
Neuromorphic Computing of
Event-Based Data

for High-Speed Vision-Based Navigation

F. Paredes Vallés

June 19, 2018

F
a
c
u
lt
y
o
f
A
e
ro

sp
a
c
e
E
n
g
in
e
e
ri
n
g

Neuromorphic Computing of
Event-Based Data

for High-Speed Vision-Based Navigation

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace Engineering

at Delft University of Technology

F. Paredes Vallés

June 19, 2018

Faculty of Aerospace Engineering · Delft University of Technology

Delft University of Technology

Copyright c© F. Paredes Vallés
All rights reserved.

Delft University Of Technology

Department Of

Control and Simulation

The undersigned hereby certify that they have read and recommend to the Faculty of
Aerospace Engineering for acceptance a thesis entitled “Neuromorphic Computing of
Event-Based Data” by F. Paredes Vallés in partial fulfillment of the requirements for
the degree of Master of Science.

Dated: June 19, 2018

Readers:
Dr. G.C.H.E. de Croon

Dr. ir. E. van Kampen

Prof. Dr. S. M. Bohte

ir. K.Y.W. Scheper

Acknowledgments

First and foremost, I would like to thank my supervisors Guido de Croon and Kirk Scheper
for their valuable guidance and support throughout the journey that has been this thesis.
Working with you has been a very enriching experience, and I will be glad to continue doing
so in the upcoming years.

A word of appreciation also goes out to my friends—particularly Marta Camarero and Suresh
Sharma—who have been a fundamental part of my life in the past years.

Lastly, and most importantly, I would like to thank my family for their emotional support.
With the reader’s permission, the following words of thanks are in Spanish.

Papá, Mamá, Jesús, Clara, gracias por vuestra paciencia y apoyo incondicional a lo largo de
todos estos años. Este trabajo no hubiera sido posible sin vosotros.

F. Paredes Vallés
Delft, June 19, 2018

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

vi Acknowledgments

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

Abstract

The combination of Spiking Neural Networks and event-based vision sensors holds the poten-
tial of highly efficient and high-bandwidth optical flow estimation. This thesis presents, to
the best of the author’s knowledge, the first hierarchical spiking architecture in which motion
(direction and speed) selectivity emerges in a biologically plausible unsupervised fashion from
the stimuli generated with an event-based camera. A novel adaptive neuron model and Spike-
Timing-Dependent Plasticity formulation are at the core of this neural network governing its
spike-based processing and learning, respectively. After convergence, the neural architecture
exhibits the main properties of biological visual motion systems: feature extraction and local
and global motion perception. To assess the outcome of the learning, a shallow conventional
Artificial Neural Network is trained to map the activation traces of the penultimate layer to
the optical flow visual observables of ventral flows. The proposed solution is validated for
simulated event sequences with ground truth measurements. Experimental results show that
accurate estimates of these parameters can be obtained over a wide range of speeds.

Besides the research on Spiking Neural Networks, this thesis includes an in-depth review of
the relevant literate on the main topics of this work, and an extensive preliminary evalua-
tion of conventional deep Artificial Neural Networks in the estimation of optical flow visual
observables from event-based data.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

viii Abstract

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

Acronyms

Adam Adaptive Moment Estimation
AER Address-Event Representation
AI Artificial Intelligence
ANN Artificial Neural Network
API Application Programming Interface
ATIS Asynchronous Time-based Image Sensor
CMOS Complementary Metal Oxide Semiconductor
CNN Convolutional Neural Network
CPU Central Processing Unit
DAVIS Dynamic and Active-pixel Vision Sensor
DCSB Different-Channel-Same-Brightness
DL Deep Learning
DNN Deep Neural Network
DoF Degrees-of-Freedom
DoG Difference of Gaussians
DVS Dynamic Vision Sensor
eDVS Embedded Dynamic Vision Sensor
EKF Extended Kalman Filter
EMD Elementary Motion Detector
EVO Event-based Visual Odometry
FoC Focus of Contraction
FoE Focus of Expansion
FPGA Field-Programmable Gate Array
FPS Frames Per Second
GPS Global Positioning System
GPU Graphics Processing Unit
IMU Inertial Measurement Unit

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

x Acronyms

jAER Java Address-Event Representation
LIF Leaky Integrate-and-Fire
LSTM Long Short-Term Memory
MAV Micro Air Vehicle
MAVLab Micro Air Vehicle Laboratory
MDN Mixture Density Network
meDVS Miniature Embedded Dynamic Vision Sensor
MLP Multilayer Perceptron
MSE Mean Squared Error
PTAM Parallel Tracking And Mapping
RCNN Recurrent Convolutional Neural Network
ReLU Rectified Linear Unit
ReSuMe Remote Supervised Method
RNN Recurrent Neural Network
ROS Robot Operating System
SCDB Same-Channel-Different-Brightness
SCSB Same-Channel-Same-Brightness
SfM Structure-from-Motion
SGD Stochastic Gradient Descent
SHL Supervised Hebbian Learning
SLAM Simultaneous Localization And Mapping
SNN Spiking Neural Network
SRM Spike Response Model
SSD Sum of Squared Difference
STDP Spike-Timing-Dependent Plasticity
SVO Semi-direct Visual Odometry
V-SLAM Visual Simultaneous Localization And Mapping
VLSI Very-Large-Scale Integration
VTOL Vertical Take-Off and Landing
WTA Winner-Take-All

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

List of Symbols

Greek Symbols

α Homeostasic scaling factor

β Impact of inhibitory synaptic connections on neural dynamics

∆tref Length of the neural refractory period

∆tsim Simulation time step

∆W Synaptic weight update matrix

εωx , εωy Absolute error of ventral flow components

η STDP learning rate

ϑx,ϑy,ϑz Normalized translational velocities of the vision sensor

λv,λX ,λy Time constants of the membrane potential and synaptic traces

τ Synaptic transmission delay

τ Synaptic transmission delay vector

φ, θ,ψ Euler angles representing sensor’s attitude

ωx,ωy Ventral flow components in the X- and Y-axis of the image plane

Roman Symbols

a Scalar controlling the stability of the STDP rule

C Event-triggering threshold of the vision sensor

f Number of feature maps in a neural layer

i Forcing functions of the connections between two neural layers

I Brightness level perceived by a pixel

L Mean square error criterion to track convergence of STDP

m Number of multisynaptic connections between two neurons

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

n Number of neurons in a feature map

N Map-specific direct neural neighborhood of a neuron, including itself

p, q, r Sensor’s angular rates corresponding to φ, θ,ψ

s Neural spike train

t Time

u, v Optical flow components

uT , vT Translational optical flow components

U ,V ,W Sensor’s translational velocities corresponding to X,Y ,Z

v Neural membrane potential

vreset Reset membrane potential

vrest Resting membrane potential

vth Firing threshold

winit Initialization synaptic weight

W Weight matrix of the synaptic connections between two neural layers

x, y Pixel coordinates on a pixel array

X,Y ,Z Metric position in Cartesian coordinates

X Synaptic trace matrix of the connections between two neural layers

Z0 Distance to the surface along the optical axis of the sensor

ZX ,ZY Slopes of a planar surface with respect to the image plane

Subscripts

b Presynaptic neuron in N

C Camera reference frame

ch Presynaptic feature map

d Synaptic delay

i Postsynaptic neuron

j Presynaptic neuron

k Postsynaptic feature map

W World reference frame

Superscripts

l Neural layer

Contents

Acknowledgments v

Abstract vii

Acronyms ix

List of Symbols xi

List of Figures xix

List of Tables xxii

1 Introduction 1

1-1 Motivation and research question . 3

1-2 Structure of this work . 3

I Scientific Paper 5

II Literature Study 27

2 Vision-based Navigation Strategies for MAVs using Optical Flow 29

2-1 Modeling optical flow . 29

2-1-1 Optical flow in the pinhole camera model 30

2-1-2 Visual observables derived from optical flow 31

2-2 Optical flow estimation . 33

2-2-1 Gradient-based methods . 34

2-2-2 Correlation-based methods . 35

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

xiv Contents

2-2-3 Frequency-based methods . 36

2-2-4 Bio-inspired motion detectors . 37

2-3 Bio-inspired navigation using optical flow . 38

2-3-1 Navigation using ventral flow . 39

2-3-2 Landing using divergence and time-to-contact 39

2-4 Other vision-based navigation strategies . 40

2-4-1 Visual odometry . 41

2-4-2 SLAM . 41

3 Dynamic Vision Sensor and Event-based Optical Flow Estimation 43

3-1 The Dynamic Vision Sensor . 43

3-1-1 Working principle . 44

3-1-2 Sensor characteristics, advantages, and limitations 44

3-1-3 Processing software . 45

3-2 Event-based optical flow estimation . 46

3-2-1 Event-based Lucas Kanade . 46

3-2-2 Spatiotemporal plane fitting . 47

3-2-3 Direction-selective filters . 48

3-3 Visual odometry using event-based sensors . 49

4 Neuromorphic Computing for Vision-based Navigation 51

4-1 Spiking Neural Networks . 51

4-1-1 Biological background . 52

4-1-2 Models of spiking neurons . 53

4-1-3 Synaptic plasticity: Learning with spiking neurons 55

4-1-4 Event-based vision applications . 58

4-1-5 Simulators and hardware implementations 59

4-2 Artificial Neural Networks . 59

4-2-1 Basic components of artificial neural networks 60

4-2-2 Deep Learning architectures . 61

4-2-3 Motion estimation and visual odometry 64

4-2-4 Deep Learning frameworks . 68

5 Synthesis of the Literature 69

5-1 Optical-flow-based navigation strategies . 69

5-2 Event-based vision sensors and optical flow estimation 70

5-3 Neuromorphic computing for vision-based navigation 70

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

Contents xv

III Preliminary Evaluation of Motion Estimation using Deep Learning 73

6 Methodology and Datasets 75

6-1 Outline of the analysis . 75

6-2 Dynamic Vision Sensor simulator . 77

6-3 Determining ground truth ventral flow . 78

6-4 Dataset description . 80

6-4-1 From events to images . 81

7 Ventral Flow Estimation using Deep Learning Architectures 83

7-1 Neural architectures and simulation details . 83

7-1-1 Neural architectures for ventral flow estimation 83

7-1-2 Simulation and training details . 85

7-2 Results . 88

7-2-1 Ventral flow estimation from multiple DVS images 88

7-2-2 Ventral flow estimation from a single DVS image 101

8 Discussion of Preliminary Results 109

8-1 Datasets . 109

8-2 Performance of Deep Learning architectures . 110

8-2-1 Ventral flow estimation from multiple DVS images 110

8-2-2 Ventral flow estimation from a single DVS image 111

8-3 Implications of the analysis . 112

IV Appendices 113

A Software and Implementation 115

B Recommendations 121

Bibliography 123

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

xvi Contents

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

List of Figures

2-1 Projection of the world point A onto the image plane using the pinhole camera
model. Adapted from (Longuet-Higgins & Prazdny, 1980). 30

2-2 Illustration of the aperture problem occurring with an L-shaped object in motion. 34

2-3 Illustration of the horizontal motion of a vertical bar in the spatial and spatiotempo-
ral domains, and the oriented receptive fields used to detect this motion. Adapted
from Adelson & Bergen (1985). 36

2-4 Schematics of the EMD models investigated by Eichner et al. (2011). 38

3-1 Picture of the DVS128. From https://inilabs.com/ 43

3-2 Working principle of a DVS pixel. From Lichtsteiner et al. (2008). 44

3-3 Illustration of the surface of active events and its gradients. From Benosman et
al. (2014). 47

3-4 Generation of a direction-selective filter as a combination of two separable spa-
tiotemporal responses in one spatial dimension and time. From Brosch et al. (2015). 48

4-1 Illustration of the functionally distinct parts that compose a single neuron. Adapted
from Ramón y Cajal & Azoulay (1955). 52

4-2 Mechanism of spike generation in biological neurons. Adapted from Gerstner &
Kistler (2002). 53

4-3 Plasticity window characteristic of the STDP rule. From Bi & Poo (2001). . . . 56

4-4 Illustration of the synaptic delays needed to capture the velocity of an edge moving
according to the gray surface. From Orchard, Benosman, et al. (2013). 58

4-5 Schematic of a simple artificial neural network. Adapted from Sze et al. (2017). . 60

4-6 Illustration of the convolution operation performed in convolutional layers. Adapted
from Sze et al. (2017). 62

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

https://inilabs.com/

xviii List of Figures

4-7 Representation of an LSTM layer by feed-forward connections over the temporal
axis. From Olah (2015). 63

4-8 Schematics of the feed-forward architecture of Mixture Density Networks. Adapted
from Bishop (1994). 64

4-9 Comparison of the dense optical flow fields estimated with FlowNet and FlowNet
2.0. From Ilg et al. (2017). 65

4-10 Architecture of the recurrent convolutional network proposed by Wang et al. (2017)
for pose estimation. From Wang et al. (2017). 68

6-1 Rendered images of the texture patterns used for data acquisition. 76

6-2 Working principle of the event-camera simulator. From Mueggler et al. (2017). . 77

6-3 Schematic of the reference frames employed in this preliminary analysis. 79

6-4 Range of ventral flow values of the training and validation datasets, as a function
of the orientation angle. 80

6-5 Temporal evolution of the ground truth ventral flow components of the Sets 3 and
4 of the dataset. 81

6-6 Visualization of the events accumulated over a temporal window of ∆tf = 1.0 ms.
when a particular motion is performed over the roadmap and checkerboard textures. 82

7-1 Architecture of the deep convolutional network employed in this preliminary eval-
uation of ventral flow estimation. 84

7-2 Schematic of the deep recurrent convolutional network employed for evaluating the
impact of sequential modeling in the estimation of ventral flow. 86

7-3 Temporal evolution of the ventral flow components estimated with the CNN on
Set 3. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 1.0 ms, TS-I15. 90

7-4 Temporal evolution of the ventral flow components estimated with the RCNN on
Set 3. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 1.0 ms, TS-I15. 91

7-5 Comparison between ground truth ventral flow values from Set 3 (color lines) and
training data (gray regions), as a function of the direction of motion. 91

7-6 Temporal evolution of the ventral flow components estimated with the CNN on
Set 4. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 5.0 ms, TS-I15. 92

7-7 Temporal evolution of the ventral flow components estimated with the RCNN on
Set 4. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 5.0 ms, TS-I15. 92

7-8 Illustration of the impact that ∆tf has on the image appearance depending on the
texture from which they are generated. Only half of each image is shown. Config.:
DCSB, r = 1.0 m, h = 0.5 m. 94

7-9 Temporal evolution of the ventral flow components estimated with the CNN on
Set 4. Config.: DCSB, adaptive ∆tf ,T, adaptive ∆tf ms, TS-I15. 95

7-10 Temporal evolution of the ventral flow components estimated with the CNN on
Set 5. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 1.0 ms, TS-I15. 96

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

List of Figures xix

7-11 Temporal evolution of the ventral flow components estimated with the RCNN on
Set 5. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 1.0 ms, TS-I15. 97

7-12 Temporal evolution of the ventral flow components estimated with the CNN on
Set 5. Config.: DCSB, adaptive ∆tf ,T, adaptive ∆tf ms, TS-I15. 98

7-13 Illustration of the impact that target event density of σ2(I) = 0.125 has on the im-
age appearance depending on the texture from which they are generated. Config.:
DCSB, r = 1.0 m, h = 0.5 m. 99

7-14 Temporal evolution of the ventral flow components estimated with the CNN on
Set 3. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 1.0 ms, S-I. 102

7-15 Temporal evolution of the ventral flow components estimated with the CNN on
Sets 3, 4, and 5. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = [2.5, 10.0, 10.0] ms,
r = 1.0 m, S-I. 103

7-16 Temporal evolution of the ventral flow components estimated with the RCNN on
Set 3. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 1.0 ms, S-I. 104

7-17 Temporal evolution of the ventral flow components estimated with the RCNN on
Sets 3, 4, and 5. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = [2.5, 10.0, 10.0] ms,
r = 1.0 m, S-I. 105

7-18 Temporal evolution of the ventral flow components estimated with the RCNN on
Set 3. Config.: DCSB, adaptive ∆tf ,T, adaptive ∆tf , S-I. 107

A-1 High-level flowchart of the cuda-snn engine. 116

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

xx List of Figures

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

List of Tables

3-1 DVS128 specifications (iniLabs, n.d.) . 45

6-1 Summary of the main characteristics of the event datasets used in the preliminary
analysis of this thesis. 81

7-1 Detailed structure of the deep convolutional network employed in this analysis. . 85

7-2 Ventral flow estimation errors (mean absolute error and variance) when the CNN
is applied to Set 3 using different input formats. 89

7-3 Ventral flow estimation errors obtained by evaluating both the CNN and RCNN
on all the circular trajectories from Set 3. 90

7-4 Sensitivity results for ventral flow estimation errors on Set 4 with the CNN, using
∆tf as dependent variable. 93

7-5 Sensitivity results for ventral flow estimation errors on Set 4 with the RCNN, using
∆tf as dependent variable. 93

7-6 Sensitivity results for ventral flow estimation errors on Set 4 with the CNN, using
∆tf as adaptive variable and the density of events as image descriptor. 95

7-7 Sensitivity results for ventral flow estimation errors on Set 5 with the CNN, using
∆tf as dependent variable. 96

7-8 Sensitivity results for ventral flow estimation errors on Set 5 with the RCNN, using
∆tf as dependent variable. 97

7-9 Sensitivity results for ventral flow estimation errors on Set 5 with the CNN, using
∆tf as adaptive variable and the density of events as image descriptor. 98

7-10 Sensitivity results for ventral flow estimation errors with the encoding scheme as
dependent variable. 100

7-11 Sensitivity results for ventral flow estimation errors with the number of convolu-
tional filters as dependent variable. 101

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

xxii List of Tables

7-12 Ventral flow estimation errors obtained by evaluating the CNN on all the circular
trajectories from Set 3. 102

7-13 Sensitivity results for ventral flow estimation errors on Sets 3, 4, and 5 with the
CNN, using ∆tf as dependent variable. 103

7-14 Ventral flow estimation errors obtained by evaluating the RCNN on all the circular
trajectories from Set 3. 104

7-15 Sensitivity results for ventral flow estimation errors on Sets 3, 4, and 5 with the
RCNN, using ∆tf as dependent variable. 105

7-16 Ventral flow estimation errors obtained by evaluating the RCNN on all the circular
trajectories from Set 3, using ∆tf as adaptive variable. 106

A-1 Overview of the source code of the cuda-snn simulator. 118

A-2 Dependencies of the cuda-snn simulator. 119

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

Chapter 1

Introduction

Whenever an animal endowed with a visual system navigates through an environment, turns
its gaze, or simply observes a moving object from a resting state, motion patterns are per-
ceivable at the retina level as spatiotemporal variations of brightness (Feng, 2003; Borst et
al., 2010; Borst & Helmstaedter, 2015). These patterns of apparent motion, formally referred
to as optical flow (Gibson, 1950), are a crucial source of information for these animals to es-
timate their ego-motion and to have a better understanding of the visual scene. For instance,
expanding flow fields are normally induced by forward motion, and nearby obstacles can be
discerned as regions of high flow surrounded by patterns of much lower motion. In essence,
the information that can be derived from optical flow is the ratio of velocity to distance
(Longuet-Higgins & Prazdny, 1980), which can be represented as a set of visual observables
(de Croon et al., 2013), such as ventral flows or divergence. Flying insects are seen to rely on
these parameters to perform high-speed maneuvers such as horizontal translation or landing
(Srinivasan et al., 1996; Chahl et al., 2004; Baird et al., 2013).

Considering their size and weight limitations, insects are a clear indicator of the efficiency,
robustness, and low latency of the optical flow estimation conducted by biological systems.
The ability to reliably mimic this procedure would have a significant impact on the field
of micro-robotics due to the limited computational capacity of onboard processors. As an
example, Micro Air Vehicles (MAVs), such as the 20-gram DelFly Explorer (De Wagter et al.,
2014), could benefit from a bio-realistic visual motion estimation for high-speed autonomous
navigation in cluttered environments. Accordingly, the design of optical flow techniques is
currently an appealing research topic, and numerous solutions have been proposed to date
at various levels of abstraction (Fortun et al., 2015). Nevertheless, there are still remarkable
differences with their biological counterparts regarding data acquisition and processing.

In biological visual systems, the process of seeing starts at the photoreceptors in the retina,
which are light-sensitive neurons that absorb and convert incoming light into electrical signals.
These signals serve as input to the so-called ganglion cells. There are two major types of these
neurons: ON cells, which react to an increase in the brightness perceived at a specific location
in the retina; and OFF cells, which do so to a decrease (Posch et al., 2014). The activity of
these neurons consists in temporal sequences of discrete spikes (voltage pulses) that are sent

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

2 Introduction

to large networks of interconnected cells for motion estimation, among other tasks. Since
it is spike-driven, these biological architectures are characterized by a sparse, asynchronous,
and massively parallelized computation. Further, they are seen to adapt their topology,
i.e. connectivity pattern, in response to visual experience (Wiesel, 1982; Kirkwood & Bear,
1994). This adaptation, or learning mechanism, allows them to operate robustly in different
environments under a wide range of lighting conditions.

In contrast, the working principle of the majority of input sensors employed for artificial visual
perception is categorized as frame-based : static images are obtained by measuring the bright-
ness levels of a pixel array at fixed time intervals. Although convenient for some computer
vision applications, these sensors are highly inefficient for the task of motion estimation since
the output rate at which frames are acquired is independent of the dynamics of the visual
scene. In addition, due to the limited temporal resolution of these sensors, rapidly moving
objects may introduce motion blur, thus limiting the accuracy of optical flow measurements.

However, not all artificial systems rely on conventional frame-based cameras for visual motion
estimation. Inspired by biological retinas, several event-based sensors have recently been
presented (Lichtsteiner et al., 2008; Posch et al., 2011; Brandli et al., 2014) in an attempt
of pushing the state-of-the-art of artificial vision systems towards more efficient processing.
Similarly to ganglion cells, each of the elements of the pixel array reacts asynchronously
to brightness changes in its corresponding receptive field (Posch et al., 2014). Whenever the
change exceeds a predefined threshold, the sensor registers an event that contains information
about the sign of the change, the location in the array where it was detected, and a timestamp.
A microsecond resolution, latencies in this order of magnitude, a very high dynamic range, and
a low power consumption make these sensors an ideal choice for visual perception (Conradt
et al., 2009; Delbruck & Lang, 2013; Mueggler et al., 2014; Hordijk et al., 2018).

Regardless of the vision sensor, the estimation of optical flow by artificial systems is normally
performed algorithmically, with solutions that are built on simplifying assumptions that make
this problem tractable (Horn & Schunck, 1981; Sutton et al., 1983; Adelson & Bergen, 1985;
Heeger, 1987; Benosman et al., 2014; Brosch & Neumann, 2014). In spite of this, the recent
progress in parallel computing hardware has enabled artificial visual perception to be ad-
dressed from a more bio-inspired perspective: Artificial Neural Networks (ANNs). Similarly
to biological architectures, ANNs consist of large sets of artificial neurons whose interconnec-
tions can be optimized for the task at hand. However, despite the high accuracy reported
(Dosovitskiy et al., 2015; Ilg et al., 2017; Ranjan & Black, 2017; Ren et al., 2017; Zhao et al.,
2017; Lai et al., 2017), there is still a fundamental difference: the underlying data transfer
mechanism of ANNs is based on a continuous stream of information (Goodfellow et al., 2016)
rather than on trains of discrete spikes. As a consequence, these architectures are in general
computationally very expensive.

Taking further inspiration from nature, Spiking Neural Networks (SNNs) have been proposed
as a new generation of ANNs (Maass, 1997). As the name suggests, the computation carried
out by these bio-realistic neural models is asynchronous and spike-based, which makes them
a suitable processing framework for the sparse data generated by event-based vision sensors
(Orchard & Etienne-Cummings, 2014). Moreover, SNNs can benefit from an efficient real-
time implementation in neuromorphic hardware, such as IBM’s TrueNorth chip (Merolla et al.,
2014) or Intel’s Loihi processor (Davies et al., 2018). Despite these promising characteristics,
the spiking nature of these networks limits the application of the successful gradient-based

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

1-1 Motivation and research question 3

optimization algorithms normally employed in ANNs. Instead, learning in SNNs is dominated
by Spike-Timing-Dependent Plasticity (STDP) (Bi & Poo, 1998; Markram et al., 1997), a
biologically plausible protocol that adapts the strength of a connection between two neurons
based on their correlated activity. STDP has been successfully applied to simple image
classification tasks (Masquelier & Thorpe, 2007; Iakymchuk et al., 2015; Diehl & Cook, 2015;
Tavanaei & Maida, 2017). However, until now, no study has discussed the use of this learning
rule for the estimation of event-based optical flow.

1-1 Motivation and research question

Among other projects, the Micro Air Vehicle Laboratory (MAVLab) of Delft University of
Technology conducts research on the application of optical flow to the development of vision-
based navigation solutions for MAVs. For instance, experiments have recently been performed
for the characterization of the constant-divergence landing maneuver using rotorcraft MAVs
equipped with downward-looking cameras (e.g., de Croon et al., 2013; Ho & de Croon, 2016; de
Croon, 2016). Moreover, McGuire et al. (2017) presented an efficient optical flow estimation
method that, using a lightweight forward-looking stereo camera, is suitable for performing
autonomous navigation on-board very small MAVs.

The combination of event-based cameras and SNNs is of great interest in this research field.
Firstly, due to the high temporal resolution of these sensors and the efficiency of SNNs, this
combination has the potential to significantly increase the update rate at which optical flow
visual observables are obtained, thus enabling high-speed vision-based navigation. Secondly,
regarding the inspiration from biology (Chahl et al., 2004; Baird et al., 2013), learning to
estimate these parameters adds a new level of realism to the algorithm. Instead of relying
on mathematical models describing the relation between optical flow and ego-motion states
(e.g., Longuet-Higgins & Prazdny, 1980), these neural architectures are potentially capable
of learning this input-output mapping from data samples. Further, as previously mentioned,
they can be implemented in neuromorphic hardware (Merolla et al., 2014; Davies et al., 2018)
due to their event-based communication. These devices are characterized by a real-time
performance that, in conjunction with a low power consumption, makes them a very suitable
computational platform for MAVs.

According to this motivation, the main research question of this thesis is formulated as follows:

Can a spiking neural network learn the main functionalities of biological vi-
sual motion systems, namely feature extraction and local and global motion
perception, and hence be used for ego-motion estimation?

1-2 Structure of this work

The main contributions of this thesis are presented in the scientific paper in Part I. This paper
can be read as a standalone document and consists primarily of, first, a concise introduction
to the main concepts and previous contributions of relevance to the work; second, a descrip-
tion and evaluation of the proposed spiking architecture, neuron model, and learning rule;

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

4 Introduction

and third, concluding remarks and recommendations for future research on the topic. The
remainder of this thesis provides supporting material for this paper. Readers unfamiliar with
the topics of optical flow, event-based vision, and neuromorphic computing are encouraged
to read this documentation beforehand.

Part II presents an in-depth review of relevant literature on the topics of optical flow esti-
mation, its use for vision-based navigation, and neuromorphic computing. In Chapter 2, the
concept of optical flow is introduced, together with its most-common frame-based estimation
algorithms and applications in MAVs with navigation purposes. Next, Chapter 3 introduces
the field of event-based vision. Here, the working principle of these sensors is detailed, and the
existing approaches for estimating event-based optical flow are covered. Chapter 4 reviews
the field of neuromorphic computing by describing the main aspects of spiking and artificial
neural networks, together with their corresponding applications of optical flow and motion
estimation. Lastly, this literature review is synthesized in Chapter 5.

Next, Part III documents a preliminary evaluation of conventional deep neural architectures
in the task of estimating optical flow visual observables from event-based data. This analysis
serves as a good practical introduction to the field of Deep Learning (DL), and to several
relevant aspects that have been taken into account for the development of the final spiking
architecture proposed in this thesis (e.g., network topology, polarity encoding). In Chapter 6,
the methodology and datasets used throughout the analysis are introduced. Next, Chapter
7 presents the neural networks employed, their training details, and an evaluation of their
performance when estimating ventral flows. These preliminary results are further discussed
in Chapter 8.

Finally, Part IV contains a set of individual appendices with supplementary material that
support the scientific paper included in Part I. Appendix A provides an overview of the cuda-
snn simulator: the computational framework that has been developed throughout this thesis
for the efficient simulation of the communication and learning mechanisms of SNNs. On the
other hand, Appendix B provides recommendations for future research on the main topics of
this work.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

Part I

Scientific Paper

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

Unsupervised Learning of a Hierarchical Spiking

Neural Network for Optical Flow Estimation:

From Events to Global Motion Perception

F. Paredes Vallés∗ ‡, K.Y.W. Scheper† ‡, G.C.H.E. de Croon† ‡

∗MSc student, †Supervisor
‡Control & Simulation, Control & Operations Department

Delft University of Technology, Delft, The Netherlands

Abstract—The combination of Spiking Neural Networks and
event-based vision sensors holds the potential of highly effi-
cient and high-bandwidth optical flow estimation. This paper
presents the first hierarchical spiking architecture in which
motion (direction and speed) selectivity emerges in a biologically
plausible unsupervised fashion from the stimuli generated with
an event-based camera. A novel adaptive neuron model and
Spike-Timing-Dependent Plasticity formulation are at the core
of this neural network governing its spike-based processing and
learning, respectively. After convergence, the neural architecture
exhibits the main properties of biological visual motion systems,
namely feature extraction and local and global motion perception.
To assess the outcome of the learning, a shallow conventional
Artificial Neural Network is trained to map the activation traces
of the penultimate layer to the optical flow visual observables of
ventral flows. The proposed solution is validated for simulated
event sequences with ground truth measurements. Experimental
results show that accurate estimates of these parameters can be
obtained over a wide range of speeds

Index Terms—Event-based vision, neuromorphic, optical flow,
spiking neural networks, spike-timing-dependent plasticity.

I. INTRODUCTION

W
HENEVER an animal endowed with a visual system

navigates through an environment, turns its gaze, or

simply observes a moving object from a resting state, motion

patterns are perceivable at the retina level as spatiotemporal

variations of brightness [1]–[3]. These patterns of apparent

motion, formally referred to as optical flow [4], are a crucial

source of information for these animals to estimate their ego-

motion and to have a better understanding of the visual scene.

For instance, expanding flow fields are normally induced by

forward motion, and nearby obstacles can be discerned as

regions of high flow surrounded by patterns of much lower

motion. In essence, the information that can be derived from

optical flow is the ratio of velocity to distance [5], which

can be represented as a set of visual observables [6], such

as ventral flows or divergence. Flying insects are seen to rely

on these parameters to perform high-speed maneuvers such as

horizontal translation or landing [7]–[9].

Considering their size and weight limitations, insects are a

clear indicator of the efficiency, robustness, and low latency of

the optical flow estimation conducted by biological systems.

The ability to reliably mimic this procedure would have a

significant impact on the field of micro-robotics due to the

limited computational capacity of onboard processors. As an

example, Micro Air Vehicles (MAVs), such as the 20-gram

DelFly Explorer [10], could benefit from a bio-realistic visual

motion estimation for high-speed autonomous navigation in

cluttered environments. Accordingly, the design of optical flow

techniques is currently an appealing research topic, and nu-

merous solutions have been proposed to date at various levels

of abstraction [11]. Nevertheless, there are still remarkable

differences with their biological counterparts regarding data

acquisition and processing.

In biological visual systems, the process of seeing starts

at the photoreceptors in the retina, which are light-sensitive

neurons that absorb and convert incoming light into electrical

signals. These signals serve as input to the so-called ganglion

cells. There are two major types of these neurons: ON cells,

which react to an increase in the brightness perceived at a

specific location in the retina; and OFF cells, which do so to a

decrease [12]. The activity of these neurons consists in tempo-

ral sequences of discrete spikes (voltage pulses) that are sent to

large networks of interconnected cells for motion estimation,

among other tasks. Since it is spike-driven, these biological

architectures are characterized by a sparse, asynchronous, and

massively parallelized computation. Further, they are seen to

adapt their topology, i.e. connectivity pattern, in response

to visual experience [13], [14]. This adaptation, or learning

mechanism, allows them to operate robustly in different envi-

ronments under a wide range of lighting conditions.

In contrast, the working principle of the majority of input

sensors employed for artificial visual perception is categorized

as frame-based: static images are obtained by measuring the

brightness levels of a pixel array at fixed time intervals.

Although convenient for some computer vision applications,

these sensors are highly inefficient for the task of motion

estimation since the output rate at which frames are acquired is

independent of the dynamics of the visual scene. In addition,

due to the limited temporal resolution of these sensors, rapidly

moving objects may introduce motion blur, thus limiting the

accuracy of optical flow measurements.

However, not all artificial systems rely on conventional

frame-based cameras for visual motion estimation. Inspired by

biological retinas, several event-based sensors have recently

been presented [15]–[17] in an attempt of pushing the state-

1

of-the-art of artificial vision systems towards more efficient

processing. Similarly to ganglion cells, each of the elements

of the pixel array reacts asynchronously to brightness changes

in its corresponding receptive field [12]. Whenever the change

exceeds a predefined threshold, the sensor registers an event

that contains information about the sign of the change, the

location in the array where it was detected, and a timestamp. A

microsecond resolution, latencies in this order of magnitude, a

very high dynamic range, and a low power consumption make

these sensors an ideal choice for visual perception [18]–[21].

Regardless of the vision sensor, the estimation of optical

flow by artificial systems is normally performed algorithmi-

cally, with solutions that are built on simplifying assumptions

that make this problem tractable [22]–[27]. In spite of this, the

recent progress in parallel computing hardware has enabled

artificial visual perception to be addressed from a more bio-

inspired perspective: Artificial Neural Networks (ANNs). Sim-

ilarly to biological architectures, ANNs consist of large sets

of artificial neurons whose interconnections can be optimized

for the task at hand. However, despite the high accuracy

reported [28]–[33], there is still a fundamental difference: the

underlying data transfer mechanism of ANNs is based on a

continuous stream of information [34] rather than on trains

of asynchronous discrete spikes. As a consequence, these

architectures are in general computationally very expensive.

Taking further inspiration from nature, Spiking Neural Net-

works (SNNs) have been proposed as a new generation of

ANNs [35]. As the name suggests, the computation carried out

by these bio-realistic neural models is asynchronous and spike-

based, which makes them a suitable processing framework

for the sparse data generated by event-based vision sensors

[36]. Moreover, SNNs can benefit from an efficient real-time

implementation in neuromorphic hardware, such as IBM’s

TrueNorth chip [37] or Intel’s Loihi processor [38]. Despite

these promising characteristics, the spiking nature of these

networks limits the application of the successful gradient-

based optimization algorithms normally employed in ANNs.

Instead, learning in SNNs is dominated by Spike-Timing-

Dependent Plasticity (STDP) [39], [40], a biologically plausi-

ble protocol that adapts the strength of a connection between

two neurons based on their correlated activity. STDP has been

successfully applied to simple image classification tasks [41]–

[44]. However, until now, no study has discussed the use of

this learning rule for the estimation of event-based optical flow.

This paper contains three main contributions. First, a novel

adaptive mechanism for the Leaky Integrate-and-Fire (LIF)

spiking neuron model [45] is introduced. This adaptation

extends the applicability of this model to the rapidly varying

input statistics of a moving event-based vision sensor. Second,

a novel inherently-stable STDP implementation is proposed.

With this learning rule, the strength of neural connections is

naturally constrained without the need for the ad-hoc mech-

anisms used by most of the existing formulations. Third, the

proposed neuron model and STDP rule are combined in a bio-

inspired hierarchical SNN architecture that, after learning, re-

sembles the main functionalities of biological visual systems:

feature extraction and local and global motion perception. To

the best of the authors’ knowledge, this paper shows, for

the first time, that neural selectivity to the local and global

motion of input stimuli can emerge from visual experience in

a biologically plausible unsupervised fashion.

The rest of the paper is structured as follows. Firstly,

Section II provides background information concerning event-

based vision, SNNs, and optical flow estimation. Then, Section

III introduces the mathematical model relating sensor ego-

motion to the optical flow observables used in this work.

In Section IV, the foundations of the spike-based processing

and learning of the proposed SNN are detailed. Afterwards,

network architecture and an ANN-based readout mechanism

are described and evaluated in Sections V and VI, respectively.

Lastly, concluding remarks and recommendations for future

work are given in Section VII.

II. RELATED WORK

This section serves as an introduction to the main concepts

and previous contributions of relevance to the present work.

Firstly, the theory behind event-based vision sensors is de-

scribed in Section II-A. Secondly, Section II-B covers the field

of SNNs, placing emphasis on existing spiking neuron models

and unsupervised learning mechanisms. Lastly, an overview of

the available optical flow estimation algorithms is provided in

Section II-C, for both frame- and event-based sensors.

A. Event-Based Vision Sensors

Inspired by biological retinas, the working principle of

event-based vision sensors differs significantly from that

of their frame-based counterparts. Conventional frame-based

cameras perceive the world as a series of consecutive images,

which are acquired by measuring the brightness levels of the

pixel array at a fixed rate. In contrast, each of the pixels of

an event-based vision sensor reacts asynchronously to local

changes in brightness by generating discrete temporal events.

Specifically, the generation of an event is triggered whenever

the logarithmic change of the image intensity I (x, y, t) exceeds

t[s]
x

y

t[s]
x

y

Events

Frames

P = 1

P = −1

Fig. 1: Comparison of the output of frame- and event-based vision sensors un-
der the stimulus of a black horizontal bar moving upward over a homogeneous
white background. While frames are basically two-dimensional snapshots of
the visual scene, events are spatiotemporal sparse points tracking the leading
and trailing edges of the bar.

2

a predefined threshold C, as shown in Eq. (1). This variation

is computed with respect to a reference brightness level set by

the last occurring event at that pixel [15].

�
�∆ log

(

I (x, y, t)
)

�
� > C (1)

Each event encodes information about the timestamp t in

which it was generated, the corresponding (x, y) location in

the pixel array, and the polarity P ∈ {−1, 1} of the intensity

change. This communication protocol is formally referred

to as Address-Event Representation (AER) [46]. A visual

comparison of the output of frame- and event-based sensors

under the same stimulus is illustrated in Fig. 1.

The event-based camera employed in this work is the Dy-

namic Vision Sensor (DVS), more specifically, the DVS128.

This device features a 128×128 pixel array characterized by a

temporal resolution of 1 µs, a latency of 12 µs, an intrascene

dynamic range of 120 dB, and an average power consumption

of 23 mW [15]. Due to the large amount of data required for

training neural networks, in this work, the streams of DVS

events are generated with the DVS simulator [47], rather than

with the actual sensor. This simulator renders intensity images

from a three-dimensional virtual scene at a high rate (1000

Hz), and estimates events according to Eq. (1) by linearly

interpolating logarithmic brightness levels between frames.

The use of virtual scenes facilitates the acquisition of ground

truth odometry measurements, which are essential for the

performance assessment of motion estimation approaches.

B. Spiking Neural Networks

SNNs offer a novel neuromorphic framework with potential

for overcoming the considerable computational effort and

energy required by conventional ANNs [35]. In the following,

the main aspects and prevalent models of spiking neurons are

presented, along with an introduction to the learning paradigms

normally employed for optimizing these architectures.

1) Models of spiking neurons: In biological networks, neu-

ral communication consists in the exchange of voltage pulses,

whose precise timing encodes the information transmitted [35].

For the reproduction of this asynchronous and spike-based

mechanism in SNNs, multiple models of spiking neurons have

been presented at various levels of abstraction. Biophysical

formulations lead to accurate representations of neural dy-

namics [48]. However, their complexity limits their use in

large-scale networks. On the other hand, phenomenological

formulations, which offer a compromise between computa-

tional load and biological realism, have proven to be effective

in numerous applications [41]–[44]. Examples of these models

are the aforementioned LIF [45], the Izhikevich [49], and the

Spike Response Model [50].

From a conceptual perspective, the majority of these models

share some fundamental principles and definitions [35]. The

junction of two neurons is called synapse; and relative to

these cells, the transmitting neuron is labeled as presynaptic,

while the receiving as postsynaptic. Each spiking neuron, as

processing unit, is characterized by an internal state variable,

vi (t)

s j (t)

si (t)

vth

vreset

∆tref

t

i

Fig. 2: A model of a LIF neuron. The graphic (right) shows the temporal
course of the membrane potential vi (t) of the ith neuron (left), driven by
a sample presynaptic spike train s j (t) from three input neurons j = 1, 2, 3.
Spikes are depicted as vertical bars at the time at which they are received
(if presynaptic) or emitted (if postsynaptic). In this schematic, the reset vreset

and resting vrest potentials are equal in magnitude.

known as membrane potential v(t), which temporally inte-

grates presynaptic spikes over time. If the arrival of a spike

leads to an increase (decrease) in v(t), then the spike is said

to have an excitatory (inhibitory) effect on the neuron. v(t)

decays to a resting potential vrest in case no input is received.

Lastly, a postsynaptic spike is triggered whenever v(t) crosses

the firing threshold vth. Afterwards, the neuron resets its

membrane potential to vreset, and enters in a refractory period

∆tref during which new incoming spikes have negligible effect

on v(t). Fig. 2 illustrates these concepts for the case of a LIF

neuron [45].

2) Synaptic plasticity: Defined as the ability to modify

the efficacy (weight) of neural connections, synaptic plasticity

is the basic mechanism underlying learning in biological

networks [51]. These architectures are seen to rely on different

learning paradigms depending on their duty [52]. For instance,

information encoding in biological visual systems is estab-

lished in an unsupervised fashion, while reinforcement and

supervised learning are employed for tasks such as decision

making and motor control [52]. Accordingly, various forms

of synaptic plasticity have been proposed for SNNs. A brief

review of these learning models is presented hereunder.

In the context of SNNs, unsupervised learning is generally

referred to as Hebbian learning, since plasticity rules from

this paradigm are based on Hebb’s postulate: “cells that

fire together, wire together” [53]. In essence, these methods

adapt the efficacy of a connection based on the correlated

activity of pre- and postsynaptic cells. Among others, the

biologically plausible STDP protocol [39], [40] is, by far,

the most popular Hebbian rule for SNNs [54]. With STDP,

the repeated arrival of presynaptic spikes to a neuron shortly

before it fires leads to synaptic strengthening, also known as

Long-Term Potentiation (LTP); whereas if the arrival occurs

shortly after the postsynaptic spike, synapses are weakened

through Long-Term Depression (LTD). Therefore, the change

of efficacy ∆W is normally expressed as a function of the

relative timing between these two events. STDP formulations

exclusively dependent on this parameter are referred to as

additive rules [55]. These models, despite their success in

pattern recognition problems [41]–[44], are inherently unstable

3

and require the use of constraints for the synaptic weights, thus

resulting in bimodal distributions [56]. On the other hand,

multiplicative STDP rules incorporate the current efficacy

value in the computation of ∆W in an inversely proportional

manner. As shown in [57], [58], this additional dependency

leads to stable unimodal weight distributions. However, the

stability of these approaches results from a complex temporal

LTP-LTD balance, and it is not theoretically guaranteed.

Several lines of research can be distinguished regarding

the use of supervised learning in SNNs, being the most

promising based on the well-known error backpropagation

algorithm [59]. Firstly, numerous adaptations to the discon-

tinuous dynamics of SNNs have been proposed for learning

temporally precise spike patterns [60]–[63]; but no vision-

based applications have been reported. Alternatively, due to

the popularity of this method in ANNs, SNNs normally rely

on transferring optimization results from their non-spiking

counterparts [64]–[66]. Even though similar accuracy levels

are obtained more efficiently, information is no longer encoded

in the precise spike timing but rather in the neural firing rate,

which differs from biological visual systems [67], [68].

With respect to reinforcement learning in SNNs, various

models have been presented, the majority of which consist in

the modulation of STDP with a reward function [69]–[71].

However, applications of this paradigm are mainly focused on

neuroscience research [72], [73], besides several goal-directed

navigation problems [74], [75] and the digit-recognition appli-

cation recently presented in [76].

C. Optical Flow Estimation

In the following, the state-of-the-art of optical flow es-

timation techniques is discussed. Depending on the sensor

type, two categories are distinguished: frame- and event-based

methods.

1) Frame-based methods: Most of the solutions presented

to date for optical flow estimation from sequences of static

images derive from the brightness constancy constraint [77].

This assumption states that the intensity structure of a local

region in the image plane remains approximately constant

under motion for a short period of time. Hence, this constraint

is formulated as follows:

Ix (x, y)u + Iy (x, y)v + It (x, y) = 0 (2)

where (u, v) denote the optical flow components to be es-

timated, and (Ix, Iy, It) are the spatial and temporal partial

derivatives of the image intensity function at the (x, y) co-

ordinates. Consequently, local optical flow methods can only

estimate normal flow, which is the motion component normal

to the direction of the local intensity gradient ∇I = (Ix, Iy).

This limitation is formally referred to as the aperture problem

[78]. Depending on the interpretation of this constraint, three

major classes of algorithmic optical flow estimation techniques

can be distinguished [77]: gradient-based, correlation-based,

and frequency-based methods.

Firstly, gradient-based approaches address the estimation

problem from the definition of the constraint. However, since

Eq. (2) provides two unknown components, a secondary as-

sumption is required. For instance, the popular Lucas-Kanade

algorithm [79] estimates the optical flow of sparse image

features by assuming that (u, v) are constant within their

direct neighborhood. On the other hand, global gradient-based

methods combine the aforementioned constraint with a spatial

[22], [77] or spatiotemporal [80] cost function to be optimized

for the computation of dense image flow.

Correlation-based approaches also formulate the estimation

of optical flow as an optimization problem. In this case,

the cost functions are based on the comparison of the local

intensity structure of an image point in two different frames

[81]. As a result, these methods monitor the location of sparse

features over successive images, and optical flow is computed

from their relative displacements between frames.

