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ABSTRACT
Powerful predictive AI systems have demonstrated great potential
in augmenting human decision making. Recent empirical work has
argued that the vision for optimal human-AI collaboration requires
‘appropriate reliance’ on AI systems. However, accurately estimat-
ing the trustworthiness of AI advice at the instance level is quite
challenging, especially in the absence of performance feedback
pertaining to the AI system. In practice, the performance disparity
of machine learning models on out-of-distribution data makes the
dataset-specific performance feedback unreliable in human-AI col-
laboration. Inspired by existing literature on critical thinking and
mindsets, we propose debugging an AI system as an intervention to
foster appropriate reliance. This paper explores whether a critical
evaluation of AI performance within a debugging setting can better
calibrate users’ assessment of an AI system. Through a quantitative
empirical study (𝑁 = 234), we found that our proposed debugging
intervention does not work as expected in facilitating appropriate
reliance. Instead, we observe a decrease in reliance on the AI system
— potentially resulting from an early exposure to the AI system’s
weakness. Our findings have important implications for designing
effective interventions to facilitate appropriate reliance and better
human-AI collaboration.
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1 INTRODUCTION
With the rise of deep learning systems over the last decade, there
has been widespread adoption of AI systems in supporting human
decision makers [33], albeit without always fully understanding
the societal impact or downstream consequences of relying on such
systems [13, 14]. Due to the opaqueness of some AI systems, users
(especially laypeople) have struggled to determine when exactly
they are trustworthy. To realize the full potential of complementary
team performance [3], human decision makers need to identify
when they should rely on AI systems and when they are better off
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relying on themselves. Such a reliance pattern has been defined as
appropriate reliance [26, 33, 43, 51].

In practice, it is common that users need to deal with data from
unknown distributions and unseen contexts, meaning that AI sys-
tems in the real world need to provide advice on out-of-distribution
data [9, 42]. Under such circumstances, the estimated performance
of an AI system or the so-called ‘stated accuracy’ [25, 49, 61] of
the system (i.e., accuracy on pre-defined test sets) cannot faithfully
reflect the trustworthiness of the AI system. To help users assess
the trustworthiness of AI systems, a practical solution that has been
proposed, is to provide meaningful explanations along with AI ad-
vice [50, 56]. Post-hoc explanations have been found to improve
user understanding of AI advice in empirical studies exploring
human-AI decision making [33, 58]. However, such explanations
require relatively high AI literacy [8] and domain expertise [23] to
verify. As a result, most existing XAI methods have remained inef-
fective in helping laypeople assess the trustworthiness of AI advice
at the instance level, adversely affecting their degree of appropriate
reliance (often inducing over-reliance) on AI systems [7, 58].

To realize the goal of appropriate reliance, human decision mak-
ers need to be capable of evaluating AI advice and the trustwor-
thiness of the AI system critically. We argue that such a critical
mindset can help users avoid blindly following AI advice (i.e., avoid-
ing over-reliance), and also prevent them from distrusting AI advice
when it can be productive (i.e., avoiding under-reliance). Inspired
by recent works on explanation-based human debugging of AI sys-
tems [1, 37], we propose explanation-based debugging as a training
intervention to increase appropriate reliance on AI systems. We
posit that such a debugging intervention has the potential to help
laypeople understand the limitations of AI systems — that neither
explanations of the AI advice nor the advice itself are always
reliable. Recognizing these limitations can help users better un-
derstand when an AI system is trustworthy and thereby increase
appropriate reliance on the system. In this paper, we aim to empiri-
cally evaluate the effectiveness of using a debugging intervention as
a means to increase appropriate reliance. We address the following
research questions — (RQ1) How can a debugging intervention
help users to estimate the performance of an AI system, both at the
instance and at the global level? and (RQ2) How does a debugging
intervention affect the reliance of users on an AI system?

To this end, we propose three hypotheses considering the effect
of the debugging intervention on AI performance assessment as
well as reliance, and the task ordering effect of debugging inter-
vention on appropriate reliance. We tested these hypotheses in
an empirical study (𝑁 = 234) of human-AI decision making in a
deceptive review detection task (i.e., identifying whether a review
excerpt is written based on real experience). However, we found
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that the proposed debugging intervention neither calibrates user
estimation of AI performance nor promotes appropriate reliance.

