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Abstract

The quantification of pebble shape has been of interest to geomorphologists for

decades. Several authors developed parameters to describe pebble shapes from their

images. The extraction of this information from images involves two steps: the seg-

mentation of pebble contours and the application of a computational geometry algo-

rithm to estimate shape parameters. When images are taken in the field, unavoidable

shadows might hinder the possibility of using automatic segmentation methods. This

paper introduces a new method for automatic segmentation of pebbles that

improves segmentation accuracy in the presence of shadows. The method is based

on the Canny edge detection algorithm which uses a double thresholding process to

provide a classification of the strength of the detected edges. The proposed method

applies this algorithm with an ensemble of thresholding values, estimating, for each

pixel, the probability of being an edge. The resulting pebble contours were analysed

using two computational geometry algorithms to obtain shape parameters. The algo-

rithm was calibrated on a sample of five pebbles and then validated on a sample of

1696 pebbles. Its accuracy has been estimated by comparing the resulting shape

parameters with those obtained using reference software, which was used as ground

truth (GT). The proposed segmentation method was capable of accurately

segmenting around 91% of the sample with a relative error for roundness of �1.7%

and �0.4%; for elongation of �0.2% and �0.3% and for circularity of 0.2% and 0.1%,

when shape parameters were computed using the algorithms of Zheng or Roussillon,

respectively. The method could therefore be used to segment images of pebbles col-

lected in the field with low contrast and shadowing, providing comparable accuracy

with ‘manual’ segmentation, while removing operator bias.

K E YWORD S

computational geometry, image processing, sediment morphometry, segmentation, shadow
effect

1 | INTRODUCTION

The detailed description of sediment transport processes in rivers

is still hindered by technological measurement limitations

(Cassel, Dépret, & Piégay, 2017; Cassel, Piégay, & Lavé, 2017;

Rickenmann, 2017; Schneider et al., 2016; Wyss et al., 2016). Histori-

cally, sediment transport rates have been considered to depend on

pebbles’ mass, almost invariably expressed by a linear measure repre-

sentative of their size and by their density (Engelund & Hansen, 1967;

Meyer-Peter & Müller, 1948; van Rijn, 1984). Recently, the impact of

pebble shape on transport rates was also acknowledged (Cassel

et al., 2021; Deal et al., 2023). Changes in sediment size and shape as

a function of their transport history within a river basin have been

observed in the field and studied empirically, analytically and
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numerically for decades. These changes have been attributed to

the combination of a series of processes: attrition (Attal &

Lavé, 2009; Kodama, 1994; Krumbein, 1941; Lewin & Brewer, 2002;

Wentworth, 1919), selective transport (Bradley, Fahnestock, &

Rowekamp, 1972; Dawson, 1988; Seal & Paola, 1995; Ferguson

et al.,1996 ) and physical and chemical weathering (Bradley, 1970;

Jones & Humphrey,1997). Some authors also suggested the possibility

of ‘in-place abrasion’ (Brewer, Leeks, & Lewin, 1992; Schumm &

Stevens, 1973), which is the process of sediment deterioration owing

to vibrations that pebbles are subject to because of fluctuations of lift

and drag forces.

Two of the most widespread technologies providing quantitative

data on sediment size and shape are laser scanning and image-based

techniques. Both techniques have been applied either on untouched

samples in the field (Adams, 1979; Butler, Lane, & Chandler, 2001;

Chang & Chung, 2012; Hodge, Brasington, & Richards, 2009; Huang,

Atkinson, & Wang, 2018; Wang et al., 2013; Warrick et al., 2009) or

on pebbles collected and later analysed under controlled conditions

and by applying several methods (Cassel et al., 2018; Hayakawa &

Oguchi, 2005). In general, image-based methods represent a cheaper

solution, especially if the analysis is limited to pebbles size, whose

accurate estimation can be achieved even with lower-resolution

images (Detert & Weitbrecht, 2012; Roussillon et al., 2009; Zheng &

Hryciw, 2015). In this case, the grain size distribution of the surficial

material can also be estimated using images collected by Unmanned

Aerial Vehicles (UAV) (Carbonneau, Bizzi, & Marchetti, 2018;

Carbonneau, Lane, & Bergeron, 2004; Langhammer et al., 2017;

Woodget & Austrums, 2017). This method allows the acquisition of a

large number of pebbles in a relatively short time; however, pebbles’

imbrication and coverage by vegetation and soil material limit its

applicability to shape estimation. Furthermore, while mean grain size

can be inferred from the spectral decomposition of images of exposed

sediment deposits (Buscombe, Rubin, & Warrick, 2010), a similar

approach has not yet proven applicable for shape estimation. Several

algorithms were proposed to allow the segmentation of contacting

and overlapping objects, both in 2D and 3D settings (Koh et al., 2007;

Sun, Zheng, & Li, 2019; Zheng & Hryciw, 2016), but their effect on

the accuracy of shape estimates is still unclear. For these reasons,

accurate estimates of sediment shape still mostly rely on the analysis

of samples collected in the field and analysed under controlled

conditions.

