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The MRO market currently spans around 9.5% of the total operating cost of an airline. Of this, 70% is covered by heavy-

maintenance. Reduction of these costs and efficiency could, therefore, be significant for an airline. A possible solution is the
optimization of the long-term schedule of heavy-maintenance checks. Current approaches are found to be reliant on manual input
and operator experience. Next to that, revisions to the initial schedule are made continuously due to the inherently stochastic
nature of aircraft maintenance through non-routine maintenance. Taking this uncertainty into account could offer more robust
schedules, saving cost and improve quality of service. A genetic algorithm methodology that can generate robust and efficient C-
check schedules for a fleet of heterogeneous aircraft is proposed. Uncertainty in check duration and daily utilization are taken into
account by assessing multiple scenarios through min-max optimization. This paper is the first to address the long-term scheduling
of heavy-maintenance checks while taking uncertainty in check duration and daily utilization into account. The proposed genetic
algorithm finds robust and efficient C-check schedules for a case study of a European airline for a fleet of over 40 aircraft in under
30 minutes. The algorithm reduces the total number of C-checks by 7% while increasing utilization by 4.4%. This could lead to a
reduction of direct annual maintenance costs of $122.5K - $612.5K and an additional $2.3M - $4.9M in annual revenue due to the
increased availability of aircraft. Monte Carlo simulations show that with a probability of 41% no adjustments to the schedule are
necessary to maintain all aircraft on time.

Index Terms—Aircraft Maintenance, Genetic Algorithm, Min-Max Optimization, Scheduling, Uncertainty

I. INTRODUCTION

UNTIL recently, the size of the global commercial aircraft
fleet was estimated to grow from 27,854 to 48,540

by 2037, [1], indicating that the global aircraft industry is
expanding fast. However, with the impact of the COVID-19
pandemic, the aircraft industry is heavily affected. The
expectation is that the global fleet size will have recovered to
a size of 27,001 by the end of 2021 [2]. The MRO market
has to react to the changes in demand accordingly. Since the
global MRO spend spans on average 9% to 10% of the total
operating costs of an airline [3], it is beneficial for airlines
to keep introducing innovations concerning the scheduling
of maintenance and to value efficiency. This can reduce
maintenance cost and is important in the short-term due to
the impact of COVID-19 as well as in the long-term to cope
with an augmenting demand on maintenance.

Regular aircraft maintenance is necessary to assure
airworthiness, to keep the aircraft reliable, and to provide
assurance of flight safety. Currently, maintenance is divided
into three noteworthy maintenance checks: A-, C-, and
D-Checks or so called letter checks. Each check has a
different duration, frequency, and set of tasks associated [4].
The C- and D-Checks are the largest check types, labelled as
heavy-maintenance checks. During these checks the aircraft
is not operational and kept on the ground for several weeks.
Therefore, heavy-maintenance covers around 70% of the total
maintenance costs and requires the most amount of resources
[3].

The frequency of a letter check depends on the maximum
interval between two checks and can differ between aircraft
types. If an aircraft has flown a certain amount of flight
hours, flight cycles, or a certain amount of days have elapsed
since the last check, a new check has to be performed to keep
the aircraft airworthy. The deadline of a maintenance check
for an aircraft is thus dependent on the date of its last check,
utilization, and maximum interval. Therefore, generating a
maintenance schedule becomes a combinatorial optimization
problem.

Current approaches to the long-term scheduling of the
maintenance checks are often based on operator experience
and simulation models where manual selection is a major
component. Next to that, the initial schedule has to be
continuously revised due to the stochastic nature of aircraft
maintenance. These revisions can result in backlog and
can have an impact on maintenance cost and quality of
service. Taking this into account when scheduling could offer
more robust schedules where fewer revisions are necessary.
Developing an efficient long-term schedule of these heavy-
maintenance checks, while taking into account uncertainty,
could therefore not only result in significant cost savings,
it could also reduce inefficiencies in the execution of the
schedule.

This paper proposes a genetic algorithm that can generate
efficient robust schedules based on a min-max scenario op-
timization approach and is the first to address the long-
term scheduling of heavy-maintenance checks while taking
uncertainty in check duration and daily utilization into account.
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In Section II, a brief overview of the current approach to
maintenance scheduling, the state-of-the-art, and the main
uncertainties in scheduling maintenance checks is presented.
Section III introduces the formulation for the problem of long-
term maintenance check scheduling under uncertainty as well
as the methodology for generating scenarios used for min-
max optimization. The proposed genetic algorithm is discussed
in Section IV. The algorithm is validated in Section V by
comparison with a benchmark model and a case study. The
results are discussed in Section VI. Lastly, conclusions are
drawn in Section VII together with recommendations for
future work.

II. BACKGROUND

The complexity of large size scheduling problems has been
discussed in Papadimitriou and Steiglitz [5]. The problem is
classified as non-deterministic in polynomial-time (NP) hard,
making it difficult to solve large scale problems with exact
methods. The challenge in the scheduling of aircraft letter
checks especially is the fact that they are interdependent
combinatorial optimization problems. Scheduling a check at
a certain date has an impact on aircraft utilization in the
future and consequently influences the requirements on future
maintenance checks.

A. Current Approach
Since it is difficult to solve the problem with exact methods,
the long-term scheduling of aircraft heavy-maintenance
checks has been dependent on a manual scheduling approach,
which relies mainly on the experience of a scheduler. In the
early ’70s, using this manual approach, it took maintenance
planning personnel several weeks to create a schedule [6].
To speed up this process Air Canada developed an aircraft
maintenance operations simulation model (AMOS). This
simulation model is described in Boere [6] and focuses
on improving maintenance efficiency and reducing labour
and material cost. In the paper, the scheduling problem is
described as a discrete integer programming problem and it
takes many of the constraints and conditions listed above
into account. Despite the integer programming formulation,
the solution approach is a priority-based simulation-heuristic.
This approach is similar to the manual planning approach,
in which an experienced scheduler has to decide the optimal
schedule, shifting checks until a feasible solution has been
found. The simulation aspect, however, together with the
introduction of a lower utilization bound before a new check
can be scheduled, reduced the time to develop a long-term
maintenance schedule of 5 years from several weeks to
several hours [6].

Many operators have since developed or adopted a similar
approach to the scheduling of long-term maintenance and more
overall integrated tools are being developed, like the fleet-
planner IFS Maintenix tool [7]. All the tools, however, are
heavily reliant on experience and manual input. In addition to
the reliance on a manual approach, the developed schedules
do not consider the uncertainty associated with the long-term
scheduling and thus need to be revised frequently.

B. State-of-the-Art

In academic literature, there has been relatively little focus on
the long-term planning of aircraft maintenance. In Etschmaier
and Franke [8], an out-of-kilter algorithm [9] was introduced
to minimize maintenance cost and in Bauer-Stämpfli [10]
a dynamic programming approach was developed. Both
methods were deemed not suitable by Boere [6] for the
environment of Air Canada when developing the previously
mentioned simulation model. Furthermore, the author deemed
an optimization technique to be impractical because an
optimal solution can become obsolete with a change in
environment and aircraft utilization. More recently, a zero-one
integer programming model was used with the commercial
solver CPLEX in Yan et al.[11]. Deng et al. [12] propose a
forward induction dynamic programming approach. To deal
with the problem of a multi-dimensional action vector, the
author proposed a priority-based approach to sort the list of
aircraft. A trifty algorithm, combined with discretization and
state aggregation is used to solve the resulting model.

Since relatively little literature exists on the long-term
scheduling of aircraft maintenance, it is relevant to look into
short-term aircraft maintenance scheduling problems and
more general scheduling literature. The short-term scheduling
of aircraft maintenance has received considerably more
attention in literature through the aircraft maintenance-routing
problem. Several varying objectives can be distinguished.
The minimization of total maintenance cost is encountered in
Sriram and Haghani [13], where the problem of scheduling
maintenance is formulated as an integer multi-commodity
network flow model with the objective to minimize total
costs of type A and type B maintenance checks. In Kozanidis
and Skipis [14], a mixed-integer bi-objective linear
programming model is used to maximize aircraft availability
and residual flight time for a fleet of fighter aircraft over the
considered time-horizon. Lastly, the minimization of aircraft
unavailability is encountered in Başdere and Bilge [15]. This
objective is very similar to the maximization of the utilisation
of maintenance intervals, since it indirectly decreases the
number of maintenance checks in the long-term and number
of days on the ground.

Since the scheduling of aircraft maintenance checks is NP-hard
large scale problems are difficult to solve with exact methods.
Therefore, the primary solution techniques found in literature
are meta-heuristics. Of which an often encountered example
in scheduling literature is the Genetic Algorithm (GA). The
concept of a GA was first introduced in Holland [16], it is an
adaptive method based on the genetic processes of biological
organisms. More specifically, it is based on the theory of
evolution, in which populations evolve over many generations
based on survival of the fittest and natural selection. In Yang
and Yang [17], a Genetic Algorithm is used to schedule
maintenance opportunities based on an original flight plan.
The GA is very basic, but a simulation experiment shows
the possibility of the algorithm to come up with feasible
maintenance schedules while minimizing the costs. Quan et
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al. [18] use a more complex genetic algorithm to address a
multi-objective preventive maintenance scheduling problem.
Kleeman and Lamont [19] also address a multi-objective prob-
lem, that of scheduling heavy-maintenance on aircraft engines.
Experimental results show the possibility of a GA to efficiently
solve the scheduling of maintenance while obtaining a ”good”
solution. One of the main downsides of the GA however, is
the great computational effort that is required when the prob-
lem gets more complex. When considering the more general
Resource-Constrained Project Scheduling Problem (RCPSP),
Elshaer [20] compares several GAs introduced in literature
for solving the RCPSP. The main research direction in the last
years is the hybridization of metaheuristics which can be seen
in Zamani [21], where cross-over operations from GAs are
combined with local search methods. The main difference with
a general GA is the fact that it concentrates on the continuous
improvement of one good solution.

C. Uncertainty

When considering the scheduling of aircraft maintenance
in literature, most cases consider the deterministic problem.
However, Aircraft heavy-maintenance is a complex dynamic
project and possesses varying degrees of uncertainty, which
can influence the execution and creation of a maintenance
schedule. For the long-term planning of aircraft heavy-
maintenance, it is therefore important to identify these
uncertainties and their effect on the maintenance schedule.
Samaranayake [22] recognizes that uncertainty encountered
in aircraft maintenance, coming particularly from non-routine
and unscheduled maintenance, affects the planning and
scheduling of aircraft maintenance. The author realises the
importance of non-routine findings and states that about
50% to 60% of the maintenance workload result from these
findings. A more recent case study in Dinis et al. [23]
shows that this number can be even higher and increases
with aircraft age. The uncertainty in the workload introduces
an uncertainty in the duration of maintenance checks. This
can hamper accurate planning and resource forecast and
result in continuous adjustments to the initial maintenance
schedule. Furthermore, as indicated in Section. I, the deadline
of maintenance checks also depends on the utilization of
an aircraft. Small changes in the amount of flight hours or
flight cycles can already have a big impact on the deadlines
of checks. Resulting in the need for revisions. This can
result in backlog which can affect maintenance cost and the
quality of service. Therefore, it would be beneficial to look
into the stochastic problem to generate more robust schedules.

Currently, to the best of the author’s knowledge, there is no
literature available that addresses the long-term scheduling
of aircraft maintenance checks while taking uncertainty
into account. However, when considering the general
problem of aircraft maintenance scheduling, some papers
exist that do include different uncertainties. Mattila and
Virtanen [24] take into account uncertainty in failure rates
and maintenance duration when scheduling maintenance for
a fleet of fighter jet. The uncertainty parameters are modelled

with a probabilistic approach and are Gamma distributed.
A reinforcement learning approach is applied to find an
optimal maintenance policy. However, the capability of the
model to be used in actual decision making requires the
solution of several different problem instances. Sohn and
Yoon [25] use the random effects Weibull regression model
to take non-constant mean time between failure (MTBF) and
mean time to repair (MTTR) into account for the dynamic
scheduling of preventive maintenance. Overall the general
trend in scheduling literature is more and more focused on
incorporating uncertainty in the models.

It can be concluded that, due to the complexity of scheduling
aircraft letter checks, the problem is hard to solve with
exact methods. Therefore the main solution techniques found
in literature are meta-heuristics. More specifically, an often
encountered solution method is the Genetic Algorithm, which
provides promising results for similar scheduling problems.
From the literature, it is also clear that there has been little fo-
cus on the long-term scheduling of heavy-maintenance checks.
Next to that, the inherently stochastic nature of maintenance
is not taken into account when creating an initial schedule.
A robust long-term schedule could reduce the number of
adjustments to the schedule, reduce cost, and improve quality
of service. Especially since, according to IATA [3], the MRO
spend spans on average 9.5 to 11% of the total operating cost
of an airline, reducing these costs can be very beneficial in the
long-term for airlines. The main uncertainties that can have a
significant impact on the maintenance schedule and cost are
check duration and aircraft utilization. The goal of developing
a scheduling model that takes these uncertainties into account
is, therefore, the main focus of this research. In this sense, the
relevance of the research lies in filling this gap in literature
by approaching the problem with a genetic algorithm and
creating a general robust scheduling model framework that
takes uncertainty into account.

III. PROBLEM FORMULATION

This section describes the formal MILP formulation for the
problem of scheduling C-checks for a fleet of heterogeneous
aircraft under uncertainty. Section III-A introduces the C-
check maintenance problem. Next, a list of assumptions for the
problem is defined in Section III-B, followed by a description
of how robust schedules are achieved by using multiple
scenarios in Section III-C. Section III-D describes how these
scenarios are selected, after which, Section III-E describes the
mathematical notation used in this paper. Next, the objective
function is described in Section III-F. Lastly, the constraints
for the problem are formulated in Section III-G.

A. C-check Maintenance Planning

Currently, the planning of aircraft maintenance follows the
MSG-3 approach [26]. This is a task-oriented approach that
develops the maintenance tasks that need to be performed,
together with their corresponding intervals. These intervals are
defined in number of flight hours, amount of flight cycles, or
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calendar days. These tasks are noted in the Maintenance Plan-
ning Document. This document gives the threshold interval per
required task and can be used to group tasks into task packages
and letter checks. For the C-check this results in a cycle of C-
checks with slightly varying tasks. For some checks task of the
D-check can be incorporated. An example for an airline can
be a cycle of 12 check types (C1,C2,. . .,C12), where every
3 cycles tasks of the D-check are incorporated. In aircraft
maintenance, aircraft age by flight hours, flight cycles, and
calendar days. The flight hours are increased by the elapsed
time between wheel lift-off and touchdown, the flight cycles
by every complete landing and take-off sequence, and calendar
days by every full 24 hour period. If these usage parameters
for an aircraft reach the threshold interval a C-check needs
to be performed to keep the aircraft airworthy. After a check,
the usage parameters are all reset to zero. During the duration
of a C-check, an aircraft is not in operation and occupies a
hangar. The amount of hangar space available is divided into
hangar slots. Where 3 slots indicate that 3 C-checks can be
performed in parallel. A long-term schedule for planning C-
checks is generally created for a period of 4 to 5 years.

B. Assumptions

Deng et al. [12] adapt and describe several major conditions
and assumptions, necessary for maintenance scheduling, based
on Boere [6] and maintenance practice. Five assumptions (A.1,
. . ., A.5) are adopted from the paper and two assumptions
are added (A.6, A.7).

A.1 A C-Check ties up one hangar slot for the entire duration
of the check;

A.2 An aircraft ages by daily flight hours, for which a
probability distribution can be estimated monthly per
aircraft from historical data, and calendar days;

A.3 The minimum time step of the schedule is 1 calendar day;
A.4 Check duration can be estimated from historical data;
A.5 Location of a hangar does not influence check possibility

and aircraft routing is flexible;
A.6 A-Check duration is 1 calendar day and is planned at its

due date without considering resource constraints;
A.7 Additional hangar slots can be added to make a schedule

feasible

Assumption A.2 is slightly adapted by assuming that only
flight hours and calendar days are limiting. Flight cycles
are assumed to never be limiting in practice for long-haul
aircraft types. Assumption A.6 is added to take the A-check
into account. If an A-check is performed on an aircraft it
is taken out of operations for one day. This influences the
usage parameters for the C-check, since no flight hours or
flight cycles are flown on that day. It is assumed that the
A-check is scheduled at its due date instead of a feasible
opportunity. Therefore, the problem considers slightly less A-
checks than would need to be scheduled in practice. However,
this only causes the due date of the C-check to be slightly
earlier than in practice and will thus still provide a feasible
C-check schedule. Assumption A.7 ensures that if an aircraft

reached its maximum interval for a C-check, while there are no
available slots, an additional slot can be created by the MRO.
This in order to avoid grounding the aircraft. It replaces the
concept of using tolerance as used in Deng et al. [12].

C. Robust Optimization

This paper considers creating a framework that can deliver
robust schedules for the C-check by taking uncertainty into ac-
count in optimization. To obtain robust solutions, the problem
is formulated as a min-max optimization problem. Uncertainty
is incorporated by considering multiple different scenarios and
optimizing for the worst-case scenario. Each scenario contains
different realizations of the main sources of uncertainty, being
check duration and aircraft utilization. Equation 1 shows
that for a predefined set of scenarios (SC) the objective
is minimized against the worst-case scenario found through
Equation 2. Section III-D describes how different scenarios
are selected for the problem.

min fRobj(x, SC) (1)

fRobj(x, SC) = max
n∈SC

fobj(x, Sn) (2)

D. Scenario generation

To find robust schedules it is important to input varying sce-
narios that incorporate uncertainty in maintenance scheduling.
These scenarios should be (near-)critical so that the solution
will still be feasible for most unseen scenarios. From the state-
of-the-art review in Section II-B, it is clear that the main
sources of uncertainty come from non-routine and unscheduled
maintenance manifested in the duration of the maintenance
check. Next to that, daily utilization of aircraft is also a main
source of uncertainty when scheduling C-checks. A scenario
consists therefore out of realizations of future check duration
and a daily utilization matrix, giving the flight hours per
aircraft per month.

