
Ad 

Master of Science Thesis

Hybrid knowledge-based/deep learning
reduced order modelling of high
dimensional chaotic systems

J. A. Veerman

October 27, 2023



Hybrid knowledge-based/deep learning
reduced order modelling of high
dimensional chaotic systems

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace Engineering
at Delft University of Technology

J. A. Veerman

October 27, 2023

Faculty of Aerospace Engineering · Delft University of Technology



Delft University of Technology

Copyright © Aerospace Engineering, Delft University of Technology
All rights reserved.



DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF AERODYNAMICS

The undersigned hereby certify that they have read and recommend to the Faculty of
Aerospace Engineering for acceptance the thesis entitled “Hybrid knowledge-based/deep
learning reduced order modelling of high dimensional chaotic systems” by J. A.
Veerman in fulfillment of the requirements for the degree of Master of Science.

Defence date : November 16, 2023

Project duration : January 2023 - November 2023

Student number : 5410800

Supervisor: Dr. N.A.K. Doan

Chair: Dr. ir. M.I. Gerritsma

External examiner: Dr. I. Langella



iv

Preface

This Master thesis marks the end of an incredible and rather unique educational journey,
which started back in 2009 in high school at the VMBO-TL. After graduating from the
VMBO-TL and later as well from the HAVO and the VWO, I decided to study Earth Science
at the University of Utrecht, which I later combined into a dual bachelor with Physics. During
my time at Physics, it were the courses in fluid mechanics and turbulence that sparked my
interest into (numerical) small scale fluid dynamics, from which I decide to continue with a
master in Aerospace Engineering, focusing on (numerical) aerodynamics.

During my masters education, I have discovered my passion for machine learning and after
learning more about neural networks I was sure that I wanted to conduct my thesis within this
topic. I am glad that I was able to learn and gain first hand experience on with a variety of
machine learning techniques ranging from dense neural networks to more advanced tools such
as convolutional neural networks and recurrent neural networks. My excitement on machine
learning only grew stronger over the course of this thesis.

There are a few people without whom I would not have been able to deliver this thesis. First,
I would like to thank my supervisor Dr. (Anh Khoa) Doan for his supervision and his help
along the project. The independence he provided me to work on this thesis combined with
his insightful tips and our discussions were very helpful. I also would like to thank Mathias
Lesjak for providing his numerical codes on knowledge-based (for Kolmogorov flow), deep
learning and hybrid reduced order models for low dimensional chaotic systems as well as
more information which lay the foundation of my thesis. Furthermore, I would like to thank
George Popi and Menno Veerman for proof reading my thesis and providing me with useful
feedback. Finally, I would like to thank my family for their unconditional support.

I hope you enjoy reading my work!

Jochem Veerman, October 27, 2023

MSc. Thesis J. A. Veerman



Table of Contents

Preface iv

List of Figures viii

List of Tables x

Abstract xi

Nomenclature xiii

1 Introduction 1

2 Theory: Knowledge-based reduced order modelling 6

2.1 Proper orthogonal decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Galerkin Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Theory: Neural Networks 11

3.1 Artificial neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Recurrent neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Echo state network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Deep learning data (de)compression . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 (Transpose) Convolutional neural networks . . . . . . . . . . . . . . . . . 17

MSc. Thesis J. A. Veerman



Table of Contents vi

4 Test case: Kolmogorov Flow 20

4.1 2D Kolmogorov flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Methodology and Hybrid-A architecture 25

5.1 Knowledge-based reduced order Kolmogorov flow . . . . . . . . . . . . . . . . . 25

5.2 Multi-scale autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Data-driven reduced order modelling . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Hybrid-A architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5 Comparison criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.6 Truncation of POD modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.7 Model settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.7.1 Hyperparameter tuning and validation settings . . . . . . . . . . . . . . . 38

5.7.2 Model settings experiments . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Hybrid A: Results and discussion 42

6.1 Short-term prediction horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Long-term flow statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Hybrid-FFNN: Results and discussion 59

7.1 Hybrid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Feed-forward neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Conclusion 63

Bibliography 67

A Bayesian optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B Lyapunov exponent computations . . . . . . . . . . . . . . . . . . . . . . . . . . 78

MSc. Thesis J. A. Veerman



Table of Contents vii

C Hyperparameters of deep learning and Hybrid-A reduced order models . . . . . . 80

D RMSE of mean flow at Re = 20 including Nres = 500 . . . . . . . . . . . . . . . 82

E D(t) against E(t), Re = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

F D(t) against E(t), Re = 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

G Architecture feed-forward neural network . . . . . . . . . . . . . . . . . . . . . . 87

MSc. Thesis J. A. Veerman



List of Figures

3.1 Artificial neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Dense neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Echo state network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Convolutional neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Padding around an image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Transpose convolutional neural network . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Flow velocities of Re = 20 and Re = 34 . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Mean flow of Re = 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Kinetic energy convergence, Re = 20 . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Kinetic energy spectrum, Re = 34 . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Multi-scale autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Flowcharts encoder/decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Hybrid-A model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 POD mode selection, Re = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5 POD mode selection, Re = 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.6 Relative energy contribution of POD modes . . . . . . . . . . . . . . . . . . . . 37

6.1 Short-prediction horizon, Re = 20 . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Total relative contributions in Hybrid-A model, Re = 20 . . . . . . . . . . . . . 44

6.3 Short-prediction horizon, Re = 34 . . . . . . . . . . . . . . . . . . . . . . . . . 45

MSc. Thesis J. A. Veerman



List of Figures ix

6.4 Total relative contributions in Hybrid-A model, Re = 34 . . . . . . . . . . . . . 47

6.5 ⟨u⟩ and ⟨v⟩ root mean square error, Re = 20 . . . . . . . . . . . . . . . . . . . 50

6.6 D(t) against E(t) phase space trajectories for Nlat = 500 at Re = 20 . . . . . . 52

6.7 D(t) against E(t) phase space trajectories for Nlat = 2000 at Re = 20 . . . . . 52

6.8 ⟨u⟩ and ⟨v⟩ root mean square error, Re = 34 . . . . . . . . . . . . . . . . . . . 53

6.9 ⟨u′⟩ and ⟨v′⟩ root mean square error, Re = 34 . . . . . . . . . . . . . . . . . . . 54

6.10 D(t) against E(t) phase space trajectories for Nlat = 500 at Re = 34 . . . . . . 55

6.11 D(t) against E(t) phase space trajectories for Nlat = 2000 at Re = 34 . . . . . 56

7.1 Hybrid-FFNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2 Short-term prediction horizon of Hybrid-A and Hybrid-FFNN . . . . . . . . . . . 61

A.1 Flowchart Bayesian optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 77

D.2 ⟨u⟩ and ⟨v⟩ root mean square error, Re = 20 with Nlat = 80 . . . . . . . . . . . 82

G.3 Architecture of feed-forward neural network . . . . . . . . . . . . . . . . . . . . 87

MSc. Thesis J. A. Veerman



List of Tables

5.1 Number of filters in autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Training and validation losses multi-scale autoencoders . . . . . . . . . . . . . . 30

5.3 Validation settings Re = 20 and Re = 34 . . . . . . . . . . . . . . . . . . . . . 40

5.4 Prediction settings Re = 20 and Re = 34 . . . . . . . . . . . . . . . . . . . . . 41

7.1 Training and validation losses feed-forward neural network . . . . . . . . . . . . 61

C1 Hyperparameters for Re = 20 test case . . . . . . . . . . . . . . . . . . . . . . . 80

C2 Hyperparameters for Re = 34 test case . . . . . . . . . . . . . . . . . . . . . . . 81

MSc. Thesis J. A. Veerman



Abstract

Chaotic systems are widespread and can be found everywhere, from small scale processes
inside the human body to the large scale dynamics of the entire atmosphere. However, mod-
elling these high dimensional chaotic systems is a difficult task due to the intrinsic nonlinear
nature of chaos as well as the accompanied computational cost. Therefore, in this research, the
predictive potential of hybrid reduced order models consisting of a knowledge-based (proper
orthogonal decomposition Galerkin projection) and a deep learning reservoir computing com-
ponent was studied for high dimensional chaotic systems, for which two hybrid architectures
were designed. In the first, the blending of the knowledge-based and deep learning components
occurred within the reservoir of the data-driven component (Hybrid-A) and its performance
was assessed through the short-term prediction horizon and long-term statistical predictions
and compared to the pure knowledge-based and pure deep learning reduced order models.
For the second model (Hybrid-FFNN), the blending occurred in a separate feed-forward neu-
ral network and the performance was compared to the Hybrid-A model. In order to obtain
efficient deep learning predictions for both models, a low dimensional latent space represen-
tation of the physical system was obtained using autoencoders. Both models were tested on
two-dimensional Kolmogorov flow at a Reynolds number of Re = 20 (periodic regime) and
Re = 34 (chaotic regime).

For the periodic case, the short-term performance of the Hybrid-A and deep learning model
were comparable, while the knowledge-based model was outperformed due to instabilities as
a result of the truncation of the number of modes from proper orthogonal decomposition.
Furthermore, an increase in latent space and/or deep learning reservoir size had no consistent
influence on the performance of the Hybrid-A model, due to the periodic and thus simple
to learn dynamics for the deep learning component. Finally, little influence was found for
the accumulation of (de)compression errors occurring in the Hybrid-A model, which was
compensated for by the additional information from the knowledge-based model and/or the
Hybrid-A model was able to restore the errors due to the periodic nature of the system.

Increasing the Reynolds number to the chaotic regime resulted in the Hybrid-A model to
underperform compared to the knowledge-based and deep learning models for smaller latent
space due to the (de)compression error accumulation. In addition, the Hybrid-A model was

MSc. Thesis J. A. Veerman



Abstract xii

unable to perform better than the knowledge-based model for larger latent spaces and number
of retained modes, from which it was concluded that too much information on the physical
system was lost in latent space for the Hybrid-A model to benefit from both components,
while the knowledge-based model operated on the (full) physical system. For the Hybrid-
FFNN it was shown that the feed-forward neural network introduced a too large error to be
beneficial over the Hybrid-A model.

For the long-term statistics of both test cases, the importance of the design for the tuning of
the hyperparameters of the deep learning model/component was showed. In general, no clear
influence was found in terms of the performance of the Hybrid-A model as a function of the
latent space and reservoir size. Furthermore, the comparative performance of the knowledge-
based, deep learning and Hybrid-A models showed no relation. This behaviour was expected
to be the result of a design strategy that biased the short-term performance over the long-term
performance of the deep learning model/component. Furthermore, for the periodic regime,
such behaviour could also have originated from the periodicity of the flow.

Up to the authors knowledge, this work proposed the first hybrid knowledge-based/deep
learning reduced order model using autoencoders for efficient predictions of high dimensional
chaotic systems. Even though it was found that the proposed Hybrid models were unable to
show increased performance compared to the knowledge-based and deep learning models, the
results can be viewed as a start to design other hybrid architectures for potential performance
improvement.

MSc. Thesis J. A. Veerman



Nomenclature

Abbreviations
AN Artificial neuron

CNN Convolutional neural network

DNN Dense neural network

DoF Degrees of freedom

EI Expected Improvement

ESN Echo state network

FFNN Feed-forward neural network

GPR Gaussian process regression

GP Gaussian process

IC Initial conditions

KNMI Royal Dutch Meteorological Insti-
tute

LES Large Eddy Simulations

LSTM Long short-term memory

LT Long term

MSE Mean square error

POD-GL proper orthogonal decomposition
Galerkin

POD Proper orthogonal decomposition

RANS Reynolds Averaged Navier Stokes

RMSE Root mean square error

RNN Recurrent neural network

ROM Reduced order model(ling)

ST Short term

TCNN Transpose convolutional neural net-
work

Deep learning
α Leaking rate

β Tikhonov factor

β Array containing Tikhonov factors
for grid-search

H̃(t) ESN training predictions

h̃(t) ESN prediction, single snapshot

Q̃ Output data TCNN

H(t) Training data ESN

h(t) True data ESN, single snapshot

I Identity matrix

Q Input data CNN

Qdec Decoded image

Qlat Latent space image

QF Feature map

qF Filter kernel

W Internal matrix ESN

W in Input matrix ESN

W out Output matrix ESN

xres(t) Internal state ESN

Xres Reservoir state matrix during train-
ing

ηdec Number of filters per decoder layer

ηenc Number of filters per encoder layer

⟨d⟩ Sparsity

ρ(W ) Spectral radius

σin Input scaling

ỹan Linear output artificial neuron

b Bias of artificial neurons

Df Number of filters in CNN

fac Nonlinear activation function

Ltrain Training loss

Lval Validation loss

NQ First/Second dimension input data
CNN

MSc. Thesis J. A. Veerman



xiv

Nh DoF in ESN single training snap-
shot

Nlat Latent space dimension

Nlayers Number of layers in encoder/de-
coder

Nc Third dimension input data CNN

Nf First/Second dimension of filter in
CNN

NQF
First/second dimensions feature
map

Nan Number of input data artificial neu-
rons

Nlat,x number of x grid points latent space

Nlat,y number of y grid points latent space

Nres Number of neurons in ESN

s Stride

Th Number of ESN training snapshots

wan,j Weights of artificial neurons

xan,j Input data of artificial neurons

yan Nonlinear output of artificial neu-
rons

Hybrid
ỹhy, in Concatenated encoded Hybrid-A in-

put

ỹhy, out(t) Output deep learning component
Hybrid-A

ỹhy, lat(t− δt) Encoded Hybrid-A input data

ỹhy,PODGL-lat(t) Encoded prediction POD-
GL in Hybrid-A model

ỹhy,PODGL(t) Prediction POD-GL in Hybrid-
A model

ỹhy(t) Prediction Hybrid-A model

Knowledge-based
Φ(x) POD modes

a(t) Time dependent POD coefficient

C Correlation matrix

ffor(x, t) Forcing term

y′(x, t) Velocity fluctuations

Y ′ Velocity fluctuations matrix

y(x, t) State vector

Λpod Matrix of POD eigenvalues

λpod Eigenvalue of a POD mode

L Generalized linear operator

N Generalized nonlinear operator

Eret Energy of retained POD modes

Nret Retained number of POD modes

Npod Number of POD modes

q Turbulent kinetic energy

Tpod Number of fluctuation snapshots

Tr Trace of matrix

Other symbols
(·, ·) Inner product

ŷ(x, t) Perturbed state

fKF Kolmogorov forcing

gbb(ζin) Initial data Bayesian optimisation

u(x, t) Flow field [u, v]

x Spatial coordinates [x, y]

χ Wave number magnitude

δy(x, t) Perturbations

δynorm Normalized perturbations

δt Time interval

δy′(x, t) Orthogonalized perturbations

ϵLyap Perturbation factor

ϵhor(t) Short-term prediction horizon error

ϵthres(t) Short-term prediction horizon
threshold error

ΓESN Total contribution ESN in Hybrid-A

ΓPODGL Total contribution POD-GL in
Hybrid-A

Γj Mean normalized contribution in
Hybrid-A

û Flow field in Fourier space

κij Entries of the output matrix

λLyap Lyapunov exponent

⟨·⟩ Ensemble average

⟨u⟩ Mean flow in u

⟨u′⟩ Mean fluctuations in u

⟨v⟩ Mean flow in v

⟨v′⟩ Mean fluctuations in v

E Expectation value

N () Multi-variate Gaussian distribution

µ0(ζ) Mean function

MSc. Thesis J. A. Veerman



xv

µn(ζ+) Mean function of posterior

Σ0(ζ, ζ) Covariance function/kernel

Σn(ζ+) Covariance function/kernel of pos-
terior

g̃bb(ζ+) Multi-variate Gaussian with mean
and covariance from posterior

| · | Absolute value

|| · || Euclidean norm

ζ Hyperparameter space

ζ+ Next point of hyperparameter space
in Bayesian optimisation

D(t) Domain averaged dissipation

DKY Kaplan-Yorke dimension

E(t) Domain averaged kinetic energy

gbb(ζ) Black-box objective function

gbb(ζ+)|[gbb(ζin), ζ+] Posterior distribution
Bayesian optimisation

Nbo Number of evaluation points
Bayesian optimisation

Nic Number of initial conditions in
Bayesian optimisation

nKF Frequency Kolmogorov forcing

Npodtrain Number of training data snapshots
POD

Nresync Number of resync snapshots

Nrmd Number of random evaluation
points before Bayesian optimisation
for initial data

Ntrain Number of training data snapshots

Nval Number of validation data snap-
shots

Nwash Number of washout snapshots

Nk Number of symmetric wave num-
bers in KolSol

Nphys DoF of physical system

P (M |O) Posterior

P (M) Prior

P (O|M) Likelihood

p Pressure

Re Reynolds number

t Temporal coordinate

TLyap Lyapunov time

Tper Time of a single period

tpred Short-term prediction horizon

ttrain Time steps of training data

tval Time steps of validation data

Torth Time interval orthonormalisation

u(x, t) x-component flow field

v(x, t) y-component flow field

Xrand Random normalized matrix

MSc. Thesis J. A. Veerman



Chapter 1

Introduction

Dynamical systems displaying chaotic behaviour form an important part of the daily life
[1]. Chaos occurs in a wide variety of processes and scales, from small processes inside the
human body [2] to the aerodynamics of an aircraft and from the flow of pedestrians [3] to
the dynamics of the entire atmosphere [4]. All chaotic systems are characterized by the fact
that a small perturbation in the initial conditions can results in vastly different outcomes
over time [5]. For example, due to the chaotic behaviour of the atmosphere, the Dutch Royal
Meteorological Institute (KNMI) performs for the daily weather forecast one high resolution
weather simulations as well as 50 low resolutions runs with slightly perturbed initial conditions
and model setting to account for the uncertainty arising from chaos [6].

Due to the impact of chaotic systems, it is of profound importance to be able to simulate their
evolution and thus gain insight into the governing processes. However, due to the intrinsic
nonlinearity and often the high dimensionality associated with chaotic systems, performing
temporal predictions is often not straightforward and results into a large computational cost
[7]. In addition, (complex) forcing terms in the governing equations might be unknown,
preventing high accuracy simulations [7].

Fluid flows are known for their often chaotic behaviour and high dimensionality as a result of
turbulence, which is often limiting for the exact (direct) numerical simulations [8]. Therefore,
in order to reduce the computational cost [8], (part of) the scales of turbulence can be modelled
rather than solved exactly through methods such as Reynolds Averaged Navier Stokes (RANS)
[9] and Large Eddy Simulations (LES) [10]. However. as a consequence, the quality of the
numerical solutions are lower.

Apart from modelling rather than solving exactly (part of) the turbulence, a significant
reduction in computational cost can be obtained through reduced order models (ROMs),
which aim to preserve only the dominant features in the flow [11, 12]. Such models can
be constructed using initial data from experiments or from high-fidelity simulations [11, 12].
Reduced order modelling is used in for example online parameter estimation and active flow

MSc. Thesis J. A. Veerman



2

control [13, 14, 15], and can be constructed using three approaches: A knowledge-based, a
data-driven or a hybrid type of architecture.

Traditionally, reduced order models have been constructed using a knowledge-based approach
in which the governing equations of the dynamical system were utilized to reflect the dominant
features of the flow [11, 12]. The main idea is to decompose initially known data from the
system into a set of modes and project the governing equations onto these modes through
Galerkin projection [16]. Then, a significant reduction in computational cost can be obtained
through truncation of the number of modes considered in the reduced order model [11, 16].

A common decomposition method is proper orthogonal decomposition (POD) as introduced
by Lumley [17] into the field of fluid mechanics in 1967. A major advantage of this technique
is the optimal property, which states that a linear basis obtained through proper orthogonal
decomposition is optimal in the sense that it requires the least amount of modes compared
to any other linear basis to represent a given dynamical system [16, 17]. However, despite
the optimal property several drawbacks exists [12]. For example, no higher order correlations
are captured with this method and the modes are ranked based on the amount of energy
each reflect in the system rather than the dynamical importance [12]. For these reasons,
other decomposition methods have been proposed, such as dynamic mode decomposition [18]
and spectral proper orthogonal decomposition [19]. However, in the rest of this work, the
focus will be on proper orthogonal decomposition in the context of knowledge-based reduced
order modelling as it is a proven method that has often been used combination with Galerkin
projection in literature [20, 21, 22, 23].

Using proper orthogonal decomposition, combined with Galerkin projection, knowledge-based
reduced order models based on the governing equations can be constructed. Initial work on
this topic within the field of fluid mechanics applied the knowledge-based reduced order
modelling approach on relatively simple geometries, such as two-dimensional incompressible
(grooved) channel flow [20], cylinder flow [20] and lid-driven cavity flow [21]. However, over
the years, the extension was made to three dimensional fluid mechanical systems such as
incompressible channel flow [22, 23] and incompressible cylinder flow [24, 25]. In addition,
knowledge-based reduced order models were constructed for compressible flow [26, 27] and
visoelastic turbulence [28, 29, 30]. These studies showed that the reduced order model was able
to predict the dynamics of the systems for some time until divergence occurred [20, 24, 28, 29]
as well as being robust for small changes in model parameters [20, 23]. However, it was also
shown that the POD-Galerkin models suffered from instabilities due to a high dependency
on the number of modes retained [24, 29, 31]. In addition, the errors grew significantly with
prediction time [24, 28, 29] and additional closure models for sufficient energy drain from
lower order modes were sometimes required [21, 22, 32].

As previously mentioned, the full governing equations might not be available, which is dis-
advantageous for knowledge-based reduced order modelling. Therefore, to avoid utilizing the
governing equations, reduced order models can be constructed in a pure data-driven manner
such as recurrent neural networks (RNN). Using such techniques is motivated by the property
of recurrent neural networks to serve as a universal approximator for dynamical systems [33]
and the recent advances in recurrent deep learning such as long short-term memory (LSTM)
[34] and echo state networks (ESN) [35]. Up to the authors knowledge, one of the earliest stud-

MSc. Thesis J. A. Veerman



3

ies using pure simple recurrent neural networks for temporal predictions of a fluid mechanical
system was performed by Faller and Schreck [36] for the 2D flow around a NACA-0015 airfoil.
However, simple RNN are known for possible vanishing and exploding gradients in the train-
ing phase [34, 37]. The vanishing gradient problem was tackled through the introduction of
the more advanced LSTM [34, 37]. Furthermore, the echo state network addresses both the
vanishing and exploding gradients by introducing a methodology not dependent on gradient
descent [35]. The plain recurrent neural networks for temporal prediction on chaotic systems
[36, 38, 39], however, are often limited by the high dimensionality of the chaotic systems
[40]. For this reason, similar to knowledge-based reduced order modelling, data reduction is
desired.

Similar to the Galerkin approach, data reduction can be obtained using decomposition tech-
niques such as proper orthogonal decomposition [16, 17]. Wang et al. [41] applied a long-short
term memory network to perform temporal predictions on the temporal POD coefficient for
the three-dimensional incompressible non-hydrostatic Navier Stokes equation, showing that
reasonable accuracy was obtainable at a much lower computational cost. Other studies using
a POD-LSTM approach were performed by Rahman et al. [42], Mohan et al. [43] and Deng et
al. [44]. Alternatively to proper orthogonal decomposition, other decomposition techniques
such as Fourier [45] and spectral proper orthogonal decomposition [46] have been combined
with LSTM cells to predict system dynamics. In addition, echo state networks can be utilized
instead of LSTM [47, 48, 49]. The aforementioned studies obtained dimensional reduction
through linear decomposition techniques. Therefore, by projecting chaotic systems onto a
linear basis, errors are introduced due to missing nonlinear interactions [50].

A different methodology for data reduction is through a nonlinear deep learning approach
with convolutional autoencoders, where a lower dimensional latent space representation is
obtained through an encoder and the latent space is transformed back into full dimensions
by a decoder [50, 51, 52, 53, 54]. In order to improve the performance of the dimensional
reduction, more advanced autoencoders have been proposed and combined with deep learning
prediction tools, such as the multi-scale autoencoder [55, 56, 57], self-attention autoencoder
[58], advection-aware autoencoder [59] and the hierarchical autoencoder [60].

Thus, reduced order models can be constructed through a knowledge-based approach as well
as a pure data driven methodology. A third technique is to combine these two approaches
into a hybrid architecture, to benefit from both the governing equations as well as data
from the chaotic system [61], such that the machine learning component is able to retrieve
physical information lost due to modal truncation of the knowledge-based component (e.g.
[7, 61, 62, 63]).

The study performed by Pathak et al. [61] was among the first to propose a hybrid model ar-
chitecture, where an imperfection was added to the governing equations of a low-dimensional
chaotic system. This imperfect knowledge-based component was combined with an echo state
network to perform temporal predictions and it was shown that the hybrid model was able
to perform better compared to the knowledge-based and deep learning components alone. In
the same year, other hybrid models for low dimensional systems were proposed by Wan et
al. [62] and Vlachas et al. [64]. The former combined a Galerkin model with a LSTM, such
that the LSTM was able to encapsulate dynamics removed from the knowledge-based part,

MSc. Thesis J. A. Veerman



4

while Vlachas et al. [64] utilized a mean stochastic model for the knowledge-based compo-
nent. Later, Pawar et al. [63] proposed a model where the machine learning component was
trained to predict the error between the true data and the results from the knowledge-based
component, which was added up to the knowledge-based solution to retrieve lost dynamics.
Finally, Lesjak and Doan [7] compared the architectures of Pathak et al. [61] and Pawar et
al. [63], where the knowledge-based component was a POD-Galerkin model and the machine
learning consisted of an echo state network, for several low dimensional chaotic systems. It
was found that the architecture by Pathak et al. [61] was able to outperform the model from
Pawar et al. [63].

