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Abstract

Recent innovations in Electric Vehicles (EVs) will potentially change the future of the transportation
industry. They will diversify the energy mix and reduce the dependence on fossil fuels. However, use
of EVs only shifts the source of COᎴ production to electricity generation plants. A smart solution to
overcome this problem is the use of localized generated power and solar-powered charging stations are
the best way to achieve it.

A solar powered e-bike charging station, installed on the TU Delft campus is one such example.
The charging station is equipped with a meteorological station, sensors for monitoring performance,
inverters and batteries. The PV system installed at the e-bike station was thoroughly modeled, con-
sidering both the location and meteorological conditions of the final installation [1]. To maximize the
station’s utility, it is important to accurately predict the energy yield of the system. The modeling step
comprises of several sub-models (irradiance, thermal and electrical model) which indicate the energy
yield of the station as well as the power exchange with the grid. Though these models were based on
(realistic) assumptions, there is a need to verify the assumptions against measured values.

In this thesis, the accuracy of existing irradiance, thermal and electrical models was evaluated by
predicting the energy yield of the e-bike charging station. Further, the performance of these models,
especially those related to the irradiance on the plane of the array and the instantaneous temperature of
the PV modules, was improved. Also, two new decomposition models are introduced to improve the
accuracy of obtaining diffuse irradiance from global horizontal irradiance specifically for the Nether-
lands. It was found that for accurate energy yield prediction it is necessary to optimize the models using
location specific parameters like sky view factor, albedo, INOCT etc. The energy yield predicted, us-
ing the improved models in this thesis, was only 17 𝑘𝑊ℎ less than the measured yield for the duration
Oct’16-Apr’17.
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1
Introduction

Today, renewable energy has become an essential part of the world’s ongoing energy transformation.
Providing sustainable, reliable and cost-effective energy is critical to meet growing energy demand
and curb climate change. With the advancements in renewable energy technologies, renewables are
becoming more affordable and readily available, driving their adoption around the world, especially
in the power sector. For example, 90% of the investments in renewable power in 2015, were in wind
and solar power. They are now competitive with conventional sources of electricity because costs have
plunged in recent years. The cost of solar photovoltaic (PV) modules has fallen by 80% since 2009
and that of wind turbines by nearly a third [2]. These developments have made it possible to reach grid
parity by reducing the levelized cost of electricity.

Among the various energy sources available, Photovoltaic (PV) systems, due to their modularity,
scalability, low cost of maintenance and long life are emerging as a lucrative option. Significant cost
reductions, accompanied by global awareness about sustainable development, have opened newmarkets
for their rapid growth. Increase in global PV capacity from 40 GW in 2010 to 219 GW in 2015 is an
example in this regard [2]. PV systems are enabling consumers not only to produce power for their
needs but also to push the excess energy into the grid.

Continuous efforts to innovate and develop PV technologies that are more efficient, lighter and
cheaper will enable the use of PV in non-conventional places such as on building facades, windows,
roads and other surfaces. International Renewable Energy Agency (IRENA) estimates that the global
solar PV capacity could reach 1,760 GW by 2030.

Following the success of solar power in the recent years, several countries are making massive
investments in this sector. In the Netherlands, the share of renewable energy was just four percent, and
the contribution of solar power was merely 1.4% in the year 2010. In 2011, it came up with a National
Action Plan on Solar Power (NAZ), with the aim of increasing the installed capacity to 4 GWp by 2020
[3, 4]. To support this revolution, schemes like net metering, which is guaranteed till 2020, have been
implemented.

1.1. Electric vehicles
The transportation industry is one of the biggest consumers of energy generated by fossil fuels. In the
year 2012, 96% of the energy used by the transport sector came from fossil fuels resulting in 23% of
the total current energy-related 𝐶𝑂Ꮄ emissions [5]. For the same year, fuel consumption by passenger
vehicles alone accounted for 61% of the total world transportation energy consumption. This is a clear
indication that the dependency of transport sector on traditional fuels must be decreased to achieve the
sustainability goals. Recent innovations in Electric Vehicles (EVs) have proven that they can change
the future of transportation industry, especially passenger vehicles, by diversifying the energy mix and
reducing the dependence on fossil fuels. It is also important to recognize that the use of EVs only shifts
the source of 𝐶𝑂Ꮄ production to electricity generation plants and the only way to completely solve the
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2 1. Introduction

problem is to produce the electricity in a sustainable way. In 2015, the number of electric cars (including
battery-powered and plug-in hybrid vehicles) on the road crossed the global threshold of 1 million [6].
There is also a significant increase in number of Light Electric Vehicles(LEVs) or e-bikes around the
globe. For instance, the Netherlands, which is also known as the bike capital of the world, has more
than 22.5 million bicycles, of which 1.3 million are electrically supported whereas 8000 are fast electric
bikes [7]. LEVs are popular as they are easy to use in densely populated areas and are easy to park.

1.2. Solar powered charging infrastructure

To promote the use of electric vehicles, governments and private organizations are coming together
to improve the required charging infrastructure. However, traditional electricity distribution systems
are not designed to accommodate such a large number of charging points for EVs, especially in urban
locations [6] . A smart solution to overcome this problem is the use of localized generated power and
solar-powered charging stations are the best way to achieve it.

Figure 1.1: The solar e-car charging station, located on the campus of University of IOWA, United States[8].

Figure 1.1 shows an electric car charging station installed on the campus of the University of IOWA
which generates an estimated 70,000 kWh of energy annually and the same time allows for a projected
reduction in gasoline use by 15,686 gallons [8]. It produces enough energy to recharge up to 40 campus
utility vehicles on a sunny summer day.

In case of the Netherlands, currently most of the e-bikes are charged using the grid, causing indirect
emissions. To make the charging infrastructure more sustainable, organizations are coming up with
solutions like solar powered e-bike charging stations and plan to make e-bike charging less dependent
on the grid. Such stations are also beneficial for the grid as they help to reduce the strain on the existing
electricity network. The cost of restructuring the grid, especially in urban areas where power lines were
not designed to handle the substantial and abrupt loads from charging vehicles are also reduced. Another
advantage of using localized PV system is that it prevents unnecessary material waste and decreases
electrical losses during transportation. Figure 1.2 shows the design and a picture of the e-bike charging
station installed on the campus of TU Delft [1].
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(a) Design of e-bike station [9] (b) Original e-bike station

Figure 1.2: The E-bike charging station at TU, Delft.

Another purpose of this station is to carry out detailed research in the field of PV system design and
contactless charging of light electric vehicles (LEVs). It is equipped with a weather station and various
sensors to monitor the performance of the installed solar panels, inverters and batteries.

The PV systems used for the charging infrastructure of electric vehicles should not just operate effi-
ciently in an urban environment, but their aesthetics should also please the eyes of the viewer. To make
the system technically, financially and aesthetically viable, the most efficient design methodologies
must be investigated. The following section discusses the basic design requirements for a PV system
and how simulation models play a critical role in it.

1.2.1. Modeling of PV system
The design of a photovoltaic system involves a detailed analysis of parameters such as the irradiance,
wind, ambient temperature and surrounding environment. Each of these factors affects the system
output differently. Other factors, like the components of the system, also play an important role and
are necessary to predict the overall performance. For example, a PV system installed on open ground
will have more power output than a similar system installed in a location surrounded by buildings.
To understand the effects of all these parameters, computer simulations and modeling are beneficial.
Nowadays, with the availability of powerful computers and software, extremely complex system can
be modeled and their performance can be predicted and analyzed. A typical PV system consists of
several individual components like the PV module, inverters, storage system, etc.

Typically, PV system modelling is divided into three major parts as shown in figure 1.1.

Figure 1.3: Major steps involved in modeling a PV system.
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The first step of PV system modeling is irradiance modeling. It predicts the irradiance received
on the Plane of Array (POA) of the solar modules. It takes care of factors like the tilt of module,
movement of sun throughout the year, etc. The primary inputs to an irradiance model are measured
Diffuse Horizontal Irradiance(𝐷𝐻𝐼) and Direct Normal Irradiance(𝐷𝑁𝐼) for a location but these data
are rarely available for all the locations. On the other hand, Global Horizontal Irradiance (GHI) data is
the most commonly available irradiance data, since the measurement equipment required for measuring
it is simple and cost effective. Modeling irradiance on POA from just GHI data (refer fig. 1.4) involves
two steps: 1) decomposing GHI into DHI and DNI using mathematical models usually referred as
“Decomposition models” 2) transpose these components to POA of the modules using models referred
to as “Transposition models”. If both DNI and DHI are available, then the only transposition models
are required.

Figure 1.4: Detailed steps involved in irradiance modeling a PV system.

In the past, many decomposition and transposition models have been developed and evaluated [10–
18]. However, the performance of these models is location and climate dependent and there is not much
information available about their performance for the climate of the Netherlands. Transposition models
also do not take care of shading due to near by objects which can lead to significant error in yield
prediction in case the system is surrounded by buildings or other objects. Therefore, shading analysis,
which can be done using various tools like Horicatcher and 3-D modeling,must be incorporated.

Solar cell temperature is the second most critical factor, after incident irradiance, for modeling a PV
system. It directly affects the power output and efficiency of the PV module. Studies in the past have
found it be dependent on several factors like incident irradiance, ambient temperature, wind speed, type
of PV technology, etc. [19, 20]. There are several thermal models, available in literature to estimate
temperature of the solar cells, with a varying degree of complexity [19, 21–23].

The third part of modeling is to model the power produced by the PV system. This step involves
estimating the module’s current-voltage (I-V) characteristics based on incident irradiance and module
temperature. Many models exist to predict the electrical output of the modules. They can be broadly
classified as models which are based on single diode equivalent circuits (referred to as “single diode
models (SDM)”) and models which estimate the change in efficiency using thermal coefficients of the
module (referred to as “Point Value Model (PVM)”) [19, 24–26]. The main difference between these
two classes of models is that single diode models estimate the full I-V curve whereas the point value
models estimate only certain points on I-V curve such as open circuit voltage (𝑉ᑠᑔ), short circuit current
(𝐼ᑤᑔ) and maximum power point (𝑃ᑞᑡᑡ) [27].

As described above, one can use different combinations of irradiance, thermal and electrical models
to design and predict the expected energy yield of a PV system. The performance of the models changes
with the location. For example, Netherlands has a moderate maritime climate strongly influenced by the
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North Sea and the warm Gulf Stream. It has a cloudy or rainy weather most of the time which directly
affects the amount of irradiance received by the panels. Another peculiarity of the Dutch weather is
that it is windy at all times of the year which strongly influences the temperature of the panels and
hence the output of the PV system. Thus, the models and their combinations based on verified location-
specific meteorological and temperature models to predict the energy yield of the PV systems need to
be quantified.

1.3. Thesis Motivation
This thesis is motivated by the fact that there is an increasing need for sustainable charging stations for
electric vehicles in urban areas of the Netherlands. The solar-powered charging station is an effective
way to achieve this goal. The generation of power from PV systems has problems such as high invest-
ment cost for the complete system and the need to have a balance between performance and aesthetics
of the system. While designing a small PV system like a charging station for LEVs in an urban loca-
tion, it is critical to take care of location-specific weather and surrounding conditions. It would assure
investors that the system would perform well despite highly variable weather conditions. Despite the
availability of several simulation models, not all of them are verified for their effectiveness in different
climatic conditions. For example, in 2008, Sandia National Laboratories evaluated the performance of
various models used within the Solar Advisor Model (SAM), using measured data to study the accuracy
of these models. The study, however, was specific to the PV system installed at Sandia’s PV Systems
Optimization Laboratory in Albuquerque, United States [28]. Albuquerque has a cold semi-arid climate
which is usually sunny and dry which means that we cannot be sure that the best performing models
of this study will also produce equally good results for a system in the Netherlands which has a cloudy
sky most of the time [29] . Also, there is a need to find out the best practice to simulate the impact of
shading effect due to surrounding buildings, etc. The focus of this thesis is to evaluate whether available
irradiance, thermal and electrical models are accurate for predicting the energy yield of a solar powered
system like the e-bike charging station and to suggest improvements for the same.

1.4. Research questions
1. For the climate of the Netherlands, study and improve decomposition models

(a) Which is the most accurate decomposition model ?

(b) What are the drawbacks of existing decomposition models and how they can be improved?

(c) Is it possible to improve the performance of decomposition models using local irradiance
data?

2. Evaluate and optimize transposition models to compute the irradiance on the plane of array of the
e-bike station

(a) Which are the most accurate transposition models to be used in urban location?

(b) How can the performance of existing models be improved by using location-specific pa-
rameters like sky view factor and albedo?

(c) How important is shading analysis to irradiance modeling and what is the most reliable
technique to incorporate it?

(d) What is the effect of using decomposition models instead of measured diffuse and direct
irradiance?

3. Evaluate thermal models best suited for predicting module temperature of a closed system like
the e-bike station
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(a) Which is the best performing thermal model?
(b) Does the time step between data used for modeling have an impact on the performance of

the models?
(c) What is the effect of using weather data from nearby meteorological stations on the perfor-

mance of thermal models?

4. Compare existing solar cell electrical models to compute the DC power and energy output of the
e-bike charging station

(a) How accurate are the existing electrical models ?
(b) How much effect do the inaccuracies in irradiance and thermal models have on the energy

yield prediction of the system?
(c) Using the method of the designer of the e-bike station, how well does the energy yield

predicted, match with the measured data after installation?
(d) Do the improvements suggested in this thesis, improve the quality of prediction of energy

yield?

1.5. Thesis outline
This report comprises of 6 chapters. Chapter 2-4 answers the research questions discussed above and
chapter 6 concludes all the results obtained. A brief description of these chapters is given below:

Chapter 2- Irradiance modeling I : Decomposition models : In this chapter performance of the most
commonly used decomposition models will be evaluated and modifications to improve their prediction
will be suggested.

Chapter 3- Irradiance modeling II : Transposition models: This chapter deals with transposition
models and effect of location specific parameters like albedo and shading due to near by objects on
them.

Chapter 4- Thermal modeling: In this chapter, first, various thermal models are briefly explained.
Further, they are validated with the data obtained from the thermocouples installed on PV modules.
The reason for the discrepancy between the measured and predicted module temperature is analyzed.

Chapter 5- Electrical modeling : DC power and energy yield: In this chapter the energy models
are evaluated based on the comparison of modeled and measured DC power and energy yield.

Chapter 6- Conclusions and Recommendation: The answers to the research questions and recom-
mendations for future work are given in this chapter.



2
Irradiance modeling I :
Decomposition models

To monitor the energy yield of a PV system in real-time, it is necessary to have information about both
diffuse and direct components of the solar irradiance. However, irradiance data available in real-time,
for most locations, is limited to Global Horizontal Irradiance (GHI). This has led to the development
of several decomposition models to decompose GHI into diffuse or direct components. These models
are composed of empirical correlations whose coefficients are typically dependent on local climatic
conditions.