Lastly, frequency-based methods are based on the use of

velocity-tuned filters designed in the Fourier domain. Inspired

by the working principle of direction-selective cells at early

stages of the visual cortex [82]–[85], these methods rely on a

class of spatiotemporally-oriented filters that exploit the fact

that motion can be estimated by extracting orientation in this

domain [24]. The spatial convolution of these filters results

in a dense optical flow estimation. However, unlike previous

approaches, each filter computes a location-specific confidence

value that the stimulus is moving in a specific direction with

certain speed, rather than the actual flow components. Fig. 3

shows a spatiotemporal illustration of the motion of a simple

stimulus and the appearance of the best fitting filter.

x

y

x

y

t

x

t

+

+

+

−

−

−

Fig. 3: Illustration of the right horizontal motion of a vertical bar in the spatial
(left) and spatiotemporal domains (center, right). An example of the detection
of this motion with a spatiotemporally-oriented filter is shown as well (right).
Adapted from [24].

The algorithmic perspective is not the only angle from

which the visual motion estimation problem has been ad-

dressed. The Reichardt model [86], also known as the El-

ementary Motion Detector (EMD), determines the minimal

computations required by biological neural circuits to perceive

motion. In its most basic form, the EMD is based on the

correlation of the input signals from two neighboring photore-

ceptors, after one them has been temporally delayed. Despite

its accuracy in reproducing the activity of direction-selective

neurons from the visual system of flying insects, its cellular

implementation is still undiscovered [87].

Alternatively, several ANNs have recently been proposed

for dense optical flow estimation from pairs of consecutive

4

images [28]–[33]. These architectures, which are optimized

via supervised learning from large sets of labeled data, report

higher accuracy than conventional approaches at the expense

of being computationally more expensive [30]. Convolutional

[88] and deconvolutional [89] neural layers are at the core

of these networks for feature extraction and dense inference,

respectively.

2) Event-based methods: The recent introduction of the

DVS [15] and other retinomorphic vision sensors [16], [17]

has precipitated the development of several novel approaches

to event-based optical flow estimation. As before, depending

on their working principle, these solutions are divided into

algorithmic and neural methods.

Regarding the former, a gradient-based, a plane-fitting,

and various frequency-based approaches set the basis of the

algorithmic state-of-the-art. These techniques compute sparse

optical flow estimates for each newly detected event based on

its polarity-specific spatiotemporal neighborhood. Firstly, an

adaptation of the Lucas-Kanade algorithm [79] was presented

in [90], and reformulated in [91]. Contrary to the frame-based

implementation, this solution relies on the definition of the

brightness constancy constraint in terms of the second-order

partial derivatives of the image intensity function (Itx, Ity, Itt),

since events are considered local representations of It . Sec-

ondly, the method proposed in [26] extracts optical flow

information by computing the gradients of a local plane fitted

to represent a small spatiotemporal surface of events. This

plane-fitting algorithm is further explored in [21], where its ap-

plicability is extended to a wider range of velocities through an

adaptive temporal window. Lastly, multiple adaptations of the

bio-inspired frequency-based methods have been introduced

[91]–[93]. Although relying on the same principle as their

frame-based counterparts, the event-driven computations allow

the implementation in neuromorphic hardware [94].

The estimation of event-based optical flow with neural

models is dominated, almost in its entirety, by networks

of spiking neurons, i.e. SNNs. In [95], the authors propose

an architecture in which motion selectivity results from the

synaptic connections of a bursting neuron to two neighboring

photoreceptors, being one excitatory and the other inhibitory.

If the edge is detected first by the excitatory cell, then

spikes are emitted at a fixed rate until the inhibitory pulse

is received. Otherwise, the neuron remains inactive. Optical

flow is consequently encoded in the burst length and in the

relative orientation of the photoreceptors.

In contrast, the SNNs presented in [96], [97] extract motion

information through synaptic delays and spiking neurons act-

ing as coincidence detectors. A simple spike-based adaptation

of the Reichardt model is introduced in [96] to shown the

potential of this approach. This idea is explored in more

detail in [97], in which the authors propose the convolution

of event sequences with a bank of spatiotemporally-oriented

filters, each of which is comprised of non-plastic synapses

with equal efficacies, but with delays tuned to capture a

particular direction and speed. Similarly to frequency-based

methods [24], these filters compute a confidence measure,

encoded in the neural activity, rather than the optical flow

components. Additionally, this solution employs a second

spike-based pooling layer for mitigating the effect of the

aperture problem [78].

Whether, and how, direction and speed selectivity emerge

in biological networks from visual experience still remains

an open question. To date, and to the best of the authors’

knowledge, only the development of the former has been

addressed. In [98]–[100], the authors show that robust local

direction selectivity arises in neural maps through STDP if,

apart from presynaptic feedforward connections, neurons also

receive input spikes from cells in their spatial neighborhood

through plastic synapses with distance-dependent transmission

delays. However, despite their success, optical flow estimation

does not only involve direction but also speed selectivity.

The motion-sensitive SNN proposed in this work takes

inspiration from several of the concepts introduced in the stud-

ies mentioned above, but various additions and modifications

are necessary. As shown in Section V, local direction and

speed selectivity emerge in a bank of excitatory and inhibitory

spatiotemporal filters through an STDP-based competitive

learning process.

III. RELATIONS BETWEEN OPTICAL FLOW, EGO-MOTION,

AND VISUAL OBSERVABLES

The optical flow formulation employed throughout this

study is introduced in the present section. This model relates

the ego-motion of a downward-looking camera over a static

planar scene to the perceived optical flow and its correspond-

ing visual observables. We use this setting as it corresponds to

the widely studied problem of optical-flow-based landing [6],

[21], [101], [102]. These relations set the basis of the training

and evaluation of the readout mechanism presented in Section

VI, for which ground truth measurements are required.

XW

YW

ZW

θ, q

φ, p

YC

XC

ZC

UC

VC

WC

ψ, r

Fig. 4: Definitions of the world (W) and camera (C) references frames. The
Euler angles, rotational rates, and translational velocities that describe the
motion of C are shown as well.

5

The derivation of this optical flow model relies on the

two reference frames illustrated in Fig. 4. The inertial world

frame is denoted by W , whilst C describes the camera

frame centered at the focal point of the event-based vision

sensor. In each of these frames, position is defined through

the coordinates (X,Y, Z), with (U,V,W) as the corresponding

velocity components. The orientation of C with respect to W

is described by the Euler angles φ, θ, and ψ, denoting roll,

pitch, and yaw, respectively. Similarly, p, q, and r denote the

corresponding rotational rates.

The relations between sensor ego-motion, optical flow, and

visual observables are based on the pinhole camera model

[5]. In this formulation, pixel coordinates in the sensor’s pixel

array are denoted by (x, y), while (u, v) represent optical flow

components, measured in pixels per second. Note that this

model assumes an undistorted vision sensor, as it is the case

when using the DVS simulator [47]. The actual DVS can be

corrected from lens distortion as indicated in [21].

Consider the situation depicted in Fig. 4, in which the sensor

C moves arbitrarily through a static environment subjected

to translational (UC,VC,WC) and rotational (p, q, r) velocities.

Due to this ego-motion, the projection of a world point onto

the image plane describes a translational motion, i.e. its optical

flow, whose components are obtained as follows:

u = −
UC

ZC
+

WC

ZC
x − q + ry + pxy − qx2

v = −
VC

ZC
+

WC

ZC
y + p − rx − qxy + py2

(3)

From Eq. (3), the optical flow of a point can be resolved into

translational and rotational components [5]. Since the latter is

independent of the three-dimensional structure of the visual

scene, these expressions can be derotated if information on

the rotational rates of the sensor is available. This derotation

leads to pure translational optical flow components, denoted

by (uT , vT). Moreover, if the scene is a planar surface, the

depth ZC of all visible world points is interrelated through:

ZC = Z0 + ZXXC + ZYYC (4)

where Z0 is defined as the distance to the surface along the

optical axis of the sensor, and ZX and ZY represent the slopes

of the planar scene with respect to the X- and Y -axis of C [6].

If information on the attitude of the sensor is available, these

slopes can be computed from the pitch and roll angles as:

ZX = tan θ, ZY = − tan φ (5)

In [5], the relation between the position of an arbitrary

point in C and its projection onto the image plane is given

by (x, y) = (XC/ZC,YC/ZC). Consequently, Eq. (4) may also

be written in the form:

ZC − Z0

ZC
= ZX x + ZY y (6)

Further, let the scaled velocities of the sensor ϑx , ϑy, and

ϑz be defined as follows:

ϑx =
UC

Z0

, ϑy =
VC

Z0

, ϑz =
WC

Z0

(7)

Then, according to the derivations in [6], substituting Eqs.

(6) and (7) into Eq. (3) leads to the following expressions for

translational optical flow:

uT = (−ϑx + ϑzx)(1 − ZX x − ZY y)

vT = (−ϑy + ϑzy)(1 − ZX x − ZY y)
(8)

From Eq. (8), and under the aforementioned assumptions,

the scaled velocities, which provide non-metric information

on sensor ego-motion, can be derived from the translational

optical flow of multiple image points. ϑx and ϑy are the

opposites of the so-called ventral flows, a quantification of

the average flows in the X- and Y -axis of C respectively [21].

Hence, ωx = −ϑx and ωy = −ϑy. On the other hand, ϑz

is proportional to the divergence of the optical flow field,

D = 2ϑz [21]. Throughout this work, these optical flow visual

observables, more specifically the ventral flow components,

are employed to refer to the stimulus speed in the image plane.

Besides, these are the parameters to be estimated with the

readout mechanism presented in Section VI.

IV. ADAPTIVE SPIKING NEURON MODEL AND

STABLE STDP LEARNING RULE

This section describes the foundations of the spike-based

processing and learning of our SNN proposal. Firstly, the

neuron model of the architecture is introduced in Section IV-A

as a novel variation of the LIF model [45] which adapts its

response to varying input statistics. Secondly, Section IV-B

presents the stable multiplicative STDP rule that forms the

basis of the competitive Hebbian learning framework used for

synaptic plasticity.

A. Adaptive Spiking Neuron Model

Let j = 1, 2, . . . , nl−1 denote a group of presynaptic neurons,

from layer l − 1, fully connected in a feedforward fashion to

a set of postsynaptic cells i = 1, 2, . . . , nl , from layer l. As

depicted in Fig. 5, these neural connections can be considered

as multisynaptic, i.e. the link between two cells is not restricted

to a single synapse, but several can coexist. In this implemen-

tation, the number of multisynaptic connections, denoted by

ml , is layer-specific; and thus, it applies to all pairs of linked

i

nl−1

3

2

1
W

i,1 ,
τ

W i,2 , τ

W i,n
l−

1 ,
τ

ij Wi, j,3, τ3

Wi, j,1, τ1

Wi, j,2, τ2

Wi, j,ml , τml

Fig. 5: Schematic of the feedforward connectivity between neurons from
two adjacent layers (left). These connections can be considered as being
multisynaptic (right), each one having its own efficacy, transmission delay,
and trace.

6

neurons whose postsynaptic cell belongs l. Based on this, layer

connectivity is characterized by two main elements: a weight

matrix W l ∈ Rn
l×nl−1×ml

and a delay vector τ
l ∈ Rm

l

. From

the definition of W l, each connection has its own independent

synaptic efficacy value. On the other hand, τ
l determines

the different transmission delays of a multisynaptic group of

connections. Similarly to ml, τl is also layer-specific.

Apart from W l and τ
l, each synapse keeps track of an

additional parameter that models the recent history of spikes

transmitted. Formally referred to as the synaptic trace [103],

and defined as X l ∈ Rn
l×nl−1×ml

, its dynamics is given by the

following differential equation:

λX

dX l
i, j,d

(t)

dt
= −X l

i, j,d (t) + αsl−1
j (t − τld) (9)

where λX is the time constant of this first-order system, α is

a scaling factor, and sl (t) ∈ Rn
l

denotes the (binary) record

of neural activity, or spike train, of cells from layer l. Note

that d = 1, 2, . . . ,ml serves to refer both to connections within

a multisynaptic group and their corresponding delays.

From Eq. (9), whenever a spike arrives at a postsynaptic

neuron i via a synapse with transmission delay τd, the corre-

sponding presynaptic trace X l
i, j,d

(t) increases by a factor of

α. In case no spike is received, the trace decays exponentially

towards zero according to λX .

Once these parameters have been described, the proposed

spiking neuron model is introduced. The LIF neuron [45],

whose internal dynamics is illustrated in Fig. 2, is probably

the most popular and simplest phenomenological spiking

model presented to date [55]. Its main assumption is that,

in SNNs, no information is encoded in the spike amplitude,

but rather on the firing time. Consequently, neural activity is

reduced to discrete and binary temporal events, thus ensuring

computational tractability. Based on this principle, we propose

the augmentation of the LIF neuron model with an adaptive

mechanism that regulates its response using the presynaptic

trace X l of input connections. The dynamics of this adaptive

neuron evolve according to the following expressions:

λv
dvl

i
(t)

dt
= −
(

v
l
i (t) − vrest

)

+ ili (t) (10)

ili (t) =

nl−1
∑

j=1

ml
∑

d=1

(

W l
i, j,d sl−1

j (t − τld) − X l
i, j,d (t)

)

(11)

where λv denotes the time constant of the membrane potential,

and il (t) is the so-called forcing function of the system.

From Eqs. (10) and (11), the membrane potential vl
i
(t) of

a neuron evolves over time by integrating scaled presynaptic

spikes from its input synapses, similarly to the conventional

LIF model [45]. Whenever v
l
i
(t) reaches (or surpasses) the

firing threshold vth, a postsynaptic spike is generated, i.e.

sl
i
(t) = 1, and v

l
i
(t) is reset to vreset. In addition, the neuron

enters in a refractory period ∆tref during which presynaptic

spikes have no effect on v
l
i
(t) to ensure the temporal separation

of postsynaptic pulses. In case no spike is fired at time t, this

is reflected in the neuron’s spike train as sl
i
(t) = 0.

Unlike the traditional LIF implementation [45], the forcing

function il (t) of our neuron model includes an additional

term, further referred to as the homeostasis parameter, that

adapts the neural response to the varying input statistics—in

particular, to the input firing rate—using the presynaptic trace

X l as an excitability indicator. This term is named after the

internal regulatory mechanisms of biological organisms [104].

Inferring from Eq. (11), this parameter acts, in essence, as an

(inhibitory) penalty in the update rule of vl
i
(t). A postsynaptic

neuron connected to a group of highly-active presynaptic

cells is said to have low excitability due to its relatively

high X l. For this neuron to fire, it needs to receive a large

number of presynaptic spikes shortly separated in time. On

the contrary, the same cell connected to poorly-active neurons

is highly excitable; and thus, the firing threshold vth can still

be reached despite the considerably larger time difference

between input spikes. Note that, to get the desired neural

adaptation, the scaling factor α, from Eq. (9), needs to be

selected in accordance with the neural parameters, mainly vth

and the range of possible W l values.

When dealing with an event-based camera as source of input

spikes, the firing rate of the sensor is not only correlated to

the appearance of features from the visual scene, but also to

their optical flow. Slow apparent motion leads to successive

events being more distant in time than those captured from fast

motion. Consequently, if these events are to be processed with

a network of spiking neurons, a homeostasis mechanism is

required to ensure that similar features are detected regardless

of the encoding spike rate. Apart from our proposal, other

approaches to homeostasis have been presented to date, such

as threshold balancing [105] or weight scaling [57]. However,

instead of relying on presynaptic information, these methods

need multiple postsynaptic spikes until the adaptive mecha-

nism is adjusted for proper operation. This working principle

makes them unsuitable for the rapidly varying statistics of the

data generated by a moving event-based vision sensor.

The performance of our homeostasis method and its effect

on the learning process are explored in Section V.

B. Stable STDP Learning Rule

As introduced in Section II-B, STDP [39], [40] is a

biologically plausible local unsupervised learning rule for

SNNs. Based on Hebb’s postulate [53], this form of synap-

tic plasticity modifies the strength of a connection between

neurons according to their correlated activity. In this work,

we propose a novel multiplicative STDP implementation that,

by combining the weight-dependent exponential rule from [58]

with presynaptic trace information, becomes inherently stable.

Whenever a postsynaptic neuron i fires a spike, the efficacy

of its presynaptic connections is updated as follows:

W l
i, j,d = W l

i, j,d + ∆W l
i, j,d

∆W l
i, j,d = η(LTP + LTD)

(12)

7

−2 −1 0 1 2

−5

0

5

W l
i, j,d
− winit

LTPW

LTDW

0 0.2 0.4 0.6 0.8 1

1.5

2

2.5

1

X̄ l
i, j,d

(t)

LTPX̄ |a=0

LTDX̄ |a=0

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

W l
i, j,d
− winit

X̄
l i,
j,
d

(t
)

∆W l
i, j,d
|a=0

−7.00η

−5.25η

−3.50η

−1.75η

0.00η

1.75η

3.50η

5.25η

7.00η

Fig. 6: Illustration of the novel multiplicative STDP rule proposed in this work. The weight update (right) results from the linear combination of the
non-exclusive LTP and LTD processes. These, in turn, are characterized by symmetrical dependencies on the synaptic weights (left) and normalized
presynaptic traces (center). Note that, in the schematic of the weight update (right), the weight axis is limited to the [−1, 1] range only for the purpose
of a better visualization of the equilibrium weights (dashed thick line) for a = 0.

LTP = LTPW · LTPX̄,

LTPW = e
−(W l

i, j,d
−winit),

LTPX̄ = e
X̄l
i, j,d

(t)
− a,

LTD = LTDW · LTDX̄

LTDW = −e
(W l

i, j,d
−winit)

LTDX̄ = e
(1−X̄l

i, j,d
(t))
− a

(13)

where η is the learning rate of the rule, winit refers to the

initialization weight of all synapses at the beginning of the

learning process, and X̄ i ∈ [0, 1] denotes the normalized

presynaptic traces of neuron i at the moment of firing. Further,

for stability, a < 1.

From Eqs. (12) and (13), the weight update ∆W l
i results

from the linear combination of the output of two non-mutually

exclusive processes: LTP, for strengthening, and LTD, for

weakening synaptic connections. Both of these processes are

dependent on the weights (LTPW , LTDW) and normalized

traces (LTPX̄ , LTDX̄) of the synapses under analysis. On the

one hand, as mentioned before, the weight dependency of

our learning rule takes inspiration from the STDP formulation

presented in [58]. LTPW and LTDW are inversely proportional

to W l
i in an exponential fashion, and are centered around

winit (see Fig. 6, left). Consequently, the effect of LTPW

decreases (increases) the larger (smaller) a synaptic weight

is in comparison to winit. The opposite relation holds true for

LTDW . On the other hand, rather than relying on the precise

spike timing [58], our rule employs normalized presynaptic

trace information as a measure of the relevance of a particular

connection to the postsynaptic spike triggering the update. The

higher (lower) the value of X̄i, j,d (t), the larger (smaller) the

effect of LTPX̄ , and vice versa for LTDX̄ (see Fig. 6, center).

By definition, our STDP implementation is inherently stable

for a < 1. With this condition, the formulation itself estab-

lishes an equilibrium weight for each value of X̄i, j,d (t) by

balancing the contributions of LTP and LTD on ∆W l
i (see

Fig. 6, right). The parameter a has control over this mapping

through the steepness of LTPX̄ and LTDX̄ in X̄ i ∈ [0, 1]. As

a result of the stability, no additional mechanism is required

for preventing weights from vanishing or exploding. Synapses

characterized by weights that are higher (lower) than their

corresponding equilibrium state are consistently depressed

(potentiated) until synapse-specific stability is achieved.

To track the convergence of the learning process, we pro-

pose the use of the following mean square error criterion:

Li =
1

nl−1ml

nl−1
∑

j=1

ml
∑

d=1

(

X̄ l
i, j,d (t) − W̄ l

i, j,d

)2
(14)

where W̄ i ∈ [0, 1] denotes the presynaptic weights of neuron i

after an update, normalized to the current maximum value. As

the learning progresses, the moving average of Li converges

to a (close-to-zero) equilibrium state. In this work, we stop

synaptic plasticity using a fixed threshold on this parameter.

Similarly to the adaptive neuron model, the performance of

this learning rule is explored in Section V.

1) Local inter-lateral competition: For neurons to learn dis-

tinct features from the input data through STDP, this learning

rule needs to be combined with what is known as a Winner-

Take-All (WTA) mechanism [106]. This form of competition

implies that, when a neuron fires a spike and updates its

presynaptic weights according to Eqs. (12) and (13), the rest

of postsynaptic cells (from the same layer) locally connected

to the same input neurons get inhibited. As a result, these cells

are prevented from triggering STDP while the neuron that fired

first, i.e. the winner, remains in the refractory period.

Instead of relying on non-plastic synapses transmitting

inhibitory spikes with a certain delay, our implementation

assumes that the internal dynamics of these neurons are

intercorrelated. Whenever the winner cells resets its membrane

potential and enters in the refractory period, neurons affected

by the WTA mechanism do the same immediately afterwards.

In case multiple of these neurons fire simultaneously, the

cell with the highest membrane potential has preference for

triggering the weight update. Further, the postsynaptic spikes

8

from the other firing neurons are not considered. Lastly, to

ensure coherence between the training and inference phases

of our proposed SNN, layers trained with STDP maintain the

WTA mechanism after the learning process.

V. SPIKING NEURAL NETWORK ARCHITECTURE

FOR MOTION PERCEPTION

This section describes the different neural layers that com-

prise the feedforward architecture of our hierarchical SNN for

the task of motion perception. An illustration of this network

is shown in Fig. 7. Section V-A introduces the Input layer; a

first stage that encodes event-based sensor data in a compatible

format for the rest of the architecture. Secondly, input feature

extraction is conducted with the single-synaptic convolutional

layer (SS-Conv) described in Section V-B. Once these features

are detected, Section V-C covers how their local motion is

identified through a multi-synaptic convolutional layer (MS-

Conv). Lastly, a Pooling (Section V-D) and a Dense, i.e.

fully-connected, layer (Section V-E) lead to the emergence of

sensitivity to the global motion of the visual scene in individual

neurons. For a better understanding of their capabilities, these

subsections include layer-specific evaluations.

Input

64×64

2

SS-Conv

64×64

f (1)

MS-Conv∗

32×32
f (2)

Pooling

4×4
f (3)
= f (2)

Dense

n(4)

Fig. 7: Overview of the feedforward SNN architecture. Note that the depicted
MS-Conv layer corresponds to the feature-invariant postsynaptic maps intro-
duced in Section V-C and further shown in Fig. 12.

The spike-based computation carried out by the present

network is based on the adaptive neuron model introduced

in Section IV-A. The membrane potential of all non-input

neurons evolves according to Eq. (10), and the definition

of the model forcing function il (t) varies depending on the

connectivity scheme of each layer. In this work, the resting

potential vrest is considered null, and the refractory period is

set to ∆ref = 3.0 ms. Concerning learning, this SNN is trained

in a layer-by-layer fashion using the unsupervised STDP rule

presented in Section IV-B. Regardless of the layer type, the

parameter a from Eq. (13) is set to 0, the initialization weight

winit to 0.5, and the learning rate η to 2.5 × 10−4. As shown

in Fig. 6 (right), this leads to weight distributions that, after

convergence, are naturally constrained in the range W l ∈ [0, 1].

Throughout the learning phase, 150-ms event sequences from a

training dataset are presented sequentially at random following

a uniform distribution.

For the generation of the visual stimuli employed in this

section, the simulated DVS [47] is moved in straight lines

at different constant speeds, and at an altitude of ZW = 0.5

m with respect to a (virtual) textured planar surface, towards

1 m

(a) Checkerboard

1 m

(b) Roadmap

Fig. 8: Texture patterns of the planar surface towards which the vision sensor
is facing during motion. The scale is shown for reference purposes.

which it is facing. During motion, we force the Euler angles

φ and θ to remain null so as to ensure the perpendicularity

between sensor and surface. Fig. 8 shows the two different

textures used in this work. The main experiments are based

on the checkerboard pattern, shown in Fig. 8a. This texture

provides high contrast and clear edges; hence facilitating

optical flow estimation. On the other hand, the roadmap in Fig.

8b is largely characterized by unstructured and low-contrast

visual features leading to noisy event sequences. It is used in

the evaluation of the SS-Conv layer (Section V-B) to show the

generalizability of this approach to more realistic scenarios.

The simulation of the proposed SNN architecture is con-

ducted using the cuda-snn1 framework. This simulator, built in

its entirety for this research, is written in the C++ programming

language, and benefits from the CUDA libraries [107] for

efficient parallel computation.

A. Input Layer

As mentioned before, the role of this first stage in the neural

architecture is to encode the arriving sequences of DVS events

into a format that is compatible with subsequent layers of the

network. This layer can be understood as to be comprised

of spiking neurons with no internal dynamics, whose neural

activity is determined by event arrival. As shown in Fig. 7,

neurons are arranged in two-dimensional feature maps, one

per polarity, resembling the grid-like topology of the vision

sensor. Depending on the spatial resolution of these maps,

each neuron is assigned with the polarity-specific events of

one or multiple DVS pixels (with no overlap). Additionally,

for the simulation of the SNN, time is discretized in temporal

units of length ∆tsim, in which neurons are only allowed to

fire once. Consequently, all input cells receiving at least one

event during a particular ∆tsim are treated equally.

In the experiments presented in this section, the 128×128

DVS pixel array is downsampled to a spatial resolution of

64×64 input neurons for computational efficiency purposes.

On the other hand, contrary to the microsecond resolution of

the DVS, ∆tsim is set to 1.0 ms, which is the timescale of the

current state-of-the-art of neuromorphic devices [37], [38].

1Source code to be released in https://github.com/tudelft/

9

https://github.com/tudelft/

B. SS-Conv Layer: Feature Extraction

SS-Conv is a spiking adaptation of the well-known convo-

lutional layers [88], whose role is the extraction of the visual

features from which motion is perceived at a later stage.

As shown in Fig. 7, neurons in the SS-Conv layer are

retinotopically arranged in k = 1, 2, . . . , f l two-dimensional

feature maps. Each of these neurons receives spikes from

presynaptic cells within a specific spatial receptive field, of

size rl−1, in all maps of the previous layer. This sparse

connectivity is characterized by a set of excitatory synaptic

weights, formally referred to as a convolutional kernel W l
k
,

that is equal for all neurons belonging to the same map.

Consequently, this form of weight sharing ensures that, within

a map, neurons are selective to the same input feature but

at different spatial locations. This layer maintains the input

(spatial) dimensionality through a convolutional stride of one

pixel and a zero-padding mechanism.

Let a postsynaptic neuron i from the feature map k be

characterized by the convolutional kernel W l
k
∈ Rr

l−1× f l−1

, the

presynaptic trace X l
i ∈ R

r l−1× f −1

, and the spike train si,k (t).

Further, let N i,k refer to the map-specific direct neural neigh-

borhood of the cell, including itself. Then, considering neural

connections as single-synaptic with transmission delay τ, the

forcing function driving the internal dynamics of neurons in

this layer is defined as follows:

ili,k (t) =

f l−1
∑

ch=1

r l−1
∑

j=1

W l
j,ch,k sl−1

j,ch(t − τ) − max
∀b∈N i,k

f l−1
∑

ch=1

r l−1
∑

j=1

X l
b, j,ch(t)

(15)

Apart from the sparse connectivity, the only difference

between this expression and the fully-connected formulation,

i.e. Eq. (11), is in the homeostasis parameter. When arranged

retinotopically, the neurons’ dynamics do not only depend

on their own presynaptic trace X l
i , but also on the synaptic

traces characterizing their direct spatial neural neighborhood

N i,k . By using the maximum trace in the membrane potential

update, neurons are prevented from specializing to the leading

edge of moving visual features (high excitability, low robust-

ness), rather than to the features themselves.

The implementation of STDP is also affected by the spatial

arrangement of the neurons. Multiple cells from the same

feature map can fire simultaneously at different locations,

and thus, to different input data. Since these neurons share

convolutional kernel, ∆W l
k

is computed through synapse-

specific averages of the local contributions. In addition, due

to the high overlap of presynaptic receptive fields, the WTA

inhibitory mechanism described in Section IV-B1 is expanded

to cells within a small neighborhood of the firing neurons,

regardless of the feature map. Note that, after learning, only

the neuron-specific competition is maintained.

1) Evaluation: To qualitatively evaluate the performance of

the SS-Conv layer in the learning of the strongest and most

frequent visual features from the input dataset, we used the

roadmap texture due to its complexity. In this experiment,

the (constant) ventral flow components of the stimuli, ωx

and ωy , ranged between 0.5 and 3.0 s−1, in absolute terms.

Further, neural parameters were empirically set to vth = 1.0,

λv = λX = 5.0 ms, τ = 1.0 ms, and α = 0.4. Fig. 9a shows

the appearance of sixteen 7 × 7 convolutional kernels learned

through the proposed STDP rule under these conditions.

With this kernel scale, our STDP implementation led to

the successful identification of edges at different orientations

within the receptive field, and with the two combinations of

event polarity. A point to remark is the fact that, despite the

WTA mechanism, several features were learned by multiple

kernels instead of being specific to just one. This is an indi-

cator that, first, the unsupervised nature of STDP prioritizes

frequent features over other, more complex, that can still be

useful for motion perception; and second and consequently,

sixteen is an unnecessarily large number of kernels for this

spatial scale and roadmap dataset.

On the other hand, Fig. 9b illustrates the need for the

homeostasis parameter as detailed in Eq. (15), when dealing

with retinotopically-arranged neurons. As shown, when the

formulation in Eq. (11) is employed instead, convolutional

kernels specialize to the leading edge of moving features, and

hence most of these kernels are characterized by more am-

biguous synaptic configurations in which the strong synapses

are mainly located on the receptive field borders. Because of

this selectivity, a larger number of kernels is required for the

extraction of the same features as with Eq. (15).

(a) Homeostasis: Maximum presynaptic trace in N i,k .

(b) Homeostasis: Neuron-specific presynaptic trace.

Fig. 9: 7 × 7 SS-Conv kernels learned from the roadmap texture. Synaptic
strength is encoded in color brightness: green for input neurons with positive
(event) polarity, and red for negative. Results are shown for the homeostasis
formulations in Eq. (15) (top) and Eq. (11) (bottom).

A more simplistic dataset was used to assess the effect of the

homeostasis scaling factor α on the neural response. The DVS

orientation was fixed with respect to the checkerboard pattern

so that only vertical and horizontal edges of both (event) po-

larities were perceived, and the stimuli were characterized by

pure horizontal and vertical motion of {|ωx |, |ωy |} ∈ [0.2, 4.0]

s−1. Fig. 10 shows the four 7×7 convolutional kernels learned

using this input data, further referred to as the checkerboard

dataset, and the aforementioned neural settings.

Fig. 11 shows the neural response of this SS-Conv layer for

the case of pure horizontal rightward motion. As discussed

10

k = 1 k = 2 k = 3 k = 4

Fig. 10: 7 × 7 SS-Conv kernels learned from the checkerboard texture.

in Section IV-A, the lack of adaptation in the neuron model,

i.e. α = 0, entails a high correlation between neural activity

and the speed of the stimulus. Results in this figure confirm

that the homeostasis parameter, through the correct value of

α, mitigates the effect of this correlation for a wide range of

speeds. Additionally, due to the penalty nature of this term,

α also affects the net response of the layer. The larger the

value of this parameter, the lower the number of postsynaptic

spikes fired for the same stimulus, but the more accurate these

spikes are. As shown, neural maps associated with horizontal

kernels, i.e. k = 3 and k = 4 in Fig. 10, reacted erroneously

to input comprised only by vertical edges for α < 0.4, but

remained silent otherwise. Consequently, as a compromise

between accuracy and net response, we set this factor to

α = 0.4 for this layer and neural parameters.

1 2 3 4

0

200

400

600

ωx [s−1]

R
es

p
o

n
se

[s
p

ik
es

/m
s]

0.0

0.2

0.4

0.6

0.8

α
[-

]

1 2 3 4

0

50

100

150

ωx [s−1]

R
es

p
o

n
se

[s
p

ik
es

/m
s] k = 1

1 2 3 4

ωx [s−1]

k = 2

0.0

0.2

0.4

0.6

0.8

α
[-

]

1 2 3 4

0

50

100

150

ωx [s−1]

R
es

p
o

n
se

[s
p

ik
es

/m
s] k = 3

1 2 3 4

ωx [s−1]

k = 4

0.0

0.2

0.4

0.6

0.8

α
[-

]

Fig. 11: SS-Conv layer response (top) and kernel-specific responses (bottom
two rows) as a function of the homeostasis scaling factor α and the stim-
ulus speed ωx . Measurements obtained from the checkerboard dataset. The
notation for the kernel-specific plots is introduced in Fig. 10.

C. MS-Conv Layer: Local Motion Perception

MS-Conv is presented as a variation of the SS-Conv layer

whose role is to provide motion estimates of the local features

extracted in the latter by means of velocity-selective neurons.

Similarly to feature identification, this selectivity emerges

from visual experience through STDP.

As the basis of this formulation, the information required

to perceive the motion of a particular feature is assumed

to be exclusively contained in its corresponding presynaptic

f l−1

∗

f l

=

f l

ch = 1

f l

ch = f l−1

f l

Fig. 12: Illustration of the convolutional operator of the MS-Conv layer. From
left to right: Presynaptic neural maps, set of MS-Conv kernels, feature-specific
postsynaptic maps, and feature-invariant postsynaptic maps.

neural map. Hence, contrary to those from the SS-Conv layer,

convolutional kernels in MS-Conv are not connected to all

presynaptic maps simultaneously. Instead, they are defined as

W l
k
∈ Rr

l−1×ml

, and convolution is performed for each of these

maps individually. As shown in Fig. 12, this operation leads

to kernels assigned to f l−1 feature-specific postsynaptic maps,

among which the presynaptic weights (and weight updates) are

shared. Since feature-specific activity is of minor importance

for later stages of the architecture, the neural responses of

these maps are merged into a single feature-invariant map

per convolutional kernel. Per spatial location, postsynaptic

spike trains are combined by prioritizing the firing of spikes

over silent neurons. In this layer, the spatial dimensions of

postsynaptic maps are halved with respect to the previous

through zero-padding and a convolutional stride of two pixels.

For the perception of local motion, we propose an aug-

mentation of Eq. (15) based on the foundations of frequency-

based optical flow methods [24] and bio-inspired motion

detectors [86], [108]. Firstly, motion is to be extracted as

orientation in the spatiotemporal domain. Therefore, neural

connections in the MS-Conv layer are considered multisy-

naptic with different constant transmission delays as given by

τ
l ∈ Rm

l

. Secondly, since these delays (and the rest of neural

parameters) are equal for all (spatiotemporal) convolutional

kernels, inhibitory synapses are required to prevent the firing

of erroneous postsynaptic spikes when the input trace only fits

part of the excitatory component of the kernels. To account for

this, each MS-Conv kernel is defined by a pair of excitatory

and inhibitory plastic weight matrices, denoted by W
l,exc

k
and

W
l,inh

k
, respectively. According to these additions, the forcing

function of cells in this layer is expressed as:

ili,k,ch (t) =

r l−1
∑

j=1

ml
∑

d=1

(W
l,exc

j,d,k
+ βW

l,inh

j,d,k
)sl−1

j,ch(t − τld)

− max
∀b∈N i,k,ch

r l−1
∑

j=1

ml
∑

d=1

X l
b, j,d,ch(t)

(16)

where β scales the impact of inhibitory synapses, and the

presynaptic trace of a neuron is defined as X l
i ∈ R

r l−1×ml× f l−1

.

11

Due to the neural spatial disposition, the implementation of

STDP in this layer is, in essence, identical to the one employed

for SS-Conv. With respect to the learning of inhibitory kernels,

the parameter a from Eq. (13) remains at 0, winit is set to −0.5,

and the weights are initialized at 0. This discrepancy between

winit and the initialization weight enables postsynaptic neurons

to be reactive to different input features, i.e. to explore the

input space, until kernel specialization. With this configuration,

after convergence, inhibitory weight distributions are naturally

constrained in the range W
l,inh

k
∈ [−1, 0].

Lastly, remark that due to the limited size of presynaptic

receptive fields, the neural response of the layer is subjected

to the aperture problem [78], and hence only normal flow

can be perceived. The effect of this limitation is mitigated in

subsequent layers via the pooling mechanism in Section V-D.

1) Evaluation: To evaluate the performance of the MS-

Conv layer, sixteen (excitatory and inhibitory) 7 × 7 kernels

were simultaneously trained using the pure horizontal and

vertical stimuli from the checkerboard dataset. Neural param-

eters were empirically set to vth = 1.0, λv = λX = 5.0

ms, α = 0.25, and β = 0.75; and the SS-Conv kernels in

Fig. 10 were employed for feature extraction. With respect to

the spatiotemporal characteristics of MS-Conv kernels, each

multisynaptic connection was comprised of ten sub-synapses

with constant transmission delays linearly spaced between 1.0

and 50.0 ms. Figs. 13 and 14 show kernel appearance after

convergence, and the response of the corresponding neural

maps as a function of ωx and ωy .

These figures confirm that, with the MS-Conv connectivity

pattern, STDP leads to the successful identification of the

spatiotemporally-oriented traces of input features, and hence

of their local motion. Out of the sixteen kernels trained, seven

specialized to pure horizontal motion, and the remaining nine

to pure vertical. Each direction of motion (up, down, left, and

right) was captured by at least four kernels, which in turn

were selective to a particular stimulus speed. For instance,

upward motion was identified by kernels k = 13–16, from

slow to fast tuning speed. Therefore, convolutional kernels

in this layer can be understood as local velocity-tuned filters

that resemble those employed in frequency-based optical flow

methods (see Fig. 3) [24], [91]–[93], [97]. However, instead

of being manually designed, these filters emerge from visual

experience in a biologically plausible unsupervised fashion.

x
y

τ
x

y

τ

Fig. 14: Illustration of two of the sixteen 7×7×10 MS-Conv kernels learned
from the checkerboard dataset. According to the notation in Fig. 13, k = 2

(left) and k = 15 (right) are selective to leftward and upward image motion,
respectively. Synaptic strength is encoded in color brightness: white for strong
excitatory and weak inhibitory connections, and vice versa for black.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

x
τ

k = 9 k = 10 k = 11 k = 12 k = 13 k = 14 k = 15 k = 16

−4 −2 0 2 4

N
o

rm
.

re
sp

o
n

se
[-

]

−4 −2 0 2 4

ωx [s−1]

k = 8

k = 7

k = 6

k = 5

k = 4

k = 3

k = 2

k = 1

−4 −2 0 2 4

ωx [s−1]

k = 16

k = 15

k = 14

k = 13

k = 12

k = 11

k = 10

k = 9

(a) x-τ representation and pure horizontal motion.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

y

τ

k = 9 k = 10 k = 11 k = 12 k = 13 k = 14 k = 15 k = 16

−4 −2 0 2 4

N
o

rm
.

re
sp

o
n

se
[-

]

−4 −2 0 2 4

ωy [s−1]

k = 8

k = 7

k = 6

k = 5

k = 4

k = 3

k = 2

k = 1

−4 −2 0 2 4

ωy [s−1]

k = 16

k = 15

k = 14

k = 13

k = 12

k = 11

k = 10

k = 9

(b) y-τ representation and pure vertical motion.

Fig. 13: Appearance (top) and neural response (bottom) of the sixteen 7 × 7 × 10 MS-Conv kernels learned from the checkerboard dataset. Response
plots are normalized by the maximum kernel response on the stimuli evaluated: 8.2763 spikes/ms by k = 11 for ωx = 4.0 s−1.

12

(a) Scaling factor of inhibitory weights (λv,X = 5.0 ms, 7 × 7 receptive field).

−150 −100 −50 0 50 100 150

0

0.5

1

Stimulus direction [deg]

N
o

rm
.

re
sp

o
n

se
[-

]
β = 0.00

β = 0.25

β = 0.50

β = 0.75

β = 1.00

0 1 2 3 4

0

0.5

1

Stimulus speed, ωx [s−1]

(b) Receptive field size (β = 0.75, λv,X = 5.0 ms).

−150 −100 −50 0 50 100 150

0

0.5

1

Stimulus direction [deg]

N
o

rm
.

re
sp

o
n

se
[-

]

3 × 3

5 × 5

7 × 7

9 × 9

11 × 11

0 1 2 3 4

0

0.5

1

Stimulus speed, ωx [s−1]

(c) Time constant of the neuron and synapse models (β = 0.75, 7 × 7 receptive field).

−150 −100 −50 0 50 100 150

0

0.5

1

Stimulus direction [deg]

N
o

rm
.

re
sp

o
n

se
[-

]

λv,X = 2.5 ms

λv,X = 5.0 ms

λv,X = 7.5 ms

λv,X = 10.0 ms

0 1 2 3 4

0

0.5

1

Stimulus speed, ωx [s−1]

Fig. 15: Sensitivity analysis of the direction and speed selectivity of neurons in the MS-Conv layer using β, the receptive field size, and the time constant
of the neuron and synapse models λv,X as dependent variables. In both cases, strong selectivity is understood as the neural response being maximum
for the training configuration, and close to zero for others. The dashed lines indicate the direction and speed of the visual stimulus used for training the
spatiotemporal kernel under evaluation. The checkerboard pattern was used as input texture. Each response plot is normalized by its maximum value.

From Fig. 13, remarkable is the fact that two of the (gen-

erally) four kernels specialized to each of the aforementioned

motion directions have overlapping neural responses despite

the WTA mechanism. This is indicative of, first, a larger than

sufficient number of kernels for this input dataset; and second

and consequently, a speed selectivity that can be preliminarily

assessed as relatively weak. To confirm this, Fig. 15 shows

a sensitivity analysis of the direction and speed selectivity of

these kernels as a function of β, their spatial dimensions, and

the time constant of the neuron and synapse models, assumed

equal and denoted by λv,X . The firing threshold vth was set

to 1.0, and the homeostasis scaling factor to α = 0.4. For

this evaluation, a single spatiotemporal kernel was trained

at ωx = 2.0 s−1 in the checkerboard pattern. Further, we

rescinded the use of the SS-Conv layer, by directly attaching

MS-Conv to the input, to avoid the need for learning edges at

multiple orientations. Rightward stimulus motion in the range

ωx ∈ [0.0, 4.0] s−1 was employed for the assessment of speed

selectivity, while the training speed but at different motion

directions was used for the evaluation of direction selectivity.

Note that, for the latter, the DVS orientation with respect to the

checkerboard texture is adjusted so that the edges perceived

are perpendicular with the direction of motion.

With respect to the effect of β, Fig. 15a confirms the need

for inhibition in the convolutional kernels. As shown, both

direction and speed selectivities increase with this parameter

since, as mentioned before, it prevents neurons from firing to

spatiotemporal input traces that does not fit completely W
l,exc

k
.

If not employed, one would have to rely on sufficiently large

firing thresholds specifically designed for each kernel [97],

which is inconsistent with the learning process proposed in

the present work. Closely related to this, Fig. 15b shows that

the receptive field size also has a profound impact on neural

selectivity. The input feature whose motion is to be tracked

needs to be discernible in the receptive field; and moreover, the

size of the field has to be sufficiently large so that inhibitory

weights contribute to the response. Therefore, for a given set

of neural parameters, the larger the receptive field, the stronger

the direction and speed selectivities of these kernels. Lastly,

Fig. 15c shows that, despite a negligible effect on direction

selectivity, speed selectivity diminishes with the time constant

of the neuron and synapse models. The higher the value of this

parameter, the wider the features learned through STDP; and

thus, the lower the robustness of the convolutional kernels for a

given receptive field size. Overall, these spatiotemporal kernels

are characterized by a strong direction and a considerably

weaker speed selectivities, as derived from Fig. 13.

13

D. Pooling Layer: From Local to Global

As an intermediate stage between the MS-Conv and Dense

layers, the Pooling layer is employed in the SNN architecture

as a means to reduce the spatial dimensionality of the former,

and hence to facilitate the learning of the latter. The intuition

of this layer is that, by pooling local motion estimates over

large portions of the visual scene, a more accurate measure of

the global motion in each of these regions can be obtained,

thus mitigating the effect of the aperture problem [78].

Similarly to SS-Conv, the Pooling layer is convolutional

and single-synaptic. The internal dynamics of its neurons is

driven by the forcing function described in Eq. (15), but

without the need for N i,k since presynaptic connections are

not plastic. Instead, this layer is characterized by the same

number of neural maps as the MS-Conv, each one assigned

with an excitatory kernel W l
k

that has unitary weights with its

presynaptic counterpart and null with the rest. In addition, the

application of the WTA inhibitory mechanism is neglected,

and there is no overlap between receptive fields. As shown in

Fig. 7, we used 8 × 8 convolutional kernels in this layer, thus

resulting in postsynaptic neural maps with 4 × 4 cells each.

Further, neural parameters were empirically set to vth = 0.5,

λv = λX = 5.0 ms, α = 0.15, and τ = 1.0 ms.

E. Dense Layer: Global Motion Perception

The Dense layer, as the final stage of the SNN architecture,

is comprised of individual neurons fully connected to cells

in the Pooling layer via single-synaptic plastic connections.

Similarly to final regions of biological visual motion systems

[3], neurons in this layer develop selectivity to the global

motion of the scene from visual experience through STDP.

With respect to implementation details, synaptic plasticity

is conducted as described in Section IV-B, and the forcing

function of Dense neurons resembles Eq. (11), but referring

to the convolutional presynaptic layer to which these cells are

connected. This expression is then defined as:

ili (t) =

f l−1
∑

ch=1

nl−1
∑

j=1

(

W l
i, j,chsl−1

j,ch(t − τ) − X l
i, j,ch (t)

)

(17)

where the efficacy and trace of presynaptic connections are

defined as W l
i ∈ R

nl−1× f l−1

and X l
i ∈ R

nl−1× f l−1

, respectively.

1) Evaluation: To evaluate the performance, a Dense layer

with sixteen individual neurons was trained as the final stage

of a neural architecture comprised of the SS-Conv in Fig.

10 for feature extraction, the MS-Conv in Fig. 13 for local

motion perception, and a Pooling layer for spatial dimen-

sionality reduction. Consistently, the checkerboard dataset was

employed as source of input stimuli; and neural parameters

were empirically set to vth = 0.5, λv = λX = 5.0 ms, α = 0.1,

and τ = 1.0 ms. Fig. 16 shows the neural response (after

convergence) of cells in this layer as a function of ωx and ωy .