Thus, the aforementioned showed the potential of hybrid reduced order modelling over
knowledge-based and deep learning models for low dimensional chaotic systems. However,
up the to authors knowledge, no research exists on a hybrid architecture using autoencoders
that enables efficient predictions of high dimensional chaotic systems as previous studies only
focused on low dimensional systems. This leads to the main research question of this study:

How can a hybrid knowledge-based/deep learning reduced order model
approach be designed to enable the accurate short term and long term

statistical predictions of high dimensional chaotic systems?

In order to construct the hybrid reduced order model such that it is able to handle high dimen-
sional chaotic systems, data reduction is needed [11, 12]. The knowledge-based components
is constructed through the POD-Galerkin approach [16]. In addition, to allow the recurrent
neural network to efficiently handle the chaotic systems data, dimensional reduction using
autoencoders is desired to reduce the spatial dimensional size [50, 51, 52, 53, 54]. Therefore,
the first sub-question of this thesis reads:

• How can we enable an efficient way for the hybrid architecture to handle high dimen-
sional data?

– How can that be achieved with an autoencoder-like architecture?

– What is the performance in terms of the short term prediction horizon and long
term statistics of a chaotic system?

– How does the latent space size of the autoencoder influence the above-mentioned
performances?

In previous studies, its was shown that hybrid models have predictive benefits over the pure
data driven and knowledge-based models alone [7, 61]. Therefore, similar interest is in the
performance of the high dimensional hybrid architecture compared to its separate components,
leading to the second sub question:

• What is the comparative performance of the hybrid model in terms of (i) short-term
prediction horizon and (ii) long-term statistics of the knowledge-based ROM, data-only
deep learning model and the hybrid ROM on chaotic systems of increasing complexity?

MSc. Thesis J. A. Veerman



5

These questions will be addressed in this work. First, theoretical background on knowledge-
based and deep learning reduced order modelling is provided in Chapter 2 and Chapter 3
respectively. Next, in Chapter 4, the high dimensional test cases are presented. Now, in
this work, two hybrid models will be presented: Hybrid-A and Hybrid-FFNN. However, for
the latter only preliminary results were obtained. Therefore, in Chapter 5 the proposed
Hybrid-A model and methodology are discussed, followed by the results and discussion of
this model in Chapter 6. Then, in Chapter 7, the Hybrid-FFNN model is introduced and
some brief preliminary results are shown. Finally, the conclusions of this work are provided
in Chapter 8.

MSc. Thesis J. A. Veerman



Chapter 2

Theory: Knowledge-based reduced order
modelling

In this chapter, the fundamentals of knowledge-based reduced order modelling are discussed.
First, decomposition of the data through proper orthogonal decomposition is outlined in
section 2.1. Next, Galerkin projection of the governing equations onto the POD modes is
presented in section 2.2.

2.1 Proper orthogonal decomposition

The aim of proper orthogonal decomposition [17] is to decompose sequential data of a
dynamical system, where snapshots at each time step are represented as a state vector
y(x, t) ∈ RNphys , into a set of Npod = Nphys orthonormal modes Φ(x) ∈ RNpod×Npod and
corresponding temporal coefficients, such that the data is represented as [16, 65]

y(x, t) =

Npod∑
j=1

aj(t)Φj(x) = aΦT . (2.1)

Here, t is the temporal coordinate, x are the spatial coordinates, Nphys is the length of the
state vector indicating the number of degrees of freedom in the dynamical system, Npod is the
number of modes, aj(t) is the j-th temporal coefficient and Φj(x) is the j-th corresponding
spatial-dependent mode. These modes are constructed to form the best linear basis such that
the representation of the dynamical system requires the least amount of modes compared to
any other linear basis [16].

MSc. Thesis J. A. Veerman



2.1 Proper orthogonal decomposition 7

Thus, in order to obtain the optimal basis, the error between the true data y(x, t) and its
projection onto the POD modes must be minimized such that [16]

〈∣∣∣∣∣∣∣∣y(x, t)− (y(x, t),Φ(x))

||Φ(x)||2
Φ(x)

∣∣∣∣∣∣∣∣2
〉
. (2.2)

Here ⟨·⟩ denotes the ensemble average, (·, ·) the inner product, || · || the Euclidean norm [16].
Equivalently, one can state to maximize [16]

⟨|(y(x, t),Φ(x))|2⟩
||Φ||2

. (2.3)

Here, | · | is the absolute value [16]. Through variational calculus and the constraint that the
modes should be orthonormal ||Φ||2 = 1 (for the derivation reference, is made to Holmes et al
[16]) it is found that the POD modes correspond to the eigenvectors of the correlation matrix
C of the fluctuations y′(x, t), namely [16, 65]

C =
1

Npod − 1
Y ′Y ′T , (2.4)

where the fluctuations y′(x, t) are obtained by locally subtracting the temporal mean from
the data. Here, Y ′ ∈ RTpod×Nphys is a matrix containing a concatenation of Tpod ∈ N>0

fluctuation snapshots, where each snapshot of the dynamical system is represented as a single
row in the matrix [65]. In addition, the reason to use the correlation matrix can also be
explained in a more intuitive manner. The essential idea of proper orthogonal decomposition
is to study coherent structures in a dynamical system [65]. Therefore, correlations and thus
the correlation matrix C between fluctuations at different spatial and temporal locations are
of interest as these give indications of such coherent features [65].

Furthermore, upon considering the correlation matrix C, it is observed that the trace equals
the turbulent kinetic energy q [65]

q =
1

2
y′
iy

′
i =

1

2
Tr(C). (2.5)

Now, the correlation matrix C is a symmetric matrix by definition and thus can be diagonal-
ized as [65]

C = ΦΛpodΦ
T , (2.6)

MSc. Thesis J. A. Veerman



2.1 Proper orthogonal decomposition 8

where Λpod is the eigenvalue matrix containing the eigenvalues on the diagonal. Next, consider
the trace of the correlation matrix and plug in the diagonalized form, such that

Tr(C) = Tr(ΦΛpodΦ
T ). (2.7)

To provide a proof of concept, assume that the correlation matrix is a 2 × 2 square matrix.
As a result, Φ is a two dimensional matrix containing the eigenvectors and Λpod is a diagonal
matrix of the corresponding eigenvalues. Therefore, the diagonal form of C can be written as

C = ΦΛpodΦ
T =

(
Φ11 Φ21

Φ12 Φ22

)(
Λ1 0
0 Λ2

)(
Φ11 Φ12

Φ21 Φ22

)
. (2.8)

Writing out the matrix-matrix multiplication and computing the trace of the correlation
matrix results in

Tr(C) = [Φ2
11 +Φ2

12]Λpod,1 + [Φ2
22 +Φ2

21]Λpod,2. (2.9)

Now, since the modes are orthonormal, the inner product of a mode with itself is unity. The
factor corresponding to Λpod,1 is the self inner product of the first eigenvector and similar for
Λpod,2 and the second eigenvector. Thus, it is observed that

Tr(C) = Λpod,1 + Λpod,2 = Tr(Λpod). (2.10)

This shows that the trace of the eigenvalue matrix equals the trace of the correlation matrix
and thus the turbulent kinetic energy [65, 66]

q = Tr(C) = Tr(Λpod). (2.11)

This results into an appealing aspect of the eigenvalues, because each POD mode (eigenvector)
is connected to a single eigenvalue. Therefore, a certain portion of the turbulent kinetic energy
can be assigned to each POD mode and thus all the modes can be ranked based on the amount
of energy represented by them.

MSc. Thesis J. A. Veerman



2.2 Galerkin Projection 9

2.2 Galerkin Projection

In the previous section, orthonormal modes were obtained from data of a dynamical system
through proper orthogonal decomposition. Here, Galerkin projection will be used to project
the governing equations of a generalized dynamical system onto the set of obtained set of
modes (following [7, 50, 67]).

Assume a generalized first order partial differential equation in discretized space with a linear
L, a nonlinear component N and a forcing term ffor(x, t) dependent on x and/or t, without
writing down their specific forms (Eq. 2.12)

ẏ(x, t) = L(y(x, t)) +N(y(x, t)) + ffor(x, t). (2.12)

In the previous section it was shown that data on the dynamical system can be decomposed
into a set of optimal orthonormal modes and corresponding temporal coefficients through
proper orthogonal decomposition. In order to Galerkin project Eq. 2.12 onto the set of modes
from proper orthogonal decomposition, perform the inner product between Eq. 2.12 and the
m-th POD mode Φm(x), such that

ẏ(x, t) · Φm(x) = L(y(x, t)) · Φm(x) +N(y(x, t)) · Φm(x) + ffor(x, t) · Φm(x). (2.13)

Now, y(x, t) can also be rewritten in terms of the temporal coefficients and POD modes
according to Eq. 2.1. Plug the decomposition into Eq. 2.13 to obtain

(ȧj(t)Φj(x)) ·Φm(x) = L (aj(t)Φj(x)) ·Φm(x)+N (aj(t) · Φj(x)) Φm(x)+ffor(x, t) ·Φm(x).
(2.14)

Here, Einstein summation convention was used to avoid writing down all the summations.
Next, an important property of the modes obtained through proper orthogonal decomposition
is that they are orthonormal. Therefore, the inner product between the j-th modes and the
m-th mode is always zero except when j = m which returns unity. As a result, Eq. 2.14
reduces to

ȧj(t) = L (aj(t)Φj(x)) · Φm(x) +N (aj(t)Φj(x)) · Φm(x) + ffor(x, t) · Φm(x) (2.15)

or in vector form

ȧ(t) = ΦTL (a(t)Φ(x)) +ΦTN (a(t)Φ(x)) +ΦTffor(x, t). (2.16)

MSc. Thesis J. A. Veerman



2.2 Galerkin Projection 10

The latter two expressions (Eq. 2.15 and Eq. 2.16) represent the Galerkin projected equa-
tions of Eq. 2.12 onto a set of Npod modes obtained through proper orthogonal decomposition.
Then, Eq. 2.15 and Eq. 2.16 can be integrated in time through a numerical integration tech-
nique such as Euler Forward or a Runge-Kutta scheme to obtain the prediction a(t + δt).
In order to transform the (predicted) temporal coefficient back into the physical system, a
matrix vector multiplication with the time independent POD modes is performed, according
to Eq. 2.1.

MSc. Thesis J. A. Veerman



Chapter 3

Theory: Neural Networks

In the previous chapter, the fundamentals of knowledge-based reduced order modelling were
discussed. However, aside from knowledge-based reduced order modelling, deep learning
techniques can also be utilized to construct purely data-driven reduced order models. In this
chapter, the fundamentals of deep learning reduced order modelling are presented. First, the
artificial neuron and the neural network are discussed in section 3.1. Next, for the temporal
predictions recurrent neural networks and more specifically echo state networks were used,
which is outlined in section 3.2. Finally, convolutional neural networks are highlighted in
section 3.3, which form the basis of autoencoders (section 5.2).

3.1 Artificial neuron

Before discussing more complex deep learning tools such as echo state networks and convolu-
tional autoencoders, the building block of every neural network, the artificial neuron (Fig. 3.1),
is presented. A typical artificial neuron allows Nan data inputs xan,j with j = 1...Nan, which
are each multiplied by a weight wan,j to determine the relative importance of that data input.
Next, all weight-input combinations are added up and a bias b is added, such that output ỹan
of a single artificial neuron is expressed by Eq. 3.1

ỹan =

Nan∑
j=1

wan,jxan,j + b. (3.1)

So far, the artificial neuron only performs linear operators. Therefore to introduce nonlinear-
ity, a nonlinear activation function fac is utilized such that the new nonlinear output of the

MSc. Thesis J. A. Veerman



3.1 Artificial neuron 12

artificial neuron becomes
yan = fac(ỹan). (3.2)

Eqs. 3.1 and 3.2 represent only a single artificial neuron, suitable for small and simple tasks.
Therefore, in order to accommodate more complex systems, artificial neurons are stacked up
over one or more layers to form artificial neural networks. It was shown that a sufficiently
large neural network is a universal approximator of any continuous function [68].

Figure 3.1: Image of the artificial neuron including the nonlinear activation function fac

A relatively simple type of neural network is the dense neural network (DNN) as depicted in
Fig. 3.2. The first part of the DNN consists of the input layer that takes the inputs. Then,
the second part consists of the hidden layers with a number of artificial neurons in each layer.
Finally, the last layer is the output layer that takes the output from the last hidden layer and
project its to the final output of the dense neural network. A neural network is called dense
when the output of each neuron from a (hidden) layer connects to every neuron of the next
layer. Finally, since information is only allowed to travel from the left to the right through
the network, this is a type of feed-forward neural networks (FFNN).

Figure 3.2: Image of a typical dense neural network. Here, the neural networks takes two input
data point and consists of two hidden layers of three neurons each. Finally, the dense neural
networks also outputs two values.

MSc. Thesis J. A. Veerman



3.2 Recurrent neural network 13

3.2 Recurrent neural network

In Chapter 2, the fundamentals on knowledge-based reduced order modelling to perform
temporal predictions on chaotic system were discussed. However, such methods rely on full
information on the governing equations. Thus, if such knowledge is not obtainable, predictions
can be performed in a purely data-driven manner using recurrent neural networks, which are
designed to handle sequential data such as time series. However, in order to train common
recurrent neural networks such as the simple RNN and the LSTM [34], back propagation
is required. This can result in vanishing and/or exploding gradients in the training process
[34, 37]. However, such issues can be prevented through using a different type of recurrent
neural networks, namely the echo state networks as proposed by Jaeger in 2001 [35] and is
shown in Fig. 3.3. The echo state network is used in the data-driven models in this work
and will be further elaborated upon in the section 3.2.1, based on the guidelines provided by
Lukoševičius [69].

3.2.1 Echo state network

The echo state network (ESN) is a reservoir computing architecture [35] and is depicted in
Fig. 3.3. Similar to all machine learning techniques, the primary goal in using an echo state
network is to train the ESN with training data H(t − δt) ∈ RTh×Nh (Fig. 3.3A), such that
the error between the predictions H̃(t) ∈ RTh×Nh and the true value H(t) ∈ RTh×Nh is
minimal. Here, similar to section 2.1, H(t) is a concatenation of Th time steps of the true
data h(t) ∈ RNh , where Nh are the number of degrees of freedom (DoF) in the input data
[69]. As observed in Fig. 3.3A, during training, data only flows in one direction through the
network. Now, in order to perform predictions in time using input data h̃(t− δt) ∈ RNh , the
echo state network operates in prediction mode (Fig. 3.3B), where a feedback loop is added
such that the ESN re-uses its output h̃(t) ∈ RNh as the input for the next prediction to allow
for autonomous predictions [69].

The echo state network consists of three major building blocks (Fig. 3.3) [69]. First is the
input matrix W in ∈ RNres×Nh that projects the input data h̃(t−δt) onto the high dimensional
nonlinear internal state (expansion) xres(t) ∈ RNres of the reservoir consisting of Nres sparsely
connected neurons, where the connectivity is enclosed in the internal matrix W ∈ RNres×Nres

(second component). In addition, the internal state xres(t) is updated over time and thus
also serves as the memory of the ESN. Finally, the third component is the output matrix
W out ∈ RNh×Nres which projects the internal state into the prediction of the echo state
network h̃(t) [69]. An important property during training and predicting is the echo state
property, which states that a well configured ESN should, over time, not depend anymore on
the initial reservoir conditions. Rather, it will be able to work autonomously purely driven
by the input data [69].

MSc. Thesis J. A. Veerman



3.2 Recurrent neural network 14

Input Matrix Output Matrix 

Input Matrix Output Matrix 

(A)

(B)

Figure 3.3: Architecture of an echo state network showing prediction mode (A) on top and
training mode (B) on the bottom. Here, the reservoir is depicted in between the input matrix
W in and output matrix W out and consists of the internal state xres(t) and Nres connected
neurons

The echo state network is able to perform temporal predictions by updating/integrating its
internal state xres(t) over time using [69]

x(t) = (1− α)xres(t− δt) + α tanh
(
W inh̃(t− δt) +Wxres(t− δt)

)
(3.3)

as the update equation. Here α ∈ [0, 1] is the leaking integration rate that determines how
much of the internal state of the previous time step directly influences the new state [69].
After a prediction in time, in accordance with Pathak et al. [61] and Lesjak and Doan [7], a
quadratic transformation is applied to the internal state, such that all even numbered neurons
are squared, while the odd numbered neurons remain the same as it was shown to provide
improved performance for other chaotic systems [61]. Finally, the transformed internal state
is multiplied with the output matrix to obtain the single time step prediction of the ESN [69]

h̃(t) = W outxres(t). (3.4)

In order to construct an echo state network, the input matrix W in and the internal matrix
W are prescribed. Therefore, these are not altered during training and while performing
temporal predictions on the dynamical system [69]. The reservoir state is updated in time
and the output matrix W out is obtained through training. Furthermore, the echo state
network is optimized using five hyperparameters, namely the sparsity ⟨d⟩, spectral radius
ρ(W ), input scaling σin, Tikhonov factor β and the leaking rate α. The first four are used
for the input and internal matrices, whereas the Tikhonov factor is used during training. In

MSc. Thesis J. A. Veerman



3.2 Recurrent neural network 15

the following paragraph, the details behind constructing the input and internal matrix are
presented.

Construction of W in and W
For the construction of the input and internal matrix, the guidelines by Lukoševičius [69]
were followed and the echo state network numerical model of Lesjak and Doan [7, 66] was
used. As mentioned before, W in and W define the structure of the ESN and are not altered
during the training and prediction phase [69].

The first step is to fix the size of the reservoir and thus the number of artificial neurons [69].
In general, a larger reservoir is able to capture the dynamics better and thus results in more
accurate predictions [69]. Therefore, the reservoir size should theoretically be at least equal to
the amount of input data Th ·Nh. However, in practice, the size of the reservoir is limited by
computational resources and a reservoir as large as possible should be used. In addition, often
correlations exist within the data reducing the required amount of neurons in the reservoir
[69].

The input matrix is constructed, similar to Pathak et al. [61] and Lesjak and Doan [7, 66]
such that each input variable is mapped to one randomly selected neuron in the reservoir.
Hence, each row in the input matrix only contains a single nonzero element (see Eq. 3.3
for the matrix-vector multiplication of the input matrix with the input data). Furthermore,
during this mapping, the input variable is multiplied with a randomly selected value from the
uniform distribution between [−σin, σin] to allow for scaling of the inputs.

Next, the internal matrix is constructed through randomly sampling from a uniform distribu-
tion between [-1, 1]. Here, the connectivity of the neurons ⟨d⟩ is generally low, such that each
neuron is only connected to a few other neurons, resulting in a sparse internal matrix [69].
Then, in order to construct the internal matrix, also the spectral radius is required, which is
the largest absolute eigenvalue of the internal matrix. This hyperparameter is of profound
importance as it determines whether the ESN obeys the echo state property [35, 69]. Typ-
ically, an ESN with a spectral radius lower than unity will display the echo state property
[69]. Furthermore, if the spectral radius is larger than one and the inputs are non-zero, the
echo state property is often obeyed as well [69]. So, in order to set the spectral radius, the
randomly sampled internal matrix is divided by its largest absolute eigenvalue and then mul-
tiplied by a desired constant spectral radius determined through hyperparameter tuning as
discussed in section 5.7.1 [7, 66].

Training of ESN / Computing W out

The primary advantage of an echo state network over other recurrent neural networks such
as the simple RNN and the LSTM is its convenient training procedure [35, 57, 69]. As shown
in Eq. 3.4, the output of the ESN is obtained through a matrix-vector multiplication of the
output matrix with the (updated) internal state of the reservoir xres(t).

During training, the training data H(t− δt) ∈ RTh×Nh is used as input for the echo state net-
work, which is used to obtain the temporal evolution of the internal state xres(t) at each time
step, where all internal states are concatenated into a matrix Xres(t) ∈ RTh×Nres . Following
Eq. 3.4, the output matrix W out can be determined from [69]

MSc. Thesis J. A. Veerman



3.3 Deep learning data (de)compression 16

H = W outXres. (3.5)

To avoid problems caused by either overfitting or feedback instability, ridge regression (or
Tikhonov regularisation) is used [69]

W out = HXT
res

(
XresX

T
res + βI

)−1
. (3.6)

Here, Xres ∈ RTh×Nres is a matrix containing the reservoir states during training and I is the
identity matrix.

The plain echo state network, however, is not suitable for temporal predictions on high di-
mensional systems for two reasons. First, in the Tikhonov regularisation (Eq. 3.6) a matrix
inversion is required, resulting in a large (often unfeasible) memory usage. Secondly, as the
spatial dimensions of the chaotic systems increases, a larger reservoir is needed to accurately
capture the dynamics. However, the computational costs of the echo state network increases
with increasing reservoir size. Thus, for large system the computational cost becomes large.
Therefore, dimensional reduction of the data is required similarly to the modal reduction used
in the knowledge-based reduced order models. In the next section, such a nonlinear deep
learning dimensional reduction using convolutional neural networks is discussed. Finally, as
aforementioned, the echo state network is defined by the five hyperparameters, which must
be tuned for optimal performance. In this work, this tuning is obtained through Bayesian
Optimisation, which is further elaborated upon in Appendix A.

3.3 Deep learning data (de)compression

In the previous section, the echo state network was described, which is the recurrent neural
network used in this research to perform data driven predictions. However, echo state net-
works are not suitable for high dimensional data due to Tikhonov regularisation, because a
matrix inversion is required resulting in an unpractical large memory use. Furthermore, for
high dimensional data, a very large number of neurons inside the reservoir would be required
resulting in large memory use as well as long computational time. Therefore, in order to allow
the echo state network to perform efficient temporal predictions of high dimensional‘chaotic
systems, nonlinear data compression and decompression is utilized through convolutional
neural networks and transpose convolutional neural networks, which are further outlined in
section 3.3.1.

MSc. Thesis J. A. Veerman



3.3 Deep learning data (de)compression 17

3.3.1 (Transpose) Convolutional neural networks

Convolutional neural networks [70] is a successful deep learning tool finding many applications
in fields such as computer vision and image recognition [71] and they form the basis of more
complex machine learning methods such as convolutional autoencoders [51, 53, 54, 57]. Similar
to the neural network outlined in section 3.1, a convolutional neural network (CNN) consists
of layers of neurons with weights and biases [71]. However, in contrast to dense neural works,
the CNN is used to deal with images data as it can handle and learn correlations on a local
level [71]. In this section, the convolutional neural network is presented [71] together with
the implementation and architecture in this thesis following Racca et al. [57]. In this work,
the (transpose) convolutional neural networks were the building blocks of the autoencoder
(section 5.2) to allow for a nonlinear deep learning dimensional reduction.

The primary task of a convolutional neural network is to extract feature maps through the
use of Df (trainable) filter kernels qk ∈ RNf×Nf×Df (Nf gives filter kernel first and second
dimension) that are convoluted over the original input image Q ∈ RNQ×NQ×Nc [71]. Here,
Nc are the number of parallel images in the input, for example for two dimensional fluid
flow Nc = 2. Such filter kernels are commonly square matrices and are trained to extract
certain patterns from the data, where each filter specializes on single pattern [71]. In the
convolutional process, the filter kernel is placed on the top left of the image and is convolved
row by row from top to bottom over the image with a prescribed stride s (step size). At each
position, an element-wise multiplication occurs between the filter kernel and the local region
of the image, after which these multiplications are summed up and stored in the feature map
QF ∈ RNQF

×NQF
×Df , which is depicted in Fig. 3.4 [71]. Here NF gives the size of the feature

map and note that the number of features maps is equal to the number of filters in the CNN.
Thus, the stride s allows for dimensional reduction of the input image to a lower dimensional
feature map. Another common dimensional reduction technique is max-pooling [71].

*
s = 3

Figure 3.4: Image showing the working principle of a convolutional neural network. The filter
kernel is convoluted over the input image Q with a stride of three. At each filter location, an
element wise multiplication occurs between the filter kernel and the selected local region of Q
after which they are summed up to form 1 entry of the feature map.

The essence of the convolutional neural network is to train the entries of the filter kernel to
extract specific features from the image. This also shows the link with the artificial neuron
of section 3.1. Here, the entries of the filter kernel are the ”neurons” weights, which are
multiplied with the local regions of Q. Additionally, a bias b can be added to each filter
kernel. Note here, that during the convolution process between the input image and a single

MSc. Thesis J. A. Veerman



3.3 Deep learning data (de)compression 18

kernel, the kernel does not change [57, 71]. Therefore, compared to a fully connected neural
network, significantly less weights are required [57]. Finally, in order to add nonlinearity, each
entry of the feature map is also applied to a tangent hyperbolic function [57], resulting in the
following equation for each entry of the feature map (from Racca et al. [57])

QF (i,j,m) = tanh

 Nf∑
p1=1

Nf∑
p2=1

Nc∑
l=1

Qs(i−1)+p1,s(j−1)+p2,lwp1,p2,l,m + bm

 . (3.7)

Here, w is the weight of each entry of the filter.

