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Abstract
While the Minimum Euclidean Distance detection is known to be optimal for channels affected by Gaus-
sian noise, it has been shown that Minimum Pearson Distance detection (MPD) may perform better
when the channel is also affected by an unknown offset, though for a good performance some adapta-
tions for classical binary block codes are necessary [9]. It is shown for cosets of first order Reed-Muller
codes ℛ(1,𝑚) containing words of weight 𝑑/2, where 𝑑 is the code’s distance, that the minimum Pear-
son distance is always low for𝑚 ≤ 4. However, it is possible to find cosets where the minimum Pearson
distance is higher for 𝑚 ≥ 5.
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1
Introduction

As anyone who has interacted with other humans in the past two and a half years knows, both data
transmission and storage are essential to our modern lives. In real time, we are able to speak to,
connect and work together with people all over the globe with almost no delay. However, while most
people have some general understanding of computers storing information “as zeros and ones”, the
average person may not know, perhaps, exactly how this works.

In this thesis we will consider the mathematical side of the equation through the lens of coding the-
ory. Coding theory is an application of information theory and it finds its origins in 1948 in the paper (and
later book) The Mathematical Theory of Communication by Claude Shannon[8][10], and in the years
since the field has grown to the point that we cannot live without its applications. It is fundamental to
our ability to reliably transmit and store large amounts of data despite the chances of error produced
by the physical circumstances all this must happen in. There are many different types of errors, like
noise and burst errors among others, and the one central to this project: offset.

This last type of error is a problem in flash drives and other flash-based storage devices like solid
state drives. In this kind of storage device information is stored bit by bit in floating-gate transistors
called “Flash cells”. Information is written into a cell by adding an amount of charge into it correspond-
ing to the value(s) of the particular bit(s) which will be stored in this cell. Later, the information can be
read by measuring this charge and translating it back to bits [7].

However, the problem is that Flash cells experience charge leakage, that is, over a longer period of
time electrons may leak out and thereby lower the charge in a cell. If the charge is lowered too much,
it might become closer to a charge corresponding to another bit than the original [7]. For example,
to simplify things say that a one is stored as a high charge, e.g. one as well, which then starts leak-
ing. We later measure the charge and find 0.4, which is closer to zero than one, so we read the bit as
zero. In reality the situation is a bit more complicated, but this simplified version is how we model offset.

The conventional way of detecting errors, Minimum Euclidean Distance detection, does not perform
well for channels with unknown offset. However, in the article Minimum Pearson Distance Detection
for Multilevel Channels With Gain and/or Offset Mismatch by Schouhamer Immink and Weber it was
shown that Minimum Pearson Distance detection is in fact immune to offset entirely [4]. Later, Weber,
Bu, Cai and Immink proposed three adaptations of binary block codes for which using Minimum Pear-
son Distance detection would show a good performance for channels affected by both noise and offset:
cosets of linear codes, constant weight codes, and unordered codes [9].

In the Bachelor’s thesis Codes for Noisy Channels with unknown offset of Guus van Hemert each
of these options was applied to a different known code and evaluated [3]. However, in this thesis we
will only focus on the first option: using cosets of linear codes, specifically of the Reed-Muller code.
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We will attempt to answer the following question: would cosets of Reed-Muller codes be suitable
to use for channels with unknown offset? To do that, we will first introduce both the basics of Coding
Theory and the findings of Weber et al. in Chapter 2, after which the knowledge needed about Reed-
Muller codes will be introduced in Chapter 3. Finally, in Chapter 4 a number of statements about the
Reed-Muller codes and the possible distances of the cosets are first proven in Sections 4.1 through
4.4. To conclude, the results are then summarized in Section 5.1, and evaluated, and afterwards some
recommendations for further research proposed, in Section 5.2.



2
Background

To provide some insight into the workings of coding theory, the basics will first be covered in Section 2.1,
which will be built upon in Section 2.2 by introducing some concepts that will be used in later chapters.

2.1. Basics of Coding Theory
As was mentioned in the Introduction, coding theory deals with the problem of transmission and storage
of information through a channel, during which errors may occur in the form of noise and offset. Figure
2.1 contains a diagram that roughly shows how this transmission of information happens: A message
is encoded into a codeword, which is then transmitted or stored through a channel where errors may
occur, after which the receiver must decode the word they received for them to be able to read the
original message.

2.1.1. Block Codes
The first step of information transmission is to encode a message into a codeword. These codewords
belong to a set 𝐶, called a code. In the case that all codewords have the same length 𝑛, 𝐶 is called a
block code. All codewords in 𝐶 consist of 𝑛 digits, which might be zeros and ones if 𝐶 is a binary code,
but in general a block code is a subset of [𝑞]𝑛, the 𝑛-dimensional vectorspace over the alphabet [𝑞] or
𝔽𝑞, where 𝑞 = 2 for a binary code. The number of codewords |𝐶| is called the cardinality or size of the
code.

When encoding a message, one or more bits are added in a way to make error correction possible.

Figure 2.1: Diagram showing a model of information transmission as it is considered in coding theory.

3



2.1. Basics of Coding Theory 4

This adds protection from errors, but also redundancy. The information rate

log𝑞 |𝐶|
𝑛

represents how much of a code contains actual information. When there are no redundant bits, the
information rate will be equal to one. Now note that |𝐶| ≤ 𝑞𝑛. If we add two (redundant) bits to make
error correction possible, we’ll find |𝐶| = 𝑞𝑛−2 < 𝑞𝑛. So a code where error correction is possible,
will never have an information rate equal to one. The importance of correcting any errors needs to be
weighed up against the efficiency needed to make a code practical. In practice, available storage size
and time used to send, receive and decode transmissions will provide physical limitations for how much
redundancy is practical.

2.1.2. Channel
Information is transmitted through, or stored in, a channel. Some examples of channels are phone
networks, CDs or DVDs, radio transmissions or hard disks and solid state drives. During transmission
(or storage) noise may cause errors to occur. For example, a zero may be received when a one was
sent or vice versa, or the zeros and ones are switched around in a group of digits (a burst error).

There are many ways to model noise. One such model is the Binary Symmetric Channel (BSC),
where it is assumed that a. no burst errors occur, and b. each digit has the same probability 𝑝 to flip
from a zero to a one or vice versa. In this case the codewords received after transmission are still
elements of [𝑞]𝑛, where the code 𝐶 ⊆ [𝑞]𝑛, and an error will be detected when the codeword received
is not an element of 𝐶, and, as was mentioned before, in some cases it is possible to correct the error.

However, if one were to model the noise as being normally distributed (which is then called Gaus-
sian noise), it would be better to consider the codewords as elements of ℝ𝑛 instead. Then if we send
a codeword 𝐱 ∈ 𝐶 ⊆ ℝ𝑛, we might receive the word 𝐫 = 𝐱 + 𝝂 ∈ ℝ𝑛, where 𝝂 = (𝜈1, … , 𝜈𝑛) and
𝜈𝑖 ∼ 𝒩(0, 𝜎) for all 𝑖 = 1,… , 𝑛 and some standard deviation 𝜎. Again, if 𝐫 ∉ 𝐶, the error is detected and
could potentially be corrected.

When considering the code as a subset of ℝ𝑛, it is also possible to add the offset as a problem in
addition to the noise. Then, if 𝐱 is sent,

𝐫 = 𝐱 + 𝝂 + 𝑏𝟏
may be received, where 𝟏 ∈ ℝ𝑛 is the all one-vector and 𝑏𝟏 ∈ ℝ𝑛 is then the vector representing the
offset, where 𝑏 ∈ ℝ. Note that where noise could have a different value in each digit, the offset is
defined to be the same across the entire word here. This is not always the case in practice, but it is
the only case that will be considered in this project. However, there has also been other research done
into coding techniques that can be used when noise and offset are modeled differently like in [1].

Remark. For both binary codewords 𝐱 ∈ [𝑞]𝑛 and vectors 𝐱 ∈ ℝ𝑛 the same notation is used in this
thesis. However, the latter is only used in the context of words affected by noise and/or offset, in
particular to visualize the decoding of words in Figures 2.2 through 2.7. Whenever we speak of a
“codeword” unaffected by noise or offset, it may be assumed to be an element of [𝑞]𝑛.

2.1.3. Construction of Linear Codes
In this project a particular type of block code, the linear code, will be used:

Definition 2.1. “A code 𝐶 is called a linear code if 𝐯 + 𝐰 is a word in 𝐶 whenever 𝐯 and 𝐰 are in 𝐶.
That is, a linear code is a code which is closed under addition of words.”(from p.27 [2])

The first thing to note is that linear codes always contain the all zero-word. The second is that a
linear code 𝐶 is a subspace of [𝑞]𝑛, meaning that it has a dimension (which we will call 𝑘), and a set of
linearly independent basis vectors that span 𝐶.

Definition 2.2. A generator matrix 𝐺 for a code 𝐶 is a 𝑘 × 𝑛 matrix whose rows form a basis for 𝐶.
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A generator matrix is used to encode message words 𝐦 of length 𝑘 and turn them into codewords
𝐱 of length 𝑛, where 𝐱 = 𝐦𝐺. That means that 𝐶 = {𝐦𝐺 ∶ 𝐦 ∈ [𝑞]𝑘}, and |𝐶| = 𝑞𝑘. So in a linear code
𝑛 − 𝑘 bits are added, making the information rate log𝑞(𝑞𝑘)/𝑛 = 𝑘/𝑛.

Note that two generator matrices generate the same code if they are row equivalent.

2.1.4. Error Correction
As has been mentioned before, adding (redundant) bits when encoding messages makes it possible for
the recipient of a transmission to detect or even correct errors. The basic concept of error correction is
that the recipient compares the word they have received with the codewords in the code, and conclude
that the codeword that is “closest” to the word they have received, must have been the one that was
sent.

Example 1. Suppose we have the code 𝐶 = {00000, 01011, 10101, 11110} and we send one word
𝐱 ∈ 𝐶 to the recipient through a noisy channel. They receive 𝐫 = 11111 and since they know that 𝐫
is not a codeword, they have detected an error. They attempt to correct the error: if 00000 had been
sent, five errors would have occured; for 01011 two errors, for 10101 also two errors, and for 11110
only one error would have occured. They conclude that it is most likely that the sender originally sent
11110, so they correct their word received to 11110.
Definition 2.3. Let 𝐮 and 𝐯 be words of length 𝑛. The Hamming distance between 𝐮 and 𝐯 is the
number of positions in which 𝐮 and 𝐯 differ, denoted by 𝑑(𝐮, 𝐯).

Furthermore, the distance of a code 𝐶 is

𝑑min =min{𝑑(𝐮, 𝐯) ∶ 𝐮, 𝐯 ∈ 𝐶, 𝐮 ≠ 𝐯},

which is the shortest possible distance between any two codewords in 𝐶 [2].

A linear code with length 𝑛, dimension 𝑘 and distance 𝑑min is also called a [𝑛, 𝑘, 𝑑min] code.
Example (1 cont.). 𝑑(00000, 11111) = 5, 𝑑(01011, 11111) = 2, 𝑑(10101, 11111) = 2, and 𝑑(11110,
11111) = 1. The recipient corrects the word they’ve received to the codeword to which it has the lowest
Hamming distance. If they’ve received 𝐫 = 11111, they correct it to 11110.

Of course, when considering the code as a subset of ℝ𝑛, it would make more sense to use a
continuous distance measure. After all, intuitively we would say that (0, 0.2, 0) is closer to (0, 0, 0)
than it is to (0, 1, 0), but the Hamming distance would not differentiate between the two options. It is
better to use the squared Euclidean distance, hereafter referred to as the Euclidean distance for ease
of reading, in this case; not just because it is continuous, but also because, when the noise is normally
distributed (Gaussian noise), it is known that maximum likelihood decoding is achieved when using the
Euclidean distance to determine the “closest” codeword for error correction[9].

