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Abstract: Cyberneticists develop mathematical human control models which are used to tune
manual control systems and understand human performance limits. Neuroscientists explore the
physiology and circuitry of the central nervous system to understand how the brain works.
Both research human visuomotor control tasks, such as the pursuit tracking task. In this paper
we discuss some commonalities and differences in both approaches to better understand the
adapting human controller. Special attention is given to Adaptive Model Theory, which studied
adaptive human control using several linear and nonlinear control engineering techniques. The
insights gained yield schemes and concepts which pave the way for key future work on this topic.
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1. INTRODUCTION

Modeling human behaviour in manual control has been
studied for over 70 years, see review papers by McRuer
and Jex (1967) and Mulder et al. (2018). Krendel and
McRuer (1960) distinguish three stages of human control:
compensatory, pursuit and precognitive. Depending on
the variables that describe the task, mainly the type
of display (compensatory, pursuit, preview, see Fig. 1),
the controlled element (CE) dynamics, and the spectral
properties of the target signal to be followed (ft), the
human controller (HC) systematically adapts to balance
high tracking performance with limited control effort.

The systematic HC adaptation to task variables in com-
pensatory tracking has been captured – in simple control
engineering terms – with the crossover model (McRuer and
Jex, 1967). This model has served for decades to tune man-
ual control devices and to understand human bio-dynamics
and other phenomena. Mulder et al. (2018) argue, how-
ever, that research has focused too much on modeling
feedback-only (FB) compensatory tracking, the exception
in human control. More efforts are needed to study the
rule of human control, that is, to model the versatile,
adapting, biological system, using more relevant pursuit
and preview displays (Drop, 2016; Van der El, 2018). Being
able to understand and model the human capabilities to
adapt to changing circumstances may pave the way for
better support systems, and human-like automation. But
strikingly, our understanding and modeling capabilities of
the adaptive HC has not progressed much since the seminal
paper by Young (1969), reviewing a decade of work on
adaptive manual control in compensatory tracking.

This paper discusses insights gained when studying the
neuroscience literature on adaptive manual control in
pursuit tracking. Work on this topic has progressed in
both neuroscience and engineering communities, however,
1 m.mulder@tudelft.nl
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Fig. 1. Compensatory, Pursuit and Preview displays.

with only sporadic and limited interchange. Much can be
gained from a joint perspective, for which this overview,
written for control engineers, is a first attempt. We start
in Section 2 with a summary of key neuroscience concepts
and definitions. Adaptive Model Theory (AMT) will be
discussed in Section 3, and re-engineered for the pursuit
tracking task in Section 4.

2. BASIC NEUROSCIENCE CONCEPTS

The ‘comparator model’ illustrated in Fig. 2 provides
a good starting point for studying the vast literature
on human motion control in neuroscience. Introduced in
(Frith et al., 2000) (page 1773, as Figure 1), it shows the
“basic components of a motor control system based upon
engineering principles”. The diagram is adapted to fit the
purpose of the current paper, see also the figure caption.
It is used here to introduce principles of neuroscience
rationale, definitions and nomenclature to engineers.

The reader should note that this, like many other models
in neuroscience, is a ‘conceptual model’, used to explain
the possible processes in the brain and body that account
for body movement tasks such as ‘to grab an object’, ‘to
turn a dial’, etc. Useful reviews can be found in (Wolpert,
1997; Wolpert et al., 1998). In our application of pursuit
tracking, the movement under study is ‘how the brain
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Fig. 2. Comparator model, our interpretation of (Frith et al., 2000), adapted to pursuit tracking. The yellow block
reflects ‘what is to be controlled in the world’, the pink block reflects the peripheral nervous system, the remainder
in blue the CNS (cerebrum, cerebellum, brainstem, spinal cord). CE stands for Controlled Element, NMS for
Neuromusculosceletal System and C1, C2, C3 for the three ‘comparators’ discussed in the text. Arrows crossing
blocks indicate possible adaptation of these blocks. Desired, predicted and perceived states are shown in rounded
boxes to make them stand out more. Several plausible internal loops (e.g., muscle tension, muscle lengths) and a
disturbance signal fd acting on the CE are not shown; the boundaries of the colored boxes are a bit arbitrary.