Now consider Fig. 3.4, if the stride s would have been equal to one, the feature map Qf

would become a 4 × 4 matrix, which is smaller than the input image Q. This is due to the
convolution process near the boundaries of Q since the filter kernel cannot ”move outside”
the input image and thus information near the edges would be lost as the boundary element
of the input matrix are not taken into account in the convolution. To prevent this, a typical
technique is to apply padding to the input image as shown in Fig. 3.5 [57, 71]. In padding,
one or multiple layer(s) of additional matrix elements are added around the input image.
Typically, to avoid a contribution of these elements in the convolution each entry of the
padding layers is set to zero (zero-padding). However, when a dynamical system has periodic
boundary conditions, the padding layers can utilize this periodicity as shown in Fig. 3.5.

00 0 0 0 0

0

0

0

0

0 00 0 0 0

0

0

0

0 131 7

4 2 97

215

8

7

94 4

131 7

42 97

215

8

7

94 4

1

9

9

2 5

4

4

1

5 1 7 2

1371

2

1

5

1

Figure 3.5: Image showing the working principle of zero-padding (left) and periodic-padding
(right) for an input image Q. Here, the padding layers are shown in gray. Here the numbers of
the matrix were chosen randomly and do not represent the test cases considered.

A convolutional neural network is used to extract feature maps from the input image and
to reduce the dimensionality. However, the inverse procedure to extract feature maps while
increasing the dimensionality of the data is possible through the use of transpose convolutional
neural networks (TCNN) as depicted in Fig. 3.6 [57]. The idea is to obtain an image Q̃ in the
dimensionality of the input data Q from the feature maps through the transpose convolutions
neural networks. Here, each element of the feature map is multiplied element-wise with the
filter kernel qk. The resulting 3 × 3 matrix of each feature map element is placed in a new
matrix Q̃ in the same order of the feature map elements. If the stride is smaller than 3 and
thus the coloured blocks overlap, their contribution will be locally summed up [57].

MSc. Thesis J. A. Veerman



3.3 Deep learning data (de)compression 19

*
s = 3T

Figure 3.6: Image showing the principle of a transpose convolutional neural network.

This is a sample text in blue.

MSc. Thesis J. A. Veerman



Chapter 4

Test case: Kolmogorov Flow

Fluid dynamical systems display chaotic behaviour (turbulence) above a certain Reynolds
number Re [8]. Furthermore, due to the wide range of spatial scales of turbulence, such
chaotic behaviour is often concurrent with high dimensionality. For these reasons, in this
research, the constructed reduced order models was applied to a fluid dynamical system,
namely the two dimensional Kolmogorov flow as it was shown to possess a wide variety of
flow regimes [72]. In addition, Chandler and Kerswell [73] showed the presence of three stages
in the global dissipation and the kinetic energy of the velocity fluctuations as a function of
the Reynolds number. First, at lower Reynolds numbers, a laminar stage was observed.
Increasing the Reynolds number pushes the flow into the transitional regime and finally for
large Reynolds number an asymptotic regime was found [73]. Therefore, in this work, the
Kolmogorov flow was considered at Reynolds numbers Re = 20 and 34. Here, the Kolmogorov
flow at Re = 20 was shown to be before the onset of turbulence [73]. In contrast, Re = 34
was located in the transitional regime [73] and thus chaotic behaviour was present [57, 73].
Thus, by increasing the Reynolds number of the flow, the constructed models were tested
on dynamical and chaotic systems of increasing complexity. Much larger Reynolds numbers
would have resulted in significantly more computational resources.

4.1 2D Kolmogorov flow

The two dimensional Kolmogorov flow is described by the incompressible Navier Stokes equa-
tions with an additional sinusoidal forcing term in the x-direction as given in Eq. 4.1.

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u+ fKF,

∇ · u = 0,

fKF,x = sin(nKFy),

fKF,y = 0.

(4.1)

MSc. Thesis J. A. Veerman



4.1 2D Kolmogorov flow 21

Here x and y were the spatial coordinates, u = [u, v] was the two dimensional flow with
components u and v, p was the pressure, fKF represented the Kolmogorov (body) forcing
with x-component fKF,x and y-component fKF,y and nKF = 4 was the frequency of the
forcing. The Kolmogorov flow is double periodic on x ∈ [0, 2π] and y ∈ [0, 2π] domain, with
Nx grid points in x and Ny grid points in y. To provide an impression, in Fig 4.1, snapshots
of u, v and the absolute velocity

√
u2 + v2 are presented for the two-dimensional Kolmogorov

flow at Re = 20 and Re = 34.

0 /2 3 /2 2
x

0

/2

3 /2

2

y

1.0

0.5

0.0

0.5

1.0

0 /2 3 /2 2
x

0

/2

3 /2

2
y

1.0

0.5

0.0

0.5

1.0

0 /2 3 /2 2
x

0

/2

3 /2

2

y

0.00

0.25

0.50

0.75

1.00

1.25

0 /2 3 /2 2
x

0

/2

3 /2

2

y

1.0

0.5

0.0

0.5

1.0

0 /2 3 /2 2
x

0

/2

3 /2

2

y

1.0

0.5

0.0

0.5

1.0

0 /2 3 /2 2
x

0

/2

3 /2

2

y

0.0

0.5

1.0

1.5

Figure 4.1: Images showing a snapshot in time of the u-component (left), v-component (middle)
and their norm (right) of two-dimensional Kolmogorov flow at Re = 20 (top row) and Re = 34
(bottom row).

Furthermore, the temporal mean flow of u and v for Re = 34 are depicted in Fig. 4.2, which
were computed over 300,000 integer time steps [57]. It was shown for the mean u-component
of the velocity follows the sinusoidal pattern of the forcing with 4 periods in the domain.

0 /2 3 /2 2
x

0

/2

3 /2

2

y

0.4

0.2

0.0

0.2

0.4

0 /2 3 /2 2
x

0

/2

3 /2

2

y

0.10

0.05

0.00

0.05

0.10

0 /2 3 /2 2
x

0

/2

3 /2

2

y

1.01

1.02

1.03

1.04

Figure 4.2: Three plots showing the mean flow of the two-dimensional Kolmogorov flow for
Re = 34. Here, the left plot is for the u-component, the middle plot for v and the right plot
depict the norm of the velocity.

To obtain the training, validation as well as the reference data set, Eq. 4.1 was solved through
direct numerical simulation using the open-source KolSol library [74] in Python, which is a

MSc. Thesis J. A. Veerman



4.1 2D Kolmogorov flow 22

pseudo-spectral solver using the Fourier-Galerkin method [75] with a fourth order Runge-
Kutta scheme. KolSol solved the system for a prescribed Nk symmetric wave numbers and
thus (2Nk + 1) modes in each direction. Then, the integrated solution in Fourier space is
transformed onto a physical grid of (2Nk + 2) grid points in each direction. An even number
of physical grid points was used due to the architecture of the autoencoder used in this work
(section 5.2).

In order to provide a measure of the characteristic chaotic behaviour the Lyapunov exponent
λLyap was used, which indicates the average rate at which trajectories with slightly different
initial conditions separate over time [76]. The exponents were computed using the numerical
code by Racca et al. [57] and further details are provided in Appendix B. Furthermore, the
characteristic time scale, the Lyapunov time, was defined as the inverse of the largest obtained
Lyapunov exponent λLyap. In this work, 15 Lyapunov exponents were computed per flow case
and the largest was used to provide the time scale of the chaotic behaviour. In addition,
the computed Lyapunov exponents were also used to obtain a measure of the latent space
dimensions of the autoencoder (section 3.3) through the Kaplan-Yorke dimension DKY [77]
(Eq. 4.2)

DKY = k +

∑k
i=1 λLyap,i

λLyap,k+1
. (4.2)

Here, the summation was performed over the k largest Lyapunov exponents. The idea was
that the Kaplan-Yorke dimension provided the upper bound of the amount of dimensions that
still described the chaotic attractor. Therefore, the latent space dimensions in the autoencdoer
should not be lower than the Kaplan-Yorke dimension [57].

Re = 20
The Kolmogorov flow at Re = 20 was solved on a grid consisting of Nk = 8 symmetric wave
numbers. Here, the symmetric wave number was selected through the convergence of the
mean domain averaged kinetic energy in the system as a function of the symmetric wave
number (left plot of Fig. 4.3), where the kinetic energy was computed as

E(t) =
1

(2π)2

∫ 2π

0

∫ 2π

0

1

2
uiuidxdy. (4.3)

It was observed that the mean kinetic energy became approximately constant at Nk = 8.
Furthermore, since Nk = 8 symmetric wave numbers were chosen, the system was solved
using 17 modes and 18 physical grid points in each direction. In addition, a time interval
δt = 0.1 was chosen for the temporal discretization and the data storing frequency. The
integration occurred over 50,000 integer time steps after an initial 3,000 integer time step to
integrate past the transient, during which no data was stored. Despite being a periodic flow
and thus strictly no Lyapunov exponent is defined, 15 Lyapunov exponents were computed to
obtain the Kaplan-Yorke dimension using Eq. 4.2. Here, 15 different initial conditions were
used such that 15 exponents were obtained from which DKY = 3.2 was computed.

MSc. Thesis J. A. Veerman



4.1 2D Kolmogorov flow 23

Furthermore, the kinetic energy in the flow as a function of time was considered as depicted in
the right plot of Fig. 4.3 for Nk = 8. It was observed that the flow showed periodic behaviour
with a period of approximately Tper = 170.

5 6 7 8 9 10 11 12
Nk

0.250

0.255

0.260

0.265

0.270

0.275

0.280

0.285

E (
N

k)

0 200 400 600 800 1000
t

0.2400

0.2425

0.2450

0.2475

0.2500

0.2525

0.2550

0.2575

E(
t)

Figure 4.3: Left: Convergence of the temporal mean of the domain averaged kinetic energy
E(Nk) as a function of the number of symmetric wave numbers used in the solver for Re = 20.
Right: Domain averaged kinetic energy E(t) of the Kolmogorov flow as a function of time for
Nk = 8.

Re = 34
For Re = 34, the flow was solved on a finer grid consisting of 32 symmetric wave numbers and
thus 65 modes in each direction and 66 grid points in each spatial direction with a temporal
discretization of δt = 0.01 for 100,000 integer time steps. In addition, 1,000 integer time steps
were used to compute past the initial transient regime and this data was not stored. The
spatial discretization was determined from the temporal mean of the kinetic energy spectrum
(Fig. 4.4) for a given number of modes since the kinetic energy should go to zero for the
smallest scales (highest wave numbers magnitudes) in a turbulent flow. The kinetic energy
spectrum is computed in Fourier space as (from the KolSol library)

Eχ =
1

(2Nk)2

∑
χ

1

2
û(χ) · û∗(χ). (4.4)

Here, û is the flow field in Fourier space, the asterisk represented its complex conjugate and
χ is the wave number magnitude at which the kinetic energy was computed. The mean was
computed over 1,000 integer time steps, where the data was stored every δt = 0.1 and thus
10,000 samples were used.

In order to compute the Kaplan-Yorke dimension of a given chaotic attractor (Eq. 4.2) for the
latent space of the autoencoders, the system with prescribed initial condition together with
15 simulations with slightly perturbed initial conditions were integrated over for 10,000 time
steps to obtain 15 Lyapunov exponents. Next, Eq. 4.2 was used to computed the Kaplan-
Yorke dimension DKY = 9.5 and the largest Lyapunov exponent λLyap = 0.067 provided the
characteristic Lyapunov time TLyap = 1/0.067 ≈ 14.9. Both these values coincide with those
obtained by Racca et al. [57].

MSc. Thesis J. A. Veerman



4.1 2D Kolmogorov flow 24

0 10 20 30 4010 16

10 13

10 10

10 7

10 4

10 1

102

E (
)

Figure 4.4: Plot showing the temporal mean of the kinetic energy spectrum as a function of the
wave number magnitude for two dimensional Kolmogorov flow at Re = 34

This is a sample text in blue.

MSc. Thesis J. A. Veerman



Chapter 5

Methodology and Hybrid-A architecture

In the previous two chapters, the fundamental theory and techniques behind knowledge-
based and pure deep learning reduced order modelling were presented. The primary aim of
this thesis was to construct a hybrid knowledge-based/deep learning reduced order model to
allow for time-accurate short-term and long-term statistical predictions. Therefore, in this
chapter, the proposed Hybrid-A model and methodology are presented. First, in section 5.1,
the derivation of the knowledge-based reduced order model for two-dimensional Kolmogorov
flow (chapter 4) is presented. Next, the deep learning nonlinear dimensional (de)compression
technique based on (transpose) convolutional neural networks (section 3.3.1), the multi-scale
autoencoder [55, 56, 57] is discussed in section 5.2. Then, the combination of the multi-
scale autoencoder and the echo state network (section 3.2.1) into a pure data-driven reduced
order model is outlined in section 5.3 (following the work of Racca et al. [57]). Fourthly,
the proposed Hybrid-A model are presented in section 5.4. Next, the comparison criteria
to quantify and compare the performances of the reduced order models (section 5.5) are
discussed. Then, in section 5.6 information is provided on the reduction of the number of
POD modes for the knowledge-based and the Hybrid models. The implementation of the
hyperparameter tuning as well as the validation strategies [78] and the settings are discussed
in section 5.7.1. Finally, the model settings for the temporal predictions are presented in
section 5.7.2

5.1 Knowledge-based reduced order Kolmogorov flow

In Chapter 2, the theory behind the knowledge-based reduced order model was presented, such
as proper orthogonal decomposition and Galerkin projection of the governing equations onto
a set of orthonormal POD modes. The latter was shown for a generalized partial differential
equation in section 2.2. Therefore, in this section, the knowledge-based reduced order model
for the two-dimensional Kolmogorov flow was derived using the work of Wang et al. [79].

MSc. Thesis J. A. Veerman



5.1 Knowledge-based reduced order Kolmogorov flow 26

As presented in Chapter 4, the governing equation of two-dimensional Kolmogorov flow were
written as

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u+ fKF,

∇ · u = 0,

fKF,x = sin(ny)

fKF,y = 0.

and solved on a double periodic domain. Following the notation from proper orthogonal
decomposition in section 2.1, the velocity vector u = [u, v] was represented in the knowledge-
based model as a one-dimensional vector y(x, t) ∈ RNphys , where Nphys = 2 · Nx · Ny, with
the first Nx · Ny elements corresponding to u and the second Nx · Ny corresponding to v.
Furthermore, assume that orthonormal modes Φ(x) obtained from the true data are available
through proper orthogonal decomposition. First, discretize the governing equations and thus
replace u with uh, where the latter is the discretized variable, and discretize the forcing term
such that

u̇h + (uh · ∇)uh = −∇p+
1

Re
∇2uh + fKF,h,

∇ · uh = 0,

fKF,x = sin(ny)

fKF,y = 0.

Utilizing the results of Wang et al. [79], it followed that the Galerkin projected governing
equations for each component of the POD temporal coefficient from j = 1 to j = Npod became
(using Einstein summation convention)

ȧj = − 2

Re

[
∇Φp + (∇Φp)

T

2

]
· (∇Φj)ap(t)− [Φp · ∇Φq] · Φjap(t)aq(t) + fKF(x, t) · Φj . (5.1)

Eq. 5.1 represented the knowledge-based reduced order model for the two-dimensional Kol-
mogorov flow. Now, the forcing term f(x, t) only consisted of a x-component. Therefore, in
the inner product, only the x component of mode Φj remained, resulting in

ȧj = − 2

Re

[
∇Φp + (∇Φp)

T

2

]
· (∇Φj)ap(t)− [Φp · ∇Φq] · Φjap(t)aq(t) + sin(ny)Φx

j , (5.2)

where Φx
j is the x-component of the modes. This set of ordinary differential equations for the

time-dependent POD coefficients were numerically integrated in time using the fourth-order
Runge-Kutta scheme combined with exponential time differencing [80, 81, 82]. Then, Eq. 2.1
was used to compute the physical system from the predicted temporal coefficient and the time
independent POD modes at each time step.

MSc. Thesis J. A. Veerman



5.2 Multi-scale autoencoder 27

Now, Eqs. 5.1 and 5.2 still contained all the modes from proper orthogonal decomposition. For
this reason, the number of modes were truncated to obtain a higher computational efficiency.
However, as a cost, the accuracy of the model compared to the true solution decreased. There-
fore, a retained number of modes must be chosen properly, which will be further elaborated
upon in section 5.6.

5.2 Multi-scale autoencoder

As discussed in section 3.3.1, convolutional and transpose convolutional neural networks are
typically used to extract feature maps and to compress and decompress images [71]. Now,
in order to efficiently and accurately compress the data from the physical system such as
the Kolmogorov flow into a latent space format for the echo state network, a multi-scale
autoencoder consisting of a series of (transpose) convolutional neural networks was used. The
multi-scale autoencoder was proposed by Hasegawa et al. [55] and later used by Nakamura et
al. [56] and Racca et al. [57]. In this work, the numerical code of the multi-scale autoencoder
from Racca et al. [57] was utilized.

The primary idea of an autoencoder (Fig. 5.1) is to first use an encoder to compress the
original data Q ∈ RNx×Ny×2 into a latent space format Qlat ∈ RNlat,x×Nlat,y×Nc of dimensions

[
Nlat,x, Nlat,y,

Nlat

Nlat,x ·Nlat,y

]
,

where Nlat,x ≪ Nx, Nlat,x ≪ Ny and Nlat ≪ Nphys through the use of multiple layers
of convolutional neural networks (section 3.3.1) [55, 56, 57]. Here, the last dimension of the
input image represented the two velocity components. Simultaneously, a decoder is trained to
decompress the latent space back into the original dimensional using transpose convolutional
neural networks to obtain the decode data Qdec ∈ RNx×Ny×2 with a minimal loss between
the original and decoded images [55, 56, 57], where the last dimensions represented the
flow velocity components. Furthermore, in a multi-scale autoencoder, multiple encoders and
decoders are operated in parallel and all individual contributions are added up to produce
the latent space and decompression respectively. By using multiple encoders/decoders more
features at different spatial dimensions can be extracted from the input data [55, 56, 57].

In this work, following Racca et al. [57], three parallel encoders and three parallel decoders
were chosen. The first encoder/decoder had a filter kernel size of (3× 3), the second (5× 5)
and the third (7× 7) for each test case. In the following of this section, the general structure
of the encoder and decoders are outlined based on the numerical code by Racca et al. [57].

MSc. Thesis J. A. Veerman



5.2 Multi-scale autoencoder 28

+ +

Figure 5.1: Multi-scale autoencoder consisting of three encoders to produce the latent space
Qlat from input data Q and 3 decoders to decompress the latent space into the decoded format
Qdec.

Structure of the encoders
A single encoder from the multi-scale autoencoder consisted of a series of Nlayers layers with
a fixed filter kernel size (Nk × Nk) but different number of filter kernels Df [55, 56, 57],
where each encoder had the same general architecture. Furthermore the vector ηenc ∈ RNlayers

contained the number of filters Df for each layer.

The encoder was composed of two parts. The first part consisted of Nlayers − 1 layers with
the same architecture. In the first step of each of these layers a padding was applied around
the image, where the dimensions of the padding depended on the filter kernel size of that
encoder. Then, a convolutional neural network with Df = ηenc,i filter kernels and a stride
equal to 2 was used, where ηenc,i was the i-th element of ηenc and i = 1...Nlayers. As a result
of the stride, the dimensions of the output image was halved compared to the input image for
the CNN in that layer. Then, padding was again applied around the output of the first CNN
and a second convolutional neural network was used with s = 1. As a result of the second
CNN, the dimensionality was not reduced and only the encoding performance was increased
[57]. This (first) part of the encoder architecture was repeated NLayers − 1 times.

Now, in the second part of the encoder a padding was applied, after which a CNN with s = 2
was used to reduce dimensionality to the latent space size. Furthermore, the number of filter
ηenc,Nlayers

was equal to the desired number of feature maps in the latent space. The schematic
representation to construct the encoders is also depicted in the flowchart of Fig. 5.2A.

Structure of the decoders
Similar to the encoder, the general architecture of the three parallel decoders were the same
and only their filter kernel sizes were different. In addition, the general architecture consisted
of Nlayers layers subdivided in two parts (Fig. 5.2B) [57], where the number of filters Df per
layer was represented in ηdec ∈ RNlayers . .

Initially, before the first of the layer, a padding was applied around the latent space image,
where the dimensions of the padding depended on the filter kernel size [57]. After that,
Nlayers − 1 layers were present consisting of first a transpose CNN with a stride equal to

MSc. Thesis J. A. Veerman



5.2 Multi-scale autoencoder 29

two and ηdec,i filter kernels, where i = 1...Nlayers. As a result, the size of an output image
of the transpose CNN was twice as large as that of an input image. Then, a CNN was
present with a stride of 1 to further increase the performance of the decoder without altering
the dimensionality [57]. Finally, after the repeated Nlayers − 1 layers, the second component
consisted of a single transpose convolutional neural network with s = 2 and ηdec,Nlayers

filter
kernels, followed by a centercrop layer and a CNN with a stride of 1 and 2 filter kernels- (both
velocity components). Here, the centercrop layers removed the boundaries of the images and
keeps only the centre of the image to obtain an image size equal to the input, in contrast to
padding that adds along the boundaries of the image [57].

(A) (B)

Figure 5.2: Flowcharts showing schematically the steps of constructing the encoder (A) and
decoder (B) of the multi-scale autoencoder. Architecture based on the work of Racca et al. [57].

Multi-scale autoencoder settings
A lower bound for the latent space dimensions of the autoencoder for a specific test case
was provided through the Kaplan-Yorke dimension of the dynamical system. To summarize,
the Kaplan-Yorke dimension DKY was 3.24 and 9.5 for the Re = 20 and Re = 34 test cases
respectively. The dimensions of a single feature map in latent space for Re = 20 was a 4× 4
matrix (16 degrees of freedom) and for Re = 34 an 8 × 8 matrix (64 degrees of freedom).
The latent space dimensions of a single feature map was chosen such that they were much
larger than the Kaplan-Yorke dimensions of the corresponding test case and a sufficiently low
reconstruction error was obtained. In order to study the effect of latent space dimensions on
the performance of the Hybrid-A architecture, three multi-scale autoencoders with a different
number of latent space feature maps per Reynolds number were constructed (Tab. 5.1). Here,
for each encoder ηenc and decoder ηdec, the number of feature maps in every layer is provided.

MSc. Thesis J. A. Veerman



5.3 Data-driven reduced order modelling 30

Table 5.1: The number of feature maps in the convolutional neural network layers for each
autoencoder with changing latent space size for 2D Kolmogorov flow at Re = 20 and Re = 34.
For each vector ηenc, the last entry represented the number of filter maps in latent space.

Re ηenc ηdec Nlat

20 [24, 1],[24, 3],[24, 5] [24, 12] [16, 48, 80]

34 [12, 24, 1],[12, 24, 3],[12, 24, 5] [24, 12, 6, 3] [64, 192, 320]

Multi-scale autoencoder training
The presented multi-scale autoencoders were trained for 2001 epochs for both Reynolds num-
bers, where the initial weights of the (transpose) convolutional neural networks were pre-
scribed following Glorot and Bengio [83]. For Re = 20, the training data set consisted of
12,500 snapshots from the flow with a time interval of δt = 0.5 between each snapshot. Fur-
thermore, the autoencoders were validated on a set of 2,500 snapshots with the same time
interval as the training data. For Re = 34, similar to Racca et al. [57], the autoencoders were
trained on 25,000 snapshots and validated on 5,000 snapshots with a time interval of δt = 1.0.
The training and validation data were split into batches containing 50 samples. The training
occurred by minimizing the mean square error (MSE)

MSE =
〈
(Q−Qdec)

2
〉

(5.3)

between the reference and the decode solution through AMSgrad stochastic gradient descent
[57, 84, 85]. The final training losses Ltrain and validation losses Lval for each test case and
latent space are presented in Tab. 5.2.

Table 5.2: Table showing the the training loss Ltrain and the validation loss Lval of the trained
autoencoders for 2D Kolmogorov flow at Re = 20 and Re = 34 for each latent space dimension.

Re Nlat Ltrain Lval

20 [16, 48, 80] [7.1, 2.2, 1.3]·10−5 [7.5, 2.3, 1.4]·10−5

34 [64, 192, 320] [9.0, 2.4, 1.1]·10−5 [11.7, 2.8, 1.2]·10−5

5.3 Data-driven reduced order modelling

Aside from the knowledge-based approach of section 5.1, which depend on the formulation of
governing equations of dynamical systems, recent advances in machine learning can be utilized
to construct pure deep learning reduced order models based on recurrent neural networks such
as echo state networks (section 3.2) and multi-scale autoencoders (section 5.2) to handle high
dimensional data [57].

As mentioned in section 3.2.1, the plain ESN is not able to handle high dimensional data
efficiently due to requirement of very large reservoir sizes as well as the memory cost as
a result of Tikhonov regularisation during training. Therefore, to allow for a pure data
driven reduced order model, the echo state network can be trained to perform prediction on

MSc. Thesis J. A. Veerman



5.4 Hybrid-A architecture 31

the latent space obtained by the multi-scale autoencoder rather than the chaotic system in
physical space [57]. Thus, for the data-driven reduced order model in this work, the echo
state network was combined with a multi-scale autoencoder as proposed by Racca et al.
[57]. The main idea was that the initial conditions in physical space were encoded into their
latent space representation. Then, the trained ESN performed temporal predictions on the
dynamical system in latent space format [57]. Finally, after the latent space predictions were
performed, each predicted time step was decompressed back into physical space [57]. In this
work, both the multi-scale autoencoder and the echo state network were implemented using
the TensorFlow library [86].

