
Prioritized Experience Replay
based on the Wasserstein Metric
in Deep Reinforcement Learning
The regularizing effect of modelling return distributions

T. Greevink

M
as

te
ro

fS
cie

nc
e

Th
es

is

Prioritized Experience Replay based on
the Wasserstein Metric in Deep

Reinforcement Learning
The regularizing effect of modelling return distributions

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

T. Greevink

April 5, 2019

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c©
All rights reserved.

Abstract

This thesis tests the hypothesis that distributional deep Reinforcement Learning (RL) algo-
rithms get an increased performance over expectation based deep RL because of the regular-
izing effect of fitting a more complex model. This hypothesis was tested by comparing two
variations of the distributional QR-DQN algorithm [1] combined with Prioritized Experience
Replay (PER) [2]. The first variation, called QR-W, prioritizes learning the return distribu-
tions. The second one, QR-TD, prioritizes learning the Q-Values. These algorithms were be
tested with a range of network architectures. From too large architectures which are prone
to overfitting, to smaller ones prone to underfitting. To verify the findings the experiment
was done in two environments. As hypothesised, QR-DQN with Wasserstein metric based
PER (QR-W) performed better on the networks prone to overfitting, and QR-DQN with
TD based PER (QR-TD) performed better on networks prone to underfitting. This sug-
gests that fitting distributions has a regularizing effect, which at least partially explains the
performance of distributional algorithms. To compare QR-TD and QR-W to conventional
benchmarks from literature they were tested in the Enduro environment from the Arcade
Learning Environment (ALE). QR-W outperformed the state-of-the-art algorithms IQN and
Rainbow [3, 4] in a quarter of the training time.

Master of Science Thesis T. Greevink

ii

T. Greevink Master of Science Thesis

Table of Contents

Acknowledgements ix

1 Introduction 1

2 Preliminaries 5
2-1 Reinforcement Learning . 5
2-2 Deep Q-Network . 7
2-3 Prioritized Experience Replay . 10
2-4 Return Distributions with QR-DQN . 12
2-5 Discussion . 14

3 Methods 15

4 Experiments 19
4-1 Implementation . 19
4-2 Cart-pole . 20
4-3 Lunar lander . 20
4-4 Enduro . 22

5 Results and discussion 23
5-1 Cart-Pole . 23
5-2 Lunar lander . 26
5-3 Enduro . 32

6 Conclusion & Discussion 35

Bibliography 37

Glossary 41
List of Acronyms . 41
List of Symbols . 41

Master of Science Thesis T. Greevink

iv Table of Contents

T. Greevink Master of Science Thesis

List of Figures

1-1 A depiction of two different distribution with the same mean 2

2-1 Fully connected neural network [5] . 8
2-2 Filter in convolutional layer [6] . 9
2-3 Example of Convolutional Neural Network (CNN) [7] 9
2-4 Convex asymmetric loss function for quantile τ ∈ [0, 1] [8] 13
2-5 Quantile Huber loss . 13
2-6 Cumulative Density Function (CDF) of probability distribution Z ∈ Z and sample

distribution ΠW1Z ∈ ZQ, 1-Wasserstein error is shaded region. [1] 14

3-1 A depiction of two different distribution with the same mean 16

4-1 Cart-pole environment [9] . 21
4-2 Render of lunar lander environment [10] . 21
4-3 Enduro environment in the morning, noon, evening and night 22

5-1 Boxplot of max scores for 50 cart-pole simulations 24
5-2 Mean and median score vs steps for 50 cart-pole simulations 25
5-3 Boxplot of max scores for 10 lunar lander simulations 27
5-4 Mean and median score vs steps for 10 lunar lander simulations 27
5-5 Mean score vs steps and boxplot for 192-192 network, 29
5-6 Mean and median score vs steps for 10 lunar lander simulations with 192-192

network and α = 0.4 . 30
5-7 Boxplot of 300 evaluation episodes of Enduro 33

Master of Science Thesis T. Greevink

vi List of Figures

T. Greevink Master of Science Thesis

List of Tables

3-1 An overview of different algorithms and their methods 18

4-1 Deviating hyper-parameters . 20
4-2 Structure of the CNN for the Enduro agent . 22

5-1 Mean and median of max scores for 50 cart-pole simulations 24
5-2 Mean and median max scores of cart-pole vs networks 26
5-3 Mean and median of max scores for 10 lunar lander simulations 27
5-4 Mean and median max scores of 10 lunar lander simulations versus network sizes 28
5-5 Mean and median max scores of 50 lunar lander simulations for 192-192 network 29
5-6 Mean and median max scores of 10 lunar lander simulations versus alphas 29
5-7 Mean and median of max scores for 10 lunar lander simulations with 192-192

network and varying α . 30
5-8 Mean and median of max scores for 10 lunar lander simulations with decaying alpha 31
5-9 Mean and median score of 300 evaluation episodes of Enduro 32
5-10 Mean Enduro scores found in literature. Reference values from [11, 4, 3]. 33

Master of Science Thesis T. Greevink

viii List of Tables

T. Greevink Master of Science Thesis

Acknowledgements

I would like to thank my supervisor ir. Tim de Bruin for guiding me through this thesis
process, and all the hours of back-and-forth we have had. Thank you for the inspiration you
provided, and the direction you gave me in the times I needed it. Furthermore I would like to
thank dr.ing. Jens Kober for organising and overseeing this thesis project, and all the feedback
you have given me throughout. Lastly, in advance, I thank prof.dr.ir. Hans Hellendoorn and
the entire thesis committee for the time they took to read and judge my thesis.

Delft, University of Technology T. Greevink
April 5, 2019

Master of Science Thesis T. Greevink

x Acknowledgements

T. Greevink Master of Science Thesis

“One day I will find the right words, and they will be simple.”
— Jack Kerouac

Chapter 1

Introduction

Systems and control engineers usually focus on model based control. However, as you might
have guessed from the title, this thesis will focus on a different research area in control. Model
based control works very well on a subset of problems. Namely, environments which can be
approximated with mathematical models, especially linear models. This encompasses a lot
of engineering problems but it has its limits. Even discrete environments which operate with
simple rules can be very hard to capture in a mathematical model. As technology keeps
getting closer to our daily lives there is an increasing demand for control in environments
which are hard to model. In recent years however, there have been significant breakthroughs
in the field of model free control through machine learning. Through the use of deep neural
networks, algorithms are able to better generalize their discovered knowledge to unseen data.
This has led to great results in many deep learning applications such as computer vision [12],
speech recognition [13], natural language processing [14] and many others. One of the sub-
fields which has gotten a lot of attention is deep Reinforcement Learning (RL). Deep RL can
learn optimal control policies, model free, in complex environments with high dimensional
observations. Since there is no preset policy, the algorithm can solve problems in ways the
maker never thought of. As of the writing of this thesis however, the algorithm is still very
sample inefficient. This means that, in practice, it only works well in simulated environments,
with a lot of computational power available. Development of deep RL is going rapidly though,
major accomplishments in the past years include beating the best humans and computers in:
a host of Atari games [15], Go [16], Chess [17], Shogi (Japanese chess) [17], Dota 2 [18] and
recently StarCraft II [19]. These are all environments where this level of performance by
computers was unthinkable 5 years ago.

In deep RL an agent receives a feedback signal from its environment called the reward. The
agent trains a neural network to estimate how much total reward it will get from choosing
a state-action, valuating reward further in to the future less then immediate rewards. This
evaluation is called the return. The agent chooses the action with the highest return estimate.
This thesis will take a closer look at the domain of distributional deep RL. In particular
the distributional algorithm proposed by Dabney et al. in [1], QR-DQN. Distributional RL
algorithms achieve great performance by doing something seemingly counter-intuitive. Instead

Master of Science Thesis T. Greevink

2 Introduction

Mean
Return

Pr
ob

ab
ilit

y
de

ns
ity

Normal distribution
Bi-modal distribution

Figure 1-1: A depiction of two different distribution with the same mean

of estimating just the expected return for each state-action pair, they estimate an entire
probability distribution for all possible returns for each state-action pair. The agent then
takes the mean of each distribution and picks the action with the highest mean. But the
mean of the distribution should be the same as the expected value. It seems pointless, and
even unnecessarily difficult, to estimate an entire distribution of returns if we then take the
mean anyway. This poses an interesting question, why does it work so well? This question
does not have a decisive answer yet, but the authors of the paper say in multiple publications
[1, 3] that the answer lies in the algorithm inherently trading of approximate solutions with
likelihoods.

As was explained in the last paragraph our reinforcement learning agent will train a neural
network to make an estimate of the return it will get from every state-action. We call the set
of estimates for all state-actions the model. By tuning the parameters of the neural network
the agent minimizes the error between the data it gathers from feedback of the environment
and its estimates. This is called fitting the model to the data. By changing the prediction
the model makes from the expected return to the return distribution the model complexity
is increased. To better understand the difference between expectational and distributional
models, let us take a look at the distributions shown in Figure 1-1. These two distributions are
clearly not the same, but they do share the same mean. Because an expectational algorithm
only tries to learn the expected value, it can not see the difference between these distributions.
Therefore it cannot learn anything from this pair of distributions. A distributional algorithm
learns to estimate the entire return distribution, so it will learn the difference. However, when
the agent chooses an action it only compares the mean of each estimate distribution, so why
can it still help? One explanation could be that solving a more difficult problem helps to
regularize the model. Learning the best fitting distribution will automatically ensure that the
correct expectation is learned, because this is just the mean of the distribution. But learning
the distribution instead of the expectation is a harder model to fit to the data, because it
contains more information. Learning a more complex model helps to prevent the model from
overfitting on the data. Preventing overfitting will help the model to generalize its predictions
better to unseen data. Another theory on why learning distributions could be important is
that it helps to better differentiate between different types of environment mechanics with the
same mean. For example, a state-action pair which gives a 50% chance on a return of 0 and
a 50% chance on a return of 10 is probably driven by different environment mechanics then
a state-action which gives a return of 5 100% of the time. Learning to differentiate between

T. Greevink Master of Science Thesis

3

these two can give the agent a deeper understanding of the environment mechanics. If the
agents policy then changes and the first state-action pair now gives a 60% chance on a return
of 10 the estimate of this environment mechanism can be changed without it bleeding over
on to the evaluation of the other environment mechanism. If any of these theories are correct
then learning the difference between the distributions shown in Figure 1-1 is important, even
though the agent does not use the information in choosing an action.