In this context, as mentioned in chapter 1, the following research questions are addressed :

For the climate of the Netherlands, study and improve decomposition models
• Which is the most accurate decomposition model?
• What are the drawbacks of existing decomposition models and how can they be im-
proved?

• Is it possible to improve the performance of decomposition models using local irradi-
ance data?

In this chapter, five different decomposition models are evaluated for the weather of the Netherlands
(NL). The next section gives a brief introduction to solar irradiance measurements which is followed
by a short description about existing decomposition models. Next, two newly derived decomposition
models (based on the irradiance data for the Netherlands) are presented. These two models are intended
to improve the accuracy of obtaining diffuse irradiance from GHI. Finally, results of the comparison
between all the models will be discussed.

2.1. Solar irradiance data
To differentiate between energy and power of the solar radiation, the terms ‘irradiance’ and ‘irradiation’
are used extensively in this thesis. The term, ‘irradiance’ is used to denote the instantaneous solar power
received per square meter of surface and is measured in 𝑊/𝑚Ꮄ. ‘Irradiation’ is the integral of the
irradiance over time and refers to the energy of the solar radiation in𝑊ℎ/𝑚Ꮄ or 𝑘𝑊ℎ/𝑚Ꮄ [30]. Three
main types of irradiance measurements are widely used for designing and monitoring PV systems. A
brief description about them is given below.
Global Horizontal Irradiance (𝐺𝐻𝐼) The total solar irradiance received by a horizontal surface on the
earth is called as global horizontal irradiance. It is measured using an instrument called a pyranometer
(refer #1, figure 2.1) that consists of a thermopile detector. The irradiance level is measured by translat-
ing the voltage generated across it. To measure GHI, the pyranometer is mounted horizontally so that

7



8 2. Irradiance modeling I : Decomposition models

Figure 2.1: Measurement of solar irradiance.

it has a field of view of the whole hemisphere. It is the most widely available measurement because of
the simplicity of the measuring equipment and its low maintenance.
DiffuseHorizontal Irradiance (𝐷𝐻𝐼) is the diffuse irradiance received by a surface placed horizontally
on the earth. 𝐷𝐻𝐼 is measured using a horizontally mounted pyranometer with a shading disk to block
the direct irradiance (refer #2 in figure 2.1). Measured diffuse irradiance data is rarely available due to
high maintenance costs of the measuring device.
Direct Normal Irradiance (𝐷𝑁𝐼) is the direct component of the irradiance which is unaltered by
the atmospheric scattering and reflection. It reaches the earth surface in a straight line and can be
received by a surface by tracking the position of the sun in the sky. It is measured using a device called
pyrheliometer (refer #3, figure 2.1) which works on the same principle as a pyranometer but is modified
to have a limited field of view so that only a direct beam can enter it. It is mounted on a surface which
is always perpendicular to the sun’s rays. Like 𝐷𝐻𝐼 data, getting measured 𝐷𝑁𝐼 data is also difficult
and is only available from meteorological institutes and private companies.

If any two of the above three components are available, then the third one can be easily derived
using the relation given by equation 2.1, where 𝜃ᑫ is the solar zenith angle.

𝐺𝐻𝐼 = 𝐷𝑁𝐼 × cos(𝜃ᑫ) + 𝐷𝐻𝐼 (2.1)

Table 2.1: List of decomposition models studied in this chapter.

Model Input variables (to compute 𝑘ᑕ) Abbreviation

Orgill and Hollands[10] 𝑘ᑥ OH
Erbs [11] 𝑘ᑥ Er
Reindl 1 [12] 𝑘ᑥ Re-1
Reindl 2 [12] 𝑘ᑥ, 𝛼ᑤ Re-2
Reindl 3 [12] 𝑘ᑥ, 𝛼ᑤ, 𝑇ᑒᑞᑓ , 𝑅𝐻 Re-3
DISC [13] 𝑘ᑥ, 𝛼ᑤ DISC
Dutch-I 𝑘ᑥᑞ, 𝛼ᑤ Dutch-I
Dutch-II 𝑘ᑥᑞ, 𝛼ᑤ Dutch-II
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2.2. Decomposition models
Decomposition models are used to decompose GHI into DHI and DNI. In this study, five different
decomposition models have been evaluated (refer table 2.1) and their performance is compared with
the two newly derived models.

2.2.1. Existing models
One of the first decomposition models was introduced by Liu and Jordan which showed a relationship
between daily diffuse and global horizontal irradiance [31]. The work of Liu and Jordan was further
developed to predict hourly diffuse fraction, 𝑘ᑕ (refer eqn. 2.2), as a function of clearness index, 𝑘ᑥ
(refer eqn. 2.3) [10, 11].

𝑘ᑕ =
𝐷𝐻𝐼
𝐺𝐻𝐼 (2.2)

𝑘ᑥ =
𝐺𝐻𝐼
𝐸ᑒ

(2.3)

where, 𝐸ᑒ is the extraterrestrial irradiance given by eqn. 2.4, which incorporates the effect of elliptical
nature of the earth’s orbit on 𝐸ᑒ.

𝐸ᑒ = 𝐸ᑤᑔ × (𝑅Ꮂ/𝑅)Ꮄ × cos (𝜃ᑫ) (2.4)

and
𝐸ᑤᑔ = solar constant (1367𝑊𝑚ᎽᎴ)
𝑅Ꮂ = mean Earth-Sun distance (149,598 𝑘𝑚)
𝑅= Earth-Sun distance at the time of interest
Other authors developed diffuse fraction correlations dependent on factors like solar elevation, tem-

perature, etc. in addition to 𝑘ᑥ while some authors used modified clearness index by using a “clear sky”
radiation instead of extraterrestrial irradiation [12, 13, 32, 33].

Figure 2.2: Measured diffuse fraction vs. clearness index for Cape Canaveral, FL, USA [12].

Figure 2.2 shows a sample scatter plot of 𝑘ᑥ vs. 𝑘ᑕ as used by Reindl et al. The main advantage of
models based on 𝑘ᑥ (referred as Liu-Jordan models) is that they require 𝐺𝐻𝐼 and other readily available
measured data to predict diffuse and direct component.

It is important to note that these decomposition models were initially developed using hourly irra-
diance data, but in this study, their performance is being evaluated for data available per minute. The
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models were selected based on their reported performance in literature and availability of required mea-
sured data for model comparison [12, 34]. Detailed explanations of the decomposition models used in
this study can be found in Appendix-I.

2.2.2. Development of new diffuse fraction correlations
The primary motivation behind developing new diffuse fraction correlations is to improve the predic-
tion of decomposition models specifically for the Netherlands. The two new correlations are based on
the Liu-Jordan models and will be referred to as “Dutch-I” and “Dutch-II”. Both the correlations are
dependent on clearness index and solar zenith angle. The first one (Dutch-I) is a set of linear correla-
tions whereas the second one (Dutch-II) has quadratic correlations. The choice of predictors was based
on the performance of the previously developed Liu-Jordan models and a comparison of performance
of these models for the Netherlands (Refer section results 2.3.3)[12].

Three significant changes were adopted while developing the new models to improve their perfor-
mance. First, the clearness index, 𝑘ᑥ, has been modified to account for fluctuations in irradiance due to
passing clouds based on the work of Woyte et al. and is denoted by 𝑘ᑥᑞ as given by eqn. 2.5 [35].

𝑘ᑥᑞ =
𝐺𝐻𝐼

𝐸ᑒ(sin 𝛿 sin 𝜆 + cos 𝛿 cos 𝜆 cos(ℎ))
(2.5)

Where 𝛿 is the earth’s declination angle, 𝜆 is the latitude of a certain location on the earth and ℎ is the
hour angle which expresses the time passed from the solar noon in degrees.

Figure 2.3: Ranges of ፤ᑥᑞ used for Dutch-I and Dutch-II (based on Cabauw data,2016).

Secondly, irradiance data per minute is used to derive the correlations as compared to hourly or
daily average irradiance data used in literature. The data was obtained from Cabauw Experimental Site
for Atmospheric Research (CESAR), NL (refer section 2.3.1 for more details). The dataset was divided
into seven distinct intervals (see fig. 2.3) based on the clearness index as compared to three in traditional
models. It was divided into more intervals because in the range of 0.3<𝑘ᑥᑞ<=0.8, the number of data
points are very high and dividing it into more intervals helps in getting a better fit. The ranges of the
intervals were obtained by comparing results of multiple regression analysis.

The final version of correlations Dutch-I (linear) and Dutch-II (quadratic), are given below, where
the values of coefficients are shown in Table 2.2 and 2.3 respectively.

Dutch -I
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𝑘ᑕ = 𝑐Ꮃ + 𝑐Ꮄ𝑘ᑥᑞ + 𝑐Ꮅ cos (𝜃ᑫ) (2.6)

Dutch-II

𝑘ᑕ = 𝑓Ꮃ + 𝑓Ꮄ𝑘ᑥᑞ + 𝑓Ꮅ cos(𝜃ᑫ) + 𝑓Ꮆ𝑘ᑥᑞ cos(𝜃ᑫ) + 𝑓Ꮇ𝑘ᑥᑞᎴ + 𝑓Ꮈ cos (𝜃ᑫ)Ꮄ (2.7)

Table 2.2: Coefficients of decomposition model : Dutch-I

Range of clearness index 𝑐Ꮃ 𝑐Ꮄ 𝑐Ꮅ

0 ≤ 𝑘ᑥᑞ ≤ 0.3 0.99 -0.09 0.01
0.3 ≤ 𝑘ᑥᑞ ≤ 0.4 1.14 -0.67 0.07
0.4 ≤ 𝑘ᑥᑞ ≤ 0.5 1.54 -1.79 0.18
0.5 ≤ 𝑘ᑥᑞ ≤ 0.6 1.65 -2.04 0.23
0.6 ≤ 𝑘ᑥᑞ ≤ 0.75 1.49 -1.76 0.12
0.75 ≤ 𝑘ᑥᑞ ≤ 0.8 -0.17 0.81 -0.32
𝑘ᑥᑞ ≥ 0.8 0.00 0.69 -0.35

Table 2.3: Coefficients of decomposition model : Dutch-II

Range of clearness index 𝑓Ꮃ 𝑓Ꮄ 𝑓Ꮅ 𝑓Ꮆ 𝑓Ꮇ 𝑓Ꮈ

0≤ 𝑘ᑥᑞ≤ 0.3 1.00 -0.02 -0.02 0.08 -0.06 -0.01
0.3 ≤ 𝑘ᑥᑞ≤ 0.4 0.93 0.37 0.05 -0.08 -0.61 -0.04
0.4 ≤ 𝑘ᑥᑞ≤ 0.5 1.36 -0.16 -0.53 1.96 -2.76 -0.17
0.5 ≤ 𝑘ᑥᑞ ≤ 0.6 2.36 -4.63 0.07 -0.69 2.56 0.67
0.6 ≤ 𝑘ᑥᑞ≤ 0.75 2.75 -7.75 3.03 -6.20 6.60 1.41
0.75 ≤ 𝑘ᑥᑞ≤ 0.8 12.57 -31.99 -0.65 -1.45 21.68 1.25
𝑘ᑥᑞ ≥ 0.8 -2.45 6.97 -1.81 0.76 -3.79 0.73

Once diffuse fraction (𝑘ᑕ) is determined from the piecewise correlations, the 𝐷𝐻𝐼 and 𝐷𝑁𝐼 are
obtained using eqns. 2.8 and 2.9

𝐷𝐻𝐼 = 𝑘ᑕ × 𝐺𝐻𝐼 (2.8)

𝐷𝑁𝐼 = 𝐺𝐻𝐼 − 𝐷𝐻𝐼
cos(𝜃ᑫ)

(2.9)

2.3. Model comparison
2.3.1. Data description
As the aim of this thesis is to improve energy yield prediction of a PV system in the Netherlands,
all the analysis and estimations are done using solar irradiance data from the Netherlands. The main
source of measured irradiance, as well as other weather data, is from the Cabauw Experimental Site
for Atmospheric Research (CESAR) (see fig. 2.4) which is maintained by the Dutch meteorological
institute - Koninklijk Nederlands Meteorologisch Instituut (KNMI). This dataset will be referred to
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as “Cabauw data” in the rest of the thesis. KNMI also has other weather stations located across the
Netherlands, but the one at Cabauw is a part of the Baseline Surface Radiation Network (BSRN) and
provides very high-quality radiation measurements for climate research [36].

Figure 2.4: Map of KNMI meteorological stations in the Netherlands [36].

Data resolution
The weather data (irradiance, wind speed and temperature) obtained from Cabauw has a resolution of
one minute. This temporal resolution has been used for all the analyses in this project unless specified.
This resolution was important to study the effect of rapid fluctuations in irradiance on the performance
of different modeling steps.

Time span
For this study, data from the period of 2014-2016 was used depending upon the requirement of the
analysis.

Data check
The performance of any empirically derived relation depends on the quantity as well as the quality of
the data. As the input data consist of minute data for one year, it is assumed that the quantity of data is
sufficient but to ensure the quality of data, various data checks were performed based on the methods
used in literature for decomposition models [12, 18, 34]. Firstly, data which violated physical limits
were removed from the analysis: GHI, DHI and DNI values less than 0 𝑊/𝑚Ꮄ or greater than 1300
𝑊/𝑚Ꮄ. Similarly, as DHI cannot exceedGHI, measurements of DHIwhich exceeded the corresponding
GHI measurement were set equal to the GHI. Secondly, measurements which would produce spurious
data points based on the combinations of diffuse fraction and clearness index were removed [11, 12].
To remove such measurements following two cases were used.

𝐶𝑎𝑠𝑒 1 ∶ 𝐷𝐻𝐼𝐺𝐻𝐼 < 0.90 𝑎𝑛𝑑 𝑘ᑥᑞ < 0.20

𝐶𝑎𝑠𝑒 2 ∶ 𝐷𝐻𝐼𝐺𝐻𝐼 > 0.80 𝑎𝑛𝑑 𝑘ᑥᑞ > 0.60

𝐶𝑎𝑠𝑒 1 eliminates spurious measurements by limiting the diffuse fraction under cloudy overcast
conditions as it is reasonable to have a higher amount of scattered radiation due to cloud cover. Similarly,
𝐶𝑎𝑠𝑒 2 is used to remove measurements which will give unreasonable diffuse fraction under clear sky
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conditions. Thirdly, values corresponding to GHI measurements under 1 W m−2 and solar elevation of
1∘ were removed as the sensors perform less accurately in these ranges[34]. Once all the data checks
were performed, the final data set consisted of 255,786 measured values which were used for this study.
Table 2.4 summarizes the main information about the datasets used in this chapter.