5.4 Hybrid-A architecture

The aim of this Master thesis was to design a hybrid knowledge-based/deep-learning reduced
order model that enabled efficient and time-accurate short-term and long-term statistical pre-
diction for high dimensional chaotic systems. In this work, it was presented that knowledge-
based models can be constructed through proper orthogonal decomposition combined with
Galerkin projection (section 5.1). Furthermore, following the work by Racca et al. [57],
a deep learning reduced order model was obtained through combining a recurrent neural
network (ESN) with a convolutional autoencoder (section 5.3). In order to construct the
Hybrid-A model, these two architectures were combined following the approach of Pathak
et al. [61] and Lesjak and Doan [7]. However, the hybrid model by Pathak et al. [61] and
later adapted by Lesjak and Doan [7] was only applicable to low-dimensional chaotic systems.
Thus, to enable the Hybrid-A model proposed in this research to efficiently work on high
dimensional chaotic system, the multi-scale autoencoder as discussed in section 5.2 was im-
plemented. The schematic overview of the proposed Hybrid-A model is presented in Fig. 5.3.
Here, the model is shown in prediction model and similar to the plain echo state network,
training mode is obtained by removing the feedback loops [7].

POD-GL 

  

Encoder

Encoder

Decoder
Input Matrix Output Matrix 

Encoder

Figure 5.3: Proposed Hybrid-A model architecture allowing for temporal predictions on high
dimensional chaotic system.

The true data of the system (following section 2.1 and section 5.1) was written as the one
dimensional vector y(x, t) ∈ RNphys , where Nphys = 2 ·Nx ·Ny, with the first Nx ·Ny elements

MSc. Thesis J. A. Veerman



5.4 Hybrid-A architecture 32

corresponding to u and the second Nx ·Ny corresponding to v. Furthermore, the prediction
of the Hybrid-A model was written as ỹhy(t) ∈ RNphys .

The first step of the proposed Hybrid-A model was to obtain the input ỹhy(t− δt) ∈ RNphys .
Then, the knowledge-based model (POD-GL, proper orthogonal decomposition Galerkin)
performed a single prediction in time to obtained the POD-GL solution ỹhy,PODGL(t) ∈ RNphys

and this prediction was encoded into ỹhy,PODGL-lat(t) ∈ RNlat . Simultaneously, the input

ỹhy(t− δt) was also encoded into the latent space format ỹhy, lat(t− δt) ∈ RNlat . Then, both
the encoded knowledge-based prediction and the encoded input data were concatenated into
the input data vector of size 2Nlat, such that [7, 61]

ỹhy, in =

[
ỹhy,PODGL-lat(t)

ỹhy, lat(t− δt)

]
∈ R2Nlat , (5.4)

which was fed as input data into the echo state network. Furthermore, ỹhy,PODGL-lat(t) was
also fed into the output matrix of the echo state network. Doing so, the ESN was enabled to
make a mix between its own prediction and the one from the knowledge-based model. Then,
the echo state network performed a single prediction in the latent space by updating its
internal state vector xres. The newly updated internal reservoir state was then concatenated
with the knowledge-based prediction to obtain

ỹhy, out(t) =

[
ỹhy,PODGL-lat(t)

xres(t)

]
∈ RNlat+Nres . (5.5)

Using the trained output matrix W out ∈ RNlat×Nlat+Nres the prediction ỹhy,lat(t) ∈ RNlat was
obtained through the matrix-vector multiplication [7, 61]

ỹhy,lat(t) = W outỹhy, out (5.6)

Finally, the predicted flow field ỹhy(t) ∈ RNphys was obtained by decoding ỹhy,lat(t). Now, in
prediction mode, the Hybrid-A model was able to run autonomously such that it re-used its
output as input for the next prediction. For the data-driven component, similar to Racca et
al. [57], the latent space prediction was re-used directly without the need for decoding since
the echo state networks operated in latent space. However, since the full physical system was
required for the POD-GL reduced order model, the decoded prediction was also looped back
to serve as input data for the next time step.

In the proposed Hybrid-A model, the encoder used to encode the data from the knowledge-
based component was the same as for the data-driven component. Furthermore, for the
POD-GL model (similar to section 5.1) the number of POD modes was truncated to obtain
computational efficiency while reflecting dominant features in the dynamical system as will
be discussed in section 5.6.

MSc. Thesis J. A. Veerman



5.5 Comparison criteria 33

5.5 Comparison criteria

In order to assess the performance of the hybrid architectures and allow for comparison with
the knowledge-based and pure deep learning models, several criteria were used. The first
benchmark was the short-term prediction horizon of the models. Secondly, the long-term
flow statistics were considered.

Short-term prediction horizon
In order to provide insight into the short-term prediction horizon, the error ϵhor(t) as a
function of time was considered

ϵhor(t) =
|urom − uref|√

⟨|u|2⟩
. (5.7)

Here, ϵhor(t) represented the error between a given reduced order model urom and the true data
(subscript ref for reference) uref obtained from solving the equations with direct numerical
simulations. Then, the short-term prediction horizon tpred was defined as the time that the
error was below a prescribed threshold ϵthres [7]. In this work, the threshold error was fixed
to ϵthres = 0.4 for all experiments.

Long-term flow statistics
Since the two-dimensional Kolmogorov flow was a fluid dynamical system also the capability
of the models to represent long-term statistics was of interest to gain insights into the long-
term behaviour of the model. In this work, the first statistic considered was the temporal
mean of the flow ⟨u⟩. In order to assess the performance of the reduced order models, the
root mean square error was considered:

RMSEu =
√

⟨(⟨urom⟩ − ⟨uref⟩)2⟩ and RMSEv =
√
⟨(⟨vrom⟩ − ⟨vref⟩)2⟩. (5.8)

Secondly, due to turbulent flow, also the preservation of the the mean velocity fluctuations
⟨u′⟩ is of interest. Similar to the mean velocity, the performances was assessed through the
root mean squared error using Eq. 5.8, where ⟨uref⟩ was swapped for ⟨u′

ref⟩ and ⟨urom⟩ was
replaced for ⟨u′

rom⟩

Thirdly, the phase space spanned by the domain-averaged kinetic energy E(t) (see Eq. 4.3) and
the domain-averaged dissipation D(t) was of interest to gain insight into whether the models
were able stay in the confined domain of the true solution or would migrate to a different
region in phase space (or to a single fixed point). Here, both quantities were computed in
physical space using [57] (in Einstein summation convention)

MSc. Thesis J. A. Veerman



5.5 Comparison criteria 34

E(t) =
1

(2π)2

∫ 2π

0

∫ 2π

0

1

2
uiuidxdy (5.9)

D(t) =
Re−1

(2π)2

∫ 2π

0

∫ 2π

0

∂ui
∂xj

∂ui
∂xj

dxdy. (5.10)

Finally, albeit strictly not a comparison criteria but important for further analysis, the contri-
bution of the ESN and the knowledge-based components in the Hybrid-A model was consid-
ered [7]. As mentioned in section. 5.4, the encoded knowledge-based prediction of the input
was fed into the input and output matrix of the echo state network. This way, a blending
of the ESN and the knowledge-based prediction was obtained. Therefore, in order to delve
deeper into the understanding of the proposed Hybrid-A model, it was of interest to gain in-
sight into the (relative) contribution of both the pure deep learning and the knowledge-based
components.

These contributions were obtained through the output matrix W out [7]. It was observed
in Eq. 5.6 that the output matrix operated on a concatenated vector of the knowledge-
based model prediction with the updated internal state of the reservoir. Since this operation
only entailed a matrix-vector multiplication (Eq. 5.6), each row from the output matrix was
multiplied element-wise with the output vector ỹhy, out. Thus, the sum over all rows for each
column of W out provided an indication of the contribution of the corresponding element of
ỹhy, out, which was either from the knowledge-based or deep learning component [7]. In this
work, similar to Lesjak and Doan [7], the mean normalized contribution Γj were considered
using

Γj =
1

Nlat

Nlat∑
i=1

κ2ij∑
k κ

2
ik

, (5.11)

where κij are the elements from the output matrix. Particular interest was in the total average
normalized contribution of the knowledge-based ΓPODGL and the deep learning model ΓESN

defined as [7]

ΓPODGL =

∑Nlat
i=1 Γi∑Nlat+Nres

i=1 Γi

ΓESN =

∑Nlat+Nres

i=Nlat+1 Γi∑Nlat+Nres
i=1 Γi

. (5.12)

MSc. Thesis J. A. Veerman



5.6 Truncation of POD modes 35

5.6 Truncation of POD modes

As aforementioned in section 5.1 and section 5.4, in order to obtain the knowledge-based
reduced order model and the POD-GL component of the hybrid models, the number of POD
modes must be truncated. In this work, the choice of the number of POD modes was based on
two factors. Firstly, since POD is a data reduction technique similar to autoencoders, it was
decided that the number of POD modes must be approximately equal to the latent space size
Nlat to allow for a good comparison between the reduced order models. Secondly, the chosen
number of modes must have adequate performances in terms of the short-term prediction
horizon of the knowledge-based reduced order model (section 5.5). In the proceeding of this
section, the selection of the POD modes for both Reynolds numbers is further described.

Re = 20
For the two-dimensional Kolmogorov flow Re = 20 test case, three different multi-
scale autoencoders were used with an increasing latent space size to allow for increasing
(de)compression performance. In this work, the latent space sizes were Nlat = [16, 48, 80]
(Tab. 5.1). Thus, following the first criterion for the modal reduction, the number of POD
modes was chosen to be approximately equal to each Nlat. Therefore, for each multi-scale
autoencoder, a different number of POD modes were selected in the knowledge-based and
hybrid reduced order models. Secondly, the short-term prediction horizon was considered for
POD modes in the vicinity of the number of latent space dimensions Nlat as shown in Fig. 5.4.
Then, the short-term prediction horizons were computed for all considered modes and this
was performed for 20 runs per mode using different initial conditions. From these runs, the
mean and the standard deviation were obtained as shown in Fig. 5.4.

Starting with the lowest latent space Nlat = 16, it was observed in the top left image of Fig. 5.4
that from 12 to 21 POD modes the short-term prediction horizon increased. However, for
increasing POD modes also the standard deviation increased significantly, indicating that
the model became more dependent on initial conditions. Therefore, it was chosen to use
18 retained POD modes for the knowledge-based and hybrid reduced order models as it
shows locally a good performance. Next, for the second multi-scale autoencoder with a
latent space of Nlat = 48 (top right of Fig. 5.4) it was observed that at 51 retained modes
the performance of the knowledge-based model was the best. Furthermore, an improved in
performance compared to 18 POD modes was observed. Finally, for the largest latent space
of Nlat = 80 the mean short-term prediction horizon increased significantly from 77 modes
till 84 modes, after which it decreased again. For this reason, 84 modes were chosen for the
knowledge-based and hybrid models corresponding to the third multi-scale autoencoder.

Thus, in this work, the POD modes equal to 18, 51 and 84 were selected for Nlat = [16, 48, 80].
Now, as discussed in section 2.1, the eigenvalues of the POD modes provided a measure of the
amount of energy that a given mode represented in the system [65, 16]. In the left image of
Fig. 5.6, the relative contribution of each mode to the total energy is depicted. It was observed
that the amount of energy that a PODmode represented decreased fast with increasing modes.
Therefore, only a relative small portion of modes were required to still encapsulate most of
the energy in the system. In addition, the sum of all the eigenvalues provided the total
amount of kinetic energy in the system (because the mean was not substracted for the POD).

MSc. Thesis J. A. Veerman



5.6 Truncation of POD modes 36

12 14 16 18 20 22 24
Number of POD-modes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Pr

ed
ict

io
n 

ho
riz

on
 t h

or
t p

er

Knowledge-based ROM

42 44 46 48 50 52 54 56 58
Number of POD-modes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr
ed

ict
io

n 
ho

riz
on

 t h
or

t p
er

Knowledge-based ROM

76 78 80 82 84 86 88 90
Number of POD-modes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr
ed

ict
io

n 
ho

riz
on

 t h
or

t p
er

Knowledge-based ROM

Figure 5.4: Images showing the mean short-term prediction horizon tpred and standard deviation
of 20 simulations as a function of the number of POD modes of the knowledge-based reduced
order model, for three regions near the vicinity of the latent space sizes [16,48,80] of the multi-
scale autoencoders for Re = 20. Here, tper = 170.

Therefore, the percentage energy of the retained number of POD modes Eret compared to
the full systems energy was computed through

Eret =

∑Nret
i=1 λpod,i∑Npod

j=1 λpod,j

· 100%. (5.13)

Here, λpod were the eigenvalues of the diagonal of Λpod in order of decreasing eigenvalue and
Nret are the number of retained modes. Using Eq. 5.13, it was obtained that retaining 18,
51 and 84 POD modes encapsulated Eret = 99.08%, 99.91% and 99.98% of the energy in the
system.

Re = 34
The latent space sizes for Re = 34 were Nlat = [64, 192, 320] (section 5.2). The plots for the
prediction horizon as a function of the number of POD modes in the vicinity of the latent
space size are depicted in Fig. 5.5, where the prediction time was scaled with the Lyapunov
time of the system.

For the smallest latent space Nlat = 64, it was observed that the best performance was found
for 68 retained POD modes. For the large two latent space size (Nlat = [192, 320]), it was
chosen to set the number of retained POD modes to be much smaller than the latent space

MSc. Thesis J. A. Veerman



5.6 Truncation of POD modes 37

size, because a too large number of modes would be too computationally inefficient. Still, to
reflect the increase in latent space size, an amount of POD modes was chosen that showed
significantly better performance compared to the 68 modes. In the right graph of Fig. 5.5, the
mean prediction horizon over an interval of POD modes is depicted near 90 retained modes.
Here, due to the good performance 90 retained modes were selected for Nlat = [192, 320].

62 64 66 68 70 72 74
Number of POD-modes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr
ed

ict
io

n 
ho

riz
on

 t h
or

T l
ya

p

Knowledge-based ROM

82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0
Number of POD-modes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr
ed

ict
io

n 
ho

riz
on

 t h
or

T l
ya

p

Knowledge-based ROM

Figure 5.5: Images showing the mean short-term prediction horizon tpred and standard deviation
of 20 simulations as a function of the number of POD modes of the knowledge-based reduced
order model, for three regions near the vicinity of the latent space sizes [64, 192, 320] of the
multi-scale autoencoders for Re = 34.

Furthermore, the relative contribution of each of POD modes to the total amount of energy
in the dynamical system is presented in the right graph of Fig. 5.6. Similar to Re = 20, it
was observed the first few most contributed the most to the total amount of energy in the
system. As a result, the encapsulated energy with respect to the full system was 99.4% and
99.8% for the 68 and 90 retained POD modes.

0 100 200 300 400 500
POD-modes j 

10 17

10 14

10 11

10 8

10 5

10 2

po
d,

i

po
d,

i

0 1000 2000 3000 4000 5000 6000
POD-modes j 

10 18

10 15

10 12

10 9

10 6

10 3

100

po
d,

i

po
d,

i

Figure 5.6: Plots showing the relative energy contribution of each POD mode for both test case.

MSc. Thesis J. A. Veerman



5.7 Model settings 38

5.7 Model settings

In the previous sections, the knowledge-based, deep learning and the proposed hybrid reduced
order models were presented. Furthermore, the comparison criteria for the performance of
the models and the truncation of the number of POD modes were outlined. In this sec-
tion, the model settings for validation/hyperparameter tuning and the actual experiments
are described. First, the tuning of the hyperparameters (also referred to as validation [78]) is
discussed. Next, the model settings for the predictions are outlined.

The comparison of the performance in terms of short-term horizon and long-term statistics of
the three models was of interest as a function of the number of neurons in the reservoir and
the latent space dimensions of the multi-scale autoencoder. For this reason, it was chosen
to keep the number of POD modes fixed for a given autoencoder (see section 5.6) and only
vary the number of neurons in the ESN reservoir. Here, the reservoir size of [500, 1000, 1500,
2000, 3000, 4000, 5000] were considered.

5.7.1 Hyperparameter tuning and validation settings

As detailed in section 3.2.1, hyperparameter tuning was required to obtain good performance
from the echo state network [69]. In this work, Bayesian optimisation (Appendix A) combined
with a grid search was used to provide a guided tuning methodology as the evaluation of
the hybrid models was expensive. The Bayesian optimisation (Scikit-Learn implementation
[87]) was used for tuning the spectral radius ρ, input scaling σin and the leaking rate α,
while grid search was used for the Tikhonov factor β. Furthermore, the sparsity ⟨d⟩ = 3.5
was fixed. During the tuning process, the inverse of the short-term prediction horizon was
minimized (and thus the short-term prediction horizon was maximized). In this section, first
the general routine of the grid search-Bayesian optimisation is provided, after which validation
strategies for Re = 20 (single shot validation) and Re = 34 (recycle validation) [78] are
discussed together with the optimisation settings for each test case (Tab. 5.3). Furthermore,
the obtained hyperparameters are presented in Appendix C for all experiments.

Grid Search-Bayesian optimisation routine
In the first step of the hyperparameter tuning, the search space for the spectral radius [ρl, ρu],
input scaling [σl

in, σ
u
in] and leaking rate [αl, αu] were defined, where the super script l and u

indicate lower and upper bound. Furthermore, the list of Tikhonov factors β was defined over
which the grid search was performed [57]. Then, Nrdm points in the search space spanned by
[ρ, σin, α] were selected randomly. For each search space point, the mean inverse of the short-
term prediction horizon were computed over Nic initial conditions (IC) for each Tikhonov
factor from β =

[
1.0, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

]
.

After the initial random search through the search space, Nbo points were evaluated through
Bayesian optimisation with an ARD 5/2 Matern Kernel for the covariance matrix in the
Gaussian process and the grid search over β. Furthermore, Expected Improvement acquisition
function was used. Then, the optimal hyperparameters were selected by maximizing the mean

MSc. Thesis J. A. Veerman



5.7 Model settings 39

short-term prediction horizon over 2 initial conditions. Here, only 2 initial conditions were
chosen due to the large computational cost.

The generic procedure described above was used for both test. However, a profound difference
between the Re = 20 and the Re = 34 test case was the validation strategies used for the
optimisation, namely single shot validation (Re = 20) and recycle validation (Re = 34)
[57, 78].

Single shot validation (Re = 20)
In single shot validation for the Re = 20 test case, the echo state network of both the pure
deep learning and hybrid models were trained from t = 0 to t = ttrain using Ntrain snapshots
and a washout of Nwash snapshots equispaced by δt. Furthermore, the proper orthogonal
decomposition was based on Npodtrain snapshots. The washout was used during training to
allow the ESN to update its internal state over time without storing those predictions such that
the ESN was initialized using the echo state property [69]. The tuning of the hyperparameters
occurred for 2 initial conditions with 100 time steps in between, such that both snapshots
were within the same periodic cycle of the flow. For the validation part, the reduced order
model performed predictions over tval time steps, corresponding to Nval snapshots (equispaced
by δt) and the short-term prediction horizon was determined for every run. Now, in the single
shot validation method, the validation data set was chosen such that there exists no overlap
with the training data set [78]. Thus, the validation data set was obtained for every run from
ttrain < t < tval. Furthermore, similar to training, Nresync resync snapshots were chosen before
the initial conditions to allow the echo state network to initialize similar to the washout [69].
The single shot validation settings for Re = 20 are provided in Tab. 5.3.

Recycle validation (Re = 34)
For the second test case at a Reynolds number of 34, the hyperparameter tuning during
validation was obtained through recycle validation [78]. The primary difference between
single shot validation and recycle validation was the validation data set. As mentioned in
the previous part, in single shot validation the validation data set was located directly after
the training set. In recycle validation, however, the validation sets were small portions of
the training data set and thus the echo state network was trained and validated on the same
data [78]. This was possible because training the ESN occurred in a different configuration
as prediction, since no feedback loop was not present when training [78]. Thus, additional
knowledge from the system was extracted by both training and validating on the same data
set [78]. It was shown by Racca et al. [78] that for chaotic systems the recycle validation was
able to outperform other validation approaches.

In this work, the echo state network for Re = 34 was trained for t = ttrain, corresponding
to Ntrain snapshots equispaced by δt. Furthermore, the proper orthogonal decomposition
was based on Npodtrain snapshots. Similar to the single shot validation, during training,
Nwash snapshots were omitted as washout for the initialisation of the internal state of the
reservoir. For the validation, two initial conditions were selected and temporal predictions
were obtained for tval time steps (Nval snapshots), from which the mean short-term prediction
horizon was computed through the grid search-Bayesian optimisation approach. Thus, in
recycle validation the training and validation data sets overlapped. Therefore, the selected
initial conditions were chosen such that the full validations sets fitted within the training set

MSc. Thesis J. A. Veerman



5.7 Model settings 40

[78]. The validation settings for Re = 34 are shown in Tab. 5.3

Parameter Setting (Re = 20)

[ρl, ρu] [0.1, 5.0]
[σl

in, σ
u
in] [0.1, 5.0]

[αl, αu] [0.1, 1.0]
Nrdm 7
Nbo 7
ttrain 500
Ntrain 1000

NPODtrain 92000
Nwash 100
δt 0.5
tval 10.000
Nval 20.000

Nresync 40

Parameter Setting (Re = 34)

[ρl, ρu] [0.01, 5.0]
[σl

in, σ
u
in] [0.01, 5.0]

[αl, αu] [0.01, 1.0]
Nrdm 7
Nbo 7
ttrain 500TLyap

Ntrain 74626
NPODtrain 90000
Nwash 100
δt 0.1
tval 20TLyap

Nval 2985
Nresync 2985 (20TLyap)

Table 5.3: The models settings of the validation parameters for the tuning of the hyperparameters
for the Re = 20 (left) and Re = 34 (right) test case.

5.7.2 Model settings experiments

In the previous section, the values for the model parameters for the tuning of the hyperparam-
eters in this research were presented. After obtaining the tuned hyperparameters, the model
experiments were performed to compute the short-term prediction horizon and long-term
statistics. In this section, these parameter values are presented. For most of the parameters,
no distinction was made between the short-term predictions and the long-term statistics.
Therefore, these are discussed simultaneously and it will be mentioned when difference were
applied.

For both test cases, similar to the grid search-Bayesian optimisation [57, 78] of the previous
section, the echo state network was trained on Ntrain snapshots, corresponding to ttrain time
steps where the snapshots were sampled with time interval δt. In addition, the proper or-
thogonal decomposition was based on Npodtrain snapshots. Furthermore, during training a
washout of Nwash was used. Then, after training the echo state network, the temporal pre-
diction were performed. Since the short-term prediction horizon and the long-term statistics
were dependent on the initial condition, 20 simulations were performed for each number of
neurons in the reservoir to obtain a mean and standard deviation of the quantities of interest.
First, the echo state networks were initialized using Nresync snapshots. Then, the temporal
predictions for the experiments were performed over Npred integer time steps, corresponding
to Npred predictions in total. Here, for the long-term statistics, the prediction time was cho-
sen such that it is much larger than the short-term prediction horizon of each simulation.
Finally, the short-term prediction horizon and the long-term statistics were computed from
the predictions of the reduced order models.

MSc. Thesis J. A. Veerman



5.7 Model settings 41

Parameter Setting (Re = 20)

ttrain 500
Ntrain 1000

NPODtrain 92000
Nwash 100
δt 0.5

tpred 10000 (ST) / 20000 (LT)
Npred 20000 (ST) / 40000 (LT)
Nresync 40

Parameter Setting (Re = 34)

ttrain 500TLyap

Ntrain 74626
NPODtrain 90000
Nwash 100
δt 0.1

tpred 20TLyap (ST) / 40TLyap (LT)
Npred 2985 (ST) / 5970 (LT)
Nresync 2985 (20TLyap)

Table 5.4: The models settings of the temporal predictions parameters for the tuning of the
hyperparameters for the Re = 20 (left) and Re = 34 (right) test case. Here, ST and LT are
abbreviations for short term and long term respectively.

Finally, the Re = 20 experiments were performed on a workstation with a 14-core Intel(R)
Xeon(R) W-2275 CPU @ 3.30Ghz with a Nvidia Quadro RTX 8000 GPU. Furthermore, for
the Re = 34 a 20-core Intel(R) Xeon(R) w7-2475X and a Nvidia RTX A4500 GPU workstation
was used.

