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Abstract
In thiswork, the uncertainty associatedwith the finite element discretization error ismodeled following theBayesian paradigm.
First, a continuous formulation is derived, where a Gaussian process prior over the solution space is updated based on obser-
vations from a finite element discretization. To avoid the computation of intractable integrals, a second, finer, discretization is
introduced that is assumed sufficiently dense to represent the true solution field. A prior distribution is assumed over the fine
discretization, which is then updated based on observations from the coarse discretization. This yields a posterior distribution
with a mean that serves as an estimate of the solution, and a covariance that models the uncertainty associated with this
estimate. Two particular choices of prior are investigated: a prior defined implicitly by assigning a white noise distribution
to the right-hand side term, and a prior whose covariance function is equal to the Green’s function of the partial differential
equation. The former yields a posterior distribution with a mean close to the reference solution, but a covariance that contains
little information regarding the finite element discretization error. The latter, on the other hand, yields posterior distribution
with a mean equal to the coarse finite element solution, and a covariance with a close connection to the discretization error. For
both choices of prior a contradiction arises, since the discretization error depends on the right-hand side term, but the posterior
covariance does not. We demonstrate how, by rescaling the eigenvalues of the posterior covariance, this independence can be
avoided.

Keywords Finite element method · Probabilistic numerics ·Uncertainty quantification · Error estimation · Bayesian inference

1 Introduction

In recent years, the Bayesian paradigm has become a pop-
ular framework to perform uncertainty quantification. It has
found its application in global optimization (Mockus 1989),
inverse modeling (Stuart 2010) and data assimilation (Law
et al. 2015) contexts, among others. Commonly, given some
numerical model, a prior distribution is assumed over its

B Anne Poot
a.poot-1@tudelft.nl

Pierre Kerfriden
pierre.kerfriden@minesparis.psl.eu

Iuri Rocha
i.rocha@tudelft.nl

Frans van der Meer
f.p.vandermeer@tudelft.nl

1 Faculty of Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft,
The Netherlands

2 Centres des Matériaux, Mines Paris – PSL, 63-65 Rue Henri
Auguste Desbruères, 91100 Évry, France

parameters, and the Bayesian paradigm provides a consis-
tent framework to estimate these parameters and to quantify
and propagate their associated uncertainty. It should be noted,
however, that even if complete certainty could be obtained
over the model parameters, there would still be a remaining
uncertainty to the solution due to approximationsmade in the
numerical model. This key observation is what underpins the
current trend towards probabilistic numerics.

At the core of probabilistic numerics, the estimation of
an unknown field is recast as a statistical inference prob-
lem, which allows for the estimation of the field with
some uncertainty measure (Larkin 1972; Diaconis 1988).
Early examples of the application of Bayesian probabilis-
tic numerics include computing integrals (O’Hagan 1991)
and solving ordinary differential equations (Skilling 1992).
More recently, following a “call to arms” from Hennig et al.
(2015), a large push has been made to apply this framework
to a wide range of problems, ranging from solving linear
systems (Hennig 2015; Cockayne et al. 2019; Wenger et al.
2020) to quadrature (Karvonen and Särkkä 2017; Briol et al.
2017) to solving ordinary differential equations (Schober
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et al. 2014; Hennig et al. 2014; Teymur et al. 2016). For a
general overview of the current state-of-the-art of probabilis-
tic numerics, the reader is referred to Hennig et al. (2022).
Most relevant for the work presented in this paper are the
probabilistic numerical methods that have been developed
for the solving of partial differential equations, which can be
roughly divided into two categories: meshfree probabilistic
solvers, and solver-perturbing error estimators.

The first category (Chkrebtii et al. 2016; Cockayne et al.
2017; Raissi et al. 2018; Wang et al. 2021) can be seen
as a way to find solutions to partial differential equations
directly from the strong form in a Bayesian manner. A prior
is assumed over the solution field, which is updated by evalu-
ating its derivatives on a grid of collocation points, allowing
for a solution to be obtained without needing to apply a finite
element discretization over the domain. This approach to
solving partial differential equations shares some similari-
ties with Bayesian physics-informed neural networks (Raissi
et al. 2019; Yang et al. 2021), the main difference lying in
the function that is being fitted at the collocation points. The
way in which these meshfree solvers relate to traditional col-
location methods is similar to the way in which Bayesian
physics-informed neural networks relate to their determinis-
tic counterparts.

The second category (Conrad et al. 2017; Kersting and
Hennig 2018; Lie et al. 2019) is focused on estimating the
discretization error of traditional solvers for differential equa-
tions. For ordinary differential equations, the usual time
integration step is taken, after which the solution is perturbed
by adding Gaussian noise, representing the uncertainty in
the time integration result. Similarly, for partial differential
equations, the traditional spatial discretization is perturbed
using small supportGaussian randomfields,which reflect the
uncertainty introduced by the mesh. In Abdulle and Gareg-
nani (2020, 2021), a similar approach is taken, but rather than
adding noise to the solution, an uncertainty is introduced by
perturbing the time step size or finite element discretization.
A more formal mathematical basis for probabilistic numeri-
cal methods can be found in Cockayne et al. (2019), where
a more rigorous definition of the term is outlined and a com-
mon framework underpinning these two seemingly separate
categories is established.

It is worth noting that these probabilistic numerical meth-
ods are a deviation from traditional error estimators (Babuška
andRheinboldt 1979; Babuška andMiller 1987; Zienkiewicz
andZhu1987), as they embed themodel error into themethod
itself, rather than estimate it a posteriori. This inherently
affects themodel output, which depending on the context can
be a desirable or undesirable property. In Rouse et al. (2021),
a method is presented to obtain full-field error estimates by
assuming a Gaussian process prior over the discretization
error, and updating it based on a set of traditional estima-
tors of error in quantities of interest. This way, a distribution

representing the finite element discretization error can be
obtained in a non-intrusive manner.

The shared goal of these methods is to accurately describe
the errors made due to limitations of our numerical models,
though their method of modeling error differs. At the core,
the meshfree probabilistic solvers model error as the result of
using a finite number of observations to obtain a solution to
an infinite-dimensional problem. The solver-perturbing error
estimators, on the other hand, take an existing discretization,
like the one used in the finite element method, and assign
someuncertaintymeasure to the existing solver. This begs the
question: what happens if the methodology from the mesh-
free probabilistic solvers is applied to existing mesh-based
solvers of partial differential equations? Little research has
thus far been conducted to answer this question, though two
particular works are worth pointing out.

A brief remark is made in Bilionis (2016) describing a
Bayesian probabilistic numerical method whose posterior
mean is equivalent to the finite element solution. However,
this idea is then discarded due to infinite variances arising in
the posterior distribution. In Pförtner et al. (2023), the prob-
abilistic meshfree solvers from Cockayne et al. (2017) are
generalized tomethods ofweighted residuals,which includes
the finite elementmethod.Of particular relevance to ourwork
is their construction of prior distributions whose posterior
mean is guaranteed to be equivalent to the usual finite element
solution. Doing this would allow one to replace the tradi-
tional finite element solverwith the probabilistic one, in order
to quantify the finite element discretization error. However,
their experimental results are limited to one-dimensional test
cases, possibly because the application of their formulation to
unstructured triangular or quadrilateral meshes would result
in integrals in the information operator that are computation-
ally too expensive.