During field surveys, sediment images are often taken by placing

the sampled pebbles against a flat surface capable of providing a uni-

form colour background (Cassel et al., 2018; Roussillon et al., 2009;

Tunwal, Mulchrone, & Meere, 2020; Vangla, Roy, & Gali, 2017). Field

conditions do not always allow shadow elimination, which affects

image segmentation (Figure 1a). Shadow elimination is a classic prob-

lem in image analysis and computer vision which therefore produced

a vast literature (Al-Najdawi et al., 2012; Ecins, Fermüller, &

Aloimonos, 2014; Le & Samaras, 2020; McCallister & Hung, 2003).

These methods do not find application to sediment pebble analysis,

mostly because of their high variability in hue and texture, and the

lack of controlled lightness conditions that can be achieved in

the field. Under more controlled conditions, the geometric projection

of pebbles’ shadows has been used to infer their third dimension

(Montenegro Ríos et al., 2013). This method requires a background

capable of producing a strong hue difference to the target pebbles.

Unfortunately, although many silicate and carbonate rocks present a

higher intensity in the red and blue spectrum, some rocks also show

relevant intensity in the green hue (e.g. rocks rich in olivine,

serpentine or chlorite minerals). This makes the data acquisition

process complex in the field because one should use different

backgrounds for pebbles of different hues.

This manuscript proposes a new method to segment the 2D con-

tour of pebbles from sediment images in the presence of shadows.

The method is based on a probabilistic application of the Canny edge

detection algorithm (Canny, 1986) and uses greyscale images; there-

fore, it does not require the selection of a specific background colour.

Its application shows that this new method allows an accurate

assessment of sediment shape properties from images collected in the

F I GU R E 1 (a) Example of the field
survey process. (b). JPG image of a sample
of pebbles of mixed lithology collected on
the Sarzana River, Italy in 2019. This
image is 4032 � 3024 pixels, with a
resolution of 300 dpi and a spatial
resolution of around 0.26 mm/px.
(c) Image resulting after the elimination of
the material outside of the whiteboard.
(d) Example of rough segmentation with
the indication of centroids and bounding
boxes for each pebble.
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field using relatively inexpensive equipment. The model is written in

MATLAB™, The MathWorks, Inc. and is available at https://github.

com/ACattapan/Probabilistic-Canny-Segmentation.

2 | METHODS

2.1 | Segmentation method

Sediment images collected in the field are generally characterised by

irregular shadowing and by intra-granular variations in texture and

colour (Figure 1b). Because shadows reduce the local contrast near

the edge of a pebble, common methods for edge detection, loosely

based on intensity gradients, might not provide an accurate segmenta-

tion, for example, Canny edge detector (Canny, 1986), Sobel operator

(Sobel, 2014) and Watershed algorithm (Zheng & Hryciw, 2016). The

proposed method comprises two phases. Phase 1 consists of a

pre-processing of the input image where the model identifies the

background board on which target pebbles are placed to exclude

undesired objects and roughly identifies each pebble, which will then

be analysed individually. Phase 2 consists of the application of the

proposed method on each pebble. The proposed method is based on

the iterative application of the Canny edge detection algorithm with

variable thresholding values. For each set of these values, an image of

edges, variable strength, is produced. These images are then averaged

to calculate the relative frequency with which each pixel has been

identified as an edge, hence the probabilistic nature of the method.

This probabilistic approach improves the performances of the classical

Canny algorithm by allowing taking into account additional criteria for

the definition of the outline of a pebble, on top of the local contrast.

The detailed method will be explained in Section 2.3.

2.2 | Phase 1: image pre-processing

The first phase of the model aims at removing from the initial image

areas of non-interest (Figure 1b). For this purpose, the true-colour

image is first transformed into greyscale. Given the sharp change in

colour and texture between the outer material and the background

board, the board’s edge represents a discontinuity in the light inten-

sity, that is, these points are characterised by a significant gradient in

greyscale. The image is therefore initially enhanced, increasing the

contrast between the background board and the material present on

the background. The contrast enhancement increases the probability

that the maximum absolute value of the intensity gradient will be

placed on the edges of the background board. The intensity gradient

is computed by the convolution of the Sobel operator (Sobel, 2014)

and the contrast-enhanced image. The background board segmenta-

tion method searches for the edges in the vertical and horizontal

directions separately and proceeds sequentially by column and row,

respectively. As an example, the process for the identification of the

top horizontal edge is explained below; the identification of the other

edges will follow an analogue process.