From this figure, neurons in the Dense layer are successful

at learning the spatial distribution of local motion estimates

that corresponds to each of the different motion types extracted

by the MS-Conv, and further encoded in the neural activity

of the Pooling layer. Consequently, these cells are said to be

selective to the global motion of the stimuli. Out of the sixteen

neurons trained, groups of four specialized to each motion

direction, with different tuning speeds so as to cover the ventral

flow range of the dataset, i.e. {|ωx |, |ωy |} ∈ [0.2, 4.0] s−1. Note

that the direction and speed selectivity of these neurons is

exclusively dependent on those of the spatiotemporal kernels

from the MS-Conv layer, as shown in Fig. 15.

In addition to this evaluation, Fig. 17 is shown to assess the

activity of neurons from this layer in response to speed profiles

that differ from the constant-speed sequences employed during

training. Specifically, three different profiles of leftward hori-

zontal motion were used in combination with the checkerboard

texture. These sequences were characterized respectively by,

first, constant-speed segments and step changes (see Fig. 17a);

−4 −2 0 2 4

N
o

rm
.

re
sp

o
n

se
[-

]

−4 −2 0 2 4

ωx [s−1]

i = 8

i = 7

i = 6

i = 5

i = 4

i = 3

i = 2

i = 1

−4 −2 0 2 4

ωx [s−1]

i = 16

i = 15

i = 14

i = 13

i = 12

i = 11

i = 10

i = 9

(a) Pure horizontal motion.

−4 −2 0 2 4

N
o

rm
.

re
sp

o
n

se
[-

]

−4 −2 0 2 4

ωy [s−1]

i = 8

i = 7

i = 6

i = 5

i = 4

i = 3

i = 2

i = 1

−4 −2 0 2 4

ωy [s−1]

i = 16

i = 15

i = 14

i = 13

i = 12

i = 11

i = 10

i = 9

(b) Pure vertical motion.

Fig. 16: Neural response of the sixteen individual neurons from the Dense layer trained in the checkerboard dataset. Response plots are normalized by
the maximum neural response on the stimuli evaluated: 0.3 spikes/ms by i = 4 for ωx = −3.8 s−1.

14

0 1 2 3 4 5

−4

−2

0

ω
x

[s
−

1
]

0 1 2 3 4 5

−4

−2

0

0 1 2 3 4 5

−4

−2

0

y
[-

]

i
=

1
i
=

2
i
=

3

0 1 2 3 4 5

t [s]

i
=

4

(a) Constant speed.

i
=

1
i
=

2
i
=

3

0 1 2 3 4 5

t [s]

i
=

4

(b) Constant acceleration.

i
=

1
i
=

2
i
=

3

0 1 2 3 4 5

t [s]

i
=

4

(c) Fluctuating acceleration.

Fig. 17: Temporal course of the postsynaptic trace of neurons i = 1–4 from the Dense layer (bottom, see Fig. 16) in response to leftward input stimuli
with different speed profiles (top) and from the checkerboard texture. Plots are normalized by the maximum trace on the stimuli evaluated: 0.4098 by
i = 4 at t = 0.36 s for the fluctuating acceleration case.

second, constant accelerations (see Fig. 17b); and third, a

fluctuating acceleration (see Fig. 17c). Due to the pure leftward

motion of the stimuli, only the activity of neurons specialized

to this motion direction is shown, i.e. cells i = 1–4 from Fig.

16. Neural activity is measured through the postsynaptic trace

yi (t) of these units, which, similarly to Eq. (9), keeps track of

the recent history of postsynaptic spikes emitted by a particular

neuron. The dynamics of this parameter is given by:

λy
dyi (t)

dt
= −yi (t) + si (t) (18)

where λy = 5.0 ms to maintain consistency with the rest of

the neural architecture.

Results in Fig. 17 confirm that, even though the network

was trained using constant-speed stimuli, the spiking activity

of neurons in the Dense layer can still be seen as indicative of

the global motion of the visual scene in accelerated, or with

abrupt speed variations, sequences. Response aspects, such as

the overlap of neural activity for some ventral flow ranges, or

the dominance of i = 4 for fast leftward motion, are ratified

by the selectivity of these neurons, as shown in Fig. 16a.

VI. ESTIMATION OF VISUAL OBSERVABLES FROM

SPIKE-BASED OPTICAL FLOW

As derived from the evaluation results in Section V-E, the

global motion of the visual scene can be extracted from the

spiking activity of the Pooling layer (see Section V-D) by

training a set of postsynaptic individual neurons, from the so-

called Dense layer, with STDP. As a result, after convergence,

each of these cells is selective to a global motion pattern

in a particular direction and speed. As a subsequent step, a

reinforcement-based spiking learning mechanism [72], [73]

could be used to exploit this information for biologically plau-

sible optical-flow-based control, such as the landing of a flying

robot [6], [21], [101], [102]. We consider such a setup beyond

the scope of the current research, and instead investigate how,

alternatively to the Dense layer, optical flow visual observables

could be estimated through a readout mechanism based on

a shallow ANN trained in a supervised fashion. Specifically,

the visual observables to be estimated are the ventral flow

components ωx and ωy , which, as described in Section III, are

also a measure of the global motion of the stimuli. The neural

architecture of the mechanism is defined in Section VI-A, after

which Section VI-B includes training details and experimental

results for circular maneuvers at constant altitude.

A. Readout Mechanism

The readout mechanism that we propose in this paper is

a Multi-Layer Perceptron (MLP) network [34] that maps the

neural activity of the Pooling layer into the aforementioned

optical flow visual observables. Specifically, the architecture is

comprised of three hidden layers of 256, 128, and 32 Rectified

Linear Units (ReLUs) [109] respectively, and an output layer

with two linear neurons for the ventral flow components ωx

and ωy . With respect to the input data, individual snapshots

of the postsynaptic trace yi (t) of neurons in the Pooling layer

are employed. Note that trace information is normalized to the

maximum value of each snapshot.

B. Evaluation

For the performance assessment of the proposed MLP in

the task of ventral flows estimation, the SNN trained in the

checkerboard dataset (see Figs. 10 and 13) was used as back-

end network. Consistently, the visual stimuli employed in this

evaluation was also generated by moving the simulated DVS

[47] at a constant altitude of ZW = 0.5 m with respect to a

(virtual) checkerboard surface, towards which it is facing with

φ = θ = 0.0 deg. Further, we fixed sensor orientation with

respect to the scene so that only vertical and horizontal edges

were perceivable.

15

Two datasets were generated for this analysis. On the

one hand, a training set comprised of approximately 22 000

snapshots was created by moving the DVS in straight tra-

jectories of different motion directions and constant speeds,

with {|ωx |, |ωy |} ∈ [0.2, 4.5] s−1. The MLP was trained on

this data using the Adam optimization algorithm [110] with

a constant learning rate of 1.0 × 10−4 and a batch size of

128 samples. On the other hand, the spiking activity of the

Pooling layer was recorded throughout eight counterclockwise

circular trajectories, of radii r ∈ [0.25, 2.00] m and 6.0 s of

duration, for the evaluation of the inference capabilities of the

readout architecture. This dataset is further referred to as the

test set, and its interests derives from a great number of unseen

(ωx, ωy) combinations, the presence of sign changes, and a

maximum ventral flow of |ωx | = |ωy | = 4.2 s−1. Note that,

for both datasets, ground truth measurements were obtained

through the optical flow formulation introduced in Section III.

Fig. 18 shows the resulting ventral flow estimates from the

evaluation of the readout mechanism on the test dataset after

convergence. From this figure, the proposed MLP is successful

at mapping the spiking normal flow estimates to the desired

ventral flow components. Despite of this, its performance is

characterized for being relatively noisy, due to the spiking

nature of the data, and sensitive to the sign changes of ωx

and ωy , since no MS-Conv kernel of the back-end SNN is

selective to variations of motion direction. Additionally, from

Fig. 18c, the performance of the mechanism is limited for high

ventral flow values. Fig. 19 and Table I are included for the

understanding of the error variations with the magnitude of

these parameters. The absolute error and error variance were

the metrics employed in this evaluation.

Apart from reflecting the aforementioned performance lim-

itations, these results show that, first, the absolute error

distribution is approximately uniform on {|ωx |, |ωy |} < 2.5

s−1; and second, this error increases significantly for ventral

flow components above this boundary value. Since the readout

mechanism was trained on input stimuli with speeds of up to

4.5 s−1, this poor performance is due to the SNN and the

relatively weak speed selectivity of MS-Conv convolutional

kernels. As shown in Fig. 13, for {|ωx |, |ωy |} > 2.5 s−1

(approximately), there is a consistent overlap between the

neural responses of two kernels per perceivable (normal)

flow direction, and consequently, the discernibility of different

speeds is restricted. For a more accurate performance in this

range, the checkerboard dataset used to train the SNN needs

to be extended with higher ventral flow values, and the MS-

Conv layer with additional kernels. Note that increasing the

number of kernels without varying the training dataset would

results in a further response overlap, and hence, no positive

impact on the readout performance.

−4 −2 0 2 4

0

0.5

1

1.5

ωx [s−1]

ε
ω

x
[s
−

1
]

−4 −2 0 2 4

0

0.5

1

1.5

ωy [s−1]

ε
ω

y
[s
−

1
]

Fig. 19: Error distribution of the readout MLP architecture on the test set.
From top to bottom: Distribution of the absolute errors of ωx and ωy , and
distribution of the normalized error of the mean absolute ventral flow ω̂x,y .
Measurements are depicted as gray dots, while the dashed black lines show
the 25%, 50%, and 75% percentiles of the data.

0 2 4 6

−4

−2

0

2

4

ω
x

[s
−

1
]

0 2 4 6

−4

−2

0

2

4

0 2 4 6

−4

−2

0

2

4

0 2 4 6

−4

−2

0

2

4

t [s]

ω
y

[s
−

1
]

(a) r = 0.25 m

0 2 4 6

−4

−2

0

2

4

t [s]

(b) r = 1.00 m

0 2 4 6

−4

−2

0

2

4

t [s]

(c) r = 2.00 m

Fig. 18: Temporal evolution of the ventral flow components estimated with the readout MLP architecture on three of the circular trajectories comprising
the test set. Ground truth ventral flow measurements are shown through dashed black lines.

16

TABLE I
MEAN ABSOLUTE ERROR AND ERROR VARIANCE OF THE READOUT

ARCHITECTURE ON THE TEST SET. EACH CIRCULAR TRAJECTORY IS

CHARACTERIZED BY ITS RADIUS AND MAXIMUM VENTRAL FLOW. VALUES

HIGHLIGHTED IN BOLD CORRESPOND TO THE LOWEST OF EACH COLUMN.

r [m] max(ω) [s−1] εωx [s−1] εωy [s−1]

Mean Var Mean Var

0.25 0.5237 0.1548 0.0190 0.1972 0.0182

0.50 1.0474 0.1954 0.0244 0.2106 0.0239

0.75 1.5711 0.1890 0.0234 0.2081 0.0245

1.00 2.0947 0.1808 0.0209 0.2135 0.0273

1.25 2.6184 0.1940 0.0278 0.2238 0.0309

1.50 3.1421 0.2292 0.0339 0.2315 0.0338

1.75 3.6658 0.2646 0.0515 0.2767 0.0573

2.00 4.1895 0.3099 0.0722 0.3506 0.0902

VII. CONCLUSION

In this paper, we present a biologically plausible SNN archi-

tecture in which, similarly to biological visual systems, motion

selectivity emerges through STDP from the stimuli generated

by an event-based vision sensor. Three main contributions lead

to these results.

First, a novel adaptive spiking neuron model is introduced as

the formulation governing the internal dynamics of neurons in

the SNN. The model is suitable for the rapidly varying input

statistics of event-based sensors, since neural excitability is

regulated using local presynaptic, rather than postsynaptic, in-

formation. Specifically, the adaptation is based on the synaptic

trace of input connections. The evaluation conducted with the

checkerboard texture confirms the model’s ability to maintain

a certain level of activation regardless of the sensor speed.

Second, the training of the SNN architecture is performed

through a novel STDP implementation. Contrary to conven-

tional formulations of this bio-inspired protocol, the learning

rule proposed in this work is inherently stable as result of

the linear combination of non-exclusive strengthening and

weakening processes. In both cases, there is an exponential

dependency on the weights and traces of presynaptic connec-

tions. Besides STDP, local inter-lateral competition is included

through an inhibitory WTA mechanism that enables neurons

to specialize to different input features.

Third, the proposed SNN consists mainly of four layers

of distinct functionality. In hierarchical order, from shallow

to deep, feature extraction is conducted in the SS-Conv, a

single-synaptic convolutional layer. Subsequently, the local

motion of these features is identified through a multi-synaptic

convolutional layer with different transmission delays, and

characterized by spatiotemporal kernels with excitatory and

inhibitory contributions. This layer is referred to as the MS-

Conv, and its neural response is pooled over large receptive

fields in the Pooling layer to mitigate the effect of the aperture

problem. Lastly, neurons in the fully-connected Dense layer

are sensitive to the global motion of the visual scene. The

performance of these layers is confirmed from evaluations on a

checkerboard dataset comprised exclusively of pure horizontal

and vertical image motion.

In addition, using the SNN as a back-end architecture, a

readout mechanism consisting of a shallow ANN trained in

a supervised fashion is employed to estimate ventral flow in-

formation. Inference results from the evaluation of this mech-

anism on circular trajectories show that, despite the spiking

nature of input data, accurate estimates of the aforementioned

optical flow visual observables are obtained.

This work lays the foundations for the application of SNNs

in robotics for an efficient, biologically-plausible ego-motion

estimation. Future research in this field should, firstly, relax

the assumption of non-rotational motion at a constant altitude

employed throughout this paper. This would lead to the iden-

tification of a more diverse set of spatial and spatiotemporal

features, and to the additional emergence of neural selectivity

to vertical and rotational motion in the three-dimensional

space. Secondly, instead of relying on different constant trans-

mission delays in the MS-Conv layer, a learning rule should

be developed for the adaptation of these parameters. The end

goal of these temporal adjustments should be the same spatial

resolution for all the spatiotemporal convolutional kernels of

this layer regardless of their tuning speed. Thirdly, to fully

exploit the benefits of the proposed STDP implementation, the

assumption of distinct training and inference phases should be

relaxed. A reformulation of the WTA competition mechanism

for convolutional layers, and the addition of a forgetting factor

in the learning rule are potentially useful lines of work towards

this purpose. Lastly, for onboard applications, effort should

be made to implement the SNN architecture in neuromorphic

hardware.

REFERENCES

[1] J. Feng, Computational neuroscience: A comprehensive approach.
CRC press, 2003.

[2] A. Borst, J. Haag, and D. F. Reiff, “Fly motion vision,” Annual Review

of Neuroscience, vol. 33, pp. 49–70, 2010.

[3] A. Borst and M. Helmstaedter, “Common circuit design in fly and
mammalian motion vision,” Nature Neuroscience, vol. 18, no. 8, pp.
1067–1076, 2015.

[4] J. J. Gibson, “The perception of the visual world.” 1950.

[5] H. C. Longuet-Higgins and K. Prazdny, “The interpretation of a
moving retinal image,” Proceedings of the Royal Society of London
B: Biological Sciences, vol. 208, no. 1173, pp. 385–397, 1980.

[6] G. C. H. E. de Croon, H. Ho, C. De Wagter, E. Van Kampen, B. Remes,
and Q. P. Chu, “Optic-flow based slope estimation for autonomous
landing,” International Journal of Micro Air Vehicles, vol. 5, no. 4, pp.
287–297, 2013.

[7] M. V. Srinivasan, S. Zhang, M. Lehrer, and T. Collett, “Honeybee
navigation en route to the goal: Visual flight control and odometry,”
Journal of Experimental Biology, vol. 199, no. 1, pp. 237–244, 1996.

[8] J. S. Chahl, M. V. Srinivasan, and S. W. Zhang, “Landing strategies
in honeybees and applications to uninhabited airborne vehicles,” The
International Journal of Robotics Research, vol. 23, no. 2, pp. 101–110,
2004.

[9] E. Baird, N. Boeddeker, M. R. Ibbotson, and M. V. Srinivasan, “A
universal strategy for visually guided landing,” Proceedings of the

National Academy of Sciences, vol. 110, no. 46, pp. 18 686–18 691,
2013.

[10] C. De Wagter, S. Tijmons, B. D. W. Remes, and G. C. H. E. de
Croon, “Autonomous flight of a 20-gram flapping wing MAV with
a 4-gram onboard stereo vision system,” in Proceedings of the 2014

IEEE International Conference on Robotics and Automation, 2014, pp.
4982–4987.

17

[11] D. Fortun, P. Bouthemy, and C. Kervrann, “Optical flow modeling and
computation: A survey,” Computer Vision and Image Understanding,
vol. 134, pp. 1–21, 2015.

[12] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Del-
bruck, “Retinomorphic event-based vision sensors: Bioinspired cameras
with spiking output,” Proceedings of the IEEE, vol. 102, no. 10, pp.
1470–1484, 2014.

[13] T. N. Wiesel, “The postnatal development of the visual cortex and
the influence of environment,” Bioscience Reports, vol. 2, no. 6, pp.
351–377, 1982.

[14] A. Kirkwood and M. F. Bear, “Hebbian synapses in visual cortex,”
Journal of Neuroscience, vol. 14, no. 3, pp. 1634–1645, 1994.

[15] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x128 120 dB 15 µs
latency asynchronous temporal contrast vision sensor,” IEEE Journal

of Solid-State Circuits, vol. 43, no. 2, pp. 566–576, 2008.

[16] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143 dB dynamic
range frame-free PWM image sensor with lossless pixel-level video
compression and time-domain CDS,” IEEE Journal of Solid-State

Circuits, vol. 46, no. 1, pp. 259–275, 2011.

[17] C. Brandli, R. Berner, M. Yang, S. Liu, and T. Delbruck, “A 240x180
130 dB 3 µs latency global shutter spatiotemporal vision sensor,” IEEE
Journal of Solid-State Circuits, vol. 49, no. 10, pp. 2333–2341, 2014.

[18] J. Conradt, R. Berner, M. Cook, and T. Delbruck, “An embedded AER
dynamic vision sensor for low-latency pole balancing,” in Proceedings

of the 2009 IEEE 12th International Conference on Computer Vision
Workshops, 2009, pp. 780–785.

[19] T. Delbruck and M. Lang, “Robotic goalie with 3 ms reaction time at
4% CPU load using event-based dynamic vision sensor,” Frontiers in

Neuroscience, vol. 7, pp. 1–7, 2013.

[20] E. Mueggler, B. Huber, and D. Scaramuzza, “Event-based, 6-DOF
pose tracking for high-speed maneuvers,” in Proceedings of the 2014

IEEE/RSJ International Conference on Intelligent Robots and Systems,
2014, pp. 2761–2768.

[21] B. J. P. Hordijk, K. Y. W. Scheper, and G. C. H. E. de Croon, “Vertical
landing for micro air vehicles using event-based optical flow,” Journal
of Field Robotics, vol. 35, no. 1, pp. 69–90, 2018.

[22] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artificial

Intelligence, vol. 17, no. 1-3, pp. 185–203, 1981.

[23] M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R.
McNeill, “Determination of displacements using an improved digital
correlation method,” Image and Vision Computing, vol. 1, no. 3, pp.
133–139, 1983.

[24] E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for
the perception of motion,” Journal of the Optical Society of America,
vol. 2, no. 2, pp. 284–299, 1985.

[25] D. J. Heeger, “Model for the extraction of image flow,” Journal of the

Optical Society of America, vol. 4, no. 8, pp. 1455–1471, 1987.

[26] R. Benosman, C. Clercq, X. Lagorce, S. Ieng, and C. Bartolozzi,
“Event-based visual flow,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 25, no. 2, pp. 407–417, 2014.

[27] T. Brosch and H. Neumann, “Computing with a canonical neural
circuits model with pool normalization and modulating feedback,”
Neural Computation, vol. 26, pp. 2735–2789, 2014.

[28] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox, “FlowNet: Learning optical
flow with convolutional networks,” in Proceedings of the 2015 IEEE

International Conference on Computer Vision, 2015, pp. 2758–2766.

[29] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep networks,”
in Proceedings of the 2017 IEEE Conference on Computer Vision and

Pattern Recognition, vol. 2, 2017, pp. 1647–1655.

[30] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial
pyramid network,” in Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition, vol. 2, 2017, pp. 2720–
2729.

[31] Z. Ren, J. Yan, B. Ni, B. Liu, X. Yang, and H. Zha, “Unsupervised
deep learning for optical flow estimation,” in Proceedings of the 31st
AAAI Conference on Artificial Intelligence, 2017, pp. 1495–1501.

[32] S. Zhao, X. Li, and O. E. F. Bourahla, “Deep optical flow estimation via
multi-scale correspondence structure learning,” in Proceedings of the

Twenty-Sixth International Joint Conference on Artificial Intelligence,
2017, pp. 3490–3496.

[33] W. S. Lai, J. B. Huang, and M. H. Yang, “Semi-supervised learning
for optical flow with generative adversarial networks,” in Advances in
Neural Information Processing Systems, 2017, pp. 353–363.

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
Press, 2016.

[35] W. Maass, “Networks of spiking neurons: The third generation of
neural network models,” Neural Networks, vol. 10, no. 9, pp. 1659–
1671, 1997.

[36] G. Orchard and R. Etienne-Cummings, “Bioinspired visual motion
estimation,” Proceedings of the IEEE, vol. 102, no. 10, pp. 1520–1536,
2014.

[37] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communica-
tion network and interface,” Science, vol. 345, no. 6197, pp. 668–673,
2014.

[38] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[39] G. Q. Bi and M. M. Poo, “Synaptic modifications in cultured hip-
pocampal neurons: Dependence on spike timing, synaptic strength, and
postsynaptic cell type,” Journal of Neuroscience, vol. 18, no. 24, pp.
10 464–10 472, 1998.

[40] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, “Regulation
of synaptic efficacy by coincidence of postsynaptic APs and EPSPs,”
Science, vol. 275, no. 5297, pp. 213–215, 1997.

[41] T. Masquelier and S. J. Thorpe, “Unsupervised learning of visual
features through spike timing dependent plasticity,” Public Library of

Science: Computational Biology, vol. 3, no. 2, pp. 247–257, 2007.

[42] T. Iakymchuk, A. Rosado-Muñoz, J. F. Guerrero-Martínez, M. Bataller-
Mompeán, and J. V. Francés-Víllora, “Simplified spiking neural net-
work architecture and STDP learning algorithm applied to image
classification,” EURASIP Journal on Image and Video Processing, vol.
2015, no. 1, pp. 1–11, 2015.

[43] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Frontiers in Computational

Neuroscience, vol. 9, pp. 1–9, 2015.
[44] A. Tavanaei and A. S. Maida, “Multi-layer unsupervised learning in

a spiking convolutional neural network,” in Proceedings of the 2017

IEEE International Joint Conference on Neural Networks, 2017, pp.
2023–2030.

[45] R. B. Stein, “A theoretical analysis of neuronal variability,” Biophysical

Journal, vol. 5, no. 2, pp. 173–194, 1965.

[46] D. D. Cho and T. Lee, “A review of bioinspired vision sensors and
their applications,” Sensors and Materials, vol. 27, no. 6, pp. 447–463,
2015.

[47] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza,
“The event-camera dataset and simulator: Event-based data for pose
estimation, visual odometry, and SLAM,” The International Journal of

Robotics Research, vol. 36, no. 2, pp. 142–149, 2017.

[48] A. L. Hodgkin and A. F. Huxley, “A quantitative description of
membrane current and its application to conduction and excitation in
nerve,” The Journal of Physiology, vol. 117, no. 4, pp. 25–71, 1952.

[49] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transac-

tions on Neural Networks, vol. 14, no. 6, pp. 1569–1572, 2003.
[50] W. M. Kistler, W. Gerstner, and J. L. van Hemmen, “Reduction of

the Hodgkin-Huxley equations to a single-variable threshold model,”
Neural Computation, vol. 9, no. 5, pp. 1015–1045, 1997.

[51] M. Baudry, “Synaptic plasticity and learning and memory: 15 years of
progress,” Neurobiology of Learning and Memory, vol. 70, no. 1, pp.
113–118, 1998.

[52] K. Doya, “What are the computations of the cerebellum, the basal
ganglia and the cerebral cortex?” Neural Networks, vol. 12, no. 7-8,
pp. 961–974, 1999.

[53] D. O. Hebb, The organisation of behaviour: A neuropsychological

theory. Wiley, 1952.
[54] H. Markram, W. Gerstner, and P. J. Sjöström, “Spike-timing-dependent

plasticity: A comprehensive overview,” Frontiers in Synaptic Neuro-

science, vol. 4, pp. 1–3, 2012.
[55] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons,

populations, plasticity. Cambridge University Press, 2002.

[56] J. Sjöström and W. Gerstner, “Spike-timing dependent plasticity,”
Frontiers in Neuroscience, pp. 35–44, 2010.

18

[57] M. C. W. Van Rossum, G. Q. Bi, and G. G. Turrigiano, “Stable
Hebbian learning from spike timing-dependent plasticity,” Journal of
Neuroscience, vol. 20, no. 23, pp. 8812–8821, 2000.

[58] A. Shrestha, K. Ahmed, Y. Wang, and Q. Qiu, “Stable spike-timing
dependent plasticity rule for multilayer unsupervised and supervised
learning,” in Proceedings of the 2017 International Joint Conference

on Neural Networks. IEEE, 2017, pp. 1999–2006.

[59] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” Cognitive Modeling, vol. 5,
no. 3, pp. 533–536, 1988.

[60] S. M. Bohte, J. N. Kok, and H. La Poutré, “Error-backpropagation
in temporally encoded networks of spiking neurons,” Neurocomputing,
vol. 48, no. 1, pp. 17–37, 2002.

[61] O. Booij and H. T. Nguyen, “A gradient descent rule for spiking
neurons emitting multiple spikes,” Information Processing Letters,
vol. 95, no. 6, pp. 552–558, 2005.

[62] S. Ghosh-Dastidar and H. Adeli, “A new supervised learning algorithm
for multiple spiking neural networks with application in epilepsy and
seizure detection,” Neural Networks, vol. 22, no. 10, pp. 1419–1431,
2009.

[63] A. Taherkhani, A. Belatreche, Y. Li, and L. P. Maguire, “A supervised
learning algorithm for learning precise timing of multiple spikes in
multilayer spiking neural networks,” IEEE Transactions on Neural

Networks and Learning Systems, pp. 1–14, 2018.

[64] J. A. Pérez-Carrasco, B. Zhao, C. Serrano, B. Acha, T. Serrano-
Gotarredona, S. Chen, and B. Linares-Barranco, “Mapping from frame-
driven to frame-free event-driven vision systems by low-rate rate cod-
ing and coincidence processing–application to feedforward convnets,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 35, no. 11, pp. 2706–2719, 2013.

[65] D. Zambrano and S. M. Bohte, “Fast and efficient asynchronous
neural computation with adapting spiking neural networks,” 2016.
[Online]. Available: https://arxiv.org/abs/1609.02053

[66] D. Zambrano, R. Nusselder, H. S. Scholte, and S. M. Bohte, “Efficient
computation in adaptive artificial spiking neural networks,” 2017.
[Online]. Available: https://arxiv.org/abs/1710.04838

[67] A. Borst and F. E. Theunissen, “Information theory and neural coding,”
Nature Neuroscience, vol. 2, no. 11, pp. 947–957, 1999.

[68] R. Van Rullen and S. J. Thorpe, “Rate coding versus temporal order
coding: What the retinal ganglion cells tell the visual cortex,” Neural

Computation, vol. 13, no. 6, pp. 1255–1283, 2001.

[69] R. P. N. Rao and T. J. Sejnowski, “Spike-timing-dependent heb-
bian plasticity as temporal difference learning,” Neural Computation,
vol. 13, no. 10, pp. 2221–2237, 2001.

[70] R. V. Florian, “Reinforcement learning through modulation of spike-
timing-dependent synaptic plasticity,” Neural Computation, vol. 19,
no. 6, pp. 1468–1502, 2007.

[71] E. M. Izhikevich, “Solving the distal reward problem through linkage
of STDP and dopamine signaling,” Cerebral Cortex, vol. 17, no. 10,
pp. 2443–2452, 2007.

[72] J. O. Rombouts, P. R. Roelfsema, and S. M. Bohte, “Neurally plausible
reinforcement learning of working memory tasks,” in Advances in

Neural Information Processing Systems, 2012, pp. 1871–1879.

[73] J. O. Rombouts, A. van Ooyen, P. R. Roelfsema, and S. M. Bohte,
“Biologically plausible multi-dimensional reinforcement learning in
neural networks,” in International Conference on Artificial Neural
Networks, 2012, pp. 443–450.

[74] E. Vasilaki, N. Frémaux, R. Urbanczik, W. Senn, and W. Gerstner,
“Spike-based reinforcement learning in continuous state and action
space: When policy gradient methods fail,” Public Library of Science:

Computational Biology, vol. 5, no. 12, pp. 1–17, 2009.

[75] J. Friedrich and M. Lengyel, “Goal-directed decision making with
spiking neurons,” Journal of Neuroscience, vol. 36, no. 5, pp. 1529–
1546, 2016.

[76] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, S. J. Thorpe, and
T. Masquelier, “Combining STDP and reward-modulated STDP in
deep convolutional spiking neural networks for digit recognition,”
2018. [Online]. Available: https://arxiv.org/abs/1804.00227

[77] S. S. Beauchemin and J. L. Barron, “The computation of optical flow,”
ACM Computing Surveys (CSUR), vol. 27, no. 3, pp. 433–466, 1995.

[78] S. Ullman, The interpretation of visual motion. MIT Press, 1979.

[79] B. D. Lucas and T. Kanade, “An iterative technique of image reg-
istration and its application to stereo,” in Proceedings of the 7th

International Joint Conference on Artificial Intelligence, vol. 2, 1981,
pp. 674–679.

[80] H. H. Nagel, “Extending the oriented smoothness constraint into the
temporal domain and the estimation of derivatives of optical flow,”
in European Conference on Computer Vision. Springer, 1990, pp.
139–148.

[81] T. Camus, “Real-time quantized optical flow,” Real-Time Imaging,
vol. 3, no. 2, pp. 71–86, 1997.

[82] N. M. Grzywacz and A. L. Yuille, “A model for the estimate of local
image velocity by cells in the visual cortex,” Proceedings of the Royal

Society of London: Biological Sciences, vol. 239, no. 1295, pp. 129–
161, 1990.

[83] E. P. Simoncelli and D. J. Heeger, “A model of neuronal responses in
visual area MT,” Vision Research, vol. 38, no. 5, pp. 743–761, 1998.

[84] N. C. Rust, V. Mante, E. P. Simoncelli, and J. A. Movshon, “How
MT cells analyze the motion of visual patterns,” Nature Neuroscience,
vol. 9, no. 11, pp. 1421–1431, 2006.

[85] A. Borst and T. Euler, “Seeing things in motion: Models, circuits, and
mechanisms,” Neuron, vol. 71, no. 6, pp. 974–994, 2011.

[86] W. Reichardt, “Autocorrelation, a principle for the evaluation of sensory
information by the central nervous system,” Sensory Communication,
pp. 303–317, 1961.

[87] A. Borst, “Fly vision: Moving into the motion detection circuit,”
Current Biology, vol. 21, no. 24, pp. R990–R992, 2011.

[88] Y. LeCun, “Generalization and network design strategies,” Connection-

ism in Perspective, pp. 143–155, 1989.
[89] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvo-

lutional networks,” in Proceedings of the 2010 IEEE Conference on

Computer Vision and Pattern Recognition, 2010, pp. 2528–2535.
[90] R. Benosman, S. Ieng, C. Clercq, C. Bartolozzi, and M. Srinivasan,

“Asynchronous frameless event-based optical flow,” Neural Networks,
vol. 27, pp. 32–37, 2012.

[91] T. Brosch, S. Tschechne, and H. Neumann, “On event-based optical
flow detection,” Frontiers in Neuroscience, vol. 9, pp. 1–15, 2015.

[92] S. Tschechne, R. Sailer, and H. Neumann, “Bio-inspired optic flow
from event-based neuromorphic sensor input.” in Proceedings of the 6th
IAPR Workshop on Artificial Neural Networks in Pattern Recogniftion.
Springer, 2014, pp. 171–182.

[93] L. I. Abdul-Kreem and H. Neumann, “Neural mechanisms of cortical
motion computation based on a neuromorphic sensory system,” Public

Library of Science, vol. 10, no. 11, pp. 1–33, 2015.

[94] T. Brosch and H. Neumann, “Event-based optical flow on neuromorphic
hardware,” in Proceedings of the 9th EAI International Conference on
Bio-inspired Information and Communications Technologies, 2016, pp.
551–558.

[95] M. Giulioni, X. Lagorce, F. Galluppi, and R. B. Benosman, “Event-
based computation of motion flow on a neuromorphic analog neural
platform,” Frontiers in Neuroscience, vol. 10, pp. 1–13, 2016.

[96] C. Richter, F. Röhrbein, and J. Conradt, “Bio-inspired optic flow
detection using neuromorphic hardware,” Bernstein Conference on
Computational Neuroscience, 2014, poster.

[97] G. Orchard, R. Benosman, R. Etienne-Cummings, and N. V. Thakor,
“A spiking neural network architecture for visual motion estimation,”
in Proceedings of the 2013 IEEE Biomedical Circuits and Systems

Conference, 2013, pp. 298–301.

[98] A. P. Shon, R. P. Rao, and T. J. Sejnowski, “Motion detection
and prediction through spike-timing dependent plasticity,” Network:
Computation in Neural Systems, vol. 15, no. 3, pp. 179–198, 2004.

[99] O. G. Wenisch, J. Noll, and J. L. Van Hemmen, “Spontaneously
emerging direction selectivity maps in visual cortex through STDP,”
Biological Cybernetics, vol. 93, no. 4, pp. 239–247, 2005.

[100] S. V. Adams and C. M. Harris, “A computational model of innate
directional selectivity refined by visual experience,” Scientific Reports,
vol. 5, pp. 1–13, 2015.

[101] H. W. Ho and G. C. H. E. de Croon, “Characterization of flow field
divergence for MAVs vertical control landing,” in AIAA Guidance,

Navigation, and Control Conference, 2016, pp. 1–13.
[102] H. Ho, C. De Wagter, B. D. W. Remes, and G. C. H. E. de Croon,

“Optical-flow based self-supervised learning of obstacle appearance
applied to MAV landing,” Robotics and Autonomous Systems, vol. 100,
pp. 78–94, 2018.

[103] A. Morrison, A. Aertsen, and M. Diesmann, “Spike-timing-dependent
plasticity in balanced random networks,” Neural Computation, vol. 19,
no. 6, pp. 1437–1467, 2007.

19

https://arxiv.org/abs/1609.02053
https://arxiv.org/abs/1710.04838
https://arxiv.org/abs/1804.00227

[104] M. Abercrombie, C. J. Hickman, and M. L. Johnson, A dictionary of

biology. Routledge, 2017.
[105] S. M. Bohte, “Efficient spike-coding with multiplicative adaptation in a

spike response model,” in Advances in Neural Information Processing

Systems, 2012, pp. 1835–1843.
[106] S. J. Thorpe, “Spike arrival times: A highly efficient coding scheme for

neural networks,” Parallel Processing in Neural Systems, pp. 91–94,
1990.

[107] D. Luebke, “CUDA: Scalable parallel programming for high-
performance scientific computing,” in Proceedings of the 5th IEEE In-

ternational Symposium on Biomedical Imaging: From Nano to Macro,
2008, pp. 836–838.

[108] H. B. Barlow and W. R. Levick, “The mechanism of directionally
selective units in rabbit’s retina.” The Journal of Physiology, vol. 178,
no. 3, pp. 477–504, 1965.

[109] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Con-

ference on Machine Learning, 2010, pp. 807–814.
[110] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

2014. [Online]. Available: https://arxiv.org/abs/1412.6980

20

https://arxiv.org/abs/1412.6980

Part II

Literature Study

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

Chapter 2

Vision-based Navigation Strategies for
MAVs using Optical Flow

The concept of optical flow refers to the projection of the apparent motion1 of objects in
a scene onto the image plane of a visual sensor. Inspired by biological navigation models,
the perceived optical flow can be used for ego-motion estimation and state reconstruction
of Micro Air Vehicles (MAVs) in environments where engineered estimators, such as the
Global Positioning System (GPS), are not available. This chapter serves as an introduction
to the field of optical flow and its applications for vision-based navigation. First, Section 2-1
presents the mathematical foundations of the optical flow concepts used for motion estimation.
Second, Section 2-2 introduces the working principles of the different classes of optical flow
estimation methods using conventional cameras. Third, biologically-inspired applications
of these techniques in MAVs are discussed in Section 2-3; and finally, other vision-based
navigation strategies are described in Section 2-4.

2-1 Modeling optical flow

For the description of the mathematical model of optical flow, this work employs the formula-
tion of Longuet-Higgins & Prazdny (1980). This frequently-used formulation (e.g., Ho et al.,
2016; de Croon, 2016; Ho & de Croon, 2016; Ho et al., 2017) is based on the utilization of the
pinhole camera model for perspective projection, i.e., for the projection of world points on
the image plane. This model is based on the assumptions that, first, the camera aperture2 is
characterized as a point (a pinhole); and second, the retina is treated as a planar surface (the
image plane). Therefore, the equations describing the perspective projection become simple
expressions when using this model (Scaramuzza & Fraundorfer, 2011). Note that these as-
sumptions are not valid for applications using cameras with wide field of view (e.g., fish-eye
lenses). In these cases, a more advanced projection model, such as the omnidirectional or

1Relative motion between the elements in a scene and the observer.
2The opening in a vision sensor that controls the passage of light.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

30 Vision-based Navigation Strategies for MAVs using Optical Flow

spherical camera model, has to be applied instead (Geyer & Daniilidis, 2000; Scaramuzza &
Fraundorfer, 2011).

2-1-1 Optical flow in the pinhole camera model

Adapted from the optical flow formulation of Longuet-Higgins & Prazdny (1980), Figure 2-1
presents the projection of the world point A, with coordinates (X,Y ,Z) in the observer-fixed
reference frame OXY Z, onto the plane described by the x̂- and ŷ-axis. The origin O denotes
the nodal point of the observer, which is the location where the aperture of the sensor is
defined. The Z-axis is the optical axis or line-of-sight. The plane perpendicular to the optical
axis is the aforementioned focal or image plane, defined as the surface in which the image is
formed based on the projection of world points. Finally, the intersection between the optical
axis and the image plane is the principal point, denoted by o = (0, 0, f)⊤, where f is the focal
length of the sensor. For convenience, f = 1 in this derivation.

X

Y

Z

Oŷ

x̂
o

A a

W

U

V

r p

q

Figure 2-1: Projection of the world point A onto the image plane using the pinhole camera
model. Adapted from (Longuet-Higgins & Prazdny, 1980).

Consider the situation in which a monocular observer arbitrarily moves through a static
environment. In such a case, the observer-fixed reference frame is subjected to a set of
translational velocities (U ,V ,W) along, and to a set of rotational velocities (p, q, r) around
the X-, Y -, and Z-axis respectively. Then, the velocity components of point A with respect
to the moving frame are given by:

Ẋ = −U − qZ + rY

Ẏ = −V − rX + pZ

Ż = −W − pY + qX

(2-1)

Inferring from Figure 2-1, the projection of the point A on the image plane is denoted by
a and defined by the coordinates (x̂, ŷ)⊤ = (X/Z,Y/Z)⊤ at this plane. Due to the ego-
motion of the observer, this point is characterized by an optical flow with velocity components

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

2-1 Modeling optical flow 31

(û, v̂)⊤ = (˙̂x, ˙̂y)⊤. Accordingly, û and v̂ can be related to the velocity of the observer and to
the depth of the corresponding world point as:

û = Ẋ/Z −XŻ/Z2 = (−U/Z − q + rŷ)− x̂ (−W/Z − pŷ + qx̂)

v̂ = Ẏ /Z − Y Ż/Z2 = (−V/Z − rx̂+ p)− ŷ (−W/Z − pŷ + qx̂)
(2-2)

These equations may also be written in the form:

û = ûT + ûR, v̂ = v̂T + v̂R

ûT = (−U + x̂W) /Z, v̂T = (−V + ŷW) /Z

ûR = −q + rŷ + px̂ŷ − qx̂2, v̂R = −rx̂+ p+ pŷ2 − qx̂ŷ

(2-3)

Therefore, the optical flow of a point in the image plane can be resolved into a component
due to the translational motion of the observer, and another component due to rotations.

2-1-2 Visual observables derived from optical flow

Once the optical flow components of an image point are related to the ego-motion states of an
observer arbitrarily moving through a static environment, the next question to address is how
to use this knowledge to retrieve information about this motion and about the structure of
the scene. These problems form the basis for the fields of visual odometry (Nistér et al., 2004;
Scaramuzza & Fraundorfer, 2011), Simultaneous Localization And Mapping (SLAM) (Davi-
son et al., 2007), and Structure-from-Motion (SfM) (Adiv, 1985). Based on the assumption
of a static scene, the ego-motion states (p, q, r,U ,V ,W) are equal for all world points, while
the depth Z varies per each of these points. Hence, one could combine the perceived optical
flow in a set of image coordinates to resolve for these unknown parameters. However, the
complexity of the solutions to these problems, in combination with the limited computational
capabilities of MAVs, result in low-rate navigation strategies when applied in this type of
aerial vehicle (e.g., Kendoul et al., 2009; Fraundorfer et al., 2012).

Nevertheless, if a set of simplifying assumptions are used during the estimation of the optical
flow field, a new set of parameters regarding the observer’s ego-motion can be extracted. These
quantities are the so-called visual observables. The rest of this section covers the assumptions
and the derivation needed for the mathematical description of these parameters.

Derotation

If information on the rotational rates of the observer is available through external sensors
(e.g., gyroscopes in the Inertial Measurement Unit, IMU), the rotational component of the
perceived optical flow field can be corrected, i.e, the flow can be derotated. Since MAVs are
frequently equipped with these rotational rate sensors, the derotation of the flow field is a
common practice in applications like vision-based navigation (e.g., Izzo & de Croon, 2012;
Herissé et al., 2012; Grabe et al., 2015; Ho & de Croon, 2016) or obstacle avoidance (e.g.,
McGuire et al., 2017).

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

32 Vision-based Navigation Strategies for MAVs using Optical Flow

As shown by Longuet-Higgins & Prazdny (1980), it is possible to extract some basic ego-
motion information when the rotational component of the optical flow is negligible but the
translational part is still significant (i.e., in pure translational motion or after flow derotation).
For this, the intersection of the observer’s line of motion with the image plane is defined by
the coordinates (x̂f , ŷf) as:

x̂f = U/W , ŷf = V/W (2-4)

Then, assuming flow derotation and substituting Eq. (2-4) into (2-3), the velocity components
of the optical flow field can be written in the form:

û = (x̂− x̂f)W/Z, v̂ = (ŷ − ŷf)W/Z (2-5)

Inferring from Eq. (2-5), the point (x̂f , ŷf) is a particular location of the perceived optical
flow under the assumption of derotated flow. This point, acting as the vanishing point of
the flow field, is the only location in the image plane where the flow is null independently
of the depth of the corresponding world point. Moreover, the magnitude of the flow vectors
increases further away from it. For these reasons, this point is referred to as the Focus of
Expansion (FoE) in case of positive W , or Focus of Contraction (FoC) otherwise. This visual
cue provides the observer with information about the direction of motion. Furthermore, if
the depth of the FoE is known, the time-to-contact τ = ZFoE/W is defined as the visual cue
that provides information on how fast the observer is approaching this world point.

Planar flow

If the scene, apart from being static, is considered as a planar surface, then a simpler expres-
sion can be derived for the perceived optical flow field, as proposed by de Croon et al. (2013).
For this derivation, let Z0 be defined as the distance to the planar surface along the optical
axis of the observer, and let ZX and ZY represent the slopes of the scene with respect to the
X- and Y -axis of the observer-fixed reference frame. Further, let the observer’s normalized
velocities be defined as ϑx = U/Z0, ϑy = V/Z0, and ϑz = W/Z0. Then, as shown by de
Croon et al. (2013), the velocity components of this planar flow field are characterized by the
following expressions:

û = −ϑx + (ϑxZX + ϑz) x̂+ ϑxZY ŷ − ZXϑzx̂
2 − ZY ϑzx̂ŷ

v̂ = −ϑy + ϑyZX x̂+ (ϑyZY + ϑz) ŷ − ZY ϑz ŷ
2 − ZXϑzx̂ŷ

(2-6)

Note that, if the slopes of the planar scene are considered negligible (i.e., the scene is perpen-
dicular to the optical axis), Eq. (2-6) reduces to a simple expression relating the planar flow
field with the observer’s normalized velocities:

û = −ϑx + ϑzx̂

v̂ = −ϑy + ϑz ŷ
(2-7)

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

2-2 Optical flow estimation 33

Based on Eqs. (2-6) and (2-7), these expressions reveal the importance of the normalized
velocities (ϑx,ϑy,ϑz) in the estimation of the optical flow field under the assumption of pla-
nar flow. These velocities are the main visual cues, or visual observables, used for navigation
and for the derivation of other observables, such as the previously introduced time-to-contact,
divergence, and ventral flows. Firstly, τ can be obtained from ϑz as τ = Z0/W = 1/ϑz. Sec-
ondly, following the formulation proposed by McCarthy et al. (2008), the flow field divergence,
D, is defined as:

D (x̂, ŷ) =
∂û

∂x̂
(x̂, ŷ) +

∂v̂

∂ŷ
(x̂, ŷ) (2-8)

Hence, under the assumption of translational motion towards a planar scene perpendicular
to the optical axis of the observer, Eqs. (2-7) and (2-8) lead to a simple definition of D in
terms of the normalized velocity ϑz:

D = 2ϑz =
2

τ
(2-9)

Finally, the concept of ventral flow is introduced for the quantification of the components of
the planar flow field that are generated by the observer’s ego-motion in the X- and Y - axis.
These ventral cues, one per axis, are defined as the opposites of the remaining normalized
velocities (ϑx,ϑy), i.e., ωx = −ϑx and ωy = −ϑy.