Definition 2.4. Let 𝐮 and 𝐯 be words of length 𝑛 inℝ𝑛. Then the (squared) Euclidean distance between
𝐮 and 𝐯 is

𝛿(𝐮, 𝐯) =
𝑛

∑
𝑖=1
(𝑣𝑖 − 𝑢𝑖)2.

Similar to error correction using the Hamming distance, when having received the word 𝐫, error
correction using the Euclidean distance will return the codeword 𝐱 that minimizes 𝛿(𝐫, 𝐱).

The distance of a code 𝐶 as defined in Definition 2.3, is a parameter of the code that measures how
well error detection and correction of the code performs. Now while “the” distance of a code is defined
using the Hamming distance, 𝑑min, it is not farfetched for us to also define

𝛿min = min
𝐮,𝐯∈𝐶,𝐮≠𝐯

𝛿(𝐮, 𝐯)

as the minimum Euclidean distance of the code 𝐶, a measure for how well the code performs when
using a Euclidean decoder; though note that in the binary case (𝑞 = 2) the Hamming distance and the
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Figure 2.2: The code 𝐶 = {00, 01, 10, 11} pictured in ℝ2 with “clouds” of noise around the codewords.

Euclidean distance of a code are the same.

In practice it is not always true that a code with a higher minimum distance will perform better than
a code with a lower minimum distance. If for example a code has only one pair of words that have
this low minimum distance between them, while all other words have a very high distance amongst
themselves, the code may actually perform better than a code where all codewords have the same
relatively low distance to each other.

For that reason a more suitable method for analysing the performance of a code is to use the
theoretical word error rate or WER. The WER is defined as “the ratio of the number of incorrectly
decoded words to the number of words transmitted”[1]. While it is possible to run many simulations to
approximate this error rate, there are some well known upper bounds for the WER which we can use.
In fact, it was shown in [4] that in channels only affected by Gaussian noise and for small 𝜎 (the noise
standard deviation), the word error rate is approximately equal to:

WER ≈ 𝑁𝛿min × 𝑄 (√𝛿min/(2𝜎)) , (2.1)

where 𝑁𝛼 =
1
|𝐶| ∑𝐮∈𝐶 |{𝐯 ∈ 𝐶 ∶ 𝛿(𝐮, 𝐯) = 𝛼}| and 𝑄(𝑧) =

1
√2𝜋 ∫

∞
𝑧 𝑒−𝑢2/2𝑑𝑢.

As was mentioned before, a Euclidean decoder achieves maximum likelihood decoding when a
channel is affected by Gaussian noise [9], this has been well-researched. However, the premise of
this project is to research the possibilities of using cosets of linear codes to mitigate the problem of
unknown offset, not just Gaussian noise. In the following section the effect of offset on a linear code
will be shown, together with a method that may be used to circumvent the problem entirely.

2.2. Channels With Unknown Offset
Where the previous section focused on the basic definitions of coding theory, including the problem
noise might pose, this section will focus on a problem specific to certain kinds of information storage:
offset. But first recall that when considering the codewords from a code 𝐶 as vectors in ℝ𝑛, it has been
established that noise would cause a codeword 𝐱 to change into a different word 𝐫 = 𝐱 + 𝝂, where 𝝂 is
the result of the noise, which might be normally distributed in certain models, i.e. 𝜈𝑖 ∼ 𝒩(0, 𝜎).

Example 2. An example of noise is pictured in Figure 2.2 for a code 𝐶 = {00, 01, 10, 11}.

Recall that when using a Euclidean decoder, received words 𝐫 ∉ 𝐶 are decoded to 00 when the
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Figure 2.3: The code 𝐶 = {00, 01, 10, 11} pictured in ℝ2 where each colored area around a codeword represents which words
received will be corrected to that codeword when using a Euclidean decoder.

Figure 2.4: The code 𝐶 = {00, 01, 10, 11} pictured in ℝ2 where each codeword has been affected by the same offset 𝑏.

distance 𝛿(𝐫, 00) < 𝛿(𝐫, 𝐱) for 𝐱 ∈ 𝐶 and 𝐱 ≠ 00. Each codeword has an area in ℝ2 where words
received will be corrected to that codeword. These areas can be seen in Figure 2.3.

2.2.1. Offset and the Modified Pearson Distance
In Section 2.1.2 we saw that in the channel model used for this project offset may turn a codeword 𝐱
into 𝐫 = 𝐱 + 𝑏 ⋅ 𝟏 after it passes through the channel, where 𝑏 ∈ ℝ is the offset which affects each digit
of 𝐱 equally; unlike noise, where each digit might change independent of the others. This 𝑏 might also
come from a certain probability distribution or even be a function depending on a physical parameter
of some sort, but for now it will be left as an arbitrary scalar that’s constant over the whole length 𝑛.

Example (2 cont.). An example of offset affecting codewords is pictured in Figure 2.4 for the code
𝐶 = {00, 01, 10, 11}. Looking at the figure, it quickly becomes clear that an offset where 𝑏 > 0.5 or
𝑏 < −0.5 will result in error correction to the wrong word, 11 and 00 respectively, when using the
Euclidean decoder.

Though it would be easy to find the word that was sent if the offset was known, that is not generally
the case. Instead, a different distance measure will need to be used to find a better “closest” codeword
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Figure 2.5: The plane 𝑥 + 𝑦 + 𝑧 = 0 onto which words of length 𝑛 = 3 are projected while determining the Pearson distance.

to correct the word received to when the channel is affected by offset.

Definition 2.5. The modified Pearson distance (hereafter just “Pearson distance”) between two code-
words 𝐮 and 𝐯 is

𝛿∗(𝐮, 𝐯) = 𝛿(𝐮 − �̄�𝟏, 𝐯 − �̄�𝟏)
where �̄� is the average of 𝐮 [9].

We also define the minimum Pearson distance of a code 𝐶 as

𝛿∗min =min{𝛿∗(𝐮, 𝐯) ∶ 𝐮, 𝐯 ∈ 𝐶, 𝐮 ≠ 𝐯}.

The Pearson distance can be seen as the distance between two “normalized” vectors, but to be
a bit more precise: if the two vectors are of length 𝑛, the Pearson distance is actually the Euclidean
distance between projections of the two vectors onto the plane 𝑥1 +𝑥2 +⋯+𝑥𝑛 = 0. So for 𝑛 = 3, the
words received are projected onto the plane 𝑥 + 𝑦 + 𝑧 = 0, see Figure 2.5, and for 𝑛 = 2 onto the line
𝑥 + 𝑦 = 0, see Figure 2.6. Since we only consider an offset constant over the whole vector of length
𝑛, any offset vector 𝑏𝟏 is orthogonal to this plane. That means that by projecting a vector affected by
offset onto it, any changes caused by offset will be negated. A decoder that uses the Pearson distance
is therefore immune to offset.

Example (2 cont.). Figure 2.6 shows how words received will be corrected using the Pearson distance
instead of the Euclidean distance like in Figure 2.4. The words received are projected onto the line
𝑥 + 𝑦 = 0 and then corrected to the codeword for which the projection is closest.

Looking at the example, a new problem immediately presents itself. While sending 01 and 10 will
now never result in problems due to offset, any word originating from either 00 or 11 will be projected
back onto 00. After all, the Pearson distance between the two is 𝛿∗(00, 11) = 0.

Recall that any linear code includes the all zero-word by definition, and many also include the all
one-word. Unfortunately, that means that only for linear codes without the all one-word, the Pearson
distance can be used for decoding. However, it was shown in [9] that it is possible to use cosets of
these otherwise unsuitable linear codes.

2.2.2. Coset Codes as a Solution
Using cosets of otherwise unsuitable linear codes will remove any problems caused by the presence
of both the all one-word and the all zero-word when using the Pearson distance, while still allowing us
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Figure 2.6: The code 𝐶 = {00, 01, 10, 11} pictured in ℝ2 where each codeword has been affected by the same offset, and is
projected onto the line 𝑦 = −𝑥 in the process of being corrected using the Pearson distance.

to use known parameters like the minimum Hamming distance of the original code. This means that
the many codes that contain both the all one- and all zero-words will not need to be discounted when
dealing with offset.

Definition 2.6. “If 𝐶 is a linear code of length 𝑛, and if 𝐮 is any word of length 𝑛, we define the coset of
𝐶 determined by 𝐮 to be the set of all words of the form 𝐯 + 𝐮 as 𝐯 ranges over all the words in 𝐶. We
denote this coset by 𝐶𝐮 or 𝐶 + 𝐮.”(from p.54 [2]) So

𝐶𝐮 = 𝐶 + 𝐮 = {𝐯 + 𝐮 | 𝐯 ∈ 𝐶}

Note that since linear codes are closed under addition, we have that if 𝐮 ∈ 𝐶, 𝐶𝐮 = 𝐶. As a result,
the number of cosets of a given code 𝐶 with length 𝑛 and dimension 𝑘, is equal to 2𝑛−𝑘, where the
code itself is counted as one of the cosets. Furthermore, the Hamming distance between two words is
invariant under addition, so each coset has the same minimum distance as the original code.

Example 3. Let 𝐶 = {00, 11}. Then 𝑛 = 2 and 𝑘 = 1, so there are two cosets, including 𝐶 itself.
The other coset is 𝐶01 = 𝐶10 = {01, 10}. The distance of 𝐶 is two, and so is the distance of 𝐶01. The
Pearson distance 𝛿∗(00, 11) = 0 is the minimum Pearson distance of 𝐶, so 𝛿∗min,𝐶 = 0, and for 𝐶01 we
have 𝛿∗(01, 10) = 𝛿∗min,𝐶01 = 2. In Figure 2.7 this coset code 𝐶01 is shown in ℝ2 with each codeword
once again affected by the same offset, only this time the modified pearson distance is able to correct
each received word to its proper corresponding codeword.

Now that it has been established that it is possible to use cosets to create codes immune to offset,
we may discuss the performance of these codes. Previously in Section 2.1.4 it was established that the
minimum distance, be it the Hamming distance or the Euclidean distance, could be used as a measure
for a code’s performance. In the same way it will now be important to consider the minimum (modified)
Pearson distance, 𝛿∗min and the word error rate when using the Pearson distance (WER∗). Similarly to
the approximation of the WER, in [4] the WER∗ was shown to be approximately equal to

WER∗ ≈ 𝑁∗𝛿∗min
× 𝑄 (√𝛿∗min/(2𝜎)) (2.2)

for channels affected by Gaussian noise for small 𝜎 and by unknown offset.

However, whereas the minimum Hamming distance is generally known for a code, and thus also
its cosets, the minimum Pearson distance is not. Indeed, it may even differ between cosets depending
on the vectors they are determined by. To be able to say more about the minimum Pearson distance
of a given coset code, we use two theorems from [9].

Firstly, a simpler way to compute the Pearson distance between two codewords:
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Figure 2.7: The coset code 𝐶01 = {01, 10} pictured in ℝ2 where each codeword has been affected by the same offset,
corrected using the Pearson distance.

Theorem 2.7 (Theorem 1 in [9]). “For any binary vectors 𝐮 and 𝐯 of length 𝑛,

𝛿∗(𝐮, 𝐯) = 𝑑(𝐮, 𝐯) − (𝑁(𝐯, 𝐮) − 𝑁(𝐮, 𝐯))2/𝑛,

where 𝑁(𝐯, 𝐮) = |{𝑖 ∶ 𝑣𝑖 = 0 ∧ 𝑢𝑖 = 1}|.”

Which leads us to:

Corollary 2.8 (Corollary 1 in [9]).

𝛿∗(𝐮, 𝐯) = 𝑑(𝐮, 𝐯) − (𝑑(𝐮, 𝐯) − 2𝑚(𝐮, 𝐯))2/𝑛,

where 𝑚(𝐮, 𝐯) =min{𝑁(𝐯, 𝐮), 𝑁(𝐮, 𝐯)}.