Assume the enhanced image to be a N by M pixels matrix. Each

pixel is identified by its row and column indices, i and j, respectively.

The search for the pixels composing the top horizontal edge of the

background board starts from the top left of the image (row i¼1 and

column j¼1) and proceeds by column. The code searches for the pixel

with the highest positive gradient in the vertical direction along the

column j and evaluates the following conditions:

1. When the image includes external material that encircles the back-

ground board, then the horizontal edge might not lay on column j.

In this case, none of the pixels in column j have a positive gradient

so the code moves to the first row of column jþ1.

2. If the highest positive gradient is found on pixel i�, jð Þ, which is

located in the upper half of the image i� ≤N=2ð Þ and no previous

pixel had been identified as an edge, then i�, jð Þ becomes the first

pixel of the horizontal edge. If other pixels had already been identi-

fied as part of the edge, the code computes the distance from the

pixel identified as an edge in column j�1. If this distance is smaller

than 10 pixels, then the pixel i�, jð Þ will also be classified as part of

the horizontal edge. Hence, all pixels of column j located on rows

i< i�ð Þ will be assigned a value of 0, and all pixels on rows i≥ i�ð Þ
will be assigned a value of 1. The code will then move to the first

row of column jþ1.

3. If the highest positive gradient is found on pixel i�, jð Þ and this is

located in the lower half of the image i� >N=2ð Þ or at a distance

higher than 10 pixels from the pixel identified as an edge in column

j�1, this means that the top edge along column j is not

characterised by the maximum gradient. This can be because of

the presence of pebbles inside the board that produce a stronger

contrast with the board itself. The upper edge along column j is

therefore approximated by the pixel located on the same row as

the edge pixel of column j�1, and the analysis will move to col-

umn jþ1. This implies that the board edge is assumed to be paral-

lel to the edge of the image.

The result is a binary mask splitting the image in two: all pixels above

the top horizontal edge will have a value of 0, while all pixels on the

edge and below will have a value of 1. A similar process is repeated to

identify the three remaining edges. The final four binary masks are

then overlapped, resulting in a binary mask where all pixels belonging

to the background whiteboard have a value of 1 (Figure 1c).

This mask is then applied to the original RGB image so that the

output is a true-colour representation of the whiteboard and the

pebbles positioned on top of it. The outer material in the area of non-

interest is replaced by a uniformly coloured region. To reduce the con-

trast, the colour of the outer region can be selected to be as similar as

possible to the colour of the background board (Figure 1c).

Because the next phase of the model involves the analysis of each

pebble individually, the image obtained at this point is converted to

black and white and enhanced. Because the contrast between the

whiteboard and the pebbles is generally high, their outline can be

roughly identified and labelled as a separate eight-connected compo-

nent. The (eight) connection is defined according to this criterion: a

pixel a is eight-connected to a pixel b if b is located in a 3�3 square

window surrounding pixel a, which is therefore composed of eight

pixels plus pixel a itself. Each component represents the set of pixels

that have been assigned a value of 1 in the black-and-white image.

Comparing Figure 1c and d, it is possible to notice that, because of

the presence of shadows and colour and texture changes on the sur-

face of some pebbles, this rough segmentation can be quite inaccu-

rate, often leading to the overestimation of the pebbles’ outline. The

CATTAPAN ET AL. 3
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model builds a bounding box around each connected component,

which will be the area of focus for the second phase.

2.3 | Phase 2: probabilistic Canny segmentation
method

In order to assure the quality of the segmentation, and immediately

remove poorly segmented pebbles, the model considers one pebble at

a time which can be thought of as a two-step process.

