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Quantum error correction is of crucial importance for fault-tolerant quantum computers. As an essential
step toward the implementation of quantum error-correcting codes, quantum nondemolition measurements
are needed to efficiently detect the state of a logical qubit without destroying it. Here we implement
quantum nondemolition measurements in a Si/SiGe two-qubit system, with one qubit serving as the logical
qubit and the other serving as the ancilla. Making use of a two-qubit controlled-rotation gate, the state of the
logical qubit is mapped onto the ancilla, followed by a destructive readout of the ancilla. Repeating this
procedure enhances the logical readout fidelity from 75.5� 0.3% to 94.5� 0.2% after 15 ancilla readouts.
In addition, we compare the conventional thresholding method with an improved signal processing method
called soft decoding that makes use of analog information in the readout signal to better estimate the state of
the logical qubit. We demonstrate that soft decoding leads to a significant reduction in the required number
of repetitions when the readout errors become limited by Gaussian noise, for instance, in the case of
readouts with a low signal-to-noise ratio. These results pave the way for the implementation of quantum
error correction with spin qubits in silicon.

DOI: 10.1103/PhysRevX.10.021006 Subject Areas: Mesoscopics, Nanophysics,
Quantum Information

The compatibility of spin qubits with industrial semi-
conductor technology as well as their relatively small size
makes them scalable to large dense arrays [1,2] and
facilitates the implementation of fault-tolerant quantum
computing based on quantum error correction. A key
requirement of quantum error correction is the ability to
repeatedly measure multiple physical qubits in a quantum
nondemolition (QND) way to identify logical errors [3].
One approach to achieve quantum nondemolition readout
of spin qubits is to use a two-qubit gate to map the state of
the logical qubit to an ancilla which is then measured.
While the readout of the ancilla may be destructive, it

leaves the state of the original qubit unperturbed.
Consequently, the ancilla may be reinitialized and the logical
qubit measurement can be repeated to enhance the signal.
Recently, ancilla-based repetitive QND readout has been
implemented across several platforms, from trapped ions
[4,5] to electron-nuclear spin systems [6–15] and super-
conducting qubits [16]. In GaAs quantum dots, repeated
nondestructive readout of spin states [17] as well as QND
measurement of a spin qubit [18] have been reported. In
the latter experiment, however, the information had to be
decoded from the evolution of the ancilla qubit under a two-
qubit controlled-phase operation with variable interaction
time to overcome the fluctuations of the Overhauser field.
This makes the cumulative fidelity only slowly increase
with the number of QND readouts. In addition, the binary
thresholding of individual measurements in these experi-
ments discards valuable information. Furthermore, future
experiments on large arrays of spin qubits will likely rely on
gate-based dispersive readout, where it is challenging to
achieve a high signal-to-noise ratio (SNR) [19–22].
Consequently, both a repetitive QND readout with uniform
repetitions and improved decoding methods are highly
desirable for quantum error correction. In particular, “soft
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decoding” makes full use of the analog information con-
tained in the successive measured detector responses. Such
analog information can lead to a more efficient readout of the
logical qubit [23].
Here we implement ancilla-based repetitive QND read-

out of an electron spin qubit hosted in a silicon quantum
dot. We study the enhancement in the logical readout
fidelity as a function of the number of repetitions, and
analyze based on experiment the conditions under which
“soft decoding” reduces the number of repetitions needed
to achieve a target fidelity.
We use two electron spin qubits in a double quantum

dot (DQD) confined in a Si/SiGe heterostructure. The sample
and qubit control techniques are described in detail in
Ref. [24]. In brief, single-qubit gates are realized by electric-
dipole spin resonance (EDSR) enabled by the magnetic
field gradient from a nearby micromagnet [25,26]. The

micromagnet gradient also causes the resonance frequencies
of the two qubits to be well separated. A two-qubit gate is
realized by changing the detuning between the chemical
potentials of the two dots, which modifies the strength of the
exchange interaction J between the two spins. Because of the
interplay of the exchange and the energy difference between
the qubits, the energies of the j01i and j10i states are shifted
down by J=2, due to their coupling to the doubly occupied
singlet state Sð0; 2Þ [Fig. 1(b)]. Consequently, the EDSR
resonance frequency of qubit 2 (Q2) depends on the state of
qubit 1 (Q1). By applying an EDSR pulse at the resonance
frequency of Q2 corresponding to a particular Q1 state, we
obtain a controlled-rotation (CROT) gate:

UCROTðαj0iQ1 þ βj1iQ1Þj0iQ2

¼ αj0iQ1j0iQ2 þ βj1iQ1j1iQ2: ð1Þ

(a)

(d)

(b)

(c)

FIG. 1. (a) Charge stability diagram of the DQD and of the pulsing scheme used in the experiment. The current through a sensing
quantum dot [ISQD in arbitrary units (arb. units)] is shown in color scale as a function of two gate voltages that control the electrochemical
potentials of the two dots. The gate voltages for steps 1–5 in the experiment (discussed in the main text) are indicated with black circles,
which also appear in (c) and (d). We note that the DQD remains in the (1,1) state during step 5 (the CROT gate) because the operation is
much faster than the tunneling-out time of Q1. (b) Spin states of the two-electron system with and without exchange coupling. The spin
state ofQ1 is mapped onto the spin state ofQ2 via a CROT gate based on frequency-selective spin transitions. (c) Quantum circuit for the
QND readout procedure.Q1 is used as a logical qubit and as control qubit of the CROT gate, whileQ2 is used as ancilla qubit and as target
qubit of the CROT gate. An optional Xπ pulse is used to prepare Q1 into the spin-up state following initialization to spin-down.
(d) Schematic representation of the DQD system during the QND measurement protocol. Initialization and readout are implemented by
aligning the electrochemical potential of the last electron in dot 2 close to the Fermi energy of the reservoir. The exchange coupling is
switched on by detuning the electrochemical potentials of dots 1 and 2. Both electrochemical potentials are varied by applying voltage
pulses on the depletion gates that define the DQD confining potential. Spin flips in single- and two-qubit gates are implemented by EDSR.
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Because of the low concentration of nuclear spins in silicon,
themapping from logical qubit to ancilla is close to optimal in
every single repetition. In the QND readout experiment, we
choose Q1 [shown as a blue spin in Figs. 1(c), 1(d)] as the
logical qubit andQ2 (shownas a red spin) as the ancilla qubit.
We do this for two reasons. First, Q1 has a much longer T1