And then secondly, a theorem that gives us a lower bound for 𝛿∗min in cosets determined by a vector
of a certain weight.

Theorem 2.9 (Theorem 2 in [9]). “Let C be a binary [𝑛, 𝑘, 𝑑min] code with 𝑑min ≥ 2, which contains the
all-one vector, i.e. 𝟏 ∈ 𝐶. Then, for any binary vector 𝜶 of length 𝑛 with weight ⌊𝑑min

2 ⌋, ⌈𝑑min
2 ⌉, 𝑛−⌊𝑑min

2 ⌋,
or 𝑛 − ⌈𝑑min

2 ⌉, it holds that

𝛿∗(𝐮, 𝐯) ≥ 𝑑min (1 −
𝑑min

𝑛 ) (2.3)

for all 𝐮, 𝐯 ∈ 𝐶𝜶, 𝐮 ≠ 𝐯.”

Weber et al. use this second theorem to determine lower bounds for the minimum Pearson distance
for cosets of three different families of codes: the repetition code, codes with a single parity bit and
(shortened) Hamming codes [9]. In Chapter 4 the same will be done for first order Reed-Muller codes,
but first the Reed-Muller code itself and its properties will be introduced in Chapter 3.



3
Reed-Muller Codes

In the article by Weber et al. the use of cosets to create codes where the Pearson distance may be
used, is applied to the Repetition code, codes with a single parity bit and (shortened) Hamming codes,
where lower bounds for the minimum Pearson distance is found for each of them [9]. Continuing in
that direction, the same will be done for first order Reed-Muller codes in Chapter 4. In this chapter the
Reed-Muller codes and their properties will be introduced.

Firstly, the construction of these codes is explained in Section 3.1. Secondly, some properties of
the Reed-Muller code will be discussed in Section 3.2, so as to provide a clear image of how well the
code performs normally, before venturing into coset and offset territory. Finally, we will consider what
happens to the same properties when considering cosets of our code in Section 3.3.

Before that, however, it is necessary to introduce a base idea of what Reed-Muller codes are. One
definition of a Reed-Muller code is:

Definition 3.1. “The 𝑟th order binary Reed-Muller (or RM) codeℛ(𝑟,𝑚) of length 𝑛 = 2𝑚, for 0 ≤ 𝑟 ≤ 𝑚,
is the set of all vectors 𝐟, where 𝑓(𝑣1, … , 𝑣𝑚) is a Boolean function which is a polynomial of degree at
most 𝑟.”[6]
Remark. A Boolean function (or B.F.) is any function that only takes on the values 0 and 1, where
logical operations are translated into binary form in the following way:

𝑓 XOR 𝑔 = 𝑓 + 𝑔
𝑓 AND 𝑔 = 𝑓𝑔
𝑓 OR 𝑔 = 𝑓 + 𝑔 + 𝑓𝑔
NOT 𝑓 = ̄𝑓 = 1 + 𝑓

Furthermore it is known that any Boolean function 𝑓(𝑣1, … , 𝑣𝑚) can be expressed as the sum of the 2𝑚
functions

1, 𝑣1, 𝑣2, … , 𝑣𝑚 , 𝑣1𝑣2, 𝑣1𝑣3, … , 𝑣𝑚−1𝑣𝑚 , … , 𝑣1𝑣2⋯𝑣𝑚
Then a Boolean function 𝑓(𝑣1, … , 𝑣𝑚) = 1 ⋅ 𝑣1𝑣2⋯𝑣𝑚 + … is a polynomial of degree 𝑚 [6].

Example 4. An RM-code of order 𝑟 = 2 and 𝑚 = 3 would have codewords of the form

𝑎0𝟏 + 𝑎1𝐯𝟏 + 𝑎2𝐯𝟐 + 𝑎3𝐯𝟑 + 𝑎1,2𝐯𝟏𝐯𝟐 + 𝑎1,3𝐯𝟏𝐯𝟑 + 𝑎2,3𝐯𝟐𝐯𝟑, 𝑎𝑖 , 𝑎𝑖,𝑗 = 0 or 1.

3.1. Construction
From the above it becomes clear that an RM-code has 𝑘 = 1 + (𝑚1) + (

𝑚
2) + ⋯ + (

𝑚
𝑟 ) basis vectors.

Though the exact order does not matter for the final result, in general the first 𝑚+1 vectors, which are
then used to calculate the others, are always of the form: all digits one; the first half is zero, the second
half one; four quarters, alternately all zero or one; etc. until the groups of zeros and ones cannot be
divided further. See also Example 5.

11
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Example 5. The first 𝑚 + 1 basis vectors for 𝑚 = 2 are

𝟏 1 1 1 1
𝐯𝟏 0 0 1 1
𝐯𝟐 0 1 0 1

(3.1)

and for 𝑚 = 3
𝟏 1 1 1 1 1 1 1 1
𝐯𝟏 0 0 0 0 1 1 1 1
𝐯𝟐 0 0 1 1 0 0 1 1
𝐯𝟑 0 1 0 1 0 1 0 1

(3.2)

The generator matrix for ℛ(1, 2) contains the vectors 𝟏, 𝐯𝟏, 𝐯𝟐 as given in (3.1). Indeed, since
𝑘 = 1 + (21) = 3, we know that the generator matrix should have three rows.

For Example 4, the different rows of the generator matrix of ℛ(2, 3) are:

𝟏 1 1 1 1 1 1 1 1
𝐯𝟏 0 0 0 0 1 1 1 1
𝐯𝟐 0 0 1 1 0 0 1 1
𝐯𝟑 0 1 0 1 0 1 0 1
𝐯𝟏𝐯𝟐 0 0 0 0 0 0 1 1
𝐯𝟏𝐯𝟑 0 0 0 0 0 1 0 1
𝐯𝟐𝐯𝟑 0 0 0 1 0 0 0 1

(3.3)

The vectors 𝐚 = (𝑎0, 𝑎1, … , 𝑎2,3) that we see in Example 4, are the original message words of length
seven.

In the next theorem an alternative way of constructing Reed-Muller codes is given, for which we use
the following notation: for 𝐮 = 0101 and 𝐯 = 1010, we have |𝐮|𝐯| = 01011010.

Theorem 3.2. [Theorem 13.2 in [6]]

ℛ(𝑟 + 1,𝑚 + 1) = {|𝐮|𝐮 + 𝐯| ∶ 𝐮 ∈ ℛ(𝑟 + 1,𝑚), 𝐯 ∈ ℛ(𝑟,𝑚)},

where
ℛ(1, 1) = {00, 01, 11, 10}, ℛ(0, 1) = {00, 11}.

Or equivalently, if 𝐺(𝑟,𝑚) is the generator matrix of ℛ(𝑟,𝑚),

𝐺(𝑟 + 1,𝑚 + 1) = (𝐺(𝑟 + 1,𝑚) 𝐺(𝑟 + 1,𝑚)
0 𝐺(𝑟,𝑚) ) ,

where
𝐺(1, 1) = (1 1

0 1) , 𝐺(0, 1) = (1 1) ,

and for any 𝐺(𝑟,𝑚) where 𝑟 > 𝑚, we define 𝐺(𝑟,𝑚) ∶= 𝐺(𝑚,𝑚).

Example 6. To construct a generator matrix 𝐺(2, 3) for ℛ(2, 3) using Theorem 3.2, first generator
matrices for ℛ(2, 2) and ℛ(1, 2), 𝐺(2, 2) and 𝐺(1, 2) resp., need to be known.

Using Theorem 3.2 we find

𝐺(1, 2) = (𝐺(1, 1) 𝐺(1, 1)
0 𝐺(0, 1))

= (
1 1 1 1
0 1 0 1
0 0 1 1

) ,
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and using the same method to construct 𝐺(2, 2), we find that

𝐺(2, 2) = (
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

) .

Then using Theorem 3.2, we find

𝐺(2, 3) =

⎛
⎜⎜⎜⎜

⎝

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
0 1 0 1
0 0 1 1

⎞
⎟⎟⎟⎟

⎠

. (3.4)

Comparing the vectors in (3.3) and the rows of (3.4), it is clear that the two different methods generate
the same code ℛ(2, 3).

3.2. Properties of the Reed-Muller Code
One important thing to note is that a binary Reed-Muller code where 𝑟 = 𝑚 is in fact equal to the whole
vector-space [2]𝑛, where 𝑛 = 2𝑚, instead of a proper subset. Indeed, computing the reduced row
echelon form of 𝐺(2, 2) as given in the matrix (6), shows that it is equivalent to the identity matrix. That
means that using cosets to create a code immune to offset will not work in the case 𝑟 = 𝑚, since the
code itself is the only coset and it contains both the all one- and all zero-word. Therefore only cases
where 𝑟 < 𝑚 will ever be considered going forward.

In Section 2.1.4 we already discussed the distance of a code as a basic measure for how well it
performs. For Reed-Muller codes we know this distance for every possible value of 𝑟 and 𝑚:

Theorem 3.3 (Theorem 13.3 in [6]). A Reed-Muller code ℛ(𝑟,𝑚) has distance 𝑑min = 2𝑚−𝑟.
Example 7. Recall from Example 6 that a generator matrix of the code 𝐶 = ℛ(1, 2) is

𝐺(1, 2) = (
1 1 1 1
0 0 1 1
0 1 0 1

)

Then if we multiply the eight message words 000, 001, 010, 011, 100,… with the matrix we find the code
𝐶 = {0000, 0101, 0011, 0110, 1111, 1010, 1100, 1001}. According to Theorem 3.3 the minimum Ham-
ming distance we will find in this code is 𝑑min = 22−1 = 2, and indeed, we can easily find a pair of
words such that the distance between them is 2, but there is no pair of words such that the distance
between them is smaller. In fact, each word has exactly one word to which the distance is higher than
𝑑min = 2, and that is the pairs 𝐱, 𝐱 + 1111 ∈ 𝐶, where the distance is 𝑑(𝐱, 𝐱 + 1111) = 4. This result is
pictured in Figure 3.1.

For the ℛ(1, 3) and ℛ(2, 3) codes the distances between the different codewords are pictured in
Figure 3.2. The distance of an RM-code with order 𝑟 = 1 and 𝑚 = 3 is equal to 23−1 = 4, and for 𝑟 = 2
and𝑚 = 3 the distance is again equal to 2. Figure 3.2 also shows how an RM-code of order two differs
from a code of order one in structure. The distance between two words from an RM-code of order one,
can only be equal to the length of the words 2𝑚 or the distance of the code 2𝑚−𝑟, while in a second
order RM-code the distance between words varies between those two values.

In fact, the possible distances between words coincide with the possible weights of codewords [6],
which in the second order RM-code’s case are known to be of the form 2𝑚−1 + 𝜖2𝑙, where 𝜖 = 0,−1, 1
and 𝑚/2− 1 ≤ 𝑙 ≤ 𝑚− 1 [5]. So for the ℛ(2, 3) code that means that the possible distances are 2, 4, 6
and 8, while for the ℛ(1, 3) code the only possible distances are 4 and 8, because (except for the all
zero-word) all words have weights 4 or 8.
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Figure 3.1: A heatmap showing the Euclidean distance between each pair of codewords in a first order Reed-Muller code with
𝑚 = 2.

Figure 3.2: A heatmap showing the Euclidean distance between each pair of codewords in a first (left) and second (right) order
Reed-Muller code with 𝑚 = 3 (the latter contains 128 codewords).

If we make the same figures for the codes ℛ(1, 2), ℛ(1, 3) and ℛ(2, 3) but for the Pearson distance
(3.3 (left) and 3.4), we see that the Pearson distance is often equal to the Hamming distance for many
of the codewords, but for others the Pearson distance is lower. Now we also see that the Pearson
distance between the all one- and all zero-word is indeed zero, meaning that we can’t differentiate
between the two words during decoding, so the next step is to look at the Reed-Muller codes’ cosets.