MSc. Thesis J. A. Veerman



Chapter 6

Hybrid A: Results and discussion

As stated in the research questions, the primary aim of this work was to construct a hybrid
knowledge-based/deep learning reduced order model that allowed for time-accurate short-term
and long-term statistical predictions on high dimensional chaotic systems. In this chapter,
the results of the proposed Hybrid-A model for the two test cases will be presented. First,
in section 6.1, the results on the short-term prediction horizon will be shown and discussed,
after which the long-term statistics are presented in section 6.2. At the end of each section,
also a brief summary of the results is provided. As outlined in section 5.5, the performance
of the long-term statistics were assessed using the temporal mean of the velocity (⟨u⟩ and
⟨v⟩), temporal mean of the velocity fluctuations (⟨u′⟩ and ⟨v′⟩) and the trajectories in the
phase space spanned by the domain averaged kinetic energy E(t) and the domain averaged
dissipation D(t). Note however that since Re = 20 was not turbulent, the mean of the velocity
fluctuations were not considered for this test case. For the discussion, the results of this study
will be placed in perspective compared to the works of Racca et al. [57] and Lesjak and Doan
[7] whom proposed a deep learning reduced order model for high dimensional chaotic systems
and a hybrid model without autoencoders for low dimensional chaotic systems respectively.
Finally, the limitations of the Hybrid-A model of this research will be discussed in section 6.3.

6.1 Short-term prediction horizon

In this section, the results on the short-term prediction horizon (as defined in section 5.5) are
shown for the knowledge-based, deep learning and Hybrid-A reduced order models. First, the
results for the Re = 20 test case are presented, followed by the Re = 34 chaotic Kolmogorov
flow.

MSc. Thesis J. A. Veerman



6.1 Short-term prediction horizon 43

Re = 20
The short-term predictions horizons for the knowledge-based, deep learning and Hybrid-A
reduced order model for the two-dimensional Kolmogorov flow at Re = 20 are presented in
Fig. 6.1. Here, the top left plot corresponds to the multi-scale autoencoder with Nlat = 16,
the top right to Nlat = 48 and the bottom plot to Nlat = 80.

1000 2000 3000 4000 5000
Reservoir size Nres

0

10

20

30

40

50

60

70

Pr
ed

ict
io

n 
ho

riz
on

 t h
or

t p
er

Hybrid
Pure deep learning
Knowledge, 18 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0

10

20

30

40

50

60

70

Pr
ed

ict
io

n 
ho

riz
on

 t h
or

t p
er

Hybrid
Pure deep learning
Knowledge, 51 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0

10

20

30

40

50

60

70

Pr
ed

ict
io

n 
ho

riz
on

 t h
or

t p
er

Hybrid
Pure deep learning
Knowledge, 84 modes

Figure 6.1: The short-term prediction horizon of the knowledge-based, deep learning and Hybrid-
A reduced order models as a function of the number of neurons in the reservoir at Re = 20
Kolmogorov flow. Here, the top left plot is for the multi-scale autoencoder with Nlat = 16, the
top right for Nlat = 48 and the bottom plot for Nlat = 80. The knowledge-based and deep
learning results are displaced slightly in the horizontal direction for clarity.

For the knowledge-based model, the performance slightly improved with increasing number
of POD modes as a result of the encapsulation of more dynamics from the system. However,
despite using 84 modes and hence representing over 99% of the systems energy, the model was
only able to predict around two periodic cycles in time. This was likely due to the introduction
of instabilities in the model through the truncation of the number of modes. In contrast to the
knowledge-based model, the deep learning and the Hybrid-A reduced order models displayed
significant better performance for all three latent spaces and an average prediction horizon
of at least 5 periodic cycles was obtainable for almost all experiments. Moreover, for many
experiments much larger prediction horizons were observed.

In order to compare the performance between the knowledge-based and the deep
learning/Hybrid-A models, it was important to consider that the mean square error intro-
duced by the multi-scale autoencoders was of the order of 10−5 (Tab. 5.2). Since Re = 20
Kolmogorov flow was periodic in physical space, the latent space representation was also ap-
proximately periodic due to the small (de)compression errors. As a result, the dynamics in
latent space were still simple and hence easy to learn by the echo state network. This thus ex-

MSc. Thesis J. A. Veerman



6.1 Short-term prediction horizon 44

plained the overall better performance of the deep learning and Hybrid-A models compared to
the knowledge-based model. This was supported by the fact that no increase in performance
of the deep learning and Hybrid-A models was observed for larger reservoir sizes, indicating
that the echo state network was saturated. The latter might also have been an effect of too
little training data (three periodic cycles) used for the echo state network [7], but that was
not expected as still good performance was observed.

For the comparison of the performance of the deep learning and the Hybrid-A reduced order
models for all latent sizes, it was observed that typically a larger performance difference was
present for small reservoirs while for larger reservoirs the prediction horizons were comparable
(Fig. 6.1). It was also shown that increasing the latent space dimensions from Nlat = 48 to
Nlat = 80 that no consistent improvement was observed for both the deep learning and the
Hybrid-A model. This was likely the result of the simple dynamics and hence larger latent
spaces were not able to represent more dynamics. Surprisingly, for the Hybrid-A and deep
learning models at Nlat = 16, in general, a much larger prediction horizon was observed
compared to Nlat = 48 and Nlat = 80 for Nres = [1000, 1500, 2000]. More specifically, for
Nres = 1000, the prediction even exceeded the model prediction setting of 10,000 integer time
steps. However, it was unclear what caused this behaviour for Nlat = 16.

To further assess the Hybrid-A model, using Eq. 5.12, the total contributions of the deep
learning and knowledge-based components were computed for each experiment as shown in
Fig. 6.2. For the smallest and middle latent space, the relative contribution of the deep
learning component (ESN) increased as a function of the reservoir size and thus consequently
the knowledge-based part decreased. This also explained that for Nlat = [16, 48] the short-
term prediction horizon of the deep learning and Hybrid-A became more similar for larger
reservoirs as the contribution of the ESN was more profound. On the other hand, for the
largest latent space, initially an increase in deep learning contribution was observed, after
which it started to fluctuate between a small and a large contribution. Still, as shown in
Fig. 6.1, the performance became more similar for larger reservoirs. It was not clear what
caused this behaviour for Nlat = 80.

1000 2000 3000 4000 5000
Reservoir size Nres

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

co
nt

rib
ut

io
n

PODGL

ESN

1000 2000 3000 4000 5000
Reservoir size Nres

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

co
nt

rib
ut

io
n

PODGL

ESN

1000 2000 3000 4000 5000
Reservoir size Nres

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

co
nt

rib
ut

io
n

PODGL ESN

Figure 6.2: Plots showing the total relative contributions of the knowledge-based ΓPODGL and
deep learning ΓESN components in the Hybrid-A architecture as a function of reservoir size for
Re = 20 Kolmogorov flow. The smallest latent space Nlat = 16 is depicted on the left, Nlat = 48
in the middle and Nlat = 80 on the right.

To continue, consider the proposed Hybrid-A architecture (section 5.4) and compare it to the
knowledge-based and deep learning models. A profound difference between the three models
was that the knowledge-based model operated in physical space, while the deep learning model
performed predictions in latent space and each predicted latent space was decoded at the end

MSc. Thesis J. A. Veerman



6.1 Short-term prediction horizon 45

of the time series. Thus, during the iterations over time no compression/decompression of the
data was required for both models. Now, for Hybrid-A architecture, (de)compression occurred
in each iteration since the two components operated on different representations of the system.
Hence, in each iteration, a small error was introduced into the Hybrid-A solution. Since no
consistent performance difference was observed between the deep learning and the hybrid-A
models, this indicated that the (de)compression error accumulation was not of importance
for the Re = 20 test case. This was hypothesized to be the result of the periodic nature
of the flow and thus allowing the Hybrid-A model to restore from the slight perturbations
added in each iteration over time and the knowledge-based component compensating for the
accumulation of errors from the autoencoder.

Re = 34
The second test case was conducted with Kolmogorov flow at Re = 34, which was in the
turbulent (chaotic) regime [57, 73]. The results for the short-term prediction horizon for
Re = 34 are displayed in Fig. 6.3. Similar to Re = 20, the top left plot is the smallest latent
space Nlat = 64, the top right plot is Nlat = 192 and finally the bottom plot for Nlat = 320.

1000 2000 3000 4000 5000
Reservoir size Nres

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
ed

ict
io

n 
ho

riz
on

 t h
or

t ly
ap

Hybrid
Pure deep learning

Knowledge, 68 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
ed

ict
io

n 
ho

riz
on

 t h
or

t ly
ap

Hybrid
Pure deep learning

Knowledge, 90 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
ed

ict
io

n 
ho

riz
on

 t h
or

t ly
ap

Hybrid
Pure deep learning

Knowledge, 90 modes

Figure 6.3: The short-term prediction horizon of the knowledge-based, deep learning and Hybrid-
A reduced order models as a function of the number of neurons in the reservoir at Re = 34
Kolmogorov flow. Here, the top left plot is for the multi-scale autoencoder with Nlat = 64, the
top right for Nlat = 192 and the bottom plot for Nlat = 320. The knowledge-based and deep
learning results are displaced slightly in the horizontal direction for clarity.

Firstly, the models were able to predict time-accurately for a shorter amount of time and
with a larger dependence on initial conditions compared to the periodic case, which was a
result of the chaotic nature of the Re = 34 test case. For Nlat = 64, all the models were on
average not able to sufficiently predict the flow for longer than one Lyapunov time, where the
Lyapunov time provided a characteristic time scale of the chaos in the system. Here, the pure

MSc. Thesis J. A. Veerman



6.1 Short-term prediction horizon 46

deep learning model showed the best performance for all reservoirs sizes except Nres = 5000
(it was unknown why the performance of the deep learning model at this reservoir size was
deteriorated). Then, the knowledge-based model showed the second best performance, while
the hybrid model was the least accurate. Furthermore, for the hybrid and deep learning
models no performance increase with increasing reservoir size was observed. This was thought
to be caused by the small latent space size and thus a too small portion of the dynamics was
represented. Hence, the ESN did not benefit from an increase in reservoir size to learn more
latent space dynamics.

Upon increasing the latent space size to Nlat = 192 and thus retaining 90 modes in the
knowledge-based model (top right plot of Fig. 6.3), the performance of the knowledge-based
model increased significantly and was able to on average outperform the deep learning and
Hybrid-A reduced order models. This performance increase was the result of (similar to
Re = 20) the encapsulation of more dynamics with more POD modes. For the deep learning
model no consistent performance improvement was observed. On the other hand, the Hybrid-
A model showed significantly better performance compared to the smallest latent space.
Thus, given no consistent improvement of the deep learning model, this was due to the
better performing knowledge-based component and a larger latent space that reflected more
dynamics. Furthermore, opposed to Nlat = 64, the deep learning reduced order model showed
saturation behaviour for Nlat = 192 as the prediction horizon increased from Nres = 500 to
Nres = 2000 after which stagnation/saturation occurred. Similar saturation was also observed
for the Hybrid-A model but to a lesser extent.

Finally, further increasing the latent space size to Nlat = 320 showed that the predictive
capabilities of the deep learning model did overall not improve for increasing latent space
size. Similar behaviour was found by Racca et al. [57], where a changing latent space did not
consistently influence the short-term prediction horizon. Furthermore, similar to Nlat = 192,
an asymptotic short-term prediction horizon as a function of the reservoir size was observed
for the deep learning model. This was potentially caused by a limited training data set and
thus the model was not able to learn more dynamics for larger reservoirs [7]. In contrast
to the deep learning model, a significant increase in predictive capabilities was observed for
the Hybrid-A reduced order model as the short-term prediction horizon almost matched the
knowledge-based model. For the Hybrid-A model no saturation was observed compared to
the deep learning model.

Similar to the Re = 20 test case, the total relative contribution of the knowledge-based and
deep learning components of the Hybrid-A model were computed as a function of the reservoir
size for each multi-scale autoencoder as depicted in Fig. 6.4. For the smallest latent space,
it was observed for Nres = 500 that the knowledge-based component had a slightly larger
contribution likely the result of the small reservoir used. For larger echo state networks,
the contribution of the deep learning component gradually became more important. For
Nlat = 192, the increasing reservoir resulted in a larger contribution of the echo state network,
such that forNres = [3000, 4000] the knowledge-based part was almost completely overruled by
the deep learning component, which was surprising as the knowledge-based model displayed
better performance. Finally, for the largest latent space, the opposite was true where the deep
learning component had almost no contribution and thus the Hybrid-A model was effectively
similar to the knowledge-based model with the inclusion of the encoders and decoders. As

MSc. Thesis J. A. Veerman



6.1 Short-term prediction horizon 47

a consequence, as shown in Fig. 6.3, the knowledge-based and Hybrid-A models had nearly
similar performance.

1000 2000 3000 4000 5000
Reservoir size Nres

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

co
nt

rib
ut

io
n

PODGL ESN

1000 2000 3000 4000 5000
Reservoir size Nres

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

co
nt

rib
ut

io
n

PODGL

ESN

1000 2000 3000 4000 5000
Reservoir size Nres

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

co
nt

rib
ut

io
n

PODGL

ESN

Figure 6.4: Plots showing the total relative contributions of the knowledge-based ΓPODGL and
deep learning ΓESN components in the Hybrid-A architecture as a function of reservoir size for
Re = 34 Kolmogorov flow. The smallest latent spaceNlat = 64 is depicted on the left, Nlat = 192
in the middle and Nlat = 320 on the right.

Now, the Hybrid-A model was not able to outperform both the knowledge-based and the deep
learning reduced order models for all latent space sizes. For the smallest latent space, the
Hybrid-A model was outperformed by both the knowledge-based and the deep learning model.
Given that Fig. 6.4 showed that both components contributed in the Hybrid-A architecture
for a significant amount, the reduced performance of Hybrid-A was interpreted to be the
result of the accumulation of errors by the compression and decompression of the data in
the multi-scale autoencoder in each iteration. In addition, since Re = 34 Kolmogorov flow
was chaotic and thus highly dependent on the initial conditions, each introduced error by
the (de)compression could have resulted in the knowledge-based component to push away the
Hybrid-A solution further away the true solution, from which the model could not recover (as
opposed to Re = 20).

As the latent space increased, the accumulation of errors appeared to become less significant.
For Nlat = 192 the short-term performance of Hybrid-A became more similar to the per-
formance of the deep learning model, coinciding with the findings of Fig. 6.4 that the ESN
became more influential for larger reservoirs. Since Hybrid-A was able to outperform the deep
learning model for most reservoirs, this indicated that despite the little contribution of the
knowledge-based component for Nlat = [3000, 4000], it still served as a meaningful addition.
However, it was difficult to assess the influence of the errors accumulation by the autoen-
coder against the benefits of the small portion of the knowledge-based model. Finally for the
largest latent space, for all reservoirs except Nres = 1000, the Hybrid-A model slightly under
performed compared to the knowledge model. This coincided with Fig. 6.4 that displayed
for all reservoirs that the knowledge-based component of the Hybrid-A model was dominant,
from which it followed that the influence of the error accumulation by the autoencoder was
small but present. Now, the dominance of the knowledge-based component for larger latent
spaces was hypothesized to be the effect of the independence of the deep learning model on in-
creasing latent space combined with more knowledge-based dynamics being captured in larger
latent spaces. Therefore, the knowledge-based component gained in relative contribution in
the Hybrid-A model.

Thus, that the Hybrid-A model was not able to outperform the knowledge-based and deep
learning ROMs for all experiments. This was in contrast to the results by Lesjak and Doan

MSc. Thesis J. A. Veerman



6.1 Short-term prediction horizon 48

[7] for low dimensional chaotic systems with a similar hybrid model architecture, but without
the multi-scale autoencoders. It was shown by them that their hybrid model was able to
outperform the knowledge-based and the deep learning reduced order models. Furthermore,
a good performing knowledge-based model combined with a small deep learning reservoir
already significantly improved the results of the hybrid architecture. Evidently from Fig. 6.3
such behaviour was not observed using the Hybrid-A model. This thus indicated that the
inclusion of the autoencoder to allow the hybrid model to efficiently handle high dimensional
data was not beneficial in terms of the short-term prediction horizon. This was likely due to
the fact that to much information was lost in the latent space representation, while the pure
knowledge-based model operated on the physical system combined with the deep learning
performance not increasing for larger latent spaces.

Summary of short-term prediction horizon
For the performance in terms of short-term prediction horizon for the periodic test case, it
was found that the Hybrid-A reduced order model was able to time-accurately predict the
flow for at least 5 periodic times for most experiments. Furthermore, in terms of the influ-
ence of the latent space on the predictive capabilities of the Hybrid-A model, for an latent
space increase from Nlat = 16 to Nlat = 48 a significant influence was observed, however the
cause was unknown. For larger latent space from Nlat = 48 to Nlat = 80 no influence was
found as was expected due to the simple dynamics in latent space, which were easy to learn
by the ESN. For the same reason, the short-term prediction horizon did not show a general
increase for larger reservoirs. In terms of the comparative performance, the Hybrid-A model
was able to significantly outperform the knowledge-based model. This was hypothesized to
be the result of the simple dynamics in latent space, while instabilities occurred in the pure
knowledge-based model. It was shown for the deep learning model that for larger reservoirs
the results were similar compared to the Hybrid-A, resulting from the increasing ESN con-
tribution with reservoir size for the two smaller latent spaces. However, for Nlat = 80, such
behaviour was also observed, but no clear relation with the ESN contribution was found.
Finally, since the performance of the Hybrid-A model did not under perform compared to
the knowledge-based/deep learning ROMs, the (de)compression error accumulation by the
multi-scale autoencoder was not of significance for all latent spaces, which was hypothesized
to be the result of the periodic nature of the flow allowing the model to restore itself from
slight perturbations and the included knowledge-based component was able to compensate
for these errors.

Increasing the Reynolds number to Re = 34, such that chaotic behaviour was observed in the
system resulted in the Hybrid-A model to be able to time-accurately predict the Kolmogorov
flow for about 0.5 to close to 1.8 Lyapunov time depending on the latent space and reservoir
size. Furthermore, a profound influence of the latent space dimensions of the autoencoders
was observed for the Hybrid-A model. For the smallest latent space, the low Hybrid-A
performance was interpreted to be the result of the accumulation of (de)compression errors
by the autoencoders in each iteration. Then, increasing the latent space to Nlat = 192
(and thus 90 POD modes), showed a significant increase in Hybrid-A performance likely
the result of the better performing knowledge-based component as little influence of latent
space dimensions on the pure deep learning model was found. Similarly, as the latent space
increased from Nlat = 192 to Nlat = 320 while the number of POD modes remained the same,
also resulted in a significant increase in Hybrid-A model performance. This was explained by

MSc. Thesis J. A. Veerman



6.2 Long-term flow statistics 49

the increase in knowledge-based contribution for all reservoirs effectively making the Hybrid-A
model similar to the knowledge-based model with the inclusion of the autoencoder. This was a
result of a better representation of the knowledge-based component predictions combined with
no consistent performance increase of the deep learning model as a function of latent space.
Now, in terms of the comparative performance between the Hybrid-A and the knowledge-
based/deep learning ROMs, for all latent space sizes the Hybrid-A model was not able to
outperform both the knowledge-based and the deep learning models. This was interpreted
to be the result of the latent space representation of the physical system in which too much
information was lost to benefit from both components. Furthermore, for smaller latent spaces,
the accumulation of (de)compression errors in each iteration of the Hybrid-A model was
expected to be of importance, while for larger latent space a smaller influence due to lower
reconstruction errors was interpreted.

6.2 Long-term flow statistics

In the previous section of this chapter, the performance of the knowledge-based, deep learning
and Hybrid-A reduced order models were discussed in terms of the short-term prediction
horizon. As two-dimensional Kolmogorov flow was used to test the models on, the long-term
statistics were also of interest. As described in section 5.5, the focus of this section will
be on the mean velocities (⟨u⟩ and ⟨v⟩), mean velocity fluctuations (⟨u′⟩ and ⟨v′⟩) and the
phase space described by the domain averaged kinetic energy E(t) and the domain averaged
dissipation D(t) for both test cases. In particular, for the mean velocities and fluctuations,
the root mean square error between the reduced order models and the reference solution was
considered. In the proceeding of the section, first the statistical results for Re = 20, after
which Re = 34 are presented.

Re = 20
In Fig. 6.5, the results for the root means square error for the ⟨u⟩ (top row) and ⟨v⟩ (bottom
row) between the reduced order models and the reference solutions are presented for the three
latent space sizes. Here the right plot represent the smallest latent space, the middle plot
corresponds to Nlat = 48 and the right plot depicts the largest latent space. In these plots, the
data point for the Nlat = 80 and Nres = 500 experiment was removed for readability as it was
much larger than the rest of the errors. The figures including this data point are presented
in Appendix D. However, the origin of this significantly larger error was unclear. Here,
the statistics were computed over 20.000 integer time steps (section 5.7.2), corresponding to
roughly 143 periodic cycles. Furthermore, the mean of the velocity fluctuations were not
considered as this flow was not turbulent/chaotic.

Starting with the knowledge-based model, for ⟨u⟩ the performance at 18 was slightly better
compared to 84 POD modes, while a lesser performance was obtained for 51 retained POD
modes. This was in contrast with the short-term prediction horizon, where a performance
increase was observed with the inclusion of more modes. Similar to ⟨u⟩, the knowledge-based
model with 51 retained POD modes showed the least good performance for ⟨v⟩. The lesser
performance for 51 retained modes might have been a result of an instability present in the

MSc. Thesis J. A. Veerman



6.2 Long-term flow statistics 50

1000 2000 3000 4000 5000
Reservoir size Nres

0.000
0.005
0.010
0.015
0.020
0.025
0.030

(u
ro

m
u r

ef
)2

Hybrid
Pure deep learning
Knowledge, 18 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0.000
0.005
0.010
0.015
0.020
0.025
0.030

(u
ro

m
u r

ef
)2

Hybrid
Pure deep learning
Knowledge, 51 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0.000
0.005
0.010
0.015
0.020
0.025
0.030

(u
ro

m
u r

ef
)2

Hybrid
Pure deep learning
Knowledge, 84 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

(v
ro

m
v r

ef
)2

Hybrid
Pure deep learning
Knowledge, 18 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

(v
ro

m
v r

ef
)2

Hybrid
Pure deep learning
Knowledge, 51 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

(v
ro

m
v r

ef
)2

Hybrid
Pure deep learning
Knowledge, 84 modes

Figure 6.5: The root mean square error of ⟨u⟩ (top row) and ⟨v⟩ (bottom row) of the flow
between the reduced order models and the reference solution for the knowledge-based, deep
learning and Hybrid-A reduced order models as a function of the number of neurons in the
reservoir at Re = 20. Here, the top left plot is for the multi-scale autoencoder with Nlat = 16,
the top right for Nlat = 48 and the bottom plot for Nlat = 80. The knowledge-based and deep
learning results are displaced slightly in the horizontal direction for clarity.

model that developed over longer time scales and thus did not affect the short-term prediction
horizon. Furthermore, the performance in ⟨v⟩ for 84 POD modes was better compared to 18
retained modes. Finally, the results of ⟨u⟩ at Nlat = 80 a large standard deviation was
observed, which was not present for all other experiments.

Continuing with the deep learning and the Hybrid-A architectures, for ⟨u⟩ both models were
able to outperform the knowledge-based model for most experiments, coinciding with the
short-term observations of Fig. 6.1. However, in general, the differences between the perfor-
mances of the three models was less pronounced compared to the short-term prediction hori-
zon. Here, the better comparative performance of the mean flow from the knowledge-based
was hypothesized to be the result of the fact that in the proper orthogonal decomposition of
this research, the averaged flow was not subtracted and thus the first mode fully represented
the mean. Therefore, the mean flow was well represented by the knowledge-based model.
Now, for Nlat = 16, the Hybrid-A model was able to outperform the deep learning model
in terms of ⟨u⟩ for most reservoirs. However, for the middle and largest latent space, no
clear pattern was observed as for some reservoir sizes the Hybrid-A model performed better
while for others the opposite was true. Finally for Nlat = 16 and Nlat = 51, in contrast to
the short-term horizon results, the deep learning statistics of ⟨u⟩ tended to diverge from the
Hybrid-A solution for increasing reservoir sizes even though the relative contribution of the
ESN in the Hybrid-A increased for larger reservoirs (Fig. 6.2).

Similar to the ⟨u⟩, the experiments showed for ⟨v⟩ that for Nlat = 16 the Hybrid-A model
performed better than deep learning model for most experiments, however both models were
outperformed by the 18 modes knowledge-based model. Furthermore, for larger reservoirs,
similar to ⟨u⟩, the Hybrid-A model diverged from the deep learning solution. Increasing the
latent space size to Nlat = 48, also a better performance by the Hybrid-A model was observed

MSc. Thesis J. A. Veerman



6.2 Long-term flow statistics 51

for reservoirs equal and larger than 2000 neurons and both models performed in general better
than the knowledge-based model, similar to ⟨u⟩. However, a similar divergence of Hybrid-A
and deep learning results is depicted. Upon considering the largest latent space Nlat = 80,
the knowledge-based model outperformed both the deep learning and the Hybrid-A models.
Furthermore, the deep learning model showed better performance than Hybrid-A.

