<u>Mentors:</u> Dr. Regina Bokel Dr. Alejandro Prieto Dr. Ben Bronsema

Delegate of examiner: Dr. Dirk van den Heuvel

P5 | 9 July 2021 Puji Nata Djaja | 5020379

A case study of Dutch

Earth, Wind, and Fire

system integration & optimization in an office building in Tokyo "I want you to act as if the house is on fire, because it is."

Figure 1 Sectoral Breakdown of energy-related CO2 emission (left) and energy consumption (right) in Tokyo in 2016 (Tokyo Metropolitan Government, 2019)

Japan raises emissions reduction target to 46% by 2030

By MARI YAMAGUCHI April 22, 2021

(APnews.com, 2021)

■ NIKKEI**Asia**

News by Location V Business V Markets Tech V Politics V Economy V Features V Opinion V Life & Arts V

COMMENT

Making Japan carbon neutral by 2050 is huge challenge

Technological innovations and bold social changes are called essential

(Asia.nikkei.com, 2021)

Q

"Is the Dutch Earth, Wind and Fire system (EWF), in place of the existing air-conditioning system, an efficient energy-retrofitting method to achieve energy-neutrality in an office building in Tokyo without compromising thermal comfort of users?"

WIND: Ventec/ Power Roof

Energy production

The Four Elements Hotel, Amsterdam

MFO-2 building, Erasmus University Rotterdam

(Paul de Ruiter Architects, 2021)

Imperial Palace

> Kokyogaien National Garden

Tokyo Station

Google

Nihonbashi

Privacy

Send feedback

100 m

Tokyo's Offices: Building Stock

Large 20 years or older Less than 20 years

(Xymax Real Estate Institute , 2020)

Space Availability

With Space Without Space

EWF Integration Criteria

Compulsory:

- Higher than its surrounding (for Power Roof)
- No load-bearing facades or walls
- Has sufficient load-bearing capacity for possible installation i.e. Power Roof

Additional:

- Space availability on site
- Building height is over 15m
- Free-floor height
- Available vertical shaft

etc

East view

South view

North view

West view

on	1-16-3 Nihonbashi, Chuo-ku, Tokyo
f completion	2016
oor area	5,116.39 m [*]
l floor area	391.30 m² / 118.37 tsubo
re	Steel structure, with vibration damping
g scale	1 basement floor, 10 floors above ground
nditioning	Individual air-conditioning
	Flying Pumpkins & Team FP

20.5 x 26 m

How do I design

Climate Analysis

Climate Cascade (CC)

Toky	0	≦16.5°C cooling: when T outside air ≧ 24°C													
ıario	Height	Necessary	No of	Outgoing air	Achieved	Fan Energy	Pump Energy		Heating Energy		Incoming	Cooling Energy		Amount	Total Energy
Scer	[m]	[Pa]	heads	T33 [°C]	T24 [Pa]	[MWh]	[MWh]	[kWh/m2]	[MWh]	[kWh/m2]	temperature	[MWh]	[kWh/m2]	[ton]	[kWh/m2]
1	44	100	16	16.4	307	0*	54	11	27	6	13	154	32	243,000	49
2	44	100	10	16.42	192	0*	34	7	33	7	11	199	42	152,000	56
3	22	100	10	16.42	96	0*	17	4	32	7	11	199	42	152,000	53
4	22	100	12	16.5	115	0*	20	4	28	6	12	177	37	182,000	47
5	22	100	12	16.87	115	0*	20	4	27	6	12.5	147	31	182,000	41
6	22	100	9	16.14	86	0*	15	3	36	8	10	226	48	137,000	59

* Natural draft by EWF saved 1.68 MWh of Fan energy

Climate Cascade (CC)

WxLxH	: 1.08 x 1.08 x 44m
Spray heads	: 3 at the top (44 m)
	9 at 22m
Pressure loss	: 100 Pa
Air velocity	: 3 m/s
Ventilation	: 12,650 m³/h
	50 m ³ /h/person
Air temperature into room	: 16.5°C
Water temperature	: Cooling mode 12.5°C (cooled) Heating mode 15°C (ground temp.)