3.3. Cosets
In the previous section we saw the problem that the all zero- and all one-words pose once again, though
this time for the Reed-Muller codes. So as was explained in Section 2.2.2, to be able to use the Pear-
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Figure 3.3: A heatmap showing the Pearson distance between the codewords in the first order RM-code with 𝑚 = 2 (left) and
its coset (right).

son distance in combination with Reed-Muller codes when a channel is affected by offset, we will need
to investigate how well the RM-codes’ cosets could perform. In this section the minimum Pearson dis-
tance for a small number of cosets is found to provide us with some level of intuition to use later when
looking for a possibly better lower bound of this distance.

First, recall that the dimension of an RM-code ℛ(𝑟,𝑚) is 𝑘 = ∑𝑟𝑖=0 (𝑚𝑖 ) and that the total number of
cosets for any code with words of length 𝑛 is equal to 2𝑛−𝑘. For ℛ(1, 2), which has dimension 𝑘 = 3,
that means that there are 2 cosets, including the code itself.

Example 8. Let 𝐶 = ℛ(1, 2) and 𝜶 = 0001. Note that 𝜶 ∉ 𝐶, so the coset 𝐶𝜶 = {𝐮 + 𝜶|𝐮 ∈ 𝐶} ≠ 𝐶, so
we have found its only coset. As was mentioned before, the Hamming and Euclidean distance between
the codewords does not change from the original code to a coset, but we can see in Figure 3.3 on the
right that the Pearson distance does change. The minimum Pearson distance of this coset is 𝛿∗min = 1.

We can see a similar thing happening for ℛ(1, 3) and three of its cosets in Figure 3.5. For each
coset (here determined by the vectors 1000.0000, 1100.0000, and 1110.0000) we can see a different
pattern appear. It does seem like the words that originally had a Hamming distance of 𝑛 = 8 to each
other still have a relatively high Pearson distance to each other, regardless of the choice of the vector
that determines the coset. For all three of these cosets the minimum Pearson distance found is equal
to 𝛿∗min = 2, though note that these are not all the cosets of ℛ(1, 3), there being 2(8−4) = 16 cosets in
total.

Remark. At this point, we’ve found a minimum Pearson distance 𝛿∗min equal to 1 for the coset ofℛ(1, 2)
and equal to 2 for three cosets of ℛ(1, 3). Now recall what we know from Theorem 2.9: for a [𝑛, 𝑘, 𝑑min]
code 𝐶 with 𝑑min ≥ 2 that contains the all one vector, for any 𝜶 of length 𝑛 with weight ⌊𝑑min

2 ⌋, ⌈𝑑min
2 ⌉,

𝑛 − ⌊𝑑min
2 ⌋, or 𝑛 − ⌈𝑑min

2 ⌉, it holds that

𝛿∗(𝐮, 𝐯) ≥ 𝑑min (1 −
𝑑min

𝑛 )

for all 𝐮, 𝐯 ∈ 𝐶𝜶, 𝐮 ≠ 𝐯.

For ℛ(1, 2) we have 𝑑min = 2 and 𝑛 = 4. So for a vector 𝜶 of weight 1 or 3 that determines the
coset, we should find 𝛿∗min ≥ 1. And similarly for ℛ(1, 3) we find 𝛿∗min ≥ 2 for a coset 𝐶𝜶, since 𝑑min = 4
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Figure 3.4: A heatmap showing the Pearson distance between the codewords in a first (left) and second (right) order RM-code
with𝑚 = 3.

Figure 3.5: A heatmap showing the Euclidean distance and Pearson distance between all codewords in three cosets of the first
order Reed-Muller code with 𝑚 = 3.

and 𝑛 = 8 and where 𝑤𝑡(𝜶) = 2 or 𝑤𝑡(𝜶) = 6. So in Example 8 we have in fact found cosets where
there is at least one pair of words 𝐮, 𝐯 ∈ 𝐶𝜶 such that

𝛿∗(𝐮, 𝐯) = 𝑑min (1 −
𝑑min

𝑛 ) ,

namely for the cases 𝜶 = 0001 for ℛ(1, 2) and 𝜶 = 1100.0000 for ℛ(1, 3).

This raises the question whether this equality always holds for all𝑚, 𝑟 and all cosets determined by 𝜶’s
of these weights — and potentially other weights if we consider the other two cosets where we found
the same value. Unfortunately, the latter falls outside of the scope of this project, as we are basing
our arguments on Theorem 2.9, but fortunately it turns out that the former is not true, as we will soon
discover in Chapter 4.



4
Results

In the previous chapter the suspicion arose that cosets of Reed-Muller codes determined by 𝜶’s of the
weights ⌊𝑑min

2 ⌋, ⌈𝑑min
2 ⌉, 𝑛−⌊𝑑min

2 ⌋, and 𝑛−⌈𝑑min
2 ⌉, might always have a minimum Pearson distance equal

to the lower bound determined in Theorem 2.9. Fortunately, this will turn out not to be the case.

Remark. In this chapter all the various properties of the codes and their cosets will be written in terms
of 𝑚 and 𝑟. So for example 𝑛 = 2𝑚 and 𝑑min = 2𝑚−𝑟. If the value for 𝑚 or 𝑟 is known, this will also be
substituted into the different properties; so for example for 𝑟 = 1, we use 𝑑min = 2𝑚−1. Then Theorem
2.9 can be written as:

Let 𝐶 = ℛ(𝑟,𝑚) where 𝑟 < 𝑚. Then for any binary vector 𝜶 of length 2𝑚 and weight
𝑑min/2 = 2𝑚−𝑟−1 or 𝑛 − 𝑑min/2 = 2𝑚 − 2𝑚−𝑟−1 = 2𝑚 (1 − 2−(𝑟+1)), it holds that

𝛿∗(𝐮, 𝐯) ≥ 2𝑚−𝑟 (1 − 2−𝑟) (4.1)

for all 𝐮, 𝐯 ∈ 𝐶𝜶, where 𝐮 ≠ 𝐯.

Furthermore, unless stated otherwise any 𝜶 may be assumed to be of length 2𝑚 and the weights
𝑤𝑡(𝜶) = 2𝑚−𝑟−1 or 𝑤𝑡(𝜶) = 2𝑚 (1 − 2−(𝑟+1)), though this will often be repeated for clarity’s sake.

The goal of this chapter is to find lower bounds for the minimum Pearson distance of cosets of Reed-
Muller codes determined by 𝜶’s of weight 2𝑚−𝑟−1 or 2𝑚 (1 − 2−(𝑟+1)). While the first lemma that will be
proven here holds for all orders 𝑟, the main results only hold for first order Reed-Muller codes.

First, two lemmas about the structure of Reed-Muller codes and of its codewords will be proven in
Section 4.1. These are then used in Section 4.2 and 4.3 to show that 1. equality is always reached
in equation (4.1) for cosets determined by 𝜶 of first order RM-codes where 𝑚 ≤ 4; and 2. for higher
values of 𝑚 it is possible to find a coset determined by some 𝜶 for which a higher minimum Pearson
distance is found. Finally, we also find an upper bound for that minimum Pearson distance in Section
4.4.

4.1. The Structure of Reed-Muller Codes
The first thing we will show in this section is that the observation made in Example 8 is true: that
codewords in the coset that have Hamming distance 2𝑚 to each other also have a relatively high
Pearson distance to each other.

Lemma 4.1. Let 𝐶 = ℛ(𝑟,𝑚). Then for all 𝜶 and for all 𝐮, 𝐯 ∈ 𝐶𝜶, if 𝑑(𝐮, 𝐯) = 2𝑚,

𝛿∗(𝐮, 𝐯) ≥ 3
2 ⋅ 2

𝑚−𝑟 .

17
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Proof. Let 𝜶 have weight 2𝑚−𝑟−1 or 2𝑚 (1 − 2−(𝑟+1)), and let 𝐮, 𝐯 ∈ 𝐶𝜶. Suppose 𝑑(𝐮, 𝐯) = 2𝑚. Then
𝐮 and 𝐯 differ in all 2𝑚 positions, so 𝑁(𝐮, 𝐯) = 𝑤𝑡(𝐯) and since 𝐮 = 𝐯 + 𝟏, we also have 𝑁(𝐯, 𝐮) =
𝑤𝑡(𝐮) = 2𝑚 −𝑤𝑡(𝐯).
We know that for any word 𝐜 ∈ 𝐶𝜶, the weight of 𝐜 is 2𝑚−𝑟−1 ≤ 𝑤𝑡(𝐜) ≤ 2𝑚 (1 − 2−(𝑟+1)), so

𝑚(𝐮, 𝐯) =min{𝑁(𝐯, 𝐮), 𝑁(𝐮, 𝐯)} ≥ 2𝑚−𝑟−1.

Then we see that

𝛿∗(𝐮, 𝐯) = 𝑑(𝐮, 𝐯) − (𝑑(𝐮, 𝐯) − 2𝑚(𝐮, 𝐯))2/2𝑚 (4.2)

≥ 2𝑚 − (2
𝑚 − 2𝑚−𝑟)2
2𝑚

= 2𝑚−𝑟(2 − 2−𝑟)

≥ 3
2 ⋅ 2

𝑚−𝑟 .

Where equation (4.2) comes from Corollary 2.8, and the first inequality follows from the result𝑚(𝐮, 𝐯) ≥
2𝑚−𝑟−1.

Then, since we know that 𝑑min ≥ 𝛿∗min, we find that if 𝑑(𝐮, 𝐯) = 2𝑚, then 𝛿∗(𝐮, 𝐯) ≥ 3
2𝑑min > 𝛿∗min.

Remark. For first order Reed-Muller codes the only possible distances between two words 𝐮, 𝐯 are 2𝑚
or 2𝑚−1. So from Lemma 4.1 we know that if 𝑑(𝐮, 𝐯) = 𝛿∗min, we must have 𝑑(𝐮, 𝐯) = 2𝑚−1.

The next lemma provides us with a more precise description of what the codewords in a first order
RM-code look like. The idea is that, because RM-codes can be constructed using recursion (see
Theorem 3.2), we need only consider the “rules” of the recursion and how its basis, ℛ(1, 2), looks.

Lemma 4.2. A codeword 𝐮 ∈ ℛ(1,𝑚) (𝑚 > 1) is built up of 2𝑚/4 = 2𝑚−2 “blocks” of length 4: either of
2𝑚−2 blocks 𝐛 and zero blocks 𝐛+ 1111, or of 2𝑚−2/2 blocks 𝐛 and 2𝑚−2/2 blocks 𝐛+ 1111, where 𝐛
may be any of the following:

0000 1111
0011 1100
0101 1010
0110 1001

Proof. Proof by induction over 𝑚.
The generator matrix for an order 1, 𝑚 = 2 RM code is

𝐺(1, 2) = (
1 1 1 1
0 0 1 1
0 1 0 1

) ,

so
ℛ(1, 2) = {0000, 0011, 0101, 0110, 1111, 1100, 1010, 1001}.

For this code 2𝑚−2 = 1 and we see that each codeword is equal to one of the eight blocks proposed
above.

For 𝑚 = 3 we have the generator matrix

𝐺(1, 3) = (
1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

) ,
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and then the code is (with periods added for ease of reading):

ℛ(1, 3) = {0000.0000, 0101.0101, 0011.0011, 0110.0110,
0000.1111, 0101.1010, 0011.1100, 0110.1001,
1111.1111, 1010.1010, 1100.1100, 1001.1001,
1111.0000, 1010.0101, 1100.0011, 1001.0110},

which shows that a codeword is either built up of 2𝑚−2 = 2 of the same blocks, or 2𝑚−2/2 = 1 block 𝐛
and 2𝑚−2/2 = 1 block (𝐛 + 1111).