The first step is based on the Canny edge detection algorithm

(Canny, 1986; Gonzalez, Woods, & Eddins, 2009), which is widely

used in image segmentation and incorporated in MATLAB™. A gen-

eral overview of the method is given here, while a detailed explana-

tion can be found in the literature (Canny, 1986; Gonzalez, Woods, &

Eddins, 2009). The method is usually applied on a greyscale image,

which is initially smoothed by a convolution with a Gaussian function

with a given standard deviation (σC) and a 16�16 pixels support. The

magnitude and direction of the local gradient of the smoothed image

are then computed for each pixel. The underlying hypothesis is that

pixels belonging to an edge should be characterised by a local maxi-

mum of the gradient in the direction of the gradient. Nonetheless, the

gradient magnitude image is generally characterised by the presence

of wide ridges instead of sharp edges. The algorithm, therefore, pro-

ceeds with a non-maximum suppression step: if the value of the gradi-

ent in a certain pixel is the maximum among the ones located along

the gradient direction, its value is maintained, otherwise, it is

suppressed that is, replaced by zero. This step produces a non-

maximum suppressed gradient image which may contain false-positive

and false-negative edges. The selection of the important ones for the

segmentation of the objects is performed by a hysteresis thresholding

process. Edges can be classified according to the ‘strength’, that is,

the magnitude of the gradient. The algorithm defines two thresholds

for the gradient magnitude: a higher threshold (ChÞ and a lower one

(ClÞ. All pixels with a gradient magnitude higher than Ch are defined as

‘strong’ and are automatically kept as edges. All pixels with a gradient

magnitude lower than Cl are automatically discarded, while pixels with

a gradient magnitude between Ch and Cl are defined as ‘weak’ and
are kept only if they are connected to a ‘strong’ edge. Overall, the

Canny edge detection algorithm requires the definition of three

parameters: the standard deviation of the Gaussian filter (σC) and two

thresholds Ch and Cl for edges’ strength. The model first applies the

algorithm using the default values for all the parameters: σC ¼
ffiffiffi
2

p
,

while Ch and Cl are defined in terms of percentage of the gradient

magnitude values, Cl ¼0:28 and Ch ¼0:70.

When applied to images of sediment collected in the field, for

example, Figure 1a, this method might categorise as edges not only

a pebble’s contour but also internal discontinuities because of

variations in colour or texture (Figure 2). The presence of significant

shadows might also worsen the quality of the segmentation because

the maximum gradient might happen along the shadow, resulting in

artificial edges not associated with the shape of the physical

object (Figure 2). To assess whether the default application of the

Canny algorithm successfully segmented the whole outline of a

pebble, the edges resulting from its application are first classified as

eight-connected components and the longest connected component

is identified.

In the absence of shadows and internal colour or texture changes,

the outer border is characterised by a strong contrast with the back-

ground, and therefore, the longest connected component properly

approximates the pebble’s outline. In this case, the longest connected

component will be a closed path; the segmentation process will stop

and the model will print an image of the original pebble superimposed

by the longest connected component to allow the operator to assess

the quality of the segmentation and decide whether to keep the out-

line for further shape analysis or discard it due to an insufficient accu-

racy. However, in case of strong shadows or colour variations, the

longest connected component properly identifies only the part of a

pebble’s outline facing the light source, where the image contrast is

higher, for example, the red outline in Figure 2. In this case, the

longest connected component will be an open path, characterised by

two endpoints. The process will therefore continue with the

Probabilistic Canny segmentation method which represents the

second step of Phase 2.

The second step of Phase 2 is based on the hypothesis that the

composite statistics of multiple applications of the Canny algorithm

with different parameterisations will reveal the most significant edges,

that is, the ones which are identified more frequently. The parameters

that the model varies to assess the relative frequency with which

edges are detected are the standard deviation of the Gaussian filter

and the lower and upper thresholds on edges’ strength. Parameters

are selected from independent uniform distributions (see also

Section 2.4). Each combination of these three parameters produces a

binary image of edges. The relative frequency f with which each pixel

is identified as an edge can therefore be computed. The output repre-

sentation is a greyscale image, where pixels with a higher probability

of being edges appear of lighter colour (Figure 3). The model then

starts from one endpoint of the previously computed longest con-

nected component and uses the edge frequency map to select new

pixels to attach to eventually close the pebble’s outline. The algorithm

uses a square search window of size l pixels placed around each end-

point of the longest connected component (Figure 3). The selection of

which pixels to attach to the actual longest connected component is

F I G U R E 2 Connected components resulting from the application
of the classical Canny segmentation algorithm. The red contour
represents the longest connected component. Notice that, in the area
where a shadow is present, on the left of the pebble, the algorithm
identifies a series of possible edges, each with a different ‘strength’
and length.

4 CATTAPAN ET AL.
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based on two assumptions. The first assumption is that pixels that

have been more frequently identified as edges have a higher

likelihood of being true edges. The second assumption is that pebbles

tend to be overall convex; therefore, true edges should contribute to

closing the pebble outline.