In this work, we propose a probabilistic numerical method
for the modeling of finite element discretization error. The
solution is endowed with a Gaussian process prior, which
is then updated based on observations of the right-hand
side from a finite element discretization. This allows for the
approximation of the true solution while including the uncer-
tainty resulting from the finite discretization that is applied.
Rather than work directly with the Gaussian process distri-
bution over the exact solution space, we introduce a second
discretization over the domain that is fine enough to represent
the exact solution. This second discretization helps to avoid
the infinite variances brought up in Bilionis (2016) as well as
the computationally expensive integrals from Pförtner et al.
(2023). We present a class of priors that naturally accounts
for the smoothness of the partial differential equation at hand,
and show how the assembly of large full covariance matrices
can be avoided. A particular focus of this work is on the rela-
tionship between the posterior covariance of our formulation
and the finite element discretization error. The relationship
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between these two quantities is often left to intuition, reason-
ing along the lines that since the posterior covariance contains
remaining model uncertainty, it must reflect the discretiza-
tion error.We challenge this assumption and investigatemore
thoroughly which conditions need to be met before the pos-
terior covariance can reasonably be said to capture the finite
element discretization error.

The underlying goal of the development of a Bayesian
model for the finite element discretization error is to enable
the propagation of discretization error to quantities of interest
through the computational pipelines that arise in multiscale
modeling, inverse modeling and data assimilation settings.
This consistent treatment of discretization error in turn allows
for more informed decisions to be made about its impact on
the model output. To give a concrete example, in Girolami
et al. (2021), a Bayesian framework for the assimilation of
measurement data and finite element models is presented.
Within this framework, a model misspecification component
is defined, which is endowed with a squared-exponential
Gaussian process prior. The Bayesian formulation of the
finite elementmethod thatwe derive in thisworkwould allow
for a more informative choice of prior distribution over the
model misspecification component, for example by separat-
ing out the discretization error from the error associated with
other modeling assumptions.

In the context of Bayesian inversemodeling, our proposed
method could prove particularly useful. For the Metropolis-
Hastings sampling strategies that are commonly employed,
a finite element solve is necessary for each sample that is
drawn, which typically needs to be done tens or hundreds
of thousands of times. The goals of having a negligible
discretization error and a computational cost that is not pro-
hibitive can therefore be in conflict. Rather than attempt to
fully resolve the discretization error, it can be more practical
to use a coarse mesh and account for the associated error in
the likelihood of the Bayesian inverse model. To do this, a
probability density that is reflective of the discretization error
of the coarse solve is needed, which is what our Bayesian for-
mulation of the finite element method aims to provide.

The outline of this paper is as follows: in Sect. 2, we derive
our Bayesian formulation of the finite element method. This
is followed by a discussion on the choice of prior covariance
in Sect. 3, where two different choices of prior distribution
are investigated. Two examples, a one-dimensional tapered
bar and a two-dimensional perforated plate, are showcased
throughout this section to validate the conclusions drawn
from theory. Finally, in Sect. 4, the conclusions of this paper
are drawn and discussed.

2 Bayesian finite element method

In this section, the proposed Bayesian version of the finite
element method is derived. Although the method is appli-
cable to a broad range of linear elliptic partial differential
equations, for the purposes of demonstration, we will con-
sider Poisson’s equation:

−�u(x) = f (x) in �

u(x) = 0 on ∂�
(1)

Here, � and ∂� are the domain and its boundary, respec-
tively. u(x) and f (x) are the solution and forcing term, which
are linked through the Laplace operator �.

2.1 Continuous formulation

We will start with the derivation of a continuous posterior
distribution over the solution space conditioned on the finite
element force vector, largely following Bilionis (2016). As
usual, the problem is restated in its weak formulation:

∫
�

∇u(x) · ∇v(x) dx =
∫

�

f (x)v(x) dx ∀v(x) ∈ V
(2)

We search u(x) ∈ V , where V = H1
0 is a Sobolev space

of functions over � that are weakly once-differentiable and
vanish at the boundary ∂�. This space is equipped with an
inner product and thus also forms a Hilbert space. Now, a
discretization is defined over the domain using a set of locally
supported shape functions {ψi (x)}mi=1, which span a finite-
dimensional space Wh ⊂ V . The test function vh(x) can be
defined in terms of these shape functions:

vh(x) =
m∑
i=1

viψi (x) with ψi (x) ∈ Wh (3)

Since Eq. (2) has to hold for all vh(x) ∈ Wh , the weights vi
can be chosen at will. Substituting Eq. (3) into Eq. (2), a finite
set of m equations in constructed by choosing vi = δi j for
the j th equation, where δi j is the Kronecker delta function.
This yields the entries of the finite element force vector g:

gi =
∫

�

f (x)ψi (x) dx (4)
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We can relate the solution u(x) to the force vector g via
the linear operator L:

L [u(x)] = g (5)

where L [u(x)] = [L1 [u(x)] L2 [u(x)] . . . Lm [u(x)]
]T

is
given by:

Li [u(x)] =
∫

�

∇u(x) · ∇ψi (x) dx (6)

A centered Gaussian process with a positive definite
covariance function k(x, x′) is now assumed over the solution
u(x):

u(x) ∼ GP (
0, k(x, x′)

)
(7)

Because we have a linear mapL from u(x) to g, conditioning
u(x) on g yields anotherGaussian process distribution (Pfört-
ner et al. 2023):

u(x)|g ∼ GP (
m∗(x), k∗(x, x′)

)
(8)

Here, the posterior mean function m∗(x) and covariance
function k∗(x, x′) are given by1:

m∗(x) = L′ [k(x, z′)
]
L−1g

k∗(x, x′) = k(x, x′) − L′ [k(x, z′)
]
L−1L [

k(z, x′)
] (9)

where L = L [L′ [k(z, z′)
]]

is the Gram matrix. The pos-
terior mean function m∗(x) provides a full-field estimate of
the solution u(x). The posterior covariance function k∗(x, x′)
indicates the uncertainty associated with this estimate due to
the fact that it was obtained using only a finite set of shape
functions. Since the finite discretization is the only source
of uncertainty in our model, we can intuit some association
between this posterior covariance and the finite element dis-
cretization error.

The formulation presented thus far can be contextualized
in the method of weighted residuals framework presented
in Pförtner et al. (2023). Specifically, our continuous for-
mulation is equivalent to choosing the information operator

I [u(x)] = [I1 [u(x)] I2 [u(x)] . . . Im [u(x)]
]T

in their
framework to be given by:

Ii [u(x)] =
∫

�

∇u(x) · ∇ψi (x) dx −
∫

�

f (x)ψi (x) dx

(10)

1 To avoid confusion when applying L to the covariance function
k(z, z′), we use L and L′ to denote that gradients and integrals are
computed with respect to z and z′, respectively.