2-2 Optical flow estimation

At the beginning of this chapter, the concept of optical flow was introduced as the projection
of the apparent motion of objects in a scene onto the image plane of a visual sensor. For
this motion to be perceptible, a sensor measuring brightness (intensity) at a certain rate is
needed so any variation can be detected. These variations, which define the concept of image
motion, are the basis for the optical flow estimation approaches presented in this section. For
this purpose, the most-used visual sensors belong to the category of frame-based cameras,
i.e., sensors that output a stream of consecutive images (e.g., Complementary Metal Oxide
Semiconductor, CMOS). Besides for navigation with MAVs (e.g., Alkowatly et al., 2014, de
Croon, 2016), these devices are widely used in the computer vision field for other tasks such
as object recognition, classification, or scene reconstruction (Szeliski, 2010).

As introduced by Horn & Schunck (1981), the estimation of optical flow is based on the
assumption that the intensity structure of a local region in the image plane remains approxi-
mately constant under motion for a short period of time. Beauchemin & Barron (1995) proved
that this hypothesis mathematically leads to the aperture problem (Ullman, 1979) through:

∇I · û+ It = 0 (2-10)

where the image intensity function is denoted by I(x̂, ŷ, t), its first-order derivatives by ∇I =
(Ix, Iy)

⊤ and It, and the image velocity is defined as û = (û, v̂)⊤.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

34 Vision-based Navigation Strategies for MAVs using Optical Flow

This expression, which is commonly referred to as the brightness constancy constraint, implies
that only the velocity component normal to the direction of the local gradient ∇I can be
estimated. The consequences of this constraint are frequently seen in methods that estimate
the optical flow based on a limited pixel neighborhood. In these cases, ambiguity may appear
in the perceived flow if the gradient is not aligned with the direction of motion, as exemplified
in Figure 2-2.

a b

c

Figure 2-2: Illustration of the aperture problem occurring with an L-shaped object in motion.
Black arrows indicate the optical flow component that can be estimated in each of the regions,
while gray arrows represent the actual motion of the object.

From this figure, on the one hand, regions a and c are characterized by a normal flow com-
ponent that does not accurately represent the motion of the object. Here, optical flow is
estimated along an edge, whose gradient is dominant in one spatial direction. On the other
hand, the motion can be fully estimated in region b since it is computed on a corner, i.e., a
image feature where the gradient is observable in two linearly independent spatial directions.
For this reason, some of the methods introduced in this section are preceded by a corner de-
tector such as the popular Harris (Harris & Stephens, 1988) and FAST (Rosten et al., 2010)
algorithms.

The rest of this section is structured according to the analysis of optical flow estimation
techniques presented by Beauchemin & Barron (1995), in which three major classes are dis-
tinguished: gradient-based, correlation-based, and frequency-based methods. Additionally,
examples of biologically-inspired motion detectors are also included.

2-2-1 Gradient-based methods

By definition, gradient-based methods make use of the spatiotemporal derivatives of the
image intensity function (Ix, Iy, It), in conjunction with the brightness constancy constraint,
to estimate optical flow. Depending on whether this estimation is performed within small
local regions or using intensity information of the full image, these methods can be further
divided into local and global approaches, respectively.

Regarding local techniques, the method proposed by Lucas & Kanade (1981) (further referred
to as “Lucas-Kanade”) is still the most-used approach for real-time optical flow applications
despite its long existence, and it clearly outperforms other classical methods (McCarthy &
Bames, 2004). Further, it is the basis from which most of the other techniques of this class
are derived (e.g., Simoncelli et al., 1991; Weber & Malik, 1995). Based on Eq. (2-10) and its
inability to resolve the optical flow components by itself, Lucas & Kanade (1981) proposed the

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

2-2 Optical flow estimation 35

assumption that û and v̂ are constant within the direct neighborhood of a point in the image.
Therefore, an overdetermined system of equations can be obtained if n > 2 neighboring pixels
are used, as shown in Eq. (2-11). Estimates for the optical flow components are obtained
through ordinary least-squares.











(Ix)1 (Iy)1
(Ix)2 (Iy)2
...

...
(Ix)n (Iy)n











[

û
v̂

]

=











(It)1
(It)2
...

(It)n











(2-11)

Global gradient-based methods, instead of using the assumption that the image velocity
remains constant within a small neighborhood, combine the brightness constancy constraint
with a smoothness condition in order to compute dense image flow over a full image. This
technique is referred to as flow regularization, and the conditions applied are normally spatial
(e.g., Horn & Schunck, 1981; Beauchemin & Barron, 1995), or spatiotemporal (e.g., Nagel,
1990). For instance, Horn & Schunck (1981) proposed an iterative gradient-based method
based on the following cost function:

L = argmin
û,v̂

∫

D

(Ixû+ Iyv̂ + It)
2 + λ2

(

‖∆û‖2 + ‖∆v̂‖2
)

dx (2-12)

where λ denotes the influence of a spatial smoothness term, which is defined as the sum of
the squared Laplacians of the velocity components, and D is the domain of interest.

Regarding the applications in MAVs, Lucas-Kanade is, by far, the most commonly used
gradient-based method for real-time optical flow estimation in these platforms (e.g., Grabe
et al., 2015; de Croon, 2016; Ho & de Croon, 2016). Global estimation approaches are rarely
used in MAVs since, due to their iterative minimization process, they run significantly slower
than local methods to achieve similar levels of accuracy. For this reason, and to the best
knowledge of the author, global gradient-based estimation techniques have not been applied
in MAVs for real-time optical flow estimation.

2-2-2 Correlation-based methods

For the estimation of optical flow components, correlation-based techniques identify the spa-
tial variations, (dx, dy), that best describe the motion of a particular set of image features
between two consecutive frames. In essence, the location of a feature in the most recent
frame is estimated based on the maximization of a similarity measure, such as the normalized
cross-correlation3; or based on the minimization of a distance measure, such as the Sum of
Squared Difference (SSD) over a spatial window D centered at the feature. SSD is usually
defined as:

L = argmin
dx,dy

∑

x̂∈D

∑

ŷ∈D

(I (x̂, ŷ, t− 1)− I (x̂+ dx, ŷ + dy, t))
2 (2-13)

3Popular measure of similarity between the appearance of a feature point in two different views.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

36 Vision-based Navigation Strategies for MAVs using Optical Flow

The main drawback of traditional correlation-based methods is that the search space D grows
quadratically with the number of possible velocities of the feature being tracked, making the
real-time implementation of these techniques impossible. Motivated by this issue, Camus
(1997) proposed an alternative formulation that keeps D constant, and instead performs the
region matching step with respect to a set of previous frames, i.e., using a spatiotemporal
search space. As a consequence, D only grows linearly in time. For this reason, the approach
proposed by Camus (1997) remains as the basis for the development of new correlation-based
techniques for optical flow estimation.

A good example for an implementation of these techniques in MAVs is the vision-based
navigation strategy proposed by Kendoul et al. (2009), and subsequently used by Kendoul et
al. (2010). Here, instead of making use of the spatiotemporal search region defined by Camus
(1997), the location and shape of D is defined according to inertial data from an IMU, thus
allowing real-time implementation.

2-2-3 Frequency-based methods

According to Beauchemin & Barron (1995), this third class of optical flow estimators is based
on the use of velocity-tuned filters designed in the Fourier domain, hence the name. Depending
on the type of velocity estimated, these methods are further divided into energy-based and
phase-based approaches.

Energy-based methods

Based on the working principle of direction-selective cells at early stages of the visual cortex
of the human brain (Grzywacz & Yuille, 1990; Simoncelli & Heeger, 1998; Rust et al., 2006;
Borst & Euler, 2011), Adelson & Bergen (1985) proposed a class of computational schemes,
the energy-based models, that exploits the fact that motion can be estimated by extracting
orientation in the spatiotemporal domain. As shown by Figure 2-3, velocity is inverse with
the slope of the trace generated in this domain with respect to the temporal axis. Hence,
motion can be estimated if a set of spatiotemporally oriented filters are tuned to cover a wide
range of orientations and speeds.

x

y

x

y

t

x

t

+

+

+

−

−

−

Figure 2-3: Illustration of the horizontal motion of a vertical bar in the spatial and spatiotemporal
domains, and the oriented receptive fields used to detect this motion. Adapted from Adelson &
Bergen (1985).

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

2-2 Optical flow estimation 37

There are two main energy-based approaches that normally serve as a basis for the develop-
ment of new techniques in this field: the works presented by Adelson & Bergen (1985), and by
Heeger (1987, 1988). Firstly, in Adelson & Bergen (1985), the authors proposed the idea that
a filter function is generated from the linear combination of two spatiotemporally separable
filters, each built up as the product of a spatial (even- or odd-symmetric) and a temporal
(mono- or bi-phasic) filter. For optical flow computation, each of these filters outputs a con-
fidence value for a particular orientation and a specific speed. Secondly, Heeger (1987, 1988)
formulated an approach that, based on the filters proposed by Adelson & Bergen (1985), fits
spatiotemporal energy to a plane in the frequency space that characterizes the motion.

The major limitation of energy-based approaches is the large number of filters that are re-
quired for a robust estimation of motion. Moreover, gradient- and correlation-based methods
outperform these techniques in terms of accuracy (Barron et al., 1992). Due to these limi-
tations, and to the best knowledge of the author, there are no applications of energy-based
methods in MAVs. However, an accurate and real-time implementation of the spatiotempo-
ral energy model was recently presented by Orchard, Thakor, & Etienne-Cummings (2013).
Here, the authors combined a conventional frame-based camera with a Field-Programmable
Gate Array (FPGA)4 for dense optical flow estimation at 60 Hz.

Phase-based methods

Fleet & Jepson (1990) proposed that, since phase is insensitive to changes in scene illumi-
nation, a better approximation to image velocity can be estimated if contours of constant
phase, rather than contours of constant intensity, are tracked over time. Based on this idea,
phase-based methods (e.g., Fleet & Jepson, 1990; Gautama & van Hulle, 2002; Fleet, 2012)
compute the concept of component velocity, defined as the velocity normal to a constant-phase
contour, from the outputs of band-pass velocity-tuned filters. Given the multiple component
velocity estimates that result from the application of different filters at a single location, an
affine model of optical flow is fitted to each local region of the image in order to estimate
image motion.

Contrary to energy-based methods, the approach proposed by Fleet & Jepson (1990) is compa-
rable to the well-known Lucas-Kanade algorithm in terms of accuracy, as reported by Barron
et al. (1992). However, due to the number of filters required by this phase-based method, its
ability to perform under real-time constraints is very limited. As a consequence, there are no
applications of these methods in MAVs.

2-2-4 Bio-inspired motion detectors

Since the proposal of the Elementary Motion Detector (EMD) by Hassenstein & Reichardt
(1956) and Reichardt (1961), the formulation of biologically-inspired methods for motion
estimation has been an appealing research topic (Eichner et al., 2011). The reason for this
interest is due to the robustness and efficiency of these alternative biological systems, which
would improve the performance of the ego-motion estimation approaches available nowadays.

In an attempt to replicate the direction-selectivity found at early stages of the visual system
of a fly, Hassenstein & Reichardt (1956) presented a correlation-based method in which two

4Integrated circuit whose logic block interconnection is programmable by the user after manufacturing.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

38 Vision-based Navigation Strategies for MAVs using Optical Flow

input signals from two neighboring photoreceptors are multiplied after one of them has been
temporally delayed by a low-pass filter. As illustrated in Figure 2-4a, this computation is
symmetrically performed twice, and the outputs of both operations are subtracted to gain
the desired direction selectivity. According to Borst et al. (2010), the Reichardt model ac-
curately reproduces the neural responses to the motion of a stimulus, however, its cellular
implementation is still undiscovered (Borst, 2011). Alternatives to this method have been
published to more accurately reproduce the neural responses of Drosophila flies during mo-
tion estimation (Eichner et al., 2011). For example, the model proposed by Franceschini
et al. (1989), shown in Figure 2-4b, implies that there is not interaction between signals of
opposite sign. Furthermore, due to their simplicity, these motion detectors have inspired the
development of optical flow sensors capable of efficiently estimating optical flow with decent
levels of accuracy (Ruffier & Franceschini, 2005; Ruffier & Franceschini, 2015).

M M

LP LP

+ −
∑

(a) Reichardt detector model.

−− ++

+ +
∑

∑ ∑

(b) Franceschini detector model.

Figure 2-4: Schematics of the EMD models investigated by Eichner et al. (2011). On top of the
images there are two photoreceptor cells for each EMD, from which the signals flow downwards.
The square blocks indicate time delays applied by a low-pass filter, while the circular cells indicate
multiplication of two signals. Adapted from Eichner et al. (2011).

Progress is continuously being made towards the understanding of how motion is perceived
in the mammalian retina and processed in the brain (Barlow & Levick, 1965; Albright, 1984;
Grossman et al., 2000; Borst & Helmstaedter, 2015). Although there are some approaches
that try to replicate the visual pathway to the brain using spiking neural architectures (Lappe
& Rauschecker, 1993; Rao & Sejnowski, 2001), there is no agreement on a mammalian-inspired
motion detector model yet.

2-3 Bio-inspired navigation using optical flow

Extensive research has been conducted on how different animals exploit optical flow infor-
mation for ego-motion estimation and navigation. Several authors have succeeded in the
formulation of mathematical models that relate the visual observables identified in Section
2-1-2 to vision-based maneuvers performed in biology (e.g., Srinivasan et al., 1996; Baird et
al., 2013). Inspired by these models, this section introduces a set navigation strategies that
have been successfully implemented in MAVs.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

2-3 Bio-inspired navigation using optical flow 39

2-3-1 Navigation using ventral flow

To the best knowledge of the author, the first implementation of a vision-based navigation
strategy in which ventral flow components were used in the control loop of a MAV corresponds
to the work presented by Chahl et al. (2004). Based on biological findings, honeybees perform
grazing landings maintaining the velocity of the ground plane as seen on the retina constant,
i.e., keeping ventral flow constant (Srinivasan et al., 1996). According to Chahl et al. (2004),
a linear relationship between forward and descend speed can be established, leading to the
following evolution of the height above the surface over time, where c denotes a proportionality
constant:

Z (t) = Z (t0) e
−cωx(t−t0) (2-14)

Chahl et al. (2004) analyzed this solution through an implementation on-board of a fixed-wing
MAV equipped with a downward-looking frame-based camera. Optical flow was estimated
using image interpolation (Srinivasan, 1994), a correlation-based approach. Further, results
proving the performance of this method in achieving smooth landings were also included.

Besides this work, the application of the constant ventral flow strategy in MAVs was deeply
investigated by Ruffier & Franceschini (2005, 2015) and Expert & Ruffier (2012, 2015). Here,
the authors demonstrated the performance of this approach using a rotorcraft MAV equipped
with an optical flow sensor that, being tethered, was moved in circular patterns above a
textured surface. The two degrees-of-freedom (DoF) that described the flight condition of the
MAV during these experiments were the pitch angle and the magnitude of the thrust vector.
Landing was successfully performed by slowly pitching up, such that the height of the vehicle
was decreased according to Eq. (2-14).

As it is possible to infer, these navigation strategies present the limitation that it is not
possible to control vertical dynamics without forward motion. Although this situation is not
problematic for fixed-wind MAVs, hovering and pure vertical motion, which are the main
advantages of rotorcraft MAVs, become impossible.

2-3-2 Landing using divergence and time-to-contact

Constant divergence

Continuing with the research about the navigation of honeybees, Baird et al. (2013) showed
that these insects land on vertical surfaces with constant image divergence, which is equiva-
lent to keeping the time-to-contact, τ , also constant. This strategy results in a similar landing
behavior as seen in grazing landings, but now the vertical and horizontal motion are inde-
pendent of each other. Hence, this navigation solution can be applied in rotorcraft MAVs
without limiting their flight envelope.

Herissé et al. (2012) applied the constant divergence strategy in a vertical take-off and landing
(VTOL) MAV in order to hover and land on a moving platform. The vehicle was equipped
with a downward-looking camera, and optical flow was estimated with the Lucas-Kanade
algorithm (Lucas & Kanade, 1981). Based on the assumption that the platform was always
in the field of view of the camera, hovering above target was achieved with a control law forcing

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

40 Vision-based Navigation Strategies for MAVs using Optical Flow

ventral flows to zero. Results demonstrating the performance of this navigation solution were
also included.

In Ho & de Croon (2016), the authors focused on experimentally characterizing the concept
of divergence when it is estimated from a monocular camera mounted on a MAV during a
landing maneuver. This characterization was performed in terms of the delay and noise of the
measurement, and based on it, the practicality of using this parameter in the control loops
of MAVs was assessed. According to their results, noise and time delay generate significant
oscillations in the estimated divergence, destabilizing the control system, when the MAV
is close to the landing surface. Note that, since divergence is scaled by Z, the impact of
disturbances on the estimated motion is much larger at low heights.

Constant rate-of-change in time-to-contact

For landing maneuvers, apart from the aforementioned constant divergence strategy, research
was also conducted on τ -based laws. According to the results presented in D. N. Lee (1976)
and D. N. Lee et al. (1993), the rate-of-change of the time-to-contact, τ̇ , is normally kept
constant by pigeons during landing, and by humans performing breaking maneuvers. This
results in a different landing trajectory. Let k = −τ̇ be the rate-of-change setpoint. Then, as
proved by Izzo & de Croon (2012), the height above the surface evolves over time following:

Z (t) = Z (t0)

(

k
t

τ (t0)
+ 1

)1/k

(2-15)

Apart from this proposal, Izzo & de Croon (2012) showed the versatility of this new approach
performing experiments within the context of spacecraft landings. Based on this work, the
constant τ̇ strategy was successfully applied in a rotorcraft MAV for landing maneuvers by
Alkowatly et al. (2014). Here, the visual observables were estimated using planar optical flow
from a downward-looking camera.

Although τ was not computed using vision but by fusing measurements from other sensors,
Kendoul (2014) designed and implemented a τ -based autopilot in a rotorcraft MAV, in which
τ estimates were used for navigation in three dimensions. As reported by Kendoul, the MAV
was capable of following pre-computed τ -based trajectories with good performance.

2-4 Other vision-based navigation strategies

Apart from the bio-inspired approaches presented in this chapter for ego-motion estimation,
extensive research has been conducted on the development of robust vision-based navigation
solutions from a different perspective: the field of robot localization and mapping. Here,
visual odometry (Nistér et al., 2004; Scaramuzza & Fraundorfer, 2011) and SLAM (Davison
et al., 2007) are the two most frequently-used techniques for these purposes. The aim of this
section is to give a brief overview of their working principles, and to present examples of their
applications in MAVs.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

2-4 Other vision-based navigation strategies 41

2-4-1 Visual odometry

As defined by Scaramuzza & Fraundorfer (2011), visual odometry is “the process of estimating
the ego-motion of an agent using only the input of a single or multiple cameras attached to
it”. For this, in monocular visual odometry, the camera pose is incrementally estimated from
the changes in brightness induced by motion on the images generated by a single sensor.
These methods can be divided into three main categories: feature-based, appearance-based,
and hybrid methods.

Similarly to correlation-based optical flow estimation approaches, the first stage of feature-
based visual odometry methods consists in tracking salient and repeatable image features over
frames. Camera pose is then estimated by means of computing the optical flow components
of these features and solving an overdetermined system of equations based on Eq. (2-3). For
the first real-time implementation of this algorithm, Nistér et al. (2004) proposed the use of a
five-point minimal solver (Nistér, 2004) to compute the solution of this system of equations,
and RANSAC (Fischler & Bolles, 1981) for outlier rejection. To overcome the computational
requirements of this solver, Weiss et al. (2013) proposed the combination of visual and IMU
information. In this work, the authors used this visual-inertial solution for the navigation of
a MAV in four Degrees-of-Freedom (DoF) and metric velocity.

Since feature tracking is not consistent in low-textured environments, appearance-based and
hybrid methods use dense information of image intensity for motion estimation. Optical flow
techniques, such as the Lucas-Kanade (Lucas & Kanade, 1981) or the Horn-Schunck (Horn
& Schunck, 1981) algorithm, are used to find correspondences of intensity patches over a set
of successive frames. Once optical flow components are obtained, these are normally fed into
a camera-pose estimation stage based on the inverse camera projection matrix (Scaramuzza
& Fraundorfer, 2011). Implementations of these methods are always combined with the
generation of a map of the environment (Weiss et al., 2012; Forster et al., 2014). Therefore,
a more detailed explanation of these works is presented in Section 2-4-2.

2-4-2 SLAM

SLAM is a technique for estimating agent ego-motion, and for obtaining the 3D structure of
the unknown environment in which this agent is moving at the same time (Fuentes-Pacheco
et al., 2015). When using images as the only source of external information, these techniques
are categorized as Visual Simultaneous Localization And Mapping (V-SLAM). Similarly to
visual odometry approaches, monocular V-SLAM methods are further divided in two groups:
feature-based, and direct methods.

Regarding feature-based methods, there are two main approaches that set the basis for all
the techniques in this group: MonoSLAM (Davison et al., 2007) and Parallel Tracking And
Mapping (PTAM) (Klein & Murray, 2007). On the one hand, in MonoSLAM, camera motion
and the 3D map of the environment are simultaneously estimated using an Extended Kalman
Filter (EKF) framework. Here, the size of the state vector increases in proportion to the size
of the map, which makes any real-time implementation impossible. On the other hand, PTAM
solves this problem by splitting these two tasks into different threads for parallel computation.
An adaptation of PTAM was implemented in MAVs by Weiss et al. (2012) through fusing
visual information with IMU data to avoid the need for the five-point minimal solver (Nistér,

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

42 Vision-based Navigation Strategies for MAVs using Optical Flow

2004). Robust 6-DoF navigation was achieved by feeding this velocity estimate, and the 3D
map, into an EKF.

In contrast to feature-based approaches, direct methods track the location of the agent by
comparing input and synthetic images generated from the map. In this group, it is impor-
tant to remark two main contributions to the field of vision-based navigation of MAVs: the
works presented by Forster et al. (2014), and by Bloesch et al. (2015). Firstly, Forster et al.
(2014) proposed a Semi-direct Visual Odometry (SVO) pipeline that, based on the PTAM
algorithm, uses images alignment for relative pose estimation. Further, instead of using an
EKF framework, this method includes iterative depth filters to incorporate newly detected
3D points to the mapping thread. Experiments conducted on a small rotorcraft MAV showed
a decrease of one order-of-magnitude in the relative position error with respect to PTAM,
while the rotation error is maintained. Secondly, instead of using image alignment, Bloesch et
al. (2015) presented a method in which template matching is coupled to an EKF framework
for relative pose estimation. This approach is successfully validated by using it in the control
loop of a MAV for take-off and landing maneuvers.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

Chapter 3

Dynamic Vision Sensor and
Event-based Optical Flow Estimation

The optical flow estimation methods and applications discussed so far mainly involve the use
of conventional frame-based cameras. This chapter provides an introduction to the field of
event-based vision via the Dynamic Vision Sensor (DVS), which is the sensor employed in
this work, in Section 3-1. Next, a detailed overview of the existing methods for computing
optical flow from these sensors is included in Section 3-2. Finally, Section 3-3 describes the
recent event-based approaches that have been proposed for ego-motion estimation.

3-1 The Dynamic Vision Sensor

Conventional cameras perceive the world as a series of consecutive images, which are generated
by measuring the pixel values at fixed time intervals. Although these sensors are suitable for
the great majority of computer vision applications (e.g., classification, object recognition),
these frames generally contain enormous amount of redundant information.

Figure 3-1: Picture of the DVS128.
From https://inilabs.com/

Inspired by biological retinas, the pixels of event-based
vision sensors react asynchronously to changes in per-
ceived brightness by generating events. Accordingly,
the outputs of these sensors are characterized by a
stream of events encoding variations of image intensity
at a particular time and location on the image plane.
The Dynamic Vision Sensor (DVS) is an event-based
camera with a 128×128 pixel array, designed by Licht-
steiner et al. (2008) and commercialized by iniLabs un-
der the name of “DVS128”. This device, shown in Fig-
ure 3-1, is the vision sensor used in this work. This
section serves as an introduction to the working princi-
ple and the main characteristics of this sensor.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

https://inilabs.com/

44 Dynamic Vision Sensor and Event-based Optical Flow Estimation

3-1-1 Working principle

According to Lichtsteiner et al. (2008), DVS events are asynchronously generated whenever
a pixel (i.e., a photoreceptor circuit) measures a logarithmic local change in brightness that
exceeds a predefined threshold C, as shown in Eq. (3-1). This variation in image intensity is
computed with respect to a reference brightness level set at the last occurring event at that
particular pixel. Furthermore, depending on whether the change in brightness is positive or
negative, the polarity of the generated event is ON (+1) or OFF (-1), respectively.

∣

∣∆ log (I (x̂, ŷ, t))
∣

∣ > C
ON/OFF

(3-1)

This principle of operation is illustrated in Figure 3-2. Firstly, the top graph shows an example
of how the voltage output, Vp, of a DVS pixel looks like. As mentioned before, this voltage
corresponds to a representation of the logarithmic level of brightness perceived. Secondly,
the bottom graph shows the corresponding evolution of the local change in image intensity,
denoted by Vdiff. Note that the spiking behavior of this signal is due to the reconstruction of
the reference brightness level when Vdiff exceeds one of the thresholds. These spikes are the
events generated by the DVS.

Figure 3-2: Working principle of a DVS pixel. From Lichtsteiner et al. (2008).

Each of these events encodes information about the timestamp (t) in which it was generated,
the corresponding location on the pixel array (x̂, ŷ), and the polarity of the change in bright-
ness (P). This method of transmitting information from asynchronous sensors is referred
to as the Address-Event Representation (AER) protocol (Boahen, 2000; Lichtsteiner et al.,
2008).

3-1-2 Sensor characteristics, advantages, and limitations

The DVS is the first event-based camera being commercialized (Posch et al., 2014; Cho & Lee,
2015), and it is available for purchase from iniLabs under the product name of “DVS128”.
Being specialized for general purpose and rapid application development, this sensor interfaces
with other hardware through a USB 2.0 connection, which also powers the device. According

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

3-1 The Dynamic Vision Sensor 45

Table 3-1: DVS128 specifications (iniLabs, n.d.)

Array size 128×128
Pixel size 40×40 µm
Dimensions 5×5×2.5 cm (without lens)
Weight 120 g (including lens)
Connectivity USB 2.0
Latency 12 µs (at 1 klux)
Temporal contrast sensitivity1 17%
Power consumption 23 mW
Dynamic range2 120 dB
Event bandwidth 1 million events per second

to Lichtsteiner et al. (2008), this connection has an event bandwidth of one million events
per second using the AER protocol. An overview of the main specifications of this sensor is
introduced in Table 3-1.

When compared to conventional frame-based cameras, the DVS offers distinct advantages
mainly due to its asynchronous pixel readout. First of all, this sensor reacts only when
changes in brightness are perceived. Hence, scene dynamics is correlated with the output
events, avoiding the redundancy that characterizes the measurements of conventional cameras.
Secondly, each DVS pixel asynchronously measures local changes at a very high temporal
resolution (1 µs) and with small latency (12 µs). Finally, this low-power sensor is characterized
by an average consumption of 23 mW, which is significantly lower than the power needed by
other similar cameras (Lichtsteiner et al., 2008).

Regarding the main limitations of the DVS, it is important to remark the small pixel array, the
lack of absolute brightness levels, and the limited temporal contrast sensitivity (see Table 3-1).
To overcome these problems, several other event-based vision sensors have been presented
since the release of the DVS in 2008. Among others, the most relevant designs are the
Asynchronous Time-based Image Sensor (ATIS) (Posch et al., 2011) and the Dynamic and
Active-pixel Vision Sensor (DAVIS) (Brandli et al., 2014). On the one hand, ATIS features
a 304×240 pixel array that outputs a stream of events encoding relative changes as well
as absolute brightness levels (Posch et al., 2011). On the other hand, DAVIS combines
an improved DVS with a conventional global shutter frame-based sensor. Furthermore, the
Embedded Dynamic Vision Sensor (eDVS) and the Miniature Embedded Dynamic Vision
Sensor (meDVS) are the result of the miniaturization work that is currently being conducted
at iniLabs. These sensors, being considerably smaller than the original DVS, are highly
suitable for on-board MAV applications.

3-1-3 Processing software

The open-source tool Java Address-Event Representation (jAER) is the software developed
by iniLabs (Delbruck, 2007) for visualization of real-time or recorded DVS events. As the
name suggests, this program uses the same AER communication protocol for processing the

1Measure of the light level difference that a sensor needs to be able to discriminate a light source as
flickering versus steady.

2The ratio between the maximum and minimum measurable light intensities.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

46 Dynamic Vision Sensor and Event-based Optical Flow Estimation

events, thus it can be used for the rapid development of real-time event-based algorithms and
applications, the so-called filters. The software uses a modular structure very suitable for the
evaluation and visualization of these filters.

Apart from jAER, a version of this program has been developed based on the C programming
language under the name cAER by iniLabs (Longinotti, 2014). This version was developed
in order to improve the portability of event-based algorithms to embedded systems. This
software has allowed the on-board utilization of the DVS in ground (Weikersdorfer & Conradt,
2012) and aerial vehicles (Hordijk et al., 2018) for real-time applications.

3-2 Event-based optical flow estimation

Recalling from Chapter 2, the concept of optical flow was introduced as a means to quantify
motion from images perceived by a camera. For this image flow to be estimated, an algorithm
comparing the brightness levels of successive frames is needed so any variation can be detected
and interpreted as motion. Since DVS events already encode this dynamic information at
a very high temporal resolution, the field of optical flow estimation from event-based vision
sensors has recently gained much attention. This section provides an overview of the methods
that are currently available, with some of their corresponding applications.

3-2-1 Event-based Lucas Kanade

As introduced in Section 2-2-1, gradient-based methods make use of the spatiotemporal deriva-
tives of the image intensity function (Ix, Iy, It) in conjunction with the brightness constancy
constraint (Horn & Schunck, 1981) for optical flow estimation. On this basis, Benosman et al.
(2012), together with the reformulation made by Brosch et al. (2015), presented an adaptation
of the well-known Lucas-Kanade algorithm (Lucas & Kanade, 1981) to event-based vision.

By definition, DVS events encode information about local changes in brightness over time.
Hence, these events are regarded as a representation of the temporal derivative It. However,
the computation of the spatial derivatives (Ix, Iy) seems to be not possible since absolute
brightness levels are not available. To overcome this problem, Brosch et al. (2015) proposed
a reformulation of the algorithm based on two main assumptions. Firstly, the brightness
constancy constraint is redefined in terms of the second-order partial derivatives, as shown
in Eq. (3-2). Secondly, the terms (Itx, Ity) are estimated by summing the polarities (P) of
neighboring events within a time window T .

Itxû+ Ityv̂ + Itt = 0 (3-2)

Itx (x̂, ŷ, t) =
∑

t′∈T

P
(

x̂+ 1, ŷ, t′
)

−
∑

t′∈T

P
(

x̂− 1, ŷ, t′
)

Ity (x̂, ŷ, t) =
∑

t′∈T

P
(

x̂, ŷ + 1, t′
)

−
∑

t′∈T

P
(

x̂, ŷ − 1, t′
)

Itt (x̂, ŷ, t) =
1

∆t2





∑

t′∈T−1

P
(

x̂, ŷ, t′
)

−
∑

t′∈T−2

P
(

x̂, ŷ, t′
)





(3-3)

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

3-2 Event-based optical flow estimation 47

Note that the temporal windows were defined as T−1 = (t−∆t, t] and T−2 = (t−2∆t, t−∆t],
with T = T−2 ∪ T−1. As proposed by Lucas & Kanade (1981), an overdetermined system of
equation needs to be created using Eq. (3-2) to resolve for the optical flow components.

The experiments presented by Benosman et al. (2012) showed the capabilities of this algorithm
to accurately estimate direction of motion in real-time on a desktop computer. However, the
magnitude of the optical flow vectors was often uncorrelated with the speed of motion. In
Brosch et al. (2015), the authors argued that the limited number of events that are generated
when an edge passes the receptive field of a DVS pixel leads to inaccuracies in the estimation
of (Itx, Ity, Itt). Therefore, the conclusion is that gradient-based approaches are not suited for
the sparse encoding of event-based sensors.

3-2-2 Spatiotemporal plane fitting

Benosman et al. (2014) proposed an alternative to the event-based Lucas-Kanade algorithm
that is based on the representation of events as part of a small volume in the x-y-t-space. This
volume, also known as the surface of active events Σe and illustrated in Figure 3-3, is defined
as a function that associates the location of an event to a third dimension that happens to
be the time at which it was generated: Σ(x̂, ŷ) = t. Based on the assumption that velocity
is constant in Σe, Benosman et al. (2014) estimates optical flow components by computing
the inverse gradients of a plane fitted to represent this surface, as shown in Eq. (3-4). In
order to have an estimate for each newly detected event, a plane fitting procedure based on
linear least-squares is applied to a spatiotemporal window centered on each of these events.
Only events with the same polarity are considered for plane fitting. Experiments conducted
by Benosman et al. (2014) demonstrated that this algorithm is capable of estimating optical
flow with decent accuracy.

∇Σe (x̂, ŷ) =
[

Σex , Σey
]T

=

[

1

û (x̂, ŷ)
,

1

v̂ (x̂, ŷ)

]T

(3-4)

Figure 3-3: Illustration of the surface of active events and its gradients. From Benosman et al.
(2014).

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

48 Dynamic Vision Sensor and Event-based Optical Flow Estimation

Using the spatiotemporal plane fitting technique as a basis, Hordijk et al. (2018) presented
a novel optical flow estimation algorithm with two main differences with respect to the work
proposed by Benosman et al. (2014). First, the computational efficiency of the method was
improved by reducing the number of parameters needed for plane fitting. Second, a time
window with adaptive length was used to extend the range of velocities that can be measured.
Apart from this, the authors presented a method for estimating divergence out of the event-
based optical flow components, and incorporated this estimation in a constant-divergence
landing controller implemented on-board of a rotorcraft MAV. To the best knowledge of the
author, the work presented by Hordijk et al. (2018) corresponds to the first time that an
event-based camera is successfully integrated in the navigation loop of a MAV.

3-2-3 Direction-selective filters

In Section 2-2-3, energy-based methods were introduced as biologically-inspired approaches for
optical flow estimation based on the extraction of orientation in the spatiotemporal domain.
Extensive research has been conducted over recent years on the adaptation of these methods to
event-based vision due to the similarities between the DVS and biological retinas. According
to Medathati et al. (2016), this combination leads to the most similar approach to motion
estimation at early stages of the visual cortex (De Valois et al., 2000).

Tschechne et al. (2014) presented, for the first time, an implementation of these methods
using the DVS as input sensor. In this work, the authors proposed that directional selectivity
in cortical cells is generated as a combination of two spatial (even- and odd-symmetric) and
two temporal (mono- and bi-phasic) filters, as shown in Figure 3-4. Parameter tuning of
these filters was performed according to experimental data obtained from V1 (primary visual
cortex) cells by De Valois et al. (2000). For motion estimation at different orientations, a
filter bank is created using different rotation settings for the spatial filters. Note that the
output of these filters is a confidence value that the stimulus is moving in a specific direction
with certain speed. Therefore, a considerably large filter bank needs to be generated to cover
a wide range of speeds and directions.

Figure 3-4: Generation of a direction-selective filter as a combination of two separable spatiotem-
poral responses in one spatial dimension and time. From Brosch et al. (2015).

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

3-3 Visual odometry using event-based sensors 49

Brosch et al. (2015) extended this approach by means of analyzing the relation between the
filter parameters and the “preferred speed” through Fourier analysis. Further, to reduce
the ambiguity caused by the aperture problem, the authors proposed a method of response
normalization inspired by the feedback connections present in the visual pathway to the brain
(Brosch & Neumann, 2014). Such normalization integrates the filter outputs over larger
regions in the image plane, and the outcome is fed back to the filters.

This approach is further explored by Abdul-Kreem & Neumann (2015). In this work, instead
of having just one layer of spatiotemporal filters, the authors proposed a two-layer method in
order to model the two main visual areas of the brain, namely V1 and MT (middle temporal).
Based on the response normalization stage from Brosch et al. (2015), V1 filters were modulated
by feedback signals coming from MT.

Although these implementations of the filter-based approach are capable of robustly esti-
mating direction of motion (Tschechne et al., 2014; Brosch et al., 2015; Abdul-Kreem &
Neumann, 2015), they have accuracy problems when computing the magnitude of the optical
flow vectors. As previously mentioned, this magnitude has to be calculated from confidence
values, thus the precision of this parameter is limited to the number of velocity settings in
the filter bank.

3-3 Visual odometry using event-based sensors

The application of event-based sensors in the fields of visual odometry and SLAM has gained
interest since the availability of the DVS. Their key advantages (high temporal resolution,
small latency, and high dynamic range, among others) enable the design of new camera pose
estimation algorithms suitable for scenes characterized by high-speed motion (Mueggler et al.,
2014) and high-dynamic range (Rebecq et al., 2017), where conventional frame-based cameras
normally fail. This section presents an overview of the different methods that have recently
been presented towards this goal.

Censi & Scaramuzza (2014) proposed a pose tracking algorithm based on the combination of
the DVS with a conventional frame-based camera. The working principle of this approach was
to accumulate DVS events over a temporal window, and then to compare this representation
of the scene with the previous frame obtained from the normal camera, which is acting as a
map of the environment. According to Censi & Scaramuzza (2014), rotational motion can be
estimated with a small drift, but translation cannot be reliably computed since the estimates
were noisy. Based on these results, the authors suggested that, for future projects, a promising
idea would be to separate the use of the DVS for rotation estimation, while using frame-based
cameras for translation.

Mueggler et al. (2014) presented an implementation of a visual odometry algorithm, using a
quadrotor MAV as platform for the execution of high-speed maneuvers. In the experiments
conducted for this work, the MAV performed high-speed lateral flips in front of a white wall
with a black square maker on it. The working principle of this algorithm was to perform
edge tracking for ego-motion estimation. Whenever a DVS event is generated by the sensor,
this method checks whether it belongs to any of the lines, and if so, it updates the lines,
and, subsequently, the pose estimate. Note that real-time implementation was achieved by
streaming the DVS events to a laptop for off-board computation. Further, the authors argued

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

50 Dynamic Vision Sensor and Event-based Optical Flow Estimation

that this method was just a proof-of-concept to show the capabilities of event-based visual
odometry. It cannot be used in arbitrary environments.

Gallego et al. (2017) continued working in this line of action, and presented a probabilistic
pose-tracking method for event-based vision sensors in known environments. In this work,
the authors characterized the scene using a sparse set of reference images accompanied by
their corresponding poses and depth maps. By means of using this information, this Bayesian
filter allows to estimate pose updates for each newly detected DVS event. The authors
demonstrated the accuracy of this approach using natural indoor and outdoor scenes. Further,
they showed the algorithm capability of tracking the DVS pose in spite of moving objects in
the scene.

The first event-based visual odometry algorithm capable of robustly estimating camera pose
in realistic and natural scenes was presented by Kueng et al. (2016). Being an event-based
adaptation of the SVO method (Forster et al., 2014), the authors employed the DAVIS sensor
since DVS events do not encode absolute brightness levels. Image features are detected using
image intensity values and then tracked with the stream of asynchronous events. Results
demonstrated successful feature tracking and visual odometry performance in unknown scenes
with natural textures.

Finally, Rebecq et al. (2017) presented, for the first time, a real-time 6-DoF visual odometry
approach based only on information retrieved from an event-based sensor, such as the DVS.
This method, further referred to as Event-based Visual Odometry (EVO), uses the separation
principle of SLAM systems (Klein & Murray, 2007) to perform pose tracking and mapping
in different threads, thus allowing real-time implementation. In order to avoid the need of
intensity information, the pose tracking stage uses geometric alignment error between two
images of accumulated events. Experiments to evaluate the accuracy of this approach are
based on the comparison with the SVO method (Forster et al., 2014). Rebecq et al. (2017)
proved the high accuracy of EVO even during high-speed maneuvers or under poor lighting
conditions.

Although these methods, especially the work presented by Rebecq et al. (2017), lay the
groundwork for future implementations of event-based V-SLAM approaches in aerial vehicles,
the first application of the DVS in the control loop of a quadrotor MAV corresponds to Hordijk
et al. (2018).

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

Chapter 4

Neuromorphic Computing for
Vision-based Navigation

Imagine an animal endowed with brain and visual cortex moving through a scene. When this
animal perceives light (in the visible spectrum) reflected by the objects in this environment,
neurons in different parts of the brain react and start communicating with each other via
electrical and chemical pulses, also known as spikes. The outcome of this interaction being
the ability to understand the surrounding environment, i.e., visual perception, which is crucial
for tasks such as navigation, recognition, and classification. The concept of neuromorphic en-
gineering, also referred to as neuromorphic computing, alludes to the progress that is recently
being made in the field of Artificial Intelligence (AI) towards the establishment of compu-
tational frameworks capable of replicating how the brain processes, learns, and memorizes.
These models are the so-called neural networks. If successfully implemented in robotics for
vision purposes, neural networks would prevent the need for complex mathematical models
describing the agent-environment visual relations (Chapters 2 and 3), since these networks
can learn how to efficiently compute the desired output from the set of input images.

This chapter serves as an introduction to the two main computational models currently used in
Artificial Intelligence (AI) for vision: Spiking Neural Networks (SNNs); and Artificial Neural
Networks (ANNs). Due to the infancy stage of spiking networks, Section 4-1 places emphasis
on the mathematical description, learning processes, and computer vision applications of these
models. On the contrary, Section 4-2 exhaustively covers the common ANNs architectures
for visual odometry applications.

4-1 Spiking Neural Networks

Starting from the computational model with highest level of realism, spiking neural networks
attempt to replicate the spike-based communication protocol used in the brain. As mentioned
before, neurons from biological neural systems exchange information by sending and receiving
short electrical pulses, or spikes, whose amplitude remains approximately constant during

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

52 Neuromorphic Computing for Vision-based Navigation

propagation. Since, in terms of appearance, all spikes of a given neuron look similar, the
information is encoded in the precise timing at which these pulses are generated. According to
numerous studies (Ferster & Spruston, 1995; Maass, 1997; Thorpe et al., 2001), this temporal
coding is what enables many biological neural systems to perform high-speed computations.
For this reason, spiking neurons from spiking neural networks are defined as asynchronous
event-based processing units with temporal dynamics. The rest of this section delves into this
powerful computational framework.

4-1-1 Biological background

For the description of the biological background of spiking neural networks, this work refers
to the theoretical knowledge collected by Gerstner & Kistler (2002) about the structure and
function of the brain.

As illustrated in Figure 4-1, four functionally distinct parts can be identified in a biological
neuron, called dendrites, soma, axon, and synapse. First, the dendrites are the input ram-
ifications of the neuron, and their role is to collect signals and transmit them to the soma.
The soma, acting as the processing unit of the neuron, is characterized by a state variable
known as membrane potential. If a sequence of input spikes raises this internal state above a
certain threshold, the soma is in charge of generating an output signal, which is delivered to
other neurons via the axon. The junction between two neurons is called synapse, so sending
cells are commonly referred to as presynaptic neurons, while receiving cells are postsynaptic
neurons.

The membrane potential, v(t), of a postsynaptic biological neuron varies according to the
incoming spikes (spike train) from a set of presynaptic neurons. If the neuron does not
receive any input, its membrane potential remains constant at a particular value vrest. If the
change in the membrane potential is positive after the arrival of a spike, that synapse is said to
be excitatory. If negative, the synapse is inhibitory. After this variation, the potential decays
back to the resting potential. Further, after the emission of a spike, the neuron enters in a
refractory period in which the membrane potential hardly changes due to new incoming spikes.
This period, which only lasts a few milliseconds, ensures the event-based representation of
these spikes as pulses clearly distributed over time. Figure 4-2 exemplifies this mechanism
of spike generation using a postsynaptic neuron integrating the presynaptic spike train from
two input cells.

Soma

AxonDendrites

Synapse

Figure 4-1: Illustration of the functionally distinct parts that compose a single neuron. Adapted
from Ramón y Cajal & Azoulay (1955).

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

4-1 Spiking Neural Networks 53

t
u rest

t1

t2 t2

t1

u (t)

(1) (2)

(1) (2)

ϑ

Figure 4-2: Mechanism of spike generation in biological neurons. Adapted from Gerstner &
Kistler (2002). Note that, in this publication, the authors denoted the membrane potential as
u(t). Instead, this parameter is represented by v(t) throughout this document.

4-1-2 Models of spiking neurons

When using spiking neural networks, the first step consists in deciding which model should
be used for the mathematical representation of the spike generation mechanism illustrated
in Figure 4-2. Since the beginning of scientific research in the field of neuroscience, different
neuron models have been presented with this purpose, each of them with a different level of
abstraction.

The spiking neuron model with highest level of realism was presented by Hodgkin & Huxley
(1952), and referred to as the “Hodgkin-Huxley model”. After experimenting with the axon
of a squid, the authors succeeded in the identification of a set of differential equations capable
of describing the dynamics of a neuron. In this work, Hodgkin & Huxley (1952) proposed,
for the first time, the idea that this dynamics can be modeled using electric circuits made
of capacitors and resistors. Although this model is not usable in large simulations of spiking
neurons due to its computational complexity, it has served as a basis for the development
of the more-efficient approaches now presented (Stein, 1965; Kistler et al., 1997; Izhikevich,
2003).

Leaky Integrate-and-Fire model

The Leaky Integrate-and-Fire (LIF) neuron model, presented by Stein (1965), simplified the
Hodgkin-Huxley model by means of assuming that the input channels to the neuron (i.e., the
dendrites) are static. Hence, the shape of the presynaptic spike train can be neglected, and
all the information is encoded in the time of appearance of each presynaptic pulse. Based on
this, Stein proposed a basic electric circuit comprised of a resistor, R, that apart from being
driven by an input current, I(t), is in parallel with a capacitor, C. Defining λ = R · C as
the time constant of the neuron membrane, the dynamics of the membrane potential v(t) is
described by the following first-order linear differential equation:

λ
dv(t)

dt
= vrest − v(t) +RI(t) (4-1)

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

54 Neuromorphic Computing for Vision-based Navigation

Additionally, the firing time t(f) is defined by the time instant at which the membrane po-
tential of the neuron crosses a predetermined threshold, v(t(f)) = vth. Immediately after t(f),
the membrane potential is reset to vrest. Note that, after a spike emission, this model may
also incorporate an absolute refractory period in which the dynamics described by Eq. (4-1)
are interrupted a few milliseconds.