To implement these assumptions, the pixels’ relative position

must be defined. The model uses a polar coordinate system centred

on the centroid of the actual longest component. The position of each

pixel within the search window is therefore defined by its distance

from the centre dC�P and by its angle α (Figure 3). δ is the angle

formed between a pixel in the search window and the opposite

endpoint. dE�P is the distance between a pixel in the search window

and the endpoint at the centre of the window. rf is the gradient of

the frequency map computed between each pixel in the search

window and the actual endpoint. Δ is the angular distance between

the current endpoints. Pixels within the search window are initially

filtered according to three conditions:

f >0 ð1Þ

dE�P >0 ð2Þ

δ<Δ ð3Þ

The first condition (Equation 1) filters out all pixels that were

never identified as edges because their frequency f is lower or equal

to zero. The second condition (Equation 2) filters out the current end-

point by imposing that the distance of the selected pixel from the cen-

tre of the search window should be positive (dE�P >0). The third

condition (Equation 3) states that the selected pixel should contribute

to the decrease of the angular distance between the endpoints (δ<Δ),

in agreement with the second assumption. The first and second condi-

tions must always be met while, if any pixel within the search window

satisfies the third condition, the model selects the pixel with the mini-

mum value of δ (even if δ>Δ). This allows the identification of locally

non-convex edges. Multiple pixels may fulfil all three conditions. In

this case, the model will select the new endpoint according to a list of

conditions, where each further condition is assessed only if multiple

pixels meet the previous one. The list of conditions is

max rfð Þ ð4Þ

min dE�Pð Þ ð5Þ

min δð Þ ð6Þ

The meaning of these criteria is that the new endpoint is selected

based on the maximum gradient of the probability for it of being an

edge (Equation 4); its distance from the current endpoint should be

the minimum to guarantee the continuity of the object’s outline

(Equation 5); and its position should be such that the angle between

current endpoints will decrease (Equation 6). The pixel resulting from

such selection will become the new endpoint and, should it not be

adjacent to the actual centre of the search window, it will be

connected to the current endpoint with a linear interpolation.

At this point, the model moves to the opposite endpoint and the

process is repeated. The angular distance between endpoints

iteratively decreases bringing them closer together alternatively from

both sides. This process stops either if it is not possible to identify

additional edges, or if the position of the endpoints is such that one of

the two following conditions is met:

Δ<Δthr ð7Þ

dE�E <
l
2

ffiffiffi
2

p
ð8Þ

The first condition (Equation 7) states that the angular distance

between the endpoints is smaller than a certain threshold Δthr (6
�
in

this application). The second condition (Equation 8) states that the lin-

ear distance between endpoints is smaller than half of the diagonal of

the search window. At this moment, the two endpoints are connected

by a straight line that closes the pebble’s outline. At the end of the

segmentation process, the identified contour is plotted on top of the

F I GU R E 3 Scheme representing the
variables used by the pebble
segmentation model. O is the centroid of
the connected component, and x is the
horizontal axis. E1 and E2 are the two
endpoints of the longest connected
component, α is the angle of the first
endpoint with respect to the horizontal
axis, while δ is the angle between the
endpoints. dC�P is the distance between
the centroid and a generic pixel within the
search window (see particular A)), which
has a size l. Finally, dE�P is the distance
between an endpoint and a generic pixel
within the search window.

CATTAPAN ET AL. 5
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true colour image to allow a visual assessment of the quality of the

result (Figure 4). The method was capable of properly segmenting the

pebble (Figure 4), despite the presence of a shadow; the application of

the classical Canny algorithm would have produced a set of possible

edges in the area on the left of the pebble (Figure 4).

2.4 | Application area and data collection

The data used for calibrating and validating the proposed method

were collected in the Sarzana River basin: a 25 km2 alpine basin in

Norh-East Italy (Figure 5). The Sarzana River is a tributary of the Cor-

devole River, which joins the Piave River around 31 km downstream

of the Sarzana confluence. The Sarzana catchment is characterised by

an alpine climate, with cold winters and temperate summers. The

average annual precipitation measured at the nearby ARPAV station

of Col di Prà (https://www.arpa.veneto.it/dati-ambientali/open-data/

clima) over the period 2000–2021 is about 1620 mm (Brenna &

Surian, 2023). The Sarzana River drains the Southeast face of the

Agner Mountain group while its right-hand side is bounded by

the Armarolo Mount. The elevation varies between about 2872 and

563 m above sea level.