controls the hand to move the stick (u) and controls the
CE output (x) such that it follows the target signal (ft)
as close as possible’. Or, perhaps better stated, ‘how the
brain controls the CE output x to follow ft’, as ultimately,
moving the hand and stick is a means to an end.

The comparator model includes the components assumed
to be working together in the brain and body to perform
bodily motions and interact with the world. It illustrates
the vast challenge in understanding visuomotor control,
with most of the diagram elements (blocks, states, signals,
feedback loops, etc.) assumed to be present in the human
body and brain and only a small part (yellow block)
that allows for direct inspection or manipulation by an
experimenter. Clearly, one can measure more than just the
input u to the CE (here, stick position) and the output of
that system x, e.g., EMG, muscle tension, muscle forces,
etc.; and in pursuit tracking we perfectly know (and show)
the desired state ft. Many if not all signals, loops and
adaptation processes, however, have to be inferred from
experimental data. Both neuroscientists and cyberneticists
cleverly develop tasks and experiments to disentangle
these relationships, and with that try to find evidence for
their models. The lack of observability of brain and body
processes remains a formidable research problem.

Based on the ‘desired state’ (ft) the HC uses an
inverse model to generate a motor command (efference,
the CNS output) that is sent to the motor system (arm,
hand) moving the stick position (u, ‘movement’) which
drives the CE output (x, ‘actual state’). The eyes sense
the output (in pursuit tracking also ft), the ‘perceived
state’ (the NMS provides kinesthetic feedback to the CNS
regarding arm and hand positions (not shown)). In this
diagram, which does not have a disturbance signal (fd) act-
ing on the CE, the actual state is the reafference (defined as

‘the effect on an organism’s sensory mechanism due to the
organism’s own actions’). In case fd would be there, also
acting on the CE, the actual state would reflect both the
reafference and the exafference (defined as ‘the effect on
an organism’s sensory mechanism due to factors external
to the organism’). Hence, the afference (the input to the
CNS) equals the reafference and exafference combined.

The inverse model should include both the dynamics of the
human motor system and the CE, as the motor command
should be such as to make the actual state x follow the
desired state ft: e = ft − x = 0 (the error e(t) in
Fig. 1). The first ‘comparator’ (C1) in Fig. 2 compares
the difference, the C1 error, between the perceived state x̂

and perceived desired state f̂t. Both are perceived visually,
which means that this first comparator loop is relatively
slow (typical visual delays are 150-250 ms). Frith et al.
(2000) state that the CNS can use the C1 error signal to
“improve the performance of the controllers”, that is, the
quality of the inverse model. Whether an actual feedback
loop is closed is unclear, but appears not to be the case.

A copy of the motor command, the efference copy, is sent
to the forward model which predicts the sensory conse-
quences of the action, the ‘predicted state’, x̃. Similar
to the inverse model, the forward model should include
the dynamics of both the human motor system and the
CE dynamics. The second comparator (C2) compares the
predicted state x̃ and perceived state x̂, yielding a ‘pre-
diction error’ of the forward model, used to “improve the
performance of the predictors” (Frith et al., 2000). Since
the perceived state x̂ includes both the reafference and
exafference, and the predicted state x̃ only the (predicted)
reafference, one could see this C2 error as a means for the
CNS to disentangle the effects on the CE due to the HC
(reafference) and external factors (exafference). Literature
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is not very clear on this, however. Often this feedback loop
is described as a ‘process of attenuation’, such as in can-
celling the sensory effects of the self-generated movement
(resulting in the inability to ‘tickle ourselves’) (Swiney and
Sousa, 2014). The forward model is adapted based on the
attribution of the C2 error to internal or external causes,
then recalibrating for the internal causes only.