1) Check Duration
Non-routine maintenance can have a severe impact on the
duration of a C-check. This paper makes the assumption
that check duration can be estimated from historical data.
For the scenarios (near-)critical cases are considered. In the
case of check duration a critical case occurs when the check
duration is longer than initially planned when creating a
schedule. This is caused by possible capacity problems due
to a longer check duration. However, longer check durations
are not the only critical cases that can be encountered. If a
check is shorter than initially expected, the aircraft comes
into operation earlier. This has a direct effect on the deadline
for the next C-check which will be at an earlier date. Shorter
check durations can thus lead to future checks occurring too
late in the initial schedule. For the scenarios, cases with a
shorter check duration and cases with a longer duration than
expected are therefore incorporated.
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As indicated in Section III-A, a schedule is generally created
for a period of 4 to 5 years, which is equal to a maximum of
4 C-checks during the planning horizon. Therefore, a scenario
consists out of N x 4 check durations, where N is the amount
of aircraft in the fleet. To identify which duration matrices
should be selected, a Monte Carlo simulation is performed for
a number of 10000 runs. Every run an instance from a list
of historical durations is randomly chosen and assigned to the
corresponding N x 4 duration matrix. This is done according
to which type of C-check a future check in the matrix would
be. For aircraft 1, the four future checks could be the C.2, C.3,
C.4, and C.5 check for example. The first instance in the matrix
would then be randomly chosen from the C.2 historical list, the
second instance from the C.3 list, and so on. The Monte Carlo
Simulation gives 10000 different duration matrices. Figure 1
shows an example of the distribution of the average check
duration for all matrices.

Fig. 1. Distribution of the average check duration from a Monte Carlo
simulation with n = 10000 runs.

By looking at the average check duration, matrices that have
check durations that are mostly shorter than the mean and
matrices with durations mostly longer than the mean can
be selected for the problem. This is done by generating a
confidence interval (d− c · σD, d+ c · σD) for the histogram,
where c is based on a predefined confidence level α. From this
confidence interval, S duration matrices are selected with an
average check duration corresponding to the upper or lower
bound of the α confidence interval. This way, the minimum
and maximum cases within the confidence interval can be
taken into account. Since the durations are in the form of a
N x 4 matrix, matrices with the same average check duration
can also still vary significantly from each other.

2) Utilization
Aircraft daily utilization is defined by the average flight hours
per day per month. A daily utilization matrix is therefore in
the form of Table I. Being a N x 12 matrix, where N is the
number of aircraft in the fleet. Critical cases occur when the
number of flight hours is more than initially expected. This

causes the aircraft to reach the maximum interval earlier and
could result in checks being scheduled to late in the initial
schedule.

TABLE I
UTILIZATION MATRIX, GIVING THE AVERAGE DAILY FLIGHT HOURS PER

AIRCRAFT PER MONTH

Jan Feb . . . Dec
A/C 1 10.3 9.9 . . . 11.1
A/C 2 9.4 9.3 . . . 9.9
...

...
...

. . .
...

A/C n 11.3 11.1 . . . 11.2

For each aircraft and month, the mean and standard de-
viation are known based on historical data. Resulting in
an utilization vector, U, of N x 12 random variables
(U1,Jan, . . . , U1,Dec, U2,Jan, . . . , Un,Dec). It is assumed that
these random variables are jointly normal and can therefore
be modelled in the form of a multivariate normal distribution.
The multivariate normal distribution, U ∼ N(µ,Σ), has mean
µ and covariance matrix Σ as seen in Equation 3 and 4.

µ =




µ1.Jan

...
µ1.Dec

µ2.Jan

...
µn.Dec




(3)

Σ =




σ1.Jan,1.Jan σ1.Jan,1.Feb . . . σ1.Jan,n.Dec

σ1.Feb,1.Jan σ1.Feb,1.Feb . . . σ1.Feb,n.Dec

...
...

. . .
...

σn.Dec,1.Jan σn.Dec,1.Feb . . . σn.Dec,n.Dec


 (4)

The covariance matrix is an essential part in modeling the
daily utilization matrix. In this paper the covariance matrix is
estimated by the sample covariance matrix as in Equation 5,
with a sample of X = 10000 independent points. It is rec-
ommended that a MRO does more research on the estimation
of the covariance matrix and underlying relations. The reader
is referred to Vershynin [27] for more details and issues with
covariance estimation in high dimensional space.

Σx =
1

X

X∑

i=1

Ui ⊗ Ui (5)

With given mean vector, µ, and sample covariance matrix,
Σx, the aircraft utilization can be described. For robust opti-
mization purposes it is necessary to select matrices which are
consistent with the given mean vector and covariance matrix
and enclose a given proportion of the sample space. Eck et
al. [28] define a method of selecting scenarios at a fixed
probability level, α, for robust network optimization under
uncertain demands. In the multivariate distribution, the points
with the same probability can be found based on the Maha-
lanobis distance [29]. The fixed probability level α is the same
α that is used for the confidence interval in Section III-D1.
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At a chosen probability level there are, however, infinitely
many utilization matrices with the corresponding Mahalanobis
distance. In order to select daily utilization matrices, n=100
points are located corresponding to α. With regards to utiliza-
tion, the critical cases are those with the highest average daily
flight hours, since a higher daily utilization could mean that
checks are scheduled too late. Therefore, for size S, the daily
utilization matrices that are selected are those with the highest
overall average daily flight hours from the n=100 points.

3) Scenarios
As described before, a scenario consists out of a duration
matrix and a daily utilization matrix. Given size S and
probability level α, S duration matrices and S daily
utilization matrices are selected. By combining all possible
duration matrices with all daily utilization matrices, S × S
scenarios are generated. On top of the generated scenarios
the algorithm also considers the deterministic scenario, as
expected by the MRO. A size of S = 2 therefore results
in 2x2 + 1 = 5 scenarios, and S = 3 already considers 10
scenarios.

E. Mathematical Notation

The mathematical notation used for this problem is described
in Table II.

TABLE II
MATHEMATICAL NOTATION

Indices
i index for type of aircraft
j index for type of C-check
t index for time period
Sn index for scenario
Notation
I set of aircraft in the Fleet
Ji set of possible C-checks for aircraft i
T set of time intervals
IFH
i maximum interval in flight hours
IDY
i maximum interval in calendar days
Ui,t,Sn Daily flight hours for aircraft i at time t under scenario Sn

IDi maximum interval D-check
di,j,Sn Duration of check j for aircraft i under scenario Sn

CE Cost for having an extra slot assigned
dc Minimum time between two consecutive checks
Decision variables
xi,j,t 1 if check j at time t for aircraft i, 0 otherwise
yi,t ≥0, flown flight hours since last check for aircraft i at time t
Et 1 if extra slot allocated at time t, 0 otherwise
DYi,t ≥0, calendar days since last check for aircraft i at time t
Di,t ≥0 calendar days since last D-check for aircraft i at time t
mi,t 1 if aircraft i is being maintained at time t, 0 otherwise
ni,j 1 if check j is a D-check for aircraft i, 0 otherwise

F. Objective Function

For the objective function several metrics can be used. It
depends on the scenario Sn. This paper considers the min-
imization of unused flight hours since available cost data is
often confidential or incomplete and hard to relate to check
types. Next to that, the costs of an aircraft being out of
operations outweigh the daily costs of a maintenance check.
Minimizing unused flight hours indirectly reduces the number

of maintenance checks and days out of operation. Therefore,
the objective is considered the most suitable for the problem.
The objective function can be found in Equation 6. The first
part of the equation gives the total number of unused flight
hours for all aircraft i and planned checks j at time t. As
indicated in Section III-B, an airline can assign an extra hangar
slot to make a schedule feasible. However, this requires the
need for mechanics to work extra time and can be costly.
Therefore a cost penalty (CE) is assigned to needing extra
slots at time t, in the second part of Equation 6.

fobj(x, Sn) =
∑

i∈I

∑

j∈Ji

∑

t∈T

(
|IFH

i − yi,t−1|
)
× xi,j,t

+
∑

t∈T
Et × CE (6)

G. Constraints
When scheduling maintenance checks several constraints need
to be taken into account. These constraints can be divided
into utilization, operational, and check constraints.

1) Utilization Constraints
As indicated in Section III-A, the maximum intervals before
an aircraft has to undergo a C-Check are defined in flight hours
and calendar days. If an aircraft exceeds the interval it has to
be grounded, resulting in heavy commercial revenue losses.
Therefore, it is required that all aircraft are maintained within
their respective intervals. So for the entire time period, T, the
usage parameters of the aircraft should be lower or equal to
the maximum interval. This is formulated in Equation 7 and
Equation 8 for the flight hours (yi,t) and calendar days (DYi,t),
respectively.

yi,t ≤ IFH
i ∀i ∈ I, t ∈ T (7)

DYi,t ≤ IDY
i ∀i ∈ I, t ∈ T (8)

The usage parameters of all aircraft need to be updated every
time step. The flight hour parameter for an aircraft is updated
with the average daily flight hours for the month of time step t.
These average daily flight hours are estimated from historical
data and are dependent on the scenario Sn and zero if an A-
check is scheduled at time t. If an aircraft i is being maintained
in the hangar, the flight hour parameter is reset to zero. This is
defined in Equation 9. The calendar day parameter is updated
by 1 day every time step t, for all aircraft i. The parameter
is reset to zero for an aircraft if it is being maintained at that
time. Updating the calendar day parameter is done through
Equation 10.

yi,t+1 ≥
(
1−mC

i,t

)
(yi,t + Ui,t,Sn

)

∀i ∈ I, t ∈ [1, . . . , T − 1] (9)

DYi,t+1 ≥
(
1−mC

i,t

)
(DYi,t + 1)

∀i ∈ I, t ∈ [1, . . . , T − 1] (10)
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As indicated in Section III-A, a D-check is sometimes incor-
porated into a C-check. However, the D-check has a threshold
interval expressed in calendar days of its own. Therefore, if
the usage parameter of an aircraft for the D-check reaches its
maximum interval, a C-check incorporating D tasks should be
scheduled. This is a hard constraint and defined in Equation 11.
The D-check usage parameter is updated by 1 every time step
t, for all aircraft i (Equation 12). The parameter is reset to
zero, only if an aircraft is being maintained for a C-check that
incorporates tasks from the D-check. For all other planned
C-checks, the parameter keeps being updated.

Di,t ≤ IDi ∀i ∈ I, t ∈ T (11)

Di,t+1 ≥
(
1−mD

i,t

)
(Di,t + 1)

∀i ∈ I, t ∈ [1, . . . , T − 1] (12)

2) Operational Constraints
If an aircraft is being maintained it occupies 1 maintenance
slot for the duration of its check. The duration of specific check
j for aircraft i is dependent on the scenario, Sn, and also on
the time t. The dependency on the time t is because work
on a C-check is halted during weekends and public holidays.
Therefore, the number of weekend days and public holidays
in the specific check period are added to the total duration of
the check (di,j,Sn

(t)). The binary variable mC
i,t is switched to

1 through Equation 13 if aircraft i starts maintenance check
j at time t for the duration of the check. The set of possible
checks j, Ji, is different for each aircraft and is based on its last
performed C-check and the four next C-checks in the cycle.
To ensure that the binary variable remains mC

i,t 0 for all other
instances, Equation 14 is introduced.

∑

t∈[t,t+di,j,Sn (t)]

mC
i,t ≥ di,j,Sn(t)× xi,j,t

∀i ∈ I, j ∈ Ji, t ∈ T (13)

mC
i,t ≤

∑

j∈Ji

∑

t∈[t−di,j,Sn (t),t]

xi,j,t

∀i ∈ I, t ∈ T (14)

To set if an aircraft occupies a maintenance slot for a D-
check at time t, Equation 15 is used. If an aircraft is not
maintained for a D-check the variable mD

i,t is set to zero
through Equation 16. Where the binary variable ni,j is defined
by Equation 17 and defines whether the next C-check will have
to incorporate tasks of the D-check or not.

∑

t∈[t,t+di,j,Sn (t)]

mD
i,t ≥ di,j,Sn(t)× xi,j,t × ni,j

∀i ∈ I, j ∈ Ji, t ∈ T (15)

mD
i,t ≤

∑

j∈Ji

∑

t∈[t−di,j,Sn (t),t]

xi,j,t × ni,j

∀i ∈ I, t ∈ T (16)

ni,j =

{
1, if check j for aircraft i is a D-check
0, otherwise

(17)

In order for a schedule to be feasible, the used number of
slots should not exceed the amount of slots that are available
for every time step in the planning horizon. The available
slots per time step t, Lt, have to be defined beforehand and
considerations of an airline can be taken into account. It is
for example often required that no C-checks are scheduled
during peak periods (i.e. summer and holiday periods). This is
because performing a C-check during these periods will cause
a high commercial revenue loss. During these periods the
available slots can be set to zero. As indicated in Section III-B,
an airline can assign an extra slot, Et, to a day if it is required
to maintain all aircraft within their interval. Therefore, the
capacity constraint is defined as in Equation 18.

∑

i∈I
mC

i,t ≤ Lt + Et ∀t ∈ T (18)

3) Check Constraints
The C-check is divided into a cycle of different check types.
For example, (C1,. . ., C12). These C-checks are planned
subsequently, meaning that after C1 a C2 check has to be
scheduled, after C2 a C3, and so on. This is necessary due to
the different durations of each check type. To formulate this
in the problem, a constraint in the form of Equation 19 has
been added. It ensures that check j has to be scheduled before
a check of type j+1 is planned. Ensuring that the checks are
scheduled according to the cycle.

∑

t∈T
xi,j,t ≥

∑

t∈T
xi,j+1,t

∀i ∈ I, j ∈ [0, . . . , Ji − 1] (19)

Furthermore, a certain check type can only be scheduled once.
Resulting in Equation 20.

∑

t∈T
xi,j,t ≤ 1 ∀i ∈ i, j ∈ Ji (20)

Lastly, due to resource requirements, a minimum time between
the start dates of two C-checks is required. This can be defined
by the airline as dc. The constraint is described in Equation 21

∑

t∈[t−dc,t+dc]

∑

i∈I

∑

j∈Ji

xi,j,t ≤ 1 ∀t ∈ T (21)
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IV. GENETIC ALGORITHM

Since it is hard to solve the previously formulated problem
for large scale cases, a customized GA is proposed. It is
concerned with solving the problem of scheduling C-checks
for a fleet of heterogeneous aircraft under uncertainty. The
overall procedure of the proposed GA can be seen in Figure 2
and follows the basic GA algorithm structure as described in
Kramer [30]. First, several initial schedules (Chromosomes)
are generated using an ε-greedy algorithm. They form the
initial population. After that, every schedule in the population
is evaluated according to an evaluation function. Based on
several parameters, selection of individual schedules for cre-
ating a new population (Parents) occurs. From the combination
of parents, new schedules are created through crossover and
mutation, which form a new population. The fitness of the
new population is then assessed, and the cycle starts again.
This is an iterative process until certain stopping criteria have
been met. In order to reduce variability in the output of the
algorithm, parallel machines are used to simulate different,
independent runs of the proposed Genetic Algorithm. The best
result out of the independent runs is the final outcome of the
Algorithm. This approach, also known as probability amplifi-
cation, has been proven effective for job shop scheduling of
two machines and several other scheduling problems [31].

A. Chromosome Representation

In order to represent a C-check maintenance schedule in the
GA, it has to be encoded in the form of a chromosome. A
list of integer numbers is chosen to represent the schedule.
The layout can be seen in Table III. The rows represent the
schedule for each individual aircraft (A/C 1, . . ., A/C n),
and are referred to as genes. The columns represent which
C-check is scheduled. C-1, indicates the first next C-check in
the cycle of the aircraft. Meaning that if an aircraft previously
had a C.8 check, C-1 represent the C.9 C-check, C-2 a C.10,
etc. Each integer number in the gene indicates the starting
date for that specific check. The C-1 check for aircraft 1 in
Table III is, for example, scheduled to start at time step 396
in the planning horizon. An integer number of -1 indicates

that that specific check is not scheduled in the planning
horizon.

This paper considers the long-term C-check scheduling of a
fleet aircraft over a period of 4 to 5 years. C-Checks are
usually scheduled every 12-20 months subject to the MRO
[32]. Therefore, a maximum number of 4 C-checks is assumed
within the planning horizon. A schedule for a fleet of N
aircraft therefore contains at maximum N × 4 checks. If
necessary, the maximum number of C-checks can easily be
increased by adding an extra column to the chromosome.

TABLE III
CHROMOSOME REPRESENTATION OF THE C-CHECK MAINTENANCE

SCHEDULE

C-1 C-2 C-3 C-4
A/C 1 396 1089 -1 -1
A/C 2 88 506 1123 -1
A/C 3 135 -1 -1 -1
A/C 4 424 1120 -1 -1
...

...
...

...
...

A/C n tn1 tn2 tn3 tn4

B. Initialization of Population

In order to start searching for near optimal solutions for
the problem with the GA, an initial population has to be
generated. This initial population consists of a predetermined
number (population size) of varying feasible schedules. These
initial schedules are generated with an ε-greedy algorithm as
presented in Algorithm 1.

The algorithm simulates the usage parameters for all aircraft
in the fleet over the planning period. The parameters are
updated according to Equation 9, 10, and 12. If at time
step t, an aircraft i has to be scheduled for an A-check the
flight hour parameter, yi,t, is not updated since the aircraft is
being maintained and does not fly that day. All aircraft that
have usage parameters within 90% of their interval at time
step t, have a probability to be scheduled for a C-check. If
the parameters are at their maximum, this probability is 1.

Fig. 2. Flowchart of the proposed Genetic Algorithm methodology, where the fitness is evaluated through a simulation model
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Algorithm 1: ε-GREEDY ALGORITHM

Input: ε, Aircraft, Initial Parameters, ~L, USn , , DSn

1 begin

2 −→y A
t=0,−→y C

t=0 ,
−−→
DY C

t=0 ,
−→
D t=0 ← Initial Parameters

3 Chromosome, Chosen, Planning ←[ ]
4 for t in T do
5 candidates← [ ]
6 for i in Aircraft do
7 utilization← Ui,t,Sn

8 if yAi,t ≥ IFHA
i then

9 yAi,t ← 0
10 utilization← 0
11 else if t ∈ planning{i} then
12 yCi,t, DY

C
i,t ← 0

13 utilization← 0

14 yCi,t, y
A
i,t += utilization

15 DY C
i,t, Di,t += 1

16 if yCi,t or DY C
i,t or Di,t ≥ 0.9I & rnd() ≤ ε

then
17 candidates.insert(i)

18 else if yCi,t or DY C
i,t or Di,t ≥ I then

19 candidates.insert(i)
20 end
21 for n in candidates.shuffle() do
22 j ← Aircraft{n}.Check
23 find latest possible date, p, where:
24 Lp > 0 ∀ p ∈ [p, p+ dn,j,Sn(p)]
25 with: p /∈ Chosen and p ≤ t
26 Chromosome{n}.insert(p)
27 Planning{n}.insert([p, p+ dn,j,Sn(p)])
28 Chosen.insert([p− dc, p+ dc])
29 Aircraft{n}.Check += 1
30 yCi,t, DY

C
i,t ← 0

31 if Check is a D-Check then
32 Di,t ← 0

33 for d in [p, p+ dn,j,Sn(p)] do
34 Ld -= 1
35 end
36 for d in [p+ dn,j,Sn(p), t] do
37 utilization← Un,d,Sn

38 yCi,t, y
A
i,t += utilization

39 DY C
i,t, Di,t += 1

40 end
41 end
42 end
43 return Chromosome
44 end

Otherwise the probability is ε. This gives a list of aircraft
for which a check has to be scheduled, on or before that
specific time step. Each aircraft in the list is given a random
priority. This priority is used to determine the order in which
the aircraft are being scheduled. For each aircraft the latest
possible date at which a C-check can start, is the date p,
where for the entire duration of the check, [p, p+ dn,j,Sn(p)],
there is a maintenance slot available. This date has to be
earlier or equal to the current time step t. When the latest

possible date has been chosen for an aircraft, the available
slots for the duration of that check are reduced by 1. The
usage parameters, yi,t and DYi,t of the aircraft are also set
to zero for the duration of the check. Depending on whether
the check is a D-check or not, the Di,t parameter can also
be reset. After this, the next aircraft in the priority order is
scheduled, until all aircraft from the candidate list have been
scheduled in. This process is repeated for every time step in
the planning horizon. Resulting in a schedule for the entire
fleet.