Climate Cascade (CC)

Air					Water				Room		Pressure			n spravbeads	
θe-⁰C	φ _e -%	x _e -g/kg	θ _{uit} - ºC	φ _{uit} -%	x _{uit} -g/kg	θ _{in} - ⁰ C	θ _{uit} - ⁰ C	Vin - m3/s	m_wat_in	θ _i - ⁰ C	φ-%	p _{hydr} Pa	р _{th} -Ра	p _{tot} -Pa	n_sprayneads
33	55	20.75	16.87	100.00	12.02	12.5	16.87	0.008	8.4	28	70.7	287.8	-11.4	299.2	12
30	66	17.69	16.77	100.00	11.94	12.5	16.77	0.006	6.3	28	70.2	215.9	-9.5	225.3	9
24	79	14.82	16.64	100.00	11.84	12.5	16.64	0.004	3.5	20	66.6	119.9	-5.4	125.3	5
18	71	9.13	15.28	96.05	10.40	15	14.91	0.001	0.7	20	60.4	24.0	-2.1	26.0	1
12	68	5.91	13.73	100.00	9.78	15	13.73	0.008	8.4	20	59.3	287.8	1.3	286.5	12
6	68	3.93	12.75	100.00	9.16	15	12.75	0.008	8.4	20	57.6	287.8	5.4	282.4	12
0	49	1.84	11.74	100.00	8.57	15	11.74	0.008	8.4	20	53.9	287.8	9.7	278.2	12
-2	50	1.59	11.49	100.00	8.43	15	11.49	0.008	8.4	20	53.0	287.8	11.2	276.6	12

Solar Chimney (SC)

W x L x H Pressure loss Air velocity Heat recovery : 0.65 x 2 x 44m x 2 chimney : 25 Pa : 1.5 m/s : Microchannel

Solar Chimney (SC)

Solar Chimney (SC)

Months	Average of Te [°C]	Average of Q [W/m2]	Average of Thermal Draft [Pa]	Sum of Fan energy [MWh]	Sum of Heat Recovered [MWh]	Average of T at top of SC
Off	15.00	21	8.84	0.04	21	20
Office hour	18.39	303	5.40	0.21	204	23
1	8.53	198	21.15	0.00	12	22
2	10.54	315	18.55	0.00	18	23
3	12.57	332	15.24	0.00	20	23
4	15.18	422	11.42	0.01	25	24
5	21.48	393	0.78	0.02	18	24
6	24.92	361	-4.99	0.03	14	24
7	25.49	234	-6.91	0.03	21	22
8	31.36	475	-14.10	0.04	18	25
9	25.73	256	-7.06	0.03	20	23
10	18.98	221	3.50	0.02	13	22
11	15.94	229	8.62	0.01	13	22
12	9.74	206	19.06	0.00	12	22
Grand Total	16.55	150	7.27	0.25	225	21

Gecond:

Integration (placement)

Shouchikubai philosophy

(source: jing.fm)

Shouchikubai philosophy in design

Chiku

Bamboo

Shou

Bai

(source: jing.fm)

Plum

Basic design

RF

Moderate design

3 - 7

8 - 10

RF

Н Bamboo

Advanced design

RF

3 different proposals

No.	Category	Plum	Bamboo	Pine
1	Performance (HR)	0	0	0
2	Material (quantity)	0	0	0
3	Visual comfort	Δ	Δ	×
4	Maintenance	Δ	Δ	0
5	Space use	Δ	0	×
6	Aesthetic	Δ	0	Δ