Our results highlight that when presented with the weakness
of the AI system in an early stage of the debugging intervention,
users underestimate AI performance and rely less on the AI sys-
tem. Users’ overestimation of their own competence may further
amplify such an effect. Through an analysis exploring relatively
less-competent individuals, we found that the underestimation of
AI trustworthiness may also play a role in shaping under-reliance,
which is potentially relevant to the metacognitive bias called the
Dunning-Kruger effect [31]. Our work has important implications
for designing effective interventions to promote appropriate re-
liance in the context of human-AI decision making.

2 RELATEDWORK
We position our work in the context of (a) studies on human-AI
decision making, (b) appropriate reliance on AI systems, and (c)
explanation-based debugging of machine learning systems.
Human-AI Decisionmaking. In recent years, deep learningmeth-
ods have been used in a wide range of applications (like medical
image analysis [40], autonomous driving [21]). However, due to the
intrinsic uncertainty and opaqueness, it would be undesirable to
make such AI systems automate decisionmaking, especially in high-
stakes scenarios (e.g., legal judgment, medical diagnosis). Under
such circumstances, AI systems are expected to play a supporting
role for human decision makers. According to GDPR, users have
the right to obtain meaningful explanations to work with such AI
systems [53]. Motivated by this, a series of work has proposed con-
structing human-centered explainable AI systems [11, 12, 24, 39]
for better human-AI collaboration. Existing work has widely ex-
plored how different user factors (e.g., expertise [10, 45], risk per-
ception [20], machine learning literacy [8]) and interaction designs
(e.g., performance feedback [2, 49, 60], explanation [58], user tuto-
rial [34, 44]) will affect user trust in and reliance on AI systems.
Appropriate Reliance on AI Systems. One important goal of
human-AI decision making is complementary team performance [3,
42], which requires appropriate reliance [36]. In practice, however,
humans always misuse (i.e., over-reliance [48]) or disuse (i.e., under-
reliance [5, 58, 59]) AI systems. Such inappropriate reliance results
in sub-optimal team performance, which is even worse than AI
alone [3, 42]. To mitigate such issues, existing work has proposed
different interventions including user tutorials [8, 34], cognitive
force functions [4], and improving AI literacy [9]. Another stream
of work proposed to improve the transparency of AI systems with
effective explanations [35, 58], performance feedback [43], and
global model properties [6]. In summary, these works presented
users with extra information about AI systems (more than advice)
or changed users’ mindset and knowledge of AI systems.
Explanation-based Debugging. Explanation-based debugging
was found to be helpful for improving human understanding of ma-
chine learning system [32]. Recent works [1, 37] have explored how
to leverage explanations for model debugging across a wide range
of tasks. The core idea of explanation-based debugging is to check
whether the explanations from AI systems misalign with human
knowledge. From human feedback, it would be possible to improve

machine learning models’ robustness, e.g., by reducing spurious
reasoning patterns [41, 54] and bias in dataset [27]. Debugging in
programming is the process by which programmers can determine
the potential errors in the source code and resolve these errors [57].
Inspired by this, we proposed debugging as an intervention to help
participants understand the limitations of both explanations and
advice of AI systems. In such an error finding and resolution pro-
cess, users may learn when the AI system is trustworthy as a result
of engaging directly with their pitfalls.

3 TASK, HYPOTHESES, AND INTERVENTION
3.1 Deceptive Review Detection Task
In this paper, we base our experiment within a challenging task –
deceptive review detection. In each task, based on a hotel review,
participants are asked to identify whether it is genuine (i.e., written
by real customers) or deceptive (i.e., written by people who did not
stay at the hotel). An example of this task is shown in Figure 1(a).
This task has been used in prior work exploring Human-AI decision
making [34, 35]. We also used the same public dataset [35]. 1

Using Text Highlights as Explanations. In our study, we con-
sider a real-world scenario where the performance of an AI sys-
tem is not provided or available. To help participants assess the
trustworthiness of advice from the AI system in each instance of
decision making, we provide local explanations for each predic-
tion. Following Lai et al. [34], we adopted BERT-LIME to generate
text highlights as local explanations for each AI advice. We first
finetuned the BERT [29] (bert-base-uncased) on the deceptive re-
view detection dataset, and then generated the top-10 highlighted
features from post-hoc XAI method LIME [50] as explanations.
Selection of Tasks. To measure the effect of the debugging inter-
vention in our study, two batches of tasks with compatible difficulty
levels are required. For that purpose, we conducted a pilot study
on human performance over 20 tasks randomly sampled from eval-
uation and test set of the deceptive review detection dataset. We
divided the trial cases into two sets of 10 tasks with equal human
performance in a pilot study (10 participants). In each task batch,
the AI system achieved 80% accuracy.
Two-stage Decision Making. Following existing empirical study
design of human-AI decision making [18, 19, 26], all participants
in our study work on each trial case with two stages of decision
making. In the first stage, only task input is provided; participants
make an initial decision by themselves. After that, the same task
input along with a local explanation and AI advice are provided.
Participants make their final decision based on all information.