Due to the introduction of ε as well as a random scheduling
priority, the algorithm can produce varying initial schedules
that are feasible. Updating the usage parameters, and the
duration of a check are dependent on the scenario that is used.
When running the Genetic Algorithm with different scenarios,
Sn ∀n ∈ SC, the initial population is generated by running
the ε-greedy algorithm, with an uniform randomly chosen
scenario, or the average values from all scenarios. This is
repeated until the population size is reached.

C. Fitness Evaluation/ Stopping Criterion

Each schedule in the population has to be evaluated in order
to assess how good the schedule actually is. This evaluation is
done according to Equation 1 and 2. The evaluation function
for the genetic algorithm is based on Equation 6. However, the
algorithm needs to incorporate some constraints, specifically
the utilization constraints. To incorporate them in the GA,
they are defined as soft constraints. Violations will result
in a penalty added to the evaluation function. This penalty
function Pi,j(t), increases with days an aircraft is maintained
after the interval and is defined according to Equation 22.
The evaluation function for the fitness therefore changes to
Equation 23. This means that there are two different additional
penalty costs, CE and CT respectively. The ratio between
those two determine whether the GA favours solutions with
extra slots or solutions where aircraft are being maintained
too late. Since grounding an aircraft means a high commercial
revenue loss it is decided to have CT an order of 10 higher
than CE . The algorithm will thus favour solutions that are
made feasible through the creation of an extra slot.

Pi,j(t) =





0, if yi,t ≤ IFH
i , DYi,t ≤ IDY

i
yi,t−IFH

i

Ui,t,Sn
CT , if yi,t ≥ IFH

i

(DYi,t − IDY
i )CT , if DYi,t ≥ IDY

i
(22)

fobj(x, Sn) =
∑

i∈I

∑

j∈Ji

∑

t∈T

(
|IFH

i − yi,t−1|+ Pi,j(t)
)
×xi,j,t

+
∑

t∈T
Et × CE (23)

By simulating the usage parameters for all aircraft in the
fleet over the planning horizon, the evaluation function can
be assessed for all scenarios and schedules in the population.
Simulation is performed by using the SymPy package [33] in
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python and provides the amount of flight hours flown at each
scheduled check together with any penalty that might have
been assigned. An example of the simulator output can be
seen in Figure 3. Here the fitness is displayed for a fleet of 45
aircraft. The first entries in the fitness list (0-44) indicate the
lost flight hours per aircraft, and any penalty that might have
been given. It corresponds to the first part of Equation 23.
The slots entry indicates whether extra slots are needed with
the evaluated schedule and corresponds to the second part
of Equation 23. The Total entry gives the overall fitness of
the schedule and NV counts the total number of constraint
violations for the evaluated schedule.

Fig. 3. Example of fitness evaluation for a schedule with a fleet of 45 aircraft

Each schedule is assessed against all Scenarios, Sn,∀n ∈ SC.
The highest total fitness value over all scenarios indicates the
worst-case scenario and is the final fitness of the evaluated
schedule.

If the minimum fitness of the population has not changed
for a predefined number of n generations or if a maximum
number of iterations has been achieved, the Genetic Algorithm
is terminated. It returns the schedule which corresponds to the
lowest total fitness value.

D. Parent Selection

Based on the fitness values of all schedules in the population,
several schedules are selected for the mating pool. From
this mating pool, schedules are paired up in parent com-
binations, from which new schedules are generated through
crossover. These new schedules form the next generation.
Several selection techniques have been studied in Goldberg
and Deb [34], where k-tournament selection is shown to
have good convergence and computational time complexity
properties. The principle of k-tournament selection is based
on selecting a set of k individuals uniformly at random from
the population. From the set of k individuals the individual
with the best fitness value is selected for the mating pool.
This whole process is repeated n times, with replacement.
The size of set k is a trade-off between exploitation and
exploration, and the most common size is k =2, the binary
tournament selection [35]. A higher sample size will increase
the probability that only the best individuals will be selected,
losing some exploration properties. In scheduling literature,
Hartmann [36], has researched several selection techniques,
where tournament selection with size k =3 performs better

than the binary tournament selection. Therefore, 3-tournament
selection is used in this paper. In order to avoid not selecting
the best individual from the population, the tournament selec-
tion is combined with an elitist method. The n best individuals
from the population are selected to be included in the next
generation. This way the best performing schedules are not
lost during crossover or mutation.

E. Crossover

From the mating pool, individuals are randomly paired to
form groups of parents. With random probability equal to the
crossover rate, each pair of parents generate two new schedules
for the next generation based on crossover techniques. If no
crossover occurs, both individuals in the parent pair will go
through to the next generation. Several, crossover operators
exist in literature. The main techniques are, single-point, two-
point, and uniform crossover [35]. For this problem, uniform
crossover has been selected. Hu and Di Paolo [37] have
successfully applied this approach for the aircraft arrival
sequencing and scheduling problem with a similar integer
matrix chromosome representation. In uniform crossover, each
gene in the chromosome is randomly selected from one of the
parents creating a new chromosome. This is done two times
in order to generate two new schedules from each parent pair.
An example of the uniform crossover operation can be seen
in Figure 4 for a fleet of 5 aircraft.

Fig. 4. Uniform crossover, where offspring is generated by randomly selecting
a gene from one of the parents

The entire procedure of generating a new population based
on the mating pool and uniform crossover can be seen in
Algorithm 2. Firstly, a number of nElitist best schedules from
the population are added to the new population. Secondly, each
parent pair generates two new schedules to add to the new
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population. If a random number is lower than or equal to the
crossover rate, these two schedules are generated by uniform
crossover. Otherwise, both individuals from the parent pair are
added to the new population.

Algorithm 2: CROSSOVER PROCEDURE

Input: Mating Pool, crossover rate, Population
1 begin
2 New Population ← [ ]
3 New Population.insert(best nElitist from Population)
4 for Parent Pair ∈ Mating Pool do
5 if rnd() ≤ crossover rate then
6 child1 ← Uniform crossover(Parent Pair)
7 child2 ← Uniform crossover(Parent Pair)
8 else
9 child1, child2 ← Parent Pair

10 New Population.insert(child1, child2)
11 end
12 return New Population
13 end

F. Mutation

After a new population has been generated by crossover,
mutation in chromosomes can occur. The probability that
mutation occurs is defined as the mutation rate. It is most
beneficial to schedule the C-checks at the latest possible date.
Therefore, mutation is not random but follows the same ε-
greedy algorithm presented in Algorithm 1. Probability ε = 0
in order to schedule aircraft at the latest possible date. For a
subset of aircraft of random size, mutation occurs. All aircraft
outside of this subset keep their current schedule (gene).
The aircraft in the subset are given a random priority and
are scheduled at their latest possible date depending on the
available slots, which in turn is dependent on the rest of the
schedule. An example of the mutation procedure can be seen in
Figure 5. For a schedule of a fleet of 5 aircraft, n=2 aircraft are
chosen to be rescheduled. Here the size n, is a random number.
Since the greedy algorithm is dependent on the scenario, a
random scenario is selected if mutation occurs, or the mean
value is used over all scenarios. The mutation procedure can
be found in Algorithm 3.

Algorithm 3: MUTATION PROCEDURE

Input: Population, mutation rate, Scenarios
1 begin
2 for Chromosome ∈ Population do
3 if rnd() ≤ mutation rate then
4 n ← rnd(size=rnd()) //Rnd set of aircraft
5 ~L← ~L based on i /∈ n
6 case 1 do
7 USn , DSn ← Scenarios.random()
8 end
9 case 2 do

10 USn , DSn ← Scenarios.mean()
11 end
12 Procedure ε-greedy(ε=0, n, ~L, USn , DSn )
13 end
14 end

V. VALIDATION

To validate the proposed methodology, several validation
techniques are used. First, the problem is simplified in order
to compare the output of the GA against the output of
an exact solution method for several test cases. The exact
solution method is based on a novel MILP formulation and
solved by the commercial solver CPLEX. Secondly, the
ability of the GA to find efficient near optimal solutions is
assessed by comparing the outcome of the GA to results
from a case study in Deng et al. [12]. Next, the robustness of
schedules is assessed through Monte Carlo simulation. Lastly,
a sensitivity analysis on the effect of probability level α and
number of scenarios on schedule robustness is performed.

All runs with the genetic algorithm are performed with a
mutation rate of 0.6, a crossover rate of 0.9, a population
size of 20, and running the algorithm with 4 independent runs
in parallel on a quad-core workstation. These parameters are
found through sensitivity analysis and a trial-&-error approach.

Fig. 5. Example of the mutation procedure for a chromosome, where 2 aircraft are randomly selected to be rescheduled using the greedy-algorithm
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A. Benchmark Comparison

In order to check whether the proposed algorithm is a feasible
solution to the problem, the outcome of the genetic algorithm
is compared to an exact benchmark method for small test
cases. The benchmark method is based on a novel MILP
adaptation of the formulation presented in Section III. It is
solved using the commercial solver CPLEX.

From the analysis of the state-of-the-art in Section II-B, it is
clear that the complexity of scheduling aircraft maintenance
checks makes it difficult to solve large scale problems with
exact methods. Therefore, the GA and benchmark model are
evaluated for small scale test problems. For the test problems
the time step, t, is weekly and only the deterministic scenario
is taken into account. Furthermore, the GA and MILP only
consider the flight hour parameter constraints. The D-check,
and calendar day parameters are dropped. Reducing the prob-
lem size by removing the constraints as in Equation 8, 10, 11,
12, 15, and 16. A total of 4 test cases are created with varying
available slots and number of aircraft in the fleet:

• Case 1: 10 aircraft, 1 hangar available
• Case 2: 20 aircraft, 2 hangars available
• Case 3: 30 aircraft, 3 hangars available
• Case 4: 40 aircraft, 3 hangars available

The 4 test cases are run for a planning horizon of 2 and 3 years,
with weekly time steps. The objective value and computation
time are compared in order to assess the effectiveness of the
GA for these small test cases. The outcome of the comparison
can be seen in Table IV. Where the computation time for
both the MILP and GA are displayed as well as the gap
between their respective objective values. As can be seen,
the computation time for the benchmark method increases
exponentially when the problem size increases, while the
GA solves the problem significantly faster when regarding
problems with a longer time horizon. For the biggest test case
of 40 aircraft and a planning horizon of 3 years the difference
in computation time is already more than 35 minutes. It can
also be seen, that the GA finds the optimal solution in most
cases, having a maximum optimality gap of 0.39%.

TABLE IV
COMPARISON OF COMPUTATION TIME AND OBJECTIVE VALUE BETWEEN

GA AND BENCHMARK METHOD FOR 4 SMALL TEST CASES

Case 1 Case 2 Case 3 Case 4
Planning
Horizon
[Yrs]

2 3 2 3 2 3 2 3

Comp.
time
MILP [s]

1.3 5.7 3.8 46.1 13.9 352 23.4 2271

Comp.
time
GA[s]

6.1 7 9.2 15.7 18.4 25.2 23.2 36.5

Obj.
Gap[%]

0.0 0.0 0.0 0.31 0.0 0.39 0.02 0.37

B. Case Study

In order to assess the effectiveness of the GA for large scale
problems, a case study is performed. The case study comes
from Deng et al. [12] and considers the scheduling of C-checks
for a European airline during the 2018-2021 period. Several
operational constraints are defined for the test case:

• A maximum of 3 C-checks can be executed in parallel;
• During weekends and public holidays no work on a C-

check is performed;
• During commercial peak periods (i.e. summer and holi-

day periods), no C-checks can be scheduled (Lt = 0);
• Due to resource availability reasons there has to be a

minimum of 3 days between the start dates of two C-
checks (dc)

The starting date for the case study is the 25th of September
2017, and the planning horizon ends at the 31st of December
2021. The schedule created by the Genetic Algorithm is
compared to a schedule created by maintenance planners
of the airline and a schedule generated by the dynamic
programming based methodology from Deng et al. [12].
The comparison is performed for the period of the 1st of
January 2018 till the 31st of December 2021. The generation
of a C-check schedule by the airline maintenance planners,
the dynamic programming methodology, and the proposed
genetic algorithm in this paper, use the same input data and
operational constraints. Unscheduled maintenance events and

Fig. 6. Comparison of flight hours at C-check between schedules from the airline, the dynamic programming method, and the genetic algorithm
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aircraft routing are not taken into account.The data set that is
used for the case study is available at:

https://doi.org/10.4121/uuid:1630e6fd-9574-46e8-899e-
83037c17bcef

The results of the comparison can be seen in Table V.
From the table, it is readily clear that the Genetic Algorithm
finds significantly better solutions than current practice for
the airline. Optimization with the proposed GA reduces the
total number of C-checks by 9, and increases the average
flight hours by 8.4% over the planning horizon. Compared
to the results of optimization with a DP based approach, the
GA further reduces the total number of C-checks by 3, and
increases the average flight hours by 5.9%. The computation
time of the GA is over twice as long as the computation time
of the dynamic programming approach. This is, however, still
significantly better than the computation time of over 3 days
from the airline. The improvement in aircraft utilization can
be seen when looking at the distribution of flown flight hours
at a C-check in Figure 6. The distribution of flighth hours
at C-checks for the GA is shifted to the right compared to
the airline and DP schedule. The amount of checks that are
scheduled near their deadline, represented as the red line, is
also increased.

TABLE V
RESULTS OF OPTIMIZATION FOR THE CASE STUDY WITH THE GA,
COMPARED TO THE RESULTS FROM AN EUROPEAN AIRLINE, AND

DYNAMIC PROGRAMMING METHODOLOGY [12]

Airline Dynamic
Programming

GA
Deterministic

Average Flight Hours 6539 6691 7087
Number of C-checks 96 90 87
Computation time ≥3 days 510 s 1059 s

Since there is a difference between the dynamic programming
method [12] and the genetic algorithm, further cross-validation
has been performed. In order to assess whether assumption
A.6 from Section III-B has a significant impact on the flight
hours, the schedule created by the DP methodology is run
in the simulator used by the GA. The flight hours of the
simulation are compared to the flight hours resulting from the
DP algorithm. Figure 7 shows the difference in flight hours
generated by the GA simulator and the DP methodology for
the same schedule. As can be seen, the maximum difference is
12.9 flight hours, and the average difference is only 1.66 flight
hours. This difference is caused by the assumption that the GA
does not consider a feasible A-check schedule by using the A-
check due dates (A.6).However, the difference in flight hours
is small, indicating that the GA simulator provides accurate
results for the usage parameters.

Fig. 7. Difference between flown flight hours resulting from the GA simulator
and the DP methodology from Deng et al. [12], using the same schedule

C. Robustness

The previous section concerned the analysis of the
effectiveness of the proposed genetic algorithm by means of
a case study. However, the outcome of the case study is only
based on the deterministic scenario. Figure 6 shows that a
lot of C-checks are scheduled close to the maximum interval.
A small increase in average daily flight hours or decrease
in check duration could therefore already result in aircraft
being maintained after their maximum interval. Therefore,
the genetic algorithm has been run for the same test case,
but taking into account multiple scenarios as described in
Section III-D.

The outcome for running the GA with S=3 and probability
level α = 0.8, can be seen in Table VI. As expected, the
robust optimization results in lower utilization and two more
C-checks compared to the deterministic optimization. Using
10 scenarios has also increased the computational time. The
robust schedule is still efficient by reducing the total amount
of C-checks by 7 and increasing the average utilization by
4.4% compared to the current approach of a European airline.
When taking into account that an airline spends on average
between $70K and $350K [32] on a C-check. This reduction
could lead to an annual cost saving between $122.5K -
$612.5K. On the other hand, the reduced number of C-checks
also cause an additional of 100-140 days in operation over
the planning horizon. The increase in average utilization
adds a further 25 days of operation. Annually, this is an
extra of 31-41 days. Considering that a day of operations
of a short-haul aircraft can generate around $75K-$120K in
revenue, this could mean $2.3M-$4.9M of additional annual
revenue.

TABLE VI
RESULTS OF OPTIMIZATION FOR THE CASE STUDY WITH THE GA, FOR 10

SCENARIOS AND PROBABILITY LEVEL OF 80%, COMPARED TO THE
RESULTS OF THE GA FOR THE DETERMINISTIC SCENARIO

.

GA
Determinstic

GA
S=3, α=0.8

Average Flight Hours 7087.3 6825.8
Number of C-checks 87 89
Computation time 1059 s 1643 s
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To evaluate the robustness of both schedules, a Monte Carlo
simulation has been performed with n=10000 runs. Each
run, the schedules are assessed with the simulator under a
different duration and daily utilization matrix. A duration
matrix is generated by choosing random durations from
historical data. A daily utilization matrix is generated as
a random vector from the multivariate normal distribution
presented in Section III-D2. This way, the schedules are
assessed against 10000 varying scenarios. Each run, the total
number of days aircraft are maintained after their maximum
interval and the amount of extra slots necessary under the
scenario of that run are stored. No recovery procedures are
in place, so the schedule is not adjusted if an aircraft has
to be grounded, or if extra slots are needed. In practice a
schedule disruption management system can be used to avoid
grounding an aircraft. The goal of this analysis is to find out
how often the schedule would be infeasible and quantify the
difference between the deterministic and robust approach.

Figure 8 shows the results of the Monte Carlo simulation
regarding the amount of days aircraft are maintained after
their maximum interval. By optimizing using only the
deterministic scenario, small uncertainties can have a big
influence. This can be seen in the fact that the average
amount of days aircraft would have to be grounded in the
deterministic schedule is 32.3 days, where this is reduced
to an average of 2.7 days for the robust optimization schedule.