The notion that an agent can learn more from some transitions then from others is already
a well established theory in deep RL. As one would expect, the agent learns less from
transitions which it already predicts very well than from the ones it predicts poorly. Schaul
et al. [2] proposed an algorithm that prioritizes the replay of transitions which are predicted
poorly. By prioritizing these transitions the agent was able to both learn faster and have
a better final score in almost all of the environments in the Arcade Learning Environment
(ALE) [20]. In this algorithm the prioritization of the transitions is based on the Temporal
Difference (TD)-error, which is the error between the estimated return and the target return
calculated with the reward from the transition. But a distributional algorithm has more
information available. With the distributions available we can calculate the error between
two entire return distributions using the Wasserstein distance. For example, take a transition
which has the distributions from Figure 1-1 as its return distributions; one for its estimate
return distribution and the other for its target return distribution. If one would prioritize
transitions based on the Wasserstein distance this transition would be prioritized, whereas
aTD-error based prioritization would not.

By prioritizing replay of transitions on different measures a direct comparison can be made
on how important learning the correct distribution is, versus learning the best fitting mean.
Given the fact that the agent will only base its choices on the expected return, one would
say that prioritizing replay based on a distributional metric such as the Wasserstein distance
would be less optimal then prioritizing based on the TD-error. However, taking the ideas
discussed in the previous paragraphs into account one might argue that fitting the entire
distribution might be more important then finding the best fitting means. By comparing
these two methods of prioritization, the differentiating factor between these two ideas is
isolated. This provides interesting insight in the learning process of distributional algorithms.

In this thesis it is hypothesised that prioritising on the Wasserstein distance instead of on
the mean will result in a better performance, because of the regularizing effect of fitting a
distributional model. To test this hypothesis the TD-error and Wasserstein error based dis-
tributional Prioritized Experience Replay (PER) algorithms were trained on a set of different
network sizes. If this hypothesis is true one would expect that the Wasserstein distance based
algorithm performs better in large networks prone to overfitting, and worse in small networks
prone to underfitting. The results of the experiments done in this thesis matched this ex-
pectation. In the networks large enough to allow overfitting the Wasserstein distance based
agents performed better. When the network became so small that the model was underfit-
ting, the TD-error based algorithm performed better. In all three environments which were
tested the Wasserstein distance based algorithm outperformed the TD-error based algorithm.
One of the environments tested was the Atari game Enduro, form the ALE. In this environ-
ment the Wasserstein distance based algorithm outperformed all algorithms compared in the
state-of-the-art IQN [3] and rainbow papers [4].

The structure of this thesis is as follows: In Chapter 2 the preliminaries for this thesis are

Master of Science Thesis T. Greevink

4 Introduction

given, discussing the essential deep RL, PER and Quantile Regression DQN (QR-DQN)
knowledge for this thesis. Chapter 3 goes in to the methods, discussing the hypothesis of
the thesis, what exactly is being tested, and why. Chapter 4 covers how the hypothesis was
tested, the exact implementation of the algorithms, and the test environments. In Chapter
5 the results for these experiments are presented and interpreted. And Chapter 6 gives a
concise overview of the contributions in this work and the drawn conclusions.

T. Greevink Master of Science Thesis

Chapter 2

Preliminaries

To understand the research in this thesis some preliminary knowledge in the field of deep
Reinforcement Learning (RL) is necessary. This chapter will briefly cover this necessary
background knowledge and provide citations to more elaborate descriptions. The four topics
which will be covered are RL, Deep Q-Network (DQN), Prioritized Experience Replay (PER)
and Quantile Regression DQN (QR-DQN). A good understanding of the last two topics is
essential to the further understanding of this thesis, as these two algorithms will be used
extensively.

2-1 Reinforcement Learning

Let us start with the basics, RL. RL is a type of machine learning which is neither completely
supervised nor unsupervised learning. The main advantage of RL over supervised learning is
that it does not need labeled data or examples to learn from. With RL the agent learns from
data which is produced by the agent itself. The only feedback the agent gets is through a
reward which is given by the environment. The agent then tries to find the action for each
state which approximately maximizes the sum of all the rewards it gets throughout the whole
episode. The set containing each action an agent chooses for each state is called the policy π
of the agent. Because the algorithm learns from rewards instead of from another policy it can
find new and unexpected ways to solve a problem. Resulting policies have the potential to be
much more effective then anything the maker of the algorithm could have thought up. Also,
because the algorithm learns from rewards instead of examples, it is a very general algorithm.
A single algorithm has the potential to solve many totally different problems, and it can solve
problems in ways the maker of the algorithm might not have been able to think up.

However, the flip side of this freedom in policies is that for many problems the algorithm still
has a hard time to converge to an effective policy at all. Shaping the reward structure to
guide the algorithms to a specific policy can help but it gives up part of the advantages RL
had in the first place.

Master of Science Thesis T. Greevink

6 Preliminaries

2-1-1 Bellman update

First we will take a look at how the most basic version of the RL algorithm learns and introduce
a few important terms. A more extensive overview of these concepts can be found in Sutton
& Barto [21]. The agent is the entity which learns and acts out the policy. Everything the
agent can detect and/or interact with is called the environment. All the information which
describes the environment at a certain point in time is called the state (st ∈ Rn). Every time
step the agent interacts with the environment by picking an action (at ∈ Rm). The agent
then gets the new state, and a reward (Rt ∈ R). This quadruplet of state, action, reward
and new state is called an experience, and will often be referred to as a transition.

The set of experiences an agent makes from its start state until its terminal state is called an
episode. The Return (Gt) is a discounted sum of all future rewards, where rewards further
into the future are discounted more. In this thesis the return is defined by

Gt =
∞∑
k=1

γk−1 ·Rt+k, (2-1)

where γ ∈ [0, 1) is a discount factor. The return is very important as this is the ‘approximate
sum of all the rewards’ the agent is trying to maximize. Because it is maximizing this total
reward it will plan ahead and is able to pick actions with a delayed reward. The discount
sum γ determines how far the agent will look into the future. At γ = 0 the return would
be the same as the reward, at γ = 1 the return becomes the total sum of rewards in the
episode. The expected return for a certain state is called the Value (V π(s) ∈ Rn) of that
state and is dependent on the policy of the agent. Returns for state-action pairs are referred
to as the Q-Value (Qπ(s, a) ∈ Rn·m) of that state-action, which is also dependent on the
policy. If the state or action space is continuous, or there are simply to many states to store
a function approximator has to be used to determine the Q-Value. In deep RL this function
approximator will be a Deep Neural Network (DNN), which will be discussed further in
Section 2-2.

If the correct Q-Values are available picking the policy is trivial; the agent simply picks the
action with the highest Q-Value all the time. So if the agent can estimate these Q-Values we
automatically get our policy. The Bellman equation offers a solution. By breaking up the
Q-Value up into the reward of the next step, plus the discounted reward of all steps after
that. The ‘rewards of all the steps after that’ is estimated by the Q-Value of the next state,
so we get the elegant equation

Q(st, at) = E[Rt+1 + γQ(st+1, at+1)]. (2-2)

Most likely the agent will have multiple Q-Values to choose from in state st+1. Most of the
time the agent will have a greedy policy picking the action cooresponding to the highest
Q-Value, but for reasons which will be discussed later this is not always the case. An agent
could also be learning from the state transitions of a different agent. In these cases we have
a choice to make, pick the Q-Value the agent took, or pick the Q-Value the agent thinks is
highest at the moment of learning. In this thesis we will always take the Q-Values which the
agent thinks is highest at the moment of learning.

Because the agent’s policy will probably change as it is learning it is wise to keep a running
mean to estimate the expectation. To keep this running mean first the error is calculated

T. Greevink Master of Science Thesis

2-2 Deep Q-Network 7

between the current estimate of Q(st, at) and the new target estimate Rt+1 + γQ(st+1, at+1).
This error is called the TD-error. Then for the update TD-error multiplied by a fraction
α is subtracted from the current estimate. The resulting update equation to estimate this
expectation is

Q(st, at) = Q(st, at) + α(Rt+1 + γQ(st+1, at+1)−Q(st, at)). (2-3)

where α ∈ (0, 1) is the learning rate.

2-1-2 Exploration

In the previous section it was briefly mentioned that the agent might not always want to
pick the highest Q-Value. For example, take a simple situation where an agent starts in a
state with two actions. When it picks either one the agent gets a reward and the episode
terminates. For the 1st action the agent always gets a reward of 1. For the 2nd action has a
25% chance of getting a reward of 8 and a 75% chance of getting a reward of 0. Now let us
say the agent gets a reward of 0 the first time it chooses the second action. It now thinks
the first action has a higher Q-Value, namely 1, and it will continue to pick this action. To
mitigate this issue we will need some type of exploration to see whether the estimates of the
Q-Values which are not chosen, are still right.

A simple but effective way of ensuring exploration is to have a chance of picking a random
action every step. Usually this chance starts out at a 100% when the policy is still very unre-
liable and decreases as the agent has learned more. The downside of this type of exploration
is that it is very inefficient to explore areas of the state space far away from the current policy.
With an infinite number of steps the agent is assured to explore the whole state-space this
way. However, since this is impossible to achieve the agent might end up getting stuck in a
local optimum.

2-2 Deep Q-Network

The DQN algorithm [15] is the most influential RL paper in recent years. It has sparked a
wave of research in the subfield, deep RL. Deep RL is mostly the same algorithm as normal
RL, which was discussed in Section 2-1. The only difference is that a DNN, which will be
discussed in Section 2-2-1, is used as a function approximator for the Q-Values. Also a few
adjustments were made to make the algorithm more stable, which will be discussed in Section
2-2-2.

The advantage of using a DNN as a function approximator for the Q-values is that DNNs
are good at generalizing over the state space. This means that policies which are successfully
learned in one part of the state space, can also be applied in other parts which are similar.
Then not all of the state space has to be explored and learned to find a policy which performs
well everywhere. This opens up the possibility to learn much bigger state spaces, and therefore
much more interesting problems.