O = 🏠, △ = 😐, 🗱 = 🖓

Final Design

Impressions

▼	
•	
•	
▼	
▼	

Unitized SC

Stainless-stell spider fitting

Order of Assembly

Order of Assembly

Order of Assembly

Details: connection within module

Detail B

DesignBuilder Simulation

3 different HVAC settings

No.		Existing	EWF design	Conventional					
1	Construction	Wall 1 (SW & NW): ECP t60 R 0.14 Wall 2 (SE & NE): Curtain wall (DB template)							
2	Occupancy & Schedule	0.2 people/m ²							
3	HVAC system	VRF with HR and DOAS	<u>Ventilation (mechanical):</u> VAV with no reheat, Constant air supply of 16.5°C <u>Space heating & cooling:</u> Underfloor heating & chilled ceiling	VAV reheat, DX cooling with Dehumidification					

2 different comparisons

No.		Existing	EWF design	Conventional
1	Construction	Wa	Wall 1 (SW & NW): ECP t60 R 0.14 I 2 (SE & NE): Curtain wall (DB templat	e)
2	Occupancy & Schedule		0.2 people/m ²	
3	HVAC system	VRF with HR and DOAS	<u>Ventilation (mechanical):</u> VAV with no reheat, Constant air supply of 16.5°C <u>Space heating & cooling:</u> Underfloor heating & chilled ceiling	VAV reheat, DX cooling with Dehumidification

4 different variations

	comfort	Priority line		energy	
	Variation 1	Existing	New	Variation 2	
Ventilation amount	50	25	50	25	m3/h/person
Comfort design condition					
Heating mode	22	22	20	20	°C
	40	40	40	40	% RH
Cooling mode	26	26	28	28	°C
	50	50	70	70	% RH

Comparison 1: EWF – Existing (VRF)

	comfort	Priority line		energy 、	
	Variation 1	Existing	New	Variation 2	
Ventilation amount	50	25	50	25	m3/h/person
Comfort design condition					
Heating mode	22	22	20	20	°C
-	40	40	40	40	% RH
Cooling mode	26	26	28	28	°C
	50	50	70	70	% RH

	Variati	ion 1		Exist	ing		Ne	w		Variat	ion 2		
Comparison	Existing	EWF	%	Existing	EWF	%	Existing	EWF	%	Existing	EWF	%	
Heating	3	15	371	2	14	720	3	10	197	2	10	495	kWh/m2
Cooling	29	77	164	27	72	161	22	67	205	21	63	201	kWh/m2
Ventilation	50	31	-38	29	29	0	48	25	-47	27	23	-15	kWh/m2
Total	82	123	50	58	114	96	73	101	39	50	96	94	kWh/m2

Average difference %		Old & New difference %				
Heating	446	Heating	475			
Cooling	183	Cooling	143			
Ventilation	-25	Ventilation	-14			
Total	70	Total	74			

Comparison 1: EWF – Existing (VRF)

	comfort	Priority line		energy	
	Variation 1	Existing	New	Variation 2	
Ventilation amount	50	25	50	25	m3/h/person
Comfort design condition					
Heating mode	22	22	20	20	°C
-	40	40	40	40	% RH
Cooling mode	26	26	28	28	°C
_	50	50	70	70	% RH

Existing system	Variation 1	Existing	New	Variation 2
Hours at and above 27°C	26	0	2102	2288 hours
Discomfort % in a year	0	0	24	26 %
Comfort % in a year	100	100	76	74 %
Hours at and above 29°C	0	0	41	0 hours
Discomfort % in a year	0	0	0	0 %
Comfort % in a year	100	100	100	100 %

EWF with climate ceiling	Variation 1	Existing	New	Variation 2
Hours at and above 27°C	0	0	741	741 hours
Discomfort % in a year	0	0	8	8 %
Comfort % in a year	100	100	92	92 %
Hours at and above 29℃	0	0	0	0 hours
Discomfort % in a year	0	0	0	0 %
Comfort % in a year	100	100	100	100 %

Comparison 1: EWF – Existing (VRF)

	comfort	Priority line		energy 、	
	Variation 1	Existing	New	Variation 2	
Ventilation amount	50	25	50	25	m3/h/person
Comfort design condition					
Heating mode	22	22	20	20	°C
-	40	40	40	40	% RH
Cooling mode	26	26	28	28	°C
_	50	50	70	70	% RH

Existing (VRF)

From top-left clockwise: Variation 1, Existing, New, and Variation 2.