3.2 Hypotheses
Our experiment was designed to answer questions surrounding
the impact of the proposed explanation-based debugging interven-
tion on user estimation of AI performance, and user reliance on
AI systems. Putting users into a debugging setting, they will try to
challenge the AI advice and explanations. Along with the real-time
feedback about the debugging results, they can have a better un-
derstanding of how the AI system works and when the explanation

1https://github.com/vivlai/deception-machine-in-the-loop
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(a) Task interface of the deceptive review detection task. (b) The debugging interface.

Figure 1: Screenshots of deceptive review detection task in our study.

and advice are reliable. Thus, they can more accurately estimate
the performance of the AI system when no performance of the AI
system is provided, and rely on the AI system more appropriately.
Based on this, we expect to observe:
• H1: Encouraging users to critically evaluate the trustworthiness
of AI advice at the instance level in a debugging intervention,
will improve their assessment of the AI system’s performance at
the instance and global levels.

• H2: Encouraging users to critically evaluate the trustworthiness
of AI advice at the instance level in a debugging intervention,
will improve appropriate reliance on the system.
Within a debugging intervention, to present a balanced view of

AI systems, we considered showing both the strength and weakness
of an AI system (by providing accurate or inaccurate advice). Thus,
multiple tasks of different characteristics will be presented in the
debugging intervention.When these tasks are presented in different
orders, users may show different learning effects, which further
affects the reliance on AI systems. Thus, we hypothesize that:
• H3: The trustworthiness of AI advice at the instance level in a
debugging intervention corresponds to an ordering effect with
respect to appropriate reliance.

3.3 Debugging Intervention
To help participants accurately assess the trustworthiness of AI
advice at the instance level and calibrate their reliance on the AI
system, we designed a debugging intervention with explanations
generated with post-hoc explanation methods LIME [50]. Our data,
code, and further analysis are available at the companion page.2

Explanation-Based Human Debugging. Through the debugging
phase, all participants are supposed to learn two important facts
about the AI system: (1) the AI advice is not always correct, and
(2) explanations are not always informative and helpful in identi-
fying the trustworthiness of AI advice. Thus, we considered two
main factors for each task: (1) the correctness of AI advice, and (2)
2https://osf.io/dh34y/?view_only=6a6833eafdbd4d5daa8c036579247159

whether an explanation is informative (i.e., combined with guide-
lines, whether or not such explanations can help participants easily
identify the correct answer). Participants subjected to training were
presented with a hotel review with explanatory elements consist-
ing of a model prediction and color-coded highlights showing 10
predominant features. Each token highlight shows the contribu-
tion of the token to the model prediction on a 5-point Likert scale:
deceptive, somwhat deceptive, neutral, somewhat genuine, genuine.
This difference in the contribution is distinguished by the color and
intensity of the highlight shown in the interface.