Now suppose that the lemma holds for an ℛ(1,𝑚 − 1) code. From Theorem 3.2 we know that

ℛ(1,𝑚) = {|𝐮|𝐮 + 𝐯| ∶ 𝐮 ∈ ℛ(1,𝑚 − 1), 𝐯 ∈ ℛ(0,𝑚 − 1)}. (4.3)

Recall that ℛ(0,𝑚 − 1) = {00…0, 11…1}, so we can rewrite (4.3) to

ℛ(1,𝑚) = {|𝐮|𝐮| ∶ 𝐮 ∈ ℛ(1,𝑚 − 1)} ∪ {|𝐮|𝐮 + 𝟏| ∶ 𝐮 ∈ ℛ(1,𝑚 − 1)}.
By the induction hypothesis any 𝐮 ∈ ℛ(1,𝑚 − 1) is already of the correct form, with 2𝑚−3 blocks 𝐛, or
2𝑚−3/2 blocks 𝐛 and (𝐛 + 1111) each. Then |𝐮|𝐮| either consists of 2 ⋅ 2𝑚−3 = 2𝑚−2 blocks 𝐛, or of
2 ⋅ 2𝑚−3/2 = 2𝑚−2/2 blocks 𝐛 and (𝐛 + 1111) each. And similarly |𝐮|𝐮 + 𝟏| consists of 2𝑚−2/2 blocks
𝐛 and (𝐛 + 1111). So all codewords in ℛ(1,𝑚) are of the form all 𝐛, or half 𝐛 and half 𝐛 + 1111.
Now we will use these results to prove in the next section that the suspicion that equality is reached in
equation (4.1) for cosets of first order Reed-Muller codes with 𝑚 ≤ 4 is true. In Section 4.3 we will see
that this is not always the case for higher 𝑚.

4.2. The Minimum Pearson Distance for Order 1 𝑚 ≤ 4 RM-Codes
At the end of Section 3.3 we found in Example 8 that for a number of cosets 𝐶𝜶 the minimum Pearson
distance found was actually equal to the general lower bound found by Weber et al. in [9]. In this sec-
tion we will show that this is in fact the case for all cosets 𝐶𝜶 ofℛ(1,𝑚), where𝑚 ≤ 4 and𝑤𝑡(𝜶) = 2𝑚−2
or 𝑤𝑡(𝜶) = 3 ⋅ 2𝑚−2.

First, it is necessary to develop some intuition for when this equality is reached in general. By
Corollary 2.8, the Pearson distance between two words 𝐮, 𝐯 is equal to

𝛿∗(𝐮, 𝐯) = 𝑑(𝐮, 𝐯) − (𝑑(𝐮, 𝐯) − 2𝑚(𝐮, 𝐯))2/𝑛,
and by Theorem 2.9 the lower bound for the minimum Pearson distance in a coset 𝐶𝜶 where 𝜶 has the
appropriate weights as stated above, is

𝛿∗min ≥ 2𝑚−𝑟 (1 − 2−𝑟) .
When 𝑑(𝐮, 𝐯) = 2𝑚−𝑟 or 𝑑(𝐮, 𝐯) = 2𝑚 (1 − 2−𝑟) (which is the same value for 𝑟 = 1) and 𝑚(𝐮, 𝐯) = 0,
we find 𝛿∗(𝐮, 𝐯) = 2𝑚−𝑟 (1 − 2−𝑟), which is then equal to the minimum Pearson distance of that coset.

But what does it mean for us to find𝑚(𝐮, 𝐯) = 0? Recall that𝑚(𝐮, 𝐯) =min{𝑁(𝐮, 𝐯), 𝑁(𝐯, 𝐮)}, where
𝑁(𝐮, 𝐯) = |{𝑖 ∶ 𝑢𝑖 = 0 ∧ 𝑣𝑖 = 1}|. So when 𝑁(𝐮, 𝐯) = 0, it means that wherever 𝐮 has the digit zero, 𝐯
will also have the digit zero.

Example 9. Let
𝐮 = 0011 and 𝐯 = 0001.

Then 𝑁(𝐮, 𝐯) = 0 and 𝑁(𝐮, 𝐯) = 1. Indeed, wherever 𝑢𝑖 = 0, we also have 𝑣𝑖 = 0.

So now consider 𝐶 = ℛ(1, 2). Suppose that 𝜶 = 1000, and 𝐮 = 0011 ∈ 𝐶. We find the coset 𝐶𝜶,
such that 𝜶 ∈ 𝐶𝜶 and 𝐮 + 𝜶 = 1011 ∈ 𝐶𝜶. 𝑁(𝐮 + 𝜶,𝜶) = 0, since wherever a digit in 𝐮 + 𝜶 is zero, that
same digit is zero in 𝜶. So 𝑚(𝐮+𝜶, 𝜶) = 0 and furthermore, we have found a pair of codewords in the
coset such that

𝛿∗(𝐮 + 𝜶, 𝜶) = 2𝑚−𝑟 (1 − 2−𝑟) = 1,
so this coset has a minimum Pearson distance equal to the lower bound from Theorem 2.9.
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While it is possible to look at all words 𝐮+𝜶 in the coset 𝐶𝜶 to see which have the property (𝐮+𝜶)𝑖 =
0 ⇒ 𝛼𝑖 = 0, we can also rewrite that to

𝑁(𝐮 + 𝜶, 𝜶) = 0 ⇔ ((𝐮 + 𝜶)𝑖 = 0 ⇒ 𝛼𝑖 = 0)
⇔ (𝛼𝑖 = 1 ⇒ (𝐮 + 𝜶)𝑖 = 1)
⇔ (𝛼𝑖 = 1 ⇒ 𝑢𝑖 = 0). (4.4)

Then we can show the following Lemma:

Lemma 4.3. Let 𝐮 ∈ 𝐶 = ℛ(1,𝑚) and let 𝜶 have weight 2𝑚−2 or 3 ⋅ 2𝑚−2. Then if 𝑤𝑡(𝐮) = 2𝑚−1 and if

(𝛼𝑖 = 1 ⇒ 𝑢𝑖 = 0) for all 𝑖 = 1,… , 2𝑚

or
(𝛼𝑖 = 0 ⇒ 𝑢𝑖 = 0) for all 𝑖 = 1,… , 2𝑚 ,

then
𝛿∗(𝐮 + 𝜶, 𝜶) = 2𝑚−2.

Proof. We know that 𝑑(𝐮, 𝟎) = 𝑤𝑡(𝐮), so we find

𝑑(𝐮 + 𝜶, 𝜶) = 𝑤𝑡(𝐮),

which is equal to 2𝑚−1. Then if we can show that (𝛼𝑖 = 1 ⇒ 𝑢𝑖 = 0) ⇒ 𝑚(𝐮 + 𝜶,𝜶) = 0 and
(𝛼𝑖 = 0 ⇒ 𝑢𝑖 = 0) ⇒ 𝑚(𝐮 + 𝜶, 𝜶) = 0, we find 𝛿∗(𝐮 + 𝜶, 𝜶) = 2𝑚−2.

The first follows from the equivalence 𝑁(𝐮 + 𝜶,𝜶) = 0 ⇔ (𝛼𝑖 = 1 ⇒ 𝑢𝑖 = 0) shown above in
Example 9, since

𝑁(𝐮 + 𝜶, 𝜶) = 0 ⇒ 𝑚(𝐮 + 𝜶, 𝜶) = 0.
For the second we have

𝑁(𝜶, 𝐮 + 𝜶) = 0 ⇔ (𝛼𝑖 = 0 ⇒ (𝐮 + 𝜶)𝑖 = 0)
⇔ (𝛼𝑖 = 0 ⇒ 𝑢𝑖 = 0),

and again,
𝑁(𝜶, 𝐮 + 𝜶) = 0 ⇒ 𝑚(𝐮 + 𝜶, 𝜶) = 0.

So since 𝑑(𝐮 + 𝜶, 𝜶) = 2𝑚−1 and 𝑚(𝐮 + 𝜶, 𝜶) = 0, the Pearson distance between 𝐮 + 𝜶 and 𝜶 is

𝛿∗(𝐮 + 𝜶, 𝜶) = 2𝑚−2.

And now this brings us to the following theorem:

Theorem 4.4. Let 𝐶 = ℛ(1,𝑚) with 𝑚 ≤ 4. Then for all 𝜶 of weight 2𝑚−2 or 3 ⋅ 2𝑚−2, there exists a
𝐮 ∈ 𝐶 such that

𝛿∗(𝐮 + 𝜶, 𝜶) = 2𝑚−2

Proof. By Lemma 4.3 we only need to show that for all 𝜶, there exists a 𝐮 ∈ 𝐶 such that 𝑤𝑡(𝐮) = 2𝑚−1
and such that for all 𝑖 = 1,… , 2𝑚(𝛼𝑖 = 1 ⇒ 𝑢𝑖 = 0) or that for all 𝑖 = 1,… , 2𝑚(𝛼𝑖 = 0 ⇒ 𝑢𝑖 = 0).

We have three cases: 𝑚 = 2,𝑚 = 3 and 𝑚 = 4. For each case we give one or more examples
where we see that 𝛿∗(𝐮 + 𝜶, 𝜶) = 2𝑚−2, which are meant to illustrate how finding a suitable 𝐮 can be
done for any 𝜶 of weight 2𝑚−2 or 3 ⋅ 2𝑚−2, since the number of possible 𝜶’s is too high to show it for
every single one.
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• 𝑚 = 2: There are two possible weights for 𝜶: 𝑤𝑡(𝜶) = 1 or 𝑤𝑡(𝜶) = 3, and eight possible 𝜶’s:

0001 1110
0010 1101
0100 1011
1000 0111

Recall that
ℛ(1, 2) = {0000, 0011, 0101, 0110, 1111, 1100, 1010, 1001},

so for 𝜶 = 0001 or 𝜶 = 1110, we may take 𝐮 = 0110, 1100 or 1010. Indeed, we see that for
𝜶 = 0001, 𝜶𝑖 = 1 ⇒ 𝐮𝑖 = 0 and for 𝜶 = 1110 we see that 𝜶𝑖 = 0 ⇒ 𝐮𝑖 = 0. So for example,
𝛿∗(0110 + 0001, 0001) = 2𝑚−𝑟 (1 − 2−𝑟) = 1, making 1 the minimum Pearson distance of the
coset 𝐶0001.

Similarly, for the second row of possible 𝜶’s we could pick 𝐮 = 1001, 1100 or 0101, for the third
row 𝐮 = 1001, 0011, or 1010 and the fourth 𝐮 = 0110, 0011 or 0101. These results can also be
seen in Table 4.1.

Table 4.1: Words 𝐮 of length 4 such that 𝛼𝑖 = 1 ⇒ 𝑢𝑖 = 0 (𝜶 in first row) or 𝛼𝑖 = 0 ⇒ 𝑢𝑖 = 0 (𝜶 in second row).

𝜶 0001 0010 0100 1000
1110 1101 1011 0111

𝐮 0110 1001 1001 0110
1100 1100 0011 0011
1010 0101 1010 0101

• 𝑚 = 3: The possible weights for 𝜶 are 2 and 6 for a total word length of 8. We know from Lemma
4.2 that words 𝐮 ∈ ℛ(1, 3) are built up of two words from ℛ(1, 2). That means that if for example
𝜶 = 0001.0100, we can use Table 4.1 to pick a 𝐮; for example, 𝐮 = 1010.1010. In fact, for any 𝜶
that is a combination of two words of length 4 and weight 1, we can find a 𝐮 = |𝐮′|𝐮′| such that
𝛼𝑖 = 1 ⇒ 𝑢𝑖 = 0, where we pick 𝐮′ from Table 4.1. Similarly, we can use the table to pick a 𝐮
when 𝜶 is a combination of two length 4 words of weight 3.