EWF

From top-left clockwise: Variation 1, Existing, New, and Variation 2.

Comparison 2: EWF – Conventional (VAV)

/	comfort	Priority line		energy 、	
	Variation 1	Existing	New	Variation 2	
Ventilation amount	50	25	50	25	m3/h/person
Comfort design condition					
Heating mode	22	22	20	20	°C
	40	40	40	40	% RH
Cooling mode	26	26	28	28	°C
	50	50	70	70	% RH

	Variati	on 1		Exist	ing		Ne	w		Variati	ion 2		
Comparison	Existing	EWF	%	Existing	EWF	%	Existing	EWF	%	Existing	EWF	%	
Heating	72	15	-79	64	14	-79	2	10	414	1	10	626	kWh/m2
Cooling	152	77	-49	135	72	-47	89	67	-25	86	63	-27	kWh/m2
Ventilation	44	31	-29	44	29	-34	35	25	-28	35	23	-33	kWh/m2
Total	268	123	-54	243	114	-53	126	101	-19	122	96	-21	kWh/m2

Average differe	ence %	Old & New diff	<u>erence </u> %
Heating	220	Heating	-85
Cooling	-37	Cooling	-50
Ventilation	-31	Ventilation	-43
Total	-37	Total	-58

Comparison 2: EWF – Conventional (VAV)

	comfort	Priority line		energy 、	
	Variation 1	Existing	New	Variation 2	
Ventilation amount	50	25	50	25	m3/h/person
Comfort design condition					
Heating mode	22	22	20	20	°C
_	40	40	40	40	% RH
Cooling mode	26	26	28	28	°C
_	50	50	70	70	% RH

Conventional system	Variation 1	Existing	New	Variation 2
Hours at and above 27°C	0	0	851	851 hours
Discomfort % in a year	0	0	10	10 %
Comfort % in a year	100	100	90	90 %
Hours at and above 29°C	0	0	0	0 hours
Discomfort % in a year	0	0	0	0 %
Comfort % in a year	100	100	100	100 %

EWF with climate ceiling	Variation 1	Existing	New	Variation 2
Hours at and above 27℃	0	0	741	741 hours
Discomfort % in a year	0	0	8	8 %
Comfort % in a year	100	100	92	92 %
Hours at and above 29°C	0	0	0	0 hours
Discomfort % in a year	0	0	0	0 %
Comfort % in a year	100	100	100	100 %

Comparison 2: EWF – Conventional (VAV)

	comfort	Priority line		energy	
	Variation 1	Existing	New	Variation 2	
Ventilation amount	50	25	50	25	m3/h/person
Comfort design condition					
Heating mode	22	22	20	20	°C
-	40	40	40	40	% RH
Cooling mode	26	26	28	28	°C
_	50	50	70	70	% RH

Conventional (VAV)

EWF

From top-left clockwise: Variation 1, Existing, New, and Variation 2.

From top-left clockwise: Variation 1, Existing, New, and Variation 2.

Energy neutrality & benchmarking

Power Roof: PV Yield

ΠSι	IC
	liiiist

DC System Size (kW):	62.4
Module Type:	Premium 💿 🐧
Аггау Туре:	Fixed (roof mount)
System Losses (%):	14.08
Tilt (deg):	40
Azimuth (deg):	135

Realistic

(PVWatts® Calculator)

(Grasshopper)

Zero energy?