Unfortunately, the integrals that arise in the expressions
for the posterior mean and covariance functions in Eq. (9) are
generally intractable. For some arbitrary covariance function
k(x, x′), the integration over the shape functions ψi (x) and
ψ j (x′) cannot be performed without putting severe restric-
tions on which shape functions are permitted. This in turn
puts severe constraints on the domain shape, which under-
cuts the core strength of the finite element method, namely
its ability to solve partial differential equations on com-
plicated domains. On the other hand, we can design the
covariance function such that these integrals do become
tractable, for example by following Bilionis (2016) and set-
ting k(x, x′) = G(x, x′), or following Owhadi (2015) and
setting k(x, x′) = ∫

�

∫
�
G(x, z)G(x′, z′)δ(z − z′) dz dz′,

where δ(x) is a Dirac delta function. However, in both of
these expressions, the Green’s function G(x, x′) associated
with the operator −� is required, which is generally not
available for a given partial differential equation. Since our
aim is to develop a general Bayesian framework for mod-
eling finite element discretization error, a new approach is
needed that does not impose restrictions on the choice of
shape functions or require access to the Green’s function.

2.2 Discretized formulation

Thismotivates us to approximateu(x) in thefinite-dimensional
space Vh spanned by a second set of locally supported shape
functions {φ j (x)}nj=1. This defines the trial function uh(x):

u(x) ≈ uh(x) =
n∑
j=1

u jφ j (x) with φ j (x) ∈ Vh (11)

Note that this is not the same set of shape functions as the one
used to define the force vector in Eq. (4). In fact, since our
aim is tomodel the discretization error that arises by choosing
v(x) ∈ Wh rather than and v(x) ∈ V , it is important that the
error associated with the projection of an arbitrary function
w(x) ∈ V onto Vh is small compared to the error associated
with its projection onto Wh . Loosely speaking, we assume
that Vh is sufficiently expressive to serve as a stand-in for V .

Substituting Eqs. (3) and (11) into Eq. (2) yields thematrix
formulation of the problem:

Hu = g (12)

The elements of the stiffness matrix H are given by:

Hi j =
∫

�

∇ψi (x) · ∇φ j (x) dx (13)

The assumption that Vh is more expressive thanWh implies
that uwill have a larger dimensionality than g and thus thatH
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is a rectangular matrix and that Eq. (12) describes an under-
determined system. However, the fact that this system of
equations has an infinite set of solutions need not pose a
problem, due to the regularizing effect of the prior assumed
over u(x).

Since the solution field u(x) has been reduced from the
infinite-dimensional space V to the finite-dimensional Vh ,
the distribution assumed over the solution in Eq. (7) needs
to be reduced accordingly. Instead of an infinite-dimensional
Gaussian process, we obtain a finite-dimensional zero-mean
normal distributionwith a positive definite covariancematrix
�:

u ∼ N (0,�) (14)

The joint distribution of u and g is now given by:

[
g
u

]
=

[
Hu
u

]
∼ N

(
0,

[
H�HT H�

�HT �

])
(15)

Conditioning u on g yields the following posterior distribu-
tion:

u|g ∼ N (
m∗,�∗) (16)

Here, the posterior mean vector m∗ and covariance matrix
�∗ are given by:

m∗ = �HT
(
H�HT

)−1
g

�∗ = � − �HT
(
H�HT

)−1
H�

(17)

Similar to the continuous formulationpresented inSect. 2.1,
m∗ can be interpreted as providing an estimate of the solu-
tion u(x) in the fine space Vh , while observing the right-hand
side f (x) only in the coarse spaceWh . The posterior covari-
ancematrix�∗ then provides an indication of the uncertainty
associated with this estimate due to the fact that only obser-
vations from the coarse mesh are used to obtain this estimate.
Note that if the test and trial spaces are chosen to be the same
(i.e. Wh = Vh), �∗ reduces to a null matrix, reflecting the
fact that there no longer exists a discretization error between
Vh and Wh .

2.3 Hierarchical shape functions

Thus far, the only requirement that has been put on the choice
of Vh and Wh is that the error between V and Vh is small
compared to the error between V and Wh . We now add a
second restriction, namely that Wh ⊂ Vh . This defines a
hierarchy between these two spaces, and implies that any
function defined in Wh can be expressed in Vh . One way
to ensure this hierarchy in practice is to first define a coarse

mesh corresponding toWh , and then refine it hierarchically
to obtain a fine mesh corresponding to Vh . Alternatively, it
is possible to use only a single mesh, and use linear and
quadratic shape functions over the same finite elements to
define Wh and Vh , respectively.

From the hierarchy between Vh and Wh , it follows that
the basis functions that span the coarse space Wh can be
written as a linear combination of the basis functions that
span the fine space Vh . In other words, there exists a matrix2

�T that maps a vector of fine shape functions φ(x) =[
φ1(x) φ2(x) . . . φn(x)

]T
to a vector of coarse shape func-

tions ψ(x) = [
ψ1(x) ψ2(x) . . . ψm(x)

]T
:

ψ(x) = �Tφ(x) (18)

This allows Eq. (13) to be rewritten as:

Hi j =
∫

�

∇
n∑

k=1

�kiφk(x) · ∇φ j (x) dx

=
n∑

k=1

�ki

∫
�

∇φk(x) · ∇φ j (x) dx

(19)

As a result, H can be expressed as:

H = �TK (20)

where K is the fine-scale (square and symmetric) stiffness
matrix that would follow if both trial and test functions came
from the fine space Vh :

Ki j =
∫

�

∇φi (x) · ∇φ j (x) dx (21)

Following a similar line of reasoning, the coarse stiffness
matrixKc, that would be found if both trial and test functions
came from the coarse space Wh , can be written in terms of
� and K:

Kc = �TK� (22)

Similarly to Eq. (19), we can rewrite Eq. (4) as:

gi =
∫

�

f (x)
n∑

k=1

�kiφk(x) dx

=
n∑

k=1

�ki

∫
�

f (x)φk(x) dx

(23)

2 Note that� has been defined in terms of its transpose in order tomake
expressions in later sections consistent with common notation for least
squares, proper orthogonal decomposition, and so on.
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And so, g can be expressed as:

g = �T f (24)

where f is the fine-scale force vector that arises by integrating
the forcing term over the fine-scale test functions:

fi =
∫

�

f (x)φi (x) dx (25)

Finally, we define the reference solution û as the solu-
tion to the fine-scale system of equations that is obtained by
choosing both the test and trial spaces to be the fine space
Vh :

Kû = f (26)

In the remainder of this work, discretization error is defined
with respect to û. Specifically, the finite element discretiza-
tion error e is defined as the difference between the fine-scale
reference solution û and the coarse-scale solution projected
to the fine space:

e = K−1f − �Kc
−1g (27)

2.4 Boundary conditions

It is worth considering how the application of boundary con-
ditions in the fine space translates to the shape functions in
the coarse space. To do this, φ(x) is split into φi(x) and
φd(x), where the subscript d refers to the nodes on the part
of the boundary where Dirichlet conditions are applied, and
the subscript i refers to all other nodes (i.e. both internal
nodes and non-Dirichlet boundary nodes). This could be con-
sidered abuse of notation, since Vh ⊂ V , which is already
constrained by the Dirichlet boundary conditions, so from
this point of view, φd(x) should not exist. However, in most
practical finite element implementations, shape functions are
assigned to the boundary nodes as well in order to facilitate
the inclusion of inhomogeneous boundary conditions in the
model.