An example of the debugging phase is shown in Figure 1(b).
They are instructed to read the text and, when deemed necessary,
refine the explanations by adjusting the highlights and indicating
whether the AI advice is correct. After each task, the correctness
of AI advice and missed adjustments will be shown as real-time
feedback. Besides realizing the explanations are not always helpful,
we hope participants can learn patterns they can rely on to make
decisions given the guidelines.With that wish, the authorsmanually
adjusted the highlights generated with BERT-LIME according to
the task guidelines (from [34]). The adjusted highlights are taken
as ground truth for the debugging phase.
Selection of the Debugging Tasks. The eight tasks presented
in our debugging phase are: (1) two tasks with correct AI advice
and informative explanations, (2) two tasks with correct AI advice
and uninformative explanations, (3) two tasks with incorrect AI
advice and informative explanations, (4) two tasks with incorrect
AI advice and uninformative explanations. The tasks are balanced
in whether explanations are informative and AI advice is correct.
While the informative explanations are manually selected, the cor-
rectness of AI advice is determined randomly. In practice, it would
be impossible to estimate the performance of the AI system on data
sampled from an unknown distribution. In our study, the accuracy
of the AI system in the debugging phase was intentionally set to
50%, which is lower than the 80% accuracy during the task phase.
On the one hand, our debugging phase is proposed to develop a
critical mindset about the AI system, instead of informing users
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how well the AI system performs. On the other hand, this setup
prevents information leakage about AI performance, which may
substantially affect user reliance behaviors.
Ordering Effect. When presenting the debugging phase to partici-
pants, the order of tasks may have an impact on their estimation
of AI performance and reliance on the AI system. According to
existing work [46, 55], first impressions greatly affect user esti-
mation of AI performance and user trust in AI systems. Overall,
both correct AI advice and informative explanations tend to leave
positive impression on users. As pointed out by a recent study [47],
the public would prioritize the accuracy of AI systems over inter-
pretability. Thus, compared with “wrong AI advice, informative
explanation” case, we would consider “correct AI advice, uninfor-
mative explanation” will leave participants a better impression.
With these concerns, we designed three orders of tasks: (1) Random
order. (2) Decreasing impression order : correct AI advice, informative
explanation → correct AI advice, uninformative explanation →
wrong AI advice, informative explanation → wrong AI advice, un-
informative explanation. (3) Increasing impression order : wrong AI
advice, uninformative explanation→ wrong AI advice, informative
explanation → correct AI advice, uninformative explanation →
correct AI advice, informative explanation.

4 STUDY DESIGN

Experimental Conditions. In all conditions, the top-10 most im-
portant features obtained from BERT-LIME are highlighted as an
explanation for AI advice to help participants identify the trust-
worthiness of AI advice. The differences between conditions are
whether debugging intervention is adopted and the order of de-
bugging tasks. To comprehensively study the effect of debugging
intervention, we considered four experimental conditions in our
study: (1) no debugging intervention (Control), (2) with debugging
intervention, debugging tasks in random order (Debugging-R), (3)
with debugging intervention, debugging tasks in decreasing im-
pression order (Debugging-D), (4) with debugging intervention,
debugging tasks in increasing impression order (Debugging-I).
Measures And Variables. To verify H1, we assessed participants’
global estimation of AI system’s performance with two questions:
“From the previous 10 tasks, on how many tasks do you estimate
the AI advice to be correct?” and “From the previous 10 tasks, how
many questions do you estimate to have been answered correctly?
(after receiving AI advice)”. The answers to the two questions cor-
respond to participants’ estimation of AI performance and team
performance respectively. We can refer to the estimated trustwor-
thiness as estimated AI performance (EAP) and estimated team
performance (ETP). Comparing that performance estimation with
actual performance in abstract difference, we can calculate the
degree of miscalibration of AI performance (MAP) and team per-
formance (MTP). For the AI performance estimation at instance
level, we calculated the number of tasks they made the correct final
decision with an indication of “Very Confident” (CCD).

To verify H2 and H3, we measured both reliance and appropri-
ate reliance of participants on the AI system. Details of calculating
these measures can be found in [26]. The reliance is measured with
two widely adopted metrics: the Agreement Fraction and the

Switch Fraction. These look at the degree to which participants
are in agreement with AI advice, and how often they adopt AI ad-
vice in cases of initial disagreement. As for the appropriate reliance,
we followed Max et al. [51] to calculate the appropriate reliance
with relative positive AI reliance (RAIR) and relative positive self-
reliance (RSR). The two measures are calculated when an initial
disagreement between the human initial decision and AI advice
exists where the correct answer occurs in one of them. In addi-
tion, we consider the accuracy in batches to measure participants’
performance with AI assistance.