Thus, the above described results on the long-term statistics of the ⟨u⟩ and ⟨v⟩ mean flows
showed that no clear pattern was present in the comparative performance between the Hybrid-
A, knowledge-based and deep learning reduced order models. This also followed from the
relative contributions shown in Fig, 6.2, where an increase in contribution by the ESN was
observed for larger reservoirs, while for both ⟨u⟩ and ⟨v⟩ at Nlat = [16, 48] the Hybrid-A and
deep learning models showed greater differences for larger reservoirs. Similar to the short-
term prediction horizon, no influence of the latent space dimensions on the performance of
the Hybrid-A model was found, which might be the result of the simple dynamics. For
⟨v⟩ at Nlat = [16, 80], the lesser performance of the Hybrid-A model was also unclear. A
likely reason for the lack of clear pattern in comparative performance could have been the
design of the hyperparameter tuning. As shown in section 5.7.1, the validation procedure was
performed by maximizing the short-term prediction horizon. Hence, the deep learning and
Hybrid-A models were not optimized to perform predictions over longer times. Furthermore,
the periodic nature of the flow could have been the origin as the deep learning and Hybrid-A
model were able to sufficiently represent the dynamics already for small reservoir. As a result,
an increase in latent space and/or reservoir size was not beneficial, similar to the short-term
prediction horizon.

Next, the performance of the three models in terms of the domain averaged kinetic energy
E(t) and dissipation D(t) in the system was studied. For this analysis, only the reservoir sizes
compromised of 500 and 2000 neurons are presented in Fig. 6.6 and Fig. 6.7. Here, the first
column represents the reference solution, the second column the knowledge-based, the third
column the deep learning and finally the fourth column the the Hybrid-A model predictions.
Furthermore, the first row representsNlat = 16, second rowNlat = 48 and the third rowNlat =
80. Furthermore, the model settings are also repeated in the title of each plot and the red dot
represents t = 0. In addition, the results for Nres = [1000, 1500, 3000, 4000, 5000] are depicted
in Appendix E. For the knowledge-based model, 18 retained POD modes was not sufficient
to accurately reflect the kinetic energy and dissipation of the system. Still, the solution was
confined to the same domain as the reference solution and increasing the number of modes
showed better performance. For the deep learning model, the predictions on the kinetic energy
and the dissipation of also remained in the same domain as the reference solution. However
only for the largest latent space with 500 neurons in the reservoir a divergence towards a
different region in phase space was present. Typically, for the smallest latent space, the deep
learning model performed better than the knowledge-based model, while the opposite was true
for the two larger latent spaces. Furthermore, for the Hybrid-A model, the kinetic energy
and the dissipation remained confined to a domain similar to one observed for the reference
solution for most model settings. In addition, an increase in the number of POD modes
and latent space had a positive effect on the representation of the trajectories compared to
the reference for some experiments, while a decrease in performance was also observed for
reservoirs of size 1500, 4000 and 5000 neurons. In addition, the increase in the number of
neurons in the reservoirs appeared to be beneficial as well but to a lesser extent.

MSc. Thesis J. A. Veerman



6.2 Long-term flow statistics 52

Figure 6.6: Plots showing the phase space trajectories of the dissipation D(t) and the kinetic
energy E(t) for a reservoir of 500 neurons for the Re = 20 test case. Here, the first column
represents the reference solution, the second column the knowledge-based, the third column the
deep learning and finally the fourth column the the Hybrid-A model predictions. Furthermore, the
first row represents Nlat = 16, second row Nlat = 48 and the third row Nlat = 80 and the red
dot represents t = 0.

Figure 6.7: Plots showing the phase space trajectories of the dissipation D(t) and the kinetic
energy E(t) for a reservoir of 2000 neurons for the Re = 20 test case. Here, the first column
represents the reference solution, the second column the knowledge-based, the third column the
deep learning and finally the fourth column the the Hybrid-A model predictions. Furthermore, the
first row represents Nlat = 16, second row Nlat = 48 and the third row Nlat = 80 and the red
dot represents t = 0.

MSc. Thesis J. A. Veerman



6.2 Long-term flow statistics 53

Re = 34
Similar to Re = 20, the root mean square error between the reduced order model and the
reference solution for the long-term statistics were obtained as a function of the number of
neurons in the reservoir. For Re = 34, the root mean square errors of ⟨u⟩ (top) and ⟨v⟩
(bottom) are depicted in Fig. 6.8. Here, similar to the previous figures on Re = 20, the
left plot represents the smallest latent space Nlat = 64, the middle plot Nlat = 192 and the
right plot corresponds to the largest latent space Nlat = 320. Furthermore, as detailed in
section 5.7.2 the statistics were computed over 40 Lyapunov times, which was significantly
longer than the average short-term prediction horizon.

1000 2000 3000 4000 5000
Reservoir size Nres

0.0

0.5

1.0

1.5

2.0

2.5

(u
ro

m
u r

ef
)2

Hybrid
Pure deep learning
Knowledge, 68 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0.0

0.5

1.0

1.5

2.0

2.5
(u

ro
m

u r
ef

)2

Hybrid
Pure deep learning
Knowledge, 90 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0.0

0.5

1.0

1.5

2.0

2.5

(u
ro

m
u r

ef
)2

Hybrid
Pure deep learning
Knowledge, 90 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

(v
ro

m
v r

ef
)2

Hybrid
Pure deep learning
Knowledge, 68 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

(v
ro

m
v r

ef
)2

Hybrid
Pure deep learning
Knowledge, 90 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

(v
ro

m
v r

ef
)2

Hybrid
Pure deep learning
Knowledge, 90 modes

Figure 6.8: The root mean square error of ⟨u⟩ and ⟨v⟩ between the reduced order models and
the reference solution for the knowledge-based, deep learning and Hybrid-A reduced order models
as a function of the number of neurons in the reservoir at Re = 34. Here, the top left plot is
for the multi-scale autoencoder with Nlat = 64, the top right for Nlat = 192 and the bottom
plot for Nlat = 320. The knowledge-based and deep learning results are displaced slightly in the
horizontal direction for clarity.

In Fig. 6.8 the errors for the Re = 34 were significantly larger than for the periodic test case
for both ⟨u⟩ and ⟨v⟩ as a result of the chaotic nature of this test case. Furthermore, compared
to short-term prediction horizon, the relative standard deviations were overall smaller for ⟨u⟩
and ⟨v⟩, indicating that for these statistics the initial condition had less influence. For the
knowledge-based model, an increase in the number of modes did not influence the prediction
errors (as opposed to the short-term prediction horizon), which was likely an effect of the
fact that the first POD mode already fully represented the mean flow. Furthermore, slightly
larger errors were found for ⟨v⟩ compared to ⟨u⟩.

For the deep learning reduced order model at the smallest latent space size Nlat = 64 for both
⟨u⟩ and ⟨v⟩, a large variation in performance as a function of the reservoir size was present
compared to the knowledge-based and the Hybrid-A models. Furthermore, when taking into
account the short-term prediction horizon of Fig. 6.3, a larger prediction horizon did not
generally indicate a more accurate long-term statistics. For Nlat = 192, the variations in the
root mean square error of ⟨u⟩ and ⟨v⟩ was slightly reduced, however for the deep learning
model the error in ⟨v⟩ increased slightly for larger reservoirs as opposed to the increasing
ESN contribution. For the largest latent space, a similar behaviour was found where the

MSc. Thesis J. A. Veerman



6.2 Long-term flow statistics 54

performance tended decreased for increasing number of neurons. For both latent space sizes,
such patterns were not observed for the short-term prediction horizon for the deep learning
model (Fig. 6.3).

For the Hybrid-A reduced order model at Nlat = 64, it was shown for ⟨u⟩ that for smaller
reservoirs the Hybrid-A model showed slightly better performance compared to the knowledge-
based model. However, increasing the number of neurons resulted in a performance similar
to the knowledge-based model. In contrast, for ⟨v⟩ at the smallest latent space, the Hybrid-A
model was always outperformed by the knowledge-based model. However, compared to the
deep learning model, no clear pattern was observed as a result of the large variations in the
deep learning statistics. Then, for an increase of the latent space to Nlat = 192, the Hybrid-
A model showed slight improvement over the knowledge-based model for ⟨u⟩, while similar
performance was observed for ⟨v⟩. However, in comparison with the deep learning model, the
Hybrid-A model showed less dependence on the reservoir size. Finally, for the largest latent
space, still the performance of the Hybrid-A and knowledge-based were similar while the
Hybrid-A model did not coincided well with the deep learning model for most experiments.

Aside from the root mean square error for ⟨u⟩ and ⟨v⟩ between the reduced order models
and the reference solution, also the RMSE for the mean velocity fluctuations ⟨u′⟩ and ⟨v′⟩
were considered as depicted in Fig. 6.9. For both velocity fluctuation components, the error
between the true and the predicted solution is of the order 10−14 since the mean fluctuations
of the reference solution were also very small. Still, it showed that the fluctuations were well
represented by all three reduced order models.

1000 2000 3000 4000 5000
Reservoir size Nres

0
1
2
3
4
5
6
7

(u
′ ro

m
u′

re
f

)2 1e 14

Hybrid
Pure deep learning
Knowledge, 68 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0
1
2
3
4
5
6
7

(u
′ ro

m
u′

re
f

)2 1e 14

Hybrid
Pure deep learning
Knowledge, 90 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0
1
2
3
4
5
6
7

(u
′ ro

m
u′

re
f

)2 1e 14

Hybrid
Pure deep learning
Knowledge, 90 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0
1
2
3
4
5
6
7

(v
′ ro

m
v′

re
f

)2 1e 14
Hybrid
Pure deep learning
Knowledge, 68 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0
1
2
3
4
5
6
7

(v
′ ro

m
v′

re
f

)2 1e 14

Hybrid
Pure deep learning
Knowledge, 90 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0
1
2
3
4
5
6
7

(v
′ ro

m
v′

re
f

)2 1e 14

Hybrid
Pure deep learning
Knowledge, 90 modes

Figure 6.9: The root mean square error of the mean ⟨u′⟩ and ⟨v′⟩ between the reduced order
models and the reference solution for the knowledge-based, deep learning and hybrid reduced
order models as a function of the number of neurons in the reservoir at Re = 34. Here, the top
left plot is for the multi-scale autoencoder with Nlat = 64, the top right for Nlat = 192 and the
bottom plot for Nlat = 320. The knowledge-based and deep learning results are displaced slightly
in the horizontal direction for clarity.

Finally, similar to Re = 20, the phase space trajectories of the dissipation D(t) against
kinetic energy E(t) were plotted for all latent space and reservoirs size for the reference,
knowledge-based, deep learning and Hybrid-A models. For this analysis, only the reservoir

MSc. Thesis J. A. Veerman



6.2 Long-term flow statistics 55

sizes compromised of 500 and 2000 neurons are presented in Fig. 6.10 and Fig. 6.11. Here,
the first column represents the reference solution, the second column the knowledge-based,
the third column the deep learning and finally the fourth column the the Hybrid-A model
predictions. Furthermore, the first row represents Nlat = 64, second row Nlat = 192 and the
third row Nlat = 320. Furthermore, the model are also repeated in the title of each plot. The
results for Nres = [1000, 1500, 3000, 4000, 5000] are depicted in Appendix F.

Figure 6.10: Plots showing the phase space trajectories of the dissipation D(t) and the kinetic
energy E(t) for a reservoir of 500 neurons for the Re = 34 test case. Here, the first column
represents the reference solution, the second column the knowledge-based, the third column the
deep learning and finally the fourth column the the Hybrid-A model predictions. Furthermore, the
first row represents Nlat = 64, second row Nlat = 192 and the third row Nlat = 320 and the red
dot represents t = 0.

For the knowledge-based reduced order model, the trajectories in phase space were confined
to a domain larger than for the reference solution, however still most of the reference domain
overlapped with the knowledge-based domain. In addition, the increase of the number of
modes slightly improved the trajectories.

On the other hand, for the deep learning reduced order model, the long term kinetic energy
and dissipation did not remain in the confined domain of the reference phase space. Rather,
for most experiments the phase space trajectories diverged towards a distant region of much
larger domain-averaged kinetic energy and in some cases also significantly larger dissipation.
In these region, the trajectories either stagnated in a single fixed point or formed a point
cloud. Furthermore, for some experiments the phase space trajectories moved to a region
of lower kinetic energy and dissipation (for example Nlat = 64 and Nres = 2000). Now, for
experiments such as Nlat = 64 with 2000 neurons and Nlat = [192, 320] with 3000 and 4000
neurons a good performance in terms of ⟨u⟩ and ⟨v⟩ was found. However from the phase space
trajectory it actually followed that these experiments moved towards a fixed point and thus
were not accurate on longer time scales. Hence, for the mean flow and fluctuations, either
the deep learning errors were much larger compared to the other models or of comparable
performance. When comparing these results with the phase trajectories, good deep learning

MSc. Thesis J. A. Veerman



6.2 Long-term flow statistics 56

Figure 6.11: Plots showing the phase space trajectories of the dissipation D(t) and the kinetic
energy E(t) for a reservoir of 2000 neurons for the Re = 34 test case. Here, the first column
represents the reference solution, the second column the knowledge-based, the third column the
deep learning and finally the fourth column the the Hybrid-A model predictions. Furthermore, the
first row represents Nlat = 64, second row Nlat = 192 and the third row Nlat = 320 and the red
dot represents t = 0.

results for the temporal mean coincided for most experiments with a single point convergence
close to the confined domain in phase space and thus these predictions actually did not perform
well. Thus, comparing these findings with the short-term prediction horizon, no correlation
in terms of short-term and long-term performance was found for the deep learning model.

The missing correlation between the short-term prediction horizon and long-term statistics
however was surprising as Racca et al. [57] studied a similar deep learning reduced order
model for which correlation between the short-term prediction horizon and the long-term
statistics was observed. This was thought to be the result of the Bayesian optimisation of
the hyperparameters since in this work tuning occurred by maximizing the prediction horizon
and thus biasing focusing on that performance criteria. On the other hand, in the work of
Racca et al. [57] the mean error between the predicted and reference solution was minimized
over a much longer time frame. Thus, the ESN was made more suitable for longer term
predictions. This was expected to be the most important factor for the lack of correlation
between the short-term and long-term results in this work. Furthermore, Racca et al. [57]
used an ensemble of 10 echo state networks to reduce the effect of the random initializations
of the input and the internal matrices, while this work only used a single echo state network in
view of computation cost of the Hybrid-A model. Other primary differences were that Racca
et al. [57] used a significantly more grid points in the search space of the grid search-Bayesian
optimisation for the hyperparameters and the leaking rate hyperparameter was not tuned but
fixed. Thus, their tuned hyper parameter could have been more optimal compared to this
work and thus worked better for prediction over longer time series.

Finally, for the phase space trajectories of the Hybrid-A model, in contrast to the deep

MSc. Thesis J. A. Veerman



6.2 Long-term flow statistics 57

learning reduced order model, no divergence to a single fixed point was observed. This
indicated that the inclusion of the knowledge-based component allowed to stabilize the model
to a certain extend on longer prediction time scales. However, still for almost all experiments
the trajectories were confined to a domain which was significantly larger than for the reference
solution, where the dissipation was sometimes over 10 times larger and the kinetic energy was
about 3 times larger. However, despite no fixed point convergence occurred, both the kinetic
energy and the dissipation were significantly larger for most experiments. In contrast, for the
hybrid architecture without autoencoders for low dimensional chaotic systems by Lesjak and
Doan [7], the hybrid model was able to stay confined to the same phase space domain as the
reference solution, further indicating the influence of the added autoencoders. Surprisingly,
their hyperparameters were also determined from the short-term prediction horizon, possibly
indicating the influence of the latent space representation and the accompanied lost dynamics.

Summary of long-term statistics
To summarize the long-term statistics, for the mean flow of the periodic regime (Re = 20) no
consistent differences in performance were found for the Hybrid-A at larger reservoirs as well as
larger latent spaces. Similar results were found for the phase space trajectories of the kinetic
energy and dissipation, where an increase in autoencoder latent space dimensions had no
profound influence. In terms of the comparative performance of the Hybrid-A model and the
knowledge-based/deep learning models no clear pattern was found. Both were hypothesized
to be the result of a non-optimal validation design for long term predictions and/or from
the periodic nature of the flow. Still, due to the preservation of the mean flow in only the
first POD mode, the knowledge-based model was able to show better relative performance
compared to the short-term prediction horizon.

Now, increasing the Reynolds number to the Re = 34 chaotic regime, it was found that for
the Hybrid-A reduced order model, the multi-scale autoencoder had little influence on the
long-term statistics. Furthermore, for the comparative performance of mean flow, the Hybrid-
A model mostly followed the knowledge-based solution hypothesized to be the result of the
well preservation of the mean flow by the first POD mode. However, for the deep learning
ROM most experiments tended towards a single point convergence as observed from the phase
space trajectories. Similar to the knowledge-based, for the Hybrid-A model no fixed points
were observed indicating that the knowledge-based component was able to somewhat stabilize
the Hybrid-A model slightly. Still, the Hybrid-A phase space trajectories moved to a distant
region of the phase space indicating less well performance compared to the knowledge-based
model. Here, the poor performance of the deep learning model and consequently also the
Hybrid-A model was likely a result of the hyperparameter tuning that favored the short-term
prediction horizon.

MSc. Thesis J. A. Veerman



6.3 Limitations 58

6.3 Limitations

In the previous two sections, the results on the performance of the short-term prediction
horizon and the long-term statistics of the Hybrid-A model were discussed. However, in the
research, several limitations were present.

The first limitation of this work was the computational cost to evaluate the Hybrid-A archi-
tectures, which was a consequence of the (de)compression in every iteration over time. As a
result, only a small amount of evaluations were performed in the Bayesian optimisation and
thus it was anticipated that better performance could have been obtainable. In addition, the
boundaries of the search space in Bayesian optimisation were limiting as the search space
cannot be too wide for only a limiting number of evaluation points. However, as a result,
more often than not one or multiple hyperparameters were tuned to these boundaries.

The second limitation of the model was the multi-scale autoencoder and more specifically
the need to compress and decompress the physical system into a latent space format in every
iteration. This requirements resulted from that fact that the ESN must operate on a lower
dimensional representation of the physical system due to computational restrictions. How-
ever this compression/decompression added a small error in every iteration, which decreased
with increasing latent space size. In addition, by compressing the physical into a latent space
format, a lot of information on the system was removed resulting in a reduction of the pre-
dictive capabilities of the models operating on the latent space. The third limitation was
the result of the construction of the knowledge-based model. Similar to Lesjak and Doan [7]
an imperfect physical model was obtained through proper orthogonal decomposition and the
projection of the governing equations onto the set of POD modes. Through a truncation of
the number of modes, a certain amount of dynamics was removed from the system. However,
since the POD modes were ranked based on their energy content, it was not controllable
which dynamics were removed, only the amount energy that was represented. A second issue
with the truncation of the number of modes was that instabilities were introduced into the
reduced order model, which errors grew quickly over time.

The fourth limitation was in terms of hyperparameter tuning design where maximizing the
short-term prediction horizon was chosen, whereas minimizing the error between the reference
and reduce order solutions would have been more suitable for the long-term statistical predic-
tions. Furthermore, the number of snapshots from which the POD modes were computed was
larger than the number of training snapshots for the ESN and the POD mode data set also
contained the reference data set. This could have resulted in slightly more biased performance
of the knowledge-based component compared to the deep learning component. Finally, the
last limitation was that the hybrid models were only applied one chaotic system and therefore
its performance was not tested over a variety of different high dimensional chaotic systems.
Here, the Reynolds number was also limiting as the spatial dimensions of a fluid mechani-
cal systems increase fast with increasing Reynolds number [8]. Therefore, highly turbulent
systems were not possible due to restriction in computational resources. In addition, larger
Reynolds number would require larger latent spaces to retain low reconstruction errors by
the autoencoder and thus the deep learning component would also be required to operate on
increasingly large latent space dimensions.

MSc. Thesis J. A. Veerman



Chapter 7

Hybrid-FFNN: Results and discussion

As stated earlier, also a second hybrid architecture was proposed in this work. However, only
preliminary results were obtained for this model and for that reason it is treated separately
from the results (Chapter 6) of the first (main) hybrid reduced order model introduced in
section 5.4. In the first part of this chapter the proposed second hybrid architecture is
introduced, which is based on the techniques described in Chapters 2, 3 and 5. Then, the
model settings for the short-term predictions are briefly outlined and finally in the last part
the preliminary results are shown. For this model, no long-term statistics were considered.

7.1 Hybrid model

The architecture of the second proposed hybrid model is presented in Fig. 7.1. The primary
difference between this hybrid architecture and the Hybrid-A model (section 5.4) was the
methodology of combining the predictions made by the knowledge-based and deep learning
components, which did not occur in the echo state network. Rather, a separate feed-forward
neural network was implemented that took the encoded knowledge-based and deep learning
predictions as input and returned their combined contribution as the prediction in physical
space. Here, the feed-forward neural network consisted of a dense neural network followed by
the decoder from the multi-scale autoencoder.

MSc. Thesis J. A. Veerman



7.2 Feed-forward neural network 60

POD-GL 
  ROM

Encoder

Encoder

Input Matrix Output Matrix 

FFNN

Figure 7.1: Image showing the second proposed hybrid based on a feed-forward neural network
(FFNN) to combine the predictions by the knowledge-based and the deep learning components.
Here, the feed-forward neural network consists of both the dense neural network followed by the
decoder of the multi-scale autoencoder.

7.2 Feed-forward neural network

In the previous section, the proposed second Hybrid-FFNN model was presented and the
primary differences with the Hybrid-A architecture were highlighted. In this section, more
information is provided on the feed-forward neural network used to combine the knowledge-
based and deep learning components.

Architecture
The architecture of the feed-forward neural network is presented in Appendix G and consisted
of 8 layers. The first layer was the input layer with 2Nlat input parameters for the knowledge-
based and deep learning predictions. Next, three dense neural layers each with 300 neurons
and a tangent hyperbolic activation function were used, followed by a dense neural layer with
320 neurons also with a tangent hyperbolic activation function. The final dense neural layers
also consisted of 320 neurons (corresponding to the latent space output dimensions) with a
linear activation function. The aforementioned neural layers was composed of over 570,000
trainable parameters.

In order to train the feed-forward network, the physical space reference solution was used as
target data. Therefore, the output of the last dense layer was reshaped by a reshaped layer
since the decoder operated on two dimensional data and the output of the dense layers was one
dimensional. Finally, the eighth layer was the multi-scale decoder which decompressed output
of the last dense layer into physical space. In contrast to the dense layers, the parameters of
the decoder were set to be non-trainable and were not altered.

Training and methodology
The feed-work network was trained on 65,000 snapshots equispaced by δt = 0.4 and thus
coincide with 162,500 integer time units. For the validation 15,000 snapshots (37,500 integer
time units) were used. For each snapshot, a one-step in time prediction was performed for
the knowledge-based and the deep learning components. These solutions were combined in
latent space and served as input data for the feed-forward neural network.

Training and validation data was obtained for Nres = [500, 1000, 1500, 2000, 3000] for only

MSc. Thesis J. A. Veerman



7.3 Results and discussion 61

the multi-scale autoencoder with Nlat = 320 (Re = 34). The training and validation loss
computed by the mean square error are shown Tab. 7.1.

Table 7.1: Table showing the training Ltrain and validation Lval losses of the feed-forward neural
network used in the Hybrid-FFNN model.

Nres Ltrain Lval

500 0.0048 0.0067

1000 0.0048 0.0064

1500 0.0047 0.0060

2000 0.0046 0.0064

3000 0.0047 0.0060

In this Hybrid-FFNN architecture, the echo state network was pre-trained and thus the hyper
parameters were already tuned using the grid search-Bayesian optimisation (section 5.7.1).
Here, the same hyper parameter were used as obtained for the pure deep learning reduced
order model (Appendix G). For the predictions, the same settings were used as for the Hybrid-
A model as presented in section 5.4.

7.3 Results and discussion

For the Hybrid-FFNN only the largest latent space of Nlat = 320 was considered for the
reservoirs sizes from 500 to 3000 neurons for only the short-term prediction horizon, to provide
a demonstration of concept of this architecture. The short-term prediction horizon of the
Hybrid-A and the Hybrid-FFNN model are depicted in Fig. 7.2

500 1000 1500 2000 2500 3000
Reservoir size Nres

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
ed

ict
io

n 
ho

riz
on

 t h
or

t ly
ap

Hybrid-A Hybrid-FFNN

Figure 7.2: Plots showing the short-term prediction horizons of the hybrid-A and the hybrid-
FFNN models as a function of the reservoir size for Nlat = 320.

MSc. Thesis J. A. Veerman



7.3 Results and discussion 62

The gap in performance was thought to be the consequence of the feed-forward neural network
utilized by Hybrid-FFNN as the training and validation losses was several orders of magnitude
larger than the multi-scale autoencoder (de)compression errors (Tab. 5.2). Thus in each
iteration over time, a significant error was introduced into the Hybrid-FFNN solution.

Limitations
The first limitation concerned the training and validation losses of the feed-forward neural
network. It was shown that performance of the Hybrid-FFNN was limited due to the large
errors introduced by the FFNN. Hence, to reduce these errors, more dense layers and neurons
in each layer should be added and as a result more training/validation data would have been
required. However, the current network already consisted of over half a million trainable
parameter and in view of the computational cost it was decided to not further increase the
size of the network. Thus, the result in this work should be considered as a demonstration of
concept of using a feed-forward neural network for the blending of the knowledge-based and
deep learning predictions.

Furthermore, for the Hybrid-FFNN model an important limitation was that if the knowledge-
based components performed a prediction in time, a certain amount of this physics is lost as
a result of the truncation of the amount of modes. However, during a prediction of the deep
learning component, also information was lost. Thus, when mixing the predictions by both
components, the lost information cannot be retrieved. On the other hand, for the hybrid-A
model, the blending occurred within the echo state network. Hence, the ESN was effectively
trained to fill the gap between the true encoded solution and the knowledge-based encoded
solution [7] such that it compensated for the lost physics.