Of course, the C1 and C2 errors can have many causes.
Examples are an inaccurate inverse model (e.g., when the
HC is still learning to control the CE), effects due to
an (unknown) disturbance fd acting on the CE (e.g., an
aircraft flying through turbulence) (not shown here), a
sudden or gradual change in the CE dynamics (e.g., when
controlling a time-varying CE), and effects of inaccuracies
in the HC motor and sensory systems. The problem
for the CNS is to disentangle all these causes, and act
appropriately: the core of the learning, adaptive HC.

The third comparator (C3) compares the predicted state
x̃ with the desired state ft, resulting in a third ‘error’
used to update the inverse model only. Swiney and Sousa
(2014) refer to this loop as a means for “allowing the motor
command to be checked even before it is issued” (page 2).
Hence, this loop is used for ‘mental simulation of possible
control actions’, the purpose of which for pursuit tracking
may be limited, except perhaps when the error e = ft − x
is large, leading the HC to exert a ‘ballistic’ control input
to rapidly move the CE output back to the target.

Let’s reflect on the summary so far. First, the model has
three ‘error’ loops, but a feedback loop in the engineering
sense, one that ‘feeds back the error’ to HC output u, seems
absent. The C1/C2/C3 errors in Fig. 2 all appear only to
update the inverse and forward models. Since there will
always be some error between desired and actual state, due
to the non-linearities, inaccuracies and the time-varying
nature of the HC, it is odd that nothing seems to actually
‘feed back’ the error in some way into the HC control
signal u. Second, the inverse and forward models appear
as separate models, updated through different loops (C1
and C3 for the inverse model, C2 for the forward model).
Although the same dynamics H−1 and H play a role in
the inverse and forward models, respectively, these are
believed to be coded separately in the CNS. Third, the
‘prediction error’ only affects the forward model and not
the inverse model, emphasizing their separation.

In the next section a neuroscience model specifically devel-
oped for pursuit tracking will be discussed, in the ‘adaptive
model theory’ (AMT) project that ran for several decades.
Other reviews and models, providing a wealth of material
on adaptive human visuomotor control, cam be found in
(Kawato and Gomi, 1992; Tin and Poon, 2005; Shadmehr
et al., 2010; Gawthrop et al., 2011; Gollee et al., 2017).

3. ADAPTIVE MODEL THEORY

Adaptive Model Theory is the umbrella term for a signif-
icant body of research conducted by Neilson and others,
defined as “a computational theory of the information pro-
cessing performed by the human nervous system in control
of movement” (Neilson et al., 1993) (page 85). This team
investigated the neuroscience of pursuit tracking from
several perspectives, often using theories and terminology

from control engineering. Starting with a classical ‘system
identification’ approach on pursuit tracking data (Neilson
et al., 1988a,b), the team developed AMT-based computer
simulations (all in discrete time) involving adaptive neural
circuits (Neilson et al., 1993), adaptive optimal control
(Neilson et al., 1995) and optimal control using adaptive
filter neural networks (Neilson and Neilson, 1999). David-
son (2001) provides a review of much of the later AMT
work and extends it to the control of nonlinear systems.

For the sake of brevity, only an earlier AMT human con-
trol simulator model (running in discrete time at 20 Hz)
is discussed using Fig. 3, our interpretation of Figure 3
(page 105) of (Neilson et al., 1995) with the nomenclature
altered to match our current paper. A three-stage model
of movement control is assumed: (i) sensory analysis (SA),
(ii) response planning (RP) and (iii) response execution
(RE). These stages run sequentially, in parallel and in-
dependently, communicating using memory buffers, from
SA to RP to RE. A fixed time of 150 ms for RP pro-
cessing introduces intermittency. The resulting simulator
is “adaptive and alters its behavior in response to changes
in the dynamics of the tracking system or variations of the
statistical properties of the target and disturbance signals”
(Neilson et al., 1995) (page 104). These are exactly the
capabilities called for in future cybernetics models (Mulder
et al., 2016, 2018).