thanQ2 (T1 > 50 ms versus T1 ≈ 1 ms), allowing multiple
readout cycles of Q1 before significant relaxation occurs.
Second,Q2 is physically closer to the Fermi reservoir, which
makes it easier to perform destructive readout and reinitial-
ization. Here, the readout of Q2 is performed by detecting
spin-selective tunneling to the reservoir with the help of a
charge sensor [27]. The signature of the spin-up state is the
appearance of a step in the charge sensor response as only a
spin-up electron tunnels out of the quantum dot. A com-
monly used [27] and near-optimal [28] strategy to detect such
a step is to compare the peak value Ip of the charge sensor
signal during the readout time to a fixed threshold [see inset
of Fig. 3(c) for an example of a charge sensor trace]. In the
data shown below, we infer the spin states using a readout
time that minimizes the average single-repetition readout
error rate (see the Appendix D).
We test the QND readout through a protocol whereby

voltage pulses applied to two of the quantum dot gate
electrodes take the system through the following steps [see
Figs. 1(a), 1(c), and 1(d)]. (1) Empty dot 2, (2) initializeQ1
to the spin-down state via spin relaxation at a hot spot [29],
(3) initialize Q2 in the spin-down state using spin-selective
tunneling, (4) apply an optional single-qubit π pulse for
initialization of Q1 in the spin-up state, (5) perform a
CROT gate to map the state ofQ1 onto the state ofQ2, and
(6) perform single-shot readout of Q2. Step 6 occurs at the
same gate voltages as step 3, so at the end of the sequence,
Q2 is automatically reinitialized through spin-selective
tunneling. In successive QND measurements, steps 1
and 2 are omitted, and the optional rotation at step 4 is
omitted as well [Fig. 2(a)]. Each readout cycle lasts
3.263 ms. Because the CROT gate does not affect the
state ofQ1, successive cycles each yield information on the
state ofQ1 before the first cycle, as long asQ1 has not been
flipped due to relaxation or excitation. Therefore, the
readout fidelity of the logical qubit Q1 can be significantly
enhanced by repeating the readout cycle. In order to obtain
directly the visibility from experiment, we prepare Q1
either in state j0i or in state j1i. We then perform up to 15
sequential QND measurements.
The simplest way to infer the state of Q1 from the

repeated readout of Q2 is to perform a majority vote on the
readout outcomes [30]. Ideally, this leads to an exponential
suppression of the logical readout error probability ϵlog with
the number of cycles N, ϵlog ∝ ϵN . Here, ϵ is the single-
repetition readout error rate, which includes errors from the
CROT mapping and the spin readout of Q2.
A slightly more sophisticated approach to inferring

the state of Q1 is through a weighted majority vote that

accounts for spin relaxation (see Appendix B for full
details). Intuitively, the later measurement cycles have
accumulated more errors from relaxation than the earlier
ones, and are thus given less weight. Figure 2(b) shows the
estimated spin-up probability of Q1 for each individual
QND readout cycle as well as for a cumulative weighted
majority vote. The cumulative visibility increases from
51.0� 0.6% after 1 cycle to 88.9� 0.3% after 15 cycles,
which corresponds to a cumulative logical fidelity of
94.5� 0.2%. Here, the logical fidelity is defined as Flog ¼
1 − ϵlog (see Appendix B). The oscillation in the cumulative
spin-up probabilities is due to an even-odd effect from
(weighted) majority voting. Because of spin relaxation
of Q1, there is a slow decay of the (single-repetition) spin-
up probability when Q1 is prepared in j1i. Previous T1

measurements on the same device show that there was no
observable decay of Q1 up to 50 ms [24], consistent with
our observations. From the data, it is clear that even higher
cumulative fidelities can be achieved using more repetitions
(see Appendix E for a detailed discussion).
Further improvements in the readout fidelity for repeated

QND readout are possible when taking into account addi-
tional information contained in the individual readout
traces. This approach is based on the log-likelihood ratio
for the logical state, λlog ¼ P

N
i¼1 λðOiÞ [5,31] (in the data

analysis below, we use a slightly more sophisticated

(a)

(b)

FIG. 2. (a) Circuit diagram for the repetitive QND readout
scheme, using the same labels as in Fig. 1(c). (b) Spin-up
probability obtained from individual QND readout cycles (tri-
angles) and from a cumulative weighted majority vote (circles)
for preparation of Q1 in state j1i (blue) and in state j0i (red). For
the individual readout cycles, the visibility does not improve and
in fact slightly decreases due to the finite relaxation time T1 of
Q1. By fitting the measured P1 for preparation of Q1 in state j1i
to an exponential, we estimate T1 ¼ 1.8� 0.6 s. The cumulative
weighted majority vote improves the logical readout visibility as
more QND readout cycles are performed.
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variant, accounting for relaxation of Q1 during the
repeated measurements, see Appendix B). Here, Oi is
the measurement outcome for the ith repetition and
λðOiÞ ¼ ln ½PðOij1Þ=PðOij0Þ� is the log-likelihood ratio
for that outcome. PðOij1Þ [PðOij0Þ] is the probability to
obtainOi when the qubit is prepared in j1i [j0i]. If λlog > 0

(λlog < 0), it is decided that the most likely premeasurement
logical state is j1i (j0i). When thresholding, the observable
Oi is either a 1 or a 0, an approach we call “hard decoding.”
When considering only a single readout instance, thresh-
olding is optimal. For the repetitive QND readout discussed
here, and also for quantum error correction in general,
thresholding each individual qubit readout leads to an
irreversible loss of information because it discards the
level of confidence λðOiÞ that can be assigned to individual
readout outcomes [23,32–37]. A better approach is to take
an analog variable as the observableOi to calculate λlog. For
the readout scheme used here, the peak signal is a good
choice [28]. We refer to this procedure as “soft decoding.”