The boundary conditions in the coarse space follow from
φd(x) and �, since ψd(x) is defined as the elements of
ψ(x)where the rows of � belonging to φd(x) have non-zero
entries. As a result, Eq. (18) can be split as follows:

[
ψ i(x)
ψd(x)

]
=

[
�T

ii 0
�T

id �T
dd

] [
φi(x)
φd(x)

]
(28)

Note that the fact that�di = 0 does not introduce any loss of
generality: any non-zero element of �di would by definition
of ψd(x) be an element of �dd, not �di. From Eqs. (20) and

(28), it follows that:

Hii = �T
ii Kii (29)

Similarly, from Eqs. (24) and (28), it follows that:

gi = �T
ii fi (30)

Commonly, Dirichlet boundary conditions are enforced
by eliminating the corresponding degrees of freedom, and
solving the system that remains. Due to the simple relation
that �ii provides between Hii and Kii (Eq. 29) as well as gi
and fi (Eq. 30), all relationships described in Sects. 2.2 and
2.3 still hold when applied only to the internal nodes of the
system. From this point onward, we will therefore only con-
sider the internal nodes of the system. This also means that
only the part of the covariance matrix related to the internal
nodes �ii needs to be considered, and so the requirement of
positive definiteness of � can be relaxed to a requirement of
positive definiteness of only�ii. The subscripts i (for vectors)
and ii (for matrices) will be left implied in order to declutter
the notation.

In the remainder of this paper, we will limit ourselves
to partial differential equations with homogeneous bound-
ary conditions. However, the method can easily be extended
to inhomogeneous Dirichlet and Neumann boundary condi-
tions. Details on how inhomogeneous boundary conditions
can be enforced are given in Appendix A.

3 Choice of prior covariance

Thus far, the prior covariance matrix � has not been speci-
fied. The choice of � is subject to two main requirements.
The first requirement is that � needs to have a sparse repre-
sentation. Since� is a n×nmatrix, where n is the number of
degrees of freedom of the fine discretization, explicitly com-
puting, storing and applying operations on the full matrix
would quickly become prohibitively expensive. As a result,
the traditional approach of using a kernel to directly com-
pute all entries of � would be infeasible. Instead, the prior
is defined implicitly by assigning a sparse covariance matrix
to the fine-scale force vector f , which implicitly defines the
covariance matrix of the solution vector �, but does not
require us to explicitly compute it. For certain kernel-based
priors, an equivalent stochastic partial differential equation
can be shown to exist, which allows for a similar sparse rep-
resentation (see for example Roininen et al. (2014)).

The second requirement is that the choice of prior dis-
tribution needs to be appropriate for the partial differential
equation at hand. For instance, if the infinitely differentiable
squared exponential prior were assumed on the solution field
u(x), this would imply C∞ continuity on the right-hand side

123



Statistics and Computing           (2024) 34:167 Page 7 of 17   167 

field f (x). From a modeling point of view, this would be an
undesirable assumption to make, since it is very restrictive
concerning what forcing terms are permitted. On the other
hand, if the prior is not smooth enough, samples from the
prior would exhibit unphysical discontinuities in u(x) or its
gradient fields. In short, the prior needs to respect the smooth-
ness of the partial differential equation to which it is applied.

In this section, a particular class of priors that meets both
of these requirements is presented by means of two test
cases. The first test case, presented in Fig. 1, concerns a one-
dimensional mechanics problem described by the following
ordinary differential equation with homogeneous boundary
conditions:

− d

dx

(
E A(x)

du

dx

)
= f (x) in � = (0, 1)

u(x) = 0 on ∂� = {0, 1}
(31)

Here, the distributed load f (x) = 1, Young’s modulus E =
1 and the cross-sectional area A(x) = 0.1 − 0.099x . This
setup describes a tapered barwith a constant load, where both
the left and right end are clamped, as shown in Fig. 1. The
fine-scale discretization consists of a uniform mesh with 64
elements (n = 64) and linear shape functions. Three different
levels of uniform coarse discretization are used: m = 4,
m = 16 and m = 64. Note that in all cases, since n is a
multiple of m, the shape functions are defined hierarchically
in accordance with Sect. 2.3.

The second case is shown in Fig. 2 and concerns a two-
dimensional mechanics problem. A plate (L = 4, H = 2)
with a hole (R = 0.8) is clamped on its left edge and loaded
by a constant horizontal body load fx = 1 The plate has
unit thickness, Young’s modulus E = 3 and Poisson’s ratio
ν = 0.2. The problem is meshed non-uniformly, as shown
in Fig. 2a. For the coarse mesh, a characteristic length h =
0.5 is used at the left and right edge, but around the hole
a refinement is applied. The refinements below and above
the hole have a characteristic length of h = 0.2 and h =
0.05, respectively. The fine mesh is generated by dividing
each coarse element into 4 smaller triangular elements. In
Fig. 2b, it can be seen how this difference in mesh density
on different sides of the hole results in a larger discretization
error below the hole than above it. For reference, the fine-
scale and coarse-scale solution are shown in Figs. 2c and d,
respectively.

3.1 A sparse right-hand side prior

Following the approach taken in Cockayne et al. (2017),
rather than assuming a prior measure directly on the dis-
placement field u(x), we assume a centeredGaussian process
prior with covariance function kf(x, x′) over the forcing term
f (x):

Fig. 1 Schematic overview of the tapered bar test case

f (x) ∼ GP (
0, kf(x, x′)

)
(32)

This implicitly defines an equivalent prior on u(x):

u(x) ∼ GP (
0, knat(x, x′)

)
(33)

Here, the covariance function knat can be expressed in terms
of kf(x, x′) and the Green’s functionG(x, x′) associated with
the operator of the partial differential equation:

knat(x, x′) =
∫

�

∫
�

G(x, z)G(x′, z′)kf(z, z′) dz dz′ (34)

In Cockayne et al. (2017), this kernel is described as “natu-
ral” in the sense that the operator −� (see Eq.1) uniquely
maps from the Hilbert space associated with the forcing
term covariance function k f (x, x′) to the one associated with
knat(x, x′). Each sample from u(x) drawn from this natural
kernel has an equivalent sample from f (x) and vice versa.
Unfortunately, since the Green’s function is generally not
available for a given partial differential equation, Cockayne
et al. (2017) discards this natural kernel is then discarded in
favor of a Matern or Wendland kernel with the appropriate
level of smoothness.

However, because we avoid this problem by introducing
thefine-scale discretization, there is no needhere to step away
from the natural prior approach. Instead, it can be approxi-
mated by applying the fine-scale finite element discretization
first, and only then finding the natural covariance matrix for
the solution vector u. Given the prior distribution over f (x)
in Eq. (32) and the definition of the force vector in Eq. (21),
it follows that:

f ∼ N (0,�f ) (35)

where the force vector covariance matrix �f is given by:

�f =
∫

�

∫
�

kf(x, x′)φ(x)φ(x′)T dx′ dx (36)

The resulting prior distribution over u then becomes:

u ∼ N
(
0,K−1�fK−1

)
(37)
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Fig. 2 Overview of the perforated plate bar test case

Note the similarity to the natural kernel in Eq. (34), withK−1

and�f taking a similar role asG(x, x′) and kf(x−x′), respec-
tively (Peker 2023). Also similarly, each sample from u has
an equivalent sample from f and vice versa. Conceptually,
our choice of prior is the same as Cockayne et al. (2017),
except that we are working in the finite-dimensional space of
the discretized system, rather than the infinite-dimensional
space of the original partial differential equation. The advan-
tage of working in the finite-dimensional space is that K−1

is computable, and as a result the natural prior can still be
used.

