ(φj , r)

])
rβi,j + γδ r(θi, φj)

× exp [−ηγδ r(θi, φj)] r
m1
1 rm2

2 (D.98)

The values of m1 and m2 can be found by counting the virtual layer, L, the γth

lattice point in the (θ, φ) direction is in, depicted in Fig. D.15.

L(γ) = Lβ + γ
δ r cos θ

h
(D.99)

where Lβ is the layer of the β point, and (δ r cos θ/h) is necessarily an integer
due to the regular geometry of the virtual lattice.

Figure D.15: Determining the layer the γth point lies in.

Thinking about how many reflections occur on each boundary from the Lth

virtual layer reveals

m1 =

∣∣∣∣⌊L2
⌋∣∣∣∣

m2 =

∣∣∣∣⌊L+ 1

2

⌋∣∣∣∣
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L -3 -2 -1 0 1 2 3
m1(L) 2 1 1 0 0 1 1
m2(L) 1 1 0 0 1 1 2

Table D.1: Example values of m1(L) and m2(L) indicating the number of reflections
off each interface.

Examining these terms, and the physical situation, m1 and m2 are always within
one of each other. Separating these terms for each sub-lattice also allows further
simplification. In the even sub-lattice L/2 is an integer so

m1,e(L) = m2,e(L) =

∣∣∣∣L2
∣∣∣∣ =

∣∣∣∣Lβ2 + γ
δ r cos θ

2h

∣∣∣∣ (D.100)

indicating that all points contained in the even sub-lattice are reflected from
each interface an equal number of times. In the odd sub-lattice [(L ± 1)/2] is
an integer, so

m1,d(L) =

∣∣∣∣L− 1

2

∣∣∣∣ =

∣∣∣∣Lβ − 1

2
+ γ

δ r cos θ

2h

∣∣∣∣ (D.101a)

m2,d(L) =

∣∣∣∣L+ 1

2

∣∣∣∣ =

∣∣∣∣Lβ + 1

2
+ γ

δ r cos θ

2h

∣∣∣∣ (D.101b)

These results are made more clear by examining some values of m1(L) and
m2(L), shown in Table D.1.

In Eqs. (D.100) and (D.101) both terms inside the absolute value have the
same sign, so the absolute value can be split into two terms. Further, because
γ ≥ 0, it can be pulled out from the absolute value. This gives the final reflection
counts as

m1,e =

∣∣∣∣Lβ2
∣∣∣∣+ γ

∣∣∣∣δ r cos θ

2h

∣∣∣∣ (D.102a)

m2,e =

∣∣∣∣Lβ2
∣∣∣∣+ γ

∣∣∣∣δ r cos θ

2h

∣∣∣∣ (D.102b)

m1,d =

∣∣∣∣Lβ − 1

2

∣∣∣∣+ γ

∣∣∣∣δ r cos θ

2h

∣∣∣∣ (D.102c)

m2,d =

∣∣∣∣Lβ + 1

2

∣∣∣∣+ γ

∣∣∣∣δ r cos θ

2h

∣∣∣∣ (D.102d)

For convenience of notation, let m′i,l be the first term on the RHS in each of
these equations, and m′′i,l be the second term, excluding the γ factor. Thus,
each of the RHS’s can be written as mi,l = m′i,l + γm′′i,l.
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Plugging the results for m1 and m2 into Eq. D.98 gives

S0
i,j = e−iωt exp

[
i
ω

c
rβi,j

]
exp

[
−η rβi,j

]
r
m′1
1 r

m′2
2

× −pω
2µ0

4π
sin (θ(T ri,j))

×
∞∑
γ=0

(
γ2 + (2βi,j + 1)γ + (β2

i,j + βi,j +
1

3
)

)

×
exp

[
i
[
γ ωc δ r(θi, φj) + ψ(φj , γ)

]]
rβi,j + γδ r(θi, φj)

× exp [−ηγδ r(θi, φj)] r
γm′′1
1 r

γm′′2
2

As in the 2D analysis from (D.40)

ψ(φ, r) = −2π
r
λ0

sin θ0 cos(φj − φ0) (D.103)

where r in this case is the lateral distance from the origin given by
r = (rβ + γδ r) sin θ. So

S0
i,j = e−iωt exp

[
i
ω

c
rβi,j

]
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[
−η rβi,j

]
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[
−i2π
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∞∑
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3
)

) [
ν1
i,j

]γ
eiζ

1
i,jγ

rβi,j + γδ r(θi, φj)

(D.104)

with

ν1
i,j = exp [−ηδ r(θi, φj)] r

m′′1
1 r

m′′2
2 (D.105a)