Master of Science Thesis T. Greevink

8 Preliminaries

Figure 2-1: Fully connected neural network [5]

2-2-1 Deep Neural Networks

DNNs are a biologically inspired technology, loosely based on the nerve networks found in
humans and animals. In 1943 Warren McCulloch and Walter Pitts [22] created the first com-
putational model for a neural network. In 1958 Frank Rosenblatt, published the perceptron
[23], an algorithm for pattern recognition. However, the use of DNNs was only popularized in
the 2010’s due to the heavy computational demands to train a DNN. A DNN is essentially a
non-linear input-output mapping. The basic version of a DNN is a fully connected network.
The DNN consists of a series of layers containing non-linear functions. These non-linear func-
tions are called nodes. The output of each node is weighted, summed up with the other nodes
and then fed into the input of one of the nodes in the next layer. This is done for every
function in the next layer. Figure 2-1 gives a schematic overview of what this might look like,
where wij is the weight for node i in the first layer to node j in the second layer. uj is the
output of node j, and so on for wjk and uk. As can be seen there are three types of layers in
the network; an input layer, a hidden layer and an output layer. Each of these layers is a set
of nonlinear functions, represented by the nodes in Figure 2-1. Common functions used are
for example sigmoidal functions, hyperbolic tangents (Tanh) or rectified linear units (ReLU).
The output of the first layer is then used as an input of the second layer, and so forth. This
is represented by the lines between the nodes in Figure 2-1. Each of these lines has a weight
by which the new input is multiplied, and optionally a bias which is added.

The objects to be classified are given at the input layer and the network is calculated through
to the output layer to give a prediction. To train the network labeled or target data is used.
The prediction is compared to the target which gives an error for that data. Then from the
output layer to the input layer the weights are adjusted a little bit using stochastic gradient
descent. This training of the DNN is called back propagation [24].

A variant of the DNN is the Convolutional Neural Network (CNN), proposed by Yann le
Cun in [25], which is most commonly used in visual classification tasks. This adaptation
makes better use of spacial information by preprocessing the input data with convolutional
and pooling layers. A convolutional layer consists of a set of filters which are convoluted with
an input image to form an output image. This means it scans over the input, multiplies it
with a set of weights and outputs a linear combination of the input values. These weights are
tuned with back propagation. This way the network will learn its own set of features. An
example of such a filter is given in Figure 2-2. A convolutional layer has a specified number

T. Greevink Master of Science Thesis

2-2 Deep Q-Network 9

Figure 2-2: Filter in convolutional layer [6]

Figure 2-3: Example of CNN [7]

of filters, of a specified size which scan the input with a specified stride.

Then there typically follows a pooling layer to generalize the positions of features. However,
in control settings this layer is usually skipped, as the exact position of features can be
important information. Max pooling is the most common type of pooling layer, which selects
the maximum value in a certain area. This reduces the size of the representation to reduce
the number of parameters and amount of computation in the rest of the network. It also
helps with generalization as it blurs out the exact location of features but retains a rough
relative location to other features, which helps to control overfitting. Finally the CNN might
look something like Figure 2-3.

2-2-2 Replay memory & Target network

As was mentioned in Section 2-2 a few key adjustments were proposed in [15] to get the
Q-learning algorithm to work with a DNN. The first adjustment is that the agent learns from
experience replay instead if directly from the state transitions. In experience replay the state
transitions are stored in a replay memory. When the network is trained a batch of them is
selected at random and with back propagation a stochastic gradient descent step is performed
on the weights. By sampling batches at random like this there are no temporal correlations
between the state transitions, which helps to stabilize the convergence of the network. This
is because the neural network has to make a highly nonlinear mapping of the state space to
the value functions. If it is trained for a certain part of the state space for too long all the

Master of Science Thesis T. Greevink

10 Preliminaries

other parts will get messed up. By taking randomly sampled batches instead of single state
transitions the accuracy of the gradient estimate is improved.

To further stabilize the convergence of the network a copy of the Q-Network is made every
N steps which is used to compute the target for the stochastic Q-update. This is important
because as we can see from equation 2-2 there is a feedback loop in the Q network from
Q(st+1, at+1) used to estimate the target to Q(s, a) which is updated. Feedback loops can get
unstable, so to mitigate this problem the network used to estimate Q(st+1, at+1) is frozen,
and only updated every N steps.

2-3 Prioritized Experience Replay

In the last section it was discussed that the state transitions are sampled from the replay
memory with a uniform probability. This means that on average all transitions are revisited
about the same number of times. However, some experiences might be very rare, whilst a
lot can be learned from them. If these transitions are sampled just as often as all the other
transitions the agent might not be able to learn everything it could from these transitions.

Schaul et al. [2] proposed an alternative to uniform sampling. Their PER algorithm attempts
to sample according to how much we expect to learn from a transition. A measurement for
how much we expect to learn from a transition could be its TD-error, given by

Q(s, a)− [R(s, a) + γQ(st+1, at+1)]. (2-4)

Each transition gets a sample probability P (i) which are used to sample a batch of transitions.
To sample k transitions we take the range [0, Ptotal] and divide it in k ranges. A value
is uniformly sampled from each range and the transition i that corresponds to this value
is retrieved. By changing the sample distribution a bias is introduced. This bias can be
counteracted by importance sampling.

As was shown by Schaul et al. [2], applying these changes leads to faster learning and a
better performance on many learning tasks. This concept of non uniform sampling is also
used in this thesis. The prioritization of the transitions is based on either TD-error as in the
work of Schaul et al., or the Wasserstein distance. By comparing these two we can see the
influence putting the emphasis on learning the best fitting mean versus learning the correct
distribution.

2-3-1 Priorities

To determine the desired priorities we are looking for a metric which estimates how much we
can learn from a state transition. Unfortunately a direct measurement is not available, but
the TD error from equation 2-4 should give a reasonable estimate proxy. This error represents
how much the current network was wrong in predicting the outcome of a state transition. An
additional advantage of the TD-error is that it is already calculated for each state transition
every time it is used to update the network. However, as the network is updated this TD-
error is immediately outdated. Because the network only changes a little at a time though,
it should be reasonably accurate for a while.

T. Greevink Master of Science Thesis

2-3 Prioritized Experience Replay 11

Calculating the TD-error for every transition in the replay memory at every learning step is
computationally unfeasible, so using the last known TD-error is a decent alternative. However,
using the last known TD-error as priority has some shortcomings. First off, if the first TD-
error is very small the transition might never be sampled again. Secondly the algorithm will
play back stochastic transitions more often, because they will always seem ‘surprising’ with
the TD-error. To mitigate these shortcomings as much as possible the sample probability is
determined by

P (i) = pαi∑
k p

α
k

, (2-5)

where pi > 0 is the priority of transition i. The parameter α will determine how much the
prioritization is used, with α = 0 being the uniform sampling case and α = 1 being sampling
proportional to the priority. The priority pi can be determined in multiple ways but here
the proportional variant will be discussed. In this case the priority is simply the last known
TD-error plus a small positive constant which ensures the transition can still be sampled if
the error is zero.

2-3-2 Importance Sampling

By changing the sampling rate from uniform to a prioritized distribution an unwanted effect
is introduced. Namely, because the occurrence rate of certain events is synthetically amplified
or decreased the expected values of the returns estimated by the stochastic updates become
biased. This bias can be corrected by using weighted importance sampling. In weighted
importance sampling the TD-error is weighted with

wi =
(1
N
· 1
P (i)

)β
(2-6)

where N is the batch size, and β is a parameter between 0 and 1 which determines the
amount of importance sampling. At β = 1 the weights fully compensate for the non-uniform
distribution. For stability reasons all weights are normalized so they only scale downwards.

What happens in weighted importance sampling is that as samples become more likely to
be sampled the step which is taken in the direction of its gradient is scaled down. So with
β = 1 a transition which would be sampled four times as often, would have one fourth the
step size. This effectively cancels out the effect the prioritized sampling gave us. RL has
a highly non-stationary learning process because both the policy and the state distribution
constantly change. Therefore it is assumed that at the start of learning, when the policy is
still very volatile, a small bias can be ignored for the sake of a prioritized distribution. As the
algorithm converges the parameter β is scheduled to converge to 1 which eliminates the bias.
The importance sampling does have two other unintended effects which can also play a role.
First off an advantage could be that as the algorithms gets closer to a solution the steps get
smaller. In highly non-linear environments smaller learning steps can have an advantage as
only the first gradient is approximated. Smaller steps can work better in such an environment
as non-linear functions can be approximated with linear functions on small increments. The
second effect is less desirable. As some of the transitions step sizes shrink more then others,
the size of the mini batch is artificially shrunk as well. A smaller batch size means that there
is more variance in the gradient, which can have a negative effect on convergence.

Master of Science Thesis T. Greevink

12 Preliminaries

2-4 Return Distributions with QR-DQN

In the deep RL algorithms described so far the DNN tries to estimate the expectation of
the discounted return. The correct expectation of the return for a certain policy is all the
information an agent needs to determine the optimal policy. However, it is very tricky to
get a good estimation of the expectation. Bellemare, Dabney and Munos [26] put forth an
algorithm which estimates the entire return distribution, instead of just the expectation. The
agent then takes the mean of this distribution, which should be the same as estimating the
expectation directly. Still, this algorithm reaches state-of-the-art performance on most of the
games in the Arcade Learning Environment (ALE) proposed by Bellemare [20]. Bellemare
et al. argue [26] that estimating distributions has a fundamental importance in the learning
process of a reinforcement agent. They argue that in deep RL an underlying similarity in
outcome is more important than exactly matching means.
Bellemare, Dabney and Munos opt for a distributional approach, instead of estimating the
means by optimizing for the maximum likelihood, they minimize the Wasserstein distance
between estimates of distributions. Bellemare et al. [26] prove that the Wasserstein metric
cannot, in general, be minimized by taking the Wasserstein distance as a loss using stochastic
gradient methods. The algorithm they used in that paper was based on a workaround,
which approximated minimizing the Wasserstein distance. Later, in [1] this same group of
researchers went on to create an algorithm which uses quantile regression [27] to stochastically
estimate return distributions for the state-action pairs. With this new algorithm they close
the theoretical gap left by the workaround used in the previous paper by proving the algorithm
minimizes the Wasserstein metric. This algorithm is named QR-DQN.

2-4-1 Quantile Regression

To explain quantile regression let us start with what a quantile is. The most well known
example of a quantile is the median. The value which divides a data set in two equal parts.
Half of the samples in the set are above it, and half are below. With quantiles, this principle
is generalized for any number of parts. E.g. with five parts the first quantile would have 20%
of the samples below it and 80% above, and so on. The groups that the quantiles separate
have names like halves, thirds, quarters and so on but are also often referred to as quantiles.
Finally, the term quantile mid-point refers to the value exactly in between two quantiles.
Quantile regression is a method to stochastically approximate the quantile functions of dis-
tributions. For a quantile τ ∈ [0, 1], the quantile regression loss is an asymmetric convex loss
function that penalizes overestimation errors with weight τ and underestimations with weight
1− τ . This results in the loss function

L =
N∑
j=1

N∑
i=1

ρτ (Zj − θi) =
N∑
j=1

N∑
i=1

ρτ (uji) (2-7)

where Zj is one of the target quantiles, and θi is one of the current estimate quantiles. The
ρτ function is given by

ρτ (u) = (τ − δu<1)u. (2-8)
and shown in Figure 2-4, where u is the error between the target and the estimate, and
τ ∈ [0, 1] specifies the estimate quantile i.