Although Fig. 3 has a similar structure as the comparator
model, Fig. 2, with at its center the (adaptive) inverse
and forward models, the CE, the efference, afference and
efference copy, there are also many differences. The periph-
eral motor and vision parts of the nervous system are left
out (later versions of AMT include the NMS (Neilson and
Neilson, 1999)), the HC output u (stick position, efference)
and input x (CE output y perturbed with disturbance fd,
afference) are simply ‘known’ to the HC. Also, comparator
C3 is not present, comparator C1 exists in the Response
Planning (RP) stage, comparator C2 indeed compares the
expected reafference x′ (the predicted state in Fig. 2) with
the afference x (the perceived state in Fig. 2), but feeds the
difference – which one can interpret as the HC’s estimate
of the exafference (here we deviate from (Neilson et al.,
1995)), the effects of an (unknown) fd on x – back to the
central ‘Modelling Circuitry’ element.

Neilson et al. (1995) describe the Sensory Analysis (SA)
stage as having three inputs (ft, u, x) and three outputs
(f̄t, f̄d, x̄). It incorporates three adaptive self-tuning digital
filters, shown as circles 1, 2 and 3 in Fig. 3. The first two
filters process ft and f ′

d and are driven by autocorrelations
of these signals to generate the best possible predictions
f̄t and f̄d. The third filter automatically tunes itself to
maintain an accurate internal model of the relationship
between u and x, i.e., an internal model Hm of the CE
dynamics H. The fourth element of SA is the predictor for
x, which is not adaptive, it predicts the movement of the
target x̄ based on the current target x and the previously
planned x∗ trajectory kept in memory awaiting execution.

The Response Planning (RP) stage uses the three SA out-
puts (f̄t, f̄d, x̄) to generate one output: a new x∗ trajectory.
Basically, x∗ is an S-shaped trajectory (some function σ(T )
which runs from 0 to 1 in T seconds) from x̄ to f̄t, including
a compensatory component equal to the negative of f̄d,
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Fig. 3. AMT simulator of (Neilson et al., 1995), adapted to the current paper nomenclature and omitting the ‘memory’
blocks. The yellow and blue blocks indicate the same as in Fig. 2. The CE output y (the reafference) is perturbed
by an unknown disturbance fd (the exafference), yielding the afference x = y + fd. Three hexagons represent the
Predictors for ft, fd and x. The ‘modelling circuitry’ adapts the HC predictors for ft and fd using loops 1 and 2,
and the linked HC inverse and forward models through loop 3. Response Planning (RP) is explained in the text.
Again, several plausible internal loops (e.g., muscle tension, muscle lengths) are not shown.

i.e., x∗ = x̄ + σ(T )
(

f̄t − x̄
)

− f̄d. Hence, a proportional
‘1’ feedback on predicted error, compensating for the pre-
dicted effect of the estimated disturbance. Using the S-
shaped function σ(T ), the simulator can mimic operators
who track with a ‘high or low gain’, i.e., balancing tracking
performance (minimize error) with HC control effort.

The Response Execution (RE) stage uses x∗ to generate
the HC output u using inverse model H−1

m . This adaptive
filter is slaved to the internal model of the forward dy-
namics Hm (obtained in SA): “any change in the dynamic
response characteristics of the tracking system H leads to
an automatic adaptive retuning of the forward model Hm

and of the inverse model H−1

m employed using response
execution” (Neilson et al., 1995) (page 108).