Sediment samples ranging between fine gravel and cobbles have

been collected from 11 locations, from outcrops, first-order

tributaries and along the main river. Individual sediment particles

have been collected, washed to remove loose soil and vegetation,

dried with a cloth to avoid sparkles and placed on a 0.5 m by 1.0 m

rectangular white wood board that was used as a background.

Sediments were placed on the background board following two

criteria: their orientation was such that the projected area on the

board was maximum and their relative distance was big enough to

avoid overlaps of their edges when seen from the point of view of

the camera. In the current manuscript, the first criterion was applied

to ensure that the maximum projected area was captured, providing

reliable measures of both maximum and intermediate axes (a and b

respectively).

Images were taken using an Olympus® E-PL1 digital camera,

whose lens was placed as parallel as possible to the background board

to limit tangential distortion. The background board and the sampled

particles were carefully placed within the edges of the image to limit

radial distortion. For these reasons, images were not corrected for dis-

tortion before the analysis. A metal ruler was placed along the

longest side of the board and was used to scale each image. The reso-

lution of the images depends on the size and resolution of the camera

sensor, the focal length and the distance between the lens and the

object. The data presented here were taken standing at a distance of

about 1.0 m from the board, the camera used has a 12.3 MP sensor

and the resulting images have an average resolution of 0.26 mm/px.

The total number of pebbles present in the sample is 1696. The mini-

mum size of the particles collected was chosen following the criteria

recommended by Roussillon et al. (2009): in order to achieve accurate

shape values, for a given image resolution, each particle perimeter

should be composed of at least 150 pixels. The minimum dimensions

considered were therefore about 20 mm and 12 mm for the maximum

and intermediate size, respectively.

In order to assess the relative importance of the toolbox used for

shape parameters estimation, we created a set of eight black and

white images using Adobe Illustrator CC, for which we could compute

shape descriptors analytically. These will be further referred to as

‘analytical shapes’. Examples and details regarding the analytical

shapes can be found in the supporting information. Table 1 summa-

rises the ranges of values used for shape descriptors of analytical

shapes (Equations 9–11).

2.5 | Model calibration

The probabilistic nature of the model implies the definition of bound-

aries for the random selection of the parameters used. The quality of

the model’s result depends on these boundaries. The model was

calibrated to identify the optimal ranges of Cl, Ch and σC . The space of

possible values considered during the calibration is reported in

Table 2.

In order to calibrate the values of the model’s parameter and to

assess its accuracy, the outline of each pebble manually obtained

using the ‘Quick Selection tool’ available in Adobe Photoshop CC was

chosen as the ground truth (GT). The use of this tool requires, espe-

cially in the case of shadows, the manual refinement of the segmenta-

tion by the operator and might therefore be time consuming and

subject to operator bias. The model’s parameters have been calibrated

using five pebbles that have been selected because they differ in

shape, colour, texture and intensity of the shadow. The outlines

resulting from the application of our model with each combination of

the calibration parameters have been processed using the toolboxes

developed by Roussillon et al. (2009) and Zheng and Hryciw (2015)

for the estimation of shape parameters. Both toolboxes have been

used to process the outlines obtained from the segmentation with

Adobe Photoshop CC. We used as an accuracy metric the mean abso-

lute relative error (ε) of three common shape descriptors: elongation,

circularity and roundness. The definitions of these three shape

descriptors are as follows:

e¼ I
L

ð9Þ

C¼4πA

P2
ð10Þ

F I GU R E 4 Outline of a pebble obtained from the application of
the proposed method after calibration.
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RW ¼
1
Nc

PNc

i¼1
ri

R
ð11Þ

Where elongation e is the ratio of the intermediate to the longest

dimension of the 2D contour (I and L, respectively), A and P are the

area and the perimeter of the 2D contour, respectively, and RW is

the roundness according to Wadell (1932). This is defined as the

ratio between the average radius of curvature (ri) of the Nc corners of

the 2D contour and the radius of the biggest inscribed circle (RÞ.
The relative error (ε) for each descriptor is defined as follows

(Equation 12):

ε¼ 1
Np

XNp

i¼1

βGTi�βPCij j
βGTi

ð12Þ

where Np is the number of pebbles in the sample (Np ¼5 for the cali-

bration phase), βGTi is the value of a generic shape descriptor obtained

using the GT outline for the ith pebble, whereas βPCi is the value of the

same shape descriptor obtained using the outline produced by

the Probabilistic Canny segmentation method for the same pebble.

This metric was chosen because it does not allow compensation of

positive and negative relative errors. We also assessed the general

performances of the model using an overall error metric defined by

equation 13.

E¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2e þε2Cþε2RW

q
ð13Þ

where εe is the relative error for pebbles’ elongation, εC is the relative

error for pebbles’ circularity and εRW is the relative error for pebbles’

roundness, as defined earlier.

The combination of parameters selected for the calibration was

the one that produced the minimum of the objective function (Ω)

defined as the square root of the sum, over all five pebbles, of the

squares of the overall error metric (Equation 14).

Ω¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
X5
i¼1

E2i

vuut ð14Þ

The combination of values corresponding to the minimum of the

objective function is provided in Table 3. The parameters were tested

between the lower and upper limit in Table 2 with an equidistance of

0.01. The size of the search window around each endpoint was kept

constant and equal to 17 pixels. The calibrated model was then

applied to the full dataset of images taken in the Sarzana River basin,

Italy, as described in Section 2.4.

F I GU R E 5 Location of the Sarzana River basin and of the locations where the sediment images used in this study have been collected.

T AB L E 1 Overview of shape descriptor values for analytical
shapes.

Parameter Lower limit Upper limit

e 0.18 0.74

C 0.44 0.97

RW 0.29 1.00

T AB L E 2 Range tested for calibration parameters.

Parameter Lower limit Upper limit

Cl 0.0 1.0

Ch 0.0 1.0

σC 0.2 5.0

T AB L E 3 Values of model parameters after calibration.

Parameter Lower limit Upper limit

Cl 0.1 0.2

Ch 0.0 0.3

σC 0.2 5.0

CATTAPAN ET AL. 7
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The relative importance of the segmentation method and of the

computational geometry tool for the overall accuracy of the shape

values estimation was also assessed. For a given shape descriptor β,

the bias of the toolbox by Zheng and Hryciw (2015) was assessed

with respect to the one by Roussillon et al. (2009); the average

absolute relative difference between the values produced was used

εZ�R β (Equation 15). We used three datasets: the GT outlines, the

outlines produced by the Probabilistic Canny segmentation model and

the analytical shapes.

εZ�R β ¼ 1
Np

XNp

i¼1

βR i�βZ ij j
βR i

ð15Þ

where Np is the number of pebbles in the dataset, βR i is the value of

the shape descriptor estimated using the toolbox by Roussillon et al.

(2009) for the ith pebble and βZ i is the associated value estimated

using the toolbox by Zheng and Hryciw (2015).

3 | RESULTS

Out of the 1696 pebbles present in the sample, 1541 passed the

visual inspection, meaning that the outline produced by the model

appeared to be perfectly matching the actual pebble outline. In

terms of visual inspection, therefore the model allowed the accurate

segmentation of around 91% of the sample. To quantitatively assess

its performance, the outline of all pebbles that passed the visual

inspection was also processed using the toolboxes developed by

Roussillon et al. (2009) and Zheng and Hryciw (2015). The same

toolboxes were also used to analyse the outline of GT pebbles.

Table 4 summarises the performances of the proposed segmentation

model compared to GT for each shape descriptor and for both

toolboxes.

Roundness is the parameter that showed the highest relative

error, irrespective of the toolbox used for the estimation of shape

parameters. Results for elongation and circularity showed instead

good agreement with GT values. Table 5 provides the values of the

bias of the toolbox by Zheng and Hryciw (2015) with respect to

the one by Roussillon et al. (2009) for elongation, circularity and

roundness.

Although the size of the sample is limited to eight shapes, the

comparison of the outputs of each toolbox with analytically computed

shaper descriptors suggests that the toolbox developed by Zheng and

Hryciw (2015) is more accurate than the one by Roussillon et al.

(2009) (see Table 6).

Figure 6 provides a visual summary of these results: subplots (a),

(c) and (e) compare the two toolboxes for shape descriptors estima-

tion considered in this study, whereas subplots (b), (d) and (f) compare

our Probabilistic Canny segmentation method with GT: the ‘Quick

selection tool’ of Adobe Photoshop CC. In these plots, it is possible

once more to observe that, within the limits of our experiment, the

choice of a certain toolbox for shape descriptors estimation had a

much higher impact on the overall accuracy than the segmentation

method used. These plots are also coherent with the comparison of

results reported in Tables 4 and 5.

The time required to process an image with several pebbles

depends on the number of pebbles and the available computing

power. As a reference, in the experiments presented in this manu-

script, using 16 GB RAM and 4 cores, 1.8 GHz CPU, an image with

39 pebbles was processed in around 12 min, including the time

needed to visually assess the quality of the segmentation of each

pebble.