MSc. Thesis J. A. Veerman



Chapter 8

Conclusion

In order to answer the primary research question of thesis ”How can a hybrid knowledge-
based/deep learning reduced order model approach be designed to enable the accurate short
term and long term predictions of high dimensional chaotic systems?” two main sub-questions
were considered. In the first sub-question, two hybrid architectures using autoencoders were
proposed, their performance in terms of short-term prediction horizon and long-term statistics
and the influence of the latent space on the performance were addressed. In the second sub-
question the hybrid model performance was compared to a pure knowledge-based model and
a pure deep learning reduced order model. The knowledge-based model consisted of the
Galerkin projection of the governing equations onto a set of orthonormal model obtained
through proper orthogonal decomposition. The deep learning component was an echo state
network that operated on the latent space representation of the physical system obtained
through a multi-scale autoencoder.

In this work, the Hybrid-A and the Hybrid-FFNN architectures were proposed. In the Hybrid-
A model, the one-step-ahead prediction of the knowledge-based component was combined
with the Hybrid-A output of the previous time step and both were encoded into latent space
representation and fed into the deep learning component in which a blending of the predictions
occurred. Therefore, the deep learning component effectively learned the dynamics that were
lost in the knowledge-based reduced order model. In contrast, in the Hybrid-FFNN model
the blending of the predictions of the two components occurred in a separate feed-forward
neural network. In order to study the performances, the Hybrid-A model was applied to
two-dimensional Kolmogorov flow at a Reynolds number of Re = 20 (periodic regime) and
Re = 34 (chaotic regime), while preliminary results were obtained for the Hybrid-FFNN
model for the chaotic test case.

Short-term prediction horizon
For the Kolmogorov flow at Re = 20, the Hybrid-A model was able to predict for most experi-
ments at least 5 periodic cycles. Since this test case was periodic, the dynamics were relatively
simple and due to the low (de)compression errors by the multi-scale autoencoder also the la-

MSc. Thesis J. A. Veerman



64

tent space representation would have been (approximately) periodic. For this reason, the
Hybrid-A and deep learning were able to perform well in terms of the short-term prediction
horizon compared to the knowledge-based technique that suffered from instabilities due to
modal reduction. Furthermore, due to the simple dynamics, small reservoirs were already
capable of reflecting the dynamics and hence no consistent improvement of performance was
present for larger echo state networks and latent space representations. The relative contribu-
tion of the ESN in the Hybrid-A tended to increase for larger reservoir, but this pattern was
only observed for the smaller two latent spaces. For this reason, the Hybrid-A and deep learn-
ing model predictions became similar for larger reservoirs. However, for smaller reservoirs no
clear comparative performance between the two models was present, likely under influence of
the larger contribution of the knowledge-based component. Finally, in the Hybrid-A model
an accumulation of (de)compression errors occurred, which showed not to be of importance
for this test case. This was due to the periodic nature of the flow and hence the model able
to restore itself and the knowledge-based component was able to compensate for the errors.

Increasing the Reynolds number to Re = 34, such that the flow displayed chaotic behaviour
significantly reduced the short-term prediction horizon of the Hybrid-A model. In addition,
a larger latent space size was required for (de)compression errors similar to the Re = 20 test
case. For Re = 34, the model was able to time-accurately predict for a significant shorter
duration (about 0.5 to 1.8 Lyapunov times) and a larger dependence on initial conditions
was present due to the chaotic nature. Furthermore, the influence of the latent space became
more profound compared to Re = 20. For smaller latent spaces, a deteriorated Hybrid-
A performance was the result of sufficiently large (de)compression errors by the autoencoder
combined with the chaotic nature of the system and thus that in each iteration the knowledge-
based component pushed the model solution further away from the reference solution. As the
latent space increased, the (de)compression error decreased and was shown to become less
significant for the Hybrid-A performance. Furthermore, the deep learning model performance
did not consistently depend on the latent space size, resulting in an increasing contribution
of the knowledge-based component in the Hybrid-A model as larger latent spaces were able
to preserve more dynamics from the knowledge-based prediction. Still, the Hybrid-A model
was not able to outperform the knowledge-based model for larger latent spaces as well, which
was likely caused by the latent space representation through which too much information was
lost to benefit from both components.

Finally, the Hybrid-FFNN model was only applied to Re = 34 Kolmogorov flow at the largest
latent space and had a significantly less performance compared to the Hybrid-A model due
to the large error accumulation of the feed-forward neural network.

Long-term statistics
For the long-term statistics of the Re = 20 and Re = 34 test case a less consistent pattern
in terms of performance was observed. For Re = 20, the mean flow of the knowledge-based
model, in contrast to the short-term prediction horizon, was similar to that of the other two
models. This was explained by the fact that the mean was fully captured by the first POD
mode and thus well represented. Furthermore, for the Hybrid-A model no influence was found
on performance was observed for increasing latent space and reservoir size. Furthermore, for
the comparative performance of the three models between the short-term prediction horizon
and the long-term statistics no clear pattern was observed. These outcomes were hypothesized

MSc. Thesis J. A. Veerman



65

to be the result of the tuning of the hyperparameters as it was chosen to optimized for
the short-term prediction horizon and hence statistics over longer time series were less well
represented and the periodicity of the flow.

Similar results were found for the long-term statistics of the Re = 34 test case. For the mean
flow, the knowledge-based model showed similar performance to the Hybrid-A model as a
result from the preservation of the mean in the first POD mode. On the other hand, the
deep learning model showed a larger variation in mean flow. However, when the phase space
trajectories of the dissipation and kinetic energy were consider, it was found that the deep
learning model tended to move to either a fixed point or a point cloud in a distant region of the
phase space. Hence, despite showing good performance on the mean, the trajectory showed
that the solution tended to a stagnation point, which was not observed in literature using
a similar model and test case [57], indicating the importance of the hyperparameter tuning
method. However, for the hybrid model such stagnation point was not observed showing that
the addition of the knowledge-based component was able to stabilize the model to a certain
extent. Still, most experiments with the hybrid model tended toward a phase space region
distant from the reference solution. Thus, similar to Re = 20, the results on Re = 34 showed
that the chosen validation design was unsuitable for predictions over longer time series.

To conclude both the short-term prediction horizon and long-term statistics. The extension
of the hybrid model by Pathak et al. [61] and Lesjak and Doan [7] to be compatible with
high dimensional chaotic system through the use of autoencoders for dimensional reduction
did not allow the hybrid architecture to consistently outperform both the knowledge-based
and deep learning reduced order model. This was in contrast to the results obtained by
Lesjak and Doan [7] for a similar hybrid model design without the autoencoders for low
dimensional chaotic systems. Thus, combining a proper orthogonal decomposition Galerkin
reduced order model with autoencoder-based deep learning model resulted in the addition
of too much errors such that the additional information provided by the knowledge-based
component was not beneficial. These errors originated from the iterative (de)compression
error by the autoencoder as well as lost dynamics in the latent space. Finally, increasing the
Reynolds number resulted in the need for a larger latent space to keep the (de)compression
errors low. This could be potentially limiting for higher Reynolds number flow for which the
spatial resolution continues to increase, since the latent space would become larger to keep
the (de)compression errors low. As a result, the echo state network would have to operate on
increasingly large latent space representations.

Up to the authors knowledge, this work proposed the first hybrid knowledge-based/deep
learning reduced order model using autoencoders for efficient predictions of high dimensional
chaotic systems. Even though it was found that the proposed Hybrid models were unable
to show increased performance compared to the knowledge-based and deep learning models,
the results should be viewed as a start to design other hybrid architectures for potential
performance improvement.

Recommendations for future work
In the present work, the performance of a newly proposed hybrid knowledge-based/deep
learning reduced order model was assessed. It was shown that the extension of the hybrid
model of Pathak et al. [61] and Lesjak and Doan [7] to efficiently handle high dimensional

MSc. Thesis J. A. Veerman



66

chaotic systems by including autoencoders for dimensional reduction did not result in a better
performance compared to the knowledge-based and deep learning ROMs. Therefore, from this
research, future studies can focus on several open questions.

Firstly, future research can focus on other hybrid architecture designs using either autoen-
coders or other dimensional reduction techniques to allow the hybrid model to show better
performance compared to the pure knowledge-based and pure deep learning reduced order
model. Furthermore, the autoencoder (or other dimensional reduction methods) can be im-
proved by attempting to allow the latent space to reflect more dynamics from the physical
system, while keeping the latent space low-dimensional. Next, in the validation of the ESN,
the hyperparameters were tuned by maximizing the short-term prediction horizon, which was
found to be less optimal for the long-term statistics. Hence, future research can focus on
different validation methods and how these influence the performance of the hybrid models.

The proposed hybrid architectures were only applied to a single high dimensional chaotic
system. Thus, future research can also study the architecture on other chaotic systems such
as linearly forced isotropic turbulence [88]. However, as the complexity of the chaotic system
increases, the knowledge-based type of approach through proper orthogonal decomposition
combined with Galerkin projection might proof to not be sufficient due to instabilities in the
model. Thus further research in stabilizing or applying different types of the knowledge-based
approaches would also be of interest.

Finally, for the Hybrid-FFNN model a slight adaption to the current architecture can be
studied where the echo state network is trained to perform prediction on the difference between
the knowledge-based and the true solution and thus attempts to fill the gap of the truncation
of the POD-modes as well as that these dynamics are easier to learn.

MSc. Thesis J. A. Veerman



Bibliography

[1] D. Toker, F. T. Sommer, and M. D’Esposito. A simple method for detecting chaos in
nature. Communications biology, 3(1):11, 2020.

[2] M. S. Demir, R. N. Ahmet Karaman, and S. D. Oztekin. Chaos Theory and Nursing.
International Journal of Caring Sciences, 12(2):1–4, 2019.

[3] D. Helbing, A. Johansson, and H. Z. Al-Abideen. Dynamics of crowd disasters: An
empirical study. Physical review E, 75(4):046109, 2007.

[4] E. N. Lorenz. Deterministic Nonperiodic Flow. Journal of Atmospheric Sciences,
20(2):130–141, 1963.

[5] É. Ghys. The Lorenz Attractor, a Paradigm for Chaos. In Chaos: Poincaré Seminar
2010, pages 1–54. Springer, 2013.

[6] The Royal Dutch Meteorological Institue (KNMI). Achtergrondinformatie Weer-
en klimaatpluim en Expertpluim. https://www.knmi.nl/kennis-en-datacentrum/

achtergrond/over-de-weer-en-klimaatpluim-en-expertpluim, 2023. Accessed: 23-
05-2023.

[7] M. Lesjak and N. A. K. Doan. Chaotic systems learning with hybrid echo state net-
work/proper orthogonal decomposition based model. Data-Centric Engineering, 2:e16,
2021.

[8] S. B. Pope. Turbulent Flows. Cambridge University Press, 2000.

[9] O. Reynolds. Iv. on the Dynamical Theory of Incompressible Viscous Fluids and the
Determination of the Criterion. Philosophical Transactions of the Royal Society of Lon-
don.(a.), (186):123–164, 1895.

[10] J. Smagorinsky. General circulation experiments with the primitive equations: I. The
basic experiment. Monthly Weather Review, 91(3):99–164, 1963.

[11] C. W. Rowley and S. T. M. Dawson. Model Reduction for Flow Analysis and Control.
Annual Review of Fluid Mechanics, 49:387–417, 2017.

[12] K. Taira, S. L. Brunton, S. T. M. Dawson, C. W. Rowley, T. Colonius, B. J. McKeon,
O. T. Schmidt, S. Gordeyev, V. Theofilis, and L. S. Ukeiley. Modal Analysis of Fluid
Flows: An Overview. AIAA Journal, 55(12):4013–4041, 2017.

MSc. Thesis J. A. Veerman

https://www.knmi.nl/kennis-en-datacentrum/achtergrond/over-de-weer-en-klimaatpluim-en-expertpluim
https://www.knmi.nl/kennis-en-datacentrum/achtergrond/over-de-weer-en-klimaatpluim-en-expertpluim


Bibliography 68

[13] W. Keiper, A. Milde, and S. Volkwein. Reduced-order modeling (ROM) forSsimula-
tion and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing.
Springer, 2018.

[14] B. R. Noack, M. Morzynski, and G. Tadmor. Reduced-order modelling for flow control,
volume 528. Springer Science & Business Media, 2011.

[15] A. Quarteroni, G. Rozza, et al. Reduced Order Methods for Modeling and Computational
Reduction, volume 9. Springer, 2014.

[16] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley. Turbulence, Coherent Struc-
tures, Dynamical Systems and Symmetry. Cambridge University Press, 2012.

[17] J. L. Lumley. The structure of inhomogeneous turbulent flows. Atmospheric Turbulence
and Radio Wave Propagation, pages 166–178, 1967.

[18] P. J. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal
of Fluid Mechanics, 656:5–28, 2010.

[19] M. Sieber, C. O. Paschereit, and K. Oberleithner. Spectral proper orthogonal decompo-
sition. Journal of Fluid Mechanics, 792:798–828, 2016.

[20] A. E. Deane, I. G. Kevrekidis, G. E. Karniadakis, and S. A. Orszag. Low-dimensional
models for complex geometry flows: Application to grooved channels and circular cylin-
ders. Physics of Fluids A: Fluid Dynamics, 3(10):2337–2354, 1991.

[21] W. Cazemier, R. W. C. P. Verstappen, and A. E. P. Veldman. Proper orthogonal
decomposition and low-dimensional models for driven cavity flows. Physics of Fluids,
10(7):1685–1699, 1998.

[22] A. Omurtag and L. Sirovich. On Low-Dimensional Modeling of Channel Turbulence.
Theoretical and Computational Fluid Dynamics, 13(2):115–127, 1999.

[23] P. S. Johansson, H. I. Andersson, and E. M. Rønquist. Reduced-basis modeling of
turbulent plane channel flow. Computers & Fluids, 35(2):189–207, 2006.

[24] X. Ma and G. E. Karniadakis. A low-dimensional model for simulating three-dimensional
cylinder flow. Journal of Fluid Mechanics, 458:181–190, 2002.

[25] M. Buffoni, S. Camarri, A. Iollo, and M. V. Salvetti. Low-dimensional modelling of a
confined three-dimensional wake flow. Journal of Fluid Mechanics, 569:141–150, 2006.

[26] C. W. Rowley, T. Colonius, and R. M. Murray. Model reduction for compressible flows
using POD and Galerkin projection. Physica D: Nonlinear Phenomena, 189(1-2):115–
129, 2004.

[27] R. Bourguet, M. Braza, and A. Dervieux. Reduced-order modeling for unsteady transonic
flows around an airfoil. Physics of Fluids, 19(11):111701, 2007.

[28] J. Chen, D. Han, B. Yu, D. Sun, and J Wei. A POD-Galerkin reduced-order model for
isotropic viscoelastic turbulent flow. International Communications in Heat and Mass
Transfer, 84:121–133, 2017.

MSc. Thesis J. A. Veerman



Bibliography 69

[29] Y. Wang, H. Ma, W. Cai, H. Zhang, J. Cheng, and X. Zheng. A POD-Galerkin reduced-
order model for two-dimensional Rayleigh-Bénard convection with viscoelastic fluid. In-
ternational Communications in Heat and Mass Transfer, 117:104747, 2020.

[30] J. Chen, D. Han, B. Yu, D. Sun, and J. Wei. POD-Galerkin reduced-order model for
viscoelastic turbulent channel flow. Numerical Heat Transfer, Part B: Fundamentals,
72(3):268–283, 2017.

[31] A. E. Deane and C. Mavriplis. Low-Dimensional Description of the Dynamics in Sepa-
rated Flow past Thick Airfoils. AIAA journal, 32(6):1222–1227, 1994.

[32] Sk. M. Rahman, S. E. Ahmed, and O. San. A dynamic closure modeling framework for
model order reduction of geophysical flows. Physics of Fluids, 31(4):046602, 2019.

[33] L. Gonon and J.-P. Ortega. Reservoir Computing Universality With Stochastic Inputs.
IEEE transactions on neural networks and learning systems, 31(1):100–112, 2019.

[34] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1735–1780, 1997.

[35] H. Jaeger. The “echo state” approach to analysing and training recurrent neural
networks-with an Erratum note. Bonn, Germany: German National Research Center
for Information Technology GMD Technical Report, 148(34):13, 2001.

[36] W. E. Faller and S. J. Schreck. Unsteady Fluid Mechanics Applications of Neural Net-
works. Journal of Aircraft, 34(1):48–55, 1997.

[37] A. Sherstinsky. Fundamentals of recurrent neural network (RNN) and long short-term
memory (LSTM) network. Physica D: Nonlinear Phenomena, 404:132306, 2020.

[38] H. Jaeger and H. Haas. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving
Energy in Wireless Communication. Science, 304(5667):78–80, 2004.

[39] J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott. Using machine learning to
replicate chaotic attractors and calculate Lyapunov exponents from data. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 27(12):121102, 2017.

[40] A. Wikner, J. Pathak, B. Hunt, M. Girvan, T. Arcomano, I. Szunyogh, A. Pomerance,
and E. Ott. Combining machine learning with knowledge-based modeling for scalable
forecasting and subgrid-scale closure of large, complex, spatiotemporal systems. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 30(5):053111, 2020.

[41] Z. Wang, D. Xiao, F. Fang, R. Govindan, C. C. Pain, and Y. Guo. Model identification
of reduced order fluid dynamics systems using deep learning. International Journal for
Numerical Methods in Fluids, 86(4):255–268, 2018.

[42] Sk. M. Rahman, S. Pawar, O. San, A. Rasheed, and T. Iliescu. Nonintrusive reduced order
modeling framework for quasigeostrophic turbulence. Physical Review E, 100(5):053306,
2019.

[43] A. T. Mohan and D. V. Gaitonde. A deep learning based approach to reduced or-
der modeling for turbulent flow control using LSTM neural networks. arXiv preprint
arXiv:1804.09269, 2018.

MSc. Thesis J. A. Veerman



Bibliography 70

[44] Z. Deng, Y. Chen, Y. Liu, and K. C. Kim. Time-resolved turbulent velocity field re-
construction using a long short-term memory (LSTM)-based artificial intelligence frame-
work. Physics of Fluids, 31(7):075108, 2019.

[45] P. A. Srinivasan, L. Guastoni, H. Azizpour, P. Schlatter, and R. Vinuesa. Predictions of
turbulent shear flows using deep neural networks. Physical Review Fluids, 4(5):054603,
2019.

[46] A. Lario, R. Maulik, O. T. Schmidt, G. Rozza, and G. Mengaldo. Neural-network learning
of SPOD latent dynamics. Journal of Computational Physics, 468:111475, 2022.

[47] S. Pandey and J. Schumacher. Reservoir computing model of two-dimensional turbulent
convection. Physical Review Fluids, 5(11):113506, 2020.

[48] F. Heyder and J. Schumacher. Echo state network for two-dimensional turbulent moist
Rayleigh-Bénard convection. Physical Review E, 103(5):053107, 2021.

[49] A. Racca and L. Magri. Data-driven prediction and control of extreme events in a chaotic
flow. Physical Review Fluids, 7(10):104402, 2022.

[50] R. Maulik, B. Lusch, and P. Balaprakash. Reduced-order modeling of advection-
dominated systems with recurrent neural networks and convolutional autoencoders.
Physics of Fluids, 33(3):037106, 2021.

[51] A. Shrestha and A. Mahmood. Review of Deep Learning Algorithms and Architectures.
IEEE access, 7:53040–53065, 2019.

[52] R. Han, Y. Wang, Y. Zhang, and G. Chen. A novel spatial-temporal prediction method
for unsteady wake flows based on hybrid deep neural network. Physics of Fluids,
31(12):127101, 2019.

[53] T. Murata, K. Fukami, and K. Fukagata. Nonlinear mode decomposition with convolu-
tional neural networks for fluid dynamics. Journal of Fluid Mechanics, 882:A13, 2020.

[54] S. Pandey, P. Teutsch, P. Mäder, and J. Schumacher. Direct data-driven forecast of local
turbulent heat flux in Rayleigh-Bénard convection. Physics of Fluids, 34(4):045106, 2022.

[55] K. Hasegawa, K. Fukami, T. Murata, and K. Fukagata. Machine-learning-based reduced-
order modeling for unsteady flows around bluff bodies of various shapes. Theoretical and
Computational Fluid Dynamics, 34:367–383, 2020.

[56] T. Nakamura, K. Fukami, K. Hasegawa, Y. Nabae, and K. Fukagata. Convolutional
neural network and long short-term memory based reduced order surrogate for minimal
turbulent channel flow. Physics of Fluids, 33(2):025116, 2021.

[57] A. Racca, N. A. K. Doan, and L. Magri. Modelling spatiotemporal turbulent dynamics
with the convolutional autoencoder echo state network. arXiv preprint arXiv:2211.11379,
2022.

[58] P. Wu, S. Gong, K. Pan, F. Qiu, W. Feng, and C. Pain. Reduced order model using
convolutional auto-encoder with self-attention. Physics of Fluids, 33(7):077107, 2021.

MSc. Thesis J. A. Veerman



Bibliography 71

[59] S. Dutta, P. Rivera-Casillas, B. Styles, and M. W. Farthing. Reduced Order Modeling
Using Advection-Aware Autoencoders. Mathematical and Computational Applications,
27(3):34, 2022.

[60] K. Fukami, T. Nakamura, and K. Fukagata. Convolutional neural network based hier-
archical autoencoder for nonlinear mode decomposition of fluid field data. Physics of
Fluids, 32(9):095110, 2020.

[61] J. Pathak, A. Wikner, R. Fussell, S. Chandra, B. R. Hunt, M. Girvan, and E. Ott.
Hybrid forecasting of chaotic processes: Using machine learning in conjunction with
a knowledge-based model. Chaos: An Interdisciplinary Journal of Nonlinear Science,
28(4):041101, 2018.

[62] Z. Y. Wan, P. Vlachas, P. Koumoutsakos, and T. Sapsis. Data-assisted reduced-order
modeling of extreme events in complex dynamical systems. PloS one, 13(5):e0197704,
2018.

[63] S. Pawar, S. E. Ahmed, O. San, and A. Rasheed. Data-driven recovery of hidden physics
in reduced order modeling of fluid flows. Physics of Fluids, 32(3):036602, 2020.

[64] P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos. Data-driven
forecasting of high-dimensional chaotic systems with long short-term memory networks.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
474(2213):20170844, 2018.

[65] J. Weiss. A Tutorial on the Proper Orthogonal Decomposition. In AIAA Aviation 2019
forum, page 3333, 2019.

[66] M. Lesjak. Prediction of Chaotic Systems with Physics - Enhanced Machine Learning
Models (Master thesis). 2020.

[67] H. G. Matthies and M. Meyer. Nonlinear Galerkin methods for the model reduction of
nonlinear dynamical systems. Computers & structures, 81(12):1277–1286, 2003.

[68] K. Hornik, M. Stinchcombe, and H. White. Multilayer Feedforward Networks are Uni-
versal Approximators. Neural networks, 2(5):359–366, 1989.

[69] M. Lukoševičius. A Practical Guide to Applying Echo State Networks. In Neural Net-
works: Tricks of the Trade: Second Edition, pages 659–686. Springer, 2012.

[70] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[71] Walter Hugo Lopez Pinaya, Sandra Vieira, Rafael Garcia-Dias, and Andrea Mechelli.
Chapter 10 - Convolutional neural networks. In Andrea M. and Sandra V., editors,
Machine Learning, pages 173–191. Academic Press, 2020.

[72] N. Platt, L. Sirovich, and N. Fitzmaurice. An investigation of chaotic Kolmogorov flows.
Physics of Fluids A: Fluid Dynamics, 3(4):681–696, 1991.

[73] G. J. Chandler and R. R. Kerswell. Invariant recurrent solutions embedded in a turbulent
two-dimensional Kolmogorov flow. Journal of Fluid Mechanics, 722:554–595, 2013.

MSc. Thesis J. A. Veerman



Bibliography 72

[74] D. Kelshaw. kolsol 1.0.1. https://pypi.org/project/kolsol/, 2022.

[75] C. Canuto, M. Yousuff Hussaini, A. Quarteroni, and T. A. Zang. Spectral Methods in
Fluid Dynamics. Springer Berlin, Heidelberg, 1988.

[76] M. D. Hartl. Lyapunov exponents in constrained and unconstrained ordinary differential
equations. arXiv preprint physics/0303077, 2003.

[77] J. L. Kaplan and J. A. Yorke. Chaotic behavior of multidimensional difference equations.
In Functional Differential Equations and Approximation of Fixed Points: Proceedings,
Bonn, July 1978, pages 204–227. Springer, 2006.

[78] A. Racca and L. Magri. Robust optimization and validation of echo state networks for
learning chaotic dynamics. Neural Networks, 142:252–268, 2021.

[79] Z. Wang, I. Akhtar, J. Borggaard, and T. Iliescu. Proper orthogonal decomposition clo-
sure models for turbulent flows: a numerical comparison. Computer Methods in Applied
Mechanics and Engineering, 237:10–26, 2012.