Fig. 8. Distribution of total amount of days aircraft in the fleet have to be
grounded because they exceed their maximum interval during the planning
horizon for the deterministic and robust GA optimization, result of MC
simulation with n=10000 runs

Based on the distributions, the probability that the total days
aircraft are maintained past their deadline lie within a certain
range have been calculated as seen in Table VII. From the
table it is readily clear that the min-max optimization is
significantly more robust than optimization with only using the
deterministic scenario. For the robust optimization schedule
there is a 41% chance that no conflicts and disruptions occur,
compared to a chance of 0.27% for the schedule generated by
deterministic optimization.

TABLE VII
PROBABILITY FOR THE TOTAL DAYS AIRCRAFT ARE MAINTAINED PAST

THEIR DEADLINE TO LIE WITHIN A CERTAIN RANGE

Days too late GA Deterministic
probability

GA S=3, alpha=0.8
probability

0-1 0.27% 41.12%
1-20 25.90% 55.34%
20-50 58.92% 3.36%
≥50 14.91% 0.18%

Figure 9 shows the results of the Monte Carlo simulation
regarding the amount of extra slots that are necessary due to
uncertainty in check duration. As can be seen, the distribution
is shifted to the left for the robust optimization. Having a mean
of 2.1 extra slots compared to 17.2 in the case of deterministic
optimization. Table VIII shows the probabilities for the amount
of extra slots to lie within certain ranges. It can be seen that
the schedule created by optimizing with 10 scenarios, is also
more robust than the deterministic schedule when regarding
available maintenance slots.

Fig. 9. Distribution of the amount of extra slots that are necessary due to un-
certainty in check duration for the deterministic and robust GA optimization,
result of MC simulation with n=10000 runs

TABLE VIII
PROBABILITY FOR THE AMOUNT OF EXTRA SLOTS IN THE PLANNING

HORIZON TO LIE WITHIN A CERTAIN RANGE

Extra Slots GA Deterministic
probability

GA S=3, alpha=0.8
probability

0-1 0.02% 35.08%
1-10 5.40% 64.71%
10-20 68.30% 0.21%
≥20 26.29% 0%

D. Sensitivity Analysis

In order to analyze the effect of the robust optimization
parameters, S and α, a sensitivity analysis has been
performed. For a test case with 20 aircraft and 2 hangar
slots available, the GA has been run with varying robust
optimization parameters. The probability factor α is either
0.5, 0.65, 0.8, 0.95, or a combination of all. A bigger
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probability factor would lead to more critical scenarios.
When combining different probability factors, scenarios are
generated according to the methodology in Section III-D1
and III-D2, but with sampling from the list of probability
factors without replacement. The scenario size, S, lies in the
range between 2 and 7, corresponding to a total number of
scenarios between 5 to 50.

For each different combination of robust optimization
parameters the average number of constraint violations have
been recorded based on MC simulation with n=10000 runs.
The number of constraint violations are the sum of total days
aircraft have to be grounded and the total amount of extra
slots needed during the planning horizon. A contour plot for
this can be seen in Figure 10 (a). The average utilization
for each optimization run has also been recorded. Where the
utilization is defined as the average flight hours an aircraft
has flown when it is scheduled for a C-check. A contour plot
of the average utilization per robust optimization setting can
be seen in Figure 10 (b).

In the contour plots of Figure 10 it can be seen that a
higher number of scenarios reduces the average number
of constraint violations, thereby making the schedule more
robust. This robustness, however, comes with a reduction
in the average utilization. The contour plots also show,
that for a smaller number of total scenarios, an increasing
probability factor has a positive influence on the robustness
of the schedules created by the GA. This is most likely, due
to the higher chance of including more critical scenarios
in the optimization. However, this effect is lost when the
total number of scenarios increases, due to the fact that the
scenarios can already vary a lot at the same probability level.
In most cases, using scenarios generated from a combination
of α tend to be more robust than scenarios from a single

probability factor for smaller scenarios. This results from the
fact that a combination of probability factors increase the
variability in the scenarios. A run for the same test case with
only using the deterministic scenario resulted in an average
number of constraint violations of 45.8 and an utilization of
7124 flight hours. From the contour plots it can be seen that
even with only including 5 scenarios in the optimization, the
average number of constraint violations is reduced by 90%.
This comes at a cost of 2.5% reduction in average utilization.

Sensitivity to a change in scenario size can be seen in Table IX
with respect to utilization and number of constraint violations.
Where sensitivity is defined as an estimate of the partial
derivative [38], based on the reference scenario of S = 2.
The table confirms that an increase in scenario size reduces
the number of constraint violations on average, but with a
reduction in utilization.

TABLE IX
SENSITIVITY TO A CHANGE IN SCENARIO SIZE S ON UTILIZATION AND

NUMBER OF CONSTRAINT VIOLATIONS

S Utilization [FH] Sensitivity FH Number of
constraint
violations

Sensitivity
Number of
constraint
violations

2 6925.8 ± 52.5 114.75 4.27 ± 1.11 2.62
3 6887.5 ± 62.2 N/A 3.40 ± 0.67 N/A
5 6849.8 ± 102.6 -56.63 1.82 ± 0.35 -2.34
7 6687.5 ± 343.4 -150 0.87 ± 0.35 -1.90

The scenario size, S, does not only affect the robustness
and utilization of schedules created by the GA it also has a
significant influence on computation time. This can be seen in
Figure 11. Choosing the robustness parameters is thus a trade
off between robustness, average utilization, and computation
time.

Fig. 10. Contourplots of the average number of constraint violations and flight hours for varying robust optimization parameter settings
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Fig. 11. Average computation time for the Genetic Algorithm with varying
scenario size over 10 runs

VI. DISCUSSION

There has been little focus on the long-term scheduling of
heavy-maintenance checks in literature. Current approaches
are heavily reliant on a manual approach and do not take
the inherently stochastic nature of maintenance into account.
This paper proposes a GA that can generate efficient robust
C-check schedules for a fleet of heterogeneous aircraft.
A robust long-term schedule could reduce the number of
adjustments, reduce cost, and give a good forecast of required
resources.

First, the proposed genetic algorithm has been validated for
smaller test cases against an exact benchmark method. The
results from Section V-A show that the GA can generate
(near-)optimal solutions for these test cases with a maximum
optimality gap of 0.39%. When the problem size increases
the GA also has a significantly reduced computation time
compared to the exact benchmark method. This is expected
since the problem is NP hard.

The effectiveness of the GA to generate C-check schedules
for larger scale problems is evaluated by a case study in
Section V-B. The results of the GA are compared to the
current approach of an European airline and a dynamic
programming approach [12] from literature. For the case
study, the GA finds a significantly better schedule when
optimizing for the deterministic scenario. It reduces the total
number of C-checks in the planning horizon by 9 and 3,
compared to the airline and DP methodology respectively.
The average utilization is also increased by 8% compared
to the schedule created by the current approach of the
airline and 6% compared to that of dynamic programming.
The genetic algorithm finds an efficient schedule within 20
minutes. This is significantly more efficient than the 3 days
of the current approach of the airline. Since there is a major
difference between the proposed GA and DP methodology,
cross validation has been performed. A comparison by
running the same schedule in both algorithms did not provide
major differences, indicating that the assumptions presented

in this paper do not influence the evaluation of the fitness
of a schedule significantly. The DP methodology has the
possibility to combine A and C-checks. A possible explanation
for the difference could be that, with the DP methodology,
some C-checks are combined with an A-check, shifting the
C-check deadline to the deadline of the A-check, whereas the
approach presented in this paper does not take the feasibility
of scheduling an A-check into account. By assuming that the
A-checks are scheduled at their due date the GA considers
around 100 A-checks less in the planning horizon than the DP
based methodology does. Since an A-check duration is 1 day
and the average daily utilization is 11 flight hours, this results
in a total overestimation of 1100 flight hours for the GA
schedule. This is divided over 87 C-checks in the planning
horizon, so the average flight hours would only be reduced
by 12.6 if A-check feasibility would be considered for the GA.

The ability of the GA to generate robust schedules is
evaluated through Monte Carlo simulation in Section V-C.
The schedule created by the GA without taking uncertainty
into account is compared to a schedule generated by the GA
when taking varying scenarios into account. These scenarios
are generated based on predefined robustness parameters. The
robust schedule is still efficient by reducing the total amount
of C-checks by 7 and increasing the average utilization with
4.4% compared to the current approach of an European
airline. When optimizing for only the deterministic scenario,
many aircraft are scheduled close to their deadline. Therefore,
a small change in utilization or check duration can already
have a significant impact. When optimizing for varying
scenarios, however, the impact of these changes are less
significant. In only 0.27% of the cases the deterministic
schedule would result in all aircraft being maintained on
time. This is increased to 41% for the robust schedule. A
sensitivity analysis in Section V-D shows that choosing the
robustness parameters is a trade off between robustness,
average utilization, and computation time. These findings are
a result of the Monte Carlo simulation. However, no recovery
procedures are in place. Inclusion of recovery procedures
would give a more accurate depiction of the difference in
robustness between the schedules. Furthermore, the schedule
created by the airline is not entirely available. Therefore, no
comparison between the robustness of the schedule created
by the genetic algorithm and the current approach of the
airline can be performed.

From this, it is clear that the proposed GA can tractably find
efficient (near-)optimal solutions for smaller and larger scale
problems. By including varying scenarios in the optimization,
the algorithm finds a more robust schedule, compared to
deterministic optimization, that is still efficient. Reducing the
need for adjustments to the schedule if small uncertainties
manifest itself in check duration or utilization while also
reducing maintenance cost.

VII. CONCLUSIONS & RECOMMENDATIONS

With the impact of COVID-19 on the MRO market and
the expected growth of the airline industry after 2022 [2],
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reducing costs and valuing efficiency is important in both
the short- and long-term. The MRO market currently spans
around 9.5% of the total operating cost of an airline [3].
Of this, 70% is covered by heavy-maintenance. Reduction
of these costs and insight in future capacity needs could,
therefore, be significant for an airline. A possible solution
is the optimization of the long-term schedule of heavy-
maintenance checks. Current approaches are found to be
reliant on manual input and operator experience. In addition
to that, revisions to the initial schedule are made continuously
due to the inherent stochastic nature of aircraft maintenance
through non-routine maintenance. Taking this uncertainty into
account could offer more robust schedules, saving cost and
providing reliable insight into future capacity needs.

This paper proposes a genetic algorithm methodology that
can generate robust and efficient C-check schedules for a
fleet of heterogeneous aircraft. Uncertainty in check duration
and daily utilization are taken into account by generation of
varying scenarios. These scenarios are assessed by the genetic
algorithm through min-max optimization. When applied to
a case study, optimization with the genetic algorithm for
only the deterministic scenario, reduces the total amount
of C-checks by 9 while increasing the average utilization
by 8.4% compared to the current approach of an European
airline. However, Monte Carlo simulations show that this
schedule is sufficient in only 0.27% of cases, since small
changes in check duration or daily utilization can have a
significant impact. When including varying scenarios into
the genetic algorithm a more robust schedule can be found
which is sufficient in 41% of the cases. The robust schedule
is still significantly more efficient than the current approach
of the airline, reducing the total number of C-checks by
7 and increasing utilization by 4.4%. This could lead to a
reduction of direct annual maintenance costs of $122.5K -
$612.5K. Furthermore, the increase in aircraft availability
could result in an additional $2.3M - $4.9M in annual revenue.

This paper is the first to address the long-term scheduling of
heavy-maintenance checks while taking uncertainty in check
duration and daily utilization into account. The proposed
genetic algorithm finds robust and efficient C-check schedules
for large scale problems in under 30 minutes.

Recommendations for future research include the addition
of scheduling A-checks. Currently, the approach does not
take into account feasibility of A-checks. By expanding the
problem to take operational constraints on the A-check into
account further cost reductions could be achieved. Further-
more, more research on the uncertainty in check duration and
daily utilization needs to be performed. Currently, relatively
little data is available. A more detailed probability description
and scenario generation could increase robustness. Finally, a
schedule disruption management tool can be implemented to
better analyze the robustness of the schedules and even further
reduce the need of adaptations to the maintenance schedule.
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[23] D. Dinis, A. Barbosa-Póvoa, and P. Teixeira, “A support-
ing framework for maintenance capacity planning and
scheduling: Development and application in the aircraft
mro industry,” International Journal of Production Eco-
nomics, vol. 218, pp. 1–15, 2019.

[24] V. Mattila and K. Virtanen, “Scheduling fighter aircraft
maintenance with reinforcement learning,” in Proceed-
ings of the 2011 Winter Simulation Conference (WSC),
Dec 2011, pp. 2535–2546.

[25] S. Sohn and K. Yoon, “Dynamic preventive maintenance
scheduling of the modules of fighter aircraft based on
random effects regression model,” The Journal of the
Operational Research Society, vol. 61, no. 6, pp. 974–
979, 2010.

[26] H. A. Kinnison, Aviation Maintenance Management ;
Second Edition. McGraw-Hill, 2013.

[27] R. Vershynin, “How close is the sample covariance
matrix to the actual covariance matrix?” Journal of
Theoretical Probability, vol. 25, no. 3, p. 655–686, 2012.
[Online]. Available: https://dx.doi.org/10.1007/s10959-
010-0338-z

[28] B. Eck, F. Fusco, and N. Taheri, Scenario Generation
for Network Optimization with Uncertain Demands, pp.
844–852.

[29] “Reprint of: Mahalanobis, p.c. (1936) ”on the generalised
distance in statistics.”,” Sankhya A, vol. 80, no. S1, p.
1–7, 2018.

[30] O. Kramer, Genetic Algorithm Essentials. Springer
International Publishing, 01 2017.

[31] D. Sudholt, Parallel Evolutionary Algorithms. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 929–
959.

[32] A. Shannon, “Basics of aircraft maintenance programs
for financiers,” accessed on 12.06.2019. [Online].
Available: http://aircraftmonitor.com/uploads/1/5/9/9/

15993320/basics of aircraft maintenance programs
for financiers v1.pdf

[33] A. M. et al., “Sympy: symbolic computing in python,”
PeerJ Computer Science, p. e103, Jan. 2017.

[34] D. E. Goldberg and K. Deb, “A comparative analysis
of selection schemes used in genetic algorithms,” ser.
Foundations of Genetic Algorithms, G. J. RAWLINS, Ed.
Elsevier, 1991, vol. 1, pp. 69 – 93.

[35] J. E. Rowe, Genetic Algorithms. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 825–844.

[36] S. Hartmann, “A competitive genetic algorithm for
resource-constrained project scheduling,” Naval Re-
search Logistics (NRL), vol. 45, no. 7, pp. 733–750,
1998.

[37] X.-B. Hu and E. D. Paolo, “An efficient genetic al-
gorithm with uniform crossover for air traffic control,”
Computers & Operations Research, vol. 36, no. 1, pp.
245 – 259, 2009, part Special Issue: Operations Research
Approaches for Disaster Recovery Planning.

[38] A. Sharpansky, “Lecture notes in agent based modelling
and simulation in air transport,” February 2019.



II
Literature Research

*Previously graded under AE4020

21





Abstract

There is an increasing demand on the MRO market, which currently spans around 9.5% of the to-
tal operating cost. Of this, around 70% is covered by heavy-maintenance. Reduction of these costs
and insight in future capacity needs could, therefore, be significant for an airline. A possible solu-
tion is the optimization of the long-term schedule of heavy-maintenance checks. In order to do so,
the state of the art of aircraft maintenance scheduling and scheduling models are discussed. Cur-
rent approaches are found to be reliant on manual input and operator experience. Next to that,
revisions to the initial schedule are made continuously due to the inherent stochastic nature of air-
craft maintenance through non-routine maintenance. Taking this uncertainty into account could
offer more robust schedules, saving cost and providing reliable insight into future capacity needs.
The incorporation of uncertainty is also one of the main research directions in scheduling liter-
ature, where hybrid meta-heuristics with Monte Carlo simulations are used to solve the NP-hard
problem. The analysis and discussion of the state of the art has led to the following research aim:
“To develop a stochastic maintenance scheduling model capable of tractably delivering an effective
long-term schedule for aircraft C-checks while taking into account the main sources of uncertainty in
C-Check scheduling”
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1
Introduction

The size of the global commercial aircraft fleet is estimated to grow from 24,400 to 48,540 by 2037
[81], indicating that the global aircraft industry is expanding fast. With the increasing number of
aircraft, the MRO market has to grow accordingly (expected annual growth rate of 4% [91]). Next to
the augmenting demand on maintenance, the global MRO spend spans on average 9% to 10% of the
total operating costs of an airline [42]. With the increasing maintenance demand and high associ-
ated costs, it is beneficial for airlines to keep introducing innovations with respect to the scheduling
of maintenance and to value efficiency.

Regular aircraft maintenance is necessary in order to assure airworthiness, keep the aircraft reli-
able, as well as provide assurance of flight safety. Currently maintenance is scheduled according
to flight hours, flight cycles, or calendar days according to the MSG-3 approach[49], resulting in
three noteworthy maintenance checks: A-, C-, and D- Checks. Each check has different duration,
frequency, and tasks [36], where the C-, and D-Checks are the largest check types, labeled as heavy-
maintenance checks. During these checks, the aircraft is not operational and kept on the ground
for several weeks. Therefore, heavy-maintenance covers around 70% of the total maintenance costs
and requires the most amount of resources [42].

Current approaches to the long-term scheduling of the maintenance checks are often based on
operator experience and simulation models where manual selection is a major component. Next
to that, the initial schedule has to be continuously revised due to the stochastic nature of aircraft
maintenance. These revisions can result in backlog and can have an impact on maintenance cost,
quality of service, and the maintenance schedule. Taking this into account when scheduling could
offer more robust schedules where fewer revisions are necessary. Developing an efficient long-term
schedule of these heavy-maintenance checks, while taking into account uncertainty, could there-
fore not only result in significant cost savings but also provide a robust schedule with insight into
future resource requirements.

To study the research topic more in-depth, a literature review is carried out. The report starts with
an overview of the state of the art in Chapter 2. This chapter focuses on getting a better insight in
the areas concerning the scheduling of aircraft maintenance. Hereafter, a discussion of the found
literature is stated together with the applicability to the research in Chapter 3. Next, in Chapter 4,
the framework of the research is set up. Lastly, the literature review is concluded in Chapter 5.

25





2
State of the Art

2.1. Aircraft Maintenance and Planning
As indicated in Section 1, maintenance can be divided into three noteworthy maintenance checks:
A-, C-. and D-Checks. Type A checks generally involve inspection of the aircraft interior/exterior,
with focus on lubrication of the major systems of the aircraft. The check occurs biweekly to monthly
[80]. C-Checks are usually scheduled every 12-20 months subject to the MRO [76]. This check falls
under the heavy-maintenance category and requires the aircraft to be taken out off operation for
up to a month [80]. A Heavy Maintenance Visit (HMV) or D-Check, is planned in the range of 6-12
years, determined by utilization and aircraft type[76]. Many airlines merge tasks of the D-check into
a C-check, resulting in a so-called heavy C-check. Smaller operators even plan the lease of their
aircraft in such a way that it is terminated before a D-check.