In the case that 𝜶 is built up of a length 4 block of weight 2 and one of weight 0 or 4, e.g. 0011.0000
or 1100.1111, we have two options for 𝐮: letting 𝐮 be built up of 0000 and 1111 blocks, e.g.
0000.1111 for our example 𝜶’s, or letting 𝐮 be built up of two blocks 𝐛 with weight two. For the
latter we can use Table 4.2 to find 𝐮 = 1100.1100 for both 𝜶’s.

Table 4.2: blocks 𝐛 such that 𝜶𝑖 = 1 ⇒ 𝐛𝑖 = 0 (𝜶 in first row) or 𝜶𝑖 = 0 ⇒ 𝐛𝑖 = 0 (𝜶 in second row).

𝜶 0011 0101 0110 1001 1010 1100
1100 1010 1001 0110 0101 0011

𝐛 1100 1010 1001 0110 0101 0011

• 𝑚 = 4: The possible weights for 𝜶 are 4 and 12 for a total word length of 16. Finding suitable
𝐮’s is similar to the previous two cases, so we will give some examples to illustrate the possible
solutions, and then summarize them afterwards:

1. If 𝜶 = 1111.0000.0000.0000, or 0000.1111.1111.1111, take 𝐮 = 0000.0000.1111.1111.

2. Similarly, if𝜶 = 1110.1000.0000.0000, or 0001.0111.1111.1111, take 𝐮 = 0000.0000.1111.1111.
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3. If 𝜶 = 1110.0000.1000.0000, or 1110.1111.0111.1111, take 𝐮 = 0000.1111.0000.1111,

4. and if 𝜶 = 0011.0101.0000.0000, take 𝐮 = 0000.0000.1111.1111, and so on for other 𝜶’s of
weight 4 with blocks of weight 2, 3 or 4, and for 𝜶’s of weight 12 with blocks with 2, 3 or 4
zeros.

5. If 𝜶 = 0011.1000.0100.0000, take 𝐮 = 1100.0011.0011.1100, where we pick a suitable block
to build 𝐮 with from Table 4.2 based on the block of weight 2 in 𝜶.

6. If 𝜶 = 0001.0010.0100.1000, take for example 𝐮 = 0110.1001.1001.0110, where we pick a
suitable block to build 𝐮 with from Table 4.1.

The first four points show that if𝜶 of weight 4 contains a block of weight 3 or 4, or at least two blocks
of weight 2, 𝐮 will be some combination of 0000 and 1111 (though note that 0000.1111.1111.1111
is not a possible codeword, since the second half of the word should equal or “mirror” the first half
of the word). This is always possible, since 𝐮 may contain two blocks 0000 and two blocks 1111,
while an 𝜶 with blocks of these weights will only contain either two blocks that are non-zero or
two that are not of weight 4.

Similarly, for 𝜶 of weight 12 containing a block with 2, 3 or 4 zeros, the same 𝐮 may be picked.
In this case, an 𝜶 of this weight will only contain two blocks that are not all ones.

Note that for point 4 𝐮 is in fact the only possible codeword for which (𝜶𝑖 = 1 ⇒ 𝐮𝑖 = 0), be-
cause 𝜶 contains two blocks of weight 2: 𝜶1 = 0011 and 𝜶2 = 0101 where 𝜶1 ≠ 𝜶2 + 𝑎 ⋅ 1111
(𝑎 = 0, 1). If we’d looked at 𝜶 = 0101.0000.1010.0000 for example, we could also have picked
𝐮 = 1010.0101.0101.1010.

Point five and six show that if 𝜶 of weight 4 contains a block of weight 1, a suitable 𝐮 may be
found using Tables 4.1 and 4.2. When all the blocks 𝜶 contains are of weight 1, there are many
options for 𝐮, but when 𝜶 contains one block of weight 2, there is again only one possible 𝐮 that
can be picked, determined by that block of weight 2 and the position of the two blocks of weight
1.
Similarly, for 𝜶 of weight 12 containing a block with 1 zero, a suitable 𝐮may again be found using
Tables 4.1 and 4.2. When all the blocks in 𝜶 contain 1 zero, there are again many options for
𝐮, but again, if 𝜶 contains a block of weight 2, there are fewer options for 𝐮, determined by that
block.

So for 𝑚 = 2, 𝑚 = 3 and 𝑚 = 4 we can always find a suitable 𝐮 ∈ ℛ(1,𝑚) for every possible 𝜶, such
that (𝛼𝑖 = 1 ⇒ 𝑢𝑖 = 0) or (𝛼𝑖 = 0 ⇒ 𝑢𝑖 = 0).

So we find that for 𝐶 = ℛ(1,𝑚) with 𝑚 ≤ 4, for all 𝜶 of weight 2𝑚−2 or 3 ⋅ 2𝑚−2, there exists a 𝐮 ∈ 𝐶
such that

𝛿∗(𝐮 + 𝜶, 𝜶) = 2𝑚−2

So for 𝑟 = 1 and 𝑚 ≤ 4, the minimum Pearson distance of any coset 𝐶𝜶 is equal to

𝛿∗min = 2𝑚−2.

An example of three different cosets of ℛ(1, 3) can be seen in Figure 4.1, and there we see that the
minimum Pearson distance is indeed equal to 2.
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Figure 4.1: A heatmap showing the Pearson distance between all codewords in three cosets of the first order Reed-Muller code
with𝑚 = 3.

4.3. A New Lower bound for 𝑚 > 4
In the previous section we proved that the minimum Pearson distance of any coset 𝐶𝜶 of a ℛ(1,𝑚),
where 𝑚 ≤ 4, is equal to the lower bound found in Theorem 2.9.

Now the question is what happens for higher values of 𝑚.

Example 10. Let 𝐶 = ℛ(1, 5). We know that the words in 𝐶 have length 32 and the distance of the code
is 𝑑min = 16. So, for example, (with periods and a slash added for readability) one of the codewords is

0110.1001.1001.0110/1001.0110.0110.1001 ∈ 𝐶.

We saw in the proof of Theorem 4.4 that there were fewer options to pick for a suitable 𝐮 ∈ ℛ(1, 4)
when 𝜶 contained blocks of weight 2 (“suitable” meaning a 𝐮 such that (𝛼𝑖 = 1 ⇒ 𝑢𝑖 = 0) or
(𝛼𝑖 = 0 ⇒ 𝑢𝑖 = 0)).

In fact, using that there were fewer suitable 𝐮 ∈ 𝐶 when 𝜶 had multiple blocks of weight two, is
precisely how an example could be found of an 𝜶 such that the minimum Pearson distance of the coset
𝐶𝜶 for 𝐶 = ℛ(1, 5) is strictly greater than our lower bound 2𝑚−2.
Example (10 cont.). Let

𝜶 = 1100.0100.0010.0000/0110.0000.0001.1000,

then by calculating all the Pearson distances between codewords we find that 𝛿∗min = 11.5 instead of
2𝑚−2 = 8! (See Figures 4.2 and 4.3).

Figure 4.2: A screenshot of a Python output showing that the minimum Pearson distance for ℛ(1, 5)𝜶 where
𝜶 = 1100.0100.0010.0000/0110.0000.0001.1000 is equal to 11.5.

Another example of an 𝜶 that leads to a higher minimum Pearson distance than the previous lower
bound is

𝜶 = 1100.0000.0110.0000/0110.0000.0001.1000,
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Figure 4.3: A heatmap showing the Pearson distance between all codewords for ℛ(1, 5)𝜶 where 𝜶 = 1100.0100.
0010.0000/0110.0000.0001.1000. A number of cells with value 11.5 are labelled with arrows, though not all 16 of them.

again for order 1 and 𝑚 = 5, though this coset has minimum Pearson distance 9.875 > 8 instead (see
Figure 4.4 with the Python output below).

Figure 4.4: A screenshot of a Python output showing that the minimum Pearson distance for ℛ(1, 5)𝜶 where
𝜶 = 1100.0000.0110.0000/0110.0000.0001.1000 is equal to 9.875.

At first glance these two values might appear somewhat random. However, we know that 𝑑(𝐮, 𝐯) =
2𝑚−1 = 16 for whichever words 𝐮, 𝐯 ∈ 𝐶𝜶 such that they have Pearson distance 𝛿∗(𝐮, 𝐯) = 𝛿∗min, and
by Corollary 2.8

𝛿∗(𝐮, 𝐯) = 𝑑(𝐮, 𝐯) − (𝑑(𝐮, 𝐯) − 2𝑚(𝐮, 𝐯))2/2𝑚 .
Sowe find that for𝜶 = 1100.0100.0010.0000/0110.0000.0001.1000 (where 𝛿∗min = 11.5) these 𝐮, 𝐯 ∈ 𝐶𝜶
must have 𝑚(𝐮, 𝐯) = 2. For 𝜶 = 1100.0000.0110.0000/0110.0000.0001.1000 where 𝛿∗min = 9.875, we
find 𝑚(𝐮, 𝐯) = 1.

For every 𝐮, 𝐯 ∈ 𝐶𝜶 such that they have Pearson distance 𝛿∗(𝐮, 𝐯) = 𝛿∗min, we know that 𝑑(𝐮, 𝐯) =
2𝑚−1, and that 𝑚(𝐮, 𝐯) must be an integer, so we can conclude that there are no cosets of ℛ(1, 5) with
a minimum Pearson distance between 8 and 9.875 or between 9.875 and 11.5. Then we can also say
that if a coset exists with an even higher minimum Pearson distance, we know that it must correspond
to some 𝛿∗(𝐮, 𝐯) where 𝑚(𝐮, 𝐯) = 3, 4, … .
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We will later show that this 𝑚(𝐮, 𝐯) and thus 𝛿∗min has an upper bound, but first we prove that the
result from Example 10 can be extended to cosets of ℛ(1,𝑚) where 𝑚 > 5.

4.3.1. Proof for all 𝑚 > 4
The two 𝜶’s in Example 10 showed us that we can find cosets of RM-codes with 𝑟 = 1 and 𝑚 = 5
still determined by 𝜶’s of the weights 2𝑚−2 and 3 ⋅ 2𝑚−2, such that the minimum Pearson distance of a
coset determined by that 𝜶 is higher than the lower bound found by Weber et al. in Theorem 2.9. Of
the two, the first resulted in a higher minimum Pearson distance than the other: 11.5 as opposed to
9.875. This leads us to the following theorem:

Theorem 4.5. Let 𝐶 = ℛ(1,𝑚), where 𝑚 > 4. Then there exists an 𝜶 of weight 2𝑚−2 or 3 ⋅ 2𝑚−2 such
that for all 𝐮, 𝐯 ∈ 𝐶

𝛿∗(𝐮 + 𝜶, 𝐯 + 𝜶) ≥ 23
64 ⋅ 2

𝑚 .

In particular, for𝑚 = 5 and 𝜶 = 1100.0100.0010.0000/0110.0000.0001.1000, we find 𝛿∗min = 23/64⋅
25 = 23/2 for 𝐶𝜶, where 𝐶 = ℛ(1, 5), and this result can be extended for all 𝑚 ≥ 5.

Proof. First wewill prove that 1. for a certain𝜶, namely𝜶 = 1100.0100.0010.0000/0110.0000.0001.1000,
there is always a 𝐮 ∈ 𝐶 such that 𝛿∗(𝐮 + 𝜶, 𝜶) = 23

64 ⋅ 2
𝑚, and then later that 2. there are no 𝐮, 𝐯 ∈ 𝐶

such that 𝐮 ≠ 𝐯 and 𝛿∗(𝐮 + 𝜶, 𝐯 + 𝜶) < 23
64 ⋅ 2

𝑚.