Table 2.4: Summary of database used in this chapter

Database name Source Period Variables used Purpose

Cabauw data CESAR, Nl 2016
𝐺𝐻𝐼, 𝐷𝑁𝐼,
𝐷𝐻𝐼

To derive the two new decomposition
models (Dutch-I & Dutch-II)

Cabauw data CESAR, Nl 2014, 2015
𝐺𝐻𝐼, 𝐷𝑁𝐼,
𝐷𝐻𝐼

To evaluate the performance
of the two new decomposition models

2.3.2. Statistical parameters
To compare the performance of the models, four statistical indicators namely Mean Bias Difference
(MBD), percentage Relative Difference (%RD), Root Mean Square Difference (RMSD) and Composite
Residual Sum Squares (CRSS) as given by eqns. 2.10, 2.11, 2.12 and 2.13.

𝑀𝐵𝐷 =
∑ᑟᑚᎾᎳ (𝑀(ᑚ) − 𝐶(ᑚ))

𝑛 (2.10)

𝑅𝐷ᑚ =
𝑀(ᑚ) − 𝐶(ᑚ)
𝑀(ᑚ)

× 100 (%) (2.11)

𝑅𝑀𝑆𝐷 = √
∑ᑟᑚᎾᎳ [(𝑀(ᑚ) − 𝐶(ᑚ))/𝑀(ᑚ)]

Ꮄ

𝑛 (2.12)

where,
𝑀(ᑚ) is the measured quantity and 𝐶(ᑚ) is the calculated quantity from the models and n is the total

number of values in the dataset. While comparing irradiance prediction, MBD and RMSD will have
the units of𝑊/𝑚Ꮄ.

𝐶𝑅𝑆𝑆 =
ᑟ

∑
ᑚᎾᎳ
[
𝐷𝐻𝐼ᑔ(ᑚ)
𝐺𝐻𝐼 −

𝐷𝐻𝐼ᑞ(ᑚ)
𝐺𝐻𝐼 ]

Ꮄ
(2.13)

𝐷𝐻𝐼ᑞ(ᑚ) denotes the measured diffuse horizontal irradiance, 𝐷𝐻𝐼ᑔ(ᑚ) is the computed diffuse irra-
diance.

Mean bias difference is an indicator of long-term performance of the model whereas the root mean
square difference gives information regarding the short-term performance of a model. However, these
two errors by themselves are not sufficient to draw a conclusion about the best model. For instance, a
few large differences between modeled and measured values can lead to a significant increase in RMSD
while the value of MBD might be small because the model has equally overestimated and underesti-
mated the values. Therefore, apart from MBD and RMSD, the models are also evaluated based on
CRSS and %RD. CRSS is an absolute number indicating the sum of the relative difference between the
measured and the modeled value. For a given number of samples, a lower value of CRSS shows that
the models have the least accumulated error [12].
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2.3.3. Evaluation of decomposition models
In this section, the performance of the two newly derived decomposition models (Dutch-I and Dutch-
II) for the Netherlands has been discussed. Their performance is compared with seven other most
widely used decomposition models namely Orgill and Hollands (OH), Erbs (Er), three models by Reindl
et al.(Re-1, Re-2 and Re-3) and Maxwell’s quasi-physical model (DISC) for the year 2016 [10–13].
Further, to validate the results using data other than that used to derive the relations, the models were
compared using irradiance data from Cabauw for the years 2014 and 2015.

Figure 2.5: Measured and modeled diffuse horizontal irradiance for one week in May 2016 (based on Cabauw data).

Figure 2.5 shows the comparison of measured diffuse irradiance with the predicted values from the
new models and Re-2 (representative of other existing models) for one week in May 2016. Clearness
index values (𝑘ᑥᑞ) used for Dutch-I and Dutch-II models are referred to as 𝑘ᑥ for simplicity. It can
be seen that the Re-2 model underestimates the diffuse irradiance for higher values of irradiance and
Dutch-II gives a better prediction in those regions.

(a) Spring days (b) Summer days

Figure 2.6: Comparison of clearness index and DHI for four days in 2016 based on Cabauw data.

To observe the difference in prediction by these three models in more detail, results for two days in
March 2016 (Spring days) and June-16 (Summer days) are shown in figure 2.6a and 2.6b respectively.
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The top figure shows the plot of clearness index whereas the bottom one compares the modeled and
measured diffuse irradiance. From the figures, it can be observed that for clearness index less than 0.4 all
the models predict the diffuse component accurately but when it is higher than 0.4, the two new models
give a much better prediction, especially for values of 𝑘ᑥ > 0.6. For instance, observing modeled diffuse
irradiance on 22ᑟᑕ June (figure 2.6b), it can be seen that, when 𝑘ᑥ values are greater than 0.6, Re-2
is underestimating the irradiance by more than 200𝑊/𝑚Ꮄ whereas the Dutch-II is almost overlapping
measured values. Another important observation is that the performance of all models is poor when the
values of 𝑘ᑥ are fluctuating a lot and are in the range of 0.4 to 0.6, which represents days with moving
clouds. This can be explained by the fact that the spread of 𝑘ᑕ with respect to 𝑘ᑥ (refer fig 2.3 ) is too
high in the range of 0.4< 𝑘ᑥ <0.6.

Figure 2.7: Comparison of scatter plots for decomposition models (based on Cabauw data 2015).

Figure 2.7 shows the scatter plot between clearness index and diffuse fraction. The measured values
(after filtering the data for spurious measurements) are shown in black and the values predicted by OH,
Re-2, Dutch-I and Dutch-II in colour. An ideal and 100% accurate model will be able to completely
cover the scatter plot of the measured values, showing that it is able to predict the highly variable diffuse
fraction for all the values of the clearness index. It can be observed, from fig. 2.7, that since OH uses
linear correlations (dependent on 𝑘ᑥ), it predicts values that are always on the straight lines and has a
very limited coverage. Re-2 covers a larger part of the plot as it a function of 𝑘ᑥ and solar zenith angle
(𝜃ᑫ). Even though Dutch-I also has linear correlations based on 𝑘ᑥ and 𝜃ᑫ, similar to Re-2, it has a
more distributed response which is because of use of more intervals of 𝑘ᑥ to derive the correlations.
Further, it is derived from climate specific irradiance data (from Cabauw) having per minute temporal
resolution which contributes to its improved performance. Dutch-II improves on top of Dutch-I by
using quadratic correlations in those ranges. Dutch-II covers the largest fraction of scatter plot. The
overall performance of the two new models (Dutch-I and Dutch-II) is better than others as they are
able to cover a larger spread of 𝑘ᑕ. Certainly, no model is able to completely cover the scatter plot of
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measured values because diffuse fraction of irradiance is not just a function of 𝑘ᑥ, solar zenith angle or
other atmospheric parameters like temperature, humidity, pressure, etc. but is also affected by factors
like density of clouds, their shape and position in the sky. There is a need to assess and include the
effects of all such parameters if one wants to make decomposition models more accurate.

Figure 2.8: Comparison of decomposition models based on cumulative % relative difference (based on Cabauw data 2015).
The bottom most box (dark green) in each bar shows % of total samples less than 10% RD whereas the topmost box (red)

shows the % of samples having %RD greater than 80%.

To compare the performance of models over a complete year, RMSD, MBD, CRSS and cumulative
%RD were computed. Figure 2.8 shows the comparison of cumulative %RD for all the eight models.
The bar chart compares the percentage of the total number of samples which are in different ranges of
% relative difference (Cabauw data 2015). The bottom most box (dark green) in each bar shows %
of total samples with less than 10% RD (indicated by number) whereas the topmost box (red) shows
the % of samples having %RD greater than 80%. For example in fig. 2.8, 56.01 % of total values
predicted by the Erbs model have a %RD less than 10%. A model performs the best if it has the highest
percentage of samples in the bottom most box and least percentage of samples in the topmost box of the
bar graph. Thus, amongst the existing decomposition models, OH has the highest percentage of samples
(56.5%) with a %RD less than 10% followed by Reindl-2 (56.3%). Dutch-I and Dutch-II improve the
prediction of DHI from GHI as they have 3% and 4.7% more samples (%RD < 10%) as compared to
OH respectively. The increase in % of samples is significant as the total number of samples were more
than 200,000. Table B.1, summarizes this information numerically for the year 2014 and 2016, which
also shows similar improvement in the results.

Comparison based on RMSD (see fig. 2.9a) indicates that Dutch-I and Dutch-II consistently have
the lowest values for all the three years. Similarly, figure 2.9b compares the composite residual sum
squares which also shows that the two new models have the least accumulated error. Based on the
results of %RD, RMSD and CRSS, it can be said that the newly developed models can predict more
accurate values of DHI from GHI as compared to the existing models. Detailed results of RMSD,
MBD and CRSS for all the decomposition models for the three different years (2014-16) are available
in Appendix B (table B.2).
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(a) Root mean square difference (b) Composite residual sum squares.

Figure 2.9: Comparison of models performance based on RMSD and CRSS for 3 years of Cabauw data

2.4. Conclusions
Decomposition models play a significant role in design and monitoring of a PV system as they are
required to derive diffuse irradiance from widely available global horizontal irradiance.

In this chapter, the following research questions were addressed:

Which is the most accurate decomposition model ?

It was found that amongst the existing decomposition models, RE-2 and OH perform the
best for the climatic conditions of the Netherlands. These results agree with previous stud-
ies in the literature [32].

What are the drawbacks of existing decomposition models and how they can be improved?

The best performing existing models are developed using hourly irradiance data and thus
they ignore the fluctuating nature of solar radiation. Nowadays, irradiance data having a
temporal resolution as low as a minute is available and it should be used to update the co-
efficients of existing models. Also, the number of piecewise correlations used to fit the
irradiance data is limited to three in the existing models but, to better cover the highly scat-
tered distribution of diffuse fraction with clearness index, the number of correlations should
be increased.

Is it possible to improve the performance of decomposition models using local irradiance data?

To improve the performance of the models, specifically for the Netherlands, two new de-
composition models, namely Dutch-I and Dutch-II, were developed using minute data for
one year (2016). The performance of the newly developed models was then validated with
existing models using weather data for two different years 2014 and 2015 obtained from the
same database (Cabauw). It showed that the two new models (Dutch-I and Dutch-II) repro-
duce measurement results more accurately. For the year 2015, results derived using these
models had an RMSD in the order of 44𝑊/𝑚Ꮄ and CRSS of around 3075. For the same
year, the number of total samples having %RD less than 10% increased by 4.7% and 3%
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when using Dutch-II and Dutch-I respectively as compared to the best performing existing
model (OH).

It was also observed that, in general, all the models were able to predict diffuse irradiances accu-
rately during fully cloudy days (𝑘ᑥ < 0.4) and prediction error was the highest on partially clouded
days (0.3 < 𝑘ᑥ < 0.6). The improved performance of the two newmodels is mainly because of use
of 𝑘ᑥᑞ instead of 𝑘ᑥ, the number of intervals of clearness index to define piecewise correlations
and use of minutely irradiance data obtained locally from Cabauw, Netherlands. Thus, it can be
concluded that the performance of existing models is dependent on local weather conditions and
can be significantly improved by using location-specific irradiance data to derive the coefficients
of the piecewise correlations.



3
Irradiance modeling II :
Transposition models

Accurate PlaneOfArray (POA) irradiancemodeling is crucial to designing andmonitoring a PV system.
Depending upon the location of a PV system, often PV modules are titled to optimize the irradiance
received by them. To estimate the irradiance on the tilted plane, one should evaluate beam, diffuse
and ground reflected components from global and diffuse horizontal irradiance. In the past, several
models have been developed to derive these components, referred to as “transposition models” as they
transpose the irradiance data on the horizontal plane to the plane of array of the modules. In the case that
the modules are located at a place surrounded by buildings or other objects; transposition models are
not enough to accurately predict the irradiance received by the modules and shading analysis becomes
essential.

In this context, as mentioned in chapter 1, the following research questions are addressed :

Evaluate and optimize transposition models to compute the irradiance on the plane of
array of the e-bike station
• Which are the most accurate transposition models to be used in an urban location?
• How can the performance of existing models be improved by using location-specific
parameters like sky view factor and albedo?

• How important is shading analysis to irradiance modeling and what is the most reliable
technique to incorporate it?

• What is the effect of using decompositionmodels instead ofmeasured diffuse and direct
irradiance?

In this chapter, performance of the fivemost commonly used transpositionmodels: Isotropic, Hay/Davies,
Reindl, Sandia and Perez is evaluated for the location of the e-bike station. Techniques like shading
analysis and use of location specific factors to improve their prediction are discussed. Additionally, a
new transpositionmodel, based on ray tracing simulations, is discussed and its performance is compared
with the traditional models. Finally, the effect of using decomposition models on the performance of
transposition models when only GHI data is available is also evaluated in this study.

3.1. Introduction
To optimize the energy received by the panels throughout the year, the angle between the PV instal-
lations and the sun needs to be tuned. Maximum energy is produced by a module when it is always
perpendicular to the sunlight. It can be achieved by using a two-axis solar tracker, but due to finan-
cial and design constraints, they cannot be utilized for all types of PV system installations. In such

19
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cases, modules are installed at a fixed tilt angle to capture the maximum energy as in the case of e-bike
charging station. An important step in designing and monitoring such fixed tilt systems is irradiance
modeling at the plane of array and it will be discussed in briefly in this section.

3.1.1. Geographic location

The e-bike charging station is installed on the campus of the Delft University of Technology (52∘ North;
4.36∘ East) as shown in figure 3.1. It faces the southwest direction, i.e., an azimuth of 204∘ w.r.t to
North and has an angular tilt of 51∘ w.r.t to the horizontal plane. The choice of azimuth and tilt was to
optimize the energy production during the winter months [1]. In front of the e-bike station, there is a
tall building, the faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) and
it casts a shadow on the e-bike station for a significant duration of the day. Apart from that, on the east
of the bike station, the faculty of Civil Engineering and Geosciences (CEG) blocks the sun radiation
during early hours of the morning.

Figure 3.1: Google earth image of the location of the e-bike station and nearby buildings.

3.1.2. Irradiance modeling on a tilted plane

The total irradiance received by an inclined plane (𝐺ᑇᑆᐸ) consists of three main components, given by
eqn. 3.1. Figure 3.2 shows the three main components of 𝐺ᑇᑆᐸ.

𝐺ᑇᑆᐸ = 𝐺ᑕᑚᑣ + 𝐺ᑘᑣᑠᑦᑟᑕ + 𝐺ᑕᑚᑗ (3.1)

where, 𝐺ᑕᑚᑣ is the direct beam component. 𝐺ᑘᑣᑠᑦᑟᑕ refers to the irradiance received by the modules
after being reflected from the ground. In case themodules are surrounded by other objects like buildings,
trees, etc., the light reflected from them will also be accounted for in this component. 𝐺ᑕᑚᑗ is the diffuse
component received by the modules and is a fraction of the total diffuse horizontal irradiance. It is also
referred to as the sky diffuse component.
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Figure 3.2: Components of solar irradiance received by a tilted plane [19].