T. Greevink Master of Science Thesis

2-4 Return Distributions with QR-DQN 13

Figure 2-4: Convex asymmetric loss function for quantile τ ∈ [0, 1] [8]

2-4-2 Quantile Huber Loss

As can be seen in Figure 2-4 the loss function is not smooth at zero. Huber [28] argues
that this can give problems when estimating parameters. This is because the gradient of
the loss function never gets smaller, even as the loss function goes to zero. The estimate of
the parameter will always keep overshooting its correct value. Therefore Dabney et al. also
included a version of the QR-DQN algorithm with an adjusted asymmetric Huber loss on the
interval [−κ, κ], which they named the quantile Huber Loss. The Huber loss [28] is given by

Lκ =
{

1
2u

2, if |u| ≤ κ
κ(|u| − 1

2κ), otherwise . (2-9)

The quantile Huber is then simply the asymmetric veriant of the Huber loss,

ρκτ (u) = (τ − δu<1)Lκ(u). (2-10)

The resulting loss function is shown in Figure 2-5. In [1] the QR-DQN algorithm was tested
for both κ = 1 and κ = 0, called QR-DQN-1 and QR-DQN-0 respectively. Both algorithms
produced a similar mean and median performance. In the rest of this thesis the QR-DQN-0
algorithm will be used.

2-4-3 Minimizing the 1-Wasserstein distance

The p-Wasserstein metric Wp for p ∈ [1,∞] has been discovered several times from different
perspectives in the 20th century. A more correct name would therefore be the Gini-Dall’Aglio-

−κ 0 κ

Figure 2-5: Quantile Huber loss

Master of Science Thesis T. Greevink

14 Preliminaries

Figure 2-6: CDF of probability distribution Z ∈ Z and sample distribution ΠW1Z ∈ ZQ,
1-Wasserstein error is shaded region. [1]

Kantorovich-Vasershtein-Mallows metric, but for the sake of simplicity it will be referred to
as the p-Wasserstein metric Wp in this thesis. The p-Wasserstein metric Wp(U, Y) between
two distributions U and Y is given by

Wp(U, Y) = (
∫ 1

0
|F−1
Y (ω)− F−1

U (ω)|pdω)1/p (2-11)

where F−1
Y is the inverse Cumulative Density Function (CDF) [29] of distribution Y . To

better understand the Wasserstein metric lets take a look at an example of two CDFs of a
probability distribution Z ∈ Z and sample distribution ΠW1Z ∈ ZQ in Figure 2-6. The shaded
areas represent the 1-Wasserstein distance between the two distributions. To minimize the
1-Wasserstein distance between the two distributions the supports of the sample distribution
Z should be at the z values which minimize this area. At the vertical axis four quantiles are
indicated with τ1 to τ4, each containing 25% of the distribution. In [1] Dabney et al. proved
that for any distribution, the quantile mid-point τ̂i always corresponds to the value zi which
minimizes the shaded area. We then take these quantile mid-points τ̂i as the tau parameter
in the quantile regression algorithm which gives us the set of supports which minimizes the
1-Wasserstein distance.

2-5 Discussion

In this chapter we covered the basics of RL, deep RL and two algorithms which build on these
methods; PER and the return distribution based QR-DQN. Learning the return distributions
with QR-DQN has a great performance, even though the distributions themselves are not
used directly by the agent. This is slightly counter intuitive because one would think that
if decisions are being made based solely on the mean return, that this is the only value we
care about estimating. In this thesis the PER algorithm is utilised to see whether learning
the approximate return distribution is actually more important then learning the best fitting
mean return. This gives insight in the successful performance of distribution based algorithms
like QR-DQN and also tests a novel way of prioritizing transitions in distribution based
algorithms. The next chapter will cover the methods used to prioritize the transitions in the
new algorithm, and how it differs from existing algorithms.

T. Greevink Master of Science Thesis

Chapter 3

Methods

Distributional Reinforcement Learning (RL) was not a new concept when the C51 algorithm
was published by Bellemare et al. [26]. As they state themselves in their paper, a distributional
perspective on RL goes back almost as far as the Bellman equation itself [30]. However in these
instances the distributions had been used for specific purposes such as; to model parametric
uncertainty, design risk-sensitive algorithms, or for theoretical analysis. The research on
these topics dates back to before deep reinforcement learning was popularized by Mnih et
al. [15]. It was not until the release of much more recent work that the interest of the deep
learning community was drawn to distributional learning again. Arjovsky et al. published [31]
a Generative Adversarial Network (GAN) which minimized the Wasserstein distance instead
of the Kullback-Leibler divergence. A GAN is a different form of unsupervised deep learning,
which can generate data which is superficially indistinguishable from the data which the GAN
is trained on. Mostly it is used to generate images. This paper got a lot of traction as this
different optimization metric significantly improved the stability of learning. How GANS
work exactly is not in the scope of this thesis, but it is interesting to note that optimizing for
the 1-Wasserstein distance is not just limited to deep RL.

At the same time Arjovsky et al. published Wasserstein GAN, Bellemare et al. published their
first version of their distributional RL algorithm [26], C51. C51 was the state-of-the-art deep
RL algorithm at the time of its release, with a generous margin. But there was no under-
standing of why the algorithm worked so much better. C51 did not even formally minimize
the Wasserstein metric, but used a heuristic approach which approximated it. QR-DQN algo-
rithms closed the theoretical gap left by the heuristic approach to minimizing the Wasserstein
distance, and it took the place of C51 as state-of-the-art single-algorithm. However, it gave
no further explanation as to why minimizing the Wasserstein distance over the maximum
likelihood has such a positive effect on performance. Since the initial success of C51 there
has been research [32, 33] on convergence guarantees of distributional deep RL. But why
it performs better then expectation based RL is still unknown. As Bellemare et al. state
in a publication [33] from Feb. 2019: ‘Despite many algorithmic advances, our theoretical
understanding of practical distributional reinforcement learning methods remains limited.’.

So far, Lyle et al. found evidence [34] that the benefits of distributional learning lie in func-

Master of Science Thesis T. Greevink

16 Methods

Mean
Return

Pr
ob

ab
ilit

y
de

ns
ity

Normal distribution
Bi-modal distribution

Figure 3-1: A depiction of two different distribution with the same mean

tion approximation. Bellemare et al. [26] discuss several possible explanations for the success
of distributional deep RL. Two of these explanations were: state aliasing and a richer set
of predictions. State aliasing was already briefly discussed in the introduction, but let us
reiterate. Imagine two different states with the different return distributions given in Figure
3-1. Since the return distributions have the same mean, an expectation based algorithm will
make the same prediction for these states. A distributional algorithm however makes differ-
ent predictions. Bellermare et al. say that these aliasing predictions may result in effective
stochasticity, as this prediction will not specify which of the two states is being observed. The
second idea is that having a richer set of predictions can be beneficial for learning. This is a
reoccurring research subject [35, 36, 37] in reinforcement learning. Bellemare et al. theorize
that predicting the return distribution is an auxiliary task which is very closely related to the
performance of the agent, which is why it is so successful.

In this thesis I theorize that these two explanations are actually the same phenomenon, which
helps to regularize the model. Take two states with the distributions in Figure 3-1. For an
expectation based model these states will have aliasing return estimates. Because the return
estimates of some states will be aliasing the model will be easier to fit to the data, but later
on the agent will not be able to predict the difference between these states. A model which
is easier to fit to the data can be a beneficial in a situation prone to underfitting. This can
occur when either the model does not get enough training time, or the network architecture
is too small to represent a more complex model. However, the downside is that with enough
training time and a sufficiently large network the simpler model will more easily overfit. This
will hurt the agents ability to generalize its knowledge to unseen states. Having a more
complex model results in there being less aliasing return estimates. Because the model makes
a more complex prediction the return estimates will be harder to fit to the data. Because the
model will be harder to fit to the data it will also be harder to overfit. In other words using a
more complex prediction will help to regularize the model. This theory leads to the following
hypothesis: ‘Fitting distributions instead of expectations regularizes the model, which can
lead to an increase in performance in situations prone to overfitting’.

The hypothesis makes a clear prediction; agents who fit distributions will have a better per-
formance in situations prone to overfitting. However, to properly test this prediction is less
straightforward. If we just compare a distributional and an expectation based model there
are many factors which we are not controlling for. For example, the two algorithms will in-

T. Greevink Master of Science Thesis

17

trinsically have a different network architecture. Bellemare et al. [26] highlighted a significant
instability in the bellman operator, which in combination with function approximation might
prevent the policy from converging. Bellemare et al. believe that distributional algorithms
are able to mitigate these effects by the averaging of the distributions to get the expected
values. Furthermore, the two algorithms minimize a completely different loss function, of
which any side effects are hard to determine. So by comparing these two algorithms it is
not possible to attribute any results strictly to the fitting of distributions. In this thesis a
different approach is taken. Instead of comparing a distributional algorithm to a expectation
based algorithm directly, a distributional algorithm is combined with Prioritized Experience
Replay (PER). This PER algorithm bases its priorities on different error metrics. Two ver-
sions of this combined algorithm are made. One version prioritizes based on the TD-error, the
other one prioritizes based on the 1-Wasserstein error. The TD based version will only pri-
oritize transitions based on the the estimated expectation. These transitions will be learned
from more often which should give the model a preference for fitting these expectations. This
algorithm will be referred to as QR-DQN with TD based PER (QR-TD) in this thesis. The
priority for this algorithm is given by

|
∑N
i=1 Zi − θi|
N

∝
∣∣∣∣∣
N∑
i=1

Zi − θi

∣∣∣∣∣ = p

with N quantiles in the estimate distribution θi and in the target distribution Zi. Since the
priorities p are only used proportionally we do not have to divide by N . Although technically
this combined algorithm has not been tested in literature, this is just the straight forward
combination of two algorithms which at their time of release both produced state-of-the-art
results.