ζ1
i,j =

ω

c
δ r(θi, φj)− 2π

δ r(θi, φj) sin θi
λ0

sin θ0 cos(φj − φ0) (D.105b)
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Again letting rβi,j → βi,jδ r(θi, φj) gives
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(D.106)

and

(γ − βi,j)2 + (2βi,j + 1)(γ − βi,j) + (β2
i,j + βi,j +

1

3
) = γ2 + γ +

1

3
(D.107)
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so
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i,j (D.108)

with

S1
i,j =

∞∑
γ=βi,j

(
γ + 1 +

1

3γ

)[
ν1
i,j

]γ
eiζ

1
i,jγ (D.109)

Accounting for the phase change error given by Eq. (D.47) with

Np =
r∆φ

δ r(θ, φ+ π
2 )

r∆θ

δ r(θ + π
2 , φ)

(D.110a)

∆χ = −2π
δ r(θ, φ+ π

2 ) sin θ

λ0
sin θ0 sin(φ0 − φ) (D.110b)
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gives

δχ =
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(D.111)

with

ζ2
i,j = − 2π sin θi

2δ r(θi, φj + π
2 )λ0

sin θ0 sin(φ0 − φj) (D.112)

and r → γδ r because the sum in S0 begins at 0. Multiplying the term in the
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sum of S0 in Eq. D.108 gives
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There are nine terms being summed with the forms

∑
γ

xγeiγe±iγ
2

γ
,
∑
γ

xγeiγe±iγ
2

γ2
,
∑
γ

xγeiγe±iγ
2

γ3
(D.114a)

∑
γ

xγeiγ

γ
,
∑
γ

xγeiγ

γ2
,
∑
γ

xγeiγ

γ3
(D.114b)

Unfortunately, the terms with the exponential factors eiγ
2

in Eqs. (D.114a)
do not have a closed form. However, because x = ν1 < 1, using the Comparison
test, the terms still converge. The terms without the exponential factors in Eqs
(D.114b) we have seen before and take the form of polylogarithmic functions
Lin(z) where Li1 is the normal logarithm, Li2 is the dilogarithm, and

Li3(z) =

∞∑
k=1

zk

k3
(D.115)

can be seen in Fig. D.16.
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Figure D.16: The polylogarithmic function Li3 on the complex plane. The hue repre-
sents the phase, and saturation the magnitude [32].

Combining the results of S0 and S1 gives a total field of
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∑
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Remember that this result accounts for each of the four sub-lattices that
must be summed together to find the entire field. There is the even and odd
sub-lattice caused by the reflections, and the s- and p-polarized driving fields
which affects the reflections and scattering.

Limiting Cases Again issues arise if ζ2 = 0 which occurs if θ0 = 0 or
φj = φ0. using L’Hôpital’s rule on the problem factors gives

±
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[
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2 , φj)ζ

2
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]
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2 )ζ2
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) →
δ r(θi + π

2 , φj)

2
, (as ζ2

i,j → 0)

(D.117)
Notice also that because absorption has been accounted for by ν1, there are no
divergent terms as occurred in the 2D case of Sec. D.1.2, unless ν1 = 1.
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By assuming the distance change between particles is constant we have ar-
rived at an analytic expression for the magnitude of each direction in the far
region. By studying this expression the dependence of the electric field on the
lattice structure can be gleaned. By using calculus of variations, then, the
optimal structure to create a given radiation pattern could be found. These
efforts are thwarted, unfortunately, by the behavior of the separation function
δ r, which turns out to be very complicated.
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D.3 The Separation Function

Notice that no actual predications have been made yet about the field produced
by a lattice. This is due to the unruly nature of the δ r function describing
the separation between lattice points in a given direction. This bad behavior
is exhibited because, naturally, δ r is defined only in the directions for which a
lattice point exists.

D.3.1 2D Separation Function

The lattice point directions are composed of rational combinations of the lattice
vectors,

φ = arctan

(
αia2

i

αia1
i

)
(D.118)

Because the α-space is discrete, αi ∈ Z, but the angular space of the lattice is
continuous, there are “holes” for angles φ that do not correspond to a lattice
point. This creates an everywhere discontinuous set, similar to the Cantor set.
Further, though, there is a fractal nature to this function due to the translation
invariance of the lattice. This results in a function that, even though it is defined
on a dense set in φ-space, can not be represented by a continuous function. A
plot of δ r for lattice vectors (1, 0) and (0, 1) and 0 ≤ α1, α2 ≤ 100 can be seen
in Fig. D.17.

Figure D.17: Separation function with a1 = (1, 0), a2 = (0, 1), and 0 ≤ α1, α2 ≤ 100.
Due to symmetry of the lattice vectors, only the first quadrant 0 ≤ φ ≤ π/2 is relevant.
The x-axis is φ and the y-axis is the separation in arbitrary units.