1. Let 𝐶5 = ℛ(1, 5) and 𝜶5 = 1100.0100.0010.0000/0110.0000.0001.1000. From Example 10 we
know that there exists a 𝐮5 ∈ 𝐶5 such that

𝛿∗(𝐮5 + 𝜶5, 𝜶5) = 11.5 =
23
64 ⋅ 2

5,

for example 𝐮5 = 0110.0110.1001.1001/1001.1001.0110.0110. Indeed, for that 𝐮5 we have
𝑚(𝐮5 + 𝜶5, 𝜶5) = 2 and 𝑤𝑡(𝐮5) = 16, so

𝛿∗(𝐮5 + 𝜶5, 𝜶5) = 𝑑(𝐮5, 𝟎) −
(𝑑(𝐮5, 𝟎) − 2𝑚(𝐮5 + 𝜶5, 𝜶5))2

32 = 11.5.

We also know from Example 10 that there is no pair of words 𝐯5, 𝐰5 ∈ 𝐶5 such that 𝛿∗(𝐯5+𝜶5, 𝐰5+
𝜶5) <

23
64 ⋅ 2

𝑚.

Now let 𝐮𝑚 = |𝐮𝑚−1|𝐮𝑚−1| and 𝜶𝑚 = |𝜶𝑚−1|𝜶𝑚−1| for 𝑚 > 5, where 𝜶5 and 𝐮5 are the same as
the example defined above. Claim: then 𝑚(𝐮𝑚 + 𝜶𝑚 , 𝜶𝑚) = 2𝑚−4 and 𝑤𝑡(𝐮𝑚) = 2𝑚−1.

We’ve already seen for 𝑚 = 5 that 𝑚(𝐮5 + 𝜶5, 𝜶5) = 2 and 𝑤𝑡(𝐮5) = 16. Then the induction
hypothesis is 𝑚(𝐮𝑚−1 + 𝜶𝑚−1, 𝜶𝑚−1) = 2𝑚−5, and we find

𝑚(|𝐮𝑚−1 + 𝜶𝑚−1|𝐮𝑚−1 + 𝜶𝑚−1|, |𝜶𝑚−1|𝜶𝑚−1|) = 2 ⋅ 2𝑚−5 = 2𝑚−4,

and if 𝑤𝑡(𝐮𝑚−1) = 2𝑚−2, then 𝑤𝑡(𝐮𝑚) = 2 ⋅ 2𝑚−2 = 2𝑚−1.

So for each 𝑚 ≥ 5 we can find

𝛿∗(𝐮𝑚 + 𝜶𝑚 , 𝜶𝑚) = 2𝑚−1 −
(2𝑚−1 − 2 ⋅ 2𝑚−4)2

2𝑚 = 23
64 ⋅ 2

𝑚 .

2. Now it remains to show that there are no 𝐮𝑚 , 𝐯𝑚 ∈ 𝐶𝑚 such that 𝛿∗(𝐮𝑚 +𝜶𝑚 , 𝐯𝑚 +𝜶𝑚) <
23
64 ⋅ 2

𝑚.

Let 𝐶𝑚−1 = ℛ(1,𝑚−1) and let𝜶𝑖 = |𝜶𝑖−1|𝜶𝑖−1| for all 𝑖 > 5, where𝜶5 = 1100.0100.0010.0000/0110.
0000.0001.1000. We assume that 𝐶𝜶𝑚−1 has minimum Pearson distance 𝛿∗min,𝑚−1 =

23
64 ⋅ 2

𝑚−1.
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Now let 𝐶𝑚 = ℛ(1,𝑚) and let 𝐶𝜶𝑚 be determined by 𝜶𝑚 = |𝜶𝑚−1|𝜶𝑚−1|.

Suppose there exist 𝐮𝑚 , 𝐯𝑚 ∈ 𝐶𝑚 such that𝑚(𝐮𝑚+𝜶𝑚 , 𝐯𝑚+𝜶𝑚) < 2𝑚−4. Then 𝛿∗min,𝑚 <
23
64 ⋅ 2

𝑚

for 𝐶𝜶𝑚 .

If 𝐮𝑚 = |𝐮𝑚−1|𝐮𝑚−1| and 𝐯𝑚 = |𝐯𝑚−1|𝐯𝑚−1|, that means that

𝑚(𝐮𝑚 + 𝜶𝑚 , 𝐯𝑚+𝜶𝑚) < 2𝑚−4
⇔ 𝑚(|𝐮𝑚−1|𝐮𝑚−1| + |𝜶𝑚−1|𝜶𝑚−1|, |𝐯𝑚−1|𝐯𝑚−1| + |𝜶𝑚−1|𝜶𝑚−1|) < 2𝑚−4
⇔ 𝑚(|𝐮𝑚−1 + 𝜶𝑚−1|𝐮𝑚−1 + 𝜶𝑚−1|, |𝐯𝑚−1 + 𝜶𝑚−1|𝐯𝑚−1 + 𝜶𝑚−1|) < 2𝑚−4
⇔ 2 ⋅ 𝑚(𝐮𝑚−1 + 𝜶𝑚−1, 𝐯𝑚−1 + 𝜶𝑚−1) < 2𝑚−4,

which is a contradiction, since 𝑚(𝐮𝑚−1 + 𝜶𝑚−1, 𝐯𝑚−1 + 𝜶𝑚−1) ≥ 2𝑚−5. Similarly, if 𝐮𝑚 =
|𝐮𝑚−1|𝐮𝑚−1| and 𝐯𝑚 = |𝐯𝑚−1|𝐯𝑚−1 + 𝟏|, we find

𝑚(𝐮𝑚 + 𝜶𝑚 , 𝐯𝑚 + 𝜶𝑚) < 2𝑚−4 ⇔𝑚(𝐮𝑚−1 + 𝜶𝑚−1, 𝐯𝑚−1 + 𝜶𝑚−1) +
𝑚(𝐮𝑚−1 + 𝜶𝑚−1, 𝐯𝑚−1 + 𝟏 + 𝜶𝑚−1) < 2𝑚−4,

which is again a contradiction.

So we find that for 𝜶𝑚 = |𝜶𝑚−1|𝜶𝑚−1|, 𝑚 > 5, where 𝜶5 = 1100.0100.0010.0000/0110.0000.0001.
1000, the coset of ℛ(1,𝑚) determined by 𝜶𝑚 has minimum Pearson distance 23

64 ⋅ 2
𝑚.

The result found in Theorem 4.5 is considerably higher than the previous lower bound of 2𝑚−2.
Indeed,

2𝑚−2 = 16
64 ⋅ 2

𝑚 < 23
64 ⋅ 2

𝑚 .

It is unclear whether this is the highest minimum Pearson distance we can possibly find, though there
are a number of examples of 𝜶’s for which the Pearson distance is also higher than the lower bound
like in Figure 4.4, but no higher value than the one presented in Theorem 4.5 has been found yet.

However, we can prove which value the minimum Pearson distance will never exceed.

4.4. An Upper bound for 𝑚 > 4
In the previous section a new, higher, lower bound for the minimum Pearson value of cosets 𝐶𝜶 of
first order Reed-Muller codes with 𝑚 > 4 was found. However, it is unclear whether this minimum is
the highest that could possibly be found. For that reason we will narrow down the interval of possible
values for this minimum Pearson distance in this section, by finding an upper bound for the minimum
Pearson distance of the cosets. This will be done by first showing some values the minimum Pearson
distance cannot possibly be in Lemma 4.6. This will finally lead us to Theorem 4.7, in which we will
prove that 7

16 ⋅ 2
𝑚 is an upperbound for the minimum Pearson distance of our cosets.

Lemma 4.6. Let 𝐶 = ℛ(1,𝑚), where 𝑚 > 4 and let 𝜶 have weight 2𝑚−2 or 3 ⋅ 2𝑚−2. Let 𝐮 ∈ 𝐶 with
𝑤𝑡(𝐮) = 2𝑚−1. If for some 𝑥 ∈ {0, 1, … , 2𝑚−3}

𝑚(𝜶, 𝐮 + 𝜶) = 2𝑚−2 − 𝑥,

then
𝑚(𝜶, (𝐮 + 𝟏) + 𝜶) = 𝑥.

Proof. Let 𝐶 = ℛ(1,𝑚), where 𝑚 > 4, and let 𝜶 have weight 2𝑚−2 or 3 ⋅ 2𝑚−2. Now let 𝐮 ∈ 𝐶
such that 𝑚(𝜶, 𝐮 + 𝜶) = 2𝑚−2 − 𝑥 for some 𝑥 ∈ {0, 1, … , 2𝑚−3} and 𝑑(𝐮, 𝟎) = 2𝑚−1. We know that
𝑁(𝜶, 𝐮 + 𝜶) + 𝑁(𝐮 + 𝜶,𝜶) = 2𝑚−1 so supposing that 𝑁(𝐮 + 𝜶, 𝜶) ≤ 𝑁(𝜶, 𝐮 + 𝜶) we find 𝑁(𝜶, 𝐮 + 𝜶) =
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Table 4.3: A situation where 𝑁(𝜶, 𝐮 + 𝜶) = 2𝑚−2 − 𝑥 and 𝑁(𝐮 + 𝜶, 𝜶) = 2𝑚−2 + 𝑥 (digits reordered for ease of reading).

𝜶 00…0 11…1 ⋯
𝐮 + 𝜶 11…1⏝⎵⏟⎵⏝

2𝑚−2+𝑥
00…0⏝⎵⏟⎵⏝
2𝑚−2−𝑥

⋯⏟
2𝑚−1

2𝑚−2 + 𝑥 and 𝑁(𝐮 + 𝜶, 𝜶) = 2𝑚−2 − 𝑥 (see also Table 4.3).

Again, the 2𝑚−1 remaining digits should be the same in 𝜶 and 𝐮 + 𝜶. If 𝜶 has weight 2𝑚−2 that
means that there are another 𝑥 ones among those 2𝑚−1 digits, and 2𝑚−1 − 𝑥 zeros. Then if we once
again consider (𝐮+𝟏)+𝜶 as well, we see that 𝑁((𝐮+𝟏)+𝜶, 𝜶) = 𝑥 and 𝑁(𝜶, (𝐮+𝟏)+𝜶) = 2𝑚−1−𝑥
(see also Table 4.4). So 𝑚(𝜶, (𝐮 + 𝟏) + 𝜶) = 𝑥.

Table 4.4: A situation where 𝑁(𝜶, 𝐮 + 𝜶) = 2𝑚−2 − 𝑥, and 𝑤𝑡(𝜶) = 2𝑚−2 (digits reordered for ease of reading).

𝜶 00…0 11…1 11…1 00…0
𝐮 + 𝜶 11…1 00…0 11…1 00…0
(𝐮 + 𝟏) + 𝜶 00…0⏝⎵⏟⎵⏝

2𝑚−2+𝑥
11…1⏝⎵⏟⎵⏝
2𝑚−2−𝑥

00…0⏝⎵⏟⎵⏝
𝑥

11…1⏝⎵⏟⎵⏝
2𝑚−1−𝑥

Note that if𝑁(𝜶, 𝐮+𝜶) = 2𝑚−2−𝑥 and𝑁(𝐮+𝜶, 𝜶) = 2𝑚−2+𝑥, it must be the case that𝑤𝑡(𝜶) = 2𝑚−2;
otherwise more than 2𝑚−1 ones are needed where digits in 𝜶 and 𝐮+𝜶 are equal. We move on to the
case 𝑁(𝐮 + 𝜶,𝜶) ≤ 𝑁(𝜶, 𝐮 + 𝜶) where we must have 𝑤𝑡(𝜶) = 3 ⋅ 2𝑚−2 instead. Looking at Table 4.5,
we see that now 𝑁((𝐮+𝟏)+𝜶, 𝜶) = 2𝑚−1−𝑥 and 𝑁(𝜶, (𝐮+𝟏)+𝜶) = 𝑥. So also for 𝑤𝑡(𝜶) = 3 ⋅ 2𝑚−2
we find that 𝑚(𝜶, (𝐮 + 𝟏) + 𝜶) = 𝑥.