The AMT simulator of human tracking is used to mimic
experimentally-measured HC behavior (primarily study-
ing signals u, x and e = ft − x in the time and frequency
domains), and successfully demonstrated effects of adapta-
tion to CE dynamics, prediction of target and disturbance
signals, speed of adaptation, and accuracy/effort trade-
offs. AMT provides evidence for the CNS capabilities to:
(i) compensate for CE dynamics through inverse models,
(ii) compensate for time delays by predicting the target,
and (iii) attempts to compensate for reaction time by
predicting the disturbance, overall behaving as an adaptive
optimal neural controller (Neilson et al., 1995).

Neilson and Neilson (1999) extend the discussed AMT
model to obtain a neuroengineering view on optimal track-
ing, accounting for adaptation to task variables (CE dy-
namics, ft and fd characteristics) and HC-centered vari-
ables (“multivariable, nonlinear, time-varying characteris-
tics of neuromuscular and biomechanical systems internal
to the human operator” (page 155)). Where in (Neilson
et al., 1995) the inverse and forward models do not in-
clude NMS dynamics, Neilson and Neilson (1999) present
an optimal transformation of a 58-dimensional (!) muscle

system to yield a two-dimensional response (as this later
paper studies 2D pursuit tracking). A linearized linear
matrix approximation of the multi-dimensional adaptive
filter nonlinear neural networks (using Volterra equations)
is presented that resembles, significantly extends, the Op-
timal Control Model (OCM) of (Kleinman et al., 1970a,b).

Neilson et al. (1995) admit that their AMT models need
more neurobiological data than available for proper verifi-
cation. They argue, however, that the AMT simulators
provide a means to suggest and check theories about
the neurobiological processes involved in tracking, leading
to predictions on HC behaviour that can be experimen-
tally tested. In the engineering community, the above-
mentioned OCM has found little traction. It has a solid
theoretical basis – LQR/LQG theory – and appeals to
an engineer’s intuitions regarding manual control, but it
has too many parameters and cannot be identified from
experimental data (Kok and van Wijk, 1978). But perhaps
also here cyberneticists can learn something from neuro-
scientists, and that is that a good computational model
that mimics HC behavior is still worthy to pursue.

4. LESSONS LEARNED

Combining insights from neuroscience with our engineer-
ing intuitions yields a conceptual scheme for adaptive hu-
man control in pursuit tracking, Fig. 4. It directly extends
the perspective put forward by Mulder et al. (2018), using
the concept of an HC’s ‘internal representation’ (IR) of
the task variables. Proficient HCs may detect the changes
in the task variables (here: CE dynamics, (statistical)
properties of the target and disturbance signals) because
their expectation obtained from the IR does not match
their observation. For example, the CE responds to the
control commands differently than expected, with the ex-
pectation driven by the internal model of the CE dynamics
H maintained in the IR, resulting in an innovation signal,

4



164 Max Mulder  et al. / IFAC PapersOnLine 55-29 (2022) 160–165

-

-

efference

afference
= reafference
+ exafference

expected reafference

afference
difference

= innovation

x
{x, ẋ}
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as shown by Mulder et al. (2018) (Figure 3, page 473). This
mismatch then triggers (cognitive) adaptations in the HC’s
feedback (FB) and feedforward (FF) control dynamics, as
well as physiological changes in the NMS. In the following,
we only discuss adaptations to changes in the target signal
ft, and to the CE dynamics H and disturbance signal fd.

4.1 Adaptation to target ft

The pursuit display provides the HC a ‘clear sight on ft’
to study its characteristics. A skillful HC will learn its
statistical properties, use these to predict ft some time
ahead, and adapt the IR of ft to changes when they occur.
Magdaleno et al. (1969) developed a scheme for levels
of (subjective) predictability, some followed-up on this
scheme (e.g. (Drop et al., 2016)), and Mulder et al. (2019)
describe nonlinear HC strategies in pursuit tracking. An
extended literature survey is needed, however, to study
these aspects. In a preview tracking task, the predictability
of ft (and the effort for the HC to predict it) becomes
irrelevant for sufficient preview times.