For a deeper analysis of our results, a number of additional
measures were considered based on observations from existing
literature [38, 52, 55]: Trust in Automation (TiA) questionnaire [30],
a validated instrument to measure (subjective) trust [55] consisting
of 6 subscales. Affinity for Technology Interaction Scale (ATI) [16],
administered in the pre-task questionnaire. Thus, we account for
the effect of participants’ affinity with technology on their reliance
on systems [55]. NASA-TLX questionnaire [22] for the working
load assessment of the debugging intervention.
Participants. Following previous work [25, 26], we computed the
required sample size in a power analysis for a Between-Subjects
ANOVA using G*Power [15]. This resulted in a required sample size
of 230 participants. We thereby recruited 324 participants from the
crowdsourcing platform Prolific, in order to accommodate potential
exclusion. All participants were rewarded with £3.8, amounting to
an hourly wage of £7.6 (estimated completion time was 30 minutes).
We rewarded participants with extra bonuses of £0.05 for every
correct decision in the 20 trial cases. Such an extra bonus for correct
decisions provides an additional monetary incentive for crowd
workers to try their best on each task, a widely adopted design in
existing work to increase participant reliability [9, 34].
Filter Criteria. All participants were proficient English speakers
above the age of 18. For a high-quality study, we require participants
to have an approval rate of at least 90% and more than 80 successful
submissions on the Prolific platform. After reading the basic intro-
duction and guidelines about the deceptive review detection task,
participants who failed any qualification test (about understanding
the task) were removed from our study. After data collection, we
excluded participants from our analysis if they failed any attention
check (90 participants). The resulting sample of 234 participants
had an average age of 39 (𝑆𝐷 = 13) and a gender distribution (48.7%
female, 49.6% male, 1.7% other).
Procedure. The complete procedure of our study is illustrated in
Figure 2. All participants are first presented with an introduction
of the deceptive review detection task. According to Lai et al. [34],
guidelines about identifying deceptive reviews are highly useful in
improving user performance on this task. Thus, we also follow them
to provide the guidelines in the introduction. Then, participants will
be checked with two qualification questions to ensure they carefully
read the instruction and understand this task. Any failure at the
qualification test will result in removal from our study. All reserved
participants will then be asked to answer a pre-task questionnaire.

For all conditions, participants will work on the first batch of
tasks and go through a post-task questionnaire to assess AI perfor-
mance and subjective trust in AI system (i.e., with TiA subscales).
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Instructions Pre-task
Questionnaire Task Batch 1

Debugging batch
Debugging-R

Task Batch 2Post-task
Questionnaire

ATI, TiA-PtT,
TiA-Familiarity

Post-task
Questionnaire

Done

Start

Assessment (DV),
Trust (DV)

Assessment (DV),
Trust (DV) 10 trial cases

8 cases
Differ in conditions

10 trial cases

NASA-TLX Debugging batch
Debugging-I

Debugging batch
Debugging-D

Task Batch
Control

NASA-TLX

NASA-TLX

Figure 2: Illustration of the procedure that participants fol-
lowed within our study.

The main difference between conditions (shown in the dashed box
of Figure 2) is the 8 tasks presented after the post-task question-
naire. In condition Control, participants will work on the 8 tasks as
normal trial cases. No debugging intervention and result feedback
will be provided. In conditions with debugging intervention, the
participants will go through the debugging tasks with different task
orders and be asked about the task working load resulting from the
debugging intervention, using the NASA-TLX [22] questionnaire.
Then, participants in all conditions will continue to work on an-
other batch of tasks and answer the same post-task questionnaire
as the one after the first task batch. The AI accuracy on each task
batch is 80%. To eliminate the potential ordering effect of trial cases,
we randomly assigned one batch of selected tasks (see section 3.1)
as the first batch and shuffled the task order within each batch.

5 RESULTS AND ANALYSIS
In our analysis, we only consider participants who passed all at-
tention checks as a control of participant reliability [17]. Partic-
ipants were distributed in a balanced fashion over experimental
conditions: 57 (Control), 59 (Debugging-R), 60 (Debugging-D), 58
(Debugging-I). On average, participants spend around 51 minutes.
Due to the page limit, more results can be found in the Appendix.
Performance Overview. On average across all conditions, partici-
pants achieved an accuracy of 0.64 over the two batches of tasks,
still lower than the aforementioned AI accuracy of 0.8. The agree-
ment fraction is 0.66 while the switching fraction is 0.31. With
these measures, we confirm that participants in our study did not
blindly rely on the AI system when disagreement appeared. In the
two batches of tasks, the average estimated AI performance is 5.81
and 5.79 respectively; the average estimated team performance is
6.64 and 6.44 respectively. Overall, participants underestimated the
performance of the AI system and believed they could outperform
the AI system on this task after receiving AI advice.