Direct beam component
The direct beam component, 𝐺ᑕᑚᑣ, depends on the angle of incidence (𝜃ᑚ) and 𝐷𝑁𝐼. It is usually calcu-
lated using the eqn. 3.2 . The accuracy of prediction of 𝐺ᑕᑚᑣ depends upon the accuracy of available
𝐷𝑁𝐼 data for the location.

𝐺ᑕᑚᑣ = 𝐷𝑁𝐼 × 𝑐𝑜𝑠(𝜃ᑚ) (3.2)

Ground Reflected component
The ground-reflected component, 𝐺ᑘᑣᑠᑦᑟᑕ, depends upon the reflectivity of ground, nearby surround-
ings, and tilt of the modules. It becomes significant when modules are surrounded by highly reflecting
objects like glass covered buildings, snow, etc. Accurate modeling of 𝐺ᑘᑣᑠᑦᑟᑕ requires knowledge of
albedo which is defined as the ratio of ground reflected irradiance and the global horizontal irradiance.
In general, 𝐺ᑘᑣᑠᑦᑟᑕ is modeled using eqn. 3.3 which considers the effect of tilt of the module (𝛽ᑞ) and
uses a fixed value of albedo (𝜌).

𝐺ᑘᑣᑠᑦᑟᑕ = 𝐺𝐻𝐼 × 𝜌 ×
1 − 𝑐𝑜𝑠(𝛽ᑞ)

2 (3.3)

Equation 3.3 can also be written in terms of the Sky View Factor (𝑆𝑉𝐹) of the tilted module, as
given by eqn. 3.4. The 𝑆𝑉𝐹 is the fraction of the sky as seen by a titled surface. It is a function of tilt
of the module and is given by eqn. 3.5. Location specific SVF and albedo are discussed in more detail
in section 3.2.2

𝐺ᑘᑣᑠᑦᑟᑕ = 𝐺𝐻𝐼 × 𝜌 × (1 − 𝑆𝑉𝐹) (3.4)

𝑆𝑉𝐹 = 1 + 𝑐𝑜𝑠(𝛽ᑞ)
2 (3.5)

Diffuse Irradiance
Themost complicated part of modeling𝐺ᑇᑆᐸ on a tilted surface is modeling the diffuse irradiance(𝐺ᑕᑚᑗ)
received by the tilted modules since, at any moment, the diffuse irradiance is dependent on the state of
the sky like the presence of clouds, their movement and several other factors which are difficult to
predict [15].
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Figure 3.3: Components of diffuse irradiance.

Several models have been developed in the past to calculate 𝐺ᑕᑚᑗ and have different degrees of
complexity. The main difference is in the way they model the three sub-components of diffuse radi-
ation: circumsolar, horizon brightening, and isotropic diffuse radiation. Circumsolar radiation is due
to forward scattering of radiation concentrated in the solar disk. Horizon brightening represents the
increased diffuse radiation when the sun is near the horizon. It is caused by the increased path length
of the sunlight which leads to more scattering and internal reflections by the earth’s atmosphere. The
isotropic diffuse component is the radiation uniformly diffused over the sky dome.

3.2. Standard transposition models
Since irradiance measurements are mostly available for the horizontal plane, transposition models are
used to transpose them from the horizontal plane to the plane of themodules. Thesemodelsmostly differ
in the way they calculate the sky diffuse component. In this chapter, five standard transposition models
(also referred to as sky diffuse models) are evaluated. The models are briefly described in Appendix A.
Table 3.1 summarizes the main characteristics of the transposition models used. It can be observed that
the isotropic model does not account for the circumsolar or horizon brightening component of diffuse
irradiance. The Sandia model uses empirical relation for the horizon brightening and circumsolar beam
components of diffuse irradiance and is optimized for Albuquerque, New Mexico. The only difference
between Hay/Davies and Reindl is that Reindl has an additional term for calculating horizon brightening
component which becomes dominant only during sunset and sunrise. All of these models compute the
direct beam and ground-reflected component using eqns. 3.2 and 3.3. Also, all the models assume a
constant albedo of 0.2 except for the Sandia model which uses a sun elevation dependent value (eqn.
A.35).

Table 3.1: Comparison of Transposition models. While comparing complexity of the models, 5 stars represent the highest
level of complexity.

Model name Characteristics Complexity

Isotropic (Iso) [37] Isotropic component only ⋆
Hay and Davies (H/D) [14] Isotropic and circum-solar ⋆ ⋆

Sandia (Sa) [38]
All, but circum-solar and horizon-brightening
components are modeled empirically

⋆ ⋆

Reindl 1990 (Reindl) [15] All ⋆ ⋆ ⋆
Perez (Pz) [16, 17] All, highly complex in nature ⋆ ⋆ ⋆ ⋆
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A major disadvantage of these models is that they assume that the modules are located in a shade
free environment and have an unobstructed horizon. It means that the shading effect due to nearby
objects like buildings, trees etc. has to be modeled separately. Also, the performance of these models
can be further improved by using location-specific SVF and albedo instead of using standard values.

3.2.1. Shading analysis
An important part of irradiance modelling is shading analysis, especially, if the modules are located in
an urban environment. During the design phase, it helps to figure out the position of panels where it
will be least shaded and during monitoring it helps to account for the decrease in power. There can be
different sources of shade at different times of the day and can be classified as static (nearby objects
like buildings) and dynamic (moving clouds) sources of shading. For instance, in figure 3.1 it can be
seen that on the e-bike station, the primary sources of shadows are the EEMCS building during noon
and nearby trees during the evening. Figure 3.4 shows the effect of shading on the PV power output,
for 19ᑥᑙ January due to moving clouds(region marked by A), EEMCS building (marked by B) and trees
(marked by C).

Figure 3.4: Power output of the e-bike station for June 19,2017.

Scope of Shading Analysis
In this thesis, it is assumed that solar modules mounted on the e-bike station are always shaded homoge-
neously and the performance of modules decreases almost proportionately to the reduction in irradiance
[39]. Effect of partial shading is not taken into consideration due to the complexity involved inmodeling
it and time constraint. Further, shading analysis is performed only for static objects and it is assumed
that it mainly affects the direct beam and the ground-reflected component. Shading due to clouds is
considered to be taken care of by the irradiance measurements, but it should be noted that it is highly
dependent on the size, shape and trajectory of clouds. For instance, it is possible that a cloud casting a
shadow on the e-bike station might not be shading the measurement sensors in Cabauw. Hence, shading
due to clouds could cause a huge difference between irradiance predicted and measured on the e-bike
station.

Shading analysis tools
Different analysis techniques exist to model the effect of shading due to static objects on the modules.
In this thesis, two most widely used techniques will be evaluated.

Meteonorm-Horicatcher
Horicatcher, also known as a fisheye camera, consists of a digital camera mounted above a highly
reflective bell-shaped horizon mirror as shown in figure 3.5b. The complete setup is kept in front of the
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modules or desired location (fig 3.5a) and an image of the reflection in the horizon mirror is taken. This
image is further processed, using an associated software of Meteonorm called as “Horizon”, to generate
a file having hourly shading factor for the location [40]. Figure 3.6 shows the processed image generated
by Horizon having the shaded region superimposed over the sun path1 diagram for the location.

(a) Horicatcher setup in front of the e-bike station . (b) Image taken by the fish eye camera.

Figure 3.5: Horicatcher setup.

Figure 3.6: Processed Horicatcher image using Horizon/Meteonorm.

The Shading Factor (SF) is calculated by the software using eqn. 3.6 where the irradiance data for
the site is obtained from its repository.

𝑆ℎ𝑎𝑑𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟(𝑆𝐹) = 𝐷𝑁𝐼 𝑤𝑖𝑡ℎ ℎ𝑜𝑟𝑖𝑧𝑜𝑛
𝐷𝑁𝐼 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 (3.6)

The irradiance data available in Meteonorm is representative of the data for a location and has
temporal resolution of one hour [41]. It means that the shading factor calculated by Meteonorm also
has an hourly time step and it ignores any shading that occurs in between the time steps, leading to
significant errors in the shading analysis.

Another source of error is that for a particular day, real-time weather conditions (such as a clear
or overcast day) may be very different from the conditions recorded in the Meteonorm database. For
instance, it is possible that a day which is a completely overcast day according to its database might be
a clear sky day in reality and therefore no shading for such a day will be predicted.

3D modeling using Sketchup
Another widely used method to model and simulate the effect of location specific shading is using a
3-D modeling software. Amongst the various available 3-D modeling software, Sketchup by Trimble,
1Sun path diagrams represent the annual changes in the path of the sun through the sky
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USA was chosen because of its user-friendly nature and wide support of plugins to analyze the effect
of shading[42]. Another advantage of Sketchup is that it comes with an inbuilt sun path algorithm and
objects can be geolocated using Google maps which makes the shadows realistic.

First, the e-bike station was modeled and geolocated on the campus of TU, Delft (see fig 3.7). It
should be noted that only two buildings (EEMCS andCEG) surrounding the e-bike stationweremodeled
whereas nearby trees, poles and other buildings were ignored.

(a) 3D model e-bike (front side). (b) 3D model e-bike (Back side).

Figure 3.7: Sketchup 3D model of e-bike charging station.

Figure 3.8: Calculation of shading factor using Sketchup for 19-Jan-2017.

Next, the shading analysis was carried out for the complete year of 2017 using a plugin called “LSS
Chronolux” which carries out a ray tracing analysis for the test point and give the number of hours the
test point was receiving direct sunlight. For instance, fig. 3.8 shows analysis for 19ᑥᑙ January 2017
where the high building is blocking the sunlight during the noon hours (between 10:30 A.M – 13:00
P.M.) which matches with the dip in power produced (refer fig. 3.4) on that day. Finally, the data
obtained from Sketchup was processed using MATLAB to compute per minute shading factor for the
e-bike station. It is important to note that the SF given by Sketchup is binary and only indicates whether
the test point was shaded or not. On the other hand, SF given by Horicatcher ranges between 0 and 1.

3.2.2. Location specific SVF and Albedo
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Sky View Factor (SVF)
To obtain a more realistic 𝑆𝑉𝐹, in this study, 3-D modeling using Sketchup (refer section3.2.1) was
used as shown in figure 3.9. It was found that the modules have an 𝑆𝑉𝐹 of 0.61 as compared to 0.815
(predicted by eqn. 3.5), which is expected as not just the module tilt but also the presence of EEMCS
and CEG affect the 𝑆𝑉𝐹 of the modules. Due to nearby buildings the SVF of e-bike station decreases
by almost 20%. In reality, the value of SVF could be even less as the effect due to nearby trees, poles,
etc. was not taken into consideration.

(a) Dome showing the actual ፒፕፅ. (b) 3D model of e-bike station and its surroundings.

Figure 3.9: Calculation of Sky View Factor (SVF) using Sketchup.

Albedo
Determination of correct values of albedo is crucial to calculating the ground-reflected component of
irradiance received by the tilted modules. In general, an albedo of 0.2 is used while modeling 𝐺ᑇᑆᐸ
received by PV systems in urban locations, but it is always the best practice to obtain location specific
albedo [43]. For the location of the e-bike station, the albedo was measured using an albedometer which
consists of two pyranometers attached back to back (see fig 3.10 ). The measurement was performed
by fixing the setup at the height of 1.5 m above ground, in such a way that one pyranometer faced
upwards (measuring the GHI) and the second one faced towards the ground (measuring the ground
reflected components). The values of albedo measured on different surfaces are tabulated in table 3.2.
As concrete tiles and grass mostly surround the e-bike station, an average albedo value 0.20 was used
for initial simulations.

Figure 3.10: Measuring albedo in-front of the e-bike station using an albedometer.
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Table 3.2: Average albedo values of materials around the e-bike station

Material Average Albedo

Concrete blocks 0.16

Small tiles
(Footpath)

0.13

E-bike station tiles 0.21

Cycling path 0.12

Grass 0.19

Characteristics of Albedo
It has already been found that using a constant average value of location specific albedo gives satis-
factory results for modeling ground reflected irradiance [43, 44]. To study the variation of albedo on
factors like 𝐺𝐻𝐼 and position of the sun, albedo values were measured for one complete day in front of
the e-bike station. The obtained albedo values were fitted with values of GHI and sun elevation angle
(refer figure 3.11).

(a) Albedo vs Sun elevation (ᎎᑤ). (b) Albedo vs ፆፇፈ.

Figure 3.11: Dependence of albedo on sun elevation and ፆፇፈ.

It was found that albedo (𝜌) shows a slight dependence on the sun elevation angle (𝛼ᑤ) as expressed
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by eqn. 3.7 and it is in line with earlier findings in literature [43, 45].

𝜌 = 0.0972 + 0.0048𝛼ᑤ − 4.9021𝛼ᑤᎴ (3.7)

The dependence of albedo on 𝐺𝐻𝐼 was not very clear but it can be inferred from figure 3.11b that
albedo is directly proportional to the 𝐺𝐻𝐼.

It is certain that albedo strongly depends on the site and its environment. As albedo is key to
predicting 𝐺ᑘᑣᑠᑦᑟᑕ, there is a need for a more detailed study involving albedo measurements over a
longer period to find its dependence on parameters like GHI, 𝛼ᑤ, etc.

3.3. Ray tracing model using LightTools
Recently Santbergen et. al. introduced a new method to determine 𝐺ᑇᑆᐸ of a PV system. It determines
a sensitivity map for the PV system using a ray tracing software and combines it with the sky map
obtained from the Perez model [17, 46]. This method will be referred to as the ”Ray tracing” method
in the rest of the thesis. This method is found to be accurate in determining the irradiance received by
systems having a complex geometry.

Figure 3.12: Flowchart showing steps involved in determining ፆᑇᑆᐸ using ray tracing method.

In this study, ray tracing was performed using an advanced ray tracing software called LightTools
(LT). Figure 3.12 shows a simplified flow chart of the steps involved in determining the 𝐺ᑇᑆᐸ using
the ray tracing method. The method involves use of two models. The first model requires a detailed
modeling of the PV system and its surroundings (see fig. 3.13a) in the LightTools. Next, ray tracing
simulations are carried out in LightTools and its results are processed to get a so-called sensitivity
map for the PV system (see fig. 3.13a). A sensitivity map is simply a representation of the surface’s
sensitivity to the incident light as a function of hemispherical angle of incidence. The second model
uses the Perez model which reconstructs the luminance distribution of the circumsolar and diffuse light
across the sky fromDHI and DNI values. This is called a sky map. Finally, the output of the two models
(Sky map and sensitivity map) are combined to predict the 𝐺ᑇᑆᐸ incident on the module. Santbergen
et. al. have discussed this irradiance model in detail [17, 46].
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(a) Model of the e-bike station and its surrounding
buildings in LightTools.