Annual energy consumption per m ²	Existing	New	
Heating	2	10	kWh/m2
Cooling	27	67	kWh/m2
Ventilation	27	25	kWh/m2
Lighting	801	81	kWh/m2
Computers etc.	0 6	56	kWh/m2
Total energy consumption per m ²	194	239	kWh/m2
Annual energy production per m ²			
BAPV on Power Root (optimistic)	0	172	kWh/m2
% to energy consumption	0	72	%
BAPV on Power Roof (realistic)	0	56	kWh/m2
% to energy consumption	0	24	%

Benchmarking: Primary energy

Annual energy consumption per m ² (primary energy)	Existing	New	%
Heating	4	10	155 MJ/m2
Cooling	۵7	33	- 51 MJ/m2
Ventilation	283	244	-14 MJ/m2
Lighting	10/794	794	0 MJ/m2
Computers etc.	1 551	551	0 MJ/m2
Total energy consumption perm ² (primary energy)	1699	1631	-4 MJ/m2
Note:			
Primary energy coefficients: Electricity, 7.76 MJ/kWh, City gas: 4	5 MJ/m3		
COP used are as follows			
Existing heating (VRF) 4, existing cooling (VRF) 4			
New heating (GSHP) 9, new cooling (direct groundsource) 20)		

Benchmarking: Carbon Report

	95.4 kg-CO ² /m ²							
	(Range B2)							
Me	Medium-sized Buildings for Rent (3,000 m ² en larger but snaller then 10,000 m ²)							
Range	Basis	Emission Intensity (kg /m²)	llumber of Facilities	Percentage	American Floor Area	0 0.1 0.2 0.3 0.4 0.5		
A4	0.25 or less	19.6 or less	1	0.7%	4988.83	A4 0.7%		
A3	More than 0.25 but 0.50 or less	More than 19.6 out 39.1 or less	58	6.1%	5063.63			
A2	More than 0.50 but 0.75 or less	More than 39.1 but F3.0 or less	250	26.2%	5526.83	A1 33.7%		
A1	More than 0.75 but 1.00 or less	More than 38.6 but 78.1 or less	321	33.7%	5444.23	B2 16.1%		
B 2	More than 1.00 but 1.25 or less	More than 78.1 but 97.7 or less	153	16.1%	5930.80	B1 7.3N		
B1	More than 1.25 but 1.50 or less	More than 97.7 but 117.2 or less	70	7.3%	5981.22	C 9.9%		
С	More than 1.50	More than 117.2	94	9.9%	5537.81			
		Average intensity 78.1 Total	953	100%	5566.20			

(TMG, 2012)

Improvement

Hybrid system:

EWF with chilled beams

			Carris	comfort	Priorit	y line	energy
				Variation 1	Existing	New	Variation 2
			Ventilation amount	50	25	50	25 m3/h/person
			Comfort design condition				
			Heating mode	22	22	20	20 °C
			Cooling mode	40	40	40	40 % KH
			Cooling mode	50	50	70	70 % RH
					+01	1	
	Variation 1	Existing	New	1001	Variatic	on 2	
Comparison	EWF EWF2 %	EWF EWF2	8 % EVVF EW	F2 % E	WF	EWF2	%
Heating	15 4 -74	14	-71:000	4 - 62	10	4	-66 kWh/m2
Cooling	77 81 5	72 81	3 67	73 10	63	73	16 kWh/m2
Ventilation	31 31 3	. 29 29	25	25 0	23	23	0 kWh/m2
Total	123 116 -6	1.14 11	0 101 1	102 0	96	100	4 kWh/m2
	Eners						
	Average	difference %	Old & Nev	v differenc	<u>ce</u> %		
	Heating	-69	Heating	-	74		
	Cooling	11	Cooling		2		
	Ventilatio	on 0	Ventilation	n -	14		
	Total	-1	Total	-	11		

	comfort	Priority line		energy	
	Variation 1	Existing	New	Variation 2	
Ventilation amount	50	25	50	25	m3/h/person
Comfort design condition					
Heating mode	22	22	20	20	°C
-	40	40	40	40	% RH
Cooling mode	26	26	28	28	°C
-	50	50	70	70	% RH