The behavior of δ r forces a careful evaluation of the directions chosen as
representatives for each region. In fact, δ r will end up dictating these choices.
To make the situation tractable, a limit will be imposed on the maximum sep-
aration. All angles whose separation fall under this value will be considered,
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and the rest will be ignored. An issue may arise here in that although the
strongest directions of radiation are being considered, a countably infinite num-
ber of weaker directions are being ignored, and these ignored direction may have
a significant contribution when added together.

Although the behavior of δ r is infinitely discontinuous, it transforms with
the lattice vectors in a smooth manner. There are four parameters that affect
δ r: the length and angle of each lattice vector. When evaluating the change of
δ r issues arise because, looking in a fixed direction, if the lattice vector changes
a lattice point that was present suddenly disappears. This leads to discontinu-
ities in the derivatives of δ r similar to the discontinuities in the function itself.
To solve this, instead of fixing the direction of interest when taking partial
derivatives, the lattice point is fixed, i.e. α1 and α2 are fixed, and the direction
of observation is allowed to vary.

From the definition of δ r(φ) being the separation between points in the φ
direction, an equivalent definition of δ r, compared to Eq. (D.7), can be written
as

δ r(φ) =

[[
αiaji

]2
1j

]1/2

(D.119)

assuming that Eq. (D.3) holds. Changing δ r and φ into functions of the length
and angles of the lattice vectors, defined in Fig. D.18 results in

δ r =
[[
α1a1 cos η1 + α2a2 cos η2

]2
+
[
α1a1 sin η1 + α2a2 sin η2

]2]1/2
=
[[
α1a1

]2
+
[
α2a2

]2
+ 2α1α2a1a2 cos (η1 − η2)

]1/2 (D.120)

and

φ = arctan

[
α1a1 sin η1 + α2a2 sin η2

α1a1 cos η1 + α2a2 cos η2

]
(D.121)

where a1
i = ai cos ηi and a2

i = ai sin ηi.

Figure D.18: Variable definitions used in the alternative definition of the separation
function, Eq. (D.119).

To see how the lattice changes with each of these variables the derivative of
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δ r and φ can be taken with respect to each of a1, a2, η1, and η2. This results in

d(δ r)

da1
=
α1
[
α1a1 + α2a2 cos (η1 − η2)

]
δ r (D.122)

d(δ r)

da2
=
α2
[
α2a2 + α1a1 cos (η1 − η2)

]
δ r (D.123)

d(δ r)

dη1
= −α

1α2a1a2 sin (η1 − η2)

δ r (D.124)

d(δ r)

dη2
=
α1α2a1a2 sin (η1 − η2)

δ r = −d(δ r)

dη1
(D.125)

and

dφ

da1
=
α1α2a2 sin (η1 − η2)

δ r2
(D.126)

dφ

da2
= −α

1α2a1 sin (η1 − η2)

δ r2
= −a1

a2

dφ

da1
(D.127)

dφ

dη1
=
α1a1

[
α1a1 + α2a2 cos (η1 − η2)

]
δ r2

(D.128)

dφ

dη2
=
α2a2

[
α2a2 + α1a1 cos (η1 − η2)

]
δ r2

(D.129)

D.3.2 3D Separation Function

In analogy to the 2D case, in a three dimensional lattice each lattice vector can
be defined in spherical coordinates, giving a more natural representation for
the lattice summation. Using the magnitude, and polar and azimuthal angles,
(a, υ, η), the separation function is

δ r =

(∑
i

αiai sin υi cos ηi

)2

+

(∑
i

αiai sin υi sin ηi

)2

+

(∑
i

αiai cos υi

)2
1/2

(D.130)
the polar angle is

θ = arctan

∑
i α

iai sin υi[
(
∑
i α

iai sin υi cos ηi)
2

+ (
∑
i α

iai sin υi sin ηi)
2
]1/2 (D.131)

and the azimuthal angle is

φ = arctan

∑
i α

iai sin υi sin ηi∑
i α

iai sin υi cos ηi
(D.132)
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This gives derivatives

d(δ r)

dai0
=
αi0
δ r



(∑
i

αiai sin υi cos ηi

)
sin υi0 cos ηi0

+

(∑
i

αiai sin υi sin ηi

)
sin υi0 sin ηi0

+

(∑
i

αiai cos υi

)
cos υi0


(D.133a)

d(δ r)

dυi0
=
αi0
δ r



(∑
i

αiai sin υi cos ηi

)
ai0 cos υi0 cos ηi0

+

(∑
i

αiai sin υi sin ηi

)
ai0 cos υi0 sin ηi0

−

(∑
i

αiai cos υi

)
ai0 sin υi0


(D.133b)

d(δ r)

dηi0
=
αi0ai0 sin υi0

δ r


−

(∑
i

αiai sin υi cos ηi

)
sin ηi0

+

(∑
i

αiai sin υi sin ηi

)
cos ηi0

 (D.133c)

dθ

dai0
=
αi0

δ r


(∑

i

αiai sin υi cos ηi

)2

+

(∑
i

αiai sin υi sin ηi

)2
1/2

cos υi0

− cot θ sin υi0 (cos ηi0 + sin ηi0)