[80] S. M. Cox and P. C. Matthews. Exponential time differencing for stiff systems. Journal
of Computational Physics, 176(2):430–455, 2002.

[81] A.-K. Kassam and L. N. Trefethen. Fourth-order time-stepping for stiff pdes. SIAM
Journal on Scientific Computing, 26(4):1214–1233, 2005.

[82] H. Montanelli and Y. Nakatsukasa. Fourth-order time-stepping for stiff pdes on the
sphere. SIAM Journal on Scientific Computing, 40(1):A421–A451, 2018.

[83] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings,
2010.

[84] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[85] J. R. Sashank, K. Satyen, and K. Sanjiv. On the convergence of adam and beyond. In
International conference on learning representations, volume 5, 2018.

[86] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Watten-
berg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems, 2015. Software available from tensorflow.org.

[87] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in Python.
the Journal of machine Learning research, 12:2825–2830, 2011.

MSc. Thesis J. A. Veerman

https://pypi.org/project/kolsol/


Bibliography 73

[88] T. S. Lundgren. Linearly Forces Isotropic Turbulence. Technical report, MINNESOTA
UNIV MINNEAPOLIS, 2003.

[89] P. I. Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811,
2018.

[90] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Optimization of Machine
Learning Algorithms. Advances in neural information processing systems, 25, 2012.

[91] E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical rein-
forcement learning. arXiv preprint arXiv:1012.2599, 2010.

[92] A. Griffith, A. Pomerance, and D. J. Gauthier. Forecasting chaotic systems with very
low connectivity reservoir computers. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 29(12), 2019.

[93] D. R. Jones. A Taxonomy of Global Optimization Methods Based on Response Surfaces.
Journal of global optimization, 21:345–383, 2001.

[94] C. Rasmussen and C. Williams. In Gaussian Processes for Machine Learning. The MIT
Press, 11 2005.

[95] J. Močkus. On Bayesian methods for seeking the extremum. In Optimization Techniques
IFIP Technical Conference: Novosibirsk, July 1–7, 1974, pages 400–404. Springer, 1975.

[96] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13:455–492, 1998.

[97] G. Benettin, L. Galgani, A. Giorgilli, and J. Strelcyn. Lyapunov characteristic exponents
for smooth dynamical systems and for Hamiltonian systems; a method for computing all
of them. Part 1: Theory. Meccanica, 15:9–20, 1980.

MSc. Thesis J. A. Veerman



A Bayesian optimisation 74

A Bayesian optimisation

The performance of the echo state network was highly dependent on the prescribed values
for the spectral radius ρ, input scaling σin, Tikhonov parameter β and the leaky integration
rate α [69] as outlined in section 3.2.1. Thus, tuning of the hyperparameters was required
to obtain good performance for the pure data-driven model and the hybrid models. In this
work, Bayesian optimisation [89, 90, 91] is used for hyperparameter tuning. It was shown for
computational costly functions and a low number of evaluation points in the optimisation that
hyperparameter tuning through Bayesian optimisation is able to outperform other approaches
[92, 93]. Here, the principles of Bayesian optimisation are discussed following the tutorials of
Brochu et al. [91] and Frazier [89] and the book of Rasmussen and Williams [94].

The primary aim of Bayesian optimisation is to globally optimize (in this section maximizing is
considered) a black-box (objective) function gbb(ζ) where ζ ∈ RNζ is the search space bounded
by the hyperparameters specifying the black-box function [89]. Here, gbb(ζ) is a computational
expensive, continuous function with no available information about its structure (such as
convex/concave) [89]. Furthermore, due to the large computational cost per evaluation, the
amount of sampling points in the optimisation is typically low [89].

Bayes theory
Bayesian optimisation relies on the statistical foundation of Bayes theory, which is briefly
outlined here. Bayes theory states that the probability P of observing a model M given
certain data O is given by [91]

P (M |O) ∝ P (O|M)P (M). (A.1)

Here, P (M |O) is the posterior distribution, which states the probability of M given O.
Furthermore, P (M) is the prior distribution providing initial knowledge on the model and
P (O|M) is the likelihood stating the probability of data O given the model M [89, 91, 94].
Assume that (limited) initial data gbb(ζin) is available at points ζin (subscript ”in” for initial),
then the Bayes rules can be written as [91]

P (gbb|gbb(ζin)) ∝ P (gbb(ζin)|gbb)P (gbb), (A.2)

where the initial data is collected in gbb(ζin) = {gbb(ζin), ζin}.

Gaussian Process regression
Gaussian process regression (GPR) is a common methodology to predict the function value
at new points [89, 91, 94]. The primary assumptions is that the objective function gbb(ζ) can
be written as a Gaussian process (GP) such that [89, 91, 94]

gbb(ζ) ∼ GP(µ0(ζ),Σ0(ζ, ζ)), (A.3)

MSc. Thesis J. A. Veerman



A Bayesian optimisation 75

where µ0(ζ) is a mean function and Σ0(ζ, ζ) is the covariance function/kernel. Common
kernels are the square exponential and the Matern kernels. Here, a Gaussian process is an
infinite set of random variables, such that each subset of these random variables is described
by multi-variate Gaussian. In other words, a Gaussian process is an infinite collection of
functions, where for every point in the space ζ, it returns the mean and variance over all
these functions at that point [89, 91, 94].

Since gbb(ζ) is assumed to be described as a Gaussian process and given the aforementioned
definitions, the prior of the initial data {gbb(ζin), ζin} can be described using a multi-variate
Gaussian [91, 94]

gbb(ζin) ∼ N (µ0(ζin),Σ0(ζin, ζin)). (A.4)

However, using the known data, it is not yet possible to predict the value at a new point ζ+
in the hyperparameter space. Assume, for now, that the new point ζ+ is given. Then, since
the objective function is assumed to be described by a Gaussian process and the new point
is a subset of the full space, also the prior [89, 91, 94]

gbb(ζ+) ∼ N (µ0(ζ+),Σ0(ζ+, ζ+)) (A.5)

is a multivariate Gaussian [89, 91, 94]. Thus, the initial data set gbb(ζin) and the new
point gbb(ζ+) are described as multi-variate Gaussian and their joint (normal) distribution is
[89, 91, 94]

[
gbb(ζin)
gbb(ζ+)

]
∼ N

([
µ0(ζin)
µ0(ζ+)

]
,

[
Σ0(ζin, ζin) Σ0(ζ+, ζin)
Σ0(ζin, ζ+) Σ0(ζ+, ζ+)

])
. (A.6)

Then following Frazier [89] and Rasmussen and Williams [94], the posterior distribution
gbb(ζ+)|[gbb(ζin), ζ+] for a new point ζ+ based on the priors and the initial data is writ-
ten as

gbb(ζ+)|[gbb(ζin), ζ+] ∼ N (µn(ζ+),Σn(ζ+))

µn(ζ+) = Σ0(ζin, ζ+)Σ0(ζin, ζin)
−1 (gbb(ζin)− µ0(ζin)) + µ0(ζ+)

Σn(ζ+) = Σ0(ζ+, ζ+)− Σ0(ζin, ζ+)Σ0(ζin, ζin)
−1Σ0(ζ+, ζin),

(A.7)

which is also a multi-variate normal distribution.

MSc. Thesis J. A. Veerman



A Bayesian optimisation 76

Acquisition function: Expected improvement
In Bayesian optimisation, the location of the next point ζ+ in the search space is decided
through an acquisition function [89, 91]. A popular choice is the Expected Improvement (EI)
as introduced by Močkus [95].

For the Expected Improvement, consider the initial data gbb(ζin) at evaluation points ζin.
Since Bayesian optimisation attempts to find a maximum for the objective function gbb(ζ),
interest is in a new point ζ+ for which a new maximum value is found such that gbb(ζ+) >
gmax
bb (ζin), where the superscript ”max” indicates that it is the current maximum in the initial

data set [89]. Now, for a given ζ+, gbb(ζ+) can be larger or smaller than gmax
bb (ζin). If gbb(ζ+)

is larger, this means that it becomes the new best value. However for smaller gbb(ζ+) the
maximum value in the initial data set gbb(ζin) remains [89]. Following the notation of Jones
et al. [96], this improvement is written as max(gbb(ζ+)− gmax

bb (ζin), 0).

Now, even though ζ+ is not know beforehand, the expectation value of the improvement
(Expected Improvement) can be computed under the posterior distribution (Eq. A.7) as a
function of ζ with [89, 96]

EI(ζ) = E[max(g̃bb(ζ)− gmax
bb (ζin), 0)]. (A.8)

Here, g̃bb(ζ+) is a multi-variate normal distribution with mean function µn(ζ+) and covariance
kernel Σn(ζ+) taken from the posterior distribution (Eq. A.7) [96]. Now, by using Eq. A.8,
the expected value of the improvement of the posterior compared to maximum of the initial
data set gbb(ζin) is computed. Hence, the maximum of the expected value of interest and
the corresponding ζ+ is used by the objective function to evaluate the output at that point
[89, 96].

Algoritm of Bayesian optimisation
The acquisition function and GPR form the foundation of the Bayesian optimisation algorithm
[89, 91]. In the first step before the actual optimisation, Nrdm points in ζ are evaluated using
the objective function gbb(ζ), whose values are stored as initial data {gbb(ζin), ζin}. Then,
using the initial points ζin, the prior distribution of gbb(ζin) is constructed [89, 91].

Using the initial data points and the prior, the posterior distribution is constructed using all
currently available information. Then, using the acquisition function (for example the Ex-
pected Improvement, Eq. A.8), the next evaluation point ζ+ is determined using the posterior
distribution [89, 96]. Next, at ζ+, the output of the black-box function gbb(ζ+) is computed.
Finally, the newly obtained evaluation of gbb(ζ+) is added to the known initial data set and
the prior and posterior distributions are updated. This optimisation process is repeated for
a desired Nbo times [89, 91]. The outline of the algorithm is also depicted in the flowchart of
Fig. A.1.

MSc. Thesis J. A. Veerman



A Bayesian optimisation 77

Figure A.1: Schematic flowchart showing the general procedure of the Bayesian optimisation.

This is a sample text in blue.

MSc. Thesis J. A. Veerman



B Lyapunov exponent computations 78

B Lyapunov exponent computations

The Lyapunov exponent provides an indication of the average rate of separation of trajectories
with slightly different initial conditions separate over time for chaotic systems [76], which were
computed using the numerical code of Racca et al. [57].

Consider Eq. 2.12, but for simplicity using a single nonlinear operator h such that the state
of the chaotic system is described as

ẏ(x, t) = h(y(x, t)). (B.9)

In order to compute the Lyapunov exponents, for both test case, the base line solution y(x, t)
was integrated in time together with 15 additional simulations with slightly randomly per-
turbed initial conditions ŷ(x, t), obtained through [57]

ŷi(x, t) = y(x, t) + ϵLyapXrand, (B.10)

where ϵLyap ≪ 1 is a small perturbation factor, Xrand was a random normalized matrix and
i = 1 . . . 15 gives the index of the perturbed states. Then, the primary idea was to divide the
full time integration into small intervals [97]. At the end of each integration interval of all 16
initial conditions, the evolution of the perturbation δyi(x, t) was obtained by subtracting the
base line solution from each perturbed state [97] using

δyi(x, t) = ŷi(x, t)− y(x, t). (B.11)

Then, following Benettin et al. [97], at the end of each integration interval all the perturbation
δy(x, t) were orthonormalized through a Gram-Schmidt like procedure [57]. Doing so, the
first of the 15 perturbation was normalized as [57, 97]

δynorm,1(x, t) =
δy1(x, t)

||δy1(x, t)||
. (B.12)

Then for all other i = 2 . . . 15 perturbations, the orthogonalizing occurred by subtracting the
projections of δyi(x, t) onto the perturbations δynorm,j(x, t) for j < i using [57, 97]

δy′
i(x, t) = δyi(x, t)−

i−1∑
j=1

(δyi(x, t), δynorm,j(x, t))δynorm,j(x, t) (B.13)

MSc. Thesis J. A. Veerman



B Lyapunov exponent computations 79

Here, δy′
i(x, t) is the orthogonalized i-th perturbation. Hence, the components of δyi(x, t)

in the direction of all δynorm,j(x, t) with j < i were removed and thus all perturbations were
orthogonal to each other. Then, the orthogonalized perturbation was also normalized such
that [57, 97]

δynorm,i(x, t) =
δy′

i(x, t)

||δy′
i(x, t)||

(B.14)

to obtain the orthonormalization of δyi(x, t). This orthonormalized basis for each perturba-
tion was then used to perturb the initial conditions for the next integration interval [57, 97]
and replaced Xrand in Eq. B.10 after the first time interval. Finally, after the orthonormaliza-
tion at the end of each integration interval, the Lyapunov exponent for each perturbed state
λt
Lyap,i over that interval was computed as [57]

λt
Lyap,i =

1

Torth
ln

[
||δy′

i(x, t)||
ϵLyap

]
, (B.15)

with Torth the number of time steps in an integration interval and the superscript t indicated
the instance in time. Furthermore ϵLyap equals the norm of the perturbation after the previous
orthonormalization [57, 97]. Thus, the current perturbation is scaled by the perturbation
after the previous orthonormalization and gives the exponential growth of the perturbations
in that interval. Then, over the full integration time, the Lyapunov exponent λt

Lyap,i for each
perturbed state was computed at each orthonormalization. At the end, the final Lyapunov
exponents λLyap were computed as the average over all orthonormalization [57, 97].

MSc. Thesis J. A. Veerman



C Hyperparameters of deep learning and Hybrid-A reduced order models 80

C Hyperparameters of deep learning and Hybrid-A reduced
order models

In this appendix, the hyperparameters as obtained from the Grid search-Bayesian optimisa-
tion are presented for the pure deep learning and the Hybrid-A reduced order models. First,
for each latent space the hyperparameters of the Re = 20 test case are shown, followed by
the Re = 34 test case.

Re = 20

Table C1: Tables showing for Re = 20 the hyperparameters for each reservoir size Nres for the
leaking rate α, Tikhonov factor β, input scaling σin and the spectral radius ρ. Here, the left table
is for the pure deep learning model and the right table for the Hybrid-A model. Furthermore, the
top row is for latent space size Nlat = 16, the middle row for Nlat = 48 and the bottom row for
Nlat = 80.

Nres α β σin ρ

500 0.10 1.0 3.63 2.14

1000 0.10 1.0 3.63 2.14

1500 0.10 10−6 3.63 2.14

2000 0.10 0.1 3.63 2.14

3000 0.18 0.0001 0.82 1.58

4000 0.18 0.0001 0.82 1.58

5000 0.18 0.0001 0.82 1.58

Nres α β σin ρ

500 0.10 1.0 3.63 2.14

1000 0.10 1.0 3.63 2.14

1500 0.10 1.0 3.63 2.14

2000 0.18 0.001 0.82 1.58

3000 0.10 0.0001 3.63 2.14

4000 0.10 0.1 3.63 2.14

5000 0.10 0.1 5.0 3.10

Nres α β σin ρ

500 0.22 1.0 0.37 0.22

1000 0.10 0.1 0.38 0.57

1500 0.10 0.1 3.63 2.14

2000 0.10 1.0 3.63 2.14

3000 0.10 1.0 3.81 1.85

4000 0.10 10−6 3.62 2.14

5000 0.10 0.1 5.00 1.65

Nres α β σin ρ

500 0.18 1.0 0.82 1.58

1000 0.10 1.0 3.63 2.14

1500 0.12 1.0 4.40 1.10

2000 0.18 0.1 0.82 1.58

3000 0.18 10−6 0.82 1.58

4000 0.10 10−6 3.63 2.14

5000 0.18 1.0 0.82 1.58

Nres α β σin ρ

500 0.11 0.01 0.1 0.1

1000 0.49 0.1 0.1 0.85

1500 0.18 1.0 0.82 1.58

2000 0.10 0.1 0.1 0.61

3000 0.10 0.1 0.1 0.65

4000 0.18 10−5 0.82 1.58

5000 0.10 1.0 3.63 2.14

Nres α β σin ρ

500 0.82 0.0001 1.07 0.79

1000 0.82 1.0 1.07 0.79

1500 0.46 0.0001 1.79 1.01

2000 0.18 0.0001 0.82 1.58

3000 0.10 1.0 0.1 0.1

4000 0.18 1.0 0.82 1.58

5000 0.10 1.0 0.61 0.10

MSc. Thesis J. A. Veerman



C Hyperparameters of deep learning and Hybrid-A reduced order models 81

Re = 34

Table C2: Tables showing for Re = 20 the hyperparameters for each reservoir size Nres for the
leaking rate α, Tikhonov factor β, input scaling σin and the spectral radius ρ. Here, the left table
is for the pure deep learning model and the right table for the Hybrid-A model. Furthermore, the
top row is for latent space size Nlat = 64, the middle row for Nlat = 192 and the bottom row for
Nlat = 320.

Nres α β σin ρ

500 0.21 0.01 0.01 4.27

1000 1.00 0.0001 0.01 5.00

1500 0.17 0.01 0.01 3.56

2000 0.26 0.01 0.01 0.01

3000 0.33 0.0001 0.01 5.00

4000 1.00 0.1 0.01 5.00

5000 0.1 0.001 0.01 1.74

Nres α β σin ρ

500 0.65 1.0 2.04 2.50

1000 1.00 1.0 3.04 3.02

1500 0.20 1.0 1.13 2.34

2000 0.17 1.0 1.38 1.01

3000 0.20 1.0 1.44 1.51

4000 0.18 1.0 0.74 1.52

5000 0.10 1.0 0.85 1.20

Nres α β σin ρ

500 0.1 0.1 0.01 3.28

1000 0.1 0.001 0.01 0.23

1500 0.14 0.01 0.01 5.00

2000 0.41 0.001 0.01 0.01

3000 0.60 0.01 0.01 0.01

4000 0.64 0.01 0.01 0.01

5000 0.95 0.01 0.01 0.01

Nres α β σin ρ

500 0.98 1.0 2.22 2.44

1000 0.67 1.0 1.93 2.41

1500 0.72 1.0 2.10 2.70

2000 1.00 0.1 0.01 2.61

3000 0.27 0.1 0.01 0.01

4000 0.59 0.1 0.01 0.01

5000 0.16 1.0 0.46 0.98

Nres α β σin ρ

500 0.10 10−5 0.01 5.00

1000 0.13 0.0001 0.01 5.00

1500 0.30 0.001 0.01 0.05

2000 0.10 0.001 0.001 0.76

3000 0.17 0.0001 0.01 0.01

4000 1.00 0.0001 0.01 0.01

5000 1.00 0.0001 0.01 5.00

Nres α β σin ρ

500 0.82 1.0 0.01 5.00

1000 0.10 1.0 0.01 4.01

1500 1.00 1.0 0.01 5.00

2000 1.00 1.0 0.01 5.00

3000 1.00 1.0 0.01 2.58

4000 1.00 1.0 0.01 4.75

5000 1.00 1.0 0.01 5.00

MSc. Thesis J. A. Veerman



D RMSE of mean flow at Re = 20 including Nres = 500 82

D RMSE of mean flow at Re = 20 including Nres = 500

In section 6.2, the long-term statistics of the knowledge-based, deep learning and the Hybrid-
A models were presented. It was mentioned that for the ⟨u⟩ and ⟨v⟩ components of the flow
field, the result for the deep learning model at Nres = 500 and Nlat = 80 was much larger
compared to the other experiments. For that reason, the results including this data point are
presented in Fig. D.2.

1000 2000 3000 4000 5000
Reservoir size Nres

0.0
0.1
0.2
0.3
0.4
0.5
0.6

(u
ro

m
u r

ef
)2 Hybrid

Pure deep learning
Knowledge, 84 modes

1000 2000 3000 4000 5000
Reservoir size Nres

0.0

0.1

0.2

0.3

0.4

0.5

(v
ro

m
v r

ef
)2 Hybrid

Pure deep learning
Knowledge, 84 modes

Figure D.2: The root mean square error of ⟨v⟩ and ⟨v⟩ of the flow at Re = 20 for Nlat = 80
including the data point for Nres = 500. Here, the left plot is for ⟨u⟩ and the right plot for ⟨v⟩.
The knowledge-based and deep learning results are displaced slightly in the horizontal direction
for clarity.

MSc. Thesis J. A. Veerman



E D(t) against E(t), Re = 20 83

E D(t) against E(t), Re = 20

In this appendix, the results are shown for the phase space trajectories of the dissipation D(t)
and the kinetic energy energy E(t) for Nres = [1000, 1500, 3000, 4000, 5000] for Re = 20. Here,
the first column represents the reference solution, the second column the knowledge-based,
the third column the deep learning and finally the fourth column the the Hybrid-A model
predictions. Furthermore, the first row represents Nlat = 16, second row Nlat = 48 and the
third row Nlat = 80, which is repeated every 3 rows. Furthermore, the model settings are also
shown in the title of each plot.

MSc. Thesis J. A. Veerman



E D(t) against E(t), Re = 20 84

MSc. Thesis J. A. Veerman



F D(t) against E(t), Re = 34 85

F D(t) against E(t), Re = 34

Appendix showing the results for the phase space trajectories of the dissipation D(t) and
the kinetic energy energy E(t) for Nres = [1000, 1500, 3000, 4000, 5000] for Re = 34. Here,
the first column represents the reference solution, the second column the knowledge-based,
the third column the deep learning and finally the fourth column the the Hybrid-A model
predictions. Furthermore, the first row represents Nlat = 16, second row Nlat = 48 and the
third row Nlat = 80, which is repeated every 3 rows. Furthermore, the model settings are also
shown in the title of each plot.

MSc. Thesis J. A. Veerman



F D(t) against E(t), Re = 34 86

MSc. Thesis J. A. Veerman



G Architecture feed-forward neural network 87

G Architecture feed-forward neural network

In this appendix, the architecture of the feed-forward neural network of the Hybrid-FFNN is
presented in Fig. G.3. Here, ”Dense” represent a dense layer and ”Dec” are the decoders of
the multi-scale autoencoder. Furthermore, around 100,000 were non-trainable because in the
training process it was not desired to change the parameters of the decoders.

__________________________________________________________________________
________________________
 Layer (type)                   Output Shape         Param #     Connected to                    
==========================================================================
========================

 input_1 (Input)                  [(None, 640)]        0           []                               
                                                                                                  
 dense (Dense)                   (None, 300)          192300     ['input_1[0][0]']                
                                                                                                  
 dense_1 (Dense)                (None, 300)          90300       ['dense[0][0]']                  
                                                                                                  
 dense_2 (Dense)                (None, 300)          90300       ['dense_1[0][0]']               
                                                                                                  

 dense_3 (Dense)                (None, 320)          96320       ['dense_2[0][0]']               
                                                                                                  
 dense_4 (Dense)                (None, 320)          102720     ['dense_3[0][0]']                
                                                                                                  
 reshape (Reshape)             (None, 8, 8, 5)      0               ['dense_4[0][0]']                

                                                                                                  
 Dec_0 (Sequen�al)             (50, 66, 66, 2)      10988       ['reshape[0][0]']                
                                                                                                  
 Dec_1 (Sequen�al)             (50, 66, 66, 2)      30380       ['reshape[0][0]']                
                                                                                                  
 Dec_2 (Sequen�al)             (50, 66, 66, 2)      59468       ['reshape[0][0]']                
                                                                                                  
 add (Add)                             (None, 66, 66, 2)    0           ['Dec_0[0][0]',                  
                                                                                                'Dec_1[0][0]',                  
                                                                                                'Dec_2[0][0]']                  
                                                                                                  
==========================================================================
Total params: 672,776
Trainable params: 571,940
Non-trainable params: 100,836  

Figure G.3: Image showing the Tensorflow architecture of the feed-forward neural network of the
Hybrid-FFNN model.

MSc. Thesis J. A. Veerman






	Preface
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Nomenclature
	1 Introduction
	2 Theory: Knowledge-based reduced order modelling
	2.1 Proper orthogonal decomposition
	2.2 Galerkin Projection

	3 Theory: Neural Networks
	3.1 Artificial neuron
	3.2 Recurrent neural network
	3.2.1 Echo state network

	3.3 Deep learning data (de)compression
	3.3.1 (Transpose) Convolutional neural networks


	4 Test case: Kolmogorov Flow
	4.1 2D Kolmogorov flow

	5 Methodology and Hybrid-A architecture
	5.1 Knowledge-based reduced order Kolmogorov flow
	5.2 Multi-scale autoencoder
	5.3 Data-driven reduced order modelling
	5.4 Hybrid-A architecture
	5.5 Comparison criteria
	5.6 Truncation of POD modes
	5.7 Model settings
	5.7.1 Hyperparameter tuning and validation settings
	5.7.2 Model settings experiments


	6 Hybrid A: Results and discussion
	6.1 Short-term prediction horizon
	6.2 Long-term flow statistics
	6.3 Limitations

	7 Hybrid-FFNN: Results and discussion
	7.1 Hybrid model
	7.2 Feed-forward neural network
	7.3 Results and discussion

	8 Conclusion
	Bibliography
	A Bayesian optimisation
	B Lyapunov exponent computations
	C Hyperparameters of deep learning and Hybrid-A reduced order models
	D RMSE of mean flow at Re = 20 including Nres = 500
	E D(t) against E(t), Re = 20
	F D(t) against E(t), Re = 34
	G Architecture feed-forward neural network