EWF with climate ceiling	Variation 1	Existing	New	Variation 2
Hours at and above 27°C	0	0	741	741 hours
Discomfort % in a year	0	0	8	8 %
Comfort % in a year	100	100	92	92 %
Hours at and above 29℃	0	0	0	0 hours
Discomfort % in a year	0	0	0	0 %
Comfort % in a year	100	100	100	100 %

EWF with chilled beams	Variation 1	Existing	New	Variation 2
Hours at and above 27°C	33	33	50	50 hours
Discomfort % in a year	0	0	1	1 %
Comfort % in a year	100	100	99	99 %
Hours at and above 29℃	0	3	3	3 hours
Discomfort % in a year	0	0	0	0 %
Comfort % in a year	100	100	100	100 %

From top-left clockwise: Variation 1, Existing, New, and Variation 2.

From top-left clockwise: Variation 1, Existing, New, and Variation 2.

Reuse heat cold):

Heat Recovery

Winter scheme

Algorithm

Seasons	Te<=Thr	Te>Thr	Total
Autumn	1505	679	2184 if [Te >= 16.5 AND Thr >= 16.5] then [min between Te&Thr], else if Te <= 16.5 then [default], else [min between Te&Thr]
Spring	2069	139	2208 if [Te >= 16.5 AND Thr >= 16.5] then [min between Te&Thr], else if Te <= 16.5 then [default], else [min between Te&Thr]
Summer	309	1899	2208 Choose the minimum between Te and Thr (ignore 16.5)
Winter	2184		2184 Always ignore Te, choose the minimum between Thr and 16.5
Total hou	rs in 2020		8784 [default]=minimum between "16.5", and "that which is closest to 16.5"
Examples

No	Date & time	Те	Thr	relation	CC Tin
1	01/01/2020 10:00	5.8	18.8	Te<=Thr	16.5
2	06/02/2020 13:00	6.1	21.7	Te<=Thr	16.5
3	22/03/2020 15:00	21.8	24.7	Te<=Thr	21.8
4	17/04/2020 17:00	14.9	20.5	Te<=Thr	16.5
5	14/05/2020 18:00	22	23.0	Te<=Thr	22
6	11/06/2020 09:00	27.3	27.1	Te>Thr	27.1
7	20/07/2020 13:00	30.7	28.3	Te>Thr	28.3
8	05/08/2020 15:00	33.4	30.1	Te>Tr	30.1
9	06/09/2020 20:00	25.6	23.1	Te>Tr	23.1
10	04/10/2020 09:00	20.7	22.5	Te<=Tr	20.7
11	21/11/2020 20:00	13.8	19.5	Te<=Tr	16.5
12	29/12/2020 20:00	8.3	17.8	Te<=Tr	16.5