5.1 Hypothesis Tests
5.1.1 H1: the effect of critical evaluation setting on AI performance
estimation. To verify H1, we used Wilcoxon signed rank tests to
compare all assessment-based dependent variables of participants
before and after the debugging intervention. The results are shown

in Table 1. Although no significant results were found to support
H1, participants in Debugging-D condition showed a worse MTP
after the debugging intervention, in contrast to our expectations.
Thus, H1 is not supported.

Table 1: Wilcoxon signed ranks test results for H1 on AI
performance estimation. “†” indicates the effect of variable
is significant at the level of 0.017 (adjusted alpha).

Condition Debugging Debugging-R Debugging-D Debugging-I
DV 𝑇 𝑝 𝑇 𝑝 𝑇 𝑝 𝑇 𝑝

MAP 3833 .662 363 .742 463 .238 457 .826
MTP 4006 .957 512 .892 324 .992† 528 .160
CCD 3761 .753 474 .717 379 .660 429 .603

5.1.2 H2: the effect of critical evaluation setting on appropriate re-
liance. Similarly, to verify H2, we used Wilcoxon signed rank tests
to compare all reliance-based dependent variables of participants
before and after the debugging intervention. Overall in all condi-
tions with the debugging intervention, the improvement in reliance
caused by debugging intervention was not statistically significant.
With a post-hoc Mann-Whitney test on Accuracy, we found that:
after the debugging intervention, the accuracy drops significantly.
For a fine-grained analysis, we further conducted Wilcoxon signed
rank tests on each condition with the debugging intervention. We
found that participants in the Debugging-I condition show a sig-
nificant difference in RAIR, while no significant difference is found
with post-hoc Mann-Whitney test. The observed results do not sup-
port theH2. Although no significant improvement was found in the
performance and reliance measures due to debugging intervention,
we did witness a drop in reliance measures generally: Accuracy
(0.67 → 0.63), Agreement Fraction (0.68 → 0.66), Switch Frac-
tion (0.34 → 0.28), RAIR (0.38 → 0.30), RSR (0.64 → 0.61). This
is evident in the condition Debugging-I: Accuracy (0.68 → 0.63),
Agreement Fraction (0.71 → 0.66), Switch Fraction (0.39 →
0.29), RAIR (0.43 → 0.29), RSR (0.59 → 0.61). When AI advice
is in disagreement with users’ initial decisions, users tend to rely
on themselves more than they should. This results in decreased
(appropriate) reliance and accuracy. In the deceptive review de-
tection tasks, the AI system achieved a better performance than
the participants. The reduced reliance (mainly under-reliance) may
help explain why we found a decreased accuracy on average.

5.1.3 H3: ordering effect of debugging tasks. To analyze the order-
ing effect in the debugging phase, we compared the difference of
reliance-based dependent variables (i.e., the difference between the
second batch and the first batch) and user reliance on the second
batch with participants of all conditions with Kruskal Wallis test.
No significant difference is found with such comparisons. To com-
pare the task working load brought by debugging intervention of
different ordering, we conducted Kruskal-Wallis H-test on the six
measures in the NASA-TLX questionnaire. No significant difference
was found, rejecting H3. To further look at how the ordering effect
of debugging tasks affects the final performance of participants.
We counted the participants who achieved an accuracy level above
80% (i.e., compatible with or better than provided AI system) in the
second task batch. After filtering out the participants who blindly
rely on the AI system (i.e., Agreement Fraction is 1.0), we found
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the number of participants in condition Debugging-D (14) is clearly
more than in condition Debugging-R (9) and Debugging-I (9). In
comparison, the number of participants who achieved an accuracy
level above 80% in condition Control is 11. Although the ordering
effect does not show a significant statistical difference, such an
observation lends partial support to H3.

5.2 Exploratory Analyses

Users’ Estimation of AI Trustworthiness. To further understand
how users’ estimation of AI trustworthiness affects their reliance
and performance, we split the participants in all conditions into
performance-based quartiles: top quartile (top 25%), bottom quartile
(bottom 25%), and middle quartile (other). To avoid the impact of
debugging intervention, we only considered user performance in
the first batch of tasks. To understand how these participants differ
in their appropriate reliance and estimation of AI trustworthiness,
we adopted the Kruskal-Wallis H test and Post-hoc Mann-Whitney
tests to compare the estimated performance and their assessment
of the AI system’s performance at the instance and global levels.
Generally, participants in the top quartile showed more appropriate
reliance (i.e., RAIR and RSR) than the bottom and middle quar-
tile (with statistical significance). The results of user estimation
of performance, AI trustworthiness, and miscalibration of perfor-
mance are shown in Table 2. Overall, participants in the top quartile
showed significantly higher EAP and ETP in comparison with the
bottom and middle quartile. Meanwhile, the top quartile also has a
more precise estimation of AI performance and team performance
(i.e., significantly lowerMAP andMTP) and makes more correct
decisions confidently (significantly higher CCD). It also indicates
that the underestimation of AI trustworthiness can be the main
cause of under-reliance, which results in lower accuracy.