(D.134a)

dθ

dυi0
=
−αi0ai0
δ r


(∑

i

αiai sin υi cos ηi

)2

+

(∑
i

αiai sin υi sin ηi

)2
1/2

sin υi0

+ cot θ cos υi0 (cos ηi0 + sin ηi0)


(D.134b)

dθ

dηi0
=

cot θαi0ai0 sin υi0
δ r (sin ηi0 − cos ηi0) (D.134c)

dφ

dai0
=

αi0 sin υi0

(
∑
i α

iai sin υi cos ηi)
2

+ (
∑
i α

iai sin υi sin ηi)
2

×

[
sin ηi0

∑
i

αiai sin υi cos ηi − cos ηi0
∑
i

αiai sin υi sin ηi

] (D.135a)
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dφ

dυi0
=

αi0ai0 cos υi0

(
∑
i α

iai sin υi cos ηi)
2

+ (
∑
i α

iai sin υi sin ηi)
2

×

[
sin ηi0

∑
i

αiai sin υi cos ηi − cos ηi0
∑
i

αiai sin υi sin ηi

]
(D.135b)

dφ

dηi0
=

αi0ai0 sin υi0

(
∑
i α

iai sin υi cos ηi)
2

+ (
∑
i α

iai sin υi sin ηi)
2

×

[
cos ηi0

∑
i

αiai sin υi cos ηi + sin ηi0
∑
i

αiai sin υi sin ηi

] (D.135c)
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D.3.3 Method Analysis

Model Accuracy

When developing the lattice summation technique there were three levels of
“accuracy” that can be used. The first considers only the particles in the direc-
tions defining the far region. Then, a magnitude function was incorporated to
account for all the particles in the region. And finally, a phase change factor was
incorporated that accounted for the particles along the width of each region. In
the 3D case the free light paths can also be made more accurate by accounting
for the particle size. By only including the free light path if the incident wave
angle are outside some solid angle of the designated lattice points, instead of
using a delta function.

Divergent Terms

In certain cases we saw that logarithmic terms diverge when parameters are
coordinated such that fields from each lattice point are in phase. This created
a harmonic series. This arose from the assumption that the distance from each
lattice point changes linearly. In reality, however this assumption does not hold
and there is a small change in the distance. This causes a different phase change
between adjacent points, and eliminates the divergence of the series.

Region Widths

In the 2D case, region boundaries are easy to determine. From the direction
of interest, travel to the nearest included point in a clockwise and counter-
clockwise direction, then divide each distance in half. The 3D case uses the
same method, but is a bit more difficult to determine because of the extra
degrees of freedom. To do this, first all included points were projected from the
origin on to the unit cell. These are the blue points in Fig. D.19a Then the
lattice vectors were projected on to each of the unit cell faces. This created a
basis for each of the faces, as one of the lattice vectors is always perpendicular
to a face. For points lying within a face of the unit cell, the nearest point in
each of the cardinal directions (+1 and -1 times the basis vectors) was found,
and the region distance divided in two. These are the red points in Fig. D.19a.
Line segments were then placed at each of these points perpendicular to the
direction from the point. Each of these line segments then intersect two others,
forming a parallelogram which determines the region.

If a point lays on an edge, then two faces needed to be considered to deter-
mine the region. In this case, for each face a region is marked by taking the
segments half ways to the nearest point in that face and the nearest points on
the edge. This results in two regions, the union of which is taken as the region
for the point. Finally, if the point lies on a corner, the nearest point on each of
the three edges are used as references. This results in three regions, the union
of which is taken. Each of these type of regions are marked in Fig. D.19a by
the green area.

Finally, notice that in the summation technique the region width always
appears as ∆φ∆θ, indicating that what is important is the steradians. This
is also evident in the derivations, as the reason the region width is important
is to account for the regions area at different lengths from the origin. So, the
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(a) (b)

Figure D.19: (a) The included lattice points projected on to the unit cell. The actual
lattice points are in blue, the region boundaries are in red, and examples of different
associated regions are shaded in green. (b) The lattice points, boundary points, and
a region projected on to the unit sphere.

regions widths are obtained by projecting the regions on to the unit sphere and
measuring the steradians covered, as seen in Fig. D.19b.
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