Table 4.5: A situation where 𝑁(𝐮 + 𝜶, 𝜶) = 2𝑚−2 − 𝑥, and 𝑤𝑡(𝜶) = 3 ⋅ 2𝑚−2 (digits reordered for ease of reading).

𝜶 00…0 11…1 11…1 00…0
𝐮 + 𝜶 11…1 00…0 11…1 00…0
(𝐮 + 𝟏) + 𝜶 00…0⏝⎵⏟⎵⏝

2𝑚−2−𝑥
11…1⏝⎵⏟⎵⏝
2𝑚−2+𝑥

00…0⏝⎵⏟⎵⏝
2𝑚−1−𝑥

11…1⏝⎵⏟⎵⏝
𝑥

Now we can finally prove the new upper bound:

Theorem 4.7. Let 𝐶 = ℛ(1,𝑚), where 𝑚 > 4. Then for all 𝜶 of weight 2𝑚−2 or 3 ⋅ 2𝑚−2, the minimum
Pearson distance 𝛿∗min for the coset 𝐶𝜶 has the upper bound

𝛿∗min ≤
7
16 ⋅ 2

𝑚 .

Proof. We use Lemma 4.6 to show that the minimum Pearson distance of a coset 𝐶𝜶 of 𝐶 = ℛ(1,𝑚),
where 𝑚 > 4 and 𝑤𝑡(𝜶) = 2𝑚−2 or 𝑤𝑡(𝜶) = 3 ⋅ 2𝑚−2, cannot exceed 7/16 ⋅ 2𝑚.

Let 𝐮 ∈ 𝐶 such that 𝑑(𝐮 + 𝜶, 𝜶) = 2𝑚−1. Recall that by Corollary 2.8

𝛿∗(𝐮 + 𝜶, 𝜶) = 𝑑(𝐮 + 𝜶, 𝜶) −
(𝑑(𝐮 + 𝜶, 𝜶) − 2𝑚(𝐮 + 𝜶,𝜶))2

2𝑚 ,

which increases as 𝑚(𝐮 + 𝜶, 𝜶) increases.

From Lemma 4.6 we know that if 𝑚(𝐮 + 𝜶, 𝜶) = 2𝑚−2 − 𝑥 for some 𝑥 ∈ {0, 1, … , 2𝑚−3}, we find
𝑚((𝐮 + 𝟏) + 𝜶, 𝜶) = 𝑥. If 𝑥 is low, we find that 𝛿∗(𝐮 + 𝜶, 𝜶) is high, but then 𝛿∗((𝐮 + 𝟏) + 𝜶, 𝜶) is low
again. The upper bound of the minimum Pearson distance must correspond to the value 𝑥 where both
𝑚(𝐮 + 𝜶, 𝜶) and 𝑚((𝐮 + 𝟏) + 𝜶, 𝜶) are as high as possible, that is, where 2𝑚−2 − 𝑥 = 𝑥, which holds
for 𝑥 = 2𝑚−3.
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Then

𝛿∗(𝐮 + 𝜶, 𝜶) = 𝑑(𝐮 + 𝜶, 𝜶) −
(𝑑(𝐮 + 𝜶, 𝜶) − 2𝑥)2

2𝑚

= 2𝑚−1 − (2
𝑚−1 − 2 ⋅ 2𝑚−3)2

2𝑚

= 7
16 ⋅ 2

𝑚

So 7
16 ⋅ 2

𝑚 is an upper bound for the minimum Pearson distance of cosets of first order Reed-Muller
codes.

Example (10 cont.). In Example 10 on page 23 we found the coset 𝐶𝜶 of 𝐶 = ℛ(1, 5) for which
𝛿∗min = 23/64 ⋅ 2𝑚 = 23/2, namely for 𝜶 = 1100.0100.0010.0000/0110.0000.0001.1000. If we have
𝛿∗(𝐮, 𝐯) = 𝛿∗min for some 𝐮, 𝐯 ∈ 𝐶𝜶, this corresponds to 𝑚(𝐮, 𝐯) = 2. This lead us to theorise that it
might be possible to find cosets where the minimum Pearson distance value corresponds to a higher
𝑚(𝐮, 𝐯). We can now say that the upper bound for this is equal to

𝑚(𝐮, 𝐯) = 2𝑚−3 = 4,

for which we would find
𝛿∗min =

7
16 ⋅ 2

𝑚 = 14.

To conclude, in the previous sections we found that for cosets of first order Reed-Muller codes deter-
mined by 𝜶’s of weight 2𝑚−2 or 3 ⋅ 2𝑚−2, the minimum Pearson distance can’t be higher than 2𝑚−2
(the lower bound found in [9]) when 𝑚 ≤ 4, while for 𝑚 > 4 it is possible to find cosets for which the
minimum Pearson distance is equal to 23/64 ⋅ 2𝑚, specifically when 𝜶5 = 1100.0100.0010.0000/0110.
0000.0001.1000 and 𝜶𝑚+1 = |𝜶𝑚|𝜶𝑚|. It may be possible to find cosets for which the minimum Pear-
son distance is even higher, but it can never exceed 7/16 ⋅ 2𝑚.



5
Conclusion and Recommendations

5.1. Conclusion
The goal of this project was to investigate the suitability of cosets of Reed-Muller codes for channels
with unknown offset. For this purpose, two measures for a code’s performance were introduced in the
Sections 2.1.4 and 2.2: the distance of the code and the word error rate.

However, in Chapter 4 the focus only lay on finding a new lower bound for the minimum Pearson
distance for cosets of first order Reed-Muller codes. The main results found in the chapter are:

§4.2 For𝑚 ≤ 4, cosets of first order RM-codes determined by 𝜶’s of weights 2𝑚−2 or 3 ⋅ 2𝑚−2, all have
the minimum Pearson distance

𝛿∗min = 2𝑚−2 =
16
64 ⋅ 2

𝑚 ,

which is equal to the lower bound found by Weber et al. in [9].

§4.3 For 𝑚 > 4, there exists an 𝜶 of weight 2𝑚−2 or 3 ⋅ 2𝑚−2, such that the coset 𝐶𝜶 of the first order
RM-code 𝐶 = ℛ(1,𝑚) has minimum Pearson distance

𝛿∗min ≥
23
64 ⋅ 2

𝑚 .

In particular, one sequence of 𝜶’s for which the cosets 𝐶𝜶𝑚 have this minimum Pearson distance
is 𝜶𝑚+1 = |𝜶𝑚|𝜶𝑚|, where 𝜶5 = 1100.0100.0010.0000/0110.0000.0001.1000.

§4.4 For 𝑚 > 4, the minimum Pearson distance of all cosets of first order RM-codes determined by
𝜶’s of weights 2𝑚−2 or 3 ⋅ 2𝑚−2, has upper bound

𝛿∗min ≤
7
16 ⋅ 2

𝑚 = 28
64 ⋅ 2

𝑚 .

To conclude, if we only take cosets determined by 𝜶 of weight 2𝑚−2 or 3 ⋅ 2𝑚−2, then for 𝑚 ≤ 4 we
cannot find cosets of first order Reed-Muller codes that have a higher minimum Pearson distance than
2𝑚−2; for 𝑚 > 4, we can definitely find a coset where the minimum distance is 23/16 times greater
than this lower bound 2𝑚−2: 23/64 ⋅ 2𝑚; however, the minimum Pearson distance cannot ever exceed
7/16 ⋅ 2𝑚.

5.2. Discussion and Recommendations
While the results put forward in this report are (presumably) all correct, their proofs are very much de-
fined by the intuition used to reach them.

For example, in what would eventually become Example 10 in the report, we stumbled upon a par-
ticular coset of ℛ(1, 5) determined by 𝜶 = 1100.0100.0010.0000/0110.0000.0001.1000, for which the

29
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minimum Pearson distance of the coset was higher than the earlier lower bound. The intuition used for
this was the idea that first order Reed-Muller codes are built up of the eight blocks proposed in Lemma
4.2, and that finding a 𝐮 ∈ ℛ(1,𝑚) such that 𝑚(𝐮 + 𝜶, 𝜶) = 0 might be more difficult if 𝜶 contained two
blocks of weight two that don’t occur together in codewords.

This later turned out to only be possible for 𝑚 ≥ 5 and thus the proofs for Lemma 4.2 and Theo-
rems 4.4 and 4.5 are based on that intuition made precise. However, it may very well be that there is
a more straightforward approach to reaching this result that could possibly be more easily extended to
Reed-Muller codes of higher orders.

If we were to insist on using an extension of Lemma 4.2 for higher orders, we would need to develop
a sense of how the codewords from higher order codes are built. While it is possible that there is a
similar structure in higher order codes to the one found in first order codes, to the eye it does not seem
to be all that similar to our eight simple blocks; considering for example the following codeword from
ℛ(2, 4):

𝐮 = 0000.0101.0110.0011.
None of the blocks of four in this codeword 𝐮 could ever occur in the same word in a first order code.
However, the two halves 0000.0101 and 0110.0011 are both elements of the code ℛ(2, 3). Perhaps a
similar lemma to Lemma 4.2 could be proven with the 128 codewords from ℛ(2, 3) as the base case,
though whether this would then lead to a nice extension of the two Theorems 4.4 and 4.5 where Lemma
4.2 was (directly or indirectly) used, is a new question to be answered.

Another thing worth looking into is the word error rate, how it changes for different levels of noise
(different 𝜎’s in the Q-function) and what that means for the suitability of using Reed-Muller codes in
practical situations. While it was shown in this thesis that there are certainly cosets with higher mini-
mum Pearson distances than the lower bound previously found by Weber et al., due to the constraints
of time, we did not get to dive deeper into the word error rate of these cosets.

During the research phase of this project an interesting discovery was made for the coset of ℛ(1, 5)
determined by 𝜶5 = 1100.0100.0010.0000/0110.0000.0001.1000: the number of occurences of the
distance 23/64 ⋅ 2𝑚 = 11.5 between two codewords was 16 (as shown in Example 10). For higher val-
ues of 𝑚, where 𝜶𝑚 = |𝜶𝑚−1|𝜶𝑚−1|, this number stayed the same! This was admittedly unexpected,
since between ℛ(1,𝑚) and ℛ(1,𝑚 + 1) the total number of codewords increases twofold. A question
that comes up is whether all cosets have the property that the number of occurances of the minimum
Pearson distance between two words remains the same.

Finally, the results of this thesis only hold for cosets determined by vectors 𝜶 of weight 2𝑚−2 or
3 ⋅ 2𝑚−2, because Theorem 2.9 does so as well. Cosets determined by vectors of different weights
may have different minimum Pearson distances entirely. Indeed, if we consider 𝐶 = ℛ(1, 4), which has
distance 𝑑min = 2𝑚−1 = 8, and calculate all the Pearson distances between words like was done in
Example 10, we find that the coset 𝐶𝜶 where 𝜶 = 1100.0100.0110.0000, has minimum Pearson dis-
tance 𝛿∗min = 5.75 rather than 2𝑚−2 = 4, which, as we know, would be the result when using an 𝜶 of
weight 2𝑚−2 or 3 ⋅ 2𝑚−2!

It may be true that Weber’s choice of weights for 𝜶 leads to the “best” lower bound for a general
linear block code with the all one- and all zero-word, but it seems that this may not be true for the
highly structured Reed-Muller codes. Before venturing into the territory of higher order Reed-Muller
codes, it might be prudent to determine which 𝜶’s could produce better results than 𝜶’s of weight 2𝑚−2
or 3 ⋅ 2𝑚−2.
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