Table 2: Kruskal-WallisH-test results for user estimated trust-
worthiness and miscalibration of estimated performance
based on performance quartiles. “†” indicates the effect of
variable is significant at the level of 0.017 (adjusted alpha).

Variable 𝐻 𝑝 Post-hoc results
EAP 41.54 <.001† Top > Middle > Bottom
ETP 15.85 <.001† Top > Middle, Bottom
MAP 40.89 <.001† Top < Middle < Bottom
MTP 22.67 <.001† Top, Middle < Bottom
CCD 23.17 <.001† Top, Middle > Bottom

6 DISCUSSION

Key Findings. To promote appropriate reliance on AI systems
by calibrating user estimation of AI performance, we proposed a
debugging intervention to educate participants that AI systems
are not always reliable and that the explanations may not always
be informative. As opposed to our hypotheses backed by existing
work, we found that such a debugging intervention fails to calibrate
participants’ estimation of AI performance at both the global and
local levels. Participants tended to rely less on the AI system af-
ter receiving the debugging intervention. Through an exploratory

analysis based on performance quartiles, we found that partici-
pants who performed worse in our study tended to underestimate
AI performance. Thus, their suboptimal team performance can be
largely explained by the under-reliance on the AI system. The plau-
sibility of the XAI intervention [28] can alternatively explain our
findings. The debugging intervention may have potentially made
the XAI (i.e., text highlights in our study) seem less plausible to
users, resulting in a tendency to underestimate AI performance.

In our study, no significant difference was found between the
different ordering of debugging tasks across experimental condi-
tions. However, participants who were exposed to the weakness
of the AI system at the beginning of the debugging intervention
showed a more obvious tendency to disuse the AI system. Such
under-reliance was found to result in sub-optimal team perfor-
mance. This finding is in line with recent work that has uncovered
similar ordering effects and cognitive biases influencing outcomes
in human interaction with intelligent systems [46, 55]: a bad first
impression of an AI system can lead to an underestimation of AI
competence and reduced reliance on the system.
Implications. Our findings suggest that the debugging interven-
tion and similar interventions with training purposes (e.g., user
tutorials) may suffer from the cognitive bias brought by the order-
ing effect within such interventions.While using such interventions
to demonstrate the strength and weakness of AI systems, we should
be careful not to leave users with a bad first impression, highlight-
ing the weakness of the AI system. In our study, participants tended
to be optimistic about the team performance while underestimating
the AI performance. This is possibly caused by the meta-cognitive
bias of the Dunning-Kruger effect [26, 31]. In our study, we found
that less-competent individuals showed a greater tendency to un-
derestimate the AI performance and make fewer correct decisions
with confidence (see Table 2). This indicates that underestimating
AI systems can also contribute to under-reliance in the context of
human-AI decision making. According to He et al. [26], an over-
estimation of self-competence can result in under-reliance on the
AI system. Both the overestimation of self-competence and the
underestimation of AI competence can contribute to an illusion of
superior competence over the AI system. As a result, users with
such an illusion tend to disuse the AI system.

7 CONCLUSION
In an age where laypeople have democratized access to various AI-
based decision support systems on the web, promoting appropriate
reliance on AI systems in decision-making contexts is an important
goal. In this paper, we present an empirical study to understand the
impact of a debugging intervention on the estimation of AI perfor-
mance and user reliance on the AI system. Our results suggest that
we should be careful in presenting the weakness of the AI system to
users to avoid anchoring effects which may result in under-reliance.
While our experimental results do not provide support to our origi-
nal hypotheses informed by prior work, more work is required to
understand the potential of debugging interventions in facilitating
appropriate reliance on AI systems. Future work may explore how
to mitigate potential bias brought by the users’ overestimation of
themselves and the underestimation of AI performance.
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