(b) Sensitivity map of the panels installed on the
e-bike station .

Figure 3.13: LightTools model and sensitivity map obtained for the e-bike station.

The main advantage of this method is that it does not require additional shading analysis. Further,
it not only includes the ground reflected component but also the reflections from the surfaces of nearby
buildings. The only disadvantage is that one requires advanced ray tracing simulation software like
LightTools which are very expensive.

3.4. Model comparison
3.4.1. Data description
In addition to the Cabauw data (refer section 2.3.1 ), in this chapter, data from the e-bike charging station
was used, which will be referred to as “e-bike data” in the rest of the thesis.

The e-bike charging station on the campus of TUDelft is installed with a state-of-art weather station
(Lufft - WS503-UMB Smart Weather Sensor) which measures various weather parameters as summa-
rized by table 3.3.

Table 3.3: Data measured at the e-bike station.

Data variable Unit

Irradiance (𝐺ᑇᑆᐸ) 𝑊/𝑚Ꮄ

Air pressure 𝑃𝑎
Wind speed 𝑚/𝑠
Ambient temperature ∘𝐶
Relative humidity %
DC Power generated Watts

Data resolution
Data recorded at the e-bike station had a temporal resolution of 10 minutes initially which was then
reduced to 1 minute.
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Time span

For this study, data from the period of October 2016 to April 2017 was used. The time span was
restricted by the availability of Cabauw and e-bike data.

Data Check

To ensure the quality of data used, a rigorous quality check was carried out. In addition to data checks
explained in section 2.3.1, it was also ensured that while comparing results based on two or more data
sets, only points available in all the datasets were used for analysis. It is important to mention that, as the
e-bike station was newly installed (Oct-16) there were some problems with the communication system
of the weather sensor, causing loss of several hours of data which has been discussed in Appendix C.

Once all the data checks were performed, the final data set consisted of 56,243 samples which were
used for this study. Table 3.4 summarizes the purpose and duration of the datasets used in this chapter.

Table 3.4: Summary of database used in this chapter.

Database name Source Period Variables used Purpose

Cabauw data CESAR, Nl Oct’16-Apr’17 𝐺𝐻𝐼, 𝐷𝑁𝐼, 𝐷𝐻𝐼 Used as input
to transposition models

e-bike data E-bike station, Delft, Nl Oct’16-Apr’17 𝐺ᑇᑆᐸ
Comparing output
of the transposition models

3.4.2. Evaluation of transposition models
In this section, first, the accuracy of the five standard transposition models is evaluated by comparing
the predicted and measured irradiance on the plane of array (𝐺ᑇᑆᐸ) of the e-bike station. The input to
the irradiance model is the measured 𝐺𝐻𝐼, 𝐷𝐻𝐼 and 𝐷𝑁𝐼 from Cabauw data for the period of Oct’16
-Apr’17. An albedo of 0.20 was used while computing the ground-reflected component. Next, the
effect of using shading analysis, location specific 𝑆𝑉𝐹 and albedo values on the performance of models
is discussed. It is followed by the evaluation of the new ray tracing method. Finally, a comparison
is made between 𝐺ᑇᑆᐸ prediction using just transposition models and a combination of transposition
and decomposition models. Performance of the models is evaluated using statistical indicators; namely,
MBD (𝑊/𝑚Ꮄ), %RD and RMSD (𝑊/𝑚Ꮄ).

Figure 3.14 shows the plot of modeled and measured 𝐺ᑇᑆᐸ at the e-bike station for three days in
February 2017. The first two days are clear sky days whereas the third day is partly clouded in the
second half of the day. It can be seen that all the models predict irradiance within a close range to the
measured one during morning and evening hours. During afternoon, the dip in the measured values
is due to shadow of the EEMCS building. The region marked by a circle on the third day shows that
all the models underestimate the irradiance as compared to measured data which could be because the
sky might be covered with clouds in Cabauw from where input data is obtained. Also, isotropic model
predicts lower irradiance than other models as it does not consider the horizon brightening component
of the diffuse irradiance.

Shading analysis ( Meteonorm-Horicatcher vs Sketchup)

Tomodel shading due to EEMCS and CEG, shading factor usingMeteonorm-Horicatcher and Sketchup
was calculated and incorporated in the transposition models.
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Figure 3.14: Measured and modeled incident irradiance on the e-bike station.

Figure 3.15: Measured and modeled incident irradiance on the e-bike station after using shading factor from Sketchup and
Meteonorm-Horicatcher.

Figure 3.18, shows the modeled and measured irradiance for the same three days after using shading
factor. Though Meteonorm uses a location-specific image, the shading factor obtained after image
processing from Meteonorm is not as accurate as Sketchup. It can be seen that for the first two days,
Meteonorm does not predict any shading. The reason could be that these two days must be completely
cloudy days in its database(𝐷𝑁𝐼 = 0) and therefore, it does not predict any shading. Even on days when
it does predict SF (see region marked by red circle in fig. 3.18), it is not as accurate as it does not take
care of shadows occurring within the hourly time steps [47]. Comparing the RMSD and MBD (figure
3.16), it is clear that using Sketchup is the most efficient way to model shading due to nearby objects.
Use of shading factor from Sketchup decreased the RMSD by almost 50𝑊/𝑚Ꮄ andMBD by 30𝑊/𝑚Ꮄ
for all the models.

To get a complete picture of the improvements in the irradiance prediction after using SF from
Sketchup , bar charts comparing cumulative %RD for the models, are shown in figure 3.17. Each bar
chart compares the percentage of the total number of samples which are in different ranges of % relative
difference. The bottom most box (dark green) in each bar shows % of total samples less than 10% RD
(indicated by number) whereas the topmost box (red) shows the % of samples having %RD greater than
80%. A model performs the best, if it has the highest percentage of samples in the bottom most box
and least percentage of samples in the topmost box of the bar graph. From the two bar charts, it can
be seen that the number of samples below 10% RD increased at least by 1% (except for Sandia model)
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(a) RMSD comparison (b) MBD comparison

Figure 3.16: Root mean squared and mean bias differences between modeled( with and without shading analysis) versus
measured for each of the five transposition models (based on Cabauw data Oct’16- Apr’17).

after using shading factor from Sketchup. Given the fact that most of the days were partially or fully
cloudy during the observation period, an increase of 1% is also quite significant.

It is evident from the comparison of RMSD, MBD and %RD that Reindl, Hay/Davies and Isotropic
are the best performing models for the location of the e-bike station .

(a) Without any shading factor (b) After using shading factor from Sketchup.

Figure 3.17: Comparison of standard transposition models based on cumulative % relative difference (based on Cabauw
data Oct’16-Apr’17). The bottom most box (dark green) in each bar shows % of total samples less than 10% RD whereas

the topmost box (red) shows the % of samples having %RD greater than 80%. versus measured for each of the five
transposition models.

Effect of using location specific SVF and dynamic albedo
Figure 3.18 shows the comparison of cumulative %RDwhen Reindl model was modified using location
specific parameters. The comparison is made among four different cases: first (No SF), when no SF is
used and a fixed value of albedo (0.20) and module tilt dependent SVF (0.81) was used, Second (Sk-
SF), when SF from Sketchup was used( albedo and SVF same as first case), third (Sk-(SF,SVF) when
SF and SVF obtained from Sketchup were used whereas albedo value was constant and finally in the
fourth case (Sk-(SF,SVF),Dy-Al), in addition to SF and SVF from Sketchup, albedo dependent on sun
elevation was used.

It was found that the modeled value of SVF using Sketchup, not only increased the percentage of
samples below 10% RD by 1% but also decreased the number of samples having %RD greater than
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80% by 7%. On the other hand, the results did not improve with the use of ‘dynamic albedo’ i.e. albedo
dependent on the sun elevation. Similar results for Hay/Davies and Isotropic models can be found in
Appendix B. In the rest of the thesis, while referring to transposition models (Reindl, Hay/Davies and
Isotropic) it is understood that the improvements suggested in this section are included.

Figure 3.18: Comparison of cumulative % relative difference to evaluate effect of using location specific parameters on
transposition model (Reindl) (based on Cabauw data, Oct’16-Apr’17).

It is implied from the results that location specific parameters such as SVF and albedo do improve
the prediction of 𝐺ᑇᑆᐸ. It should be noted that the relation between albedo and sun elevation angle was
found using just one day of albedomeasurements and it can be further improved by takingmeasurements
over a longer period. At the same time, the dependence of albedo on other factors such as clearness
index, 𝐺𝐻𝐼 and 𝐷𝑁𝐼 should be studied.

Ray tracing method vs traditional transposition models

Figure 3.19: Measured and modeled incident irradiance on the e-bike station.

Irradiance on the plane of array was calculated using the new irradiance model by obtaining a sensi-
tivity and a sky map for the location of the e-bike station. Figure 3.19 shows the comparison of modeled
irradiance using improved Reindl model (includes location specific SVF and dynamic albedo) with that
of the ray tracing method. It can be seen that the irradiance predicted using ray tracing almost over-
laps with the measured data and though Reindl uses location specific parameters it underestimates the
irradiance. This is mainly because Reindl only models sky diffuse, direct beam and ground reflected
irradiance received by the modules but as the e-bike station is surrounded by buildings and trees there
will be an additional reflected component from these objects as well. Since the ray tracing method uses
simulations to calculate these reflections it is able to predict the measured irradiance more accurately.
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Figure 3.20: Comparison between standard transposition models and ray tracing method (LightTools) using cumulative %
relative difference (based on Cabauw data Oct’16-Apr’17).

To compare the performance of the ray tracing method over the complete duration of the study
(Oct’16-Apr’17), cumulative %RD was calculated. Figure 3.20 shows a comparison between the per-
formance of the Reindl and Hay/Davies model with the ray tracing method. Surprisingly, the perfor-
mance of the ray tracing method was found to be poorer than other models. The reason behind it could
be understood by looking at the modeled irradiance by ray tracing method for a partly clouded day (see
figure 3.20). During the morning hours, when there are a lot of fluctuations in irradiance, the irradi-
ance predicted by ray tracing method differs more from the measured irradiance than the Reindl model
does.However, in the afternoon (after 14:00 pm), the prediction almost overlaps with the measured val-
ues.The results imply that the performance of the ray tracing model is inferior to other models which
perform better for cloudy conditions. Since the duration (Oct’16-Apr’17) over which model perfor-
mance has been evaluated consist of mostly fully or partly cloudy days the overall result is poor. It is
expected that it will perform much better for summer months when the number of clear sky days are
much higher.

Figure 3.21: Measured and modeled incident irradiance on the e-bike station.

A combination of transposition and decomposition model
It is well known that for most locations, 𝐷𝐻𝐼 and 𝐷𝑁𝐼 data are rarely available, and they are obtained
from 𝐺𝐻𝐼 using decomposition models (For more details refer Chapter 2). Hence, it is important to
verify the effect of using decomposition models in combination with transposition models to predict
𝐺ᑇᑆᐸ. Three decomposition models, namely Delft-I, Delft-II and OG, were chosen based on their
performance to predict 𝐷𝐻𝐼 from Cabauw and were combined with the Reindl transposition model.
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Figure 3.22 indicates that the combination of models does not undermine the prediction of 𝐺ᑇᑆᐸ. The
number of samples having %RD less than 10% differs only by 0.7% in case of Reindl and Delft-II-
Reindl. However, to make definite conclusions about the performance of combinations of models,
there is a need to study their performance over a complete year.

Figure 3.22: %Relative difference comparison for combination of decomposition and transposition models ( based on
Cabauw data Oct’16- Apr’17).

3.5. Conclusions
In this chapter, the following research questions were addressed :

Which are the most accurate transposition models to be used in urban location?

In this chapter, five widely used transposition models were studied and their performance
was evaluated by comparing the modeled 𝐺ᑇᑆᐸ to the measured one, for the e-bike charging
station on the campus of TU Delft based on the irradiance data for Oct’16-Apr’17 obtained
from Cabauw. It was found that Reindl and Hay/Davies models are most suited for the cli-
mate of Netherlands.

How important is shading analysis to irradiance modeling and what is the most reliable tech-
nique to incorporate it?
For the location of the e-bike station, shading analysis can reduce RMSD in irradiance pre-
diction by almost 50𝑊/𝑚Ꮄ (i.e almost 5% of incident power during noon) for all the mod-
els. Two different methods of shading analysis : Meteonorm-Horicatcher and 3-Dmodeling
were compared. It was found that Sketchup is the most accurate way to do shading analysis.
The number of modeled values having %RD below 10% increased by almost 1% and those
having %RD greater than 80% decreased by almost 6% for the all the models except for
the Sandia model. It is a significant percentage as the number of samples compared were
56,243.

How can the performance of existing models be improved by using location-specific parameters
like sky view factor and albedo?
The effect of location-specific parameters like SVF and alebdo was studied on Reindl,
Hay/Davies and isotropic models. Using 3-D modeling it is possible to account for near
by buildings while calculating SVF. For the e-bike station, it was found to be 0.62. The
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EEMCS building reduces the SVF by approximately 20%. Next, albedo near the e-bike
station was measured,to improve the ground-reflected component, using an albedometer.
It was found that the albedo value does not remain constant throughout the day and shows
some correlation with the sun elevation angle. Using both location-specific SVF and eleva-
tion dependent, albedo improved the prediction of 𝐺ᑇᑆᐸ as the number of samples having
%RD below 10% increased by almost 1% and those having %RD greater than 80% de-
creased by almost 7% for the all the models.

What is the effect of using decomposition models instead of measured diffuse and direct irradi-
ance?
It was found that in the absence of measured 𝐷𝐻𝐼 and 𝐷𝑁𝐼, decomposition models provide
a good alternative to derive those values from GHI. When a combination of decomposition
and transposition models was used, they produced almost equivalent results as compared to
the use of just transposition models.

Finally, it can be concluded that the performance of existingmodels can be significantly improved
by using location-specific parameters such as SVF and albedo. Further studies are needed to
improve the prediction of the ground-reflected component.



4
Thermal modeling

To accurately predict the energy output of the e-bike station, it is necessary to have a good estimate of the
individual cell temperatures under operating conditions. Several thermal models have been developed
to predict the cell temperature and have varying degrees of complexity. The primary inputs to any
thermal model are 𝐺ᑇᑆᐸ and 𝑇ᑒᑞᑓ. More complex models take into account effect of wind speed,
module parameters, type of installation etc. The primary inputs can either be measured on the location
of the PV system or can bemodeled using data obtained from nearbymeteorological stations. Generally,
measured data is rarely available for installed systems and data is obtained from nearby weather stations.

In this project, as measured weather and module temperature data were available for the e-bike
station, it is possible to evaluate the performance of different thermal models. Further, data from the
Cabauw weather station was also used to see the difference in the performance of the models and eval-
uate factors affecting it.