Given this choice of prior and using Eq. (20), the posterior
distribution of the displacement field is given by:

u|g ∼ N (
m∗,�∗) (38)

with the following posterior mean m∗ and posterior covari-
ance �∗:

m∗ = K−1�f�
(
�T�f�

)−1
�T f

�∗ = K−1
(
I − �f�

(
�T�f�

)−1
�T

)
�fK−1

(39)

The presence of K−1 in Eq. (39) might appear in con-
flict with our previously stated requirement of sparsity in the
covariance matrices, since the inverse of K is typically full.
However, using an ensemble, the prior and posterior distribu-
tions can be approximated and sampled without needing to

explicitly compute this matrix inverse; only fine-scale linear
solves are necessary. The details on this ensemble approxi-
mation can be found in Appendix B.

Naturally, the need for fine-scale linear solves makes the
computational cost of the proposed method on par with
obtaining the fine-scale finite element solution, rather than
that of the coarse-scale solve as one might hope. Although
acceleration of the method falls beyond the scope of this
paper, we dowant to highlight two potential strategies to alle-
viate the computational cost. The first is to employ Langevin
dynamics–based sampling schemes similar to Akyildiz et al.
(2021), which relies on �−1 rather than � to sample the
posterior. A second potential approach is to approximate the
posterior using a finite number of conjugate gradient itera-
tions. In Wenger et al. (2023), an approach is presented to
acccount for the error this introduces in a consistent Bayesian
manner with little additional computation cost.

3.2 White noise prior

Within the natural prior framework, the main choice that
remains is what right-hand side covariance function kf(x, x′)
to assume. For now, we will follow the choice of Cockayne
et al. (2017) to use the prior fromOwhadi (2015), and assume
kf(x, x′) to be a Dirac delta function δ(x), scaled by a single
hyperparameter α:

kf(x, x′) = α2δ(x − x′) (40)
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This defines a white noise field over f (x) with a standard
deviation that is equal to α. The covariance matrices �f and
� then follow directly from Eqs. (36) and (37):

�f = α2M � = α2K−1MK−1 (41)

where M is the fine-scale (square and symmetric) mass
matrix, given by:

Mi j =
∫

�

φi (x)φ j (x) dx (42)

Note that under this choice of prior covariance, the sparsity
requirement that was put on � has been met. The resulting
posterior mean vector and covariance matrix are then given
by:

m∗ = K−1M�
(
�TM�

)−1
�T f

�∗ = α2K−1
(
I − M�

(
�TM�

)−1
�T

)
MK−1

(43)

It can be seen that for this choice of prior, the hyperpa-
rameter α does not affect the posterior mean, and only
serves as a scaling factor of the posterior covariance. Given
this hyperparameter-independence, we choose to simply set
α = 1 for the remainder of this work. A small observation
noise (σ 2

e = 10−12) is added to the term �TM� in Eq. (43),
to ensure that this matrix is invertible.

In Fig. 3a, the resulting prior and posterior distributions
for the tapered bar problem are shown for the number of
coarse elements m equal to 4. Several pieces of information
about the problem, in absence of knowledge of the right-hand
side term, can be found encoded in the prior. We can see how
the enforcement of boundary conditions described in Fig. 2.4
indeed results in a distribution whose samples respect the
boundary conditions imposed at x = 0 and x = 1. Further-
more, a larger prior standard deviation is found in the region
where the bar is thinner, reflecting the fact that a small pertur-
bation in the right-hand side in this region would have amore
pronounced effect on the displacement field. Considering the
posterior distribution, we see that its mean falls between the
coarse- and fine-scale reference solutions. Lastly, it can be
seen that the region where the posterior standard deviation
is largest corresponds to the region where the discretization
error is largest.

In Figs. 3b and d, we have increased the number of degrees
of freedom of the coarse mesh m to 16 and 64 respec-
tively, to study its effect on the posterior distribution. As
the coarse-scale solution approaches the fine-scale solution,
the posteriormean approaches the fine-scale solution accord-
ingly. Additionally, the posterior standard deviation shrinks
along with the discretization error until the coarse mesh den-
sity meets the fine one at m = n = 64. At this point, only a

small posterior standard deviation remains due to the small
observation noise that was included in the model.

In Fig. 4, the posterior moments are plotted when the
same prior distribution is applied to the two-dimensional
perforated plate problem.Wefind that the results for this two-
dimensional test case are quite different from those for the
previous one-dimensional case. It can be observed in Fig. 4a
that the posterior mean almost exactly matches the fine-scale
solution shown in Fig. 2c. An explanation for this can be
found by considering Eq. (39) and noting that the posterior
mean m∗ is equivalent to the reference solution û, except
that the force vector f has been replaced by f̂ , a weighted
projection of f onto the column space of �:

f̂ = Pf = �f�
(
�T�f�

)−1
�T f (44)

In other words, f is mapped to the coarse space, scaled,
mapped back to the fine space and rescaled to obtain f̂ . The
quality of this projection depends on the weights given by
�f , and there exists a sense in which the choice of �f = M
is optimal: it minimizes the projection error of the forcing
term f (x) to the coarse space Wh in the L2-norm ( Larson
and Bengzon (2013), Theorem 1.1):

argmin
f h(x)∈Wh

‖ f (x) − f h(x)‖2L2(�)
= ψ(x)T

(
�TM�

)−1
�T f

(45)

This optimality helps explain the close correspondence
between the fine-scale solution and posterior mean given in
Figs. 2c and 4a, respectively.

Though this might appear to be a desirable property, for
the purposes of modeling discretization error, it is actually
detrimental. To understand this, let us consider the following
equality:

�∗�−1û = û − m∗ (46)

This expression can be easily verified by substituting the
expressions for û, �,m∗ and �∗ found in Eqs. 39to 26. The
left-hand side of Eq. (46) can be understood as quantifier of
the amount of “contraction”of the prior distributiondue to the
observed data. In the extreme case where there is no contrac-
tion of the covariance, we find that the posterior covariance
matrix�∗ is equal to the prior covariance matrix�, and con-
sequently �∗�−1 = I and m∗ = 0. At the other extreme,
where the posterior covariance is given by �∗ = εI and we
let ε → 0, we find that the left-hand side approaches the null
vector and as a result m∗ → û. As more observations are
included, the posterior distribution moves from the former
extreme to the latter.
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Fig. 3 Prior and posterior distributions of the 1D tapered bar problem. For comparison, the fine-scale and coarse-scale reference solutions have been
included. From each distribution, 30 samples have been plotted. The shaded regions correspond to the 95% credible intervals of the distributions

It becomes clear that the posterior mean vector m∗ and
posterior covariance matrix �∗ are inextricably linked. This
property is not necessarily a problematic one. In fact, from
the typical probabilistic numerics point of view, where the
solving procedure is interpreted as an inherently probabilis-
tic process (Hennig et al. 2022), the fact that the posterior
covariance tends to zero as the posterior mean approaches
the true solution is the desired kind of behavior. However, if

our goal is to have the discretization error reflected in the pos-
terior covariance, then this connection to the posterior mean
does pose a problem: it is not possible to simultaneously
obtain a posterior mean that approaches the true solution and
a posterior covariance that is indicative of the coarse-scale
discretization error. And indeed, when comparing the poste-
rior standard deviationσ ∗ in Fig. 4b to the discretization error
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Fig. 4 Posterior moments of the perforated plate test case with �f = M

e in Fig. 2b, we see that the regions of largest discretization
error are not reflected in the posterior standard deviation.