Currently, the planning of aircraft maintenance follows the MSG-3 approach [49]. This is a task-
oriented approach that develops the maintenance tasks that need to be performed together with
their corresponding intervals. These intervals are defined in number of flight hours, amount of
flight cycles, or calendar days. They are determined according to hard time, on-condition or con-
dition monitoring criteria. These tasks are noted in the Maintenance Planning Document (MPD),
of which an example can be seen in Figure 2.1. The MPD gives the threshold interval per required
task, and can be used to group tasks into task packages and letter checks. Every operator will use
the maintenance schedule to suit its own operations and can therefore establish their own mainte-
nance program, if it is accepted by the airworthiness authorities.

Figure 2.1: Example Maintenance Planning Document from Ackert [76]

Most larger operators follow the Block maintenance approach, which are often denoted by the pre-
viously mentioned letter checks. But smaller operators can also choose for the Equalised or Progres-
sive system, where the letter checks are shorter and equal in size, but carried out more frequently.
They are also known as de-phased letter checks. Where a larger C-Check would for example be
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divided into smaller more frequent checks C1, C2, C3, and C4. The normal block maintenance ap-
proach gives more fixed preparation and a reasonably low variability of planning and control. How-
ever, the aircraft may also be out of service for long periods and large gaps between checks occur. In
the case of the equalised system many tasks are short enough to be carried out overnight, when no
flights are scheduled. However, non-routine maintenance could provide problems and some tasks
are repeated, bringing additional costs. For each operator the approach and MPD result in an ini-
tial maintenance schedule as illustrated in Figure 2.2. For each aircraft type in the fleet, the check
intervals are given in flight hours or calendar days.

Figure 2.2: Operator Initial Maintenance Schedule for Boeing 747-400 and Airbus A300B4 from Kinnison et al. [49]

2.2. Current Practice
From the initial maintenance schedule and MPD, an MRO can develop the long-term master sched-
ule for the maintenance checks. When creating a simple maintenance schedule, certain operational
constraints need to be taken into consideration. The planned maintenance tasks, for example, can-
not exceed the workload for the available workforce and the planning of checks is limited by hangar
capacity. It is also readily clear that together with capacity constraints the checks should adhere
to deadlines set by the threshold interval of the initial maintenance schedule, otherwise an aircraft
might need to be grounded. In practice each operator has more complex constraints, such as the
following:

• During peak-periods no heavy-maintenance checks are allowed, in order to maximize utiliza-
tion of the aircraft during these periods;

• Check interval deadlines can be extended, with a certain tolerance. However this tolerance
in FH/FC needs to be subtracted from the next interval and approval from airworthiness au-
thority is necessary;

• During weekends and bank holidays the work on heavy-maintenance checks is stopped;

• Two C-checks cannot start at the same day
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The addition of these complex constraints make the scheduling of aircraft maintenance checks a
difficult and challenging task. The scheduling of aircraft maintenance has been dependent on a
manual scheduling approach, which relies mainly on the experience of a scheduler. In the early
70’s using this manual approach, it took maintenance planning personnel several weeks to create a
schedule [18]. In order to speed up this process Air Canada developed an aircraft maintenance op-
erations simulation model (AMOS). This simulation model is described in Boere [18], and focuses
on improving maintenance efficiency and the reduction of labor and material cost. In the paper the
scheduling problem is described as a discrete integer programming problem and takes into account
many of the constraints and conditions listed above. However, the solution approach is a priority
based simulation-heuristic. This approach is similar to the manual planning approach, in which
an experienced scheduler has to decide the optimal schedule, shifting checks until a feasible so-
lution has been found. The simulation aspect however, together with the introduction of a lower
utilization bound before a new check can be scheduled, reduced the time to develop a long-term
maintenance schedule of 5 years from several weeks to several hours [18].

Many operators have since developed or adapted a similar approach to the scheduling of long-term
maintenance and more overall integrated tools are being developed, like the fleet-planner IFS Main-
tenix tool [44]. All the tools however are heavily reliant on experience and manual input. In addition
to the reliance on a manual approach, the developed schedules also need to be revised frequently
due to the inherent stochastic nature of non-routine maintenance tasks.

2.3. Deterministic Scheduling Models
The complexity of large size scheduling problems has been discussed in Papadimitriou et al. [37].
The problem is non-deterministic in polynomial-time (NP) hard([65]), making it difficult to solve
large scale problems with exact methods. The challenge in the scheduling of aircraft letter checks
especially, is the fact that they are interdependent combinatorial optimization problems. Schedul-
ing a check at a certain date has an impact on aircraft utilization in the future and consequently also
influences the requirements on future maintenance checks.

In academic literature there has been relatively little focus on the long-term planning of aircraft
maintenance. In Etschmaier and Franke [32] an out-of-kilter algorithm [67] was introduced to min-
imize maintenance cost and in Bauer-Stämpfli [11] a dynamic programming approach was devel-
oped. Both methods were deemed not suitable by Boere [18] for the environment of Air Canada
when developing the previously mentioned simulation model. Furthermore, the author deemed
an optimization technique to be impractical, due to the fact that an optimal solution can become
obsolete with a change in environment and aircraft utilization. More recently, a zero-one integer
programming model was used with the commercial solver CPLEX [43] in Yan et al.[92]. Deng et
al.[25] propose a forward induction dynamic programming approach. To deal with the problem of a
multi-dimensional action vector, a priority based solution is used and to further reduce the number
of final states a thrifty algorithm is incorporated as well as discretization and state aggregation.

The short-term planning of aircraft maintenance however, has received a lot more attention in lit-
erature through the aircraft maintenance-routing problem. This is mainly due to the fact that opti-
mizing the maintenance schedule has benefits only visible in the long term, where the optimization
of short-term activities leads to direct cost savings and profits; which therefore attract the main fo-
cus of MROs and airlines. For the routing problem aircraft are assigned to maintenance checks after
a certain numbers of flight hours according to their tail number. When assigned to a check, the air-
craft is grounded at the maintenance station for at least the duration of one night[36]. The problem
is often solved with integration of other airline scheduling sub-problems. An integrated problem of
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maintenance routing and flight scheduling is, for example, addressed in [34, 52, 53] as well as the
integration with the fleet assignment problem in [10, 33, 39].

2.3.1. Objective Functions
In the literature of short-term scheduling of maintenance several objectives are encountered, that
can be broadened to the overall scheduling of aircraft maintenance:

• Minimize Costs: Since maintenance cost is a significant part of the total operating cost of an
airline, minimizing direct maintenance costs is an objective often found in literature. In Sri-
ram [80] the problem of scheduling maintenance is formulated as an integer multi-commodity
network flow model with the objective to minimize total costs of type A and type B mainte-
nance checks. In Moudani and Mora-Camino [62] the maintenance scheduling and fleet as-
signment problem are combined with the objective to minimize the total operating costs of
commercial and non-commercial flights. A greedy heuristic is used to solve the maintenance
scheduling problem. Other examples where the objective is to minimize costs can be found
in Tab. 2.1

• Maximize Utilisation of Intervals: Another objective encountered in the maintenance-scheduling
problem, is to maximize the utilisation of the maintenance intervals. This indirectly reduces
the number of maintenance checks over the long-term and days an aircraft is grounded.
In Matilla and Virtanen [60] a simulation-based optimization technique is used in order to
schedule the periodic maintenance for a fleet of fighter jets. The efficiency of the developed
schedules are then assessed based on the average fleet utilisation. In Kozanidis and Skipis [52]
a mixed integer bi-objective linear programming model is used to maximize aircraft avail-
ability and residual flight time for a fleet of fighter aircraft over the considered time-horizon.
Other examples where the objective is formulated as a maximization of the residual flight time
can be found in Tab. 2.1

• Minimize Aircraft unavailability: The minimization of aircraft unavailability is very similar
to the maximization of the utilisation of maintenance intervals. Inasmuch that it indirectly
decreases the number of maintenance checks in the long-term and number of days on the
ground. This objective is encountered in Boere [18] and Deng et al.[25]. In Başdere and
Bilge [12] the total unused legal flying time of critical aircraft is minimized with several so-
lution techniques.

From Tab. 2.1 it is clear that the minimization of maintenance costs is the most encountered ob-
jective. However, when considering long-term scheduling of maintenance checks the available cost
data is often confidential or incomplete and hard to relate to check types.

Table 2.1: Objective Functions encountered in maintenance scheduling literature

Objective Function Citations
Minimize Costs [5, 7, 26, 46, 62, 64, 74, 79, 80, 93]
Maximize Utilisation of intervals [6, 34, 51–53, 59, 60]
Minimize Aircraft unavailability [12, 18, 25]

2.3.2. Resource Constrained Project Scheduling
Since relatively little literature exists on the scheduling of aircraft maintenance, it is relevant to look
into more general scheduling problems in literature. The RCPSP is applicable to any scheduling



2.3. Deterministic Scheduling Models 31

problem with prerequisite requirements and limited resources. Since this covers a large scale of
problems in industry, applications can be found in many different sectors: in McKendall et al. [45]
an adaption of the RCPSP is used to schedule maintenance in nuclear power plants; Zhou and
Zhong [96] adapt the RCPSP to a train timetabling problem; In Chen and Weng [21] project schedul-
ing in construction is adressed. A hybrid flow shop scheduling problem in steel production based
on the RCPSP is described in Voß and Witt [87]; and in Roland et al. [69] the problem is adapted to
the scheduling of operating rooms under human resource constraints.

The general formulation of the RCPSP considers a set V of n activities (V = {A0, A1, . . . , An+1}), where
A0 represents the starting dummy variable and An+1 the ending. The set A = {A1, . . . , An} represents
the jobs that have to be scheduled. The elapse time of each task is described by vector p in Nn+2,
where pi represents the elapse time of activity Ai . The set E describes the scheduling relations be-
tween tasks, inasmuch that (Ai , A j ) ∈ E indicates that activity Ai has to occur before activity A j .
These relations are captured in a graph G(V ,E), where the arcs correspond to precedence relations
and activities to nodes. Each job (Ai ) has a corresponding starting time, Si in Rn+2, and is run till
completed. In order to run the activities a set of q renewable resources, R = {R1, . . . ,Rq }, is needed.
The availability of the resources are described by a vector B , such that Bk is the availability of re-
source Rk . The total makespan of the schedule is defined by the start of the end task Sn+1, which
is a dummy variable, and therefore the objective function can be mathematically described as in
Eq. 2.1. Eq. 2.2 describes the precedence constraints and Eq. 2.3 describes the resource constraints.

Objective Function:

Mi ni mi ze : Sn+1 (2.1)

Subject to:

S j −Si ≥ pi ∀(Ai , A, j ) ∈ E (2.2)

∑
Ai∈At

bi k ≤ Bk ∀Rk ∈ R, ∀t ≥ 0 (2.3)

However, this basic formulation of the problem is very limited, and for real-life applications the
model needs to be adapted. In literature, the vast majority of the RCPSPs focus on minimizing the
makespan of a particular schedule, some variations exist that focus on minimizing cost, and some
that consider multi-objectives [16]. Variations are more commonly accommodated by altering con-
straints and the set up of the model. This leads to several types of the RCPSP.

The most common variation in the RCPSP, is that of single- and multi-mode applications. In the
Multi-mode version of the problem (MRCPSP) an activity can have a different elapse time, based
on the amount of resources that are allocated to it, where the single-mode problem has a fixed du-
ration. The MRCPSP is mostly used in the machine job-shop scheduling problem where several
heuristic and exact solutions have been proposed [4, 66, 72]

Another distinction between RCPSP models is the possibility to add temporal constraints. These
constraints limit the possible start and end times of activities to a predefined time window. Drezet
and Billaut [29] deal with this problem and introduce a model in which jobs have a start and finish
deadline. The model also includes a variation in the amount of resources that are required over time.

In some cases resources can be non-renewable or "used-up" during the schedule. In Slowinski [82]
it is stated that often real-life projects make use of renewable as well as non-renewable resources.
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The problem is formulated as a multi-objective linear programming model and the distinction of
preemption is introduced, in which activities can be stopped when not yet completed, and contin-
ued at a later date.

2.3.3. Solution techniques
As discussed earlier, the scheduling of aircraft letter checks is NP hard. This is also the case for the
RCPSP. This makes large scale problems difficult to solve with exact methods. In literature, several
different techniques have therefore been encountered. These techniques range from exact methods
to approximation methods and are discussed in this section.

Mathematical Programming
Since the problem is NP hard an exact solution method is only tractable for smaller size prob-
lems. However, the solution from the exact methods for a smaller size problem can be used as a
benchmark for approximation techniques and are therefore still useful for the problem. Krause et
al. [54] for example, use exact methods to benchmark evolutionary algorithms for the scheduling of
a pipeline network.

A model often used in mathematical programming, is Mixed-Integer Linear Programming (MILP),
which when solved with an exact method is capable of finding an exact solution for the problem.
Commercial Linear Programming (LP) solvers such as CPLEX or Gurobi often have the best perfor-
mance and make use of the Branch-and-Bound algorithm [41]. Papadakos [34] discusses the prob-
lem of maintenance-scheduling for a fleet of fighter jets with the purpose of maximizing average
fleet availability. The problem is formulated as a MILP and is solved by an exact solution algorithm,
which initially finds an upper bound on the optimum and then slowly converges by reducing the
bound in a stepwise manner, until a solution is found that attains this bound. The algorithm shows
significant computation time improvements in several test cases. However, when slight alterations
are made to the model, the computation time increases significantly.

Beliën et al. [13] introduce a branch-and-bound enumeration algorithm for the integrated staffing
and scheduling of line-maintenance in order to solve the problem in acceptable computation time.
Each node in the branch-and-bound tree represents a distinct combination. However, in each node,
the MILP is limited on computation time and thus not solved to optimality. In order to find a fea-
sible solution, extra constraints are added and a limit on total computation time has to be set.
Gabteni and Grönkvist[33] introduce column generation and constraint programming in order to
reduce computational time and find close-to-optimal solutions for the tail assignment problem.
The pricing algorithm from the column generation is used with constraint programming to model
the maintenance constraints. Other techniques used with the MILP formulation found in aircraft
maintenance literature are: Benders’ decomposition [39], Branch-and-price [10], and Lagrangian
relaxation [38]

Another mathematical programming approach is dynamic programming. Dynamic programming
was first introduced by Bellman[28], and divides a complex large-scale problem into multiple stages
and states. These reduced sub-problems are solved to find an optimal policy according to the Bell-
man optimality principle[15]. However, the direct implementation of DP in real-world applications
is usually limited by the “curse of dimensionality” [14] and the “curse of modeling” [17]. Moudani
and Mora-Camino [62] therefore introduce a hybrid dynamic programming approach, which solves
the fleet assignment problem using dynamic programming, together with greedy-heuristics to ad-
dress the sequential maintenance scheduling problem. The hybrid approach is meant for an on-line
decision support system and focuses on improving total available flight hours. However, compu-
tational time does still increase significantly when considering larger scale problems. In order to
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combat the high computational effort,Deng et al.[25] propose a forward induction dynamic pro-
gramming approach. To address the issue of a multi-dimensional action vector, a priority based
solution is used and to further reduce the number of final states a thrifty algorithm is incorporated
as well as discretization and state aggregation. Dynamic Programming requires a model of the envi-
ronment in the form of a Markov Decision Process (MDP). Reinforcement or Q-learning approaches
also solve to find an optimal policy according to the Bellman optimality principle, but do not re-
quire a model of the environment ("model-free"). Matilla and Virtanen [59] propose a λ-SMART
algorithm that solves for Bellman optimality while simultaneously learning optimal Q-factors. The
approach solves the optimal maintenance policy for maximum fleet availability of fighter aircraft
and uses an ε-greedy strategy to explore other solutions.

Meta-heuristics
The primary solution techniques found in literature are meta-heuristics. The different meta-heuristics
can be divided into local search heuristics, population-based heuristics, and learning heuristics.

The first type of local search heuristic that is often used is Tabu search. It was first introduced in
Glover [35] and starts at an initial solution from which a set of neighbors is created, based on accept-
able moves. The algorithm then chooses the best solution out of the set of neighbors and moves to it.
Each iteration this process is repeated. El-Amin et al. [30] use Tabu search for the scheduling of pre-
ventive maintenance of electric generating units. However, the proposed algorithm requires a large
number of iterations. Next to that, the optimality of the solution needs to be assessed by comparing
it with exact benchmark results with no guarantee of an optimal solution. In order to improve the
local search heuristic, a Simulated Annealing (SA) approach is often adapted. Simulated Annealing
works relatively similar to Tabu search. From the neighborhood of an initial solution a new solution
is sampled. If this solution is better (according to an evaluation function) than the present solution,
it is established as the new solution. However, with the SA approach there is a chance of accepting
a solution that performs worse than the present solution. Saraiva et al. [75] adapt a SA approach
for the same generator maintenance scheduling problem as in El-Amin et al. [30]. The algorithm
is tested against two case studies and can provide feasible maintenance schedules. However, the
number of iterations necessary is still very large and the solution is far from optimal.

Population-based meta-heuristics are encountered often in scheduling literature. One of these type
of heuristics is Ant Colony Optimization (ACO) and falls under swarm intelligence algorithms. Ant
colony optimization is based on the natural phenomenon of how an ant colony locates food. Ants
leave their nest in a random walk and leave a trail of a chemical substance called "pheromones",
when an ant finds food it follows the trail back to its home, reinforcing that trail with more pheromones.
An ant chooses based on the concentration of pheromones, resulting in the emergence of the short-
est path. ACO heuristics use a multi-agent system in which a solution to the problem is found by
each ant based on the collective experience of the colony. Khalouli et al [48] adapt the ACO tech-
nique for the scheduling of preventive railway maintenance. In the proposed algorithm each ant
first creates an arraignment of maintenance opportunities based on a probability state transition
rule. This process is iterated until all opportunities have been selected and stored into a Tabu list.
From the list of opportunities a maintenance schedule is created based on constraints and a greedy
heuristic. At the end of each iteration the local and global pheromone trails are updated based on a
pheromone evaporating value and the best solution, respectively. Several test cases show promising
results on solution effectiveness and computational time. It is however, a relatively new technique,
and the time to converge can be uncertain [88].