The Wasserstein based version will prioritize transitions based on the 1-Wasserstein error of
the entire distribution. This will give the model a preference to fit the entire distribution
instead of the expectation. This algorithm will be referred to as QR-DQN with Wasserstein
metric based PER (QR-W) in this thesis. The priority for this algorithm is given by

p =
N∑
i=1
|Zi − θi|

with N quantiles in the estimate distribution θi and in the target distribution Zi. Note that
this is not exactly the same as the 1-Wasserstein distance between two sample distributions
θ and Z. The difference is that for the formal 1-Wasserstein distance the samples should
be sorted, to calculate the minimum distance. However, since our samples are not random
but represent the quantiles, it does not make sense to sort them. To illustrate the difference
between QR-TD and QR-W lets take another look at the distributions in Figure 3-1. In this
case the QR-TD algorithm would give a priority of zero, and not replay the transition. The
QR-W algorithm however, would give a non-zero priority and replay the transition to better
fit the model to the data. The pseudo code for QR-W is given in algorithm 1.

To test the hypothesis QR-TD and QR-W will be compared using a range of network architec-
tures. Some will allow for overfitting, others will force underfitting. The hypothesis predicts
that in the overfitting scenarios the QR-W algorithm will perform better. It is also likely
that if the network is not large enough to estimate a distributional model, and the model will

Master of Science Thesis T. Greevink

18 Methods

Algorithm 1 QR-W
Require: quantiles N , step size η, κ, γ, train freq. F , minibatch size k, α, β, steps T

Initialize replay memory H = ∅, p1 = 1
for t = 0 to T do
Observe St and choose At ∼ πθ(St)
Observe Rt, St+1
Store transition (St, At, Rt, St+1) in H with maximal priority pt = maxi pi
if t mod F = 0 then

for j = 1 to k do
Sample transition j ∼ P (j) = pαj /

∑
i p
α
i

Compute importance-sampling weight wj = (N · P (j))−β/maxiwi
Define distributional target for quantile i as Zi = Rt + γθtarget/i(St+1, A

∗
t+1)

Update priority with 1-Wasserstein error pj =
∑N
i=1 |Zi − θi(St, At)|

Compute quantile regression loss Lj =
∑N
i=1 |

∑N
k=1 ρ

κ
τ̂i

(Zk − θi(St, At))|
end for
Calculate weighted loss L =

∑k
j=1wj · Lj

Update network weights with Adam Optimizer with loss L
Periodically update target network weights θtarget ←− θ

end if
end for

Table 3-1: An overview of different algorithms and their methods

Return\Prioritization Uniform TD Wasserstein
Expectation DQN PER -
Distribution QR-DQN QR-TD QR-W

be underfitting, the QR-TD algorithm will perform better because it is only focused on the
TD-error. The environments which will be used for testing will be discussed in Chapter 4.

So far five deep RL algorithms have been discussed; Deep Q-Network (DQN), PER, Quantile
Regression DQN (QR-DQN) (described in Sections 2-2, 2-3 and 2-4 respectively), QR-TD
and QR-W. The difference between these algorithms lies in two factors; whether the return
estimates are expectations or quantile distributions, and how the transitions are sampled from
the replay memory. An overview of these five algorithms is given in Table 3-1.

T. Greevink Master of Science Thesis

Chapter 4

Experiments

The QR-DQN with Wasserstein metric based PER (QR-W) algorithm was tested in three
different environments. In these environments the main metric of comparison is the maximum
rewards achieved for every seed. The learning speed for these algorithms is also taken into
account. The QR-W algorithm will be compared to Deep Q-Network (DQN), Prioritized
Experience Replay (PER), Quantile Regression DQN (QR-DQN) (described in Sections 2-2,
2-3 and 2-4 respectively) and most interestingly QR-DQN with TD based PER (QR-TD).
The only difference between the QR-TD and the QR-W algorithm is how the transitions are
sampled form the replay memory. This comparison isolates the difference between how much
is learned from trying to fit just the expected value versus the entire distribution.
The first environment is a cart-pole balancing task, a simple reinforcement learning problem
with a four dimensional continuous state space and a discrete action space. All algorithms
should be able to solve this problem most of the time. The second environment is a much
tougher challenge called the lunar lander. The environment has an eight dimensional contin-
uous state space with four discrete actions, which will need a much more complicated policy
to solve it. Because this environment is a tougher challenge it is expected to show more
separation between the performance of the algorithms. The third and last environment is by
far the most complex. It is Enduro, a racing game released in 1983 designed for the Atari
2600 game console. This is one of the games from the Arcade Learning Environment (ALE)
published in [20]. The observation of Atari 2600 games is an RGB image, which technically
means the state space is discrete. However, the state space is so large that most states will
never be visited. This is where deep Reinforcement Learning (RL) algorithms truly separate
themselves from conventional RL algorithms, due to their ability to generalize their policy to
unseen states. In this environment only QR-TD and QR-W will be tested, and compared to
the published results for DQN, PER and QR-DQN [15, 2, 1].

4-1 Implementation

For the implementation of QR-W the same implementation as the QR-DQN-0 algorithm [1]
was taken. Then the proportional prioritized sampling and the importance sampling weights

Master of Science Thesis T. Greevink

20 Experiments

Parameter Value
Exploration fraction 0.1
Final exploration ε 0.02
Learning starts 1000 steps
Target network update 1000 steps
Learning rate 10−3

ε̂ 10−8

Table 4-1: Deviating hyper-parameters

from PER [2] were added in. The priority pi of transition i as mentioned in [2] was based on
the 1-Wasserstein distance between the estimate and the target, instead of the TD-error. The
estimate and target distributions were not sorted before taking the 1-Wasserstein distance.
Unless specified in Table 4-1 the hyper-parameters were kept the same as in the original
papers. Except for the Enduro environment, where all parameters were kept the same as
the original papers. The exploration fraction is the fraction of steps in which the algorithm
goes from exploration ε = 1 to its final exploration. The Adam optimizer [38] was used with
parameter ε̂.

4-2 Cart-pole

The description of the cart-pole environment given by Open AI Gym is: ‘A pole is attached by
an unactuated joint to a cart, which moves along a frictionless track. The system is controlled
by applying a force of +1 or -1 to the cart. The pendulum starts upright, and the goal is
to prevent it from falling over. A reward of +1 is provided for every time step that the pole
remains upright. The episode ends when the pole is more than 15 degrees from vertical, or
the cart moves more than 2.4 units from the center.’ [9]

This implementation from OpenAI Gym [39] corresponds to the version of the cart-pole
problem described by Barto, Sutton, and Anderson [40]. A visual representation of the
environment is given in Figure 4-1. Cart-pole has a continuous state space with four states
S ∈ R4. These states are the carts position, the carts velocity, the poles angle and the poles
angular velocity. The Deep Neural Network (DNN) used for the agent has four input nodes,
a hidden layer of 128 nodes, a second hidden layer of 64 nodes and then the output layer
of two nodes. The simulation is run for 40K steps, and the replay memory contains all the
transitions.

4-3 Lunar lander

The second environment is also from the OpenAI Gym [39], called lunar lander. Lunar
lander is an environment where the agents goal is to land a spacecraft on a landing pad
without crashing. The state space is continuous and has eight dimensions S ∈ R8. The
states are the two Euclidean coordinates and velocities, the rotation and rotational velocity
of the spacecraft and two booleans indicating for each of the legs if it touches the ground.

T. Greevink Master of Science Thesis

4-3 Lunar lander 21

Figure 4-1: Cart-pole environment [9]

Figure 4-2: Render of lunar lander environment [10]

The ship has four discrete actions available: do nothing, fire left orientation engine, fire right
orientation engine and fire main engine.

The landing pad is always at coordinates (0,0). The ship gets reward for moving closer to that
landing pad, for having no velocity and for staying level. However, it loses reward for moving
away, having a velocity and tilting. The reward for moving from the top of the screen to
the landing pad and having zero speed is approximately 100 to 140 points, depending on the
initial conditions. The spaceship also gets 10 reward for each leg which is on the ground. An
episode finishes if the lander crashes or comes to rest at which point it receives an additional
-100 if it crashed or left the screen and +100 points if it landed. Firing main engine costs -0.3
points each frame, and firing the orientation engines -0.03. The problem is considered solved
at 200 points but higher scores are possible. Landing outside the landing pad is possible and
fuel is infinite.

A visual representation of the environment is given in Figure 4-2. The DNN used for the
agent has eight input nodes, a hidden layer of 128 nodes, a second hidden layer of 64 nodes
and then the output layer of four nodes. The simulation is run for 250K steps, and the replay
memory contains 100K transitions.

Master of Science Thesis T. Greevink

22 Experiments

Table 4-2: Structure of the CNN for the Enduro agent

Layer Input Filter Stride Num Filters Activation Output
Conv1 84x84x4 8x8 4 32 ReLu 20x20x32
Conv2 20x20x32 4x4 2 64 ReLu 9x9x64
Conv3 9x9x64 3x3 1 64 ReLu 7x7x64
Flatten 7x7x64 - - - - 3136
FullCon 3136 - - 512 ReLu 512
FullCon 512 - - 200x9 Linear 200x9

Figure 4-3: Enduro environment in the morning, noon, evening and night

4-4 Enduro

Enduro is a racing game made for the Atari 2600 in 1983. The goal of the game is to pass a
set number of cars each day. As each day progresses the colour scheme of the environment
changes to represent the time of day. Examples of how the environment might look are given
in Figure 4-3. As can be seen during the evening and night only the brake lights of the cars are
visible, and during night there is a reduced line of sight. In the bottom there is a red square
with three counters, the upper value is the distance travelled (score), in the bottom left the
current day is displayed, and in the bottom right the number of cars which need to be passed
before that day is over. The first day 200 cars need to be passed and every day after that 300
cars. The agent has a discrete set of nine actions; do nothing, left, right, brake, accelerate,
left+brake, left+accelerate, right+brake and right+accelerate. If the agent crashes into the
car its speed is reduced to zero, often resulting in being overtaken by other cars.

The setup of the experiment is kept exactly the same as the set up used in the QR-DQN
paper [1]. The architecture of the Convolutional Neural Network (CNN) is given in Table
4-2. The only difference is that in this environment the experiment is run for the first 50
million steps instead of the full 200 million steps. This is done to reduce the computational
capacity needed to run the experiment. This leads to a small change in the algorithm, as the
β needed for the PER algorithms no longer converges to 1, but to β0 + (1− β0) · 30

200 .