The logical readout error probabilities resulting from hard
and soft decoding applied to our raw data are plotted in
Fig. 3(c) as a function of the number of QND readout cycles.
Interestingly, in this instance, the improvement of soft
decoding over hard decoding is almost nonexistent. This
can be understood by examining the empirically measured
peak-signal distributions PðIpj1Þ and PðIpj0Þ at the optimal
readout time (∼623 μs, see Appendix D) shown in Fig. 3(a)
along with the log-likelihood ratio λðIpÞ. Since readout
errors caused by noise in the readout traces are small
compared to the bit-flip errors arising from imperfect
CROT operations, ancilla preparation, and spin-to-charge
conversion in the readout of the ancilla spin, the peak-signal
distributions have clear bimodal features (this is discussed in
more detail below). As a result, λðIpÞ approximates a step
function. This means that all values of Ip on one side of the
step are assigned the same level of confidence. It follows that
thresholding the values of Ip does not discard much infor-
mation on the level of confidence in each readout outcome.

(a) (c)

(b) (d)

FIG. 3. (a) Empirically measured distributions PðIpj1Þ and PðIpj0Þ of the peak sensing dot signal Ip in arbitrary units for preparation
of Q1 in j1i (blue histograms) and in j0i (yellow histograms), respectively. The distributions are obtained for the readout time that
minimizes the single-repetition readout error (see Appendix D). Because of the bimodal features of the two distributions, the log-
likelihood ratio λðIpÞ is approximately a step function (magenta curve). (b) Same dataset as in (a) but with artificially added Gaussian
white noise. Here, the two distributions largely overlap. As a result, the log-likelihood ratio λðIpÞ is not a step function and different
values of Ip on one side of the threshold acquire different weights. This means that if the values of Ip are thresholded at each cycle,
useful information is discarded. (c),(d) Logical readout error rate without and with artificially added white noise. When the log-
likelihood ratio λðIpÞ approximates a step function, there is little advantage in using soft decoding. When the log-likelihood ratio λðIpÞ
strongly deviates from a step function, soft decoding reduces the number of repetitions required to achieve a given error rate. Insets:
Example readout traces containing a tunnel event without or with added Gaussian white noise.
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For soft decoding to yield an advantage, we must therefore
consider situations where λðIpÞ is not a step function. One
such generic situation occurs in the limit of low SNR for
the single-repetition readout. To demonstrate that soft decod-
ing yields an advantage for low SNR, we artificially add
Gaussian white noise on top of the experimental readout
traces. Figure 3(d) shows the resulting logical error proba-
bilities for both hard and soft decoding. We see that soft
decoding achieves the same logical error rate with 10
repetitions instead of 15 repetitions, a reduction by a third
in the number of repetitions. Consequently, a significant
amount of readout time may be saved. The reason for this
advantage is apparent inFig. 3(b),which shows theprobability
distributions PðIpj1Þ and PðIpj0Þ and the corresponding
λðIpÞ after adding the noise (optimal readout time ∼475 μs).
Here, the distributions are close to unimodal Gaussians and
strongly overlap. This results in a λðIpÞ that varies smoothly
with Ip such that values of Ip on a given side of the threshold
are given different levels of confidence. This is the additional
information that yields the soft decoding advantage.
It is important to note that the low-SNR readout is not

merely of theoretical interest but is also of great practical
relevance. One reason is that it might be difficult to achieve
high SNR in dense qubit arrays where charge sensors,
electron reservoirs, or on-chip resonators [21,22] are not
available, and where only gate-based readout [19–22] with
SNR limited by a large parasitic capacitance [19,20] is
possible. It also opens the possibilities to improve the
fidelity readout at higher operating temperatures [38,39],
in particular, when raising the temperature reduces the SNR
(e.g., from broadening of the sensing dot Coulomb peaks)
while not or only mildly increasing spin-charge conversion
errors (e.g., in Pauli spin blockade readout). Operation
above 1 K is essential to the integration of quantum dots
with cryoelectronics [40]. Such situations are precisely the
ones where repetitive QND readout may become necessary
to achieve low logical readout error rates. Moreover, there
are situations where relaxing the constraints on SNR could
be beneficial. For instance, it may allow the repetitive
readout to operate at lower detector-qubit coupling without
loss of fidelity, which could reduce unwanted interference
of the detector on the system. Note that these advantages
are not limited to the special case of the repetitive QND
readout considered here. For instance, quantum error-
correcting codes infer error syndromes by using both
spatial and temporal redundancy from repeated measure-
ment of ancillas [41–51]. Both our results and recent
theoretical work on continuous-variable quantum error
correction [52–55] suggest that soft decoding of quantum
codes could help reduce the number of physical qubits and
the number of measurements required to achieve a desired
logical error rate.
It must also be emphasized that a low SNR is in general

not necessary to benefit from soft decoding. Soft decoding
helps when errors arising from noise, as small as they may

be, are larger than bit-flip errors. This ensures that the
log-likelihood ratio changes smoothly instead of stepwise
[23]. We discuss ways to engineer such conditions for
readout of spin qubits in quantum dots in Appendix F.
In conclusion, we have performed high-fidelity QND

readout of a spin qubit in silicon. The readout fidelity is
enhanced by repeatedly mapping the qubit state to a nearby
ancilla using a two-qubit gate andmeasuring the ancilla, from
75.5� 0.3% for a single repetition to 94.5� 0.2% for 15
repetitions, and with room for further improvements from
additional repetitions (see Appendix E). We compared
two different decoding methods, hard decoding and soft
decoding, and discussed the conditions under which soft
decoding yields a significant advantage. In the present
experiment, hard decoding and soft decoding perform
equally well since errors from noise in the readout traces
are far less frequent than errors from bit flips. However,
with the same rate of bit-flip errors, soft decoding is
expected to significantly reduce the number of ancilla
measurements required for high-fidelity readout when the
SNR is low, as can be the case for gate-based readout in
dense qubit arrays, for readout at elevated temperatures, or
when SNR must be traded for readout speed.
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APPENDIX A: DEVICE AND
MEASUREMENT SETUP