The most widely used population-based meta-heuristic in scheduling literature is the Genetic Al-
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gorithm (GA). The concept of a GA was first introduced in Holland [40] and is an adaptive method
based on the genetic processes of biological organisms. More specifically, it is based on the theory
of evolution, in which populations evolve over many generations based on survival of the fittest and
natural selection. A Genetic Algorithm starts with an initial population of possible solutions. Of
each of the solutions the "fitness" to the problem is determined based on an evaluation function
and constraints. New possible solutions are generated by selecting the best solutions from the cur-
rent "generation", and by using cross over operations in order to produce a new set of solutions.
Also, a possibility of mutations to the solution are incorporated for the new generation. The new
generation will contain more solutions with characteristics from the best members of the previous
iteration. Over many generations, the solution converges to an optimum, when designed properly.
Mutation ensures exploration of other solutions and prevents getting stuck in local optima. Regard-
ing aircraft maintenance, a GA is used in Yang and Yang [93] to schedule maintenance opportunities
based on an original flight plan. The GA is very basic, but a simulation experiment shows the possi-
bility of the algorithm to come up with feasible maintenance schedules while minimizing the costs.
Quan et al. [68] use a more complex genetic algorithm to address a multi-objective preventive main-
tenance scheduling problem. Kleeman and Lamont [50] also address a multi-objective problem,
that of scheduling heavy-maintenance on aircraft engines. Experimental results show the possibil-
ity of a GA to efficiently solve the scheduling of maintenance while obtaining a "good" solution. One
of the main downsides of the GA however, is the great computational effort that is required when
the problem gets more complex. When considering the more general RCPSP, Elshaer [31] compares
several GAs introduced in literature for solving the RCPSP.

The main research direction in the last years is the hybridization of meta-heuristics. The usual way
a hybrid meta-heuristic algorithm is developed combines local-search methods with population-
based meta-heuristics, and fall under the group of integrative hybrids. When executing different
meta-heuristics in parallel, the resulting algorithm falls under the collaborative hybrids.

Within the integrative hybrids, it is possible to make a distinction of two types: single-solution, and
population-based hybrids. For single-solution hybrids an auxiliary hybrid is embedded into a main
meta-heuristic in order to diversify the search. Zamani [95] combines cross-over operations from
GAs with local search methods. The main difference with a general GA is the fact that it concentrates
on the continious improvement of one good solution. For population-based solutions a local search
method is embedded into a population-based meta-heuristic. Valls et al. [86] integrate the double
justification local search method in various different meta-heuristics, such as Genetic Algorithms
and Simulated Annealing. Several experiments show an improvement in the scheduling solution
while not increasing computation time. In order to reduce computation time, Thammano and Phu-
ang [84] combine Tabu search (TS), Simulated Annealing, and Genetic algorithm heuristics. Where
a new population is generated in two parts: the first 80% is generated through standard GA cross-
over methods, while the second 20% is generated by an integrated TS-SA search. Bench-mark data
sets where used in order to evaluate the algorithm, showing promising results regarding the RCPSP.

When considering the class of collaborative heuristics the main distinction is that between sequen-
tial and parallel hybrids. Sequential hybrid meta-heuristics execute each method in a sequential
manner, where the solution of the previous method is used. In parallel hybrids, the methods are ex-
ecuted in parallel and communicate with each other. The main focus of sequential hybrid methods
has been on coupling GA with local search methods. Tseng and Cheng [85] combine the previously
mentioned ACO with GA in a sequential manner. Here the initial population of the GA is found
by ACO, where the execution of the GA updates the pheromone levels in the ACO. The proposed
method is compared with other methods by testing with bench-mark data sets. Another promising
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sequential hybrid method is found in Agarwal et al. [1]. Here the learning based Artificial Neural
Network (ANN) heuristic is combined with GA. This Neurogenetic approach feeds the best solu-
tion of each approach into each other. Zheng and Wang [57] propose a parallel hybrid method for
the RCPSP. They introduce a multi-agent optimization algorithm, which is based on a multi-agent
system and swarm intelligence. Wei et al.[89] combine GA with SA for the flow shop scheduling
problem in a sequential manner.

Overview
An overview of the main independent techniques and formulations encountered in literature can be
found in Tab. 2.2. Here the main drawbacks are briefly summarized and relevant papers in aircraft
maintenance and scheduling are listed.
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Table 2.2: Overview of solution techniques and formulations found in literature with their main drawbacks

Solution Technique/-
Formulation

Main Drawbacks Scheduling pa-
pers

Mixed-Integer Linear
Programming

For large-scale NP hard problems in-
tractable due to high computational effort;
Non-Convexity

[7, 26, 34, 52]

Branch-and-Bound For large complex problems, the amount of
nodes can be very large, requiring very high
computational effort

[13, 77, 90]

Column generation More complex to formulate column genera-
tion problem in order for it to be benificial

[23, 33, 64]

Constraint Programming High computational effort; Limited pro-
gramming libraries available

[6, 33]

Benders’ decomposition Time-consuming iterations;Slow conver-
gence at the end of the algorithm; Poor
feasibility and optimality cuts

[39]

Dynamic Programming Number of states grows exponentially in n-
dimensional state space (Curse of dimen-
sionality); Curse of modeling

[25, 62]

Tabu Search Highly dependent on initial solution; Se-
rial iterative search process so for large-scale
problems high computational effort; Opti-
mal solution is not guaranteed

[8, 24, 30]

Simulated Annealing High computational time, especially if cost
function is extensive to compute; Tailoring
necessary for different constraints; Optimal
solution is not guaranteed

[2, 75]

Ant Colony Optimization Difficult to set initial design parameters; No
way to deal with problems of scattering;
Possibility of premature convergence in lo-
cal optimum; Optimal Solution is not guar-
anteed

[48, 88]

Genetic Algorithm Difficult to set initial design parameters;
Strong dependence on initial solution; High
computational effort for large complex
problems; Optimal Solution is not guaran-
teed

[40, 50, 60, 68, 93]
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2.4. Uncertainties
Uncertainty occurs when there is an absence of information or comprehension about a problem
and its possible consequences. It is possible to understand, manage, and reduce uncertainty, but
it cannot be completely removed [71]. Aircraft heavy-maintenance is a complex dynamic project
and possesses varying degrees of uncertainty, which can influence the execution and creation of a
maintenance schedule. For the long-term planning of aircraft heavy-maintenance, it is therefore
important to identify these uncertainties and their effect on the maintenance schedule.

2.4.1. Heavy-maintenance
When performing a heavy maintenance check a set of routine tasks are defined in the scheduled
maintenance program, the so called routine maintenance activities. However, inspection of the air-
craft can find unexpected damage or failures for which unscheduled activities must be performed.
These non-routine findings, or unscheduled maintenance, are common occurrences in mainte-
nance checks and can increase the elapse time of a maintenance check, impacting the maintenance
schedule, which in turn can affect maintenance cos and lead to disruptions. Samaranayake [73]
recognizes that, uncertainty encountered in aircraft maintenance, coming particularly from non-
routine/unscheduled maintenance, affects the planning and scheduling of aircraft maintenance.
The author realises the importance of non-routine findings and states that about 50% to 60% of
the maintenance workload result from these findings. A more recent case study in Dinis [27] shows
that this number can even be higher and increases with aircraft age. This is confirmed by Fig. 2.3,
where for the C-Check of an aircraft type of an European MRO over its lifetime, the ratio between
scheduled and unscheduled maintenance can be seen.

Figure 2.3: Ratio of routine and non-routine workload for aircraft C-check [27]

The stochastic nature of this non-routine maintenance can hamper accurate planning and resource
forecast and result in continuous adjustments to the initial maintenance schedule. This can result in
backlog can affect maintenance cost, quality of service, and the maintenance schedule. The prob-
lem often lies in the lack of historical data, such that describing the uncertainty with a probability
distribution is difficult. However, when considering the long-term planning of aircraft maintenance
checks these non-routine findings influence the duration of maintenance checks and based on his-
toric data a distribution could be estimated.Next to non-routine findings, variable routine tasks can
also influence the duration of a heavy-maintenance check. These variable routine tasks can consist
of deferred maintenance from other checks, Airworthiness Directives (AD), or Service Bulletins (SB).
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As discussed in Sec. 2.1 the need for scheduling an aircraft maintenance check is not only based on
calendar days, but also on flight hours and flight cycles. The utilization of aircraft is therefore also
very important when creating a long-term maintenance schedule. Since this schedule considers a
time horizon of about 5 years [18] the utilization of aircraft can change over the years, based on for
example the network structure and objectives of the airline. Point-to-point carriers, for example,
tend to have a higher utilization than hub-and-spoke carriers. Next to that the utilization is also
affected by the downtime necessary for aircraft maintenance.

Other factors that can influence the heavy maintenance are workforce and spare parts availability,
but are more relevant when considering the short-term planning instead of long-term.

2.4.2. Modelling Uncertainty
As discussed uncertainty can occur in different degrees in a complex project. Based on the knowl-
edge, different techniques of incorporating the uncertainty can be used.

Bounded Form
When little information is available about the uncertain parameter an accurate characterization in
the form of a probability distribution is not possible. Sometimes only error bounds can be obtained,
since, in that case, there is no need for information about the type of uncertainty. When consider-
ing a bounded form description, intervals can be used to incorporate uncertainty. The parameter
can then be described by an interval with a lower and upper bound in interval θ ∈ [θmi n ,θmax ]. All
possible realizations of the uncertain parameter are represented by these bounds, which can be de-
termined from historical data.

Probability Description
The most common representation of an uncertain parameter is the use of probabilistic models.
This is often only possible when more information about the behaviour of uncertainty is available.
The probabilities of events describe the uncertain parameter. The probability distribution func-
tion of the uncertain parameter (random variable) X can then be defined by F (a) = P (X ≤ a) for
−∞< a <∞. This can be done for both a continuous or discrete random variable, although most
uncertain parameters in aircraft maintenance, such as failure rates and non-routine findings, are
most commonly described as discrete parameters. When incorporating this into scheduling models
a continuous probabilistic function needs complicated integration schemes,where a discrete repre-
sentation needs a large number of scenarios.

Fuzzy Description
When historical data is not readily available uncertainty can be modelled with Fuzzy sets and Fuzzy
logic. Zadeh [94] introduced the use of fuzzy logic with possibility theory. In classical set theory the
membership functionµA can be 0 or 1 indicating whether it belongs to the set. In fuzzy sets however
it can take a value between 0 and 1, indicating it partially belonging to the set. Where a high number
indicates a high possibility and a low number a low possibility. Fuzzy sets have the benefit that there
is no need lots of different scenarios as with a discrete probabilistic representation. An overview of
fuzzy representation in scheduling can be found in Slowinski and Hapke [70] that gathers significant
work in fuzzy scheduling.

2.5. Stochastic Scheduling Models
Currently, to the best of the authors knowledge, there is no literature available that addresses the
long-term scheduling of aircraft maintenance checks while taking uncertainty into account. How-
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ever, when considering the general problem of aircraft maintenance scheduling some papers exist
that do. Mattila and Virtanen [59] take into account uncertainty in failure rates and maintenance
duration when scheduling maintenance for a fleet of fighter jet. The uncertainty parameters are
modelled with a probabilistic approach and are Gamma distributed. A reinforcement learning ap-
proach is applied to find an optimal maintenance policy. However, the capability of the model
to be used in actual decision making requires the solution of several different problem instances.
Sohn and Yoon [78] use the random effects Weibull regression model in order to take non-constant
mean time between failure (MTBF) and mean time to repair (MTTR) into account for the dynamic
scheduling of preventive maintenance. Overall the general trend in scheduling literature is more
and more focused on incorporating uncertainty in the models

2.5.1. Stochastic Scheduling Types

When considering scheduling, there is a distinction between reactive and preventive scheduling.
Reactive scheduling focuses on modifying an already existing schedule based on the realization of
uncertain events. On the other hand, preventive scheduling deals with uncertainty beforehand. As
discussed in Sec. 2.4.2 several different techniques exist to incorporate uncertainty. For preventive
scheduling a distinction can be made between: stochastic scheduling, robust optimization, and
fuzzy programming.

When considering the stochastic programming approach the objective function is mostly based on
an expectation. Take the RCPSP for example, the most common objective function is minimizing
makespan. However, when considering the stochastic version the objective function can become
minimizing the expected makespan. With stochastic scheduling a set of different scenarios is as-
sessed and the solution to the problem consists of a number of different schedules. For each possi-
ble scenario a different schedule may arise. The solution to the problem therefore becomes a policy
how to dynamically schedule based on different scenarios. For large scale problems the number of
scenarios can be vast, where sample average approximation could be used to reduce the number
of scenarios. Most problems are modelled as a two- or multi-stage stochastic programming model
with recourse. In these type of models a baseline schedule is created and when there is a realization
of uncertainty recourse actions are taken to adapt. Lamas and Deulemeester [55] adapt a stochastic
model with chance constrained programming aproach for the RCPSP with uncertain task duration.
This chance constrained version of the RCPSP finds a schedule of minimal makespan such that the
constraints (Eq. 2.2 and Eq. 2.3 ) are feasible with a predefined confidence level. Sample average
approximation (SAA) is used, which replaces draws task duration from an empirical distribution.
The problem with this however, is that the solution to the SAA might be infeasible and non-optimal
to the original problem, depending on sample size.

With robust scheduling the focus lies on building a schedule where the effect of disruptions is min-
imized. It tries to ensure that the predictive schedule is feasible for a vast number of scenarios,
while maintaining a high performance. Robustness can be defined as solution robust and model
robust. If a solution is solution robust, the variation in the solution is minimal with changing sce-
narios. If a solution is model robust, feasibility is maintained for a vast number of scenarios. The
underlying idea behind robust optimization is to find a solution which is robust to changes in the
environment introduced by uncertainty. Several robustness approaches exist in literature. Mogaadi
and Fayech [61] for example, use a min-max approach for the stochastic RCPSP. Here the "fitness" of
a solution is assessed by looking at multiple scenarios and finding the maximum makespan over all
scenarios. Chaari et al. [20] use a robustness criterion based on a set N of disrupted scenarios and
use it as an evaluation function seen in Eq. 2.4 where f I is the performance of the initial scenario I ,



40 2. State of the Art

and fζi the performance of one of the disrupted scenarios ζi (I ). This gives a bi-objective evaluation,
where λ ∈ [0,1] expresses the importance of the initial scenario and the deviation of the disrupted
scenarios (degree of risk).

fr (x) =λ f I (x)+ (1−λ)

√
1

N

∑
i∈N

(
fζi (I )(x)− f I (x)

)2 (2.4)

Fuzzy programming is not common in scheduling literature, but can be useful when information
on probability distribution is not readily available. Balasubramanian and Grossmann [9] apply a
fuzzy set approach to the flow shop scheduling problem with uncertain duration. The approach
reduces computation time significantly and results in most likely, pessimistic and optimistic repre-
sentations. The uncertainty is described with triangular fuzzy numbers. The benefit of this repre-
sentation is that the computation of the objective function is easier, which makes the application of
heuristic search algorithms a good option to solve within reasonable computing time.

2.5.2. Solution Techniques
As with the deterministic scheduling case, Sec. 2.3.3, several solution techniques can be found in
literature for the scheduling under uncertainty.

Mathematical programming
Due to the different scenarios, the use of exact methods for larger scale problems can be even more
intractable. Still, for some smaller cases exact methods can be found in literature. The most repre-
sentative exact solution approach to the stochastic RCPSP is, as with the deterministic case, Branch-
and-Bound. Leus and Herroelen [56] propose a Branch-and-Bound algorithm for resource alloca-
tion with variable activity durations. De Bruecker et al. [19] use a model enhancement heuristic for
robust workforce scheduling of aircraft maintenance. A Branch-and-Bound algorithm is applied for
the initial deterministic MILP, after which uncertainty is incorporated by running Monte Carlo sim-
ulations. From the simulations extra constraints are added to the model, after which the process
reiterates. Lamas and Deulemeester [55] adapt a stochastic model with chance constrained pro-
gramming aproach for the RCPSP with uncertain task duration. In order to solve the problem they
adapt a Branch-and-Cut algorithm to reduce computation time. (Stochastic) Dynamic Program-
ming is also an approach that is encountered in literature. The markov chains can be used to model
uncertain parameters, but large scale problems result in an enormous state space, so often adap-
tations are necessary. Choi et al. [22] use DP, where the state space is confined through heuristics
to solve the stochastic RCPSP with uncertain duration. Tereso et al. [83] suggested approximation
schemes in order to reduce computational effort for the same problem.

Meta-Heuristics
The most commonly used technique for the stochastic scheduling problem is the previously dis-
cussed genetic algorithm. Chaari et al. [20] use a GA to solve the robust hybrid flow shop scheduling.
The fitness of a schedule is evaluated according to Eq. 2.4, with the objective to minimize makespan
for an initial scenario and the difference caused by disruptions. The GA was validated through sim-
ulation and showed that the evaluation method can incorporate a high degree of uncertainty, while
trading-off robustness and optimality. Al-Dhaheri et al. [3] use a simulation-based GA approach
to incorporate uncertainty in the scheduling of quay cranes. In the algorithm, the performance of
each solution is evaluated based on an embedded simulation model using Monte Carlo sampling.
An overview of the way the GA and the simulation are embedded can be seen in Fig. 2.4
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Figure 2.4: Genetic Algorithm incorporating uncertainty through Monte Carlo Sampling [3]

Local search heuristics, although less, are also encountered in literature. In Pan and Yeh [63] for
example, a Simulated Annealing algorithm is used together with Fuzzy operations in order to solve
the RCPSP with uncertain task duration.

As is the case with the deterministic scheduling models, current research trends show a direction to-
wards hybridization of meta-heuristics. Recently, Kerkhove and Vanhoucke [47] for example, have
introduced a hybrid SA and dedicated algorithm together with discrete event simulation to schedule
offshore construction projects under uncertain weather conditions. The discrete event simulation is
used to generate weather simulations, where the SA and Dedicated algorithm combine as optimiza-
tion heuristics. Masmoudi and Haït [58] combine a greedy algorithm with GA for project scheduling
under uncertainty. The uncertain parameters are represented by Fuzzy modelling. The algorithm
is applied to the task scheduling of civil helicopter maintenance, where task duration are based on
expert opinion

For the algorithms that are used in the stochastic models, the same drawbacks as presented in
Tab. 2.2 apply.





3
Discussion

Having explored the state of the art in Sec. 2, it is important to discuss the findings and how they are
applicable to the thesis research. Additionally, it should become clear whether a gap in literature
exists with respect to the long term scheduling of aircraft heavy maintenance checks.

Firstly, in Sec. 2.1 an overview and short summary of the scheduling of maintenance letter checks is
discussed. This to give a theoretical basis to how and on which indicators the periodic maintenance
of aircraft is scheduled. Sec 2.2 discusses the current approach of MROs to this scheduling. Where
Boere [18] is the main literature work on the development of a simulation model (AMOS) that assists
airlines in the development of long-term heavy-maintenance schedules. Many operators have since
developed similar approaches, but most solutions are in-house and ad-hoc tools. Some overal fleet
planner tools are currently being developed, like the IFS maintenix tool [44]. However, the main
drawback in current approaches is that it is reliant on experience of the operator and manual input.
Revisions are also a frequent necessity due to disruptions in the original schedule.