T. Greevink Master of Science Thesis

Chapter 5

Results and discussion

In this chapter the hypothesis formed in Chapter 3: ‘Fitting distributions instead of expecta-
tions regularizes the model, which can lead to an increase in performance in situations prone
to overfitting’ is empirically tested. This is done in two environments, cart-pole and lunar
lander, in Sections 5-1 and 5-2 respectively. For these tests the scores are a rolling mean over
ten consecutive episodes during training. After this hypothesis is tested, the QR-TD and
QR-W algorithms are compared to state-of-the-art algorithms on the Enduro environment
from the Arcade Learning Environment (ALE). In this comparison the agents performance
was periodically evaluated during training. A snapshot of the best evaluated agent was then
run for 300 test episodes to determine the performance of the algorithm. This comparison
can be found in Section 5-3

5-1 Cart-Pole

This section the results for the tests in the cart-pole environment are presented. First a
comparison is made between QR-TD, QR-W and three algorithms from the literature they are
based on. Then in the next subsection the hypothesis from Chapter 3 is tested by comparing
QR-TD and QR-W for different network sizes.

5-1-1 Performance comparison

For the initial performance comparison all five algorithms (Deep Q-Network (DQN), Prioritized
Experience Replay (PER), Quantile Regression DQN (QR-DQN), QR-DQN with TD based
PER (QR-TD) and QR-DQN with Wasserstein metric based PER (QR-W)) are run 50 times
for 40K steps. The mean and and median of the maximum scores are given in Table 5-1.
Boxplots of the maximum scores for each run are given in Figure 5-1. As we would expect,
the distributional algorithms perform best. Looking at the three distributional algorithms
there is not very much separating them. However, QR-W does pull ahead a little bit and
comes out as the best performer. Since the maximum score is 200 the top scoring algorithms

Master of Science Thesis T. Greevink

24 Results and discussion

Table 5-1: Mean and median of max scores for 50 cart-pole simulations

DQN PER QR-DQN QR-TD QR-W
Mean 186.47 193.68 196.55 196.30 197.21
Median 195.7 200 198.2 200 200

DQN PER QR-DQN QR-TD QR-W

150

160

170

180

190

200

M
ax
 S
co
re

Boxplot Max Scores

Figure 5-1: Boxplot of max scores for 50 cart-pole simulations

are all compressed near 200. The 0.66 points between QR-TD and QR-W might not look like
much, but they represent a 19% error reduction.

To see whether a difference between two distributions is significant, an Analysis of Variance
(ANOVA) test is often performed. However, looking at Figure 5-1 we can see that the scores
are compressed at the top end, by the maximum score of 200. Because of this compression the
scores can not be represented by normal distributions. Therefore an ANOVA test is not valid
on these scores, since it assumes normally distributed groups. To better analyse these results
the Mann-Whitney U test was performed. This test could be described as a non-parametric
version of the ANOVA test, it does not assume a normal distribution. The Mann-Whitney U
test gave p = 0.23. This means that there is a 23% chance that this result is by coincidence,
which is not very convincing on its own. To draw conclusions the results will have to show
consistent patterns over multiple environments and test parameters.

In the Methods chapter it was theorized that prioritizing to fit the distributions over the
means would help to regularize the overfitting of the model. This is the reason we theorized
that QR-W would perform better than QR-TD. We have found that QR-W performs better
than QR-TD, now let us try to analyse whether this is due to the regularization like we
theorized. To analyse this, tests were run for multiple smaller network sizes. Here we can
look at how both QR-TD and QR-W perform with over/underfitting network architectures.
This will give insight into the amount of regularization by both algorithms. The results of
these tests are discussed in the next section.

T. Greevink Master of Science Thesis

5-1 Cart-Pole 25

0 5000 10000 15000 20000 25000 30000 35000 40000
Steps

25

50

75

100

125

150

175

200

Sc
or
e

Mean Score over 50 simulations

DQN
PER
QR-DQN
QR-TD
QR-W

0 5000 10000 15000 20000 25000 30000 35000 40000
Steps

25

50

75

100

125

150

175

200

Sc
or
e

Median Score over 50 simulations

DQN
PER
QR-DQN
QR-TD
QR-W

Figure 5-2: Mean and median score vs steps for 50 cart-pole simulations

5-1-2 Regularization with over and underfitting network architectures

In this section we try to analyse whether the increase in performance of QR-W can be at-
tributed to better regularization in situations prone to overfitting. In Chapter 3 it was the-
orized that prioritizing to fit distributions instead of expected values will fit a more complex
model, which helps to regularize in situations prone to overfitting. It was theorized that this
regularization would be beneficial to the performance of the algorithm and therefore QR-W
would outperform QR-TD. In the previous section we found that QR-W had an increased
performance, now we will try to analyse whether this was due to better regularization. We will
try to analyze this by seeing how both QR-TD and QR-W perform with over and underfitting
network architectures. Therefore tests were run with a set of different network architectures.
The tests were run for a network with 32-64, 16-32 and 8-16 nodes in the hidden layers,
representing 1

2 ,
1
4 and 1

8 of the networks hidden nodes of the initial performance test. Each
network and algorithm was run for 10 simulations. After running the initial 10 simulations
the best performing network was run an additional 10 times for verification. The mean and
median of the max scores of all these runs are given in Table 5-2, where the best scores for
each algorithm were highlighted.

Upon analyzing the results we can see that the model was doing some sort of overfitting in
the initial performance test. As can be seen in Table 5-2 the scores increases as the network
size decreases. The performance reaches a peak at a network structure of 16-32 nodes, after
which it starts to underfit.

The results concur with our prediction; QR-W performs better then QR-TD with the larger
networks. When the network becomes too small, and the performance declines the network
is underfitting. With the underfitting model QR-TD performs better. These observations
support the theory that fitting the entire distribution helps to regularize the model when it
is overfitting. To better assert this hypothesis it is important to repeat this experiment in
the lunar lander environment to establish that it is not an environment specific effect. The
Mann-Whitney U test on the 16-32 network for 20 seeds gave p = 0.20 which, again, is not
very convincing on its own. However, the consistent performance increase of QR-W with

Master of Science Thesis T. Greevink

26 Results and discussion

Table 5-2: Mean and median max scores of cart-pole vs networks

Mean Median
Net size QR-TD QR-W QR-TD QR-W
8-16 190.92 188.70 199.95 196.95
16-32 198.23 199.53 200 200
32-64 197.58 198.39 199 200
64-128 196.30 197.21 200 200

multiple network architectures does add to the credibility of a qualitative difference between
these algorithms. It will be very interesting to see whether these results can be duplicated in
a different environment.

5-2 Lunar lander

This section the results for the tests in the lunar lander environment are presented. Like in
the previous section, a comparison is made between QR-TD, QR-W and three algorithms
from literature they are based on. Then in the next subsection the hypothesis from Chapter
3 is tested by comparing QR-TD and QR-W for different network sizes. It was found that
PER is not beneficial in this environment. Therefore, in Subsection 5-2-3 the influence of the
alpha parameter from the PER algorithm (equation 2-5) is analyzed. Finally in Subsection
5-2-4, the PER part of the algorithms is adjusted to analyze the effect of importance sampling
on the performance.

5-2-1 Performance comparison

Just like with cart-pole a performance comparison is done for all five algorithms. By analyzing
these results we get a feel for how the algorithms perform in this environment, and what
further tests might be interesting. The performance comparison run was done with a 128-64
network and the implementation described in Section 4-1. The results are given in Table 5-3
and Figures 5-3 and 5-4.

In Table 5-3 we see that QR-DQN performs best, better even than both QR-TD and QR-W.
It is a common phenomenon in Deep Reinforcement Learning (RL) that an algorithms perfor-
mance differs between environments. Although PER will have a positive effect on performance
in most cases, in this specific environment QR-DQN performs better on its own. However, in
this thesis the main focus lies on analysing the differences between QR-TD and QR-W. Tests
on different network architectures will be done in Section 5-2-2 to see if the results found in
Section 5-1-2 can be duplicated. Since QR-DQN has the best performance the α parameter
will be varied in Section 5-2-3, to see whats influence it has in this environment. After this the
prioritization algorithm in QR-TD and QR-W will be slightly adjusted in Section 5-2-4, to
see whether the importance sampling is causing the performance to be lower than QR-DQN.

T. Greevink Master of Science Thesis

5-2 Lunar lander 27

Table 5-3: Mean and median of max scores for 10 lunar lander simulations

DQN PER QR-DQN QR-TD QR-W
Mean 54.59 121.99 226.89 202.81 216.32
Median 0.07 165.68 228.53 213.70 219.87

DQN PER QR-DQN QR-TD QR-W

−50

0

50

100

150

200

250

M
ax

 S
co
re

Boxplot Max Scores

Figure 5-3: Boxplot of max scores for 10 lunar lander simulations

0 50000 100000 150000 200000 250000
Steps

−800

−600

−400

−200

0

200

Sc
or
e

Mean Score over 10 sim lations
DQN
PER
QR-DQN
QR-TD
QR-W

0 50000 100000 150000 200000 250000
Steps

−600

−400

−200

0

200

Sc
or
e

Median Score over 10 sim lations
DQN
PER
QR-DQN
QR-TD
QR-W

Figure 5-4: Mean and median score vs steps for 10 lunar lander simulations

Master of Science Thesis T. Greevink

28 Results and discussion

Table 5-4: Mean and median max scores of 10 lunar lander simulations versus network sizes

Mean Median
Net size QR-TD QR-W QR-TD QR-W
32-32 180.38 145.29 195.83 178.85
64-64 195.38 189.61 216.81 219.96
128-64 202.81 216.32 213.70 219.87
128-128 221.83 223.39 224.38 223.88
192-192 210.11 226.71 228.80 226.11
256-256 164.92 186.25 217.14 223.89

5-2-2 Regularization with over and underfitting network architectures

In Chapter 3 it was hypothesised that QR-W will perform better then QR-TD because of
the regularizing effect of fitting distributions instead of expected values. In Section 5-1-2 this
hypothesis was tested by varying the network size to see how QR-W and QR-TD performed
in under and overfitting scenarios. If the hypothesis is true we would expect that with larger
network sizes, where the model is prone to overfit, QR-W performs better then QR-TD. If
the network size gets too small and the model is underfitting the regularization will yield no
benefit. Therefore the prioritization of the best fitting means in QR-TD should give the best
performance. The results found in Section 5-1-2 concurred with the hypothesis. To see if
these results are environment specific or algorithm specific the experiment is replicated on
the lunar lander environment. The lunar lander agent was tested with a 32-32, 64-64, 128-64,
128-128, 192-192 and 256-256 network. The results are shown in Table 5-4, where the best
scores for each algorithm were highlighted.