The device and measurement setup used in this
work have been described by Watson et al. [24] and
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Xue et al. [58]. We summarize a few key points. The device
is cooled in a dilution refrigerator to ∼20 mK. An external
magnetic field of 617 mT is applied in the plane of the
sample. The longitudinal component of the magnetic field
from the micromagnet contributes to the Zeeman splitting
and its gradient gives a large separation of the qubit
frequencies (Q1, 18.4 GHz; Q2, 19.7 GHz), which facil-
itates single-qubit addressability. Two confinement gates
P1 and P2 (we use the same labels as in Xue et al. [58]) are
connected to an arbitrary waveform generator (Tektronix
5014C) via coaxial cables. dc voltage pulses applied to the
sample through these two gates allow the system to move
into different positions in the charge stability diagram for
initialization (Q1, 0.1 ms for fast relaxation; Q2, 4 ms for
spin-selective tunneling), operation, and readout (1–2 ms
for each qubit). A full cycle of the pulse sequence can be
found in Watson et al. [24]. Furthermore, during the
operation stage, the gates P1 and P2 are also used to
switch on and off the exchange coupling between the two
electron spins by controlling the detuning of chemical
potentials between them, and thus realize the two-qubit
gate. Another two confinement gates MW1 and MW2 are
connected to two vector microwave sources (VSG,
Keysight E8267D) for single-qubit gates by microwave-
controlled EDSR. We calibrate the VSG powers to achieve
Rabi frequencies of both qubits to be 2 MHz, correspond-
ing to a 180 deg rotation (Xπ gate) of 250 ns. Readout traces
are sampled by a digitizer card (Spectrum M4i.44) after a
20 kHz Bessel low-pass filter (SRS SIM965). Each single
readout trace is either converted into a single bit value by
comparing the peak signal to a threshold value (hard
decoding) or saved for soft decoding analysis.

APPENDIX B: BAYESIAN INFERENCE

In this Appendix, we give an algorithm to efficiently
perform optimal Bayesian inference of the logical qubit
state using the empirically determined statistics of the
repetitive readout.

1. Repetitive readout

Suppose that the logical qubit is repetitively read out N
times, with each repetition having a duration δtrep. We may
consider the state of the logical qubit at the discrete times

tk ¼ kδtrep; k ¼ 0; 1;…; N; ðB1Þ

with the kth repetition taking place in the interval ½tk−1; tk�.
Here, the coherence of the logical qubit in the computa-
tional basis plays no role in the statistics of the measure-
ment. For the present purposes, we may therefore model the
time evolution of the logical qubit classically. The classical
state of the logical qubit at time tk is labeled xk. The state
evolution of the logical qubit up to k ≤ N repetitions
follows the stochastic time series:

Xk ¼ fx0; x1;…; xkg: ðB2Þ

In reality, each individual readout is noisy. Thus, the state
xk at each repetition is not directly recorded. Instead, a
noisy observation Ok is recorded. This gives the observa-
tion sequence:

Ok ¼ fO0;O1;…;Ok−1g: ðB3Þ

Note that in general, the observationsOk need not be scalar.

2. Maximum-likelihood decision

Our goal is to infer the most likely initial state of the
logical qubit from the sequence Ok of noisy repetitive
readout outcomes. This is most easily done by calculating
the posterior probability ratio:

Pðx0 ¼ 1jOkÞ
Pðx0 ¼ 0jOkÞ

¼ PðOkjx0 ¼ 1Þ
PðOkjx0 ¼ 0Þ

Pðx0 ¼ 1Þ
Pðx0 ¼ 0Þ : ðB4Þ

The initial state is most likely 1 if the ratio is larger than
unity, and it is most likely 0 if the ratio is smaller than unity.
In the absence of prior information on the logical qubit
state, Pðx0 ¼ 0Þ ¼ Pðx0 ¼ 1Þ ¼ 1=2, the above maximum
a posteriori decision [31] reduces to calculating the log-
likelihood ratio:

λlogk ¼ ln
PðOkjx0 ¼ 1Þ
PðOkjx0 ¼ 0Þ : ðB5Þ

The initial state is now most likely 1 if λlogk > 0, and it is

most likely 0 if λlogk < 0. This results in a maximum-
likelihood decision [31].

3. Logical readout error rate

The average logical readout error rate ϵ is given by

ϵlog ¼ 1

2
ðϵlog1 þ ϵlog0 Þ: ðB6Þ

Here, ϵlog1 and ϵlog0 are the error rates conditioned on
preparation of the logical qubit in states 1 and 0 at time
t0, respectively. These are given by

ϵlog1 ¼ Pðλlogk < 0jx0 ¼ 1Þ;
ϵlog0 ¼ Pðλlogk > 0jx0 ¼ 0Þ: ðB7Þ

An experimental estimate of the logical readout error rate
ϵlog1 (ϵlog0 ) is obtained by preparing the logical qubit in
state j1i (j0i) 104 times, measuring the record Ok and
calculating λlogk for each attempt, and counting the number
of times where λlogk < 0 (λlogk > 0). Finally, we note that
the average readout fidelity quoted in the main text is
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defined as Flog ¼ 1 − ϵlog, while the logical visibility
is V log ¼ 1–2ϵlog.

4. Calculating the log-likelihood ratio

To calculate λlogk , the statistics of the observations Ok

given the initial state of the logical qubit must be known.
More precisely, the probability distributions PðOkjx0 ¼ 1Þ
and PðOkjx0 ¼ 0Þ appearing in Eq. (B5) must be calcu-
lated. In the following, we show how to model and
calculate these distributions for the repetitive readout using
the theory of hidden Markov models [16,18,49,56,59]. The
hidden Markov model provides a direct connection
between the single-repetition probability distributions,
PðOkjxkÞ, and the probability distributions for the full
measurement record, PðOkjx0Þ, accounting for the dynam-
ics of the logical qubit. From PðOkjx0Þ, the log-likelihood
ratio can be evaluated directly using Eq. (B5). As described
in Appendix C, following Eq. (C4), here we have deter-
mined PðOkjxkÞ empirically. However, note that these
distributions can also be found from an appropriate
dynamical model of the readout. See for instance
Refs. [28,60–65] and others, where hidden Markov models
are used to determine PðOkjxkÞ at the level of a single
repetition.

a. Hidden Markov models

As discussed in the main text, the logical qubit state
evolves during the measurement via spin relaxation on a
time scale T1. Such a process is Markovian in the sense that
the statistics of the state at time tkþ1 are fully determined by
the state at time tk:

Pðxkþ1jXkÞ ¼ Pðxkþ1jxkÞ: ðB8Þ

Because the ancilla qubit is reinitialized after each repeti-
tion, the noisy observations Ok are independent from
each other and depend only on the state of the logical
qubit at time tk:

PðOkjXkÞ ¼
Yk−1
l¼0

PðOljxlÞ: ðB9Þ

In other words, the observation noise is white. Finally, prior
knowledge about the system state at each time is specified
by the prior probability distribution PðxkÞ for the state xk
at each time tk. The set fPðxkþ1jxkÞ; PðOkjxkÞ; PðxkÞg
defines a “hidden Markov model.”

b. Forward filtering

For the hidden Markov models discussed above, the
log-likelihood ratio may be calculated with the help of
an iterative forward filtering algorithm for the logical
qubit state. Forward filtering consists in calculating the

probability distribution of the logical qubit state xk at time
tk given all previous observations. We denote this proba-
bility distribution as

ϱkðxkÞ ¼ PðxkjOkÞ: ðB10Þ

Using Bayes’s rule, the distribution ϱkðxkÞ may be
rewritten as

ϱkðxkÞ ¼
Pðxk;OkÞ
PðOkÞ

¼ Pðxk;OkÞP
yPðy;OkÞ

¼ lkðxkÞP
ylkðyÞ

: ðB11Þ

Here,

lkðxkÞ ¼ Pðxk;OkÞ ðB12Þ

is the joint probability distribution of the state xk and of the
previous observations. One advantage of calculating lkðxkÞ
instead of ϱkðxkÞ is that lkðxkÞ obeys a linear recurrence
relation while ϱkðxkÞ obeys a nonlinear recurrence relation
(see Appendix B 4 c).
We note that the denominator in Eq. (B11) is the

likelihood function:

Lk ¼ PðOkÞ ¼
X
xk

lkðxkÞ: ðB13Þ

Equation (B11) now takes the form

lkðxkÞ ¼ ϱkðxkÞ × Lk: ðB14Þ

It is convenient to introduce the vector notation,

jϱkÞ ¼
X
x

ϱkðxÞjxÞ; jlkÞ ¼
X
x

lkðxÞjxÞ; ðB15Þ

where fjxÞg is a set of basis vectors representing the
classical logical qubit states x. Equation (B14) is then
rewritten as

jlkÞ ¼ Lk × jϱkÞ: ðB16Þ

The likelihood function, Eq. (B13), may compactly be
written as

Lk ¼ TrjlkÞ: ðB17Þ

Here, the trace Tr of a vector is the sum of its elements.
Choosing the basis fj1Þ; j0Þg, the likelihood function
may be calculated for the initial states x0 ¼ 1 and x0¼0

of the logical qubit by setting jϱ0Þ ¼ jl0Þ ¼ ð1; 0ÞT and
jϱ0Þ ¼ jl0Þ ¼ ð0; 1ÞT , respectively. This enables the maxi-
mum-likelihood decision discussed following Eq. (B5).
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c. Filtering equations

For completeness, we now derive the recurrence relation
for forward filtering of hidden Markov models. We note
that

lkþ1ðxkþ1Þ ¼ Pðxkþ1;Okþ1Þ
¼

X
xk

Pðxkþ1;Okþ1jxkÞPðxkÞ

¼
X
xk

PðOkþ1jxkþ1; xkÞPðxkþ1jxkÞPðxkÞ:

ðB18Þ

Next we recall that (1) for Markov dynamics, Eq. (B8),
Okþ1 ¼ fO1;O2;…;Okg cannot depend on xkþ1 when xk
is already given and that (2) the observation noise is white,
Eq. (B9). Thus, we have

lkþ1ðxkþ1Þ ¼
X
xk

PðOkþ1jxkÞPðxkþ1jxkÞPðxkÞ

¼
X
xk

PðOkjxkÞPðOkjxkÞPðxkþ1jxkÞPðxkÞ

¼
X
xk

PðOkjxkÞPðxkþ1jxkÞlkðxkÞ: ðB19Þ

This recurrence relation may be written in vector form:

jlkþ1Þ ¼ VkðOkÞjlkÞ: ðB20Þ

Here, we have introduced the matrix VkðOkÞ with elements

ðxjVkðOkÞjyÞ ¼ Pðxkþ1jykÞPðOkjykÞ ¼ wxy
k Py

kðOkÞ;
ðB21Þ

and we have defined

wxy
k ¼ Pðxkþ1jykÞ;

Px
kðOkÞ ¼ PðOkjxkÞ: ðB22Þ

The matrix wxy
k describes the transition probabilities for the

evolution of the logical qubit state and the vector Px
kðOkÞ

describes the observation noise for each logical qubit state.
Note that there exist corresponding recurrence relations for
the state vector jϱkÞ and for the likelihood function Lk.
They take the form

jϱkþ1Þ ¼
1

N kþ1

jϱ̃kþ1Þ; Lkþ1 ¼ N kþ1 × Lk; ðB23Þ

where

jϱ̃kþ1Þ ¼ VkðOkÞjϱkÞ; N kþ1 ¼ Trjϱ̃kþ1Þ: ðB24Þ

d. Numerical algorithm

We now provide an efficient numerical algorithm for
forward filtering. The algorithm simultaneously calculates
the probability vector jϱkÞ and the log-likelihood function
lnLk as follows.
(1) Set k ¼ 0.
(2) Calculate the matrix VkðOkÞ.
(3) Calculate jϱ̃kþ1Þ ¼ VkðOkÞjϱkÞ.
(4) Calculate the norm N kþ1 ¼ Trjϱ̃kþ1Þ.
(5) Update the probability distribution jϱkþ1Þ ¼ jϱ̃kþ1Þ=

N kþ1.
(6) Update the log-likelihood ratio with lnLkþ1 ¼

lnLk þ lnN kþ1.
(7) Increase k by one and start again.

Note that we are only interested in estimating the initial
state of the logical qubit. Therefore, the matrix VkðOkÞmay
be normalized at each step by any constant factor inde-
pendent of the qubit state without affecting the maximum-
likelihood estimate. In some cases, this may prevent the
values of the log-likelihood function from becoming
too large.