Secondly, Sec. 2.3 discusses the main literature on the long-term scheduling of heavy-maintenance
checks, aircraft maintenance scheduling literature in general, and the resource constrained project
scheduling problem. It is clear that there are not many papers that regard the long-term aircraft
maintenance scheduling. Boere [18] is the main work and introduces a discrete integer program-
ming formulation of the problem. This work also introduces a number of constraints and conditions
based on aircraft maintenance scheduling experience. Deng et al. [25], recently expanded these
constraints and provide a list with conditions that are commonly used in airlines/MROs. The list
from Deng et al. [25] can be used to adapt the integer programming formulation from Boere. [18]
for the thesis research. Although little research on long-term scheduling has been found, the short-
term scheduling maintenance routing problem has received a lot more attention. From these pa-
pers regarding airline maintenance scheduling in general, several objectives found in literature are
discussed in Sec. 2.3.1. The objective of minimizing maintenance cost is the most common objec-
tive. However, available maintenance cost data can be unreliable and hard to associate with spe-
cific maintenance checks. Next to that, is the fact that a day out of operations is more costly than
maintenance costs, so operational costs would be a more relevant objective. The objective function
that is most applicable to the research is therefore the minimization of aircraft unavailability as in
Boere [18] and Deng et al. [25], and consequently the reduction of number of aircraft checks in the
long-term. Next, in Sec. 2.3.2, the RCPSP is described. Since the RCSPS is a basic scheduling prob-
lem with common characteristics and a broad application, state of the art literature could be rele-
vant for the scheduling of aircraft heavy-maintenance checks. Furthermore, Sec. 2.3.3 describes the
most common solution techniques found in the before mentioned literature on long-term schedul-
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ing, aircraft maintenance scheduling, and the RCPSP. From literature it is clear that the problem
is a NP hard one [37, 65], therefore exact solution techniques become intractable for larger scale
problems. However, the formulation of the problem as a MILP, together with commercial solvers’
branch-and-bound technique, can still be used as a benchmark for approximation techniques. In
this sense, smaller test cases can be developed in order for the technique to remain tractable as is
done in Krause et al. [54], where a MILP approach is used as a benchmark for several evolutionary
algorithms. Due to the NP hardness of the problem the most encountered solution techniques are
meta-heuristics. More specifically, genetic algorithms of which a comparison for the RCPSP of sev-
eral GAs is found in Elshaer [31]. The main research direction found in deterministic scheduling
literature is that of the hybridization of meta-heuristics. Where Wei et al. [89] combine the advan-
tages of the genetic algorithm with that of the local search procedure simulated annealing. GA is
used to generate an near-optimal solution, after which SA is employed in order to search for a better
one based on that solution.

Next, the uncertainties encountered when scheduling or performing aircraft heavy-maintenance
are discussed in Sec. 2.4. Due to the dynamic and complex nature of aircraft heavy-maintenance
different degrees of uncertainty can be encountered. The main uncertainty is non-routine main-
tenance work. Samaranayake [73], discusses the issues of uncertainty of maintenance work and
states that about 50 to 60% of total maintenance work comes from non-routine findings. A recent
case study in Dinis [27] shows that this number can even be higher and is is correlated with the age
of the aircraft. When considering the long-term scheduling of maintenance this uncertainty of non-
routine and variable-routine work can indirectly be found in the elapse time of maintenance checks.
The stochastic nature of the duration of maintenance checks can hamper accurate planning and re-
source forecast and result in continuous adjustments to the initial maintenance schedule. This can
result in backlog and can have an impact on scheduled times, cost, and even service quality. Other
factors that were found that can introduce uncertainty where workforce and spare parts availability.
However, this can also be found back in the uncertainty of elapse times of maintenance checks when
considering long-term scheduling. The uncertainty of aircraft utilization is relevant when consid-
ering the long-term scheduling, but data and estimations are scarce. Next to that, utilization is not
expected to fluctuate by a huge amount. Therefore, considering uncertainty in check duration can
be the main focus of the research.

Lastly, Sec. 2.5 discusses the literature on scheduling under uncertainty. It is clear, that when re-
garding the scheduling of aircraft maintenance little work has been performed that considers un-
certainty. Mattila and Virtanen [59] take into account uncertainty in failure rates and maintenance
duration when scheduling maintenance for a fleet of fighter aircraft. However, the capability of the
model to be used in actual decision making requires the solution of several different problem in-
stances and is based on a policy based approach. When considering the RCPSP, significantly more
work has been done on incorporating uncertainty. As a matter of fact it is one of the main re-
search directions in the field. Robust approaches are popular, and when considering the long-term
scheduling of aircraft heavy-maintenance, could be benificial. Especially model robust methods, in
which the schedule is feasible for most possible scenarios, would reduce the need for continuous
schedule revisions. Chaari et al. [20] use a bi-objective robustness criteria, in which the perfor-
mance of an initial scenario is evaluated together with the performance deviation of disrupted sce-
narios with respect to the initial one In order to solve the stochastic scheduling problems the main
method that is used in literature GA, which complies with the deterministic case. Simulation, such
as Monte Carlo sampling, or sample average approximation are often used with meta-heuristics to
assess the objective function in an uncertain environment. Al-Dhaheri et al. [3] for example, use an
embedded simulation model to evaluate the fitness when using a GA. This method, could be fur-
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ther developed for the long-term scheduling of heavy-maintenance by for example incorporating
the local search technique SA, as in Wei et al. [89]. Following, the research trend of hybridization of
meta-heuristics.

Inasmuch, it is clear that there has been little focus on the long-term scheduling of heavy-maintenance
checks in literature. Next to that, the inherent stochastic nature of the maintenance in the schedul-
ing is not taken into account when creating an initial schedule. A robust long-term schedule could
reduce the number of adjustments to the schedule, reduce cost, and give a good forecast of required
resources. Especially, since the MRO spend spans on average 9.5 to 11% of the total operating cost
of an airline [42], reducing these costs can be very beneficial in the long-term for airlines. The goal
of developing a scheduling model that takes into account the uncertainty of maintenance check du-
ration should therefore be the main focus of the research. In this sense the relevance of the research
lies in filling this gap in literature and creating a general stochastic scheduling model framework.





4
Research Framework

After the review of the state of the art, the research framework can be set up. This in order to give
direction to the project and define the scope. The main goal of the research is stated as follows:

“To develop a stochastic maintenance scheduling model capable of tractably delivering an effective
long-term schedule for aircraft C-checks while taking into account the main sources of uncertainty

in C-Check scheduling”

In order to achieve this goal a set of research questions are developed that act as a guideline
throughout the research:

1. How can uncertainty be incorporated into the model?

(a) What are the main sources of uncertainty regarding the long-term scheduling of aircraft
C-Checks?

(b) How can the main sources of uncertainty be modelled?

2. In what way can the model be designed?

(a) What are the main functions of the model?

(b) What kind of constraints need to be incorporated in a long-term scheduling model for
aircraft C-checks?

(c) What technique(s) can be used to solve the problem?

3. Is the model capable of improving the schedules compared to current practice?

(a) How do the results of the model compare to a benchmark simulating small test cases?

(b) Do the results of the model simulating an airline case study deliver the required output?

(c) Are the results of the model acceptable regarding computational time, assumptions,
and optimization?
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5
Conclusion

There is an increasing demand on the MRO market, which currently spans around 9.5% of the total
operating cost. Of this, around 70% is covered by heavy-maintenance. Reduction of these costs and
insight in future capacity needs could therefore be significant for an airline. A possible solution is
the optimization of the long-term schedule of heavy-maintenance checks.

In order to get a better understanding on the topic a literature review on the state of the art was
performed. Current approaches to the long-term scheduling of the maintenance checks are shown
to be based on operator experience and simulation models where manual selection is a major
component. Next to that, the initial schedule has to be continuously revised due to the stochastic
nature of aircraft maintenance. These revisions can result in backlog and can have an impact on
scheduled times, cost, and even service quality. The main reason of uncertainty comes from
non-routine findings, which can be around 50% of the total maintenance workload. When
considering the long-term scheduling, the uncertainty introduced by this non-routine
maintenance can be found back in the uncertain duration of the aircraft maintenance checks.
Taking this into account when scheduling could offer more robust schedules where fewer revisions
are necessary. However, in the literature, relatively few papers have been found that address the
long-term maintenance schedule, and all found papers focus on the deterministic scheduling
problem. Analysis of the state-of-the art of deterministic aircraft maintenance scheduling
problems together with the RCPSP, show that the main research direction in solution techniques is
the hybridization of meta-heuristics. Where genetic algorithms are the most common solution
technique encountered. The main research direction in scheduling literature, is addressing the
stochastic scheduling problem. Where, similar to the deterministic case, the main solution
techniques are meta-heuristics combined with Monte Carlo simulations to incorporate the
uncertainty. The relevance of the research lies thus in filling the gap in literature by creating a
long-term scheduling model for aircraft maintenance checks while taking into account
uncertainty. Furthermore, a robust long-term scheduling model could reduce maintenance costs
in the long-term and give a reliable estimation of future resource needs for airlines.

With the knowledge from the literature review the research aim has been described as follows: “To
develop a stochastic maintenance scheduling model capable of tractably delivering an effective
long-term schedule for aircraft C-checks while taking into account the main sources of uncertainty
in C-Check scheduling”. Through several research questions the project research will try to fulfill
this aim.
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[23] Jean-François Cordeau, Goran Stojković, François Soumis, and Jacques Desrosiers. Benders
decomposition for simultaneous aircraft routing and crew scheduling. Transportation
Science, 35(4):375–388, 2001. doi: 10.1287/trsc.35.4.375.10432. URL
https://doi.org/10.1287/trsc.35.4.375.10432.

https://dx.doi.org/10.1016/j.ejor.2013.10.066
https://dx.doi.org/10.1016/j.cor.2012.11.011
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800080314
https://science.sciencemag.org/content/153/3731/34
http://www.sciencedirect.com/science/article/pii/S037722171500380X
https://dx.doi.org/10.1080/0951192X.2011.575181
https://dx.doi.org/10.1016/j.autcon.2008.11.003
http://www.sciencedirect.com/science/article/pii/S0098135403002412
https://doi.org/10.1287/trsc.35.4.375.10432


Bibliography 53

[24] Jorne Van den Bergh, Philippe De Bruecker, Jeroen Beliën, Liesje De Boeck, and Erik
Demeulemeester. A three-stage approach for aircraft line maintenance personnel rostering
using mip, discrete event simulation and dea. Expert Systems with Applications, 40(7):2659 –
2668, 2013. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2012.11.009. URL
http://www.sciencedirect.com/science/article/pii/S0957417412012195.

[25] Qichen Deng, Bruno F. Santos, and Richard Curran. A practical dynamic programming based
methodology for aircraft maintenance check scheduling optimization. 2019. [Not Published
Yet].

[26] Ulrich Derigs and Stefan Friederichs. Air cargo scheduling: integrated models and solution
procedures. OR Spectrum, 35(2):325–362, Mar 2013. ISSN 1436-6304. doi:
10.1007/s00291-012-0299-y. URL https://doi.org/10.1007/s00291-012-0299-y.

[27] Duarte Dinis, Ana Barbosa-Póvoa, and Ângelo Palos Teixeira. A supporting framework for
maintenance capacity planning and scheduling: Development and application in the aircraft
mro industry. International Journal of Production Economics, 218:1–15, 2019. ISSN 0925-5273.
doi: 10.1016/j.ijpe.2019.04.029. URL https://dx.doi.org/10.1016/j.ijpe.2019.04.029.

[28] S.E. Dreyfus. Richard bellman on the birth of dynamic programming. Operations Research, 50:
48–51, 02 2002. doi: 10.1287/opre.50.1.48.17791.

[29] L.-E. Drezet and J.-C. Billaut. A project scheduling problem with labour constraints and
time-dependent activities requirements. International Journal of Production Economics, 112
(1):217 – 225, 2008. ISSN 0925-5273. doi: https://doi.org/10.1016/j.ijpe.2006.08.021. URL
http://www.sciencedirect.com/science/article/pii/S0925527307001405. Special
Section on Recent Developments in the Design, Control, Planning and Scheduling of
Productive Systems.

[30] Ibrahim El-Amin, Salih Duffuaa, and Mohammed Abbas. A tabu search algorithm for
maintenance scheduling of generating units. Electric Power Systems Research, 54(2):91 – 99,
2000. ISSN 0378-7796. doi: https://doi.org/10.1016/S0378-7796(99)00079-6. URL
http://www.sciencedirect.com/science/article/pii/S0378779699000796.

[31] Raafat Elshaer. Solving resource-constrained project scheduling problem using genetic
algorithm. Journal Of Al Azhar University Engineering Sector, 12:187–198, 02 2017.

[32] M. Etschmaier and P. Franke. Long-term scheduling of aircraft overhauls. AGIFORS
Symposium, 1969.

[33] Sami Gabteni and Mattias Grönkvist. Combining column generation and constraint
programming to solve the tail assignment problem. Annals of Operations Research, 171:61–76,
10 2009. doi: 10.1007/s10479-008-0379-1.

[34] Andreas Gavranis and George Kozanidis. An exact solution algorithm for maximizing the fleet
availability of a unit of aircraft subject to flight and maintenance requirements. European
Journal of Operational Research, 242(2):631 – 643, 2015. ISSN 0377-2217. doi:
https://doi.org/10.1016/j.ejor.2014.10.016. URL
http://www.sciencedirect.com/science/article/pii/S0377221714008376.

[35] Fred Glover. Artificial intelligence, heuristic frameworks and tabu search. Managerial and
Decision Economics, 11(5):365–375, 1990. doi: 10.1002/mde.4090110512. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/mde.4090110512.

http://www.sciencedirect.com/science/article/pii/S0957417412012195
https://doi.org/10.1007/s00291-012-0299-y
https://dx.doi.org/10.1016/j.ijpe.2019.04.029
http://www.sciencedirect.com/science/article/pii/S0925527307001405
http://www.sciencedirect.com/science/article/pii/S0378779699000796
http://www.sciencedirect.com/science/article/pii/S0377221714008376
https://onlinelibrary.wiley.com/doi/abs/10.1002/mde.4090110512


54 Bibliography

[36] Ram Gopalan and Kalyan T. Talluri. The aircraft maintenance routing problem. Operations
Research, 46(2):260–271, 1998.

[37] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms
and Complexity, volume 32. 01 1982. ISBN 0-13-152462-3. doi: 10.1109/TASSP.1984.1164450.

[38] Mohamed Haouari, Najla Aissaoui, and Farah Zeghal Mansour. Network flow-based
approaches for integrated aircraft fleeting and routing. European Journal of Operational
Research, 193(2):591 – 599, 2009. ISSN 0377-2217. doi:
https://doi.org/10.1016/j.ejor.2007.11.042. URL
http://www.sciencedirect.com/science/article/pii/S0377221707011411.

[39] Mohamed Haouari, Hanif D. Sherali, Farah Zeghal Mansour, and Najla Aissaoui. Exact
approaches for integrated aircraft fleeting and routing at tunisair. Computational
Optimization and Applications, 49(2):213–239, Jun 2011. ISSN 1573-2894. doi:
10.1007/s10589-009-9292-z. URL https://doi.org/10.1007/s10589-009-9292-z.

[40] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge, MA, USA,
1992. ISBN 0262082136.

[41] Chung-Yang (Ric) Huang, Chao-Yue Lai, and Kwang-Ting (Tim) Cheng. Chapter 4 -
fundamentals of algorithms. In Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting (Tim)
Cheng, editors, Electronic Design Automation, pages 173 – 234. Morgan Kaufmann, Boston,
2009. ISBN 978-0-12-374364-0. doi: https://doi.org/10.1016/B978-0-12-374364-0.50011-4.
URL http://www.sciencedirect.com/science/article/pii/B9780123743640500114.

[42] IATA. Iata’s maintenance cost task force. airline maintenance cost executive commentary – an
exclusive benchmark analysis. 2016.

[43] IBM. Ilog cplex optimization studio 12.7.1: Cp optimizer online documentation. URL
http://ibm.biz/COS1271Documentation. Accessed on 03.06.2019.

[44] IFS. A new approach to maintenance planning. URL
https://www.ifsworld.com/corp/solutions/ifs-maintenix/fleet-planner/.
Accessed on 13.06.2019.

[45] Alan McKendall Jr, James Noble, and Cerry Klein. Scheduling maintenance activities during
planned outages at nuclear power plants. International Journal of Industrial Engineering:
Theory, Applications and Practice, 15(1):53–61, 2008. ISSN 1943-670X. URL
http://journals.sfu.ca.tudelft.idm.oclc.org/ijietap/index.php/ijie/article/
view/62.
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A
Benchmark Model

To validate the Genetic Algorithm, a benchmark model has been developed based on a novel MILP
formulation. The formulation is an adaptation of the formulation as presented in the paper in
Part I. Adaptations are necessary since the formulation presented in the paper is nonlinear. The
presented model is solved using CPLEX in order to assess the optimality of solutions found by the
GA.

A.1. Objective Function
The objective of minimizing lost flight hours is slightly adapted by introducing a new
semi-continuous variable, Zi , j ,t . This variable is introduced to linearize the objective function and
represents the flown flight hours of aircraft i, if check j is scheduled at time t. The objective function
can be found in Equation A.1 where the first part of the equation represents the difference between
the maximum allowed flight hours and the flight hours an aircraft has flown when a C-check is
scheduled. The second part of the equation represents a penalty if any extra slots are necessary.

min fob j (x,Sn) = ∑
i∈I

∑
j∈Ji

∑
t∈T

(|I F H
i · xi , j ,t −Zi , j ,t

)+ ∑
t∈T

Et ×CE (A.1)

Equations A.2, A.3, and A.4 are introduced to ensure that the new semi-continuous decision
variable Zi , j ,t is either zero if check j is not scheduled at time t for aircraft i (xi , j ,t = 0) or yi ,t when it
is (xi , j ,t = 1).

Zi , j ,t ≤ xi , j ,t · I F H
i ∀i ∈ I , j ∈ Ji , t ∈ T (A.2)

Zi , j ,t ≤ yi ,t−1 ∀i ∈ I , j ∈ Ji , t ∈ T (A.3)

Zi , j ,t ≥
(
xi , j ,t −1

) · I F H
i + yi ,t−1 ∀i ∈ I , j ∈ Ji , t ∈ T (A.4)
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A.2. Constraints

Constraints for the problem can be divided into utilization, operational, and check constraints.