Looking at the results, exactly the same pattern emerges as was the case with the cart-pole en-
vironment. The QR-W algorithm achieves a better performance then its QR-TD counterpart
across a wide range of network architectures. Only when the agents are clearly underfitting
the QR-TD starts to perform better then QR-W. This result supports the hypothesis that
fitting distributions instead of expected values performs better because the more complex
distributional model helps to regularize the training process if it is overfitting. To increase
the validity of the measurement another 40 runs are done for the best performing network,
192-192, which are shown in Table 5-5.

As can be seen in Table 5-5 the mean scores of both algorithms are significantly lower then
what we found in the initial tests. The median values did not suffer as much though. This
can be explained by the skewed nature of the distribution seen in the boxplot in Figure 5-5.
The scores can much more easily have outliers at the bottom end of the distribution then
at the top end, since getting scores at the top end of the distribution is suppressed by the
dynamics of the environment. Apart form this observation we see that with a bigger sample
size the QR-W algorithm still performs better then QR-TD. Doing a Mann-Whitney U test
on these results gives p = 0.09.

T. Greevink Master of Science Thesis

5-2 Lunar lander 29

Table 5-5: Mean and median max scores of 50 lunar lander simulations for 192-192 network

Mean Median
Net size QR-TD QR-W QR-TD QR-W
192-192 193.31 203.91 222.77 225.44

Figure 5-5: Mean score vs steps and boxplot for 192-192 network,

5-2-3 Prioritization alpha

The results from the initial test showed that uniformly sampled QR-DQN had better results
then prioritized QR-DQN. However, the prioritized sampling algorithm, which was based
on [2], lets one tune the amount of prioritization with a parameter α. In the original paper
this parameter was set at 0.6, but as prioritized sampling does not seem to work very well
it might be interesting to experiment with different values. All three prioritizing algorithms
PER, QR-TD and QR-W were tested for α values 0.6, 0.4 and 0.2. In the results α = 0
was also included, at which point PER reverts to DQN, and both QR-TD and QR-W revert
to QR-DQN. The results of these experiments are given in Table 5-6. As can be seen the
QR-TD algorithm improves as α is decreased. However, QR-W has its optimal performance
at α = 0.4, only just being beaten by uniform sampling. At this alpha the Mann-Whitney U
test gives p = 0.14.

Doing a grid search for optimal parameters for the QR-W algorithm is too computationally

Table 5-6: Mean and median max scores of 10 lunar lander simulations versus alphas

Mean Median
α PER QR-TD QR-W PER QR-TD QR-W
0.6 121.99 202.81 216.32 165.68 213.70 219.87
0.4 141.77 216.06 225.78 164.16 222.20 226.74
0.2 76.8 223.35 217.40 67.75 221.85 220.33
0 54.59 226.89 226.89 0.07 228.53 228.53

Master of Science Thesis T. Greevink

30 Results and discussion

Table 5-7: Mean and median of max scores for 10 lunar lander simulations with 192-192 network
and varying α

α = 0 α = 0.4 α = 0.6
QR-DQN QR-TD QR-W QR-TD QR-W

Mean 236.91 229.24 230.47 202.81 216.32
Median 236.77 232.91 232.28 213.70 219.87

0 50000 100000 150000 200000 250000
Steps

−200

−100

0

100

200

Sc
or
e

Mean Score over 10 simulations
QR-DQN
QR-TD
QR-W

0 50000 100000 150000 200000 250000
Steps

−200

−100

0

100

200

Sc
or
e

Median Score over 10 simulations
QR-DQN
QR-TD
QR-W

Figure 5-6: Mean and median score vs steps for 10 lunar lander simulations with 192-192 network
and α = 0.4

intensive. However combining the best performing network architecture with α = 0.4, even
though these two parameters are not independent, might still deliver something close to an
optimal performance for the QR-W algorithm. The results of this test is shown in Table 5-7.
This table also contains the earlier test results for α = 0.6 and new results for the QR-DQN
algorithm with the 192-192 network structure. As can be seen both QR-TD and QR-W have
big jumps in performance, giving them an almost identical performance. This nearly identical
performance means the Mann-Whitney U test over these 10 seeds gives p = 0.43 QR-DQN
has an even bigger performance increase, leaving the other two algorithms behind it with a
large margin. By analyzing the learning process shown in Figure 5-6 we can hypothesise why
the QR-DQN algorithm does so well, and why the other two QR algorithms end up so similar.

The strength of PER lies in promoting sparse transitions so the algorithm can more quickly
adjust its policy to it, instead of it being buried in the replay memory. With this in mind,
lets look at the learning behaviour of QR-TD, QR-W and QR-DQN in Figure 5-6. In the
learning process a clear pattern can be seen of the three stages of learning to fly the lander.
Stage one is learning how to stay upright, and not immediately crash-land. This happens
approximately simultaneous in all three algorithms from step 0 to 20K. After it has learned
not to crash the next step is to learn to hover to the landing zone. This initially causes the
total average score to drop because hovering takes actions such as firing the main engine,
which cost points. As the agent learns to control the lander the score gradually increases.
At a certain point all three algorithms make a large jump in score at which point the score

T. Greevink Master of Science Thesis

5-2 Lunar lander 31

Table 5-8: Mean and median of max scores for 10 lunar lander simulations with decaying alpha

Mean Median
α0 β QR-TD QR-W QR-TD QR-W
0.4 0.4 222.8 231.4 228.5 232.6
0.6 0.6 199.0 224.3 228.7 229.4

becomes very volatile. This radical change in both the score and volatility of the score indicate
that the agent has learned that for the best score it has to land in the landing zone, so it
gets the bonus. In Figure 5-6 it can clearly be seen that both QR-TD and QR-W learn
this behaviour significantly earlier then QR-DQN. This gives the PER algorithms a leg up
for most of the training period. However, at the end of the learning trajectory at around
190K steps QR-TD and QR-W converge to very similar scores. This can be explained by
the importance sampling starting to play a bigger role. The importance sampling removes
the bias introduced by the PER. It also artificially reduces the minibatch size as the step
size of some transitions is reduced. Reducing the minibatch size in turn leads to a greater
variance in the gradient, which slows down convergence. At this point QR-DQN overtakes
both QR-TD and QR-W in score. An interesting follow up experiment will be to see whether
the QR-TD and QR-W algorithms perform better with a decaying α instead of importance
sampling. This the results of this experiment are discussed in the next section.

5-2-4 Decaying alpha

In the previous section the influence of alpha on the algorithms performance was tested. From
the results it seems that prioritization has a positive influence on performance at first, but
no prioritization wins out in the end. We theorized that this could be the consequence of
the importance sampling used in the algorithm. When the importance sampling parameter
β anneals to one, surprising transitions which are sampled more often also get a smaller and
smaller step size. This means that these transitions have a much smaller contribution to the
gradient direction. A side effect of that is that the minibatch size is artificially been made
smaller, since the gradient direction will be determined with fewer transitions. In this section
the hypothesis that importance sampling is the reason QR-DQN performs better then QR-TD
and QR-W in the lunar lander environment is tested. To test this a modified algorithm is
used which decays α to zero instead of annealing β to one. First the algorithm was tried with
β = 0, but it became clear very quickly that this only worked with an α0 ≤ 0.1, at which point
it is almost similar to the original algorithm. The algorithm was then tested with parameters
α0 = 0.4, β = 0.4 and α0 = 0.6, β = 0.6. The results are shown in Table 5-8. The decaying
alpha algorithm has a slightly better performance than the regular algorithm. However it still
does not come close to the performance of QR-DQN. When comparing QR-TD and QR-W
we see that QR-W still has the best performance. The Mann-Whitney U test for parameters
α0 = 0.4, β = 0.4 gives p = 0.15. This, again, conforms to the pattern of not being a very
significant difference on its own, but adding to the overall likelihood of a qualitative difference.

Master of Science Thesis T. Greevink

32 Results and discussion

Table 5-9: Mean and median score of 300 evaluation episodes of Enduro

QR-TD QR-W
Mean 2305.50 2546.17
Median 2287.0 2574.0

5-3 Enduro

So far the results seem promising, and consistent over the two tested environments. These
results beg the question whether this performance will hold up in the ALE [20]. In the ALE
computational power starts to play a more prevalent role. Because of this there is only enough
computational power available to perform one run for both QR-TD and QR-W. This means
that the results of this test in isolation are statistically unreliable. However, in conjunction
with the results found in the other environments, this test can still provide additional insight
in the performance of this algorithm.

It is also worth noting that because there will only be one run per algorithm no parameter
tuning was done. All the parameters were taken from the original papers [2, 1]. The runs
were shortened to 50 million frames, instead of the conventional 200 million. To still be able
to compare the results of this run to the existing literature the β parameter was still annealed
to 1 as if there were 200 million frames. This recreates exactly similar test conditions as the
first 50 million frames test done on the ALE in most literature. The Enduro environment was,
in part, selected because it seems to have a very fast learning curve. In both the QR-DQN
and the PER paper the algorithm got close to its final performance within the first 50 million
frames. However, QR-TD and QR-W will still be at an significant disadvantage compared to
a full 200 million frames test. This is because the algorithm is evaluated every million frames.
A snapshot of the best performing evaluation is then further evaluated for the final result. So
in a full 200 million frame test there are four times more evaluation points, of which the best
performing one is chosen. Then we also have to take in to account that the agent will take a
while to get close to its final performance.

Both QR-TD and QR-W were trained for 50 million steps, being evaluated every million
steps. A snapshot of the best performing agent was then further evaluated for 300 episodes
without exploration or learning. The mean and median performance of the two algorithms is
given in Table 5-9. Also, Figure 5-7 gives a boxplot of the scores in these test episodes.

As can be seen in the results there is a significant gap in performance between the two
algorithms. QR-W has a 10% increase in mean reward, and a 12.5% increase in median
reward. Table 5-10 shows how QR-TD and QR-W stack up against the current state-of-the-
art algorithms trained for 200 million frames. Notably, QR-DQN and IQN were run for three
and five seeds respectively. The reported values are from one of those seeds, which seed was
used is not specified in [3]. As can be seen QR-TD conforms with the scores found in the
state-of-the-art literature. QR-W surpasses these scores with a significant margin, setting a
new record on this particular environment. Since this is only one of the 57 games which is
normally tested in the ALE, conclusions can not be drawn based on this data alone. However,
since no parameter tuning was done whatsoever, it can safely be said that this is a promising
result.