Due to its simplicity, the LIF neuron model is frequently used in large simulations of spiking
neurons (e.g., Yang et al., 2006; Bichler et al., 2012; Diehl & Cook, 2015).

Spike Response Model

A mathematically simpler model was proposed by Kistler et al. (1997) under the name of
Spike Response Model (SRM). This model, instead of using differential equations, describes
the state of the membrane potential v(t) as an integral over the presynaptic spikes received
in the past. Let the subindex i refer to the postsynaptic neuron under analysis, and j to the
presynaptic cells connected to this neuron via synapses of weights wi,j . Further, suppose that
neuron i has fired its last spike at time t̂i. Then, after firing, the evolution of the membrane
potential is described by:

vi(t) = η
(

t− t̂i
)

+
∑

j

wi,j
∑

f

ǫi,j

(

t− t̂i, t− t
(f)
j

)

+

∫

∞

0
κ
(

t− t̂i, s
)

Iext (t− s) ds (4-2)

According to Eq. (4-2), the behavior of this neuron is mainly determined by three kernels: η,
ǫi,j , and κ. First of all, η describes the evolution of the membrane potential once it reaches
the firing threshold vth. Second, the kernel ǫi,j can be interpreted as the time course of the
membrane potential once it receives a presynaptic spike. Depending on whether the synapse
is excitatory or inhibitory, the sign of wi,j indicates if this response produces an increase or
a decrease in v(t). Finally, κ describes the variation in membrane potential caused by an
external input current. If there is no such current, this final component of Eq. (4-2) is null.
For a better understanding of these kernels, and for their mathematical formulation, please
refer to Kistler et al. (1997).

Using this model, the membrane potential crosses the firing threshold immediately before
and after emitting a spike. Therefore, for the firing time t(f) to be properly defined, an
additional condition regarding the derivative of v(t) is needed. This condition is defined as:
dvi(t)/dt > 0.

Note that, despite the simplicity of Eq. (4-2), this neuron model is more general than the
Leaky Integrate-and-Fire formulation. In fact, the first-order differential equation presented
in Eq. (4-1) can be derived from the SRM, as shown by Kistler et al. (1997).

Izhikevich model

Presented as an efficient and biologically plausible neuron model, the “Izhikevich model”
(Izhikevich, 2003) reduces the Hodgkin-Huxley proposal to the following two-dimensional
system of ordinary differential equations using bifurcation methodologies (Izhikevich, 2007):

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

4-1 Spiking Neural Networks 55

dv(t)

dt
= 0.04v2(t) + 5v(t) + 140− u(t) + I(t)

du(t)

dt
= a (bv(t)− u(t))

(4-3)

According to Izhikevich (2003), u(t) denotes a membrane recovery variable, representing the
dynamics of input synaptic connections. Further, the constant parameters a, b, c, and d
control the firing patterns that can be generated using this neuron model. Briefly explained,
a describes the time scale of u(t); b varies the sensitivity of u(t) to sub-threshold fluctuations
of the membrane potential; the parameter c is equivalent to the after-spike reset value vrest;
and d is the equivalent to c but for the recovery variable.

4-1-3 Synaptic plasticity: Learning with spiking neurons

Defined as the ability to modify the strength of the synaptic connections of a neural architec-
ture, synaptic plasticity is “the basic mechanism underlying learning and memory in biological
neural networks” (Baudry, 1998). The strength of a synapse, also referred to as efficacy, can
be represented by the weights wi,j used in the Spike Response Model, Eq. (4-2). Depending
on whether the desired outcome of the network is available and used for guiding synaptic
plasticity or not, the learning methods used in spiking neural networks can be divided in
supervised and unsupervised approaches, respectively.

Unsupervised learning

In the context of spiking neural networks, unsupervised learning is also referred to as “Heb-
bian learning” since all the methods inducing changes in synaptic efficacies are based on the
following postulate:

“When an axon of cell A is near enough to excite cell B or repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.” Hebb (1952).

Inferring from this postulate, Hebbian methods use the correlation in the firing activity of
pre- and postsynaptic neurons for the reorganization of connections within a neural network.
Among other techniques, Spike-Timing-Dependent Plasticity (STDP) (Markram et al., 1997)
is, by far, the most popular learning rule for spiking neural networks. Its main principle,
illustrated in Figure 4-3, consists in increasing the efficacy of a synaptic connection if the
presynaptic spike arrives to the postsynaptic neuron short time before it fires (∆t > 0). In this
case, the presynaptic neuron is said to have an influence over the response of the postsynaptic
cell, so this connection is strengthened. However, if the spike arrives after the postsynaptic
spike (∆t < 0), then the connection is weakened. Moreover, if there is no correlation between
the two spikes (i.e., they are distant in time), the synaptic efficacy remains unchanged.

The most commonly-used temporal windows in STDP correspond to the biological findings
reported by Bi & Poo (1998, 2001), shown in Figure 4-3. However, for a better understanding,
the temporal axis used in these works is often inverted so that the region ∆t < 0 represents

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

56 Neuromorphic Computing for Vision-based Navigation

Figure 4-3: Plasticity window characteristic of the STDP rule. The change on synaptic efficacy
is a function of the temporal difference between the emissions of pre- and postsynaptic spikes.
From Bi & Poo (2001).

a presynaptic spike arriving before the postsynaptic cell fires. Gerstner & Kistler (2002) pro-
posed a simple mathematical model to describe this behavior. Using the notation introduced
for the Spike Response Model, and letting s = t(f)− t̂i denote the temporal difference between
spikes, this model is given by:

∆wi,j (s) =

{

A+ exp (s/λ+) if s < 0

A− exp (s/λ−) if s > 0
(4-4)

A− = wi,ja−, A+ = (wmaxi,j − wi,j)a+ (4-5)

where the parameters a+, a−, τ+, and τ− are normally defined as constants. Note that Eq.
(4-5) is needed to make sure that synaptic efficacies stay within certain bounds, so a realistic
description of synaptic plasticity can be obtained. Furthermore, STDP is normally inverted
for inhibitory synapses since these connections are characterized by negative efficacies.

STDP has been applied in numerous experiments trying to replicate the processing speed in
the human visual system for tasks such as object recognition (Kheradpisheh et al., 2016),
classification (Rousselet et al., 2002), or the extraction of temporally correlated features
(Bichler et al., 2012).

Supervised learning

Regarding the use of supervised learning for synaptic plasticity in networks of spiking neurons,
several lines of research can be distinguished. Firstly, rules exploiting the Hebbian postulate,
such as Supervised Hebbian Learning (SHL), have been successfully validated in single-layer
networks. Secondly, for training larger networks, extensive research has been conducted on
the adaptation of the popular error backpropagation to the event-based representation of
spiking neurons. Finally, evolutionary approaches have been employed for tuning not only
synaptic efficacies, but also internal neuron parameters such as the firing threshold.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

4-1 Spiking Neural Networks 57

Extensively analyzed by Legenstein et al. (2008), the Supervised Hebbian Learning (SHL)
approach is presented as the most biologically plausible method of performing supervised
learning in spiking networks. Using the Hebbian postulate as a basis, this learning rule is
based on the injection of external synaptic current to reinforce a postsynaptic neuron to fire
at target times and not to do it at any other instant. Legenstein et al. (2008) demonstrated
the ability of this learning algorithm to precisely approximate arbitrary mappings from input
to output spike trains. However, the main drawback of this approach is that, since undesired
spikes are avoided by these external currents, synaptic connections are never weakened. To
overcome this problem, a reformulation of SHL was presented by Ponulak & Kasinski (2006)
under the name of Remote Supervised Method (ReSuMe).

Due to the success of error backpropagation as supervised learning rule for large networks
of artificial non-spiking neurons (for more details see Section 4-2), several adaptations have
recently been proposed for spiking networks. Given a mapping between a set of inputs and
outputs, the main principle of this technique is to compute the gradients of a specific loss
function with respect to the synaptic weights of a network (Rumelhart et al., 1988). Briefly
speaking, these gradients indicate the direction in the parameter weight space in which the er-
ror decreases. In networks comprised by artificial neurons, these error gradients can be easily
computed since the relations between network’s internal parameters are described by differ-
entiable functions. However, due to the discontinuous dynamics that characterizes spiking
cells, the derivation of these gradients requires a new set of assumptions.

The majority of the existing gradient-descent methods for these architectures rely on trans-
ferring the weights and biases from a pre-trained artificial network to its spiking counterpart.
This is accomplished by replacing the activation functions (see Section 4-2-1) with spiking
neurons, and performing parameter optimization (e.g., O’Connor et al., 2013; Diehl et al.,
2015). Normally employed for image classification, these artificial networks are converted to
spiking simply for efficiency improvements. Their inputs consist of static images that are
encoded as discrete events using techniques such as Difference of Gaussians (DoG) filters.
According to Wu et al. (2017), since these networks are trained in the spatial domain, the
temporal aspects of the input event sequence are ignored.

The commercial availability of neuromorphic sensors, such as the DVS, has increased the
interest on the adaptation of error backpropagation to spiking networks. Depending on the
type of variables used in the loss function, two main categories can be discerned among
recent proposals. First of all, the works of Bohte et al. (2002), Mostafa (2016), and Zenke &
Ganguli (2017), demonstrate the possibility of training spiking architectures for reproducing
precisely timed output spike trains. These authors argue that the time at which each spike
is fired carries significant information, which is referred to as “temporal coding”. Secondly,
both J. H. Lee et al. (2016) and Wu et al. (2017) presented adaptations of backpropagation
based on the spike rate of output neurons. Classification results in the N-MNIST1 dataset
(Orchard et al., 2015) confirm the validity of these approaches, since they perform similarly
to conventional artificial networks in terms of accuracy. Note that all these learning rules
are based on simplifying assumptions for gradient computation. The non-differentiable spike
activity is either considered as noise or its derivative is mathematically approximated.

1Event-based version of the MNIST dataset, which consists of static images traditionally used for digit
recognition with machine learning algorithms.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

58 Neuromorphic Computing for Vision-based Navigation

Apart from Hebbian- and gradient-based learning methods, different forms of evolutionary
strategies, such as genetic algorithms, have also been applied for the supervised adaptation
of synaptic weights. Remarkable is the work presented by Belatreche et al. (2003). Here,
the authors used an evolutionary algorithm to adapt both the synaptic efficacies and delays,
reporting classification accuracy comparable to SpikeProp on a set of pre-defined experiments.
Despite these promising results, Belatreche et al. argued that evolutionary strategies are not
suitable for training large networks due to their prohibitively large computational costs.

4-1-4 Event-based vision applications

The application of spiking neural networks in the field of computer vision has gained consid-
erable interest since the availability of the DVS as neuromorphic input sensor. The reason
is that both, sensor and computational framework, are based on the AER protocol for the
transmission of information. Due to the infancy stage of spiking neural networks, a solution
for the visual odometry problem has not been proposed yet. However, this section covers
the recent implementations that may lay the foundation for future successful vision-based
navigation solutions.

Firstly, Orchard, Benosman, et al. (2013) presented an architecture, connected to the ATIS
sensor, to replicate energy-based methods for optical flow estimation (Section 2-2-3). In or-
der to add a temporal aspect to the spatial receptive fields, input neurons were connected
to a second layer of LIF cells using synapses with different time delays. As shown in Fig-
ure 4-4, these synapses are configured in such a way that they act as velocity-tuned filters.
Despite the capability of this network to accurately estimate optical flow even in unstructured
environments, the number of filters needed precludes its real-time implementation.

Inspired by the Elementary Motion Detector (EMD) (Hassenstein & Reichardt, 1956),
Giulioni et al. (2016) presented an event-based adaptation using a combination of LIF spiking
neurons with excitatory and inhibitory synapses. To assess the validity of this approach, the
authors implemented these motion detectors in a custom Very-Large-Scale Integration (VLSI)
chip called FLANN (Giulioni et al., 2008). However, the large number of motion detectors
needed for an accurate estimation of optical flow in natural scenes again hinders real-time
performance.

Figure 4-4: Illustration of the synaptic delays needed to capture the velocity of an edge moving
according to the gray surface. From Orchard, Benosman, et al. (2013).

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

4-2 Artificial Neural Networks 59

Finally, motivated by the event-based direction-selective filters covered in Section 3-2-3
(Brosch et al., 2015), Brosch & Neumann (2016) mapped the key computational elements
of these filters onto the recently developed IBM TrueNorth neuromorphic chip (Merolla et
al., 2014). Although this approach needs a large number of filters for robustness, the archi-
tecture of the TrueNorth chip allows real-time optical flow estimation with accuracy levels
similar to the ones reported by (Brosch et al., 2015).

4-1-5 Simulators and hardware implementations

For the development of complex multi-layer SNNs, the availability of a fast running simulation
framework supporting various neuron models and learning rules is of crucial importance.
Biologically realistic simulators, such as the well known GENESIS (Bower & Beeman, 2012)
and NEURON (Hines & Carnevale, 2006), are convenient for the behavior analysis of accurate
biophysical neuron models. However, they are not suitable for simulations of large networks
where the important aspect is not the model, but the interaction between neurons. For
this purpose, event-driven simulators, such as SpikeNET (Delorme et al., 1999), DAMNED
(Mouraud et al., 2005), NEST (Gewaltig & Diesmann, 2007), and Brian (Goodman & Brette,
2008), were successfully developed with the benefits of parallel computing.

Defining neuromorphic hardware as the electronic devices used for replicating computation in
neural networks, this hardware can be divided in two main different groups. The first group is
comprised of devices that can be adapted for replicating the structure of a particular neural
network, for instance, FPGA boards and VLSI microchips. According to Paugam-Moisy
(2006), spiking networks have successfully been implemented in these devices. However,
apart from the design complexity, real-time performance is not ensured for large multi-layer
architectures. The second group consists of hardware specifically designed for the efficient
emulation of large-scale spiking neural networks, where TrueNorth (Merolla et al., 2014) and
SpiNNaker (Khan et al., 2008) are the greatest exponents. On the one hand, SpiNNaker uses
six interconnected boards for the real-time simulation of one million spiking neurons. On
the other hand, TrueNorth potentially achieves a similar level of performance but just using
one single chip with much lower power consumption (in the mW range). For these reasons,
the development of the TrueNorth board is considered as a major achievement in the field of
event-based neuromorphic systems, and in AI in general.

4-2 Artificial Neural Networks

Contrary to spiking architectures, ANNs do not encode information on the temporal aspects
of presynaptic signals. Instead, the computations performed in neurons from these networks
involve a weighted sum of the corresponding input values and a non-linear operation with an
activation function. This computation leads, in theory, to the transformation of input signals
into an output value that approximates the average firing rate of biological neurons (Ghosh-
Dastidar & Adeli, 2009). For this reason, this coding scheme is referred to as rate-based
coding. Although not biologically realistic (Section 4-1-1), this computational framework has
successfully been used for a wide range of applications, especially since error backpropagation
was proposed as an efficient learning algorithm (Rumelhart et al., 1988).

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

60 Neuromorphic Computing for Vision-based Navigation

Due to the extensive literature available on artificial neural networks, this section focuses
on the relevant aspects and common architectures needed for motion estimation and visual
odometry applications. For more general information on artificial neural networks, please
refer to the works presented by Demuth et al. (2014), and Goodfellow et al. (2016).

4-2-1 Basic components of artificial neural networks

For the introduction to the basics of artificial networks, this work refers to the theoretical
knowledge collected by Sze et al. (2017) and Liu et al. (2017).

Instead of having multiple mathematical models as in the case of spiking neurons, the com-
putation performed by artificial neurons is always divided in two main stages: the weighted
sum of their inputs, and a non-linear functional operation that causes a neuron to generate
an output only if the inputs exceed a certain threshold. Using Figure 4-5 as a reference, the
output activation of the neuron under analysis is given by:

yj = f

(

p
∑

i=1

wi,j · xi

)

(4-6)

where p denotes the number of presynaptic neurons, xi their activation values, and wi,j the
synaptic efficacies or weights. Note that, depending on the sign of wi,j , synapses can also be
categorized as excitatory or inhibitory. Further, f(·) represents the activation function that is
commonly applied after the weighted sum in order to introduce non-linearities in the network.
Examples of activation functions are the conventional sigmoid or hyperbolic tangent as well as
the Rectified Linear Unit (ReLU) (Nair & Hinton, 2010), which has recently become popular
due to its simplicity and advantages for learning.

Based on this computational principle, Figure 4-5 shows an illustration of the normal struc-
ture of an artificial neural network, the Multilayer Perceptron (MLP). For simplicity, this
architecture is clearly divided in three distinct parts according to role played by each of the
neurons. Starting from the left, the input layer receives the values that have to be processed
for the generation of the desired output. For this purpose, these values are propagated to

Recurrent

Feed-Forward

Fully-Connected Sparsely-Connected
y1

x1

x2

x3

Input layer

Hidden layer

Output layer

Figure 4-5: Schematic of a simple artificial neural network. Adapted from Sze et al. (2017).

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

4-2 Artificial Neural Networks 61

neurons in the middle or hidden layer, and the output activations of these neurons are again
propagated to the output layer, which presents the results to the user.

Additionally, from this figure it is also possible to infer that artificial neural networks process
the data in two major forms: using feed-forward and recurrent connections. Networks with
feed-forward connections are characterized by an output that has been generated as a sequence
of operations on the activations of neurons from previous layers. According to Figure 4-5, two
layers are fully-connected if all the presynaptic neurons have synapses with all the postsynaptic
cells, and sparsely-connected otherwise. In contrast, recurrent connections allow the network
to exhibit temporal behavior, since the output activation of one neuron is used as input to
the same cell one timestep later. For these reasons, networks with recurrent connections are
commonly employed with sequential input data, while feed-forward connections assume that
this information is completely uncorrelated.

4-2-2 Deep Learning architectures

Neural architectures with only a few hidden layers are commonly referred to as shallow net-
works, being the one shown in Figure 4-5 a clear example of this category. These networks,
although successfully trained with supervised learning rules such as error backpropagation,
are limited due to the low-complexity of the input-output mappings that can be approxi-
mated. For this reason, the understanding and application of learning methods to neural
architectures with more representational complexity has been an appealing research topic
since Rumelhart et al. (1988). This line of work is known as Deep Learning (DL), and, as a
consequence, the architectures employed are referred to as Deep Neural Networks (DNNs).
The availability of large amounts of information, computational capacity, and open-source
frameworks, has contributed to the recent success of DL techniques in numerous contests in
pattern recognition and machine learning (Schmidhuber, 2015).

The two most frequently-used neural architectures in computer vision applications, such as
image or video classification and visual odometry, are convolutional and Long Short-Term
Memory (LSTM) layers. The computations, benefits, and some implementations of these
schemes are now explained, together with a special mention to Mixture Density Networks
(MDNs).

Convolutional layers

Presented by LeCun (1989), convolutional layers are especially designed for processing data
that comes in the form of multiple arrays. For instance, time-series data can be thought of as a
one-dimensional grid with samples taken at regular time intervals; and image data is usually
comprised of two-dimensional arrays containing pixel intensities. Neural networks with at
least one convolutional layer are categorized as Convolutional Neural Networks (CNNs).

Considering the solid red square in Figure 4-6 as an artificial neuron, it is possible to infer that,
in a convolutional network, these cells are organized in feature maps. Each of these neurons
is connected to local patches in the feature maps of the previous layer via a weight matrix
called convolutional kernel (LeCun, 1989). The location of these patches strictly depends
on the location of the neuron under analysis; and obviously, they are highly overlapped.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

62 Neuromorphic Computing for Vision-based Navigation

Input
feature maps

Kernels

Output
feature maps

Figure 4-6: Illustration of the convolution operation performed in convolutional layers. Adapted
from Sze et al. (2017).

Further, all the neurons in a particular feature map share the same kernel (weight sharing).
This computation is known as convolution in the context of artificial networks. According
to LeCun et al. (2015), there are two major reasons for the use of convolutional layers with
this type of data. First, there is correlation within local groups of values, which implies
that distinguishable “features” are commonly formed. Second, these features are invariant to
location.

Similarly to shallow neural networks, an activation function is commonly applied after each
convolutional layer to introduce non-linearities in the network. However, unlike these architec-
tures, convolutional layers are also usually followed by a pooling layer in order to progressively
reduce the dimensions of the input data. As reported by LeCun et al. (2015), units of these
layers merge detected features into one single neuron by computing the maximum of a local
patch in one of the output maps. This form of pooling is referred to as “max-pooling”, and
it is the most common form of performing this operation since it provides invariance to small
shifts in the input image.

Note that these networks gained special attention from the computer vision and AI commu-
nities after the ImageNet competition (Russakovsky et al., 2015) in 2012. Here, a group of
researchers from the University of Toronto managed to decrease the error rate from 25% to
10% using the “AlexNet” network (Krizhevsky et al., 2012), which was comprised of five con-
volutional layers fully-connected to three normal (dense) layers. This network set the basis for
the development of more recent approaches such as “ResNet” (He et al., 2016), a very deep
(152 layers) convolutional network which exceeded human-level accuracy in this competition.

Long Short-Term Memory

In contrast to conventional recurrent connections (Figure 4-5), the LSTM, presented by
Hochreiter & Schmidhuber (1997), is a Recurrent Neural Network (RNN) architecture that
is characterized by a special feedback unit called memory cell. For a better understanding of
the working principle of this unit, note that a recurrent network can also be represented by
feed-forward connections over the temporal axis, as illustrated in Figure 4-7.

According to the definition of recurrent network, feedback connections allow these architec-
tures to maintain an internal state vector with information about the history of past samples
of an input sequence. This internal state is illustrated in Figure 4-7 as the horizontal vector
located at the top of each memory unit, represented as green surfaces. Based on Hochreiter

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

4-2 Artificial Neural Networks 63

Figure 4-7: Representation of an LSTM layer by feed-forward connections over the temporal axis.
The input activations (xt) are propagated to the memory unit (A), which outputs an activation
value (ht) depending on the history of previous inputs. From Olah (2015).

& Schmidhuber (1997), these memory cells are characterized by four distinct computational
units that interact with the state vector to update or retrieve information. Starting from the
left, the first unit is the so-called “forget-gate layer”, and its role is to decide whether the
information in the state vector is valid or not. This decision is made by a sigmoid function
with binary outputs. The second sigmoid unit, known as the “input-gate layer”, decides
which information from a vector of candidate values is used to update the internal state.
These candidates are obtained as the output of an hyperbolic tangent function, the third
of the computational units. Finally, the fourth unit is used to decide which components of
the filtered internal state vector are the outputs of the memory block. Based on previous
research works about the validity of LSTM, LeCun et al. (2015) argued that this architecture
has proved to be more effective than conventional RNN for learning long-term dependencies.

One of the most successful applications of LSTM networks is speech recognition. Graves et
al. (2013) proposed a recurrent architecture with several LSTM layers for each time step,
which enabled the transcription of acoustic signals with an error rate considerably smaller
that previous approaches. Apart from speech recognition, this type of recurrent network has
robust performance in other tasks such as image captioning, hand-writing generation (Graves,
2013), and visual odometry (Wang et al., 2017); always working in cooperation with a set of
convolutional layers.

Mixture Density Networks

When using error backpropagation as supervised learning rule in a DNN, the two most
frequently-used cost functions to be minimized are the residual sum-of-squares and the cross-
entropy error function (Goodfellow et al., 2016). According to Bishop (1994), the mini-
mization of these functions leads to a neural network architecture that approximates the
conditional averages of the data used for training. Although these averages can be regarded
as optimal for classification problems with a suitable chosen training dataset; the description
provided when used for regression of continuous variables is very limited. To overcome this
problem, Bishop (1994) presented the Mixture Density Networks (MDNs) as a combination of
conventional artificial neural networks and a mixture density model, as shown in Figure 4-8.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

64 Neuromorphic Computing for Vision-based Navigation

zx p (t|x)

Figure 4-8: Schematics of the feed-forward architecture of Mixture Density Networks. Adapted
from Bishop (1994).

These architectures enable the modeling of the conditional probability distributions needed
to obtain a complete description of the target data.

The idea behind MDNs is that, first, from a set of input data x, the neural network archi-
tecture is used for computing the parameters z in a mixture density model. Then, based on
z, the mixture model represents the probability density function of the target variables t,
conditioned on the input. Let this probability density be represented as the following convex
combination of m Gaussian components:

p (t|x) =
m
∑

i=1

πi (x)N
(

t|µi (x) ,σ
2
i (x)

)

(4-7)

where the parameters πi(x) are called mixing coefficients, and are a representation of the con-
ditioned prior probability of t being generated from the ith component of the mixture. Further,
µi(x) and σ2i (x) denote the means and variances of the Gaussian components, respectively.
Since these parameters completely describe the mixture model, according to Figure 4-8, they
compose the vector z that is estimated from the conventional neural network using x as in-
puts. Finally, t is estimated from the MDN architecture as a random value from the Gaussian
component with highest mixing coefficient.

The error function to be minimized using error backpropagation is defined as the negative
logarithmic of the likelihood over a finite set of n training examples {xq,xq} (Bishop, 1994):

L = −
n
∑

q=1

ln

{

m
∑

i=1

πi (x
q)N

(

tq|µi (x
q) ,σ2i (x

q)
)

}

(4-8)

4-2-3 Motion estimation and visual odometry

Due to the recent progress in the field of DL, extensive research on vision-based motion es-
timation has been conducted in the last couple of years. Instead of using the traditional
methods (Chapters 2 and 3), the research trend is to approach these optimization problems
from the perspective of DNNs. This section covers the main architectures that have recently
been proposed for optical flow estimation and visual odometry. Note that, in general, these

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

4-2 Artificial Neural Networks 65

networks gain spatial representation from a set of convolutional layers; and temporal charac-
teristics by comparing consecutive images or by recurrent connections. Further, the learning
process in all these solutions is performed using error backpropagation.

Optical flow estimation

The first application of deep networks to motion estimation was presented by Dosovitskiy et
al. (2015), with their “FlowNetSimple” and “FlowNetCorr” neural architectures. According
to this work, these end-to-end convolutional networks are capable of estimating dense optical
flow fields in real-time from pairs of consecutive images. In order to have a dense output
instead of a set of discrete values, these networks are clearly divided in two main sections.
First, a convolutional part, comprised of eight layers, coarsely encodes motion information in
a group of feature maps. Second, an up-convolutional section (Eigen et al., 2014) transfers
this high-level information to a fine prediction using the kernels previously employed during
convolution.

FlowNetSimple and FlowNetCorr differ in how the temporal dimension is introduced in the
network. On the one hand, FlowNetSimple stacks the input colored pair of images into a single
frame with six channels and applies normal convolution. On the other hand, FlowNetCorr
separately performs convolution on these images; and then it combines the resulting feature
maps with a correlation layer. According to Dosovitskiy et al. (2015), both networks achieved
similar levels of accuracy, but they did not reach the performance reported by other state-
of-the-art dense optical flow methods, such as EpicFlow (Revaud et al., 2015) or DeepFlow
(Weinzaepfel et al., 2013). One year after the proposal of these architectures, Ilg et al.
(2017) presented “FlowNet 2.0”, a neural network generated by stacking FlowNetSimple and
FlowNetCorr that improved the accuracy maintaining the real-time performance.

Based on the FlowNet architectures (Dosovitskiy et al., 2015), other authors have presented
alternative approaches that slightly improved the accuracy levels of the original networks.
Examples of these proposals are the works by Zweig & Wolf (2016), Ranjan & Black (2017),
and Güney & Geiger (2016). Firstly, Zweig & Wolf (2016) used edge images (i.e., frames
with information about sharp changes in brightness) as input to a convolutional network
with a similar architecture to FlowNetSimple. The authors reported faster learning and
lower error rate. Secondly, Ranjan & Black (2017) proposed a spatial-pyramid formulation
to deal with large motions between frames. In this work, the authors rescale the images to

Figure 4-9: Comparison of the dense optical flow fields estimated with FlowNet and FlowNet
2.0. From Ilg et al. (2017).

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

66 Neuromorphic Computing for Vision-based Navigation

create a pyramid representation of the input, and trained a FlowNetSimple network at each
level. Finally, Güney & Geiger (2016) presented an innovative approach that consisted of
dilated convolutions (Yu & Koltun, 2015), instead of using conventional pooling layers. These
special architectures are characterized by the fact image resolution does not decrease, which
is beneficial for the efficient estimation of dense information. In this work, dense fields of
optical flow were obtained by connecting this network to the interpolation method employed
in EpicFlow (Revaud et al., 2015).

Apart from these FlowNet adaptations, there is one extra approach that is worth mention-
ing: the work presented by Teney & Hebert (2016). Here, the authors proposed a neural
architecture for motion estimation that differs from the methods already presented in two
main aspects. Firstly, inspired by the biologically-realistic direction-selective filters intro-
duced in Sections 2-2-3 and 3-2-3, spatiotemporal (three-dimensional) kernels are employed
in the first convolutional layer of this network. Note that, since the temporal dimension of
these kernels equals the number of images in the input sequence, the output consists of a set
of two-dimensional feature maps. Hence, the rest of the network performs spatial convolu-
tion. Secondly, in order to boost performance and to ensure invariance to feature rotation,
the gradients used for training are aligned with a specific canonical orientation. By doing
so, the number of convolutional kernels significantly decreases, and motion can be robustly
estimated by rotating them a set of different angles. As stated by Teney & Hebert (2016),
this constraint removes the necessity of up-convolving to obtain dense information. Further,
accuracy levels were improved with respect to the original FlowNet architectures.

Visual odometry applications

To the best knowledge of the author, the first end-to-end artificial neural network successfully
applied to solve the visual odometry problem corresponds to Konda & Memisevic (2015). In
this work, the authors proposed a convolutional network that, after estimating depth from a
set of stereo images, is capable of predicting velocity and changes in the direction-of-motion.
However, in order to do so, the network employs a softmax layer2. Hence, Konda & Memisevic
(2015) formulated visual odometry as a classification problem rather than as pose regression.

Based on this work, but now using monocular configuration, Kendall et al. (2015) presented
a CNN capable of estimating ego-motion as a regression problem. For this purpose, this
architecture is based on the correspondence of images obtained from a conventional camera
with a set of key-frames stored in memory, which are labeled with pose information. Since
this solution highly depends on the ability of the network to recognize a particular scene
but from different locations, GoogLeNet (Szegedy et al., 2015), a very deep open-source
image classification network, is used as a basis for the development of this deep convolutional
network. Although GoogLeNet has been pre-trained in very large classification datasets, the
minor modifications included to perform pose regression imply that this architecture has to be
re-trained, or at least fine-tuned, when applied in a new environment. According to Kendall
et al. (2015), the accuracy of their work scales with the number of nearby images used for the
characterization of a scene.

2Neural layer frequently used in neural networks with classification purposes. It results in the probability
of the network’s output to belong to one of the mutually exclusive classes of a particular problem.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

4-2 Artificial Neural Networks 67

In order to have a solution that could be used independently of the environment type, Costante
et al. (2016) presented three different convolutional architectures that were provided with
dense optical flow information instead of colored images. In this work, the authors evaluated
whether convolution should be performed globally over the entire optical-flow frame, locally
over small patches, or globally and locally in parallel. According to their results, all these
architectures are able to learn appropriate features for the task of visual odometry, being the
parallel architecture the one with highest accuracy.

Using optical flow information as input for a deep network has also been exploited by the
approach presented by Pillai & Leonard (2017). However, their architecture differs from the
previous method in the fact that it uses sparse flow vectors instead of dense images. Since a
flow vector cannot be represented in the array format needed by convolutional layers, Pillai
& Leonard (2017) proposed, for the first time, the utilization of Mixture Density Networks
(MDNs) for the task of visual odometry. This particular architecture is used to compute the
conditional probability of the pose for each flow vector. Probabilities that are further fused in
order to get the camera pose at a particular instant in time. In order to ensure the coherence
of the results, the authors employ a cost function that contains information not only about
the estimation of the current pose, but also about the trajectory of the agent in the past.
As shown by Pillai & Leonard (2017), this fully trainable end-to-end algorithm is sufficiently
powerful to robustly estimate ego-motion. However, the main drawback of this approach and
the network presented by Costante et al. (2016) is that they require pre-processed optical flow
information as input.

To overcome this pre-processing requirement, the works presented by Wen (2016) and Wang
et al. (2017) propose two similar recurrent convolutional neural networks that use a pair of
colored images as input for each timestep. Starting with the former approach, Wen (2016)
introduced “VINet”, an architecture that combines the FlowNetCorr convolutional network
(Dosovitskiy et al., 2015) with an LSTM unit fusing high-level image features with information
from an on-board IMU. According to the author, the utilization of recurrent connections and
inertial data allows this neural network to estimate ego-motion with levels of accuracy never
achieved before by a DL approach. Further, Wen (2016) performed a result comparison
between this network and the EKF-based PTAM solution proposed by Weiss et al. (2012).
In these experiments, VINet outperformed its competitor in terms of translation error, but
suffered in the estimation of orientation.

Using this approach as a basis, Wang et al. (2017) presented “DeepVO”, the latest pure
vision-based solution to the problem of visual odometry using conventional images as input.
As shown in Figure 4-10, this deep network consists of a convolutional part directly connected
to two LSTM recurrent layers. By combining these two architectures, this solution is capa-
ble of learning high-level features for pose estimation, while effectively modeling the implicit
sequential dynamics. In order to reduce the training time and the amount of data needed for
convergence, Wang et al. (2017) opted for the utilization of the pre-trained FlowNetSimple
convolutional network (Dosovitskiy et al., 2015) as the basis for their architecture. For this
reason, the input to this network is also generated by stacking two successive colored images
together, as illustrated by Figure 4-10. This architecture was validated by comparing trans-
lation and rotation errors with the monocular and stereo versions of the solution proposed
by Weiss et al. (2012), in the KITTI VO/SLAM benchmark (Geiger et al., 2012). Based on
this comparison, the authors verified that this DL solution can be used for obtaining accurate
visual odometry results with precise scale and in new environments.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

68 Neuromorphic Computing for Vision-based Navigation

Figure 4-10: Architecture of the recurrent convolutional network proposed by Wang et al. (2017)
for pose estimation. From Wang et al. (2017).

Finally, contrary to the approaches presented by Wen (2016) and Wang et al. (2017), Nguyen
et al. (2017) recently published the first deep neural architecture that, firstly, estimates pose
information from a single image using convolutional and recurrent layers; and secondly, makes
use of the DAVIS event camera as neuromorphic input sensor. Instead of using FlowNetSimple
as a basis for the convolutional segment, Nguyen et al. adapted the VGG16 model (Simonyan
& Zisserman, 2014) by removing the softmax layer and stacking two LSTMs with 256 hidden
units each. The event sequences chosen for experimenting with this architecture correspond
to the event-based dataset presented by Mueggler et al. (2017); however, it is not specified
how the six sequences comprising this dataset are divided into training, validation, and testing
sets. Since overfitting is very common when dealing with recurrent networks (Goodfellow et
al., 2016), the fact that no further information is provided about the training process demands
a careful interpretation of the reported accuracy of this method. With respect to the pre-
processing step of obtaining images from the DAVIS camera, Nguyen et al. (2017) opted for
accumulating events over a temporal window of pre-defined length, assigning intensity levels
depending on the polarity of each event.

4-2-4 Deep Learning frameworks

The recent progress in the field of DL has led to the emergence of different software libraries,
the so-called frameworks, whose aim is to facilitate the utilization of neural networks to
the general public. Among others, it is possible to remark TensorFlow (Abadi et al., 2016),
Theano (Bastien et al., 2012), and Caffe (Jia et al., 2014). The positive aspect of these frame-
works is that they have most of the frequently-used neural architectures (e.g., fully-connected,
convolutional, and recurrent layers) and optimization techniques (e.g., error backpropagation)
already implemented. Furthermore, they use Graphics Processing Units (GPUs) for parallel
computing, ensuring fast training and low execution time. Note that these libraries are con-
sidered as low-level DL frameworks, i.e., a considerable amount of code needs to be written in
order to train a simple shallow network, such as the one illustrated in Figure 4-5, for a small
regression problem. High-level libraries such as Keras3 and Lasagne4 are commonly used as
Python interfaces that work on top of TensorFlow and Theano.

3Keras documentation can be found in https://keras.io/
4Lasagne documentation can be found in https://lasagne.readthedocs.io/

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

https://keras.io/
https://lasagne.readthedocs.io/

Chapter 5

Synthesis of the Literature

A comprehensive literature study was conducted as the first part of the preliminary thesis
presented in this document. The topic of this research was vision-based navigation for MAVs;
however, three main areas were analyzed in detail, accentuating the role of optical flow in
motion estimation. First of all, gaining inspiration from biology, valuable insights were ob-
tained into the use of the visual observables derived from optical flow fields as basis for the
development of efficient navigation controllers. Secondly, due to the asynchronous nature of
the vision sensor used in this work, an overview of the existing approaches to event-based
optical flow estimation was presented, together with some of the most relevant visual odome-
try solutions for this type of cameras. Finally, spiking and artificial neural architectures were
presented as neuromorphic computational frameworks capable of learning the input-output
mappings used for optical flow and motion estimation, without the need of simplifying as-
sumptions. The vision-based navigation approaches developed with these architectures form
a proper basis for the design of a network that, using the DVS as input sensor, is capable
of efficiently and quickly estimating the desired visual observables. This chapter synthesizes
and addresses the relevance of the main findings on each of these topics.

5-1 Optical-flow-based navigation strategies

Following the formulation proposed by Longuet-Higgins & Prazdny (1980), the concept of
optical flow was defined as a means to quantify the relative motion between objects in a
static scene and a moving observer. For the estimation of this flow from a set of successive
images, a set of different approaches were discussed, where the gradient-based Lucas-Kanade
method (Lucas & Kanade, 1981) stands out by its efficiency and accuracy. However, due
to the computational requirements of estimating observer’s ego-motion states from optical
flow information (Nistér, 2004), the so-called visual observables were presented as alternative
non-metric parameters for the development of vision-based navigation systems. As argued,
the strong biological component of the majority of these strategies leads to computationally
efficient and successful navigation solutions that can be implemented in MAVs and other

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

70 Synthesis of the Literature

robotic platforms (e.g., Herissé et al., 2012; Kendoul, 2014). According to the discoveries pre-
sented by Baird et al. (2013), honeybees control pure vertical motion through the estimated
values of time-to-contact or flow divergence. This strategy, together with horizontal control
loops based on ventral flow components, enable maneuvers such as horizontal motion, hover-
ing, and vertical landing; thus providing MAVs with their characteristic VTOL capabilities.
Based on the experimental results reported by Ho & de Croon (2016), the main limitations of
these strategies are due to the noise and latency of state-of-the-art methods for optical flow
estimation from frame-based cameras.

5-2 Event-based vision sensors and optical flow estimation

Inspired by biological retinas, event-based vision sensors were presented as an alternative to
conventional frame-based cameras that increases the temporal resolution and decreases the
latency of these sensors. Instead of measuring brightness values at fixed time intervals, each of
the pixels of these sensors operates asynchronously detecting local changes in brightness, and
encoding this information in a set of sparse events transmitted using the AER communication
protocol. Among other designs (e.g., ATIS, DAVIS), the main specifications, advantages, and
limitations of the Dynamic Vision Sensor (DVS) (Lichtsteiner et al., 2008) were presented,
since it corresponds to the vision sensor employed in this work.

As argued by several scientific researchers (e.g., Censi & Scaramuzza, 2014; Brosch et al.,
2015), event-based sensors may lead to a gain in efficiency in the estimation of optical flow.
Note that, besides being generated at a very high temporal resolution, the asynchronous
events already contain dynamic information about the observer’s ego-motion. For this reason,
extensive research is being conducted towards the adaptation or development of new optical
flow methods capable of benefiting from the use of these sensors. Examples of these approaches
are the works presented by Benosman et al. (2012), Benosman et al. (2014), and Brosch et
al. (2015). Regarding event-based navigation strategies, the work of Hordijk et al. (2018)
consisted in the first application of the DVS in the control loop of a MAV. As reported by the
authors, the event sensor enabled the vision-based execution of landing maneuvers at high
speed.

5-3 Neuromorphic computing for vision-based navigation

Neuromorphic engineering was introduced as the field of AI that works towards the develop-
ment of mathematical models capable of mimicking some of the most relevant functionalities of
the brain: the possibility of learning input-output mappings, and its computational efficiency.
Similarly to event-based vision sensors, neurons in a biological brains exchange information
via spikes in an asynchronous fashion. Since SNNs attempt to replicate this communication
protocol, they were presented as a powerful computational framework that, together with
the DVS as input sensor, could give rise to a new generation of optical flow methods. Due
to fact that these spiking computing systems remain in their early stages of development,
learning to estimate motion has not be accomplished yet. However, several factors evidence
the attainability of this goal.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

5-3 Neuromorphic computing for vision-based navigation 71

First of all, extensive research is being conducted towards the adaptation of gradient-descent
methods that, together with the error backpropagation technique, could serve as efficient
supervised-learning rules for spiking networks. Although there is still no agreement on how to
proceed due to the non-differentiable nature of these systems, promising results were presented
by J. H. Lee et al. (2016) and Wu et al. (2017). The former method is based on the assumption
that spikes are just noise in the measurement of the membrane potential, while the latter
mathematically approximates the derivative of a pulse and back-propagates the error in the
spatial and temporal dimensions. Both learning rules are validated in the task of image
classification from event sequences.

Secondly, although learning was not involved, the networks proposed by Orchard, Benos-
man, et al. (2013) and Brosch & Neumann (2016) showed the possibility of estimating optical
flow fields with these architectures. Orchard, Benosman, et al. (2013) proposed an spike-
based adaptation of the Lucas-Kanade method (Lucas & Kanade, 1981) by manually tuning
the synaptic time delays. Brosch & Neumann (2016) presented a real-time implementation of
velocity-tuned filters in an IBM TrueNorth neuromorphic chip (Merolla et al., 2014). This lat-
ter approach is of relevant importance because it demonstrated that the biologically-realistic
energy-based methods (see Section 2-2-3) are a real alternative to conventional optical flow
estimation approaches; the main drawback being the required number of filters.

As a result of the current limitations of spiking computation, an overview of the basics of
ANNs was presented, along with an introduction to common DL architectures, and some of
their most relevant applications. Contrary to SNNs, these networks do not operate asyn-
chronously, so their levels of efficiency and realism are not comparable. However, this com-
putational framework has successfully been employed in a wide range of tasks, especially
thanks to advances in the establishment of learning rules such as the aforementioned error
backpropagation (Rumelhart et al., 1988). Among other research, Dosovitskiy et al. (2015)
demonstrated the possibility of training a deep network to extract dense optical flow fields
from a pair of successive images. Furthermore, Wang et al. (2017) outperformed traditional
visual odometry approaches using a similar convolutional architecture stacked to a pair of re-
current LSTM layers. Based on these discoveries, this work includes a preliminary evaluation
of the possibility of estimating ventral flow information from pre-processed events generated
by a DVS sensor in a simulated environment. This analysis is included in Part III of this
document.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

72 Synthesis of the Literature

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

Part III

Preliminary Evaluation of Motion
Estimation using Deep Learning

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

Chapter 6

Methodology and Datasets

This analysis presents a preliminary evaluation of deep neural architectures in the task of
estimating ventral flow information from events generated by the Dynamic Vision Sensor
(DVS). For a better understanding of Deep Learning (DL), and based on the literature review
included in Part II of this document, a preliminary implementation of the most common neural
architectures was conducted. Further, due to the large amount of data needed for training and
evaluating these networks –and any other DL design–, an event-camera simulator was adapted
and employed, simplifying the time-consuming process of generating ground truth information
with localization purposes. Finally, a pre-processing step to encode events as conventional
frames was proposed, as a result of the incompatibility between this computational framework
and the asynchronous spatiotemporal information obtained from the vision sensor.

The current chapter provides an introduction to this preliminary analysis. First of all, Sec-
tion 6-1 briefly describes each of the steps involved in this process. The working principle of
the DVS simulator is covered with details in Section 6-2, together with a description of the
virtual environments used for data acquisition. Section 6-3 shows the mathematical derivation
needed to retrieve ground truth ventral flow information from the evolution of the camera
pose over time. Finally, Section 6-4 introduces the different approaches that have been em-
ployed for encoding events as images, along with a short explanation of the input datasets.
Once this introductory part is done, the performance of Deep Neural Networks (DNNs) in
the task of ventral flow estimation is evaluated in Chapter 7; and concluding remarks of this
preliminary analysis are presented in Chapter 8.

6-1 Outline of the analysis

As introduced in Chapter 2, the concept of ventral flow was defined as one of the visual cues
that can be obtained from optical flow fields under the assumption of planar flow. Since the
main intention of the work presented in this thesis is to be applied in a Micro Air Vehicle
(MAV), the most likely situation in which this condition is fulfilled is when the aerial vehicle
is equipped with a downward-looking vision sensor, the DVS in this case. Hence, the virtual

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

76 Methodology and Datasets

environments used in combination with the event-camera simulator only contain textured
surfaces simulating the ground, as illustrated in Figures 6-1 and 6-3. For the generation
of the dataset described in this chapter, the simulator needs to be provided with two main
components: the scene from which it renders the images used for the extraction of events, and
the trajectory of the camera. This trajectory, determined by camera pose and orientation, is
the information from which ground truth ventral flow values are estimated.

The datasets generated for this preliminary analysis are divided into training, validation, and
test sets. On the one hand, training and validation data are accessed during the learning
phase. Here, the neural architecture adjusts its internal parameters (weights and biases) by
means of comparing ground truth information with estimated ventral flows, always using data
retrieved from the training set. The validation component, being generated from trajectories
unseen during training, is employed to assess the network performance at fixed intervals, thus
enabling to observe phenomenons such as learning and overfitting1. Moreover, based on the
results obtained in this dataset, the so-called hyperparameters of the neural architecture (e.g.,
number of layers, size of convolutional filters) are fine-tuned until an acceptable configuration
is found. On the other hand, once convergence is reached, the overall performance of the
network is evaluated in a completely new part of the dataset, the test partition.

The neural networks evaluated in this analysis are implemented using TensorFlow (Abadi et
al., 2016) and the Keras Python API. Further, all the simulations were performed on a Ubuntu
16.04 64-bit laptop equipped with an Intel Core i7-4790k quad-core CPU and an NVIDIA
GeForce GTX 970M GPU. Note that the great majority of the operations are parallelized on
the GPU by means of using the CUDA2 libraries from NVIDIA.

(a) Roadmap texture. (b) Grass texture.