Utilization Constraints
The benchmark model is used for smaller test cases and therefore only considers the usage
parameter of flown flight hours. Calendar days, flight cycles, A-check, and D-check are not taken
into account. Therefore, only Equation A.5 is introduced. It ensures that the flown flight hours for
aircraft i should not exceed the maximum interval.

yi ,t ≤ I F H
i ∀i ∈ I , t ∈ T (A.5)

Equation A.6, A.7, and A.8 update the flown flight hours for all aircraft based on the utilization at
time step t. M is a big number, chosen such that the flown flight hours if an aircraft i is being
maintained at time t (mi ,t = 1) are reset to zero.

yi ,t+1 ≥ yi ,t +Ui ,t ,Sn −M ×mC
i ,t ∀i ∈ I , t ∈ [1, . . . ,T −1] (A.6)

yi ,t+1 ≤ yi ,t +Ui ,t ,Sn ∀i ∈ I , t ∈ [1, . . . ,T −1] (A.7)

yi ,t+1 ≤
(
1−mC

i ,t+1

)
·M ∀i ∈ I , t ∈ [1, . . . ,T −1] (A.8)

Operational Constraints
If an aircraft is scheduled for a C-check it should occupy a hangar for the duration of the C-check.
This is introduced through Equation A.9 where the binary variable mC

i ,t is set to 1 for the duration
of the C-check, [t , t +di , j ,Sn (t )], if check j for aircraft i is scheduled to start a time t (xi , j ,t = 1).
Equation A.10 ensures that the variable mC

i ,t is zero for all other instances.

∑
t∈[t ,t+di , j ,Sn (t )]

mC
i ,t ≥ di , j ,Sn (t )×xi , j ,t ∀i ∈ I , j ∈ Ji , t ∈ T (A.9)

mC
i ,t ≤

∑
j∈Ji

∑
t∈[t−di , j ,Sn (t ),t ]

xi , j ,t ∀i ∈ I , t ∈ T (A.10)

During the entire planning horizon, the number of occupied hangar slots should not exceed the
maximum capacity. This is defined by Equation A.11.

∑
i∈I

mC
i ,t ≤ Lt +Et ∀t ∈ T (A.11)



A.2. Constraints 63

Check Constraints
The C-check is divided into a cycle of 12 check types (C1,. . ., C12). These C-checks are planned
subsequently, meaning that after C1 a C2 check has to be scheduled, after C2 a C3, and so on. In
order to formulate this in the problem, several constraints have been added. Equation A.12 ensures
that if a check of type j+1 is scheduled, it is at a later date than the previous check of type j. Due to
Equation A.13, check j has to be scheduled before a check of type j+1 is planned. Ensuring that the
checks are scheduled according to the cycle.∑

t∈T

(
xi , j+1,t × (t −M)

)≥ ∑
t∈T

(
xi , j ,t × t

)−M ∀i ∈ I , j ∈ [1, . . . , Ji −1] (A.12)

∑
t∈T

xi , j ,t ≥
∑
t∈T

xi , j+1,t ∀i ∈ I , j ∈ [0, . . . , Ji −1] (A.13)

Furthermore, it is necessary that a certain check can only be scheduled once. Resulting in
Equation A.14. ∑

t∈T
xi , j ,t ≤ 1 ∀i ∈ i , j ∈ Ji (A.14)





B
Sensitivity Analysis on GA Parameters

The Genetic Algorithm is a stochastic optimization approach. As such, the parameters of the
genetic algorithm can significantly influence the solution quality of the method. The main
parameters in this paper are the population size, crossover rate, and mutation rate. To analyze the
sensitivity of the GA to these parameters, several runs of the GA have been performed with
different parameter settings. This is done for the case study presented in the paper in Part I for a
fleet of 40+ aircraft. The following operational constraints are taken into account:

• A maximum of 3 C-checks can be executed in parallel;

• During weekends and public holidays no work on a C-check is performed;

• During commercial peak periods (i.e. summer and holiday periods), no C-checks can be
scheduled (Lt = 0);

• Due to resource availability reasons there has to be a minimum of 3 days between the start
dates of two C-checks (dc )

B.1. Mutation and Crossover Rate
Firstly, the GA has been run with different mutation rates, being either 0.2, 0.4, 0.6, 0.8, or 1.0. Next
the crossover rates were chosen to be either 0.0, 0.3, 0.6, 0.9, or 1.0. The runs have been performed
with a fixed population size of 10.

The sensitivity of the objective value and computation time to a change in mutation rate can be
found in Table B.1, where sensitivity is expressed in the estimate of the partial derivative compared
to the 0.6 mutation rate setting. The objective value and computation time are displayed with their
mean value and 95% confidence interval. They are a result of running the GA with varying
mutation rates while keeping the crossover rate constant at 0.9. As can be seen from the table, a
change in mutation rate significantly influences the computation time of the algorithm. The
increase in computation time with an increase in mutation rate is almost a linear relationship. This
is expected, since an increase in mutation rate will increase the number of times the ε-greedy
algorithm is run. From the table it can also be seen that a high mutation rate setting reduces the
average objective value. This is because of the fact that mutation is not random but takes
operational constraints and knowledge about the problem into account. However, a setting of 1.0
negates some of the benefits of crossover and is therefore not necessarily the best setting for
finding the most optimum solution to the problem.
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Table B.1: Sensitivity of objective value and computation time to change in mutation rate, where sensitivity is an estima-
tion of the partial derivative

Mutation Rate Objective[FH] Sens. Objective Computation Time [s] Sens. Time

0.2 45401.3 ± 435.4 1107.6 627.6 ± 170.2 -1080.1

0.4 44767.5 ± 953.7 313.8 1003.3 ± 224.3 -1033.2

0.6 44662.9 ± 587.3 N/A 1347.7 ± 374.7 N/A

0.8 44418.1 ± 559.1 -734.4 1675.7 ± 195.1 984.0

1.0 44621.1 ± 317.3 -62.7 1961.1 ± 707.7 920.1

The sensitivity of the objective value and computation time to a change in crossover rate can be
seen in Table B.2. The table shows the results of varying the crossover rate while keeping the
mutation rate constant at 0.4. From the table it is clear that changing the crossover rate has
relatively little impact on the computation time of the algorithm. However, increasing the
crossover rate, to a certain extent, seems to be beneficial regarding the objective value.

Table B.2: Sensitivity of objective value and computation time to change in crossover rate, where sensitivity is an estima-
tion of the partial derivative

Crossover Rate Objective [FH] Sens. Objective Computation Time [s] Sens. Time

0.0 44912.9 ± 721.9 222.8 1090.9 ± 143.1 27.7

0.3 44808.4 ± 981.9 236.6 1026.0 ± 182.9 -74.4

0.6 44690.1 ± 1146.4 N/A 1063.2 ± 298.8 N/A

0.9 44653.7 ± 1039.0 -72.8 1062.7 ± 439.8 -1.0

1.0 44805.8 ± 737.0 115.7 1105.0 ± 201.6 41.8

The influence of varying the mutation rate and crossover rate on the objective value can be
visualized in the form of box plots through Figure B.1. It can indeed be seen that a high mutation
rate is beneficial for finding good solutions to the problem. It can also be seen that having no
crossover and only focusing on local search with respect to all initial schedules finds good
solutions. However, the crossover procedure helps find better solutions to the problem. The
interaction between the effects can be seen through a contour plot in Figure B.2. When the
mutation rate is low, a higher crossover rate is beneficial when considering the objective value.
Exploration of new solutions then mostly occurs through the crossover procedure. A high mutation
rate, finds solutions to the problem mostly through locally improving existing schedules, where
sometimes the crossover procedure is beneficial by introducing new combinations.
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Figure B.1: Box plots of objective value under varying mutation rate and crossover rate

Figure B.2: Contour plot of objective value under varying mutation rate and crossover rate

The effects of varying the mutation rate and crossover rate on the computation time of the GA are
visualized in Figure B.3. As is readily clear, increasing the mutation rate indeed increases the
computation time almost linearly. Where the effects of crossover rate on the computation time of
the genetic algorithm are almost non existent. Figure B.4 shows a contour plot of the computation
time under varying mutation and crossover rate. From this figure it is also readily clear, that
increasing the mutation rate has the most effect on computation time.
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Figure B.3: Box plots of computation time under varying mutation rate and crossover rate

Figure B.4: Contour plot of computation time under varying mutation rate and crossover rate

B.2. Population Size
The population size indicates how many schedules are contained within the population. An
increase of population size could allow for more exploration while running the algorithm, but with
the added cost of an increase in computation time. This is evaluated by running the GA with a
mutation rate of 0.2 and crossover rate of 0.9. The population size is chosen to be 10, 20, or 40. The
results of this analysis can be seen in Table B.3. Where it can be seen that an increase in population
size indeed results in a small improvement of the objective value. This, however, comes with a
significant increase in computation time.
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Table B.3: Sensitivity of objective value and computation time to a change in population size, where sensitivity is an
estimation of the partial derivative

Population Size Objective [FH] Sens. Objective Computation Time [s] Sens. Time

10 45380.6 ± 628.5 1000.7 652.7 ± 153.3 -1278.9

20 44880.3 ± 166.5 N/A 1292.2 ± 92.6 N/A

40 44108.1 ± 873.6 -772.2 3246.5 ± 182.5 1954.3

B.3. Stopping Criterion
The iterative process of the genetic algorithm stops based on a predefined set of criteria. The
algorithm is terminated if the maximum number of iterations has been reached or when the best
solution has not changed for a predefined number of iterations (n_g ener ati ons). In practice,
n_g ener ati ons is the limiting factor. To evaluate the effect of this criterion, several runs have been
performed with a mutation rate of 0.2 and crossover rate of 0.9. The stopping criterion of
n_g ener ati ons is either 5, 15, or 25 iterations. The result of the analysis can be seen in Table. B.4.
It can be seen that for a small number of iterations the objective value lies within a wide 95%
confidence interval. Increasing the maximum number of iterations, with no change in the best
found solution, results in better solutions within a narrower confidence interval. This effect is most
apparent in the change from 5 to 15 iterations. The difference between n_g ener ati ons of 15 and
25 is much less. This is also directly related to the computation time of the algorithm. The increase
from 5 to 15 is bigger compared to the step from 15 to 25, since the algorithm finds better new
solutions that reset the counter of iterations the best solution has not changed. With the step from
15 to 25 the computation time is mostly larger due to the extra iterations and less so due to finding
better solutions.

Table B.4: Sensitivity of objective value and computation time to changing stopping criteria, where sensitivity is an esti-
mation of the partial derivative

n_generations Objective [FH] Sens. Objective Computation Time [s] Sens. Time

5 47817.0 ± 2680.7 3654.7 275.2 ± 38.8 -566.4

15 45380.6 ± 628.5 N/A 652.7 ± 153.3 N/A

25 45148.0 ± 350.0 -348.9 777.5 ± 74.6 187.1





C
GA Simulator

In order to evaluate the fitness of each schedule in the population, the GA uses a simulator. The
general layout of the simulator can be found in Algorithm 1. It returns the fitness of the worst case
scenario for all schedules in the population.

Algorithm 1: GA SIMULATOR

Input: Population, Scenarios, Available Slots, Memory
1 begin
2 Population_Fitness ← [ ]
3 for Chromosome ∈ Population do
4 Fitness ← []
5 for Scenario ∈ Scenarios do
6 USn ,DSn ← Scenar i o //Utilization and Duration matrix based on Scenario
7 Hangar ← []
8 for i ∈ I do
9 text ← ’Aircraft i ’ + Chromosome[i].astype(str) // Schedule of aircraft i

10 if text ∈ Memory then
11 ac ← Memory[Scenario][text] //Get simulation from memory
12 else
13 env ← initialize environment
14 ac ← class Aircraft(USn ,DSn , Chromosome, env) // Initialize class
15 env.run(until=T+1) // Run simulation for entire planning horizon
16 Memory[Scenario][text].insert(ac) //add simulation to memory

17 Fitness[Scenario].insert(ac.Fitness)
18 Hangar.insert(ac.Hangar)

19 end
20 if Available Slots - Hangar < 0 then
21 Fitness[Scenario].insert(Extra slots penalty) // Penalty for extra slots

22 end
23 Population_Fitness.insert(max(Fitness)) //Add fitness of worst case Scenario

24 end
25 return Population_Fitness, Memory

26 end
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The fitness, in the form of lost flight hours, is determined for each aircraft per scenario per
schedule. If the exact same simulation has already been performed the results are drawn from
memory. After simulation for all aircraft and all scenarios, the fitness of the analyzed schedule can
be determined as the maximum fitness over all scenarios. This is done for all schedules in the
population. The core of the simulation makes use of the simpy package in python 1. The
simulation with simpy uses the Aircraft class as defined in the following code:

1 class Aircraft(object ):
2 def __init__(self , env , name , max_FH , max_FH_A , Initial_FH , \
3 Initial_FH_A , current_check , i, Chromosome , T,\
4 Utilization , Duration , Out_of_service , Initial_DY , max_DY ):
5

6 self.env = env #simpy environment #
7 self.action = env.process(self.run(env , i, T)) #Run for time period #
8 self.name = name # A/C Tail #
9 self.Fitness = 0 # Initialize Fitness of aircraft #

10 self.constr = 0 # Initialize Number of Constraint violations #
11 self.max_FH = max_FH[i] # Maximum FH interval C-check #
12 self.max_FH_A = max_FH_A[i] # Maximum FH interval A-check #
13 self.FH = Initial_FH[i] # Intialize FH C-check #
14 self.FH_A = Initial_FH_A[i] # Initialize FH A-check #
15 self.D = Initial_D[i] # Intialize DY D-check #
16 self.cycle = D_cycle[i] # Initialize D-check cycle #
17 self.DMAX = D_max[i] # Maximum cycles before D-check #
18 self.max_D = max_D[i] # Maximum DY interval D-check #
19 self.DY = Initial_DY[i] # Intialize DY C-check #
20 self.max_DY = max_DY[i] # Maximum DY C-check #
21 self.current_check = current_check[i] #Current C-check for aircraft #
22 self.planned_checks = \
23 Chromosome[i][0:( len(np.where(np.diff(Chromosome[i]) >0)[0])+1)]\
24 #C-check schedule for aircraft #
25 self.check = 0 # Initialize amount of C-checks planned #
26 self.Hangar = [] # Initialize hangar occupation #
27 self.Utilization = Utilization # Daily Utilization matrix #
28 self.Duration = Duration[i] # Duration matrix #
29 self.Out_of_service = Out_of_service # After which C-check \ #
30 #aircraft i goes out of service #
31 self.FH_Tol = FH_Tol[i] # Previously used tolerance on FH C-check #
32 self.DY_Tol = DY_Tol[i] # Previously used tolerance on DY C-check #
33

34 def run(self , env , i, T): #Run for entire planning horizon #
35 while True:
36 yield self.env.process(self.update_utilization(env , i, T))
37

38 def update_utilization(self , env , i , T): #Update aircraft parameters #
39

40 if self.check == self.Out_of_service[i]: \
41 # If aircraft out of service end simulation #
42 yield self.env.timeout(T+1 - env.now)
43

44 self.FH_A += (self.Utilization[i][ months[env.now ]]) \
45 # Update FH A-check #

1simpy module for python: https://simpy.readthedocs.io/en/latest/contents.html

https://simpy.readthedocs.io/en/latest/contents.html
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46 self.D += 1 # Update DY D-check #
47

48 if self.FH_A > self.max_FH_A: # If FH A-check \#
49 #exceeds maximum interval #
50 self.FH_A = 0 # reset FH A-check #
51 a_check = True # Schedule an A-check #
52 else:
53 a_check = False # No A-check scheduled #
54

55 if env.now not in self.planned_checks: # If time - \#
56 #step not in schedule #
57 self.DY += 1 # Update DY C-check #
58 if a_check != True:
59 self.FH += (self.Utilization[i][ months[env.now ]])\
60 # If no A-check update FH C-check #
61

62 if self.FH > self.max_FH - self.FH_Tol and\
63 self.check > (len(self.planned_checks)- 1): \
64 # If no check scheduled anymore but FH exceeds limit #
65 self.constr += T-env.now # Update Number of violations #
66 self.Fitness += M_Cost *(T-env.now) # Update Fitness #
67

68 yield self.env.timeout(T+1 - env.now) # End simulation #
69 else:
70 yield self.env.timeout (1) # Continue to next time step #
71

72 else: # If C-check scheduled at time step #
73

74 fitness = self.max_FH - self.FH - self.FH_Tol # Update Fitness #
75

76 if fitness >= 0:
77 self.Fitness += fitness # If scheduled on time no penalty #
78 else:
79

80 self.constr += np.ceil(abs(fitness )/( self.Utilization[i]\
81 [months[env.now ]])) \
82 #Update No of violations #
83 self.Fitness += M_Cost *\
84 np.ceil(abs(fitness )/( self.Utilization[i][ months[env.now ]]))\
85 #Update Fitness#
86

87 if self.max_DY - self.DY - self.DY_Tol < 0: \
88 # If DY C-check exceeds limit update fitness and violations #
89 self.Fitness += M_Cost *(self.DY -(self.max_DY -self.DY_Tol ))
90 self.constr += self.DY - (self.max_DY -self.DY_Tol)
91

92 self.cycle += 1 # Update cycle #
93

94 if self.cycle == self.DMAX: # If cycles at maximum #
95 dcheck = True # D-check is scheduled #
96 elif self.D >= self.max_D: # If DY D-check equals maximum #
97 dcheck = True # D-check is scheduled #
98 else:
99 dcheck = False # No D-check is scheduled #

100

101 if dcheck:
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102 if self.max_D - self.D < 0: # If D-check is too late #
103 self.Fitness += 999999 # Penalty for D-check too late #
104 self.cycle = 0 # reset cycle #
105 self.D = 0 # Reset DY D-check parameter #
106

107 self.FH = 0 # Reset FH C-check #
108 self.FH_A = 0 # Reset FH A-check #
109 self.DY = 0 # Reset DY C-check #
110 self.FH_Tol = 0 # No tolerance used for FH C-check #
111 self.DY_Tol = 0 # No tolerance used for DY C-check #
112

113 check_duration = self.Duration[self.check] # Duration of C-check #
114 if dcheck:
115 check_duration += d_extra # If D-check increase duration #
116

117 diff = 1
118 wknds = 0
119 while diff != 0: # Add weekends/public holidays to duration #
120 diff = len(np.where(weekends \[env.now:env.now+check_duration ]\
121 == True )[0]) - wknds
122 wknds = len(np.where(weekends[env.now:env.now+check_duration ]\
123 == True )[0])
124 check_duration = check_duration + diff
125

126 self.current_check += 1 # Update current C-check #
127 self.check += 1 # Update amount of checks scheduled #
128 self.Hangar.extend(np.arange(env.now , env.now + check_duration )) \
129 # Occupy hangar for duration of check #
130 if dcheck == False: # If no D-check is scheduled #
131 self.D += check_duration # Update DY D-check parameter #
132

133 yield self.env.timeout(check_duration) \
134 # Continue simulation after check has been performed #
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