APPENDIX C: REPETITIVE READOUT
STATISTICS

The hidden Markov model relevant for the repetitive
readout discussed in the main text is obtained by specifying
the transition matrix wk and the noise vector Pk appearing
in Eq. (B22).
As discussed in the main text, the qubit undergoes

relaxation to its spin ground state on a timescale T1. We
obtain the value of T1 by simultaneously fitting the
measured single-repetition probabilities P1 and P0 shown
in Fig. 2(b) to an expression of the form

P1ðtÞ ¼ Aϵ−t=T1 þ B; ðC1Þ

for the case when Q1 is prepared in j1i before the first
measurement cycle, and of the form

P0ðtÞ ¼ B; ðC2Þ

for the case when Q1 is initially prepared in j0i. Here, t is
the total readout time after the beginning of the repetitive
readout and A and B are constants. The fit is shown in
Fig. 2(b) and yields T1 ¼ 1.8� 0.6 s. For a relaxation
process, the transition matrix wxy

k in the basis fj1Þ; j0Þg
takes the form

wk ¼ exp

��−1 0

1 0

�
δtrep
T1

�
: ðC3Þ

Here, δtrep ¼ 3.263 ms.
The noise vector Py

kðOkÞ describing the distribution of
the outcome Ok for each logical qubit state is given by
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PkðOkÞ ¼
�
PðOkjxk ¼ 1Þ
PðOkjxk ¼ 0Þ

�
: ðC4Þ

Here, PðOkjxk ¼ 1Þ and PðOkjxk ¼ 0Þ are the probability
distributions of the readout outcome Ok for preparation
of the logical qubit in states 1 and 0, respectively. For the
soft decoding procedure discussed in the main text, the
readout outcome Ok is taken to be the peak signal Ip (see
Appendix D). The distributions of outcomes conditioned
on the logical qubit state are then simply the empirically
observed distributions of the peak signal PðIpjxk ¼ 1Þ and
PðIpjxk ¼ 0Þ displayed in Figs. 3(a) and 3(b) of the main
text. For the hard decoding procedure, the readout outcome
Ok is taken to be the binary value 1 or 0 obtained by
thresholding the peak signal at each repetition. The dis-
tributions of outcomes conditioned on the logical qubit
state are then given by the conditional single-repetition
readout error rates ϵ1 and ϵ0:

Pð1jxk ¼ 1Þ ¼ 1 − ϵ1; Pð1jxk ¼ 0Þ ¼ ϵ0;

Pð0jxk ¼ 1Þ ¼ ϵ1; Pð0jxk ¼ 0Þ ¼ 1 − ϵ0: ðC5Þ

The procedure used to obtain the distributions PðIpjxk¼1Þ
and PðIpjxk ¼ 0Þ and the conditional single-repetition
readout error rates ϵ1 and ϵ0 is detailed in Appendix D.
When ϵ1 ¼ ϵ0 and when T1 → ∞, the hard decoding
procedure reduces to a simple majority vote on the binary
outcomes [23].

APPENDIX D: SINGLE-REPETITION
READOUT CALIBRATION

Since all repetitions are identical, we use the first
repetition to calibrate the single-repetition readout. At
t0 ¼ 0, the logical qubit is prepared 104 times in state
x0 ¼ 1 and 104 times in state x0 ¼ 0. For each preparation,
a readout trace IðtÞ is recorded for a total time of 2.01 ms in
steps of δt ¼ 16.38 μs. For all readout times tR ≤ 2.01 ms,
we extract the peak signal Ip ¼ maxtIðtÞ [27] and construct
the probability distributions of Ip conditioned on the
logical qubit state, PðIpjx0 ¼ 1Þ and PðIpjx0 ¼ 0Þ. For a
given readout time tR, single-repetition readout is per-
formed by calculating the single-repetition log-likelihood
ratio:

λðIpÞ ¼ ln
PðIpjx0 ¼ 1Þ
PðIpjx0 ¼ 0Þ : ðD1Þ

If λðIpÞ > 0 [λðIpÞ < 0], we decide that the qubit state
is most likely j1i [j0i]. Therefore, the single-repetition
readout error rates ϵ1 and ϵ0 for each state are obtained from
marginals of the distributions PðIpjx0¼1Þ and PðIpjx0¼0Þ
as follows:

ϵ1¼Pðλlog<0jx0¼1Þ¼
X

fIpjλðIpÞ<0g
PðIpjx0¼1Þ;

ϵ0¼Pðλlog>0jx0¼0Þ¼
X

fIpjλðIpÞ>0g
PðIpjx0¼0Þ; ðD2Þ

and the average single-repetition readout error rate is
given by

ϵ ¼ 1

2
ðϵ1 þ ϵ0Þ: ðD3Þ

The value of ϵ is plotted in Fig. 4 as a function of readout time
in the absence and in the presence of artificially added noise.
We choose the value of tR that minimizes ϵ. The histograms
PðIpjx0 ¼ 1Þ and PðIpjx0 ¼ 0Þ and the error rates ϵ1 and ϵ0
corresponding to that optimal value of tR are those used
throughout the main text. In particular, they are used to
perform the Bayesian analysis detailed in Appendix C.
Without adding artificial noise to the readout traces, we find
ϵ1 ¼ 32.9� 0.5% and ϵ0 ¼ 16.2� 0.4% at an optimal
readout time tR ¼ 623 μs. After adding noise, we find ϵ1 ¼
41.1� 0.5% and ϵ0 ¼ 42.3� 0.5% at an optimal readout
time tR ¼ 475 μs. The error bars on ϵ1 and ϵ0 are given by
the standard deviation of the corresponding binomial error
process with N ¼ 104 samples, δϵ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ1ð1 − ϵ1Þ=N

p
and

δϵ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0ð1 − ϵ0Þ=N

p
.

Note that we have assumed perfect preparation of
the logical qubit state throughout. For this device, prepa-
ration errors have been reported [24] to be ∼1%, smaller
than the single-repetition readout errors reported here.
In Appendix E, we argue that the average preparation

FIG. 4. Average single-repetition readout error rate ϵ as a
function of readout time tR in the absence of added noise (solid
blue line) and in the presence of added noise (dashed yellow line).
The optimal readout time in the absence (presence) of added
noise is indicated by the dot-dashed (dotted) line. In both cases,
the shaded areas give the statistical uncertainty (see text). Finally,
we note that the small discontinuity in the blue curve at tR ≈
1.7 ms is a consequence of the finite histogram bin size and has
no particular physical significance.
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error is in fact around 2%–3% (4%–5% for state j1i and
< 1% for state j0i) for this run of the experiment.
Therefore, the empirically measured single-repetition read-
out distributions in Figs. 3(a) and 3(b) are close to what
they would be without preparation errors and lead to
decoding procedures (hard and soft) that are close to
optimal. In Appendix E, we give rough estimates for the
expected logical readout fidelity that would be measured in
the absence of preparation errors.