In this context,as mentioned in chapter 1, the following research questions are addressed :

Evaluate thermal models best suited for predicting module temperature of a closed system
like the e-bike station
• Which is the best performing thermal model?
• Does the time step between the data used for modeling have an impact on the perfor-
mance of the models?

• What is the effect of using weather data from nearby meteorological stations on the
performance of thermal models?

In this chapter, the three most widely used temperature models, namely NOCT, Duffie-Beckmann and
Fluid-Dynamic, are evaluated. Their performance is validated by comparing the results obtained after
modelling with measurements made at the e-bike charging station. Further, the effect of factors like
varying wind speed and irradiance levels on the performance of the models is also studied.

Module Parameters
To discuss the details of thermal models, it is necessary to be familiar with module parameters which
are used by them. In this section, relevant parameters are briefly explained.
Standard Test conditions (STC): It refers to the industry-wide accepted conditions for testing a solar
module. At STC, modules are tested under an irradiance of 1000𝑊/𝑚Ꮄ having an AM 1.5 spectrum
and a module temperature of 25∘𝐶. The module parameters defined on the datasheet of a PV module
correspond to STC and often need to be calculated for ambient temperature.
Nominal Operating Cell Temperature (𝑇ᑅᑆᐺᑋ) : It is the temperature of a solar cell operating under
an irradiance of 800 𝑊/𝑚Ꮄ , ambient temperature of 20 ∘𝐶 and external wind speed of 1 𝑚/𝑠 [1].
Usually, its value is provided by the manufacturer on the datasheet.
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Installed Nominal Operating Cell Temperature (𝑇ᑀᑅᑆᐺᑋ ) It is the modified value of 𝑇ᑅᑆᐺᑋ which
considers the effect of module’s mounting configuration. It can be determined experimentally by mea-
suring the temperature of the installed modules under NOCT conditions. Table 4.1 summarizes the
𝑇ᑀᑅᑆᐺᑋ values for most commonly used configurations [21].

Table 4.1: Derivation of the ፓᑀᑅᑆᐺᑋ from the ፓᑅᑆᐺᑋ for various mounting configurations [21].

Panel configuration 𝑇ᑀᑅᑆᐺᑋ

Rack Mount 𝑇ᑀᑅᑆᐺᑋ = 𝑇ᑅᑆᐺᑋ − 3 ∘𝐶
Direct Mount 𝑇ᑀᑅᑆᐺᑋ = 𝑇ᑅᑆᐺᑋ + 18∘𝐶
Standoff 𝑇ᑀᑅᑆᐺᑋ= 𝑇ᑅᑆᐺᑋ + X ∘𝐶

where X is given by

W (inch) X (∘𝐶)
1 11
3 2
6 -1

4.1. Thermal models
In this section, first, the scope of the thermal models, evaluated in this thesis (see table table 4.3), is
discussed followed by a description about each model.

4.1.1. Scope of the Models

For this thesis, it is assumed that the complete solar module has an uniform temperature, which means
that the module temperature (𝑇ᑞ) is assumed to be equal to the cell temperature (𝑇ᑔᑖᑝᑝ). In reality, the
module temperature would be lesser than the actual cell temperature as absorption of light takes places in
the cells. Still, the approximation is valid considering the relatively low thickness of the active layer and
low heat capacity of the cell layer [19]. The approximation is also necessary because it is challenging
to measure the cell temperatures as they are enclosed inside the module. The terms cell temperature
and module temperature will be used interchangeably.

Table 4.2: Thermal models evaluated in this project. While comparing complexity of the models, 5 stars represent the
highest level of complexity

Model Name Input Complexity

NOCT 𝑇ᑒᑞᑓ, 𝑇ᑅᑆᐺᑋ, 𝐺ᑇᑆᐸ ⋆
Duffied Beckman 𝑇ᑒᑞᑓ, 𝑇ᑅᑆᐺᑋ, 𝐺ᑇᑆᐸ,𝜂ᑊᑋᐺ,𝑊ᑤ ⋆ ⋆

Fluid dynamic (Steady-state)
𝑇ᑒᑞᑓ, 𝑇ᑅᑆᐺᑋ, 𝐺ᑇᑆᐸ,
𝑊ᑤ, module parameters

⋆ ⋆ ⋆

Fluid dynamic (Transient)
𝑇ᑒᑞᑓ, 𝑇ᑅᑆᐺᑋ, 𝐺ᑇᑆᐸ,
𝑊ᑤ, module parameters

⋆ ⋆ ⋆ ⋆
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4.1.2. NOCT model (NOCT)
It is one of the simplest models to calculate the operating temperature of the cell. The main input of this
model is 𝑇ᑅᑆᐺᑋ. It considers the effect of 𝐺ᑇᑆᐸ and ambient temperature(𝑇ᑒᑞᑓ) but ignores the effect
of wind speed (𝑊ᑤ). The expression for cell temperature (𝑇ᑔᑖᑝᑝ) is given by eqn. 4.1.

𝑇ᑔᑖᑝᑝ = 𝑇ᑒᑞᑓ +
𝑇ᑅᑆᐺᑋ − 20∘

800 𝐺ᑇᑆᐸ (4.1)

4.1.3. Duffie-Beckmann model (DuffieB)
The Duffie-Beckmann model is an extension of the NOCT model, but it also takes into consideration
the effect of wind speed on the temperature of the cells. It considers that at steady state, the solar energy
incident on the module is transformed into thermal and electrical energy. At the same time, a part of
the thermal energy is dissipated to the environment by heat transfer. The energy balance of a unit area
of the module is given by the equation 4.2 [22, 23].

(𝜏𝛼)𝐺ᑇᑆᐸ = 𝜂ᑞ𝐺ᑇᑆᐸ + 𝑈ᑃ(𝑇ᑔᑖᑝᑝ − 𝑇ᑒᑞᑓ) (4.2)

Where, 𝜏 is the transmittance of the front surface and 𝛼 is the absorbance of the PV layer. 𝑈ᑃ is the
thermal loss coefficient that accounts for losses due to convection, conduction and radiation. 𝜂ᑞ is the
module’s electrical efficiency. The transmittance-absorbance product is used to predict the total energy
absorbed by the module. The value of 𝜏𝛼 is generally not known and an approximated value of 0.9 is
widely used [22].

Substituting eqn. (4.2) with NOCT conditions, one obtains eqn. 4.3 which can be then combined
with eqn. 4.1 to obtain the cell temperature at any ambient temperature (see eqn. 4.4).

(𝜏𝛼)800 = 𝜂ᑞ𝐺ᑇᑆᐸ + 𝑈ᑃ,ᑅᑆᐺᑋ(𝑇ᑅᑆᐺᑋ − 20) (4.3)

𝑇ᑔᑖᑝᑝ = 𝑇ᑒᑞᑓ +
𝐺ᑇᑆᐸ
800 (𝑈ᑃ,ᑅᑆᐺᑋ𝑈ᑃ

) 𝑇ᑅᑆᐺᑋ − 20
∘

800 (1 − 𝜂ᑞ𝜏𝛼 ) (4.4)

Further, Duffie-Beckmann approximated the loss coefficients (𝑈ᑃ and 𝑈ᑃ,ᑅᑆᐺᑋ) using an empirical
relation in terms of𝑊ᑤ . The final correlation to obtain 𝑇ᑔᑖᑝᑝ is given by eqn. 4.5.

𝑇ᑔᑖᑝᑝ = 𝑇ᑒᑞᑓ +
𝐺ᑇᑆᐸ
800 ( 9.5

5.7 + 3.8𝑊ᑤ
) 𝑇ᑅᑆᐺᑋ − 20

∘

800 (1 − 𝜂ᑞ𝜏𝛼 ) (4.5)

4.1.4. Fluid-Dynamic (FD) Model
The fluid dynamic model is based on detailed thermal energy balance between the module and its sur-
roundings. It was first developed by Sandia National Laboratories (SNL) to improve the prediction
of module temperature using commonly available weather data and module parameters [21] [5]. The
main inputs for this model are 𝑇ᑀᑅᑆᐺᑋ, 𝑇ᑒᑞᑓ, 𝐺ᑇᑆᐸ,𝑊ᑤ and other module parameters such as thermal
coefficients, the area of the module, etc. Another simplified version of FD model was developed which
solves the energy balance equation assuming the steady state condition [19]. The original model by
SNL will be referred to as the “FD- Transient (FD-TR)” and the simplified one as “FD-Steady state
(FD-SS)”.

The main assumption for both the models is that the module is a single uniform mass at temperature
𝑇ᑞ and exchanges heat with the surroundings by conduction, convection and radiation (refer fig. 4.1).
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Figure 4.1: Image showing net heat exchange between a tilted module surface and the surroundings.

The balance of heat transfer is given by eqn. 4.6 .

𝑚𝑐𝑑𝑇ᑄ𝑑𝑡 = 𝜑𝐺ᑇᑆᐸ − ℎᑔ(𝑇ᑄ − 𝑇ᑒᑞᑓ) − 𝜀ᑥᑠᑡ𝜎 (𝑇Ꮆᑄ − 𝑇Ꮆᑤᑜᑪ) − 𝜀ᑓᑒᑔᑜ𝜎 (𝑇Ꮆᑄ − 𝑇Ꮆᑘᑣ.) (4.6)

The equation 4.6 can be divided into four parts as explained below. The term on the left side of the
equation, 𝑚𝑐, represents the thermal mass of the module where 𝑚 is the mass of the module and 𝑐 is
the heat capacity of the module.

On the right-hand side,
The first term 𝜑𝐺ᑇᑆᐸ represents the total energy absorbed by the module from the incident irradi-

ance where phi is the absorptivity of the module. The second term, ℎᑔ(𝑇ᑄ − 𝑇ᑒᑞᑓ), accounts for the
heat exchanged with the surrounding air by convection from both front and back surface of the module.
Here, ℎᑔ denotes the overall convective heat transfer coefficient of the module.

The next two terms take care of heat exchange by radiation. 𝜀ᑥᑠᑡ𝜎 (𝑇Ꮆᑄ − 𝑇Ꮆᑤᑜᑪ) calculates the
radiative heat exchange between the upper module surface and the sky whereas 𝜀ᑓᑒᑔᑜ𝜎 (𝑇Ꮆᑄ − 𝑇Ꮆᑘᑣ.)
calculates the radiative exchange between the back surface and the ground. 𝜀ᑥᑠᑡ and 𝜀ᑥᑠᑡ are the
emissivity of the module’s top and back surfaces respectively. 𝜎 is Stefan-Boltzmann’s constant and
𝑇ᑤᑜᑪand 𝑇ᑘᑣᑟᑕ are the temperatures of the sky and the ground respectively. The above equation ignores
the conductive heat transfer between the module and the mounting structure as its contribution is neg-
ligible, given the small area of contact between modules and the structure. Equation 4.6 can be further
simplified by linearizing the radiation terms using relation (eqn. 4.7) .

(𝑎Ꮆ − 𝑏Ꮆ) = (𝑎Ꮄ + 𝑏Ꮄ) . (𝑎 + 𝑏) . (𝑎 − 𝑏) (4.7)

It is safe to assume the product term ,(𝑇Ꮄᑄ + 𝑇Ꮄᑤᑜᑪ) . (𝑇ᑄ + 𝑇ᑤᑜᑪ), as a constant since it changes
less than 5% for a 10∘ variation in module temperature [21]. Therefore, the radiation terms can now be
expressed as given by eqns. 4.8 and 4.9.

ℎᑣ,ᑤᑜᑪ = 𝜀ᑥᑠᑡ𝜎 (𝑇
Ꮄ
ᑄ + 𝑇Ꮄᑤᑜᑪ) . (𝑇ᑄ + 𝑇ᑤᑜᑪ) (4.8)

ℎᑣ,ᑘᑣ. = 𝜀ᑓᑒᑔᑜ𝜎 (𝑇
Ꮄ
ᑄ + 𝑇Ꮄᑘᑣ.) . (𝑇ᑄ + 𝑇ᑘᑣ.) (4.9)

Finally, the energy balance equation eqn. 4.6 can be rewritten as

𝑚𝑐𝑑𝑇ᑄ𝑑𝑡 = 𝜑𝐺ᑇᑆᐸ − ℎᑔ(𝑇ᑄ − 𝑇ᑒᑞᑓ) − ℎᑣ,ᑤᑜᑪ (𝑇ᑄ − 𝑇ᑤᑜᑪ) − ℎᑣ,ᑘᑣ. (𝑇ᑄ − 𝑇ᑘᑣ.) (4.10)
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Two types of solutions (steady state and transient + steady state) can be obtained from the equation.
The FD-Steady State model considers that if the time step between changes in the irradiation is

greater than 10 minutes, the module can be assumed to be in a steady state. This approximation is
valid because, due to the thermal mass of the module, its temperature does not change significantly
over a short period (10 minutes) when compared to change in irradiation. Rather, module temperature
follows an exponential lagging behind the variations in irradiation and has a time constant of around 7
minutes [19]. With this approximation, the term on the right-hand side of eqn. 4.10 becomes zero and
the equation can be rearranged to obtain the 𝑇ᑄ as given by eqn. 4.11.

𝑇ᑄ =
𝜑𝐺ᑇᑆᐸ + ℎᑔ𝑇ᑒᑞᑓ + ℎᑣ,ᑤᑜᑪ𝑇ᑤᑜᑪ + ℎᑣ,ᑘᑣ.𝑇ᑘᑣ.

ℎᑣ,ᑤᑜᑪ + ℎᑣ,ᑘᑣ. + ℎᑔ
(4.11)

The FD-Transient model makes no such assumptions and models irradiance as a linear function of
time, given by eqn. 4.12.

𝐺ᑇᑆᐸ = 𝐺ᑇᑆᐸ,(ᑥᎽᎳ) + Δ𝐺ᑇᑆᐸ
𝑡
Δ𝑡 (4.12)

Where, Δ𝑡 is the time step between measurements, 𝐺ᑇᑆᐸ,(ᑥᎽᎳ) is the insolation from the previous
time step and Δ𝐺ᑇᑆᐸ is the smallest step change in 𝐺ᑇᑆᐸ. Δ𝑡 is assumed to be small enough so that the
equation remains continuous. Therefore, by substituting eqn. 4.12 in the eqn. 4.11 and integrating it,
an explicit expression for 𝑇ᑄ can be obtained, given by eqn. 4.13.