(c) Checkerboard texture. (d) Examples of rendered images.

Figure 6-1: Rendered images of the texture patterns used for data acquisition.

1Situation at which the deep neural architecture “memorizes” the training data, so that it is characterized
by poor predictive performance in the validation and test datasets.

2CUDA documentation can be found in https://developer.nvidia.com/cuda-toolkit

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

https://developer.nvidia.com/cuda-toolkit

6-2 Dynamic Vision Sensor simulator 77

Figure 6-2: Working principle of the event-camera simulator. From Mueggler et al. (2017).

6-2 Dynamic Vision Sensor simulator

Instead of relying on advanced motion capture systems (e.g., OptiTrack, VICON), this pre-
liminary analysis makes use of the event-camera simulator presented by Mueggler et al. (2017)
for dataset generation. As mentioned before, using a three-dimensional virtual scene together
with a predefined trajectory for the camera, this simulator renders intensity images at a high
rate (1000 Hz) from which events are estimated. For this purpose, the computer graphics soft-
ware Blender3 is used in combination with the open-source Robot Operating System (ROS)
package released by Mueggler et al. (2017). Figure 6-1 shows the textures employed in this
preliminary analysis.

The working principle of the event-camera simulator is illustrated in Figure 6-2 for a single
pixel u = (x̂, ŷ)⊤ of the DVS. Inferring from this figure, the logarithmic brightness of the image
at that particular pixel is sampled whenever an image is rendered from Blender. Once that
more than one sample is available, these two values are linearly interpolated, and the resulting
line is intersected with multiples of a predefined threshold C. Each of these intersections
indicates the timestamp at which an event is generated. Further, the polarity is indicated by
the slope of the estimated line, and the location is obviously given by the pixel at which this
computation is performed.

There are two main concerns that need to be taken into account when working with this
simulator. First of all, the default configuration of the virtual camera corresponds to the
DAVIS sensor. Hence, before starting with the generation of the dataset, it is required to
change the resolution and field of view of the camera to the correct values of the DVS, as
indicated by iniLabs4. These modifications have to be directly made in Blender. For this
preliminary analysis, a field of view of 70.8 degrees is used in combination with a pixel array
of 128×128 in size. The second concern is about measurement noise. As stated by Mueggler
et al. (2017), this simulator is noise-free due to the complexity of replicating the event noise
that characterizes these sensors in real life. Event though this fact does not prevent this
simulator from being a useful tool for the development of new event-based algorithms, special
caution is needed when the transition between simulation and real life is performed. This is

3Blender documentation can be found in https://www.blender.org/
4DVS128 specifications can be found in: https://inilabs.com/support/hardware/dvs128/

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

https://www.blender.org/
https://inilabs.com/support/hardware/dvs128/

78 Methodology and Datasets

especially true when the algorithm involves training or learning phases, as it is the case of
the work presented in this preliminary thesis.

6-3 Determining ground truth ventral flow

As previously mentioned, the camera trajectory over the virtual textured surface is one of
the inputs that have to be provided to the event-camera simulator for rendering a particular
scene. Each of the entries of this trajectory file corresponds to the location and orientation of
the camera, together with the timestep (in milliseconds) at which an image is obtained from
the scene using Blender. Figure 6-3 illustrates the two frames of reference that are employed
for the correct description of this information: the inertial world reference frame, W; and
the body-fixed reference frame, B. Inferring from this figure, the location of B with respect
to W is defined by the coordinates (X

W
,Y

W
,Z

W
). Further, its orientation results from a

sequence of three rotational transformations defined by the Euler angles ψ, θ,φ, in order of
rotation. The product of these three rotation matrices is denoted as T. Since the simulator
needs this orientation to be defined using quaternions (Diebel, 2006), the relation between
these two forms of attitude representation is given by Eq. (6-1). Here, the shorthand notation
cx = cos(x) and sx = sin(x) is introduced.









q0
qx
qy
qz









=









cφ/2cθ/2cψ/2 + sφ/2sθ/2sψ/2
sφ/2cθ/2cψ/2 − cφ/2sθ/2sψ/2
cφ/2sθ/2cψ/2 + sφ/2cθ/2sψ/2
cφ/2cθ/2sψ/2 − cφ/2sθ/2cψ/2









(6-1)

Further, based on this quaternion representation, the linear transform T can be defined as:

T =





q20 + q2x − q2y − q2z 2 (qxqy + q0qz) 2 (qxqz − q0qy)

2 (qxqy − q0qz) q20 − q2x + q2y − q2z 2 (qyqz + q0qx)

2 (qxqz + q0qy) 2 (qyqz − q0qx) q20 − q2x − q2y + q2z



 (6-2)

Denoting the trajectory as T , the structure of a particular entry i to this array is given by:

T i =
[

ti XW YW ZW q0 qx qy qz
]

(6-3)

Due to the high temporal resolution at which the images are rendered from Blender, it is
possible to accurately estimate the velocity of the DVS throughout the trajectory just by
assuming constant speed between two successive frames. This operation leads to the definition
of the body velocity components (U

W
,V

W
,W

W
) in the inertial frame of reference W. These

velocities are easily obtained in B as following:





UB

VB
WB



 = T





UW

VW
WW



 (6-4)

For the computation of ground truth ventral flow values, the planar optical flow relations
proposed by de Croon et al. (2013), and introduced in Section 2-1-2, are applied. However,

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

6-3 Determining ground truth ventral flow 79

X
W

Y
W

Z
W

O
W

V
C′

α
C′

O
C′

X
C′

Y
C′

h

θ

φ

O
B,C

Y
B
, X

C

X
B
, Y

C

Z
B,C

ψ

Figure 6-3: Schematic of the reference frames employed in this preliminary analysis.

since the derivation of these expression is based on the optical flow formulation of Longuet-
Higgins & Prazdny (1980), a new frame of reference that matches the definition of pixel
coordinates needs to be introduced. Hence, the camera reference frame, C, is similarly defined
as B, but with the X- and Y -axis interchanged, as illustrated in Figure 6-3. Based on this,
the DVS velocity components can now be computed in C as:





VC
UC

WC



 =





UB

VB
WB



 = T





UW

VW
WW



 (6-5)

Finally, let Z0 denote the distance to the planar surface along the optical axis Z
C
. Taking

into account the fact that the camera does not always have to be perfectly aligned to the
ground, this distance is computed using the following geometrical relation:

Z0 =
ZW

cos (φ) cos (θ)
(6-6)

According to de Croon et al. (2013), this distance is used for the computation of the main
visual observables that characterize the camera’s ego-motion under the assumptions that this
formulation implies. These are the horizontal ventral flows and divergence, and they are
obtained as follows:

ωx = −
UC

Z0
, ωy = −

VC
Z0

, D = −2
WC

Z0
(6-7)

Note that, as previously mentioned, this preliminary analysis is only focused on the estimation
of ventral flow components.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

80 Methodology and Datasets

6-4 Dataset description

Five datasets were recorded for this preliminary analysis by configuring the virtual DVS to
move above a flat textured surface at a distance of h = 0.5 meters, as shown in Figure 6-3.
Each of these datasets consists of multiple sequences of events, together with the correspond-
ing ground truth ventral flow values derived with the expressions presented in Section 6-3.
Depending on the intended use, these datasets are further divided into three different cate-
gories: training, validation, and test. As also illustrated in Figure 6-3, the reference frame
C′ is introduced as the projection of C onto the X

W
Y

W
-plane. Since the optical axis of the

DVS is perfectly orthogonal to the surface in the experiments conducted for this analysis, the
definition of this frame of reference enables a better understanding of how these datasets are
obtained.

First of all, training and validation partitions are analyzed together since they are generated
using the same principle and the roadmap texture as flat surface. The idea behind this ap-
proach is that the DVS, and therefore C and C′, is located at a particular location defined
by the coordinates (X

W
,Y

W
,h), from which multiple event sequences are computed. These

sequences are defined based on the combinations of the components of the velocity and angle
vectors, V

C
and α

C
respectively. For training, the dataset referred to as “Set 1” is character-

ized by a velocity vector with six components, ranging from 0.25 to 1.5 m/s; 24 orientations
in the X

W
Y

W
-plane; and three different origins. Furthermore, all the trajectories last exactly

one second. Hence, “Set 1” is defined as a set of 6× 24× 3 = 432 sequences of events of one
second of duration and constant speed. As previously mentioned in this chapter, the valida-
tion dataset is employed to assess the performance of the deep neural architecture during the
training process. Hence, “Set 2” is comprised of event sequences from an unseen configuration
of this approach. Again, this dataset is characterized by straight trajectories that last one
second, but now the number of sequences comes down to 60. For a better understanding of
the limits of these sets, Figure 6-4 shows the evolution of the ventral flow components as a
function of the orientation angle.

Regarding the datasets corresponding to the test category, “Set 3”, “Set 4”, and “Set 5”
are defined by a group of five sequences of events of six seconds of duration, generated from
moving the virtual DVS through circular trajectories of radii r ∈ [0.5, 1.5] meters, as shown

Figure 6-4: Range of ventral flow values of the training and validation datasets, as a function
of the orientation angle.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

6-4 Dataset description 81

0 1000 2000 3000 4000 5000 6000
t [ms]

−2

0

2

ω
x [

1/
s]

0 1000 2000 3000 4000 5000 6000
t [ms]

−2

0

2

ω
y [

1/
s]

r = 0.50 m r = 0.75 m r = 1.00 m r = 1.25 m r = 1.50 m

Figure 6-5: Temporal evolution of the ground truth ventral flow components of the Sets 3 and
4 of the dataset.

in Figure 6-5. For the correct assessment of the performance of the neural architecture, these
trajectories are also simulated at an altitude of h = 0.5 meters. The only difference between
these sets is due to the textured surface from which the simulator estimates the events, as
explained in Section 6-2. Similarly to Sets 1 and 2, Set 3 makes use of the roadmap texture
(Figure 6-1a), while the events from Set 4 correspond to a more natural environment defined
by a grass pattern (Figure 6-1b), and those from Set 5 to the checkerboard (Figure 6-1c).

Figure 6-5 shows the temporal evolution of the ground truth ventral flow components of these
datasets. Inferring from this figure, most of the combinations of ventral flow values remain
within the limits of the training dataset, as illustrated in Figure 6-4. However, the main
challenges that the network has to face with these test partitions are the fact that the tra-
jectory is not straight anymore, but circular; and that two new textures are introduced. The
results of this preliminary analysis will be of great help to decide whether more trajectories
and textures need to be used during training for a better accuracy.

An overview of the main characteristics of these datasets is provided in Table 6-1.

Table 6-1: Summary of the main characteristics of the event datasets used in the preliminary
analysis of this thesis.

Texture Num. sequences Motion type Duration [s] Num. events (avg.)

Set 1 Roadmap 432 Straight 1.0 2.31e6

Set 2 Roadmap 60 Straight 1.0 2.41e6

Set 3 Roadmap 5 Circular 6.0 16.85e6

Set 4 Grass 5 Circular 6.0 8.86e6

Set 5 Checkerboard 5 Circular 6.0 25.78e6

6-4-1 From events to images

As introduced in Chapter 4, one of the main differences between Spiking Neural Networks
(SNNs) and Artificial Neural Networks (ANNs) lies in the format in which input data is
provided to these architectures. On the one hand, due to their asynchronous nature, SNNs
receive temporally-separated pulses that, in computer vision, may indicate the occurrence of

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

82 Methodology and Datasets

an event at a particular spatial location in the image plane. Note that, here, the information
is not contained in the amplitude of the pulse, but in the time at which it is generated. On the
other hand, ANNs do not consider this temporal aspect. Instead, the input to these networks
is represented as an array of numbers that is updated at fixed time intervals. When these
networks are applied for vision purposes, this array normally represents an image, i.e., each
element corresponds to the brightness value of a specific pixel. Since this preliminary analysis
evaluates the possibility of learning to estimate motion using deep ANNs and the DVS, it is
necessary to use suitable encoding schemes for representing events as static images.

Based on the working principles of the event-based optical flow estimation methods introduced
in Section 3-2, the approach chosen for the generation of input images from DVS data consists
in the accumulation of events over a temporal window of length ∆tf . These images, which
are equal in size to the pixel array of the DVS, are initialized as empty canvasses every time
the previous image is stored or processed by the network. Further, the brightness levels of
their pixels are directly dependent on the polarity of the events that are within the temporal
boundaries of the image under analysis. Based on this principle, there are two main factors
to be specified that may have an impact on the performance of the neural architecture: the
length of the accumulation window ∆tf , and the manner in which the polarity is encoded.
Regarding the former parameter, temporal windows of 1.0, 2.5, 5.0, and 10.0 milliseconds of
duration are employed in the preliminary analysis presented in this work.

For the polarity encoding scheme, three different configurations have been evaluated, as shown
in Figure 6-6. Starting from the left, the Different-Channel-Same-Brightness (DCSB) repre-
sentation generates images with two channels, each corresponding to a particular polarity.
For visualization purposes, DCSB images are shown as colored frames in which the green
channel encodes ON events, the red does the same with OFF events, and the blue channel
is left empty. Continuing with the description, Same-Channel-Different-Brightness (SCDB)
images are characterized by a single channel in which ON and OFF events are encoded using
different brightness levels and a gray canvas. Finally, Same-Channel-Same-Brightness (SCSB)
frames accumulate events in a single channel independently of their polarity.

Note that, due to the aforementioned input limitations of ANNs, the datasets summarized in
Table 6-1 are always pre-processed by one of this three representation methods before serving
as input to the neural architectures.

Ventral flow Rendered image DCSB SCDB SCSB

Figure 6-6: Visualization of the events accumulated over a temporal window of ∆tf = 1.0 ms.
when a particular motion is performed over the roadmap and checkerboard textures.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

Chapter 7

Ventral Flow Estimation using Deep
Learning Architectures

Once an overview of the main pre-processing steps is obtained, this chapter focuses on the
performance evaluation of DL techniques when applied for ventral flow estimation from event-
based data. For this purpose, and to limit the scope of this analysis, two neural architectures
are chosen based on state-of-the-art methods found in literature (see Chapter 4). All the
reported experiments are conducted using these networks, whose details are presented in Sec-
tion 7-1. Further, this section also introduces the general characteristics of the simulations
run for training and testing these architectures according to the requirements of each ex-
periment. Finally, Section 7-2 includes the results used for the aforementioned performance
evaluation, and for the impact analysis of factors such as the length of the temporal window
or the polarity encoding scheme.

7-1 Neural architectures and simulation details

This section serves as an introduction to the implementation details of the networks that,
based on methods found in literature, have been designed for this preliminary analysis. Fur-
thermore, the main aspects of the simulations used for training and testing this architecture
under different conditions are also covered in detail.

7-1-1 Neural architectures for ventral flow estimation

The literature study conducted in Part II of this work revealed that, with the exception of a
couple of proposals (e.g., Teney & Hebert, 2016; Pillai & Leonard, 2017), the great majority
of DL architectures addressing the problems of visual odometry and optical flow estimation
use the networks presented by Dosovitskiy et al. (2015) as a basis. Not only the neural
structure is replicated, but also their weights and biases are normally transferred to the new
architectures. As argued by Wen (2016) and Wang et al. (2017), the benefits of transfer

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

84 Ventral Flow Estimation using Deep Learning Architectures

128×
128

Ninp

conv1 (7×7)

64×
64

64

conv2 (5×5)

32×
32

128

conv3 (3×3)

16×
16

256

conv3 1 (3×3)

16×
16

512

conv4 (3×3)

8×
8

512

conv5 (3×3)
4×

4

1024

FC

2

Figure 7-1: Architecture of the deep convolutional network employed in this preliminary evalua-
tion of ventral flow estimation.

learning1 come from the fact that, by applying it, a part of the system directly becomes
optimal for the task under analysis before performing any training. As a consequence, only a
small portion of the network needs to be notably adjusted, thus reducing the computational
load of the training phase.

Based on this reasoning, the neural networks employed throughout this preliminary analysis
gain inspiration from the convolutional segment of the FlowNetSimple network presented by
Dosovitskiy et al. (2015). Apart from illustrating this architecture, Figure 7-1 also clearly
describes its structure. Inferring from it, the network basically consists of six convolutional
layers that, arranged in a feed-forward fashion, decrease the spatial dimension of the input
while increasing the number and complexity of the extracted high-level features. Similarly
to the work proposed by Dosovitskiy et al. (2015), the input is comprised by a set of Ninp

stacked frames that, in this case, are generated by encoding DVS events as images (see
Section 6-4). This input is fed through the deep network until two scalar values are computed,
corresponding to the horizontal ventral flow components (ωx,ωy). The resulting architecture
is categorized as a deep Convolutional Neural Network (CNN).

Apart from the configuration shown in Figure 7-1, there are three more factors to be specified
about the structure of this architecture. First of all, in order to control the size of output
feature maps, a common approach is to pad input volumes with a set of zeros around the
border. For each layer of this convolutional architecture, the size of this zero-padding is chosen
so that the size of the spatial dimensions of the input and output feature maps coincides.
Secondly, instead of using pooling layers to progressively reduce the dimensionality of the
input data, this network is characterized by strided convolutions. With the exception of
“conv3 1”, all the convolutional layers employed in this network use a stride2 of two pixels.
The combination of these strided convolutions and the aforementioned zero-padding results in
output maps with half the size of the input spatial dimensions. Finally, all the convolutional
layers are followed by ReLU layers (Nair & Hinton, 2010) in order to introduce non-linearities
in the network.

An overview of the overall structure of this neural network is provided in Table 7-1.

1The concept of transferring the knowledge learned while solving a particular problem, to a model address-
ing a different but related problem using a similar –if not the same– architecture.

2Number of pixels that a convolutional kernel “jumps” at a time when applied over a particular feature
map. A convolutional layer is said to be strided if this parameter is greater than one.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

7-1 Neural architectures and simulation details 85

Table 7-1: Detailed structure of the deep convolutional network employed in this analysis.

Layer Size [px2] Padding [px] Stride [px] Channels [-]

conv1 7×7 3 2 64

conv2 5×5 2 2 128

conv3 3×3 1 2 256

conv3 1 3×3 1 1 512

conv4 3×3 1 2 512

conv5 3×3 1 2 1024

Adding recurrency with LSTM layers

The deep convolutional architecture depicted in Figure 7-1 is meant to process an input
volume comprised by different frames, and, by doing so, to estimate the horizontal ventral
flow components that characterize the ego-motion of the simulated DVS. Since the weights
and biases of this network remain constant in time after training, the estimated magnitudes
of ventral flow only depend on the input under analysis. Neither previous inputs nor previous
outputs have an impact on the current computations carried out by the network. For these
reasons, this pure convolutional architecture is not capable of performing what is referred to
as sequential modeling : the fact of finding temporal correlations among features extracted
from a sequence of successive inputs.

However, as argued by Wang et al. (2017), useful information for the problem of estimating
ventral flow may be encoded in the high-level features extracted from previous inputs, when
the model is evaluated in a temporal sequence. For the assessment of whether addressing this
problem as sequential is beneficial, recurrency is added to the deep convolutional network
by means of using Long Short-Term Memory (LSTM) layers. The resulting architecture is
categorized as a deep Recurrent Convolutional Neural Network (RCNN), and its structure is
illustrated in Figure 7-2. Inspired by the proposals of Wang et al. (2017) and Nguyen et al.
(2017), the main difference between this network and the aforementioned neural architecture
is that two LSTMs layers, of 1,000 hidden units each, have been included in between of the
convolutional segment, described in Table 7-1, and the final dense layer. The performance of
this recurrent convolutional network and the aforementioned CNN is assessed in Sections 7-1
and 7-2.

7-1-2 Simulation and training details

For the evaluation of the previously introduced neural architectures, a simulation environment
was created using Keras as the Python interface of a TensorFlow backend engine (Abadi et
al., 2016). For a better understanding of the work, this section provides an overview of the
three main aspects of this environment: data preparation, training, and testing.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

86 Ventral Flow Estimation using Deep Learning Architectures

t

t + 1

CNN LSTM LSTM Ventral
flows

Time

Input sequence

Figure 7-2: Schematic of the deep recurrent convolutional network employed for evaluating the
impact of sequential modeling in the estimation of ventral flow. For visualization purposes, the
SCDB encoding scheme is used to represent DVS events as one-channel images.

Data preparation

A detailed description of the datasets employed in this preliminary analysis was given in
Section 6-4. Here, it became clear that there are two main parameters describing the pre-
processing steps of these datasets: the length of the temporal window used for accumulating
DVS events, denoted as ∆tf ; and the encoding scheme chosen for representing these events
as images. Each of the experiments conducted for this preliminary thesis is characterized by
a set of pairs of these parameters (see Section 7-2).

Once the image-based representation of the datasets is obtained, the understanding of how
these images are fed into the networks is of relevant importance. As previously mentioned,
the neural architectures employed in this analysis are meant to process (in a single forward
pass) a set of Ninp stacked frames for the estimation of ventral flow. Due to the high temporal
resolution of the DVS, consecutive images may look too similar for the network to accurately
estimate these observables. For this reason, the frame-to-frame temporal separation, ∆tf2f , is
introduced as a parameter controlling which frames are selected in experiments with Ninp > 1.
Once the selection is made, these images are normalized to the interval [0, 1], and they are
stacked together forming an input of size (128, 128,Ninp), where Ninp corresponds to the
number of channels. Note that, in case of using the DCSB scheme for representing DVS
events as images (see Section 6-4-1), the number of channels is doubled since ON and OFF
events are encoded separately.

For successive forward passes of the network, the selection of the images to be fed into
the network can be performed randomly or sequentially. On the one hand, if the network
is characterized for not having recurrent connections (see Figure 7-1), frames from different
passes are independent (i.e., they correspond to different trajectories within the same dataset).
Hence, this selection is performed randomly. On the other hand, if the network has recurrent
layers (e.g., LSTM), successive images need to be employed since these layers maintain an
internal state vector with information extracted from previous time instants. Therefore, in
this case, the selection of the input is sequential.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

7-1 Neural architectures and simulation details 87

Training

The concept of training a neural architecture refers to the adjustment of the weights and
biases that define its internal structure. Depending on whether ground truth data is used
for tuning these internal parameters or not, this training can be categorized as supervised or
unsupervised, respectively. Similarly to methods found in literature, the training performed
in this preliminary analysis is supervised; and more specifically, the Adaptive Moment Es-
timation (Adam) optimization algorithm (Kingma & Ba, 2014) is employed in combination
with the well-known error backpropagation method.

Supervised training using error backpropagation can be understood as a two-step process.
First of all, the input is propagated through the neural architecture until the estimated
values of the output, ω̂i, are obtained. This step corresponds to the forward pass. Having
reached this point, ω̂i is compared to the ground truth data associated to the input under
analysis, ωi, by means of using a loss function. Thereafter, the gradients of this function
are computed with respect to all the internal parameters of the network in what is known
as the backward pass of the error backpropagation technique. These gradients indicate the
direction and magnitude (in the weight space) of the updates that have to be applied to each
of these parameters in order to minimize the estimation error, εω. Based on this reason,
the optimization algorithms exploiting this information are categorized as gradient-descent
methods. Among these algorithms, Adam (Kingma & Ba, 2014) stands out by the possibility
of computing adaptive learning rates for each parameter. This is accomplished by keeping
track of the temporal evolution of the mean and variance of each gradient. According to Ruder
(2016), this optimization algorithm outperforms other adaptive-learning methods such as
Adagrad (Duchi et al., 2011) and Adadelta (Zeiler, 2012); as well variations of the well-known
Stochastic Gradient Descent (SGD). For more information on neural network optimizers,
please refer to the work presented by Ruder (2016).

Regarding the specific details of the training simulations of this preliminary analysis, first of
all, the loss function is defined as the Mean Squared Error (MSE) of the horizontal ventral flow
components. As shown in Eq. (7-1), the optimal configuration of the network, θ∗, corresponds
to the internal parameters that minimize this expression.

θ∗ = argmin
θ

1

Nb

Nb
∑

i=1

||ω̂i − ωi||
2
2 (7-1)

From Eq. (7-1), Nb refers to the so-called batch size, i.e., the number of input samples used for
the computation of the training loss, and thus of the gradients employed for the optimization.
A trade-off is needed with Nb since small values of this parameter imply a loss in the accuracy
of the estimated gradients, but large values require more memory and the networks become
hard to train. For this analysis, Nb = 16 was found to be an appropriate value.

The process of computing the MSE over a particular batch and performing a parameter
update based on this error is referred to as a step of the learning phase. The input data used
in these steps is retrieved from the training dataset (Set 1). Once a certain number of training
steps are completed, the validation phase commences. Here, the information is retrieved from
the validation dataset (Set 2) in batches of Nb input volumes, and the network performance is
evaluated using Eq. (7-1) as loss function. This process is repeated until a certain number of

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

88 Ventral Flow Estimation using Deep Learning Architectures

validation steps is reached. Then, the average of the MSE values is presented (further referred
to as validation loss), as it is indicative of the generalizability of the network to unseen data.
Note that no parameter update is conducted in this part of the process.

When the validation phase finishes, the network is said to have completed an epoch. For this
preliminary analysis, an epoch consists of 1,000 training and 500 validation steps. There is
no limitation on the number of epochs per simulation, since it automatically stops when the
validation loss does not improve for a period of ten epochs. According to Caruana et al.
(2001), this technique, known as early stopping, is one of the most-used methods for avoiding
overfitting in neural architectures.

Testing

As introduced in Section 6-1, once convergence is reached in the training process, the perfor-
mance of the network is again evaluated, but now using the testing datasets: Sets 3, 4, and
5. During this process, instead of using the loss function defined by Eq. (7-1), the estimated
ventral flow components are stored, and then compared to the corresponding ground truth
data. The mean absolute error and the error variance are the measures used for assessing
accuracy. Note that, for a fair comparison of the error metrics over the trajectories comprising
the testing datasets (i.e., characterized by different radii), these parameters are commonly
normalized in this analysis by the corresponding mean absolute flow, denoted by ωx,y, of each
trajectory.

7-2 Results

This section presents the results obtained from the experiments conducted for this prelimi-
nary analysis. These experiments are divided in two main groups depending on the number
of frames comprising the input volume, Ninp. Firstly, in Section 7-2-1, the possibility of
accurately estimating ventral flow information from multiple DVS images stacked together
(Ninp > 1) is assessed using the previously introduced CNN (see Figure 7-1) and RCNN (see
Figure 7-2). Moreover, a small sensitivity analysis is presented to evaluate the impact that
some parameters, such as the length of the temporal window ∆tf and the encoding scheme,
have on the overall performance of the networks. Secondly, in Section 7-2-2, the ventral flow
estimation problem is approached again using the same neural architectures, but this time,
with just a single DVS image as input (Ninp = 1).

7-2-1 Ventral flow estimation from multiple DVS images

As mentioned before, the convolutional segment of the neural architectures employed in this
preliminary analysis is inspired by the FlowNetSimple architecture proposed by Dosovitskiy
et al. (2015). With an input consisting of a pair of successive images, their network was shown
to estimate dense optical flow fields with competitive levels of accuracy at a rate of 10.0 FPS.
Since two consecutive images are temporally separated by a considerable time interval with
this implementation, motion aspects (e.g., direction, speed) are clearly discernible to the
naked eye, and thus to a neural network. Regarding the case of this analysis, due to the high

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

7-2 Results 89

temporal resolution of the sensor, images can be obtained at a much faster rate than with
a conventional frame-based camera independently of the length of the accumulation window
∆tf . Since two successive DVS images could be almost indistinguishable from each other, a
new method of forming this input is needed.

In order to find a suitable configuration for the networks under analysis, the following two
types of input volumes are evaluated: (1) an input format consisting of two stacked frames
that are temporally separated by ∆tf2f milliseconds; and (2), an input that does not consist
of two but Ninp successive images stacked together. These configurations are further referred
to as “TS-I”, and “C-I”, respectively. The results of this analysis are presented in Table 7-2.
Note that, for this first experiment, only the performance of the CNN is assessed, and this
architecture was trained using Sets 1 and 2 with ∆tf ,T = 1.0 ms.

Table 7-2: Ventral flow estimation errors (mean absolute error and variance) when the CNN
is applied to Set 3 using different input formats. The lowest error in each of the columns is
highlighted. The computation time (tC) of each configuration is shown as well.

Set 3: CNN, DCSB, ∆tf ,T = 1.0 ms, ∆tf = 1.0 ms, r = 1.0 m

Ninp [-] ∆tf2f [ms] εωx
[1/s] εωy

[1/s] tC [ms]

Mean* Var* Mean* Var*

TS-I1 2 1.0 0.1038 0.0304 0.2016 0.1047 7.621

TS-I5 2 5.0 0.0919 0.0237 0.0972 0.0242 7.621

TS-I10 2 10.0 0.0655 0.0127 0.1110 0.0309 7.621

TS-I15 2 15.0 0.0633 0.0119 0.0998 0.0263 7.621

TS-I20 2 20.0 0.0609 0.0098 0.1146 0.0274 7.621

TS-I25 2 25.0 0.0664 0.0108 0.1103 0.0337 7.621

C-I5 5 1.0 0.0779 0.0171 0.0991 0.0240 9.248

C-I10 10 1.0 0.1089 0.0329 0.1356 0.0435 10.297

C-I15 15 1.0 0.0834 0.0188 0.0869 0.0151 11.017

C-I20 20 1.0 0.0863 0.0196 0.0940 0.0195 11.865

C-I25 25 1.0 0.0679 0.01191 0.0786 0.0141 12.353

*Normalized by ωx,y = 1.83 1/s

Based on the results presented in Table 7-2, it is important to remark that the convolutional
network presented in Section 7-1-1 manages to learn the input-output mapping needed for
ventral flow estimation under the conditions of this experiment, at least when evaluated
in an environment characterized by the same texture as the training dataset (see Table 6-1).
However, as expected, the network performance varies depending on the input format. On the
one hand, with C-I, these results confirm the idea that motion information can be extracted
from long sequences of consecutive images, even though the level of similarity among them is
high. The main drawback of this approach is that, obviously, the computational requirements
increase with the volume of the input. On the other hand, with TS-I, these results confirm
that temporal separation is a key factor if motion wants to be estimated from the comparison
of just a pair of images. Since the estimation errors of both configurations are similar, the
input format selected for being the basis of the remaining part of this preliminary analysis
corresponds to a TS-I configuration, more specifically, the TS-I15.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

90 Ventral Flow Estimation using Deep Learning Architectures

Once an input configuration is selected, both the CNN and RCNN are now evaluated on the
rest of the circular trajectories that comprise Set 3. This experiment is conducted especially
for assessing the performance of these neural architectures when different combinations of
(ωx,ωy) have to be estimated. Quantitative and qualitative results are presented in Table 7-3
and Figures 7-3 and 7-4, respectively.

Table 7-3: Ventral flow estimation errors obtained by evaluating both the CNN and RCNN on
all the circular trajectories from Set 3. The mean absolute flow (ωx,y) is shown for normalization.

Set 3: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 1.0 ms, TS-I15

r [m] εωx
[1/s] εωy

[1/s] ωx,y [1/s]

Mean* Var* Mean* Var*

CNN 0.50 0.1375 0.0306 0.1367 0.0329 1.17

" 0.75 0.0907 0.0219 0.1152 0.0295 1.49

" 1.00 0.0638 0.0119 0.0995 0.0263 1.83

" 1.25 0.0679 0.0155 0.0862 0.0279 2.17

" 1.50 0.0809 0.0243 0.1037 0.0365 2.49

RCNN 0.50 0.1055 0.0230 0.2002 0.0702 1.17

" 0.75 0.1670 0.1252 0.1482 0.0526 1.49

" 1.00 0.1298 0.0540 0.1274 0.0412 1.83

" 1.25 0.0938 0.0266 0.0951 0.0312 2.17

" 1.50 0.0992 0.0451 0.0698 0.0198 2.49

*Normalized by ωx,y

0 2000 4000 6000
−4

−2

0

2

4

ω
x [

1/
s]

r= 0.5 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.0 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.5 m

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

ω
y [

1/
s]

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

Ground truth Estimated

Figure 7-3: Temporal evolution of the ventral flow components estimated with the CNN on Set
3. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 1.0 ms, TS-I15.

From these results, it is possible to derive several conclusions. First of all, using the work
presented by Hordijk et al. (2018) as a reference, the results shown in Table 7-3 confirm
the validity of this approach under the conditions of this experiment, even though the error
metrics obtained are considerably higher. In Hordijk et al. (2018), the authors reported a
mean absolute error of 0.0878 1/s (approx.) and a variance of 0.0051 1/s2 (approx.) for both
ωx and ωy in a horizontal circular trajectory above a checkerboard surface. This trajectory

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

7-2 Results 91

0 2000 4000 6000
−4

−2

0

2

4

ω
x [

1/
s]

r= 0.5 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.0 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.5 m

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

ω
y [

1/
s]

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

Ground truth Estimated

Figure 7-4: Temporal evolution of the ventral flow components estimated with the RCNN on
Set 3. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 1.0 ms, TS-I15.

was characterized by an r ≈ 0.5 meters, and a full circle was completed in approximately
eight seconds at an altitude of 0.8 meters. Even though these results are not fully comparable
with the data from Table 7-3, they serve as a state-of-the-art reference for the experiments
conducted in this preliminary analysis.

Figure 7-5: Comparison between
ground truth ventral flow values
from Set 3 (color lines) and train-
ing data (gray regions), as a func-
tion of the direction of motion.

The second conclusion that can be derived is that the perfor-
mance of these neural networks, represented by the normal-
ized error metrics in Table 7-3, is not directly related to the
mean absolute flow that characterizes a particular trajectory,
ωx,y, when the evaluation is carried out on this set. These
are expected results since Set 3 is based on the same tex-
ture as the training dataset: the roadmap (see Figure 6-1).
Moreover, according to Figure 7-5, the circular trajectories
used for testing are characterized by combinations of (ωx,ωy)
that, in their majority, lie within the regions determined by
Set 1. Hence, the visual structure of the images employed in
this experiment is similar to that of those from the training
dataset, and thus, the performance of the network is ensured
on Set 3. For these reasons, the impact of ωx,y is subsequently
assessed on Sets 4 and 5, which are characterized by textures
unseen during training.

Finally, from these results it is still not possible to determine whether approaching the ven-
tral flow estimation problem in a sequential fashion is beneficial or not in terms of network
performance. As it is possible to infer from Table 7-3, the normalized error metrics obtained
with the CNN are very similar to those from RCNN. However, this could be a consequence of
the fact that, as mentioned before, Set 3 is based on the same texture as the training dataset.
Therefore, this comparison is also subsequently performed on Sets 4 and 5.

The rest of this section presents small sensitivity analysis in order to evaluate the impact that
different parameters have on the performance of these neural architectures. The parameters
under analysis are: (1) the texture of the surface and the length of the temporal window used

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

92 Ventral Flow Estimation using Deep Learning Architectures

for accumulating DVS events, ∆tf ; (2) the encoding scheme employed for representing these
events as static images; and (3), the number of filters that characterize the convolutional
segment of both networks.

Sensitivity analysis - Network generalizability and ∆tf

Until now, the capabilities and limitations of the neural networks have been addressed using
Set 3, i.e., a dataset based on the same texture as the training data: the roadmap (see
Figure 6-1a). However, in order to evaluate their generalizability, the performance of these
architectures has to be evaluated on trajectories generated from new environments. For
this reason, both the CNN and RCNN are now tested on Set 4, characterized by the grass
pattern (Figure 6-1b), and on Set 5, characterized by the checkerboard texture (Figure 6-1c).

0 2000 4000 6000
−4

−2

0

2

4

ω
x [

1/
s]

r= 0.5 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.0 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.5 m

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

ω
y [

1/
s]

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

Ground truth Estimated

Figure 7-6: Temporal evolution of the ventral flow components estimated with the CNN on Set
4. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 5.0 ms, TS-I15.

0 2000 4000 6000
−4

−2

0

2

4

ω
x [

1/
s]

r= 0.5 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.0 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.5 m

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

ω
y [

1/
s]

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

Ground truth Estimated

Figure 7-7: Temporal evolution of the ventral flow components estimated with the RCNN on
Set 4. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 5.0 ms, TS-I15.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

7-2 Results 93

Starting with Set 4, quantitative and qualitative results are presented in Tables 7-4 and 7-5,
and Figures 7-6 and 7-7, respectively, for the circular trajectories defined by r = [0.5, 1.0, 1.5]
meters. Note that different values for ∆tf are evaluated in both experiments due to the
differences in texture and appearance between the images obtained from these environments
and from the roadmap.

Table 7-4: Sensitivity results for ventral flow estimation errors on Set 4 with the CNN, using
∆tf as dependent variable. The lowest errors of each trajectory are highlighted.

Set 4: CNN, DCSB, ∆tf ,T = 1.0 ms, TS-I15

r [m] ∆tf [ms] εωx
[1/s] εωy

[1/s] ωx,y [1/s]

Mean* Var* Mean* Var*

0.5 1.0 0.5074 0.3634 0.4526 0.2924 1.17

0.5 2.5 0.2706 0.1049 0.1454 0.0288 1.17

0.5 5.0 0.0804 0.0104 0.1426 0.0289 1.17

0.5 10.0 0.1992 0.0617 0.3377 0.1474 1.17

1.0 1.0 0.5228 0.6172 0.4088 0.3706 1.83

1.0 2.5 0.2687 0.1632 0.1341 0.0403 1.83

1.0 5.0 0.1258 0.0317 0.1415 0.0411 1.83

1.0 10.0 0.1309 0.0473 0.3392 0.2293 1.83

1.5 1.0 0.5282 0.8631 0.4599 0.6579 2.49

1.5 2.5 0.2984 0.26799 0.1921 0.1266 2.49

1.5 5.0 0.1626 0.0694 0.1114 0.0410 2.49

1.5 10.0 0.1202 0.0513 0.1675 0.0941 2.49

*Normalized by ωx,y

Table 7-5: Sensitivity results for ventral flow estimation errors on Set 4 with the RCNN, using
∆tf as dependent variable. The lowest errors of each trajectory are highlighted.

Set 4: RCNN, DCSB, ∆tf ,T = 1.0 ms, TS-I15

r [m] ∆tf [ms] εωx
[1/s] εωy

[1/s] ωx,y [1/s]

Mean* Var* Mean* Var*

0.5 1.0 0.4830 0.3406 0.3939 0.2076 1.17

0.5 2.5 0.2854 0.1314 0.1040 0.0178 1.17

0.5 5.0 0.1293 0.0252 0.2036 0.0615 1.17

0.5 10.0 0.1543 0.0316 0.4006 0.2140 1.17

1.0 1.0 0.5023 0.5871 0.3718 0.3197 1.83

1.0 2.5 0.2003 0.1006 0.0928 0.0242 1.83

1.0 5.0 0.1056 0.0216 0.2084 0.1128 1.83

1.0 10.0 0.1439 0.0307 0.2922 0.1908 1.83

1.5 1.0 0.4169 0.5406 0.3007 0.3169 2.49

1.5 2.5 0.1817 0.1197 0.1247 0.0465 2.49

1.5 5.0 0.1598 0.0891 0.1261 0.0585 2.49

1.5 10.0 0.1951 0.1197 0.1382 0.0636 2.49

*Normalized by ωx,y

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

94 Ventral Flow Estimation using Deep Learning Architectures

Inferring from Tables 7-4 and 7-5, ∆tf has a significant impact on the performance of both
the CNN and RCNN when evaluated on Set 4. For all the trajectories evaluated in this
experiment, the temporal window leading to the lowest (normalized) estimation error is ∆tf =
5.0, which differ significantly from the one used for training ∆tf ,T = 1.0 ms. These results
allow the derivation of an important conclusion: for these neural networks to be generalizable
to new environments, ∆tf needs to be adapted according to the visual structure of the scene
under analysis (e.g., type of texture) and to the ego-motion states of the sensor (e.g., altitude,
attitude, speed) in such a way that the image statistics (e.g., density of events per image) are
similar to those from the training dataset.

This need of varying ∆tf can be qualitatively understood from an image appearance perspec-
tive. Figure 7-8 shows the clear dissimilarities between the images used during training (Set
1) and those employed for the evaluation on Set 4. On the one hand, in Figure 7-8a, it is
possible to observe that, with the roadmap, the visual structure of the image can be extracted
even with ∆tf = 1.0 ms, for the conditions of this experiment. On the other hand, because
of the cluttered texture and the low resolution of the DVS (see Figure 7-8d), larger values of
∆tf are needed until some structure can be discerned on Set 4, as shown in Figure 7-8b. This
is the main reason why, since the convolutional segment of both networks learns to extract
features from Set 1 with ∆tf ,T = 1.0 ms, a ∆tf different from ∆tf ,T is required for the correct
performance of the these two architectures on this particular environment.

Even though adequate values of ∆tf were found for the conditions of the evaluation on Set 4,
the robustness (i.e., generalizability) of these networks can only be ensured if there exists a
measurable parameter (or parameters), referred to as image descriptor, that is (are) indicative
of the ∆tf needed for each new environment and for each possible combination of ego-motion
states. In this preliminary analysis, the density of events, represented as the variance of

1.0 ms 2.5 ms 5.0 ms 10.0 ms

(a) Sets 1-2-3: roadmap texture.

1.0 ms 2.5 ms 5.0 ms 10.0 ms

(b) Set 4: grass texture.

1.0 ms 2.5 ms 5.0 ms 10.0 ms

(c) Set 5: checkerboard texture. (d) Examples of rendered images.

Figure 7-8: Illustration of the impact that ∆tf has on the image appearance depending on the
texture from which they are generated. Only half of each image is shown. Config.: DCSB, r = 1.0
m, h = 0.5 m.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

7-2 Results 95

the image intensity and denoted by σ2(I), is proposed as image descriptor based on the
conclusions derived from Tables 7-4 and 7-5 and Figure 7-8. In order to confirm the validity
of this parameter, new training, validation, and testing datasets are generated according to
the principles described in Chapter 6, but this time, varying ∆tf in such a way that all the
DVS images are characterized by the same variance. Based on the image statistics of data
from Set 4 and ∆tf = 5.0 ms, the target value for this descriptor is set to σ2(I) = 0.125 for this
experiment. Quantitative and qualitative results are presented in Table 7-6 and Figure 7-9.
Note that this evaluation is only performed for the case of the CNN due to the similar results
obtained so far with this architecture in comparison to the RCNN.

Table 7-6: Sensitivity results for ventral flow estimation errors on Set 4 with the CNN, using
∆tf as adaptive variable and the density of events as image descriptor. The mean ∆tf value for
each trajectory (∆tf) is shown as well.

Set 4: CNN, DCSB, adaptive ∆tf ,T, TS-I15

r [m] ∆tf [ms] εωx
[1/s] εωy

[1/s] ωx,y [1/s]

Mean* Var* Mean* Var*

0.50 7.34 0.1201 0.0122 0.0909 0.0085 1.17

0.75 4.93 0.0854 0.0125 0.0999 0.0138 1.49

1.00 3.73 0.0898 0.0180 0.1146 0.0197 1.83

1.25 2.93 0.1202 0.0387 0.1495 0.0395 2.17

1.50 2.42 0.1624 0.0826 0.2044 0.1194 2.49

*Normalized by ωx,y

0 2000 4000 6000
−4

−2

0

2

4

ω
x [

1/
s]

r= 0.5 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.0 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.5 m

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

ω
y [

1/
s]

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

Ground truth Estimated

Figure 7-9: Temporal evolution of the ventral flow components estimated with the CNN on Set
4. Config.: DCSB, adaptive ∆tf ,T, adaptive ∆tf ms, TS-I15.

From these results, it is possible to derive an important conclusion. If optical flow observables
are to be estimated directly from the output of an event-based vision sensor using a neural
network and by stacking two or more (event-based) frames as input volume, then these frames
have to be similar to the training data in terms of appearance. By adapting the length of ∆tf
in such a way that each DVS image is generated with approximately the same value for the
event density, this condition is met only if the training dataset is also generated according to

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

96 Ventral Flow Estimation using Deep Learning Architectures

this principle. If compared to previous results (see Table 7-4 and Figure 7-6) Table 7-6 and
Figure 7-9 show the positive impact that this approach has on the network performance and
generalizability to new environments. Note that, as expected, the value of ∆tf needed for
generating DVS images with the required level of σ2(I) is inversely proportional to the mean
absolute flow of each trajectory.

Once the results obtained from the performance evaluation on Set 4 have been analyzed, the
same experiment is now conducted on Set 5 (i.e., checkerboard texture) in order to confirm,
firstly, that approaching the ventral flow estimation problem sequentially with the RCNN

Table 7-7: Sensitivity results for ventral flow estimation errors on Set 5 with the CNN, using
∆tf as dependent variable. The lowest errors of each trajectory are highlighted.

Set 5: CNN, DCSB, ∆tf ,T = 1.0 ms, TS-I15

r [m] ∆tf [ms] εωx
[1/s] εωy

[1/s] ωx,y [1/s]

Mean* Var* Mean* Var*

0.5 1.0 0.2862 0.1200 0.4746 0.3154 1.17

0.5 2.5 0.3321 0.1685 0.6574 0.4023 1.17

0.5 5.0 0.3541 0.1991 0.7550 0.7601 1.17

0.5 10.0 0.3706 0.2280 0.8491 0.9513 1.17

1.0 1.0 0.2534 0.1756 0.3755 0.3139 1.83

1.0 2.5 0.2554 0.1826 0.5032 0.5504 1.83

1.0 5.0 0.2591 0.1907 0.5815 0.7235 1.83

1.0 10.0 0.2673 0.2009 0.6497 0.8907 1.83

1.5 1.0 0.2976 0.2925 0.2795 0.2675 2.49

1.5 2.5 0.2731 0.2671 0.3900 0.4910 2.49

1.5 5.0 0.2632 0.2559 0.4548 0.6456 2.49

1.5 10.0 0.2588 0.2441 0.5039 0.7682 2.49

*Normalized by ωx,y

0 2000 4000 6000
−4

−2

0

2

4

ω
x [

1/
s]

r= 0.5 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.0 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.5 m

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

ω
y [

1/
s]

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

Ground truth Estimated

Figure 7-10: Temporal evolution of the ventral flow components estimated with the CNN on
Set 5. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 1.0 ms, TS-I15.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

7-2 Results 97

does not lead to a significant improvement of the performance; and secondly, the validity of
the event density as image descriptor for the adaptation of ∆tf on this new environment.
Quantitative and qualitative results for the case of the CNN are presented in Table 7-7 and
Figure 7-10, respectively; and in Table 7-7 and Figure 7-10 for the case of the RCNN.