4 | DISCUSSION

The accuracy of the Probabilistic Canny segmentation method pres-

ented varies depending on the specific shape parameter used to

assess it. In particular, the accuracy in terms of elongation results

to be the highest, with lower values for circularity and even lower for

roundness. This result provides quantitative evidence for the intuitive

argument that the impact of the segmentation method on the shape

estimation accuracy increases with increasing detail required to

compute the shape descriptor itself.

The comparison of the results reported in Table 4 and Table 5

suggests that the bias associated with the selection of one of the two

computational geometry toolboxes is larger than the error introduced

by the use of the proposed Probabilistic Canny segmentation method

instead of the ‘Quick selection tool’.

T AB L E 4 Model results in terms of mean absolute error (E), standard deviation of the absolute error (σ) and mean absolute relative error (ε)
for elongation (e), circularity (C) and roundness according to Wadell (Rw).

Model Ee σEe εe EC σEC εC ERw σERw εRw

Zheng 0.006 0.021 0.9% 0.013 0.025 1.5% 0.044 0.038 7.5%

Roussillon 0.010 0.025 1.0% 0.007 0.015 0.7% 0.028 0.029 4.3%

T AB L E 5 Bias of the toolbox by Zheng and Hryciw (2015) with
respect to the one by Roussillon et al. (2009) for elongation,
circularity and roundness.

Bias Ground truth Prob. Canny Analytical shapes

εZ�R e 3.5% 3.7% 52.2%

εZ�R C 7.2% 7.4% 6.0%

εZ�R Rw 14.1% 12.9% 2.6%

T AB L E 6 Error of the toolbox by Zheng and Hryciw (2015) and
by Roussillon et al. (2009) with respect to analytical shapes for
elongation, circularity and roundness.

Error Zheng et al. Roussillon et al.

εe 3.7% 38.2%

εC 3.9% 18.4%

εRw 8.9% 15.8%

8 CATTAPAN ET AL.
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In practical terms, these results can be relevant for studies aiming

at correlating sediment morphometry with attrition rates and/or

transport, entrainment and deposition conditions. They suggest that,

when choosing which parameters to measure, the assessment of the

measurement error should account for both the segmentation method

and computational geometry tool used because their impact might be

of comparable importance. In particular, both factors seem to become

increasingly important with the increase in the detail required to

compute a given shape property.

The proposed method is completely implemented in MATLAB™

and it can be coupled with the computational geometry

toolbox developed by Zheng & Hryciw, 2015. Given its complete

automation, the method, therefore, allows results to be reproducible.

At the same time, the method allows the user to visually check

the quality of the segmentation and to discard pebbles that cannot be

correctly segmented. This set-up provides a time-efficient workflow

since it removes the need to double-check the correctness of pebbles

segmentation at the end of the process.

5 | CONCLUSIONS AND
RECOMMENDATIONS

This paper presents a new method for the automatic segmentation of

pebbles outlines from images collected during field surveys. The pro-

posed model is applicable in a range of shadows and contrast condi-

tions and, although the background board used had a similar hue to

some of the pebbles, the model accurately segmented their outline. In

terms of accuracy, the outlines produced were, in 91% of the exam-

ined cases, indistinguishable from true pebble outlines. Moreover,

when compared against the herein-defined ground truth, the method

showed a comparable accuracy. There is, however, a bias between

F I GU R E 6 (a, c, e) Scatterplots
representing the bias of the toolbox by
Zheng and Hryciw (2015) with respect to
the one by Roussillon et al. (2009) for
elongation, circularity and roundness,
respectively. The legend is consistent for
all plots. (b, d, f) Scatterplots provide a
visual assessment of the error between
our segmentation model and ground truth
outlines, obtained with manual
segmentation (see Section 2.5). The
legend is consistent for all plots.
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different computational geometry toolboxes which in certain cases

can be higher than the error between the proposed segmentation

method and the ground truth. As a result, when comparing sediment

shape properties across environments or through time, the effects of

both the segmentation method and the geometry description toolbox

need to be taken into consideration, possibly through calibration and

validation.

In terms of limitations, strong shadows or intergranular colour or

texture changes might limit the ability of the model to accurately

segment pebble outlines. In this case, the highest probability edge

often occurs along the spurious interface between the background

board and the shadow or within the pebble, decreasing the accuracy

of automatic segmentation methods. For this dataset, only 9% of the

sample presented the aforementioned limitation.

Future research might consider investigating whether the

object shape properties fall within acceptable ranges and possible

ways to decrease the probability of the edges responsible for such

out-of-range values. This approach needs to be tested and verified

against visual assessment.
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