𝑇ᑄ =
(𝜑(𝐺ᑇᑆᐸ,(ᑥᎽᎳ) + Δ𝐺ᑇᑆᐸ/𝐿) + ℎᑔ𝑇ᑒᑞᑓ + ℎᑣ,ᑤᑜᑪ𝑇ᑤᑜᑪ + ℎᑣ,ᑘᑣ.𝑇ᑘᑣ.)(1 − 𝑒ᑃ) + 𝜑Δ𝐺ᑇᑆᐸ

ℎᑣ,ᑤᑜᑪ + ℎᑣ,ᑘᑣ. + ℎᑔ
+𝑇ᑄ,(ᑥᎽᎳ)𝑒ᑃ

(4.13)
Where 𝑇ᑄ,(ᑥᎽᎳ) is the module temperature from the previous step and

𝐿 =
−(ℎᑣ,ᑤᑜᑪ + ℎᑣ,ᑘᑣ. + ℎᑔ).Δ𝑡

𝑚𝑐

In general, the term 1/𝐿 represents the thermal lag or the capacitance of the module. To obtain 𝑇ᑄ
from either the FD-SS or FD-TR model, one has to calculate various parameters like ℎᑔ, ℎᑤᑜᑪ, etc. The
detailed description to calculate them can be found in the following references [19, 21].

Since the FD-SS model assumes that the module temperature does not change significantly for a
shorter time step, it might lead to an erroneous prediction of module temperature especially when irradi-
ance values are high and are fluctuating. Also, as the time step between two data points is 1 minute, it is
likely that due to the assumptions (about steady state) made by FD-SS, it will underperform as compared
to the reported performance in the literature [19]. FD-TR is expected to have a superior performance
as it considers the effect of continuous variation in irradiance as well as ambient temperature.

4.2. E-bike station and assumptions
Solar panels and its parameters
The e-bike station has 8 Sunpower X20 – X20-327 BLK solar panels. These panels are based on
monocrystalline silicon technology and have an average efficiency of 20.3%. The main module pa-
rameters are summarized in table 4.3. More details about the modules can be found in the appendix
E.

This section gives the details of the parameters whichwere calculated differently than the references,
to incorporate the effect of location and modules used in the e-bike station.
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Table 4.3: Data sheet values of Sunpower X20 327ፖᑡ PV module.

Name Value

Brand Sunpower X20-327-BLK
Type Mono-crystalline silicon
Pmax STC(W) 327
𝑇ᑅᑆᐺᑋ (∘𝐶) 43
Width (m) 1.56
Height (m) 1.05
Area (𝑚Ꮄ) 1.64
Efficiency nom. STC (%) 20.3
𝑉ᑠᑔ STC (V) 67.6
𝐼ᑤᑔ STC (A) 6.07
Temp. coeff Pmmp (%/∘𝐶) -0.3
Temp. coeff Voc (%/∘𝐶) -0.3
Temp. coeff Isc (%/∘𝐶) 0.06

Absorptivity and emissivity
Absorptivity (𝜑) and emissivity (𝜖) of the solar module are critical inputs for the Fluid-Dynamic model.
Absorptivity is defined as the fraction of incident radiation that gets converted into thermal energy [22].
It is related to the reflectivity (𝑅) and efficiency (𝜂ᑞ) of the module as given by the equation

𝜑 = (1 − 𝑅)(1 − 𝜂ᑞ) (4.14)

Emissivity (𝜖) is the ratio of energy radiated to the amount that would be radiated if the surface was
a perfect black body [22]. For this thesis, absorptivity and emissivity were based on the work of Wei
Li et al. , who experimentally calculated these values for Sunpower’s solar modules (same as that used
in e-bike station) [48]. The module efficiency was obtained from the module’s datasheet. Table 4.4
summarizes all these values.

Table 4.4: Module parameters

Parameter Value

Reflectivity(𝑅) 0.07
Efficiency (𝜂ᑞ) 0.203
absorptivity (𝜑) 0.727
Emissivity top (𝜖ᑥᑠᑡ) 0.63
Emissivity back (𝜖ᑓᑒᑔᑜ) 0.66

Wind speed
Though wind speed data is measured at the e-bike station, while using data from Cabauw, it was scaled
down using eqn. 4.15 because, at the meteorological station, wind speed is measured at a height of 10
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meters whereas the height of panel in the e-bike station is around 4 meters [49].

𝑊ᑤ = 𝑊ᑤ,ᑣᑖᑗ 𝑙𝑛(ℎ/𝑧 Ꮂ )/𝑙𝑛(ℎ ᑣᑖᑗ /𝑧 Ꮂ ) (4.15)

where,
Ws= wind speed at height h above ground level.
𝑊ᑤ,ᑣᑖᑗ= reference speed, i.e. a wind speed we already know at height ℎᑣᑖᑗ . ℎ = height above ground
level for the desired velocity.
𝑧 Ꮂ = roughness length in the current wind direction. Roughness lengths are summarized in the table
D.1 appendix D. In this thesis, a value of 0.8 is used, which refers to a location having large buildings.
ℎ ᑣᑖᑗ = reference height, i.e. the height where we know the exact wind speed𝑊ᑤ,ᑣᑖᑗ.

Figure 4.2: Measured (e-bike station) and modeled wind speed using wind speed measured at Cabauw for one week in
April-17.

Figure 4.2 shows a comparison between wind speed measured at the e-bike station and the scaled
down version of wind speed data from Cabauw for one week of April. It can be seen that the scaled
wind speed data matches well with the actual recorded data. The measured and modeled values have
an RMSD of 0.226 m/s. It is important to note that due to the presence of EEMCS building just in front
of the e-bike station, the wind often becomes turbulent and is very difficult to model.

Ambient Temperature
Figure 4.3 shows a plot of ambient temperature measured at the e-bike station and at Cabauw weather
station. The measured temperature at both the locations matches very well, except for the night time
when the temperature measured at Cabauw is lower than that measured at the e-bike station. It is
mostly because the Cabauw weather station is located in a remote area, surrounded by vegetation. As
the concerned period for evaluating module temperature is during the day, these differences will not
affect the performance of the thermal models.

Figure 4.3: Measured ambient temperature at the e-bike station and Cabauw weather station.



44 4. Thermal modeling

Module temperature at INOCT
𝑇ᑀᑅᑆᐺᑋ is the value of 𝑇ᑞ of an installed module when it is subjected to NOCT conditions. Though table
4.1 gives a generalized formula to obtain the 𝑇ᑀᑅᑆᐺᑋ values for an installation, considering the unique
design of the e-bike station, it would be more accurate to get it from the measured module temperatures.
Therefore, the complete dataset of recorded module temperatures was scanned for conditions which
correspond to NOCT conditions (𝑇ᑒᑞᑓ = 20 ∘𝐶, Irradiance = 800𝑊/𝑚Ꮄ and𝑊ᑤ = 1 𝑚/𝑠) and the set
of values found (refer figs. 4.4 and 4.5) was averaged to obtain the value of 𝑇ᑀᑅᑆᐺᑋ. A value of 52.5∘𝐶
was obtained using this method and is used as the 𝑇ᑀᑅᑆᐺᑋ for rest of the calculations.

Figure 4.4: Measured module temperature of e-bike station at approx. NOCT conditions.

If one refers to table 4.1, the value of X becomes 9.5∘𝐶 which is also logical as the mounting
configuration of panels in the e-bike station is similar to a standoff configuration having a width of 5
inches but closed on all sides. Additionally, the experimentally determined value of 𝑇ᑀᑅᑆᐺᑋ also gives
the least RMSD when used to calculate the module temperature using Fluid-Dynamic model (FD-TR).

Figure 4.5: Comparison of root mean squared difference modeled versus measured module temperature for different values
of INOCT correction factors.

4.3. Model comparison
4.3.1. Data description
For comparing thermal models, data from Cabauw and the e-bike station was used. For more details
about the datasets, refer section 2.3.1 and 3.4.1 . The specific changes applied to those datasets are
discussed below.

Time span
E-bike data for the duration of March-May 2017 was used for studying the performance of the thermal
models. The reason behind limited months of data is that the module’s temperature sensors were not
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working initially and became fully functional only after 8ᑥᑙ March 2017. In the case of Cabauw data,
measurements from only April-17 were available to compare the results. Details of the datasets along
with the periods when data were missing are available in the appendix C.

Data checks
In addition to data checks performed in section 2.3.1 and 3.4.1, while comparing the measured and
predicted module temperatures, attention was given to remove data points having spurious wind speeds
and ambient temperatures. Records corresponding to wind speed less than 0 and ambient temperature
below -25 ∘𝐶 and above 45 ∘𝐶 were removed from all the data sets.

Once all the data checks were performed, the final data set consisted of 40,357 in the case of Cabauw
data and 69,759 in the case of e-bike data samples. Table 4.5 summarizes the datasets used in this
chapter.

Table 4.5: Summary of database used in this chapter

Database name Source Period Variables used Purpose

e-bike data
E-bike
station, Delft, Nl

Mar. ’17-May’17
𝑇ᑒᑞᑓ, 𝑇ᑄ,
𝑊ᑤ, 𝐺ᑇᑆᐸ

Used to compare accuracy of
thermal models

Cabauw data CESAR, Nl Apr. ’17
𝑇ᑒᑞᑓ,𝑊ᑤ,
𝐺𝐻𝐼, 𝐷𝑁𝐼, 𝐷𝐻𝐼

To evaluate effect of using data
from nearby meteorological station
on performance of thermal model

4.3.2. Statistical parameters
The performance of the models was evaluated using four different statistical indicators which are MBD
(∘𝐶), % RD, RMSD (∘𝐶) and R-square(𝑅Ꮄ). For more details of RMSD, MBD and %RD, refer section
2.3.2.

R-Square R-square is a widely used statistical parameter to determine how well a mathematical model
fits the measured data [50, 51]. It determines the closeness of modeled data to the fitted regression line
and can be expressed by eqn. 4.16).

𝑅Ꮄ = 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (4.16)

Values of 𝑅Ꮄ always lie between 0 to 1 where 0 indicates that the model fails to explain the variability
of the response around its mean and 1 means that the model completely fits the data. A higher value
of R-square indicates that the data points fall close to the fitted regression line and the used model can
predict the measured data very well.

4.3.3. Evaluation of thermal models
In this section, performance of the thermal models is evaluated using e-bike data (see 4.3.1) for the
duration of Mar-May’17. Measured ambient temperature, wind speed and incident irradiance at the
e-bike station are used as inputs to the thermal models and the predicted values are compared with the
recorded module temperature.

Measured module temperature is close to the ambient temperature at night but during the day it
increases significantly. The difference between the two can become more than 40 ∘𝐶 on a bright sunny



46 4. Thermal modeling

Figure 4.6: Comparison of temperatures predicted by thermal models with the measured module temperature.

day. Figure 4.6 shows a plot of modeled as well as measured module temperature for a day (9-May-
17). It can be observed that the predicted values by FD-TR almost overlap with the measured values.
FD-SS and NOCT models also predict the temperature within a close range, but during higher module
temperatures (corresponding to higher 𝐺ᑇᑆᐸ) the deviation is higher. Duffie-Beckmann is found to
predict temperatures less than the expected.

To compare the performance of the modules quantitatively, scatter plots between measured and
modeled module temperatures are shown in Figure 4.7. A model is perfect when all the dots on the
scatter plot are aligned close to the diagonal line.

Figure 4.7: Scatter plot of thermal models.

It can be seen that FD-SS has the least spread in data points and has the most linear relationship. Com-
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paring the R-square values for each of the scatter plots, it can be said that the FD-TR is the best per-
forming model followed by FD-SS and NOCT model. The findings are also supported by comparison
of cumulative % relative differences in the prediction of module temperature as shown in figure 4.8.
Each bar in the figure compares the percentage of the total number of samples which are in different
ranges of % relative difference. The bottommost box (dark green) in each bar shows % of total samples
with less than 10% RD (indicated by number) whereas the topmost box (red) shows the % of samples
having %RD greater than 80%. A model performs the best if it has the highest percentage of samples
in the bottom most box and least percentage of samples in the topmost box of the bar graph. From the
bar chart, it is evident that, using FD-TR, more than 90% of samples have less than 20% RD indicating
that it is able to accurately predict module temperature.

Figure 4.8: Comparison of thermal models based on cumulative % relative difference (using e-bike data Oct.’16-Apr.’17).
The bottom most box (dark green) in each bar shows % of total samples less than 10% RD whereas the topmost box (red)

shows the % of samples having %RD greater than 80%.

The results of MBD and RMSD, as shown in table 4.6, also indicate that FD-TR has the lowest
RMSD (1.91 ∘𝐶) and MBD (-0.72 ∘𝐶).Therefore, FD-TR is the most suited model for predicting the
temperature of modules at the e-bike station.

Table 4.6: RMSD and MBD of thermal models

Model name MBD (∘𝐶) RMSD (∘𝐶)

Minute data Hourly data Minute data Hourly data
FD-TR -0.70 -0.69 2.34 2.05
DuffieB -3.39 -3.36 6.23 5.66
NOCT -0.24 -0.13 4.35 3.25
FD-SS -0.54 -0.67 4.72 2.72

Another interesting observation is that though both FD-SS and FD-TR models are derived from
same equations and only differ in the way a solution of the energy balance equation is found, there is a
significant difference between their performance. Figure 4.9, displays the plot of modeled temperature
using the FD-TR and FD-SS models for two days in May-17. The first day (May 5ᑥᑙ) has lower values
of incident irradiance as compared the second one (May 6ᑥᑙ) which was a clear-sky day. The effect of
the difference in irradiance can be easily seen on the module temperature. From the subfigure 4.9b, it
is seen that, when hourly weather data was used to predict the module temperature, both the models



48 4. Thermal modeling

(a) Data with time step of 1 Minute

(b) Data with time step of 1 Hour

Figure 4.9: Modeled module temperature by FD-TR and FD-SS as compared with measured temperature for two days in
May 2017.

predicted similar module temperature with minimal variation for both the days. On the other hand,
when per minute data was used (see subfigure 4.9a), FD-SS greatly overestimates the variability in
the module temperature for higher values of incident irradiance on the clear sky day.The difference is
negligible for lower values of irradiance on both the days. The FD-SS model is based on the assumption
that the module temperature does not change for a time step of 10 minutes (see section 4.1.4) and thus,
neglects the effect of continuously varying irradiance on the module temperature [19]. The assumption
does not have much effect for low values of irradiance but for higher values, it introduces a large error in
the prediction. Statistical results (refer table 4.6) also indicates that the performance difference between
FD-TR and FD-SS, when using hourly data steps, is almost negligible. The difference between MBD
is almost zero and for RMSD is just 0.7 ∘𝐶.

To see the effect of different time steps on the performance of FD-SS and FD-TR, additional simu-
lations were run, using data having temporal resolution of 5 minutes, 15 minutes and 30 minutes. Figure
4.10, shows the differences in RMSD as the time step between data point changes. It is clear that, as
the time-step decreases, the performance of FD-SS model declines. Further, it can be said that FD-SS
model should only be used when the step size between measured data is much greater than 10 minutes.
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Figure 4.10: RMSD for FD-TR and FD-SS for different time steps.