Results

omparison

Tokyo - Amsterdam

СС

Pre-cool the water is necessary

Pre-cool the water is NOT necessary

Tokyo

Amsterdam

External heating energy is less

External heating energy is more

Amsterdam

Tokyo

Toky	0			≦16.5°C			cooling: when T outside air ≧ 24°C								
ario	Height	Necessary	No of	Outgoing air	Achieved	Fan Energy	Pum	p Energy	Heati	ng Energy	Incoming	Coolin	g Energy	Amount	Total
Scena	[m]	Pressure [Pa]	spray- heads	temperature T33 [°C]	Pressure T24 [Pa]	[MWh]	[MWh]	[kWh/m2]	[MWh]	[kWh/m2]	water temperature	[MWh]	[kWh/m2]	of water [ton]	Energy [kWh/m2]
1	44	100	16	16.4	307	0*	54	11	27	6	13	154	32	243,000	49
2	44	100	10	16.42	192	0*	34	7	33	7	11	199	42	152,000	56
3	22	100	10	16.42	96	0*	17	4	32	7	11	199	42	152,000	53
4	22	100	12	16.5	115	0*	20	4	28	6	12	177	37	182,000	47
5	22	100	12	16.87	115	0*	20	4	27	6	12.5	147	31	182,000	41
6	22	100	9	16.14	86	0*	15	3	36	8	10	226	48	137,000	59
* Natural draft by EWF saved 1.68 MWh of Fan energy in average -> 51															
Ams	terdam			≦18°C cooling: when T outside air ≧ 24°C											
<u>.</u> 2	Uninka	Nesser	No of	Outgoing ai	ir Achiev	ved Fan	Pu	Imp Energy	F	leating Energ	y Incomir	ig Coo	ling Energy	Amount	Total
Scenal	meight [m]	Necessary Pressure [Pa] spray] heads	temperatur T28 [°C]	e Pressure [Pa]	T24 Energy [MWh]	/ [MW	^{/h]} [kWh/m	12] [MV	Vh] [kWh	water m2] temperat/ T24 [°C	ure [MWH]	[kWh/m2 1]]	of water [ton]	Energy [kWh/m2]
1	44	100	4	16.8	150) 0*	18	4	8	5 1	8 13	0	0	82,000	22
* Natural draft by EWF saved 1.62 MWh of Fan energy Amsterdam: 22 kWh/m ²															

Tokyo

Amsterdam

Thermal draft is less, fan energy is more

Thermal draft is more, fan energy is less

Amsterdam

Tokyo

More heat recovered for reuse

Less heat recovered for reuse

Solar Chimney	TYO	AMS	
Fan energy	0.1	0.0) kWh/m2
Heat recovered	48	37	7 kWh/m2

Tokyo

Amsterdam

Urban setting

Compact, tight in space

Less compact, less tight in space

Amsterdam

Tokyo

Comparison study

37% building related energy reduction

44% electric energy reduction

(Teeling. 2020)

Conclusion

Answering the research question

"Is the Dutch Earth, Wind and Fire system (EWF),

in place of the existing air-conditioning system,

an efficient energy-retrofitting method to achieve energy-neutrality in an office building in Tokyo without compromising thermal comfort of users?"

No, it is not efficient at all for the case of NK Building, as it turned out that the existing airconditioning system is already energy efficient.

However, **as a ventilation system**, EWF contributed to **15% energy reduction** proving the fact that the natural ventilation concept of EWF works. **Thermal comfort is also improved**, from 75% to 92% comfort hours, with more balance

temperature distribution.

"Is the Dutch Earth, Wind and Fire system (EWF),

in place of the existing **air-conditioning system**,

an efficient **energy-retrofitting method** to achieve **energy-neutrality** in an **office building in Tokyo** without compromising **thermal comfort** of users?"

Moreover, when **compared to a conventional air-conditioning system**, EWF uses **40% less energy** overall, with better thermal comfort.

On the other hand, **energy neutrality is not achieved**, and is very challenging without reducing the energy consumption first.

Limitation

- COVID-19 pandemic
- Accuracy of simulating EWF in DB

Recommendation

- Many exciting topic for follow up research:
 - EWF design without ATES -> use chiller to cool the CC water in Tokyo or other cities with similar climate
 - Integration of unitized SC with PV, PV/T, or Thermal Collector -> prioritizing electricity or heat gain
 - And more...
- Develop a standardized and easy-to-use Excel calculation for both CC and SC
- New template for EWF in DB, or any other dynamic simulation software

"I want you to act as if the house is on fire, otherwise..."

... comfort will be a luxury

... it's getting even hotter!

... the relation between human & nature is getting worse

... (fill your own answer)

EWF is a concept that bridge architect and mechanical engineers,

but most importantly,

It's trying to bridge nature back into our life.

ご清聴ありがとうございます

hank you!

Dank u wel!