APPENDIX E: THEORETICAL SIMULATION

To explore the full potential of the repetitive readout
discussed in the main text, we perform a numerical
simulation. For each qubit state, we randomly sample
104 outcome sequences according to the hidden Markov
model described in Appendix C. We use the experimentally
extracted value of T1 and the empirically measured

peak-signal distributions of Fig. 3(a) as input parameters.
A Monte Carlo estimate of the average logical readout error
rate ϵlog is obtained by thresholding the simulated outcome
sequences as described in Appendix D and then applying
the hard decoding procedure detailed in Appendix B.
The conditional logical readout error rates ϵlog1 and ϵlog0

are plotted in Fig. 5 as a function of the number of
repetitions. The experimental results of Fig. 3(c) are shown
for comparison. It is clear from Fig. 5 that the simulated
logical readout error rate underestimates the experimentally
measured readout error rate as the number of repetitions
increases. We believe that this is due to the logical readout
error rate becoming comparable to preparation errors for
Q1. This assumption is consistent with the simulation and
experiment agreeing at low repetition number, where the
logical readout error rate is much larger than the expected
preparation error (of the order of 1% [24]). In fact, it is
possible to estimate the preparation error η by fitting the
simulated error rate ϵsim to the experimentally measured
error rate ϵlog using the error composition relation:

ϵlog ¼ ð1 − 2ηÞϵsim þ η: ðE1Þ

We find that the simulation and experiment agree for a
preparation error of η1 ≈ 4%–5% for state j1i and of η0 <
1% for state j0i, giving an average preparation error of
approximately η ≈ 2%–3%. The simulation results suggest
that in the absence of preparation errors, the measured
fidelity could reach ∼98% after 15 repetitions and saturate
at > 99% for more than 30 repetitions.

APPENDIX F: ENGINEERING GAUSSIAN
DISTRIBUTIONS

It is known that if PðIpj1Þ and PðIpj0Þ are unimodal
Gaussian distributions, soft decoding can reduce the
number of readout cycles by up to a factor of 2 for
arbitrarily large readout SNR. For this advantage to exist,
the “bit-flip” conversion errors creating the bimodal fea-
tures of the measured probability distributions must be
small enough that the errors are dominated by the Gaussian
noise [23]. Understanding the origin of the conversion
errors is thus of great importance. Here, the bit-flip
conversion errors may arise from an imperfect CROT gate,
imperfect ancilla preparation, or imperfect spin-to-charge
conversion in the readout of Q2. The CROT and prepara-
tion errors will be generically suppressed as the control and
preparation fidelities are improved. The imperfect spin-to-
charge conversion in the readout of Q2 may be the most
challenging to overcome. In what follows, we discuss
avenues to suppress the spin-to-charge conversion errors.
For initialization ofQ2 in state j1i, the dot should ideally

remain empty at all times. Thus, imperfect spin-to-charge
conversion arises from one of the following.

(a)

(b)

FIG. 5. Simulated logical readout error rate (solid blue line) as a
function of the number of repetitions for (a) state j1i and (b) state
j0i. In both cases, the experimentally measured logical readout
error rate is shown for comparison (dashed yellow line). The
bands give the statistical error associated with the binomial
statistics of the sampled errors as explained in Appendix D.
Moreover, the dotted black curves give the simulated curves
corrected to fit the experimental curves accounting for finite
preparation errors using Eq. (E1). The best fit values for the
preparation errors are η1 ¼ 4% for state j1i and η0 ¼ 0.44% for
state j0i, resulting in an average preparation error of η ¼ 2.2%.
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(1) The finite timescales for an electron to leave or
return to the dot. The conversion errors caused by
these charge transitions could be suppressed by, e.g.,
engineering the density of states [66] of the reservoir
so that a spin-up electron tunnels out of the quantum
dot very rapidly, and so that a spin-down electron
tunnels back in the quantum dot very slowly [28]. If
that were the case, the dot would remain empty at
nearly all times and the bimodality of PðIpj1Þ would
be suppressed.

(2) Spin relaxation of Q2 before the electron is able to
leave the dot. Indeed, the spin relaxation time of Q2
is of order 1 ms, which is only an order of magnitude
longer than the observed timescale ∼100 μs for an
electron to escape to the reservoir. The strategy to
suppress spin relaxation of Q2 during readout
depends strongly on its physical origin. However,
there is a priori no fundamental reason why the spin
relaxation time of Q2 cannot be as large as that of
Q1 [although it must be noted that increasing the
dot-reservoir coupling as suggested in point (1) may
negatively affect the spin relaxation time via cotun-
neling processes].

For initialization ofQ2 in state j0i, the dot should ideally
remain occupied at all times. The probability of an electron
leaving the dot should in principle be exponentially sup-
pressed in the ratio of the thermal energy to the Zeeman
splitting. However, the observed probability of transition-
ing to the reservoir is too large to be explained by such
thermal suppression. Instead, a measurement of the tran-
sition probability as a function of the plunger gate voltage
of Q2 suggests that the electron escapes the j0i state via an
excited quantum dot state. The value of the plunger voltage
at which the transitions are suppressed is consistent with an
excited state with energy tens of μeV above the ground
state. We conjecture that this state is an excited valley state
with the same spin (spin-down) as the ground state.
Therefore, a likely explanation for the dominant transition
mechanism is excitation to a higher valley state (via, e.g.,
absorption of energy from the biased charge sensor)
followed by a transition from the excited valley state to
the reservoir. The bimodality of PðIpj0Þ could therefore be
suppressed by engineering valley splitting much larger than
the charge sensor bias.
The above discussion highlights the importance of

understanding the underlying physics for optimization of
qubit readout.
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[50] D. Ristè, L. C. G. Govia, B. Donovan, S. D. Fallek, W. D.
Kalfus, M. Brink, N. T. Bronn, and T. A. Ohki, Real-Time
Decoding of Stabilizer Measurements in a Bit-Flip Code,
arXiv:1911.12280.