Table 7-8: Sensitivity results for ventral flow estimation errors on Set 5 with the RCNN, using
∆tf as dependent variable. The lowest errors of each trajectory are highlighted.

Set 5: RCNN, DCSB, ∆tf ,T = 1.0 ms, TS-I15

r [m] ∆tf [ms] εωx
[1/s] εωy

[1/s] ωx,y [1/s]

Mean* Var* Mean* Var*

0.5 1.0 0.3024 0.1613 0.5959 0.4704 1.17

0.5 2.5 0.3197 0.1741 0.7241 0.6568 1.17

0.5 5.0 0.3270 0.1814 0.7642 0.7174 1.17

0.5 10.0 0.3432 0.1989 0.7857 0.7594 1.17

1.0 1.0 0.2086 0.1237 0.3002 0.2063 1.83

1.0 2.5 0.2146 0.1262 0.3652 0.2876 1.83

1.0 5.0 0.2157 0.1261 0.3936 0.3267 1.83

1.0 10.0 0.2142 0.1203 0.4101 0.3516 1.83

1.5 1.0 0.2666 0.2314 0.1652 0.1132 2.49

1.5 2.5 0.2735 0.2398 0.1875 0.1458 2.49

1.5 5.0 0.2783 0.2463 0.1976 0.1611 2.49

1.5 10.0 0.2860 0.2573 0.1995 0.1655 2.49

*Normalized by ωx,y

0 2000 4000 6000
−4

−2

0

2

4

ω
x [

1/
s]

r= 0.5 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.0 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.5 m

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

ω
y [

1/
s]

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

Ground truth Estimated

Figure 7-11: Temporal evolution of the ventral flow components estimated with the RCNN on
Set 5. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 1.0 ms, TS-I15.

As it is possible to infer from these results, the estimation errors for both ωx and ωy are
considerably higher than when the same networks are evaluated on Set 3 with ∆tf = 1.0
ms (see Table 7-3), or on Set 4 with ∆tf = 5.0 ms (see Tables 7-4 and 7-4), independently
of the ∆tf employed. Moreover, from Figures 7-10 and 7-11, these networks are capable
of tracking ground truth data but with a high variance. These results indicate that these

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

98 Ventral Flow Estimation using Deep Learning Architectures

errors are not due to inadequate values of ∆tf , but due to the fact that the networks do not
generalize properly to this particular environment, probably because of the peculiar features
that characterize the checkerboard pattern. Additionally, from the results of this experiment,
and from those obtained from the evaluation of both the CNN and RCNN on Set 4, it is
possible to derive the conclusion that, at least when optical flow visual observables are to
be estimated from an input volume consisting of two or more DVS images, approaching this
problem in a sequential fashion (i.e., with the RCNN) does not have a significant impact on
the performance. Based on this, the rest of the sensitivity analysis is conducted with just the
convolutional architecture.

Finally, the last experiment in this section of the sensitivity analysis consists in the evaluation
of the performance of the CNN on Set 5 using the aforementioned mechanism for adapting
∆tf based on the density of DVS events, σ2(I). For the correct assessment of the results,
the target value for this image descriptor is set to σ2(I) = 0.125, as done for the previous
experiment of this kind. Quantitative and qualitative results are presented in Table 7-9 and
Figure 7-12, respectively.

Table 7-9: Sensitivity results for ventral flow estimation errors on Set 5 with the CNN, using
∆tf as adaptive variable and the density of events as image descriptor. The mean ∆tf value for
each trajectory (∆tf) is shown as well.

Set 5: CNN, DCSB, adaptive ∆tf ,T, TS-I15

r [m] ∆tf [ms] εωx
[1/s] εωy

[1/s] ωx,y [1/s]

Mean* Var* Mean* Var*

0.50 29.0356 0.4700 0.3188 0.2484 0.0937 1.17

0.75 24.3965 0.5353 0.5305 0.3129 0.1928 1.49

1.00 18.0872 0.5656 0.7390 0.3567 0.3088 1.83

1.25 14.5253 0.5858 0.9440 0.3707 0.4044 2.17

1.50 11.4542 0.6078 1.1820 0.3996 0.5420 2.49

*Normalized by ωx,y

0 2000 4000 6000
−4

−2

0

2

4

ω
x [

1/
s]

r= 0.5 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.0 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.5 m

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

ω
y [

1/
s]

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

Ground truth Estimated

Figure 7-12: Temporal evolution of the ventral flow components estimated with the CNN on
Set 5. Config.: DCSB, adaptive ∆tf ,T, adaptive ∆tf ms, TS-I15.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

7-2 Results 99

Sets 1-2-3 Set 4 Set 5

Figure 7-13: Illustration of the impact that target event density of σ2(I) = 0.125 has on the
image appearance depending on the texture from which they are generated. Config.: DCSB,
r = 1.0 m, h = 0.5 m.

Since the use of the event density as image descriptor for the adaptation of ∆tf has already
been validated on Set 4 (i.e., grass texture), the poor performance on this new environment
can only be due to significant differences between the appearance of the images comprising
the training dataset and the checkerboard texture that characterizes Set 5. These differences
are clearly discernible from Figure 7-13. Based on this reason, it is important to remark that
a different target value for σ2(I) is not a potential solution for increasing the performance on
this environment. A new value for σ2(I) requires the network to be re-trained on a dataset
generated accordingly, and thus, the differences on the appearance of the image features that
can be extracted by the CNN remain. To the best of my knowledge, a better performance
can only by expected if the training dataset is expanded with a more diverse set of textures.
Note that the evaluation of whether this hypothesis is true or not remains out of the scope
of the present work.

Sensitivity analysis - Encoding scheme

The second parameter evaluated in this sensitivity analysis is the encoding scheme employed
for representing sets of accumulated events as static images. Three types of schemes are
tested in this experiment: DCSB, SCDB, and SCSB. A detailed description of these encoding
methods is given in Section 6-4-1, and, furthermore, a sample of their corresponding images is
illustrated in Figure 6-6. Quantitative results from the evaluation of these three configurations
on Set 3 (i.e., roadmap) are presented in Table 7-10. Note that, obviously, three different
CNN architectures were optimized for this experiment, one for each encoding scheme.

From this table, the main conclusion that can be derived is that some sort of differentiation
between ON/OFF events is needed for the convolutional network to perform accurately. Both
the DCSB and the SCDB schemes make this distinction, and the ventral flow estimation
errors obtained with them are very similar. As an hypothesis, the difference between these
two representations may come from the contrast of their corresponding images. Since events
are separately encoded in different channels according to their polarity, the images generated
with the DCSB method are characterized by a higher contrast than the ones obtained with
SCDB. This last method uses a single channel based on a gray canvas, and encodes events as
black or white pixels. Regarding the results obtained with the SCSB format, it is interesting
to see that, even though the network performs worse, it is still possible to estimate the desired
visual cues with decent levels of accuracy.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

100 Ventral Flow Estimation using Deep Learning Architectures

Table 7-10: Sensitivity results for ventral flow estimation errors with the encoding scheme as
dependent variable.

Set 3: CNN, ∆tf = 1.0 ms, r = 1.0 m, TS-I15

εωx
[1/s] εωy

[1/s]

Mean* Var* Mean* Var*

DCSB 0.0609 0.0119 0.0998 0.0264

SCDB 0.0742 0.0172 0.1060 0.0304

SCSB 0.1493 0.0598 0.1093 0.0333

*Normalized by ωx,y = 1.83 1/s

Sensitivity analysis - Number of convolutional filters

Finally, the last parameter evaluated in this sensitivity analysis corresponds to the number of
convolutional filters that characterize the two neural networks employed in this section. Briefly
speaking, this number is an indicator of the computational power of the architectures, and
it determines the number of features that can be extracted at each layer. This experiment
assesses the performance impact of this parameter using three configurations: the original
(shown in Table 7-1), one with half the number of filters (0.5x), and one with the double (2x).
After training three CNNs according to these settings, the evaluation is performed on Sets 3,
4, 5, as shown in Table 7-11. Note that the value of ∆tf employed for each dataset is selected
in agreement with the results of the sensitivity analysis conducted with this parameter (i.e.,
∆tf) as dependent variable.

From Table 7-11, the estimation errors seem to be inversely proportional to the number of
convolutional filters, at least with the configurations analyzed in this experiment. On Set
3, it is possible to observe a slight performance improvement with the 2x configuration in
respect of the normal architecture, especially in the estimation of ωy. However, this change
is not very significant. The same variation is appreciated on Set 4. The benefits of increasing
the number of filters become more clear when the evaluation is conducted on Set 5. Here,
both the mean absolute error and the error variance decrease considerably, thus improving
the generalizability of the network to this environment. These results lead to the conclusion
that increasing the number of convolutional filters has a noticeable impact on the network
performance when evaluated on environments where the normal architecture performs poorly
independently of the ∆tf used. The additional features extracted by the network from the
training dataset (i.e., Set 1) when this number is incremented are responsible for this behavior.

Despite of the results obtained, note that the practice of increasing the number of filters is not
always beneficial. Firstly, complex neural architectures tend to overfit (i.e., to memorize the
training data), and thus, their generalization to new data is not ensured (Goodfellow et al.,
2016). Secondly, the fact of increasing the number of internal parameters of a network entails
an increase in the computational load of the algorithm, represented in Table 7-11 by tC .
According to this, and based on the similar performance of the 0.5x and 1.0x configurations
on Sets 3 and 4, an efficient and accurate solution may result from using the 0.5x (or even
smaller) structure, in combination with a more diverse training dataset for improving the
generalizability of the network. The evaluation of whether this hypothesis is true or not
remains out of the scope of the present work.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

7-2 Results 101

Table 7-11: Sensitivity results for ventral flow estimation errors with the number of convolutional
filters as dependent variable. The lowest error in each column and dataset is highlighted. The
number of trainable parameters (Nparam) and the computation time (tC) of each configuration
are shown as well.

Sets 3-4-5: CNN, DCSB, ∆tf ,T = 1.0 ms, r = 1.0 m, TS-I15

∆tf [ms] εωx
[1/s] εωy

[1/s] Nparam [-] tC [ms]

Mean* Var* Mean* Var*

Set 3

0.5x 1.0 0.0704 0.0151 0.1001 0.0280 2,200,930 2.702

1.0x 1.0 0.0633 0.0119 0.0999 0.0263 8,870,482 7.621

2.0x 1.0 0.0724 0.0141 0.0796 0.0166 35,075,458 36.11

Set 4

0.5x 5.0 0.1606 0.0494 0.1398 0.0434 2,200,930 2.702

1.0x 5.0 0.1258 0.0318 0.1416 0.0410 8,870,482 7.621

2.0x 5.0 0.1398 0.0357 0.1198 0.0355 35,075,458 36.11

Set 5

0.5x 1.0 0.3644 0.3706 0.3800 0.3065 2,200,930 2.702

1.0x 1.0 0.2534 0.1758 0.3755 0.3139 8,870,482 7.621

2.0x 1.0 0.2187 0.1232 0.2385 0.1533 35,075,458 36.11

*Normalized by ωx,y = 1.83 1/s

7-2-2 Ventral flow estimation from a single DVS image

The final experiments conducted on this preliminary analysis examine the possibility of esti-
mating the desired optical flow visual cues from just a single DVS image using the CNN and
RCNN architectures introduced in Sections 7-1-1 and 7-1-2, respectively. This input config-
uration is further referred to as “S-I”. Note that the mechanism introduced in the previous
section for adapting the value of ∆tf based on the event density, σ2(I), is only employed for
the case of the RCNN, as well as the fixed-∆tf evaluation.

Convolutional Neural Network - Fixed-∆tf

Starting with the analysis of the CNN, this network is now evaluated on all the circular
trajectories comprising Set 3. The reason for conducting this experiment is that, since this
testing environment and the training dataset are based on the same texture (i.e., roadmap),
the performance of the convolutional network under these conditions can help understand
whether ventral flow information can accurately be estimated from a single DVS image.
Quantitative and qualitative results are presented in Table 7-12 and Figure 7-14.

Inferring from these results, it is possible to conclude that this input configuration is not
sufficient for an accurate estimation of the desired optical flow observables, at least if the
CNN is employed under the conditions of this experiment. This statement can be confirmed
if these results are compared to those obtained with the TS-I15 input configuration (i.e., two
temporarily separated DVS images stacked together), which are presented in Table 7-3 and

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

102 Ventral Flow Estimation using Deep Learning Architectures

Table 7-12: Ventral flow estimation errors obtained by evaluating the CNN on all the circular
trajectories from Set 3.

Set 3: CNN, DCSB, ∆tf ,T = 1.0 ms, ∆tf = 1.0 ms, S-I

r [m] εωx
[1/s] εωy

[1/s] ωx,y [1/s]

Mean* Var* Mean* Var*

0.50 0.3117 0.1476 0.2595 0.1024 1.17

0.75 0.3837 0.2648 0.3139 0.2046 1.49

1.00 0.3803 0.3298 0.3923 0.3254 1.83

1.25 0.3957 0.4204 0.4007 0.4258 2.17

1.50 0.4577 0.6333 0.4337 0.5485 2.49

*Normalized by ωx,y

0 2000 4000 6000
−4

−2

0

2

4

ω
x [

1/
s]

r= 0.5 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.0 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.5 m

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

ω
y [

1/
s]

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

Ground truth Estimated

Figure 7-14: Temporal evolution of the ventral flow components estimated with the CNN on
Set 3. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 1.0 ms, S-I.

Figure 7-3. To the best knowledge of the author, the reason for this difference of performance
relies on the fact that, when estimating motion from multiple DVS images, the network
extracts most of the information from the disparity between these frames. However, in the
case of a single DVS image, the input statistics (e.g., number of events, event density) are
the only source of motion clues. Since these statistics vary based not only on the ego-motion
states of the sensor (e.g., altitude, attitude, speed) but also on the visual structure of the
scene (e.g., type of texture), the S-I is definitely not a valid input configuration for the CNN.

Once the results obtained from Set 3 have been analyzed, the same neural architecture is
now evaluated on all the textures that comprise the testing dataset (i.e., Sets 3, 4, and 5)
and using different configurations for the value of ∆tf , according to the results obtained in
Section 7-2-1 (see Tables 7-4 and 7-7). Note that only the circular trajectory characterized by
r = 1.0 meters is employed in this analysis. Quantitative and qualitative results are presented
in Table 7-13 and Figure 7-15.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

7-2 Results 103

Table 7-13: Sensitivity results for ventral flow estimation errors on Sets 3, 4, and 5 with the
CNN, using ∆tf as dependent variable. The lowest errors of each trajectory are highlighted.

Sets 3-4-5: CNN, DCSB, ∆tf ,T = 1.0 ms, r = 1.0 m, S-I

∆tf [ms] εωx
[1/s] εωy

[1/s]

Mean* Var* Mean* Var*

Set 3 1.0 0.3803 0.3298 0.3923 0.3254

" 2.5 0.1301 0.0422 0.2759 0.0872

" 5.0 0.1975 0.0934 0.3493 0.1819

" 10.0 0.4165 0.3693 0.6144 0.6703

Set 4 1.0 0.7201 1.1831 0.6915 1.0552

" 2.5 0.7108 1.1852 0.5742 0.6966

" 5.0 0.6901 1.1522 0.4253 0.3680

" 10.0 0.6803 1.1276 0.5919 0.1392

Set 5 1.0 0.6912 1.0447 0.6273 1.0367

" 2.5 0.6633 0.9771 0.6077 0.8931

" 5.0 0.6441 0.9406 0.5951 0.8672

" 10.0 0.6245 0.9169 0.5839 0.8826

*Normalized by ωx,y = 1.83 1/s

0 2000 4000 6000
−4

−2

0

2

4

ω
x [

1/
s]

Set 3, Δtf = 2Δ5 ms

0 2000 4000 6000
−4

−2

0

2

4
Set 4, Δtf = 10Δ0 ms

0 2000 4000 6000
−4

−2

0

2

4
Set 5, Δtf = 10Δ0 ms

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

ω
y [

1/
s]

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

Ground truth Estimated

Figure 7-15: Temporal evolution of the ventral flow components estimated with the CNN on
Sets 3, 4, and 5. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = [2.5, 10.0, 10.0] ms, r = 1.0 m, S-I.

From this experiment, it is possible to derive two conclusions. Firstly, despite the fact that
the CNN was trained using an accumulation window of length ∆tf ,T = 1.0 ms, different ∆tf
values could lead to a better performance. For instance, as shown in Table 7-13, even though
Set 3 and the training dataset share the same texture (e.g., roadmap), the ∆tf = 2.5 ms
and ∆tf = 5.0 ms configurations result in a significant decrease of the error metrics for the
trajectory under analysis. Different values for the optimal ∆tf are expected if other circular
trajectories are evaluated. The reason for this is that the accumulation window has a direct
impact on the input statistics of the DVS images and, as mentioned before, they play a crucial
role in the estimation of optical flow observables from a single frame.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

104 Ventral Flow Estimation using Deep Learning Architectures

Secondly, the generalizability of the CNN is also affected by the input configuration. As shown
in Section 7-2-1, this convolutional network is capable of generalizing to new environments
(e.g., grass, checkerboard) when multiple DVS images are employed as input volume. How-
ever, as it is clearly discernible from Figure 7-15, the performance of the architecture is not
acceptable anymore when the S-I input configuration is employed. As mentioned before, the
visual structure of the scene is another factor with a significant impact on the input statistics
of these images.

Recurrent Convolutional Neural Network - Fixed-∆tf

Once the performance of the CNN is assessed using just a single DVS image as input, the
same experiments are now repeated but this time using the RCNN as neural model. Firstly,
this network is evaluated on all the circular trajectories comprising Set 3. Quantitative and
qualitative results are presented in Table 7-15 and Figure 7-17, respectively.

Table 7-14: Ventral flow estimation errors obtained by evaluating the RCNN on all the circular
trajectories from Set 3.

Set 3: RCNN, DCSB, ∆tf ,T = 1.0 ms, ∆tf = 1.0 ms, S-I

r [m] εωx
[1/s] εωy

[1/s] ωx,y [1/s]

Mean* Var* Mean* Var*

0.50 0.2154 0.0530 0.2616 0.0997 1.17

0.75 0.2468 0.1224 0.1999 0.0856 1.49

1.00 0.1898 0.0914 0.1791 0.0901 1.83

1.25 0.1327 0.0593 0.1541 0.0749 2.17

1.50 0.1538 0.1096 0.1351 0.0599 2.49

*Normalized by ωx,y

0 2000 4000 6000
−4

−2

0

2

4

ω
x [

1/
s]

r= 0.5 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.0 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.5 m

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

ω
y [

1/
s]

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

Ground truth Estimated

Figure 7-16: Temporal evolution of the ventral flow components estimated with the RCNN on
Set 3. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = 1.0 ms, S-I.

Inferring from these results, it is possible to conclude that the addition of the two LSTM units
to the convolutional encoder (see Figure 7-2 for a schematic of the RCNN) has a significant

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

7-2 Results 105

impact on the network performance when evaluated on Set 3. Even though the error metrics
from Table 7-15 are higher than those obtained when this same architecture is evaluated in
combination with the TS-I15 input configuration (see Table 7-3), Figure 7-17 confirms the
validity of this approach. Therefore, these results remark the importance of approaching the
ventral flow estimation problem with recurrent neural networks when just a single DVS image
is employed as input. As shown in Figure 7-14, just the convolutional segment is not sufficient
for a decent performance under the conditions of this experiment.

As done previously for the case of the CNN, the RCNN is now evaluated on all the textures
comprising the testing dataset (i.e., Sets 3, 4, and 5) in order to evaluate the generalizability

Table 7-15: Sensitivity results for ventral flow estimation errors on Sets 3, 4, and 5 with the
RCNN, using ∆tf as dependent variable. The lowest errors of each trajectory are highlighted.

Sets 3-4-5: RCNN, DCSB, ∆tf ,T = 1.0 ms, r = 1.0 m, S-I

∆tf [ms] εωx
[1/s] εωy

[1/s]

Mean* Var* Mean* Var*

Set 3 1.0 0.1898 0.0914 0.1791 0.0901

" 2.5 0.3995 0.3664 0.5241 0.5203

" 5.0 0.4630 0.4550 0.7119 0.7734

" 10.0 0.5412 0.4921 1.0307 0.6836

Set 4 1.0 0.7303 1.1983 0.6761 1.0094

" 2.5 .0.7354 1.2647 0.6566 0.9306

" 5.0 0.7424 1.4258 0.8994 1.1513

" 10.0 0.7624 1.6009 1.4099 1.2168

Set 5 1.0 0.6140 0.8224 0.9801 1.5095

" 2.5 0.5636 0.8848 1.0029 1.3734

" 5.0 0.6028 0.9721 1.0046 1.4717

" 10.0 0.8039 1.2098 0.9939 1.6540

*Normalized by ωx,y = 1.83 1/s

0 2000 4000 6000
−4

−2

0

2

4

ω
x [

1/
s]

Set 3, Δtf = 1Δ0 ms

0 2000 4000 6000
−4

−2

0

2

4
Set 4, Δtf = 1Δ0 ms

0 2000 4000 6000
−4

−2

0

2

4
Set 5, Δtf = 1Δ0 ms

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

ω
y [

1/
s]

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

Ground truth Estimated

Figure 7-17: Temporal evolution of the ventral flow components estimated with the RCNN on
Sets 3, 4, and 5. Config.: DCSB, ∆tf ,T = 1.0 ms, ∆tf = [2.5, 10.0, 10.0] ms, r = 1.0 m, S-I.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

106 Ventral Flow Estimation using Deep Learning Architectures

of this architecture in combination with the S-I input configuration. Note that different ∆tf
values are employed according to the results obtained in Section 7-2-1 (see Tables 7-4 and
7-7), and only the circular trajectory characterized by r = 1.0 meters is assessed. Quantitative
and qualitative results are presented in Table 7-15 and Figure 7-17.

Similarly to the CNN, the outcome of this experiment indicates that, despite the decent
performance on Set 3, the S-I input configuration has a significant negative impact on the
generalizability of the RCNN. As shown in Section 7-2-1, this recurrent network is capable of
generalizing to new environments (e.g., grass, checkerboard) when multiple DVS images are
employed as input volume. However, as it is clearly discernible from Figure 7-17, the perfor-
mance of the architecture is not acceptable anymore when just a single image is employed.

Recurrent Convolutional Neural Network - Adaptive ∆tf

In Section 7-2-1, it was possible to conclude that, when multiple DVS images are stacked
together as input volume, varying ∆tf in such a way that all these images have similar input
statistics (i.e., event density) is very beneficial for the accuracy of this network (and also
for CNN) and its generalizability to new environments. This final experiment attempts to
determine whether adapting the length of this accumulation window is also beneficial when
the RCNN uses just a single DVS image as input. Quantitative and qualitative results are
presented in Table 7-16 and Figure 7-18, respectively.

Table 7-16: Ventral flow estimation errors obtained by evaluating the RCNN on all the circular
trajectories from Set 3, using ∆tf as adaptive variable.

Set 3: RCNN, DCSB, adaptive ∆tf ,T, S-I

r [m] εωx
[1/s] εωy

[1/s] ωx,y [1/s]

Mean* Var* Mean* Var*

0.50 0.4992 0.3722 0.7843 0.8254 1.17

0.75 0.2867 0.1846 0.4621 0.4573 1.49

1.00 0.2077 0.1296 0.2049 0.1162 1.83

1.25 0.2199 0.1499 0.2369 0.1858 2.17

1.50 0.3473 0.4125 0.3244 0.3448 2.49

*Normalized by ωx,y

Inferring from these results, the adaptation of ∆tf is not helpful when the estimation of
the desired ventral flow components is approached using a single DVS image. As previously
introduced, when using a fixed ∆tf , the image statistics depend, among other things, on the
ego-motion states of the sensor (e.g., altitude, attitude, speed). For this reason, they play a
crucial role when motion clues are to be extracted from just one frame. Since these statistics
are now fixed because of the varying ∆tf , the dependency on the sensor motion does no
longer exists, thus leading to a bad performance of the RCNN. As it is clearly discernible
from Figure 7-18, the network is not capable of distinguishing slow from fast motion.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

7-2 Results 107

0 2000 4000 6000
−4

−2

0

2

4

ω
x [

1/
s]

r= 0.5 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.0 m

0 2000 4000 6000
−4

−2

0

2

4
r= 1.5 m

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

ω
y [

1/
s]

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

0 2000 4000 6000
t [ms]

−4

−2

0

2

4

Ground truth Estimated

Figure 7-18: Temporal evolution of the ventral flow components estimated with the RCNN on
Set 3. Config.: DCSB, adaptive ∆tf ,T, adaptive ∆tf , S-I.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

108 Ventral Flow Estimation using Deep Learning Architectures

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

Chapter 8

Discussion of Preliminary Results

In this preliminary analysis, a simulation framework is implemented for evaluating the possi-
bility of estimating optical flow visual cues with DL neural architectures and the DVS as input
sensor. Since large amounts of information are needed, an event-camera simulator (Mueggler
et al., 2017) is combined with three-dimensional scenes modeled in Blender, for facilitating
the process of constructing the required datasets. Images encoded from the event sequences
defining these datasets are used for training, validating, and testing the neural architectures in
the task of ventral flow estimation. The main results obtained in this preliminary analysis are
collected and discussed in this chapter. Furthermore, the relation between these preliminary
results and the final thesis work is also described.

8-1 Datasets

Five datasets were generated for training, validating, and testing the neural networks under
analysis using three different textures: roadmap, grass, and checkerboard (see Figure 6-1 and
Table 6-1). Although these datasets are convenient for this preliminary evaluation, several
improvements are still possible. First of all, the training set is constructed only using the
roadmap texture as a basis for all its event sequences. Increasing the number of textures of this
particular dataset may lead to a better generalization of the networks to new environments.
Second, since the trajectories from which these datasets are constructed are performed at a
constant altitude, the ground truth data basically consists of pure ventral flow information.
The definition of trajectories with combined motion in the horizontal and vertical axes would
increase the level of realism of these simulations. Further, it would allow the estimation of
additional optical flow cues such as divergence, D, and focus of expansion, FoE.

Due to the incompatibilities of conventional DL architectures with the asynchronous spa-
tiotemporal data from the DVS, three different methods for encoding this information as
static images were designed: the DCSB, SCDB, and SCSB schemes (see Figure 6-6). Firstly,
the DCSB method generates images with two channels, each corresponding to a particular
polarity. Two black canvases are employed, over which the events from a particular temporal

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

110 Discussion of Preliminary Results

window of length ∆tf are represented as white pixels. Secondly, the SCDB scheme generates
single-channel images by encoding ON and OFF events as white and black pixels, respectively,
over a gray canvas. Finally, the SCSB method generates single-channel images based on a
black canvas over which the events are represented as white pixels, no matter their polarity.

8-2 Performance of Deep Learning architectures

Based on the results obtained from this analysis, it is possible to confirm that, under the
conditions of this preliminary evaluation, ventral flow can accurately be estimated from event-
based data using conventional DL approaches, such as CNNs and RCNNs. However, the
performance of these architectures varies considerably depending on factors such as the pre-
processing settings, the type of input, the structure of the neural networks, or the environment
over which the event sequences are constructed. This section summarizes the main findings of
the experiments that have been conducted. This discussion covers, firstly, the results obtained
when the input volume consists of multiple DVS images; and secondly, those corresponding
to an input configuration comprised by a single image.

8-2-1 Ventral flow estimation from multiple DVS images

Two different input formats were proposed for the case when multiple DVS images are to be fed
through the network simultaneously: the “TS-I” and “C-I” configurations. On the one hand,
the TS-I approach consists of stacking two temporarily well-separated frames in such a way
that motion clues are discernible from the disparity between these images. On the other hand,
the C-I method generates input volumes by stacking long sequences of consecutive frames,
despite the fact that the level of similarity among them is high due to the temporal resolution
of the DVS. Even though similar results were obtained (see Table 7-2), the computational
requirements of processing more than two frames led to the selection of the TS-I method as
the optimal solution. More specifically, a temporal separation of 15 milliseconds, denoted
by TS-I15. This configuration was employed in all the experiments attempting to estimate
ventral flow information from multiple DVS images.

The evaluation of the performance of both CNN and RCNN on Set 3 led to the derivation
of two main conclusions. Firstly, the validity of these two neural architectures in the task
of estimation optical flow observables is confirmed when the testing environment is based on
the same texture as the training dataset (i.e., the roadmap). Secondly, it was shown that the
accuracy of these networks is independent of the mean absolute flow of the circular trajectories
that comprise this dataset (see Table 7-3). This is due to the fact that, in their majority, the
combinations of (ωx, ωy) that characterize these sequences lie within the regions determined
by Set 1 (see Figure 7-5).

For a generalizability assessment, the performance of these two networks was evaluated on
Sets 4 and 5, both characterized by textures that are clearly different from the one employed
in the training dataset (i.e., grass and checkerboard pattern, respectively).

From the evaluation on Set 4, it was possible to infer that the length of the accumulation
window used for encoding DVS events as static images, ∆tf , has a significant impact on the
accuracy of these networks. As shown in Tables 7-4 and 7-5, ∆tf values that differ from

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

8-2 Performance of Deep Learning architectures 111

the training configuration, ∆tf ,T , need to be used for optimizing the performance. However,
since the optimal ∆tf is directly related to the visual structure of the scene, there is no clear
indicator for how to adapt this parameter when the training dataset has been generated using
a fixed ∆tf ,T . To overcome this problem, the density of events, σ2(I) is proposed as image
descriptor, and new datasets are created varying ∆tf in such a way that all the images are
characterized by the same variance. The experiments conducted with this mechanism led to
the important conclusion that if optical flow observables are to be estimated from multiple
DVS images, then these frames have to be similar to the training data in terms of appearance
(see Table 7-6).

The only conclusion that can be derived from the evaluation of the neural networks on Set 5
is that they do not generalize properly to this particular environment, most probably because
of the peculiar features that characterize the checkerboard pattern. Nevertheless, both archi-
tectures are capable of tracking ground truth data but with a high variance, as it is possible
to infer from Figures 7-10 and 7-11.

Regarding the impact that the input encoding schemes have on the performance of the net-
works, it was found that some sort of differentiation between ON and OFF events leads to
a more accurate estimation of ventral flow components (see Table 7-10). Hence, both the
DCSB and SCDB methods are preferred over the SCSB configuration. However, note that,
even though the networks perform worse with the latter scheme, it is still possible to estimate
the desired visual cues with decent levels of accuracy.

With respect to the internal structure of the neural architectures, results showed that the
fact of increasing the number of convolutional filters has a noticeable impact on the network
performance when evaluated on environments where the normal architecture performs poorly,
i.e., Set 5 in this case (see Table 7-11), independently of the ∆tf employed. The additional
features extracted from the training dataset when this number is incremented are responsible
for this behavior.

Finally, based on the results obtained from all the experiments conducted with this input con-
figuration, it is possible to determine that approaching the ventral flow estimation problem
in a sequential fashion with the RCNN does not have any significant impact on the perfor-
mance if the input volume is comprised by multiple DVS images. For this reason, the CNN
is preferred over the RCNN under these circumstances.

8-2-2 Ventral flow estimation from a single DVS image

Instead of relying on the disparity between input images, the temporal evolution of the input
statistics (e.g., number of events, event density) is the only source of motion clues when a single
DVS frame is employed. This input configuration is denoted as “S-I”. For this reason, the lack
of some kind of short-term memory makes the CNN unsuitable for the accurate estimation
of optical flow observables with this input configuration, as it is shown in Figure 7-14. On
the other hand, as a result of its recurrent connections, the RCNN reports error metrics
that confirm the validity of this approach (see Table 7-14), despite being higher than those
obtained with the same architecture and the TS-I15 input method (see Table 7-3). Based on
this, it is possible to determine that, when ventral flow information is to be estimated from a
single DVS image, it is crucial to employ a recurrent architecture. For this reason, the RCNN
is preferred over the CNN under these circumstances.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

112 Discussion of Preliminary Results

Lastly, two additional conclusions can be derived from the experiments conducted with this
input configuration. Firstly, despite the decent performance on Set 3 with the RCNN, the S-I
method has a significant negative impact on the generalizability of this architecture to new
environments (see Figure 7-17). This is a clear indicator that, if motion is to be estimated us-
ing this input configuration, the training dataset should be extended with additional textures.
Secondly, the adaptation of ∆tf is not helpful when this problem is approached using the S-I
method. This mechanism removes the dependency of the image statistics on the ego-motion
states of the sensor. Therefore, the RCNN is no longer capable of distinguishing slow from
fast motion, as it is possible to infer from Figure 7-18.

8-3 Implications of the analysis

The preliminary analysis conducted in this part serves as a basis for some of the scientific
contributions of this thesis. This section describes the main implications of this analysis, and
how they relate to the spiking neural architecture described in Part I.

Firstly, due to the large amount of data needed for training and evaluating neural networks re-
gardless of the neuron model, the event-camera simulator presented by Mueggler et al. (2017)
is still employed for the generation of event files instead of the DVS sensor itself. Ground
truth information of optical flow visual observables is retrieved as explained in Section 6-3.
Additionally, due to the superior performance of the DCSB encoding scheme, the final spiking
architecture also processes input events separately depending on their polarity.

Secondly, from the deep neural networks evaluated in this preliminary analysis, convolutional
layers (LeCun, 1989) seem to be a very efficient mechanism for dealing with input data that
has a known grid-like topology. For this reason, the spiking network is mainly based in this
type of layers. Note that, if the same computational capability is to be achieved with layers
fully-connected neurons, a much larger number of cells and synaptic connections is required;
and thus, a much more extensive training dataset (Goodfellow et al., 2016).

Finally, from the analysis conducted with a single DVS image as input, some sort of short-term
memory is required for an accurate estimation of ventral flow information. The reason for this
is that, with this input format, tracking features over time is the only source of motion clues.
In this preliminary evaluation, LSTM layers were employed in order to provide the neural
architectures with memory via recurrent connections. Instead of relying on recurrency, the
bio-inspired architecture proposed in Part I achieves the same goal through the combination
of the temporal dynamics of spiking neurons with synaptic connections of multiple delays.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

Part IV

Appendices

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

Appendix A

Software and Implementation

cuda-snn1 is a software library for numerical computation that aims to facilitate researchers
the simulation of the spike-based communication and learning protocols of large multi-layer
Spiking Neural Networks (SNNs). This library is written in its entirety in C++ and CUDA2,
thus ensuring computational efficiency by parallelizing the majority of the work load on the
Graphics Processing Unit (GPU). This chapter provides an overview of the implementation
details of the simulator. Note that, before going through this content, the reader is encouraged
to have a clear understanding of the concepts introduced in Part I of this document.

CUDA engine architecture

The global architecture of the CUDA engine developed for the simulation of SNNs is shown
in Figure A-1. The engine consists of several tasks, represented by blocks, arranged in a
feed-forward fashion with a feedback connection. To ensure computational efficiency, each of
these processes is implemented in a separate CUDA kernel3, whose parallelization parameters
are shown as well. These parameters determine which variables are parallelized, and hence
the number of parallel threads required for the correct execution of each kernel. This section
provides an overview of these processes.

The main workflow of the cuda-snn engine starts with the update of the synaptic trace of all
neurons acting as presynaptic cells in the architecture. As described in Part I (Section IV-A),
this parameter models the recent history of spikes transmitted, and plays an important role
in the adaptation of neural dynamics, and in the Spike-Timing-Dependent Plasticity (STDP)
mechanism. For its update, not only the events stored in the input file are employed, but
also the postsynaptic spike trains of all layers in the network, hence the feedback connection.
From Figure A-1, this is the only process of the workflow whose implementation is centered on
presynaptic, rather than postsynaptic, neurons. Note that, in theory, it could be merged with

1Source code to be released in https://github.com/tudelft
2CUDA documentation can be found in https://developer.nvidia.com/cuda-toolkit
3Computational function compiled for high throughput accelerators such as GPUs.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

https://github.com/tudelft
https://developer.nvidia.com/cuda-toolkit

116 Software and Implementation

DVS

event file

Update

input trace

Spike

propagation

Update

neuronal

dynamics

Inter-lateral

competition

STDP

update∗
Update

spike trains

CUDA kernel execution configuration

∗ If STDP enabled.

Layers

Input neurons

Input channels

Output neurons

Synaptic kernels

Synaptic delays

Valid for all layer types. Specific to MS-Conv layers.

Figure A-1: High-level flowchart of the cuda-snn engine. Solid lines indicate the main workflow,
while dashed lines represent interaction with external data storage. The parameters used for the
GPU parallelization of each CUDA kernel are shown as well.

the spike propagation routine since they make use of the same input information. However, the
overlapping nature of convolutional receptive fields would lead to computational redundancy.

With the synaptic trace of presynaptic neurons up to date, the spike propagation process
focuses on the computation of the forcing functions driving the internal dynamics of all
postsynaptic cells in the SNN architecture. Consequently, two main process are conducted in
this kernel: firstly, presynaptic spike trains are scaled by the synaptic efficacy matrix of each
layer, and their neuron-specific contributions are added up; and secondly, if homeostasis is
enabled, the corresponding adaptive parameter of each neuron is computed. For an efficient
implementation, apart from the layers, this routine parallelizes postsynaptic neurons and each
presynaptic feature map to which they are connected.

Once the forcing function is computed, the cuda-snn engine updates the membrane potential of
all the postsynaptic cells of the neural architecture according to the adaptive Leaky Integrate-
and-Fire (LIF) neuron model introduced in Part I (Section IV-A). For this purpose, each
neuron keeps track of an additional variable that indicates whether the cell is in the refractory
period, and thus, whether their internal dynamics have to be updated. Note that, in this
routine, the membrane potential is not yet reset in case the firing threshold is surpassed,
since the competition mechanism relies on this parameter. With respect to the execution
configuration of this kernel, apart from the layers, it parallelizes each postsynaptic neuron to
be updated. If the MS-Conv layer (see Part I, Section V-C) is employed, the number of input
channels is considered as well for the parallelization.

The implementation of the Winner-Take-All (WTA) competition routine (Part I, Section
IV-B) differs depending on whether a particular layer is under training or not. If synaptic

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

117

plasticity is enabled, a recursive algorithm is employed in which the firing postsynaptic neuron
with the highest membrane potential is the cell triggering the inhibitory mechanism first. This
recursive approach is executed until all the non-inhibited firing neurons are analyzed. Note
that what is parallelized is not the inhibitory mechanism, but the location-specific algorithm
that sorts postsynaptic neurons based on their internal potential. Inhibition is conducted in
a single thread. The need for this implementation comes from the fact that firing neurons
from convolutional layers also reset cells within a small neighborhood around their spatial
location. On the other hand, if a layer is in its inference phase, the entire location-specific
competition routine is parallelized. Based on this, the execution configuration of this kernel
is identical to the one employed by the process focused on updating the membrane potential
of postsynaptic neurons.

Once the competition routine determines which postsynaptic neurons from a trainable layer
trigger the weight update, the implementation of the STDP is performed as explained in
Part I (Section IV-B). Since this kernel is centered on synaptic connections rather than on
postsynaptic neurons, its execution configuration also considers the number of multisynaptic
connections per pair of neurons for the parallelization. As a result, one parallel thread is
launched per neural connection to be updated.

Finally, the last kernel of the cuda-snn engine updates the output spike train of each postsy-
naptic neuron in the architecture, and then resets the membrane potential and the refractory
flag of the firing neurons. Accordingly, this kernel makes use of the same execution configu-
ration as the routines focused on updating the membrane potential of postsynaptic neurons
and on the application of the inter-lateral competition mechanism.

Source code, compilation details, and project dependencies

An overview of the source code of the cuda-snn simulator is given in Table A-1. As pre-
viously mentioned, the project is a combination of C++ (i.e., .cpp/.hpp) and CUDA (i.e.,
.cu/.cuh) files. On the one hand, C++ files cover a diverse set of tasks (e.g., importing or
exporting data, hyperparameter definition, online visualization) for which a single thread on
the Central Processing Unit (CPU) is employed. On the other hand, CUDA files contain the
computational kernels introduced in Section A, which are heavily parallelized on the GPU.
Due to these differences, the simulator makes use two different compilers at building time:
g++ for C++, and nvcc for CUDA files. To facilitate the compilation of the project, a makefile4

is included. Hence, only the following two commands need to be detailed: make clean for
deleting previously-compiled objects, and make for a new compilation.

An overview of the dependencies of the cuda-snn simulator on external third-party software
libraries is given in Table A-2. At the moment of writing this document, the project is only
compatible with Unix-based operating systems powered by at least one CUDA-enabled GPU5.
Additionally, the NVIDIA CUDA Toolkit 8.0 or a newer release is required. The OpenGL
and Gnuplot dependencies are labeled as “optional” since they are only used for the online
visualization of the network activity. Similarly, the cnpy package is also optional since it is
used exclusively for debugging the neural architecture in Python and for capturing snapshots

4Unix-specific file format that can be used to automatize the compilation of a project.
5Check compatibility at https://developer.nvidia.com/cuda-gpus

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

https://developer.nvidia.com/cuda-gpus

118 Software and Implementation

of the network activity. The aforementioned makefile of the project includes preprocessor
macros that can be adjusted for enabling or disabling the use of these external libraries.

Table A-1: Overview of the source code of the cuda-snn simulator.

File name Description

main.cpp Being the main file of the simulator, it contains the hyperparameter
settings, the initialization of the spiking network, and the training
and validation loops. Further, it includes the preprocessing stage of
input events conducted by the Input layer. This file serves as a link
between the CUDA engine and input/output and visualization tools.

data.cpp /.hpp Defines the functions used for importing (exporting) data to (from)
the CUDA engine of the simulator. For instance, the functions used
for reading event files from the database or for storing and loading
synaptic weights are defined here.

hyperparameters.cpp /.hpp Defines the data class used for transferring the hyperparameter set-
tings into the CUDA engine.

engine.cpp /.hpp Defines the host6 base class of the CUDA engine.

engine gpu.cuh CUDA header file that defines “Engine GPU”: the main device7 class
of the CUDA engine of this simulator. This data structure contains
the nested classes needed for the definition of the different types of
neural layers supported.

engine gpu.cu Core CUDA file of the cuda-snn simulator. On the one hand, it
contains the functions used for the initialization of the neural layers.
On the other hand, this file launches the CUDA kernels of the main
workflow, as depicted in Figure A-1.

engine gpu kernels.cu /.cuh Defines the device functions launched by the CUDA kernels.

plotter.cpp /.hpp Contains the online visualization tools of the cuda-snn simulator.

6In CUDA terminology, the host refers to the CPU and its memory.
7In CUDA terminology, the device refers to the GPU and its memory.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

119

Table A-2: Dependencies of the cuda-snn simulator.

Package Description

build-essential It refers to all the packages that are required for the compilation of a De-
bian package. It comes with the g++ compiler needed for the compilation
of C++ files. To install it: sudo apt-get install build-essential.

NVIDIA CUDA Toolkit 8.0
(or newer)

CUDA is a parallel computing architecture that extends the capa-
bilities of C++ and enables the development of code that can run
on a GPU. The installation guide of these libraries can be found in
http://docs.nvidia.com/cuda/cuda-installation-guide-linux.

OpenGL (optional) Software package that serves as an interface with the GPU
and that is used for graphics applications. To install it:
sudo apt-get install freeglut3.

Gnuplot (optional) Portable command-line driven graphing utility. To install it:
sudo apt-get install gnuplot.

cnpy (optional) Software library to read and write .npy files from C++. This format
encodes Python NumPy8 arrays into binary files. The installation guide
of this library can be found in https://github.com/rogersce/cnpy.

8NumPy documentation can be found in http://www.numpy.org/.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

http://docs.nvidia.com/cuda/cuda-installation-guide-linux
https://github.com/rogersce/cnpy
http://www.numpy.org/

120 Software and Implementation

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

Appendix B

Recommendations

This thesis presents the first hierarchical SNN architecture that is capable of learning the
main functionalities of biological visual motion systems, namely local and global motion
perception, from the events generated by an event-based vision sensor. Consequently, it lays
the foundations for the application of these spiking architectures in the field of robotics for
an efficient, biologically-plausible ego-motion estimation. In spite of this, there are still many
open questions to be explored with respect to the main contributions of this work. This
chapter summarizes these potential lines of research in the form of recommendations, which
are grouped based on their main topics: general recommendations, the neuron model and
synaptic plasticity learning rule, and the cuda-snn computational framework.

General

To show the capabilities of the proposed SNN, the architecture was trained on a very simplistic
dataset. Future research on this topic should, firstly, train and assess the performance of an
augmented version of the SNN on a more realistic dataset characterized by translational
and rotational motion at different altitudes. This would lead to the identification of a more
diverse set of spatial and spatiotemporal features, and to the emergence of neural selectivity
to global motion in the three-dimensional space. If optical flow visual observables were to
be estimated with a dataset of these characteristics, the proposed readout mechanism would
have to be expanded to cope with the rotational motion. A potential solution would be to
include measurements of sensor’s attitude and angular rates, from an external rate gyro, as
additional inputs in the readout architecture.

Once the performance of the spiking architecture is assessed in more realistic scenarios, a sub-
sequent step could be the development of a reinforcement-based spiking learning mechanism
that, inspired by the work of Rombouts, van Ooyen, et al. (2012) and Rombouts, Roelfsema,
& Bohte (2012), exploits the motion information extracted by the SNN for a biologically
plausible, end-to-end spiking optical-flow-based control. For onboard applications, such as
the autonomous landing of a flying robot, effort should be made towards the implementation
of this solution in neuromorphic hardware.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

122 Recommendations

Neuron model and synaptic plasticity

One of the main difficulties in working with mathematical models of spiking neurons is the
great number of coupled internal parameters that have to be manually tuned to get the
desired response. Consequently, the LIF neuron model (Stein, 1965) was employed in this
work as the simplest and hence most popular formulation; and still, the corresponding neural
parameters of each layer were empirically tuned through a trial-and-error process. Further
research on this subject should, firstly, conduct a structured study of the coupling of these
parameters, and then evaluate the choice made for the SNN proposed in this work. Secondly,
the performance of this motion-selective architecture should be assessed for different neuron
models in order to see whether the use of more bio-realistic formulations leads to a stronger
selectivity. Lastly, for a given neuron model, work should be done towards the application of
an optimization method, such as genetic algorithms, for the selection of the most convenient
neural parameters for the task at hand.