T. Greevink Master of Science Thesis

5-3 Enduro 33

QR-W QR-TD

1000

1500

2000

2500

3000

3500

4000

4500

Re
tu
rn

Evaluation returns

Figure 5-7: Boxplot of 300 evaluation episodes of Enduro

Table 5-10: Mean Enduro scores found in literature. Reference values from [11, 4, 3].

Human DQN PER Rainbow QR-DQN IQN QR-TD QR-W
860.5 729.0 2093.0 2125.9 2355 2359 2305.50 2546.17

Master of Science Thesis T. Greevink

34 Results and discussion

T. Greevink Master of Science Thesis

Chapter 6

Conclusion & Discussion

In this thesis it was hypothesised that distributional deep Reinforcement Learning (RL) gets
performance improvements over expectation based deep RL from the regularizing effect of
fitting a more complex model. This hypothesis was tested by comparing two variations of
combining the Quantile Regression DQN (QR-DQN) (Section 2-4) and Prioritized Experience
Replay (PER) (Section 2-3) algorithms. One variation, named QR-TD, prioritized based on
the error of the expectation. The other one, named QR-W, based its prioritization on the
Wasserstein distance between the return distributions. The only difference between these
two algorithms is that QR-TD promotes learning a return distribution function for which the
mean is correct, whereas QR-W promotes return distribution function for which the entire
distribution is correct. Our hypothesis predicts that QR-W will perform better than QR-TD
when the network is sufficiently or excessively large. It also predicts that when the network
architecture becomes too small, and the model is forced to underfit, the QR-TD algorithm
should perform better.
An experiment was carried out for these two algorithms with a range of different network
sizes in two simulated environments; a cart-pole balancing task (Section 4-2), and the control
of a lunar lander (Section 4-3). The results of these experiments concurred with the predic-
tions for the hypothesis. These results provide new insight in to the mechanisms behind the
performance increase of distributional RL algorithms.
Since the novel QR-DQN with Wasserstein metric based PER (QR-W) algorithm performed
well it was run in the Enduro environment (Section 4-4) from the Arcade Learning Environ-
ment (ALE) [20] to benchmark its performance. In this test no parameter tuning was done,
to ensure there was no tailoring to this specific environment. Also the test was run for 50M
steps instead of 200M because of limited computational resources. Still, the QR-W algorithm
outperformed all algorithms compared in the state-of-the-art IQN [3] and rainbow [4] papers.
The findings in this thesis provide fundamental insight in to the advantages of distributional
algorithms over expectational ones. This can help to identify situations where distributional
RL will give an increased performance over expectation based RL. Also by shedding light on
the underlying mechanisms which drive performance, the creation of new algorithms might
be inspired which make even better use of these mechanisms.

Master of Science Thesis T. Greevink

36 Conclusion & Discussion

Further research on this topic could consist of additional tests in the ALE environment to
verify the increased performance in more environments. Also, in this thesis it was shown
that the regularizing effect is responsible for at least part of the performance increase of
distributional RL. An additional interesting experiment would be to compare DQN and QR-
DQN directly with different network sizes, to see whether the regularizing effect accounts for
all of the performance increase.

T. Greevink Master of Science Thesis

Bibliography

[1] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos, “Distributional reinforcement
learning with quantile regression,” arXiv preprint arXiv:1710.10044, 2017.

[2] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” arXiv
preprint arXiv:1511.05952, 2015.

[3] W. Dabney, G. Ostrovski, D. Silver, and R. Munos, “Implicit quantile networks for
distributional reinforcement learning,” arXiv preprint arXiv:1806.06923, 2018.

[4] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan,
B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improvements in deep reinforce-
ment learning,” arXiv preprint arXiv:1710.02298, 2017.

[5] “Fully connected neural network.” https://www.extremetech.com/wp-content/
uploads/2015/07/NeuralNetwork.png. Accessed: 2018-10-11.

[6] “Convolutional filters.” https://cdn-images-1.medium.com/max/1600/
1*EuSjHyyDRPAQUdKCKLTgIQ.png. Accessed: 2018-10-11.

[7] “Convolutional neural network.” https://www.mdpi.com/entropy/entropy-19-00242/
article_deploy/html/images/entropy-19-00242-g001.png. Accessed: 2018-10-11.

[8] “Quantile loss.” https://i.stack.imgur.com/DmKq7.png. Accessed: 2019-03-13.

[9] “Cart-pole environment open ai gym.” https://gym.openai.com/envs/CartPole-v1/.
Accessed: 2018-11-05.

[10] “Lunar lander.” https://gym.openai.com/envs/LunarLander-v2/. Accessed: 2018-11-
05.

[11] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas, “Dueling
network architectures for deep reinforcement learning,” arXiv preprint arXiv:1511.06581,
2015.

Master of Science Thesis T. Greevink

https://www.extremetech.com/wp-content/uploads/2015/07/NeuralNetwork.png
https://www.extremetech.com/wp-content/uploads/2015/07/NeuralNetwork.png
https://cdn-images-1.medium.com/max/1600/1*EuSjHyyDRPAQUdKCKLTgIQ.png
https://cdn-images-1.medium.com/max/1600/1*EuSjHyyDRPAQUdKCKLTgIQ.png
https://www.mdpi.com/entropy/entropy-19-00242/article_deploy/html/images/entropy-19-00242-g001.png
https://www.mdpi.com/entropy/entropy-19-00242/article_deploy/html/images/entropy-19-00242-g001.png
https://i.stack.imgur.com/DmKq7.png
https://gym.openai.com/envs/CartPole-v1/
https://gym.openai.com/envs/LunarLander-v2/

38 Bibliography

[12] R. K. Sinha, R. Pandey, and R. Pattnaik, “Deep learning for computer vision tasks: A
review,” arXiv preprint arXiv:1804.03928, 2018.

[13] C. R. Rubi, “A review: Speech recognition with deep learning methods,” International
Journal of Computer Science and Mobile Computing, vol. 4, no. 5, 2015.

[14] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based
natural language processing,” IEEE Computational Intelligence Magazine, vol. 13, no. 3,
pp. 55–75, 2018.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the game of
go with deep neural networks and tree search,” Nature, vol. 529, no. 7587, p. 484, 2016.

[17] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, pp. 354–359, 2017.

[18] OpenAI, “Openai five.” https://blog.openai.com/openai-five/, 2018.

[19] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. M. Czarnecki,
A. Dudzik, A. Huang, P. Georgiev, R. Powell, T. Ewalds, D. Horgan, M. Kroiss,
I. Danihelka, J. Agapiou, J. Oh, V. Dalibard, D. Choi, L. Sifre, Y. Sulsky, S. Vezh-
nevets, J. Molloy, T. Cai, D. Budden, T. Paine, C. Gulcehre, Z. Wang, T. Pfaff,
T. Pohlen, Y. Wu, D. Yogatama, J. Cohen, K. McKinney, O. Smith, T. Schaul,
T. Lillicrap, C. Apps, K. Kavukcuoglu, D. Hassabis, and D. Silver, “AlphaStar:
Mastering the Real-Time Strategy Game StarCraft II.” https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

[20] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning envi-
ronment: An evaluation platform for general agents,” Journal of Artificial Intelligence
Research, vol. 47, pp. 253–279, 2013.

[21] R. S. Sutton and A. G. Barto, Reinforcement learning - an introduction. Adaptive
computation and machine learning, MIT Press, 1998.

[22] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[23] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and orga-
nization in the brain.,” Psychological Review, vol. 65, no. 6, p. 386, 1958.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, no. 6088, p. 533, 1986.

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

T. Greevink Master of Science Thesis

https://blog.openai.com/openai-five/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

39

[26] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective on reinforce-
ment learning,” arXiv preprint arXiv:1707.06887, 2017.

[27] R. Koenker and K. F. Hallock, “Quantile regression,” Journal of Economic Perspectives,
vol. 15, no. 4, pp. 143–156, 2001.

[28] P. J. Huber et al., “Robust estimation of a location parameter,” The Annals of Mathe-
matical Statistics, vol. 35, no. 1, pp. 73–101, 1964.

[29] A. Müller, “Integral probability metrics and their generating classes of functions,” Ad-
vances in Applied Probability, vol. 29, no. 2, pp. 429–443, 1997.

[30] D. White, “Mean, variance, and probabilistic criteria in finite markov decision processes:
a review,” Journal of Optimization Theory and Applications, vol. 56, no. 1, pp. 1–29,
1988.

[31] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint
arXiv:1701.07875, 2017.

[32] M. Rowland, M. G. Bellemare, W. Dabney, R. Munos, and Y. W. Teh, “An analysis
of categorical distributional reinforcement learning,” arXiv preprint arXiv:1802.08163,
2018.

[33] M. G. Bellemare, N. L. Roux, P. S. Castro, and S. Moitra, “Distributional reinforcement
learning with linear function approximation,” arXiv preprint arXiv:1902.03149, 2019.

[34] C. Lyle, P. S. Castro, and M. G. Bellemare, “A comparative analysis of expected and
distributional reinforcement learning,” arXiv preprint arXiv:1901.11084, 2019.

[35] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp. 41–75, 1997.

[36] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and
K. Kavukcuoglu, “Reinforcement learning with unsupervised auxiliary tasks,” arXiv
preprint arXiv:1611.05397, 2016.

[37] T. de Bruin, J. Kober, K. Tuyls, and R. Babuška, “Integrating state representation
learning into deep reinforcement learning,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 1394–1401, 2018.

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[39] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” 2016.

[40] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements that
can solve difficult learning control problems,” IEEE Transactions on Systems, Man, and
Cybernetics, no. 5, pp. 834–846, 1983.

Master of Science Thesis T. Greevink

40 Bibliography

T. Greevink Master of Science Thesis

Glossary

List of Acronyms

RL Reinforcement Learning

DNN Deep Neural Network

CNN Convolutional Neural Network

DQN Deep Q-Network

PER Prioritized Experience Replay

QR-DQN Quantile Regression DQN

QR-W QR-DQN with Wasserstein metric based PER

CDF Cumulative Density Function

ALE Arcade Learning Environment

QR-TD QR-DQN with TD based PER

TD Temporal Difference

GAN Generative Adversarial Network

ANOVA Analysis of Variance

Master of Science Thesis T. Greevink

42 Glossary

T. Greevink Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Preliminaries
	Reinforcement Learning
	Deep Q-Network
	Prioritized Experience Replay
	Return Distributions with QR-DQN
	Discussion

	Methods
	Experiments
	Implementation
	Cart-pole
	Lunar lander
	Enduro

	Results and discussion
	Cart-Pole
	Lunar lander
	Enduro

	Conclusion & Discussion

	Appendices
	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