[51] C. K. Andersen, A. Remm, S. Lazar, S. Krinner, N. Lacroix,
G. J. Norris, . Gabureac, C. Eichler, and A. Wallraff,
Repeated Quantum Error Detection in a Surface Code,
arXiv:1912.09410.

[52] K. Fukui, A. Tomita, and A. Okamoto, Analog Quantum
Error Correction with Encoding a Qubit into an Oscillator,
Phys. Rev. Lett. 119, 180507 (2017).

[53] C. Vuillot, H. Asasi, Y. Wang, L. P. Pryadko, and B.M.
Terhal,Quantum Error Correction with the Toric Gottesman-
Kitaev-Preskill Code, Phys. Rev. A 99, 032344 (2019).

[54] K. Noh, S. M. Girvin, and L. Jiang, Encoding an Oscillator
into Many Oscillators, arXiv:1903.12615.

[55] K. Noh and C. Chamberland, Fault-Tolerant Bosonic
Quantum Error Correction with the Surface–Gottesman-
Kitaev-Preskill Code, Phys. Rev. A 101, 012316 (2020).

[56] J. Yoneda, K. Takeda, A. Noiri, T. Nakajima, S. Li, J.
Kamioka, T. Kodera, and S. Tarucha, Repetitive Single
Electron Spin Readout in Silicon, arXiv:1910.11963.

[57] X. Xue et al., Supporting Data for “Repetitive Quantum
Nondemolition Measurement of a Silicon Spin Qubit Using
Different Decodings”, 2019 Data, Zenodo, https://doi.org/
10.5281/zenodo.3540731 (2019).

[58] X. Xue, T. F. Watson, J. Helsen, D. R. Ward, D. E. Savage,
M. G. Lagally, S. N. Coppersmith, M. A. Eriksson, S.
Wehner, and L. M. K. Vandersypen, Benchmarking Gate
Fidelities in a Si=SiGe Two-Qubit Device, Phys. Rev. X 9,
021011 (2019).

[59] C. T. Hann, S. S. Elder, C. S. Wang, K. Chou, R. J.
Schoelkopf, and L. Jiang, Robust Readout of Bosonic
Qubits in the Dispersive Coupling Regime, Phys. Rev. A
98, 022305 (2018).

[60] J. Gambetta, W. A. Braff, A. Wallraff, S. M. Girvin, and
R. J. Schoelkopf, Protocols for Optimal Readout of Qubits
Using a Continuous Quantum Nondemolition Measure-
ment, Phys. Rev. A 76, 012325 (2007).

[61] A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C.
Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N.
Stacey, A. M. Steane, and D. M. Lucas, High-Fidelity
Readout of Trapped-Ion Qubits, Phys. Rev. Lett. 100,
200502 (2008).

[62] T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni,
H. A. Janacek, N. M. Linke, D. N. Stacey, and D. M. Lucas,
High-Fidelity Preparation, Gates, Memory, and Readout of
a Trapped-Ion Quantum Bit, Phys. Rev. Lett. 113, 220501
(2014).

[63] S. Gammelmark, K. Mølmer, W. Alt, T. Kampschulte, and
D. Meschede, Hidden Markov Model of Atomic Quantum
Jump Dynamics in an Optically Probed Cavity, Phys. Rev.
A 89, 043839 (2014).

[64] S. Ng and M. Tsang, Optimal Signal Processing for
Continuous Qubit Readout, Phys. Rev. A 90, 022325
(2014).

[65] B. D’Anjou, L. Kuret, L. Childress, and W. A. Coish,
Maximal Adaptive-Decision Speedups in Quantum-State
Readout, Phys. Rev. X 6, 011017 (2016).

[66] M. Möttönen, K. Y. Tan, K. W. Chan, F. A. Zwanenburg,
W. H. Lim, C. C. Escott, J.-M. Pirkkalainen, A. Morello, C.
Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson,
L. C. L. Hollenberg, and A. S. Dzurak, Probe and Control of
the Reservoir Density of States in Single-Electron Devices,
Phys. Rev. B 81, 161304(R) (2010).

REPETITIVE QUANTUM NONDEMOLITION MEASUREMENT AND … PHYS. REV. X 10, 021006 (2020)

021006-13

https://doi.org/10.1038/nature18949
https://doi.org/10.1038/nature18949
https://doi.org/10.1126/science.aat3996
https://doi.org/10.1038/s41586-018-0668-z
https://doi.org/10.1038/s41567-018-0414-3
https://doi.org/10.1038/s41567-018-0414-3
https://doi.org/10.1038/s41534-019-0185-4
https://arXiv.org/abs/1905.12731
https://arXiv.org/abs/1911.12280
https://arXiv.org/abs/1912.09410
https://doi.org/10.1103/PhysRevLett.119.180507
https://doi.org/10.1103/PhysRevA.99.032344
https://arXiv.org/abs/1903.12615
https://doi.org/10.1103/PhysRevA.101.012316
https://arXiv.org/abs/1910.11963
https://doi.org/10.5281/zenodo.3540731
https://doi.org/10.5281/zenodo.3540731
https://doi.org/10.1103/PhysRevX.9.021011
https://doi.org/10.1103/PhysRevX.9.021011
https://doi.org/10.1103/PhysRevA.98.022305
https://doi.org/10.1103/PhysRevA.98.022305
https://doi.org/10.1103/PhysRevA.76.012325
https://doi.org/10.1103/PhysRevLett.100.200502
https://doi.org/10.1103/PhysRevLett.100.200502
https://doi.org/10.1103/PhysRevLett.113.220501
https://doi.org/10.1103/PhysRevLett.113.220501
https://doi.org/10.1103/PhysRevA.89.043839
https://doi.org/10.1103/PhysRevA.89.043839
https://doi.org/10.1103/PhysRevA.90.022325
https://doi.org/10.1103/PhysRevA.90.022325
https://doi.org/10.1103/PhysRevX.6.011017
https://doi.org/10.1103/PhysRevB.81.161304