3.3 Green’s function prior

This crucial observation motivates us to reevaluate our ini-
tial choice of prior. Given how Eq. (46) relates the posterior
covariance matrix�∗ to the difference between the reference
solution û and the posterior mean vectorm∗, it makes sense
to choose a prior that will yield a posterior mean equal to the
coarse-scale solution uc. Additionally, from a discretization
error modeling point of view, it is more sensible to have a
posterior mean that is equal to the coarse-scale solution uc
than to have a posterior mean that improves on it. After all,
the aim from the outset has been to interpret the finite element
discretization error as a source of uncertainty surrounding the
coarse-scale finite element solve.

In Pförtner et al. (2023), a method is presented to con-
struct a prior whose posterior mean matches exactly the
coarse-scale finite element solution uc from an initial prior
an arbitrary mean function m(x) and covariance function
k(x, x′). However, we will opt instead for the method pre-
sented in Bilionis (2016), which is to set the prior covariance
function equal to the Green’s function G(x, x′) of the partial
differential equation at hand. For Poisson’s equation, this
choice of prior yields the following right-hand side covari-
ance function kf(x, x′):

kf(x, x′) = −�δ(x − x′) (47)

Substitution of this expression into Eq. (36), applying inte-
gration by parts and subsequent substitution into Eq. (37)
yields the following expressions for �f and �:

�f = K � = K−1 (48)

Intuitively, we again findK−1 as the finite-dimensional coun-
terpart of G(x, x′). The advantages of introducing the fine-
scale discretization as a stand-in for the infinite-dimensional
partial differential equation once again become apparent:

the fact that Green’s function is generally unavailable does
not pose a problem anymore. Furthermore, the objection
raised in Bilionis (2016) that for Poisson’s equation in two
or three dimensions, the Green’s function G(x, x′) is infi-
nite at x = x′ and can therefore not be a useful indicator of
model uncertainty does not apply in our case: for any valid
finite element discretization the finite-dimensional inverse
stiffness matrix K−1 only has finite-valued entries. In the
phrasing of Alberts and Bilionis (2023), the introduction of
the fine-scale discretization offers a way to truncate the inte-
gration over functions at the smallest scales.

This choice of prior in turn results in the following poste-
rior mean vector and covariance matrix:

m∗ = �
(
�TK�

)−1
�T f

�∗ = K−1 − �
(
�TK�

)−1
�T

(49)

Note that according to Eqs. (22) and (24), �TK� and �T f
are equal to the coarse stiffness matrix Kc and coarse force
vector g, respectively. As a result, we find that indeed the pos-
terior mean vector m∗ is exactly equal to the solution of the
coarse system uc, projected to the fine space. Returning now
toEq. (46),wefind that for this choice of prior, this expression
simplifies to a surprisingly simple relationship between the
posterior covariance matrix �∗ and the discretization error e
as defined in Eq. (27):

�∗f = e (50)

Since this relation holds for any fine-scale force vector f ,
and �∗ is independent of f , this posterior covariance matrix
�∗ can be used to determine the discretization error e for an
arbitrary forcing term. In this sense, �∗ can be said to fully
encode the discretization error associated with the geometry
and discretization of the problem at hand.

In Fig. 3d–f, the prior and posterior distributions that fol-
low when applying this prior to the tapered bar problem are
shown. Again, the number of coarse elements m is equal to
4, 16 and 64, respectively. As expected, the posterior mean
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m∗ can be seen to equal the coarse-scale solution uc in these
figures. Similar to Fig. 3a to 3c, the largest posterior standard
deviation σ ∗ is found in the region where the bar is thinnest.
However, for this prior there is a notable reduction of the
posterior standard deviation around the coarse-scale nodes.
This reduction in the standard deviation is reflective of the
fact that at these nodes, the coarse solution is more accurate
than in the regions between the coarse-scale nodes, where the
solution is interpolated via the coarse-scale shape functions.

Another notable difference between the twopriors inFig. 3
is the smoothness of the samples. We see in Fig. 3a–c that
the samples from the white noise prior presented in Fig. 3.2
have a visible smoothness to them. In contrast, the samples
from the Green’s function prior shown in Fig. 3d–f appear
jagged and rough. In fact, for this one-dimensional Pois-
son problem, each sample ũ(x) drawn from the Green’s
function prior k(x, x ′) = G(x, x ′) can be shown to be
continuous, but nowhere differentiable. This is the result
of the fact that at x = x ′, the Green’s function is con-
tinuous (i.e. limδ→0 G(x − δ, x) = limδ→0 G(x + δ, x)),
but at that same point its derivative is discontinuous (i.e.
limδ→0 G ′(x − δ, x) = limδ→0 G ′(x + δ, x)) (Bayin 2006).
The samples of a Gaussian process are mean-square con-
tinuous if k(x, x′) is continuous at x = x′ and are k times
mean-square differentiable if k(x, x′) is 2k times differen-
tiable at x = x′ (Rasmussen and Williams 2005). From the
fact that the Green’s function is not differentiable at x = x ′,
it thus follows that the samples drawn from this process are
everywhere continuous but nowhere differentiable. Note that
this only applies to the infinite-dimensional solution spaceV .
The finite-dimensional space Vh spanned by the fine-scale
shape functions φ(x) is still weakly once-differentiable for
both priors.

We now turn to the perforated plate example, forwhich the
results are shown in Fig. 5. The posterior meanm∗ in Fig. 5a
can be seen to exactly match the coarse-scale finite element
solution uc in Fig. 2d for this problem as well. Unfortunately,
the posterior covariance σ ∗ shown in Fig. 5b appears again
to bear little resemblance to the discretization error e from
Fig. 2d. This might seem surprising, given the direct rela-
tionship between posterior covariance �∗ and discretization
error e given in Eq. (50). Indeed, we can multiply the poste-
rior covariance �∗ by the fine-scale force vector f to recover
the discretization error exactly (see Fig. 5c), but this does
not translate to a posterior standard deviation σ ∗ that can be
interpreted directly. This is a consequence of the fact that
the posterior covariance �∗ depends only on the material
stiffness (via K) and node locations (via �), but not on the
magnitude of the force vector f at those locations.One benefit
that results from this independence is that given the poste-
rior covariance matrix �∗ from one load case, it is possible
to compute the discretization error for any other load case

virtually for free.3 However, the drawback of this indepen-
dence is that, since the discretization error e does depend on
the load applied to the structure, a load-independent poste-
rior standard deviation σ ∗ cannot adequately represent the
discretization error for any specific load case. Paradoxically,
because the posterior covariance matrix �∗ encodes the dis-
cretization error e for all load cases simultaneously, it fails
to represent the discretization error for any one load case in
particular. This paradox is not unique to our Bayesian for-
mulation of the finite element method, and arises in many
Gaussian process–based probabilistic solver of differential
equations, including meshfree probabilistic solvers (Bilionis
2016; Cockayne et al. 2017) and probabilistic methods of
weighted residuals (Pförtner et al. 2023). In all these cases,
the error between the posterior mean function m∗(x) and
exact solution u(x) is dependent on the right-hand side term,
but the posterior covariance function k∗(x, x′) meant to rep-
resent this error is not.