4.2 Adaptation to CE dynamics H and disturbance fd

In our scheme, the ‘classic’ feedforward/feedback (FF/FB)
scheme used in both neuroscience (Wolpert et al., 1998)
and cybernetics (Drop et al., 2019) is adopted, irrespective
of the fact that Van der El (2018) used a much simpler
and equally effective scheme without a feedforward path
based on inverse CE dynamics. But here we assume the
FF component to include an inverse model of the HC’s IR
of the NMS and CE dynamics in series: N−1

m H−1

m . This
is because the motor command m should be such that
x = N ·H ·m = ft, similar to (Neilson and Neilson, 1999).
The FB component works on the difference e between ft
and x, such that integrator-like open loop dynamics of the
crossover model are established: N−1

m H−1

m ωce
−jωτe/(jω).

The attentive reader notices the same inverse model as

in the FF, multiplied with an integrator, as suggested by
Neilson et al. (1995) and also alluded to by Young (1969)
(page 295) in his discussion of the crossover model. We
explicitly include a feedback loop, operating on the ‘C1
error’ rather than only using this error to adapt the inverse
model. We also include a remnant signal n to account for
the inevitable HC ‘noise’ (McRuer and Jex, 1967).

The classic scheme is extended with the efference copy m
(the CNS motor command to the NMS) to predict the
CE response to that input using the forward model. This
includes internal models of both the NMS and the CE,
Nm and Hm. The CNS compares the expected reafference
with the perceived afference and based on weighing the
difference (the ‘innovation’) may adapt the IR of the
inverse and forward models. As stated in Section 2, the
crucial question then is how exactly the CNS disentangles
the (many possible) causes for this difference, especially
in the presence of an (often barely/unpredictable) CE
disturbance fd, and the HC remnant, together causing
the exafference. But also changes in CE dynamics and a
learning HC (imprecise IR) can lead to differences between
what the HC expects and what she sees on the display.

The challenge may seem daunting, for the CNS but also for
us, the CNS modelers, neuroscientists and cyberneticists
alike. A first idea to be investigated is the limited equal-
ization possibility that the HC has, given that humans
can only visually perceive position and velocity, {x, ẋ}
(McRuer and Jex, 1967). Model-free nonlinear dynamic
inversion techniques, developed recently for automated
control systems, appear to work on what derivative (here
ẋ) ‘returns’ based on a known input (here m) by that
controller. Indeed, engineering intuition tells us that also
the HC may put most attention on ‘what CE symbol move-
ment one gets back’ when controlling the CE. Including
the lead term (the HC acting on the derivative) in the
crossover model, or not, is the crucial parameter selection
for the class of K/s – K/s(1 + τs) – K/s2 CE dynamics.
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A second – related – idea is that stick position u provides
useful information to the HC, hence the arrow feeding u
into the adaptation circuitry of Fig. 4. With a pursuit
display, the HC can directly perceive the CE response to
stick input u. Disregarding the often small(er) effects of fd
on {x, ẋ}, the HC can ‘test’ the CE dynamics by feeding
it with, e.g., small impulse-like inputs. The differences
betweenK,K/s andK/s2 dynamics would quickly become
clear to an (experienced) HC, as with these dynamics the
stick position u is directly linked to, respectively, the per-
ceived position, velocity or acceleration of the CE output
x. Any proficient HC will then be able to quickly switch
between different inverse/forward models, as proposed by
McRuer and Jex (1967). This is the crucial difference with
the extensively studied (e.g., (Young, 1969)) compensatory
display, which does not allow the HC to distinguish be-
tween reafference and exafference.

5. CONCLUSIONS

Lessons learned from a neuroscience literature review on
pursuit tracking were applied to develop a new model for
the adaptive HC. A key addition is the inclusion of a
forward model path that captures the HC’s hypothesized
capability to adapt, based on differences between what one
expects to happen, and what actually happens.
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