With respect to synaptic plasticity, two important recommendations are made. On the one
hand, to fully exploit the benefits of the STDP implementation proposed in this thesis, the
assumption of having distinct training and inference phases should be relaxed. Because of
the stability of the rule, as the learning progresses, the weight updates converge to a (close-
to-zero) equilibrium state; and therefore, there would be no need for differentiating between
these two phases. However, in this work, the implementation of the inter-lateral competition
mechanism varies depending on whether the network is under training or not, thus making
this always-learning mode impracticable. Future research should focus on the reformulation
of this mechanism, specifically for convolutional layers. Moreover, the addition of a forgetting
factor to the STDP formulation could be a potential solution for a rapid adaptation to new
environments.

On the other hand, the MS-Conv layer of the proposed SNN architecture relies on convolu-
tional kernels comprised of multisynaptic connections with different transmission delays for
the perception of the local motion of visual features. In this work, the delays are constant
and equal for all kernels regardless of their tuning speed. A potentially beneficial line of work
would be the evaluation of how the temporal range and number of multisynaptic connections
affects the motion selectivity of the neural architecture. In case each tuning speed has its own
set of optimal delays, a learning rule similar to STDP should be developed for the temporal
adaptation of these parameters in an unsupervised fashion.

cuda-snn

Even though the cuda-snn simulator is already very useful and efficient at its current state,
there are still several improvements to be made that can increase its impact significantly
when released as an open-source project. In order of importance, two main recommendations
are provided. First, a Python interface should be created. This would facilitate the use of
the simulator by researchers unfamiliar with the C++ programming language or with CUDA.
Second, for simple phenomenological neuron models, the computations carried out by the
simulator could be done in an event-based fashion. In this manner, the update of neural
dynamics is only conducted when receiving presynaptic information, and the solution of the
model’s differential equation is employed otherwise to compute its internal state at any other
instant.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2016). Tensor-
Flow: Large-scale machine learning on heterogeneous distributed systems. Retrieved from
https://arxiv.org/abs/1603.04467.

Abdul-Kreem, L. I., & Neumann, H. (2015). Neural mechanisms of cortical motion compu-
tation based on a neuromorphic sensory system. Public Library of Science, 10 (11), 1–33.
doi: 10.1371/journal.pone.0142488.

Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the per-
ception of motion. Journal of the Optical Society of America, 2 (2), 284–299. doi:
10.1364/josaa.2.000284.

Adiv, G. (1985). Determining three-dimensional motion and structure from optical flow
generated by several moving objects. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 7 (4), 384–401. doi: 10.1109/tpami.1985.4767678.

Albright, T. D. (1984). Direction and orientation selectivity of neurons in visual area MT of
the macaque. Journal of Neurophysiology , 52 (6), 1106–1130.

Alkowatly, M. T., Becerra, V. M., & Holderbaum, W. (2014). Bioinspired autonomous visual
vertical control of a quadrotor unmanned aerial vehicle. Journal of Guidance, Control, and
Dynamics, 38 (2), 249–262. doi: 10.2514/1.g000634.

Baird, E., Boeddeker, N., Ibbotson, M. R., & Srinivasan, M. V. (2013). A universal strategy
for visually guided landing. Proceedings of the National Academy of Sciences, 110 (46),
18686–18691. doi: 10.1073/pnas.1314311110.

Barlow, H. B., & Levick, W. R. (1965). The mechanism of directionally selective units
in rabbit’s retina. The Journal of Physiology , 178 (3), 477–504. doi: 10.1113/jphys-
iol.1965.sp007638.

Barron, J. L., Fleet, D. J., Beauchemin, S. S., & Burkitt, T. (1992). Performance of optical
flow techniques. In Proceedings of the 1992 IEEE Conputer Society Conference on Computer
Vision and Pattern Recognition (pp. 236–242). doi: 10.1007/bf01420984.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

https://arxiv.org/abs/1603.04467

124 BIBLIOGRAPHY

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A.,
et al. (2012). Theano: New features and speed improvements. Retrieved from
https://arxiv.org/abs/1211.5590.

Baudry, M. (1998). Synaptic plasticity and learning and memory: 15 years of progress.
Neurobiology of Learning and Memory , 70 (1), 113–118. doi: 10.1006/nlme.1998.3842.

Beauchemin, S. S., & Barron, J. L. (1995). The computation of optical flow. ACM Computing
Surveys (CSUR), 27 (3), 433–466. doi: 10.1145/212094.212141.

Belatreche, A., Maguire, L. P., McGinnity, M., & Wu, Q. (2003). A method for super-
vised training of spiking neural networks. In Proceedings of IEEE Cybernetics Intelligence-
Challenges and Advances (pp. 39–44).

Benosman, R., Clercq, C., Lagorce, X., Ieng, S., & Bartolozzi, C. (2014). Event-based visual
flow. IEEE Transactions on Neural Networks and Learning Systems, 25 (2), 407–417. doi:
10.1109/tnnls.2013.2273537.

Benosman, R., Ieng, S., Clercq, C., Bartolozzi, C., & Srinivasan, M. (2012). Asyn-
chronous frameless event-based optical flow. Neural Networks, 27 , 32–37. doi:
10.1016/j.neunet.2011.11.001.

Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons:
Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of
Neuroscience, 18 (24), 10464–10472.

Bi, G. Q., & Poo, M. M. (2001). Synaptic modification by correlated activity: Hebb’s
postulate revisited. Annual Review of Neuroscience, 24 (1), 139–166. doi: 10.1146/an-
nurev.neuro.24.1.139.

Bichler, O., Querlioz, D., Thorpe, S. J., Bourgoin, J. P., & Gamrat, C. (2012). Extraction
of temporally correlated features from dynamic vision sensors with spike-timing-dependent
plasticity. Neural Networks, 32 , 339–348. doi: 10.1016/j.neunet.2012.02.022.

Bishop, C. M. (1994). Mixture Density Networks. Unpublished manuscript.

Bloesch, M., Omari, S., Hutter, M., & Siegwart, R. (2015). Robust visual inertial odometry us-
ing a direct EKF-based approach. In Proceedins of the 2015 IEEE/RSJ Internaitonal Con-
ference on Intelligent Robots and Systems (pp. 298–304). doi: 10.1109/iros.2015.7353389.

Boahen, K. A. (2000). Point-to-point connectivity between neuromorphic chips using ad-
dress events. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing , 47 (5), 416–434. doi: 10.1109/82.842110.

Bohte, S. M., Kok, J. N., & La Poutré, H. (2002). Error-backpropagation in temporally
encoded networks of spiking neurons. Neurocomputing , 48 (1), 17–37. doi: 10.1016/s0925-
2312(01)00658-0.

Borst, A. (2011). Fly vision: Moving into the motion detection circuit. Current Biology ,
21 (24), R990–R992. doi: 10.1016/j.cub.2011.10.045.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

https://arxiv.org/abs/1211.5590

BIBLIOGRAPHY 125

Borst, A., & Euler, T. (2011). Seeing things in motion: Models, circuits, and mechanisms.
Neuron, 71 (6), 974–994. doi: 10.1016/j.neuron.2011.08.031.

Borst, A., Haag, J., & Reiff, D. F. (2010). Fly motion vision. Annual Review of Neuroscience,
33 , 49–70. doi: 10.1146/annurev-neuro-060909-153155.

Borst, A., & Helmstaedter, M. (2015). Common circuit design in fly and mammalian motion
vision. Nature Neuroscience, 18 (8), 1067–1076. doi: 10.1038/nn.4050.

Bower, J. M., & Beeman, D. (2012). The book of GENESIS: Exploring realistic neural models
with the GEneral NEural SImulation System. Springer Science & Business Media.

Brandli, C., Berner, R., Yang, M., Liu, S., & Delbruck, T. (2014). A 240x180 130 dB 3 µs
latency global shutter spatiotemporal vision sensor. IEEE Journal of Solid-State Circuits,
49 (10), 2333–2341. doi: 10.1109/JSSC.2014.2342715.

Brosch, T., & Neumann, H. (2014). Computing with a canonical neural circuits model with
pool normalization and modulating feedback. Neural Computation, 26 , 2735–2789. doi:
10.1162/neco a 00675.

Brosch, T., & Neumann, H. (2016). Event-based optical flow on neuromorphic hardware.
In Proceedings of the 9th EAI International Conference on Bio-inspired Information and
Communications Technologies (pp. 551–558). doi: 10.4108/eai.3-12-2015.2262447.

Brosch, T., Tschechne, S., & Neumann, H. (2015). On event-based optical flow detection.
Frontiers in Neuroscience, 9 , 1–15. doi: 10.3389/fnins.2015.00137.

Camus, T. (1997). Real-time quantized optical flow. Real-Time Imaging , 3 (2), 71–86. doi:
10.1006/rtim.1996.0048.

Caruana, R., Lawrence, S., & Giles, C. L. (2001). Overfitting in neural nets: Backpropaga-
tion, conjugate gradient, and early stopping. In Advances in neural information processing
systems (pp. 402–408).

Censi, A., & Scaramuzza, D. (2014). Low-latency event-based visual odometry. In Proceedings
of the 2014 IEEE International Conference on Robotics and Automation (pp. 703–710). doi:
10.1109/icra.2014.6906931.

Chahl, J. S., Srinivasan, M. V., & Zhang, S. W. (2004). Landing strategies in honeybees
and applications to uninhabited airborne vehicles. The International Journal of Robotics
Research, 23 (2), 101–110. doi: 10.1177/0278364904041320.

Cho, D. D., & Lee, T. (2015). A review of bioinspired vision sensors and their applications.
Sensors and Materials, 27 (6), 447–463. doi: 10.18494/sam.2015.1083.

Conradt, J., Berner, R., Cook, M., & Delbruck, T. (2009). An embedded AER dynamic vision
sensor for low-latency pole balancing. In Proceedings of the 2009 IEEE 12th International
Conference on Computer Vision Workshops (pp. 780–785).

Costante, G., Mancini, M., Valigi, P., & Ciarfuglia, T. A. (2016). Exploring representa-
tion learning with CNNs for frame-to-frame ego-motion estimation. IEEE Robotics and
Automation Letters, 1 (1), 18–25. doi: 10.1109/lra.2015.2505717.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

126 BIBLIOGRAPHY

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018). Loihi:
A neuromorphic manycore processor with on-chip learning. IEEE Micro, 38 (1), 82–99.

Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007). MonoSLAM: Real-time single
camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (6).
doi: 10.1109/tpami.2007.1049.

de Croon, G. C. H. E. (2016). Monocular distance estimation with optical flow maneuvers
and efference copies: a stability-based strategy. Bioinspiration & Biomimetics, 11 (1). doi:
10.1088/1748-3190/11/1/016004.

de Croon, G. C. H. E., Ho, H., De Wagter, C., Van Kampen, E., Remes, B., & Chu, Q. P.
(2013). Optic-flow based slope estimation for autonomous landing. International Journal
of Micro Air Vehicles, 5 (4), 287–297. doi: 10.1260/1756-8293.5.4.287.

Delbruck, T. (2007). jAER Open Source Project. Retrieved from
https://sourceforge.net/projects/jaer/.

Delbruck, T., & Lang, M. (2013). Robotic goalie with 3 ms reaction time at 4% CPU load
using event-based dynamic vision sensor. Frontiers in Neuroscience, 7 , 1–7.

Delorme, A., Gautrais, J., Van Rullen, R., & Thorpe, S. (1999). SpikeNET: A simulator for
modeling large networks of integrate and fire neurons. Neurocomputing , 26 , 989–996. doi:
10.1016/s0925-2312(99)00095-8.

Demuth, H. B., Beale, M. H., De Jess, O., & Hagan, M. T. (2014). Neural network design.
Martin Hagan.

De Valois, R. L., Cottaris, N. P., Mahon, L. E., Elfar, S. D., & Wilson, J. A. (2000). Spatial
and temporal receptive fields of geniculate and cortical cells and directional selectivity.
Vision Research, 40 (27), 3685–3702. doi: 10.1016/s0042-6989(00)00210-8.

De Wagter, C., Tijmons, S., Remes, B. D. W., & de Croon, G. C. H. E. (2014). Autonomous
flight of a 20-gram flapping wing MAV with a 4-gram onboard stereo vision system. In
Proceedings of the 2014 IEEE international conference on robotics and automation (pp.
4982–4987).

Diebel, J. (2006). Representing attitude: Euler angles, unit quaternions, and rotation vectors.
Matrix , 58 (15-16), 1–35.

Diehl, P. U., & Cook, M. (2015). Unsupervised learning of digit recognition using spike-
timing-dependent plasticity. Frontiers in Computational Neuroscience, 9 , 1–9. doi:
10.3389/fncom.2015.00099.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S. C., & Pfeiffer, M. (2015). Fast-classifying,
high-accuracy spiking deep networks through weight and threshold balancing. In Pro-
ceedings of the 2015 International Joint Conference on Neural Networks (pp. 1–8). doi:
10.1109/ijcnn.2015.7280696.

Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., et al.
(2015). FlowNet: Learning optical flow with convolutional networks. In Proceedings

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

https://sourceforge.net/projects/jaer/

BIBLIOGRAPHY 127

of the 2015 IEEE International Conference on Computer Vision (pp. 2758–2766). doi:
10.1109/iccv.2015.316.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12 (Jul), 2121–2159.

Eichner, H., Joesch, M., Schnell, B., Reiff, D. F., & Borst, A. (2011). Internal
structure of the fly elementary motion detector. Neuron, 70 (6), 1155–1164. doi:
10.1016/j.neuron.2011.03.028.

Eigen, D., Puhrsch, C., & Fergus, R. (2014). Depth map prediction from a single image using
a multi-scale deep network. In Advances in Neural Information Processing Systems (pp.
2366–2374).

Expert, F., & Ruffier, F. (2012). Controlling docking, altitude and speed in a circu-
lar high-roofed tunnel thanks to the optic flow. In Proceedings of the 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems (pp. 1125–1132). doi:
10.1109/iros.2012.6385946.

Expert, F., & Ruffier, F. (2015). Flying over uneven moving terrain based on optic-flow cues
without any need for reference frames or accelerometers. Bioinspiration & Biomimetics,
10 (2). doi: 10.1088/1748-3182/10/2/026003.

Feng, J. (2003). Computational neuroscience: A comprehensive approach. CRC press.

Ferster, D., & Spruston, N. (1995). Cracking the neuronal code. Science, 270 (5237), 756.
doi: 10.1126/science.270.5237.756.

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications
of the ACM , 24 (6), 381–395.

Fleet, D. J. (2012). Measurement of image velocity (Vol. 169). Springer Science & Business
Media.

Fleet, D. J., & Jepson, A. D. (1990). Computation of component image velocity from
local phase information. International Journal of Computer Vision, 5 (1), 77–104. doi:
10.1007/bf00056772.

Forster, C., Pizzoli, M., & Scaramuzza, D. (2014). SVO: Fast semi-direct monocular visual
odometry. In Proceedings of the 2014 IEEE International Conference on Robotics and
Automation (pp. 15–22). doi: 10.1109/icra.2014.690658.

Fortun, D., Bouthemy, P., & Kervrann, C. (2015). Optical flow modeling and computation:
A survey. Computer Vision and Image Understanding , 134 , 1–21.

Franceschini, N., Riehle, A., & Le Nestour, A. (1989). Directionally selective motion detection
by insect neurons. In Facets of Vision (pp. 360–390). Springer. doi: 10.1007/978-3-642-
74082-4 17.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

128 BIBLIOGRAPHY

Fraundorfer, F., Heng, L., Honegger, D., Lee, G. H., Meier, L., Tanskanen, P., et al. (2012).
Vision-based autonomous mapping and exploration using a quadrotor mav. In Proceedings
of the 2012 IEEE International Conference on Intelligent Robots and Systems (pp. 4557–
4564). doi: 10.1109/iros.2012.6385934.

Fuentes-Pacheco, J., Ruiz-Ascencio, J., & Rendón-Mancha, J. M. (2015). Visual simultaneous
localization and mapping: a survey. Artificial Intelligence Review , 43 (1), 55–81. doi:
10.1007/s10462-012-9365-8.

Gallego, G., Lund, J. E. A., Mueggler, E., Rebecq, H., Delbruck, T., & Scaramuzza, D. (2017).
Event-based, 6-DOF camera tracking from photometric depth maps. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 1–11.

Gautama, T., & van Hulle, M. A. (2002). A phase-based approach to the estimation of the
optical flow field using spatial filtering. IEEE Transactions on Neural Networks, 13 (5),
1127–1136. doi: 10.1109/tnn.2002.1031944.

Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? The
KITTI vision benchmark suite. In Proceedings of the 2012 IEEE Conference on Computer
Vision and Pattern Recognition (pp. 3354–3361). doi: 10.1109/cvpr.2012.6248074.

Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: Single neurons, populations,
plasticity. Cambridge University Press. doi: 10.1017/cbo9780511815706.

Gewaltig, M. O., & Diesmann, M. (2007). Nest (neural simulation tool). Scholarpedia, 2 (4),
1430. doi: 10.4249/scholarpedia.1430.

Geyer, C., & Daniilidis, K. (2000). A unifying theory for central panoramic systems and
practical implications. European Conference on Computer Vision, 445–461. doi: 10.1007/3-
540-45053-x 29.

Ghosh-Dastidar, S., & Adeli, H. (2009). Spiking neural networks. International Journal of
Neural Systems, 19 (04), 295–308. doi: 10.1142/s0129065709002002.

Gibson, J. J. (1950). The perception of the visual world.

Giulioni, M., Camilleri, P., Dante, V., Badoni, D., Indiveri, G., Braun, J., et al. (2008). A
VLSI network of spiking neurons with plastic fully configurable “stop-learning” synapses.
In Proceedings of the 15th IEEE International Conference on Electronics, Circuits and
Systems (pp. 678–681). doi: 10.1109/ICECS.2008.4674944.

Giulioni, M., Lagorce, X., Galluppi, F., & Benosman, R. B. (2016). Event-based computation
of motion flow on a neuromorphic analog neural platform. Frontiers in Neuroscience, 10 ,
1–13. doi: 10.3389/fnins.2016.00035.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Goodman, D., & Brette, R. (2008). Brian: a simulator for spiking neural networks in Python.
Frontiers in Neuroinformatics. doi: 10.3389/neuro.11.005.2008.

Grabe, V., Bülthoff, H. H., Scaramuzza, D., & Giordano, P. R. (2015). Nonlinear ego-motion
estimation from optical flow for online control of a quadrotor uav. The International Journal
of Robotics Research, 34 (8), 1114–1135.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

BIBLIOGRAPHY 129

Graves, A. (2013). Generating sequences with recurrent neural networks. Retrieved from
https://arxiv.org/abs/1308.0850.

Graves, A., Mohamed, A. R., & Hinton, G. (2013). Speech recognition with deep recurrent
neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing (pp. 6645–6649). doi: 10.1109/icassp.2013.6638947.

Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., et al. (2000).
Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience,
12 (5), 711–720. doi: 10.1162/089892900562417.

Grzywacz, N. M., & Yuille, A. L. (1990). A model for the estimate of local image velocity by
cells in the visual cortex. Proceedings of the Royal Society of London: Biological Sciences,
239 (1295), 129–161. doi: 10.1098/rspb.1990.0012.

Güney, F., & Geiger, A. (2016). Deep discrete flow. In Asian Conference on Computer Vision
(pp. 207–224). doi: 10.1007/978-3-319-54190-7 13.

Harris, C., & Stephens, M. (1988). A combined corner and edge detector. In Alvey Vision
Conference (Vol. 15, pp. 10–5244). doi: 10.5244/c.2.23.

Hassenstein, B., & Reichardt, W. (1956). Systemtheoretische analyse der zeit-, reihenfolgen-
und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chlorophanus.
Zeitschrift für Naturforschung , 11 (9-10), 513–524. doi: 10.1515/znb-1956-9-1004.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
(pp. 770–778). doi: 10.1109/cvpr.2016.90.

Hebb, D. O. (1952). The organisation of behaviour: A neuropsychological theory. Wiley.

Heeger, D. J. (1987). Model for the extraction of image flow. Journal of the Optical Society
of America, 4 (8), 1455–1471. doi: 10.1364/josaa.4.001455.

Heeger, D. J. (1988). Optical flow using spatiotemporal filters. International Journal of
Computer Vision, 1 (4), 279–302. doi: 10.1007/bf00133568.

Herissé, B., Hamel, T., Mahony, R., & Russotto, F. X. (2012). Landing a VTOL unmanned
aerial vehicle on a moving platform using optical flow. IEEE Transactions on Robotics,
28 (1), 77–89. doi: 10.1109/tro.2011.2163435.

Hines, M. L., & Carnevale, N. T. (2006). The NEURON simulation environment. Neural
Computation, 9 (6). doi: 10.1007/978-1-4614-7320-6 795-1.

Ho, H. W., & de Croon, G. C. H. E. (2016). Characterization of flow field divergence for
MAVs vertical control landing. In AIAA Guidance, Navigation, and Control Conference
(pp. 1–13). doi: 10.2514/6.2016-0106.

Ho, H. W., de Croon, G. C. H. E., & Chu, Q. P. (2017). Distance and velocity estimation
using optical flow from a monocular camera. International Journal of Micro Air Vehicles.
doi: 10.1177/1756829317695566.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

https://arxiv.org/abs/1308.0850

130 BIBLIOGRAPHY

Ho, H. W., de Croon, G. C. H. E., van Kampen, E., Chu, Q. P., & Mulder, M. (2016).
Adaptive control strategy for constant optical flow divergence landing. Retrieved from
https://arxiv.org/abs/1609.06767.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9 (8), 1735–1780. doi: 10.1162/neco.1997.9.8.1735.

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and
its application to conduction and excitation in nerve. The Journal of Physiology , 117 (4),
25–71. doi: 10.1007/bf02459568.

Hordijk, B. J. P., Scheper, K. Y. W., & de Croon, G. C. H. E. (2018). Vertical landing for
micro air vehicles using event-based optical flow. Journal of Field Robotics, 35 (1), 69–90.
doi: 10.1007/bf02459568.

Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence,
17 (1-3), 185–203. doi: 10.1016/0004-3702(81)90024-2.

Iakymchuk, T., Rosado-Muñoz, A., Guerrero-Mart́ınez, J. F., Bataller-Mompeán, M., &
Francés-Vı́llora, J. V. (2015). Simplified spiking neural network architecture and STDP
learning algorithm applied to image classification. EURASIP Journal on Image and Video
Processing , 2015 (1), 1–11.

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., & Brox, T. (2017). Flownet
2.0: Evolution of optical flow estimation with deep networks. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (Vol. 2, pp. 1647–1655).
doi: 10.1109/cvpr.2017.179.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural
Networks, 14 (6), 1569–1572. doi: 10.1109/tnn.2003.820440.

Izhikevich, E. M. (2007). Dynamical systems in neuroscience. MIT Press.

Izzo, D., & de Croon, G. C. H. E. (2012). Landing with time-to-contact and ventral optic
flow estimates. Journal of Guidance, Control, and Dynamics, 35 (4), 1362–1367. doi:
10.2514/1.56598.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al. (2014). Caffe:
Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM
International Conference on Multimedia (pp. 675–678). doi: 10.1145/2647868.2654889.

Kendall, A., Grimes, M., & Cipolla, R. (2015). PoseNet: A convolutional network for real-time
6-DOF camera relocalization. In Proceedings of the 2015 IEEE International Conference
on Computer Vision (pp. 2938–2946). doi: 10.1109/iccv.2015.336.

Kendoul, F. (2014). Four-dimensional guidance and control of movement using time-
to-contact: Application to automated docking and landing of unmanned rotorcraft
systems. The International Journal of Robotics Research, 33 (2), 237–267. doi:
10.1177/0278364913509496.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

https://arxiv.org/abs/1609.06767

BIBLIOGRAPHY 131

Kendoul, F., Fantoni, I., & Nonami, K. (2009). Optic flow-based vision system for autonomous
3D localization and control of small aerial vehicles. Robotics and Autonomous Systems,
57 (6), 591–602. doi: 10.1016/j.robot.2009.02.001.

Kendoul, F., Yu, Z., & Nonami, K. (2010). Guidance and nonlinear control system for
autonomous flight of minirotorcraft unmanned aerial vehicles. Journal of Field Robotics,
27 (3), 311–334. doi: 10.1002/rob.20327.

Khan, M. M., Lester, D. R., Plana, L. A., Rast, A., Jin, X., Painkras, E., et al. (2008).
SpiNNaker: mapping neural networks onto a massively-parallel chip multiprocessor. In
Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (pp.
2849–2856). doi: 10.1109/ijcnn.2008.4634199.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., & Masquelier, T. (2016).
STDP-based spiking deep neural networks for object recognition. Retrieved from
https://arxiv.org/abs/1611.01421.

Kingma, D., & Ba, J. (2014). Adam: A method for stochastic opti-
mization. Retrieved from https://arxiv.org/abs/1412.6980. Available from
https://arxiv.org/abs/1412.6980

Kirkwood, A., & Bear, M. F. (1994). Hebbian synapses in visual cortex. Journal of Neuro-
science, 14 (3), 1634–1645.

Kistler, W. M., Gerstner, W., & van Hemmen, J. L. (1997). Reduction of the Hodgkin-Huxley
equations to a single-variable threshold model. Neural Computation, 9 (5), 1015–1045. doi:
10.1162/neco.1997.9.5.1015.

Klein, G., & Murray, D. (2007). Parallel tracking and mapping for small AR workspaces. In
Proceedings of the 6th IEEE and ACM International Symposium on Mixed and Augmented
Reality (pp. 225–234). doi: 10.1109/ismar.2007.4538852.

Konda, K. R., & Memisevic, R. (2015). Learning visual odometry with a convolutional
network. In Proceedings of the 10th International Conference on Computer Vision Theory
and Applications (pp. 486–490). doi: 10.5220/0005299304860490.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet: Classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems (pp.
1097–1105). doi: 10.1145/3065386.

Kueng, B., Mueggler, E., Gallego, G., & Scaramuzza, D. (2016). Low-latency visual odome-
try using event-based feature tracks. In Proceedings of the 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (pp. 16–23). doi: 10.1109/iros.2016.7758089.

Lai, W. S., Huang, J. B., & Yang, M. H. (2017). Semi-supervised learning for optical
flow with generative adversarial networks. In Advances in Neural Information Processing
Systems (pp. 353–363).

Lappe, M., & Rauschecker, J. P. (1993). A neural network for the processing of optic flow
from ego-motion in man and higher mammals. Neural Computation, 5 (3), 374–391. doi:
10.1162/neco.1993.5.3.374.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

https://arxiv.org/abs/1611.01421
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

132 BIBLIOGRAPHY

LeCun, Y. (1989). Generalization and network design strategies. Connectionism in Perspec-
tive, 143–155.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521 (7553), 436–444.

Lee, D. N. (1976). A theory of visual control of braking based on information about time-to-
collision. Perception, 5 (4), 437–459. doi: 10.1068/p050437.

Lee, D. N., Davies, M. N. O., & Green, P. R. (1993). Visual control of velocity of approach
by pigeons when landing. Journal of Experimental Biology , 180 (1), 85–104.

Lee, J. H., Delbruck, T., & Pfeiffer, M. (2016). Training deep spiking neural networks using
backpropagation. Frontiers in Neuroscience, 10 . doi: 10.3389/fnins.2016.00508.

Legenstein, R., Pecevski, D., & Maass, W. (2008). A learning theory for reward-modulated
spike-timing-dependent plasticity with application to biofeedback. Public Library of Sci-
ence: Computational Biology , 4 (10), e1000180. doi: 10.1371/journal.pcbi.1000180.

Lichtsteiner, P., Posch, C., & Delbruck, T. (2008). A 128x128 120 dB 15 µs latency asyn-
chronous temporal contrast vision sensor. IEEE Journal of Solid-State Circuits, 43 (2),
566–576. doi: 10.1109/JSSC.2007.914337.

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep
neural network architectures and their applications. Neurocomputing , 234 , 11–26. doi:
10.1016/j.neucom.2016.12.038.

Longinotti, L. (2014). cAER: A framework for event-based processing on embedded systems.
BSc Thesis. University of Zürich. Retrieved 2017-05-15, from

http://sourceforge.net/projects/jaer/files/cAER/.

Longuet-Higgins, H. C., & Prazdny, K. (1980). The interpretation of a moving retinal image.
Proceedings of the Royal Society of London B: Biological Sciences, 208 (1173), 385–397.
doi: 10.1098/rspb.1980.0057.

Lucas, B. D., & Kanade, T. (1981). An iterative technique of image registration and its
application to stereo. In Proceedings of the 7th International Joint Conference on Artificial
Intelligence (Vol. 2, pp. 674–679).

Maass, W. (1997). Networks of spiking neurons: The third generation of neural network
models. Neural Networks, 10 (9), 1659–1671. doi: 10.1016/s0893-6080(97)00011-7.

Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic
efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275 (5297), 213–215. doi:
10.1126/science.275.5297.213.

Masquelier, T., & Thorpe, S. J. (2007). Unsupervised learning of visual features through
spike timing dependent plasticity. Public Library of Science: Computational Biology , 3 (2),
247–257. doi: 10.1371/journal.pcbi.0030031.

McCarthy, C., & Bames, N. (2004). Performance of optical flow techniques for indoor navi-
gation with a mobile robot. In Proceedings of the 2004 IEEE International Conference on
Robotics and Automation (Vol. 5, pp. 5093–5098). doi: 10.1109/robot.2004.1302525.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

http://sourceforge.net/projects/jaer/files/cAER/

BIBLIOGRAPHY 133

McCarthy, C., Barnes, N., & Mahony, R. (2008). A robust docking strategy for a mobile
robot using flow field divergence. IEEE Transactions on Robotics, 24 (4), 832–842. doi:
10.1109/tro.2008.926871.

McGuire, K., de Croon, G. C. H. E., De Wagter, C., Tuyls, K., & Kappen, H. (2017).
Efficient optical flow and stereo vision for velocity estimation and obstacle avoidance on an
autonomous pocket drone. IEEE Robotics and Automation Letters, 2 (2), 1070–1076. doi:
10.1109/LRA.2017.2658940.

Medathati, N. V. K., Neumann, H., Masson, G. S., & Kornprobst, P. (2016). Bio-inspired
computer vision: Towards a synergistic approach of artificial and biological vision. Com-
puter Vision and Image Understanding , 150 , 1–30. doi: 10.1016/j.cviu.2016.04.009.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F.,
et al. (2014). A million spiking-neuron integrated circuit with a scalable communication
network and interface. Science, 345 (6197), 668–673. doi: 10.1126/science.1254642.

Mostafa, H. (2016). Supervised learning based on temporal coding in spiking neural networks.
Retrieved from https://arxiv.org/abs/1606.08165.

Mouraud, A., Puzenat, D., & Paugam-Moisy, H. (2005). DAMNED: A dis-
tributed and multithreaded neural event-driven simulation framework. Retrieved from
https://arxiv.org/abs/cs/0512018.

Mueggler, E., Huber, B., & Scaramuzza, D. (2014). Event-based, 6-DOF pose tracking for
high-speed maneuvers. In Proceedings of the 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (pp. 2761–2768). doi: 10.1109/iros.2014.6942940.

Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T., & Scaramuzza, D. (2017). The
event-camera dataset and simulator: Event-based data for pose estimation, visual odom-
etry, and SLAM. The International Journal of Robotics Research, 36 (2), 142–149. doi:
10.1177/0278364917691115.

Nagel, H. H. (1990). Extending the oriented smoothness constraint into the temporal domain
and the estimation of derivatives of optical flow. In European Conference on Computer
Vision (pp. 139–148). doi: 10.1007/BFb0014860.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann ma-
chines. In Proceedings of the 27th International Conference on Machine Learning (pp.
807–814). doi: 10.1.1.165.6419.

Nguyen, A., Do, T. T., Caldwell, D. G., & Tsagarakis, N. G. (2017). Real-time pose
estimation for event cameras with stacked spatial LSTM networks. Retrieved from
https://arxiv.org/abs/1708.09011.

Nistér, D. (2004). An efficient solution to the five-point relative pose problem. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26 (6), 756–770. doi: 10.1109/T-
PAMI.2004.17.

Nistér, D., Naroditsky, O., & Bergen, J. (2004). Visual odometry. In Proceedings of the 2004
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Vol. 1,
pp. 652–659). doi: 10.1109/CVPR.2004.1315094.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

https://arxiv.org/abs/1606.08165
https://arxiv.org/abs/cs/0512018
https://arxiv.org/abs/1708.09011

134 BIBLIOGRAPHY

O’Connor, P., Neil, D., Liu, S. C., Delbruck, T., & Pfeiffer, M. (2013). Real-time classification
and sensor fusion with a spiking deep belief network. Frontiers in Neuroscience, 7 . doi:
10.3389/fnins.2013.00178.

Olah, C. (2015). Understanding LSTM networks. (Blog post) Retrieved 2017-06-12, from
http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

Orchard, G., Benosman, R., Etienne-Cummings, R., & Thakor, N. V. (2013). A spiking neural
network architecture for visual motion estimation. In Proceedings of the 2013 IEEE Biomed-
ical Circuits and Systems Conference (pp. 298–301). doi: 10.1109/biocas.2013.6679698.

Orchard, G., & Etienne-Cummings, R. (2014). Bioinspired visual motion estimation. Pro-
ceedings of the IEEE , 102 (10), 1520–1536.

Orchard, G., Jayawant, A., Cohen, G. K., & Thakor, N. (2015). Converting static image
datasets to spiking neuromorphic datasets using saccades. Frontiers in Neuroscience, 9 .
doi: 10.3389/fnins.2015.00437.

Orchard, G., Thakor, N. V., & Etienne-Cummings, R. (2013). Real-time motion estimation
using spatiotemporal filtering in FPGA. In Biomedical Circuits and Systems Conference
(BioCAS), 2013 IEEE (pp. 306–309). doi: 10.1109/biocas.2013.6679700.

Paugam-Moisy, H. (2006). Spiking neuron networks: A survey (Tech. Rep.). Idiap Research
Institute.

Pillai, S., & Leonard, J. J. (2017). Towards visual ego-motion learning in robots. Retrieved
from https://arxiv.org/abs/1705.10279.

Ponulak, F., & Kasinski, A. (2006). ReSuMe learning method for spiking neural networks
dedicated to neuroprostheses control. In Proceedings of the EPFL LATSIS Symposium
2006 on Dynamical Principles for Neuroscience and Intelligent Biomimetic Devices (pp.
119–120).

Posch, C., Matolin, D., & Wohlgenannt, R. (2011). A QVGA 143 dB dynamic range frame-
free PWM image sensor with lossless pixel-level video compression and time-domain CDS.
IEEE Journal of Solid-State Circuits, 46 (1), 259–275. doi: 10.1109/jssc.2010.2085952.

Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., & Delbruck, T. (2014). Retinomor-
phic event-based vision sensors: Bioinspired cameras with spiking output. Proceedings of
the IEEE , 102 (10), 1470–1484. doi: 10.1109/jproc.2014.2346153.

Ramón y Cajal, S., & Azoulay, L. (1955). Histologie du système nerveux de l’homme & des
vertébrés. Consejo Superior de Investigaciones Cientificas, Instituto Ramón y Cajal.

Ranjan, A., & Black, M. J. (2017). Optical flow estimation using a spatial pyramid network.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
(Vol. 2, pp. 2720–2729). doi: 10.1109/cvpr.2017.291.

Rao, R. P. N., & Sejnowski, T. J. (2001). Spike-timing-dependent hebbian plastic-
ity as temporal difference learning. Neural Computation, 13 (10), 2221–2237. doi:
10.1162/089976601750541787.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/abs/1705.10279

BIBLIOGRAPHY 135

Rebecq, H., Horstschaefer, T., Gallego, G., & Scaramuzza, D. (2017). EVO: A geometric
approach to event-based 6-DOF parallel tracking and mapping in real time. IEEE Robotics
and Automation Letters, 2 (2), 593–600. doi: 10.1109/lra.2016.2645143.

Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory informa-
tion by the central nervous system. Sensory Communication, 303–317. doi: 10.7551/mit-
press/9780262518420.003.0017.

Ren, Z., Yan, J., Ni, B., Liu, B., Yang, X., & Zha, H. (2017). Unsupervised deep learning
for optical flow estimation. In Proceedings of the 31st AAAI Conference on Artificial
Intelligence (pp. 1495–1501).

Revaud, J., Weinzaepfel, P., Harchaoui, Z., & Schmid, C. (2015). EpicFlow: Edge-
preserving interpolation of correspondences for optical flow. In Proceedings of the 2015
IEEE Conference on Computer Vision and Pattern Recognition (pp. 1164–1172). doi:
10.1109/cvpr.2015.7298720.

Rombouts, J. O., Roelfsema, P. R., & Bohte, S. M. (2012). Neurally plausible reinforcement
learning of working memory tasks. In Advances in Neural Information Processing Systems
(pp. 1871–1879).

Rombouts, J. O., van Ooyen, A., Roelfsema, P. R., & Bohte, S. M. (2012). Biologically
plausible multi-dimensional reinforcement learning in neural networks. In International
Conference on Artificial Neural Networks (pp. 443–450).

Rosten, E., Porter, R., & Drummond, T. (2010). Faster and better: A machine learning
approach to corner detection. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 32 (1), 105–119. doi: 10.1109/tpami.2008.275.

Rousselet, G. A., Fabre-Thorpe, M., & Thorpe, S. J. (2002). Parallel processing in high-level
categorization of natural images. Nature Neuroscience, 5 (7), 629–630. doi: 10.1038/nn866.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. Retrieved from
https://arxiv.org/abs/1609.04747.

Ruffier, F., & Franceschini, N. (2005). Optic flow regulation: The key to air-
craft automatic guidance. Robotics and Autonomous Systems, 50 (4), 177–194. doi:
10.1016/j.robot.2004.09.016.

Ruffier, F., & Franceschini, N. (2015). Optic flow regulation in unsteady environments:
A tethered MAV achieves terrain following and targeted landing over a moving platform.
Journal of Intelligent & Robotic Systems, 79 (2), 275–293. doi: 10.1007/s10846-014-0062-5.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning representations by
back-propagating errors. Cognitive Modeling , 5 (3), 533–536.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision,
115 (3), 211–252. doi: 10.1007/s11263-015-0816-y.

Rust, N. C., Mante, V., Simoncelli, E. P., & Movshon, J. A. (2006). How MT cells analyze the
motion of visual patterns. Nature Neuroscience, 9 (11), 1421–1431. doi: 10.1038/nn1786.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

https://arxiv.org/abs/1609.04747

136 BIBLIOGRAPHY

Scaramuzza, D., & Fraundorfer, F. (2011). Visual odometry Part I: The first 30
years and fundamentals. IEEE Robotics & Automation Magazine, 18 (4), 80–92. doi:
10.1109/mra.2011.943233.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks,
61 , 85–117. doi: 10.1016/j.neunet.2014.09.003.

Simoncelli, E. P., Adelson, E. H., & Heeger, D. J. (1991). Probability distributions of optical
flow. In Proceedings of the 1991 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (pp. 310–315). doi: 10.1109/CVPR.1991.139707.

Simoncelli, E. P., & Heeger, D. J. (1998). A model of neuronal responses in visual area MT.
Vision Research, 38 (5), 743–761. doi: 10.1016/s0042-6989(97)00183-1.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. Retrieved from https://arxiv.org/abs/1409.1556.

Srinivasan, M. V. (1994). An image-interpolation technique for the computation of optic flow
and egomotion. Biological Cybernetics, 71 (5), 401–415. doi: 10.1007/s004220050100.

Srinivasan, M. V., Zhang, S., Lehrer, M., & Collett, T. (1996). Honeybee navigation en route
to the goal: Visual flight control and odometry. Journal of Experimental Biology , 199 (1),
237–244. doi: 10.1006/anbe.1998.0897.

Stein, R. B. (1965). A theoretical analysis of neuronal variability. Biophysical Journal , 5 (2),
173–194. doi: 10.1016/s0006-3495(65)86709-1.

Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F., & McNeill, S. R. (1983).
Determination of displacements using an improved digital correlation method. Image and
Vision Computing , 1 (3), 133–139.

Sze, B., Chen, Y. H., Yang, T. J., & Emer, J. (2017). Efficient processing of deep neural
networks: A tutorial and survey. Retrieved from https://arxiv.org/abs/1703.09039.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). Going
deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision
and Pattern Recognition (pp. 1–9). doi: 10.1109/cvpr.2015.7298594.

Szeliski, R. (2010). Computer vision: Algorithms and applications. Springer Science &
Business Media. doi: 10.1007/978-1-84882-935-0.

Tavanaei, A., & Maida, A. S. (2017). Multi-layer unsupervised learning in a spiking convolu-
tional neural network. In Proceedings of the 2017 IEEE International Joint Conference on
Neural Networks (pp. 2023–2030).

Teney, D., & Hebert, M. (2016). Learning to extract motion from videos in convolutional
neural networks. Retrieved from https://arxiv.org/abs/1601.07532.

Thorpe, S., Delorme, A., & Van Rullen, R. (2001). Spike-based strategies for rapid processing.
Neural Networks, 14 (6), 715–725. doi: 10.1016/s0893-6080(01)00083-1.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1703.09039
https://arxiv.org/abs/1601.07532

BIBLIOGRAPHY 137

Tschechne, S., Sailer, R., & Neumann, H. (2014). Bio-inspired optic flow from event-based
neuromorphic sensor input. In Proceedings of the 6th IAPR Workshop on Artificial Neural
Networks in Pattern Recogniftion (pp. 171–182). doi: 10.1007/978-3-319-11656-3 16.

Ullman, S. (1979). The interpretation of visual motion. MIT Press. doi: 10.2307/1575119.

Wang, S., Clark, R., Wen, H., & Trigoni, N. (2017). DeepVO: Towards end-to-end visual
odometry with deep recurrent convolutional neural networks. In Proceedings of the 2017
IEEE international Conference on Robotics and Automation.

Weber, J., & Malik, J. (1995). Robust computation of optical flow in a multi-scale
differential framework. International Journal of Computer Vision, 14 (1), 67–81. doi:
10.1007/bf01421489.

Weikersdorfer, D., & Conradt, J. (2012). Event-based particle filtering for robot self-
localization. In Proceedings of the 2012 IEEE International Conference on Robotics and
Biomimetics (pp. 866–870). doi: 10.1109/robio.2012.6491077.

Weinzaepfel, P., Revaud, J., Harchaoui, Z., & Schmid, C. (2013). DeepFlow: Large dis-
placement optical flow with deep matching. In Proceedings of the 2013 IEEE International
Conference on Computer Vision (pp. 1385–1392). doi: 10.1109/iccv.2013.175.

Weiss, S., Achtelik, M. W., Lynen, S., Chli, M., & Siegwart, R. (2012). Real-time onboard
visual-inertial state estimation and self-calibration of mavs in unknown environments. In
Proceedings of the 2012 IEEE International Conference on Robotics and Automation (pp.
957–964). doi: 10.1109/icra.2012.6225147.

Weiss, S., Brockers, R., & Matthies, L. (2013). 4-DOF drift free navigation using inertial
cues and optical flow. In Proceedings of the 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (pp. 4180–4186). doi: 10.1109/iros.2013.6696955.

Wen, H. (2016). VINet: Visual-inertial odometry as a sequence-to-sequence learning problem.
In Proceedings of the 31st AAAI International Conference on Artificial and Intelligence.

Wiesel, T. N. (1982). The postnatal development of the visual cortex and the influence of
environment. Bioscience Reports, 2 (6), 351–377.

Wu, Y., Deng, L., Li, G., Zhu, J., & Shi, L. (2017). Spatio-temporal back-
propagation for training high-performance spiking neural networks. Retrieved from
https://arxiv.org/abs/1706.02609.

Yang, Z., Murray, A., Worgotter, F., Cameron, K., & Boonsobhak, V. (2006). A neuromorphic
depth-from-motion vision model with STDP adaptation. IEEE Transactions on Neural
Networks, 17 (2), 482–495. doi: 10.1109/tnn.2006.871711.

Yu, F., & Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions. Re-
trieved from https://arxiv.org/abs/1511.07122.

Zeiler, M. D. (2012). ADADELTA: An adaptive learning rate method. Retrieved from
https://arxiv.org/abs/1212.5701.

Neuromorphic Computing of Event-Based Data F. Paredes Vallés

https://arxiv.org/abs/1706.02609
https://arxiv.org/abs/1511.07122
https://arxiv.org/abs/1212.5701

138 BIBLIOGRAPHY

Zenke, F., & Ganguli, S. (2017). SuperSpike: Supervised learning in multi-layer spiking
neural networks. Retrieved from https://arxiv.org/abs/1705.11146.

Zhao, S., Li, X., & Bourahla, O. E. F. (2017). Deep optical flow estimation via multi-scale
correspondence structure learning. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence (pp. 3490–3496). doi: 10.24963/ijcai.2017/488.

Zweig, S., & Wolf, L. (2016). InterpoNet, A brain inspired neural network for optical flow
dense interpolation. Retrieved from https://arxiv.org/abs/1611.09803.

F. Paredes Vallés Neuromorphic Computing of Event-Based Data

https://arxiv.org/abs/1705.11146
https://arxiv.org/abs/1611.09803

	Introduction
	Related Work
	Event-Based Vision Sensors
	Spiking Neural Networks
	Models of spiking neurons
	Synaptic plasticity

	Optical Flow Estimation
	Frame-based methods
	Event-based methods

	Relations between Optical Flow, Ego-Motion, and Visual Observables
	Adaptive Spiking Neuron Model and Stable STDP Learning Rule
	Adaptive Spiking Neuron Model
	Stable STDP Learning Rule
	Local inter-lateral competition

	Spiking Neural Network Architecture for Motion Perception
	Input Layer
	SS-Conv Layer: Feature Extraction
	Evaluation

	MS-Conv Layer: Local Motion Perception
	Evaluation

	Pooling Layer: From Local to Global
	Dense Layer: Global Motion Perception
	Evaluation

	Estimation of Visual Observables from Spike-Based Optical Flow
	Readout Mechanism
	Evaluation

	Conclusion
	References