3.4 Incorporating force term information

This raises the question whether it is possible to break this
independence of the posterior covariance matrix �∗ and the
fine-scale force vector f . Doing so appears to be necessary
to capture the load-dependent discretization error e in the
posterior standard deviation σ ∗. Returning to Eq. (50), we
can understand the multiplication of �∗ by f through the
eigendecomposition of �∗:

�∗ = Q�Q−1 (51)

Here the columns ofQ are the eigenvectors of �∗ and � is a
diagonal matrix whose entries are its eigenvalues in descend-
ing order. Since �∗ is real positive definite, its eigenvalues
are all positive real numbers, and Q is an orthogonal matrix,
which implies that Q−1 = QT .

The decomposition inEq. (51) allows for a straightforward
interpretation of the multiplication of �∗ by f . First, Q−1

performs a changeof basis f̃ = Q−1f , expressing f in termsof
the basis spanned by the eigenvectors instead of the standard
basis. In this basis, f̃ is rescaled by the eigenvalues � to
obtain the discretization error ẽ expressed in terms of the
eigenbasis. Finally, Q performs a change of basis on ẽ back
to the standard basis e = Qẽ. Since � is a diagonal matrix,
the operation ẽ = �f̃ comes down to a simple element-wise
multiplication:

ẽi = λi f̃i (52)

3 All that is needed is a matrix–vector multiplication of the posterior
covariance matrix �∗ and the fine-scale force vector f of the new load
case.
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Fig. 5 Posterior moments of the perforated plate test case with �f = K

Rather than interpreting Eq. (52) as a rescaling of each ele-
ment of the force vector f̃i by its corresponding eigenvalue
λi , one could argue equally well that it is the eigenvalue λi
that is rescaled by f̃i instead. In order to break the inde-
pendence of the posterior covariance matrix �∗ and force
vector f , we replace the original eigenvalues λi with ones
that are rescaled by f̃i Thus, � is replaced by a diagonal
matrix E, whose diagonal entries are given by |ẽi |, yielding
a new covariance matrix �̂

∗
:

�̂
∗ = QEQ−1 (53)

Since all entries of E are nonnegative, this rescaled covari-
ance matrix �̂

∗
is positive semi-definite, and thus a valid

covariance matrix. In Fig. 5d, the standard deviation σ̂
∗ of

this rescaled covariance matrix is shown. Comparing to the
discretization error e in Fig. 2b, we see a clear similarity
between these two fields. At last, we appear to have arrived at
a distribution with a covariance matrix that can meaningfully
capture the discretization error.

One shortcoming of this ad hoc approach to incorporating
forcing term information in our posterior distribution, is that
it is a deviation from the Bayesian paradigm used thus far,
since there is no guarantee that there exists an equivalent prior
distribution that would yield this rescaled posterior covari-
ance matrix. Additionally, if there does exist an equivalent
prior, it is unclear what posterior mean this equivalent prior
would produce. Our motivation for presenting this approach
nonetheless is to demonstrate not only that it is impossible to

obtain an interpretable posterior standard deviation σ ∗ if the
posterior covariance matrix �∗ is independent of the forcing
term f , but also that it is possible to obtain an interpretable
standard deviation by incorporating forcing term informa-
tion.

4 Conclusions

In this work, we presented a Bayesian approach to themodel-
ing of finite element discretization error. A Gaussian process
prior is assumedover the solution space,which is conditioned
on the force vector from a finite element discretization. To
avoid the computation of intractable integrals, a second, finer
mesh is introduced,which is assumed to be sufficiently fine to
represent the true solution. The two meshes are constructed
in a hierarchical manner, such that the coarse-scale shape
functions can be fully expressed in terms of fine-scale shape
functions. The Gaussian process prior on the solution space
yields a normal distribution prior on the fine-scale solution
vector. For linear partial differential equations, conditioning
this prior on the coarse-scale force vector produces a nor-
mally distributed posterior on the solution vector.

Two different prior covariance functions have been inves-
tigated: a white noise prior covariance on the forcing term,
and a Green’s function prior covariance on the solution term.
The white noise prior covariance is shown to produce a pos-
terior mean vector that is close to the fine-scale reference
solution. However, an undesirable consequence of this prop-
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erty is that the corresponding posterior covariance matrix
becomes less informative of the discretization error between
the coarse-scale and fine-scale solutions. The Green’s func-
tion prior, on the other hand, can be shown to produce exactly
the coarse-scale solution as its posterior mean. Additionally,
the discretization error can be recovered exactly from the
posterior covariance matrix by multiplying it by the fine-
scale force vector. Because the posterior covariance matrix
does not depend on the values of the forcing term, it can
be multiplied by any arbitrary forcing term to reproduce
exactly the discretization error for that forcing term. The
drawback of this independence, however, is that by itself,
a force-independent posterior covariance matrix cannot be
informative of the force-dependent discretization error. We
have shown how by rescaling the eigenvalues of the poste-
rior covariance matrix based on the fine-scale force vector, a
distribution can be obtained whose standard deviation corre-
sponds to the discretization error.

One major drawback of the proposed method, as is the
case for many probabilistic numerical methods is its com-
putational cost, since it relies on fine-scale solves to sample
from the posterior. Although several potential approaches
to approximate or circumvent these fine-scale solves have
been identified, these ideas still need to be put into practice
in future work. Furthermore, the formulation in this work
has assumed linearity on the partial differential equations
and Gaussianity on the prior distribution. Extensions of the
method beyond these assumptions are not trivial. Finally,
the underlying reason for the development of a Bayesian
model for finite element discretization error is to allow for
the consistent treatment of discretization error through com-
putational pipelines. In this work, the focus has been on the
forward problem, and the fundamentals of our Bayesian for-
mulation of the finite element method. The demonstration
of the method in an inverse modeling or data assimilation
context has been left for future work.

Appendix A: Inhomogeneous boundary con-
ditions

In Sect. 2.4, only homogeneous Dirichlet boundary con-
ditions were considered. Here, we expand on this and
demonstrate how both homogeneous and inhomogeneous
Dirichlet and Neumann boundary conditions can be included
in the model. This is accomplished by assigning a statisti-
cally independent normal distribution to the displacement
along the Dirichlet boundary ud, as well as the force along
the Neumann boundary fn:

ud ∼ N
(
md, β

2�d

)

fn ∼ N
(
mn, γ

2�n

) (A1)

The assignment of these prior distributions to the Dirichlet
and Neumann boundary conditions produces the following
prior mean and covariance of the forcing term:

m̃f = Kidmd + mn

�̃f = �f + β2Kid�dKT
id + γ 2�n

(A2)

By adjusting β and γ , the effects of particular loads can be
emphasized or de-emphasized.

This generalization allows for a modeling choice when
enforcing inhomogeneous Dirichlet boundary conditions.
These can be strongly enforced in the prior, by setting�d = 0
and making md equal to the true displacement value at the
boundary. Alternatively, they can be weakly enforced by set-
ting md = 0, and instead assigning a non-zero covariance
�d. In this case, the Dirichlet boundaries are enforced in
a weak sense, because their enforcement is only due to the
right-hand side modifications being included in the obser-
vations. Naturally, a combination of these two approaches,
where bothmd and �d are non-zero is also valid. For homo-
geneous Dirichlet boundary conditions, setting md = 0 and
�d = 0 already strongly enforces the boundary conditions,
but this strong enforcement can be weakened by introducing
a non-zero�d. For Neumann boundary conditions, the same
modeling choice between strong and weak enforcement of
the boundary conditions applies.

A final point to address is which covariance structure
should be applied to the Dirichlet and Neumann covariances
�d and �n. For single point loads and single point con-
straints, the answer to this question is trivial, namely a null
matrix, except for a unit diagonal entry associated with the
point load or constraint degree of freedom. If the problem
contains multiple independent point loads or constraints, the
covariance structure of �d and �n is still relatively straight-
forward: in this case, the off-diagonal terms of �d and �n

can simply be set to 0. However, if for example an inhomoge-
neous Dirichlet or Neumann boundary condition is applied
along an edge, this assumption of independence does not
hold, and a full covariance structure needs to be obtained for
�d and �n.

AppendixB: Sampling theprior andposterior

The main computational bottleneck of the method lies in the
handling of large covariance matrices. Since both the prior
and posterior covariance matrix are full n× n matrices, their
explicit computation, storage and handling quickly becomes
infeasible as n increases. Additionally, K−1 appears in the
expressions for both of these matrices, which suffers from
similar problems when computed explicitly. In this section,
methods of sampling exactly from the prior and posterior
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distributions are discussed. From these samples, the mean
vectors and covariance matrices can be approximated.

B.1: Ensemble approximation

Instead of a mean vector and covariance matrix, an ensemble
X is used to represent the prior distribution. X is an n × N
matrix containing N samples from the prior distribution. The
prior mean and covariance can be approximated by com-
puting the sample mean m̂ and sample covariance �̂ of the
ensemble. The accuracy of this approximation is depends on
the size of the ensemble: as N increases, the sample mean
vector and covariance matrix converge to their exact counter-
parts, but the computational cost increases accordingly. By
the central limit theorem, the sample mean and covariance
will converge to the true sample mean and covariance at a
rate of 1√

N
(Berry 1941).

The entries of the sample mean vector and covariance
matrix are given by:

m̂i = 1

N

N∑
j=1

Xi j

�̂i j = 1

N − 1

N∑
k=1

(
Xik − m̂i

) (
X jk − m̂ j

) (B3)

The sample covariance matrix can also be expressed as the
following decomposition:

�̂ = 1

N − 1
F̂F̂

T
(B4)

Here, F̂ is the sample residual matrix, given by:

F̂ = X − m̂ 1TN (B5)

In the expression above, 1N is a vector of ones of size N .

B.2: Prior sampling

One key observation to make about the prior covariance in
Eq. (41) is that the K−1 term only appears as a premulti-
plier at the front and as a postmultiplier at the end of the
expression. As a result, instead of obtaining a sample ũ from
u ∼ N (

0,K−1�fK−1
)
, a sample f̃ can be obtained from

f ∼ N (0,�f ). Since �f is a sparse matrix, the Cholesky
decomposition of �f that is needed to sample f̃ is relatively
cheap compared to that of a full matrix. If�f is approximated
by diagonalizing it, its Cholesky decomposition is trivial.
After obtaining f̃ , we can compute ũ by solving Kũ = f̃ .

Since multiple solves are needed of the same system,
but with a changing right-hand side vector, a direct solver
approach is a natural choice. Here, we use the CHOLMOD

library (Davis 2013), which solves sparse linear systems by
finding a sparse Cholesky factorization of K, and then solv-
ing for ũ through backward substitution. Notice that only the
cheap backward substitutions need to be repeated for each
sample, and the main computational bottleneck of obtaining
the factorization needs to be performed only once. Addition-
ally, for both the white-noise prior from Sect. 3.2 as well as
theGreen’s function prior fromSect. 3.3,�f andwill have the
same sparsity structure asK. Thismeans that the permutation
that minimizes the fill-ins in the Cholesky decomposition of
K can be reused for that of �f . One drawback of using a
direct solver, however, is that it tends to scale poorly as the
number of degrees of freedom in the system increases. For
systems with a large number of degrees of freedom, it might
therefore be necessary to find alternative sampling methods,
though this falls beyond the scope of this paper.

B.3: Posterior sampling from u via f

To obtain posterior samples with the mean and covariance
from Eq. (43), a similar approach can be applied. Instead
of computing a posterior sample ũ∗ directly from u|g ∼
N (

m∗,�∗), a sample of the force vector posterior f̃
∗
is

obtained, from the following distribution

f |g ∼ N (
mf

∗,�∗
f
)

(B6)

where the force posteriormeanvectormf
∗ and force posterior

covariance matrix �∗
f are given by:

mf
∗ = �f�

(
�T�f� + σ 2

e I
)−1

g = Gfg (B7)

and

�∗
f = �f − �f�

(
�T�f� + σ 2

e I
)−1

�T�f

=
(
I − Gf�

T
)

�f

(B8)

Here, Gf is the force vector Kalman gain matrix, which is
given by:

Gf = �f�
(
�T�f� + σ 2

e I
)−1

(B9)

If the force posterior covariance matrix is written in its so-
called Joseph form, it becomes clear how posterior force
vector samples can be computed from prior force vector sam-
ples:

�∗
f =

(
I − Gf�

T
)

�f

(
I − Gf�

T
)T + σ 2

e GfGf
T

(B10)
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A prior force vector sample f̃ , as well as a sample ẽ from
the observation noise e ∼ N (

0, σ 2
e I

)
are then drawn inde-

pendently. The sample from the force vector posterior is then
given by:

f̃
∗ = mf

∗ +
(
I − Gf�

T
)
f̃ + Gf ẽ

= f̃ + Gf

(
g − �T f̃ + ẽ

) (B11)

At this point the sample from the posterior distribution of the
displacement field can be obtained by solving Kũ∗ = f̃

∗
.

B.4: Posterior sampling from u directly

This approach of computing posterior samples by updating
prior samples based on perturbed observations of the data
g−ẽ can also be applied tou directly. Starting fromEq. (B11),
f̃ and �T can be replaced by ũ and H, respectively. The
force vector Kalman gain matrix given in Eq. (B9) can be
replaced by the Kalman gain matrix G associated with the
displacement field:

G = K−1�f�
(
�T�f� + σ 2

e I
)−1

= �HT
(
H�HT + σ 2

e I
)−1

(B12)

A prior sample ũ is computed as described in Appendix B.2,
and an independent observation noise sample ẽ is obtained
as before from e ∼ N (

0, σ 2
e I

)
. The posterior sample ũ∗ is

then given by:

ũ∗ = m∗ + (I − GH) ũ + Gẽ

= ũ + G
(
g − Hũ + ẽ

) (B13)

Note that this approach requires twoKũ = f̃ solves to obtain
a single sample from the posterior, as opposed to the approach
presented in Appendix B.3, where only a single solve is
needed. One reason to still prefer the method of sampling
directly from u is that the final solve of Kũ∗ = f̃

∗
does not

extendwell to non-linear problems. Although non-linear par-
tial differential equations fall beyond the scope of this paper,
the option to sample directly from u keeps the door open to
this class of problems.
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