Effect of using modeled input data
In the previous section, the performance of models was analyzed using measured weather data at the
e-bike station as an input to the models. However, measured weather data is not always available for all
the locations and one might have to obtain it from nearby weather stations. In such a case, irradiance
received by the modules, is obtained using transposition models (discussed in chapter 3) and wind speed
is be scaled down to the system’s height (see section 4.2).

To study the effect of using meteorological data that is not measured on the module’s location, data
from Cabauw for the month of April’17, was used. Figure 4.11 shows the RMSD for the four models
for three different cases as compared to the case where both 𝐺ᑇᑆᐸ and𝑊ᑤ were measured at the e-bike
station. In the first one,𝑊ᑤ was scaled down for the location of e-bike station whereas measured values
of𝐺ᑇᑆᐸwere used (Mod. 𝑊ᑤ +Msr. 𝐺ᑇᑆᐸ). In the second case,𝐺ᑇᑆᐸwasmodeled using a transposition
model (Reindl as discussed in Chapter 3) whereas𝑊ᑤ used was locally measured (Mod. 𝐺ᑇᑆᐸ + Msr.
𝑊ᑤ). Finally, for the third case, modeled versions of both𝑊ᑤ and 𝐺ᑇᑆᐸ were used (Mod. 𝑊ᑤ + 𝐺ᑇᑆᐸ).
’Msr. 𝑊ᑤ + 𝐺ᑇᑆᐸ’ indicates results when both the values measured at e-bike station were used as an
input and all other results are compared to it. Comparing the RMSD in temperature prediction, it can
be seen that, when using Mod. 𝑊ᑤ + 𝐺ᑇᑆᐸ, the RMSD increases more than 8∘𝐶 as compared to just
2∘𝐶 for both Msr. 𝑊ᑤ + 𝐺ᑇᑆᐸ. The decrease in quality of 𝑇ᑞ prediction is acceptable given the fact that
effect of inaccuracies in module temperature do not have much effect on power prediction as compared
to the effect of inaccuracies in 𝐺ᑇᑆᐸ prediction (discussed in chapter 5, refer 5.4).

It is also clear that the performance of models is highly dependent on the value of 𝐺ᑇᑆᐸ as compared
to𝑊ᑤ. It can be explained by the fact that 𝐺ᑇᑆᐸ is the main source of heat produced in the module and
hence its knowledge is important for predicting module temperature whereas the role of𝑊ᑤ is limited to
cooling down the module. Thus, the accuracy of transposition models not only affects 𝐺ᑇᑆᐸ prediction
but also the prediction of module temperature.

4.3.4. Discussion
In this section, a brief discussion is presented analyzing the performance of the different models eval-
uated in this chapter.

In general, it was seen that FD-TR is the best performing model followed by FD-SS and NOCT
models. Duffie-Beckmann was found to have the least accuracy in predicting he module temperature.
Surprisingly, NOCT model was found to be as good as the FD-SS model mainly because the FD-SS
model is not designed for predicting module temperature when the time step between data points is less
than 15 minutes. It was also observed that the performance of FD-SS improves significantly for hourly
data. FD-TR takes care of all the shortcomings of the other three models and is able to predict module
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Figure 4.11: Root mean squared differences between modeled versus measured module temperature using Cabauw data for
April ’17. The results are compared for four cases,ie 1) Measured (Msr.) ፖᑤ and ፆᑇᑆᐸ used as input to thermal models, 2)

Modeled (Mod.) ፖᑤ and Msr. ፆᑇᑆᐸ, 3) Mod. ፆᑇᑆᐸ and Msr. ፖᑤ, 4) Mod. ፖᑤ and ፆᑇᑆᐸ.

temperature accurately.

Figure 4.12: Performance of thermal models under varying incident irradiance for two different wind speeds.

The performance differences can also be understood by observing the effect of incident irradiance
and varying wind speed, for constant ambient temperature, on the modeled temperatures (see figure
4.12). The NOCT model does not consider the effect of wind speed, but it does follow the increase in
module temperature due to increased incident irradiance. Its accuracy decreases at higher wind speeds
as the difference between module temperature and 𝑇ᑅᑆᐺᑋ becomes significant. Duffie-Beckmann pre-
dict 𝑇ᑞ lower than other models and the difference becomes notable as the irradiance increases. It
underperforms because of two reasons. First, it uses 𝑇ᑅᑆᐺᑋ as an input whereas for more accurate pre-
dictions 𝑇ᑀᑅᑆᐺᑋ should be used, incorporating the effect of mounting configuration on 𝑇ᑞ. Secondly,
it keeps convective heat transfer as a constant. Usually, heat transfer coefficients change with wind
speed and mounting configuration of modules. FD-TR and FD-SS models predict module temperature
in-between NOCT and Duffie-Beckmann models and show dependence on both wind speed and inci-
dent irradiance. The difference between FD-SS and FD-TR becomes pronounced at lower wind speeds
where FD-SS predicts higher temperatures than FD-TR. It is because FD-SS ignores the thermal mass
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of the module which plays an important role at lower wind speeds.
Finally, observing the performance of the models when meteorological data from a nearby station

was used as an input to the thermal models, it can be said that most of the error in 𝑇ᑄ prediction was
introduced due to inaccuracies in the transposition model and not by the thermal models themselves.

4.4. Conclusions
Knowledge of the module temperature is critical for modeling the power output of a solar cell. Several
models exist to predict the module temperature from ambient temperature and have different degrees
of complexity. In this chapter, three thermal models were studied, namely NOCT, Duffie-Beckmann
and Fluid-Dynamic, to compare the modeled and measured module temperature at the e-bike station
for the duration of March to May 2017. Additionally, the effect of using steady-state assumptions for
the Fluid-Dynamic model (FD-SS) was evaluated.

In this chapter, the following research questions were addressed :

Which is the best performing thermal model?

Analyzing the results discussed in section 4.3.3, it can be said that FD-TR is best suited for
predicting the module temperature at the e-bike station. It has the least RMSD of 1.91∘𝐶 and
anMBDof -0.71∘𝐶. It has the highest number of samples having (69%)%RD less than 10%.

Does the time step between the data used for modeling have an impact on the performance of
the models?

Not all the models are affected by the time-step of the data used except for the FD-SSmodel.
Even for the FD-SS model, the performance with minute data is poor only for higher values
of incident irradiance. The overall performance of FD-SS increases significantly when the
time step between samples is increased to an hour instead of a minute.

What is the effect of using weather data from nearby meteorological stations on the perfor-
mance of thermal models?

The effect of using weather data from the nearby meteorological station (Cabauw data,
April-17) as an input to the thermal models was evaluated. Results showed that use of
modeled 𝐺ᑇᑆᐸ and𝑊ᑤ introduces higher errors in the prediction of module temperature as
compared to the case when measured 𝐺ᑇᑆᐸ and 𝑊ᑤ are used, but the errors are within the
acceptable range. It was observed that most of the error gets introduced due to inaccuracies
in the transposition model and not by the thermal models itself. Thus, there is a strong need
to improve transposition models.

In general, it was observed that the NOCT model predicts higher values of module temperature
as it does not take wind speeds into account. The Duffie-Beckmann model underperforms as it
does not consider the effect of the mounting configuration on convective heat transfer. Finally, it
can be concluded that, to accurately model the temperature of the modules mounted on a closed
system like the e-bike station, the FD-TR model should be used. The NOCT model is found to
be the second best, despite its simplistic nature and thus can be employed for predicting module
temperatures when one wants to avoid complicated calculations involved with FD-TR model.





5
Electrical modeling : DC power and

energy yield

A number of models exist to predict the electrical output of PV cells. To accurately predict the power
produced by the e-bike station, it is important to use the best performing electrical model.

In this context, as mentioned in chapter 1, the following research questions are addressed:

Compare existing solar cell electrical models to compute the DC power and energy output
of the e-bike charging station

• How accurate are the existing electrical models?

• How much effect do the inaccuracies in the irradiance and thermal models have on the
energy yield prediction of the system?

• Using the method of the designer of the e-bike station, how well does the energy yield
predicted match with the measured data after installation?

• Do the improvements suggested in this thesis improve the quality of prediction of en-
ergy yield?

The primary inputs to any electrical model are 𝐺ᑇᑆᐸ and 𝑇ᑄ which can be either measured on the lo-
cation of the PV system or can be modeled using data obtained from nearby meteorological stations.
While measured 𝐺ᑇᑆᐸ and 𝑇ᑄ can be obtained for an installed system, it has to be obtained from nearby
weather stations when designing a new system. Apart from 𝐺ᑇᑆᐸ and 𝑇ᑄ, models use module parame-
ters, which are either given on the module datasheet or obtained experimentally.

In this project, first, the performance of electrical models is evaluated by comparing modeled power
output (using measured 𝐺ᑇᑆᐸ and 𝑇ᑄ at the e-bike station) with the measured power output. Next,
weather data from Cabauw is used to obtain 𝐺ᑇᑆᐸ and 𝑇ᑄ (using transposition and thermal models)
which was then used as an input to the electrical models. Figure 5.1 shows the flowchart of the above
explained comparison.

53
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Figure 5.1: Evaluation of electrical model using data obtained locally and from nearby meteorological station.

The next section gives a brief description of the two types of electrical models compared in this
chapter. The choice of models was affected by factors like availability of pre-requisite module param-
eters and reported performance of the models in literature [19, 26, 27, 52].

5.1. Electrical models
Electrical models are used to determine the electrical characteristics of a PV cell from which one can
determine the power and energy output of the PV system. It is the final step in PV system modeling and
requires basic knowledge of semiconductor physics. In this chapter, two most commonly used electrical
models of solar cells, namely Single Diode Model (SDM) (by De Soto) and Point Value Model (PVM)
have been compared [19, 24]. The major difference between these two class of models is that single
diode models estimate the full I-V curve whereas the point value model estimates only certain points on
the I-V curve, such as open circuit voltage (𝑉ᑠᑔ), short circuit current (𝐼ᑤᑔ) and maximum power point
(𝑃ᑞᑡᑡ).

5.1.1. Point Value Model (PVM)
Point value model, also known as simple efficiency model, predicts specific points on the I-V curve,
depending upon the change in the incident irradiance and module temperature. It is one of the simplest
electrical models to predict power output of a PV module and can be easily implemented using the in-
formation provided on module’s datasheet. The model calculates the operating efficiency of the module
using eqn. 5.1.

𝜂(𝑇ᑄ, 𝐺ᑄ) = 𝜂(25∘𝐶, 𝐺ᑄ) [1 + 𝑘(𝑇ᑄ − 25∘𝐶)] (5.1)

where 𝜂(25∘𝐶, 𝐺ᑄ) is the efficiency of the module at the given irradiance and 25 ∘𝐶.
and

𝜅 = 𝜕𝜂
𝜕𝑇

1
𝜂(𝑆𝑇𝐶)

Typical values for 𝜅 ( temperature coefficient of 𝑃ᑞᑡᑡ) are -0.0025/ ∘𝐶 for CdTe, -0.0030/ ∘𝐶 for
CIGS, and -0.0035/ ∘𝐶 for c-Si [53]. The detailed steps to obtain the efficiency at any irradiance or
module temperature are provided in the reference [19]. The power output (𝑃ᐻᐺ,ᑄ) of the module at
maximum power point can be determined by eqn. 5.2, using the area of the module (𝐴ᑄ).

𝑃ᐻᐺ,ᑄ = 𝜂(𝐺ᑄ, 𝑇ᑄ) ⋅ 𝐺ᑄ ⋅ 𝐴ᑄ (5.2)
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Cell temperature and module efficiency
Figure 5.2 shows the effect of increasing irradiance on module efficiency. It is visible that the module
efficiency decreases with increasing incident irradiance. Incident irradiance directly affects the cell
temperature (𝑇ᑔᑖᑝᑝ), whereas module efficiency has an inverse relation with 𝑇ᑔᑖᑝᑝ. When the temperature
of cell increases, the band gap of the intrinsic semiconductor material decreases. This reduces its open
circuit voltage (𝑉ᑠᑔ). Though a decrease in band gap also leads to an increase in the short circuit current
(𝐼ᑤᑔ), due to increased absorption of light, the drop in 𝑉ᑠᑔ is more dominant than the increase in 𝐼ᑤᑔ.

Figure 5.2: Comparison of ᎔(25∘ፂ,ፆᑇᑆᐸ) and ᎔(ፓᑄ, ፆᑇᑆᐸ) module efficiency in dependence of the incident irradiance.

5.1.2. Single Diode Models (SDM)
Single diode models are based on the equivalent circuit of a solar cell as shown in figure 5.4. The
current through the load (𝐼ᑃ) can be expressed by eqn. 5.3

𝐼ᑃ = 𝐼ᑡᑙ − 𝐼ᑠ (𝑒ᑢ(ᑍᑃᎼᑀ.ᑅᑤ .ᑉᑊ)/ᑟᑜᑅᑤᑋᑄ − 1) −
𝑉ᑃ + 𝐼.𝑁ᑤ.𝑅ᑤ
𝑁ᑤ.𝑅ᑤᑙ

(5.3)

Where 𝑞 is the electronic charge (1.602 ·10ᎽᎳᎻ𝐶), 𝑘 is Boltzmann’s constant (1.380 ·10ᎽᎴᎵ𝐽𝐾ᎽᎳ),
𝐼ᑠ is the diode’s reverse saturation current, 𝑇ᑄ is the cell/module temperature, 𝑅ᑤ is series resistance,
𝑅ᑤᑙ is shunt resistance, 𝑛 is diode ideality factor and 𝑁ᑤ is the number of cells in series.

Figure 5.3: Single diode equivalent circuit of a solar cell.

It should be noted that eqn. 5.3 is a generic equation for solar cells as well as modules. For modules,
it assumes that the cells are well matched and hence the voltage across a cell is approximately module
voltage divided by the number of cells in series. Also, the equivalent circuit (see fig. 5.4) can be used to
define the I-V curve of an individual cell, a module consisting of several cells or even an array composed
of several modules[22]. The power output of the module is given by the product of voltage across the
load (𝑉ᑃ) and current through it (𝐼ᑃ).

𝐼ᑡᑙ ,𝐼ᑠ, 𝑅ᑤ ,𝑅ᑤᑙ and 𝑅ᑤᑙ are primary parameters to all single diode equivalent circuit models. Single
diode models are difficult to implement as these primary parameters are not readily available on the
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module’s datasheet and need to be derived using measured I-V curves. In the past, several modified
versions of SDM have been developed such as De Soto’s five parameter model, California Energy
Commission’s (CEC) 6 parameter model, etc. [24, 54]. These models differ from each other based on
the auxiliary equations proposed to describe how the primary parameters 1 of the single diode equation
are affected by cell temperature and irradiance.

In this thesis, De Soto’s model has been used to evaluate the performance of SDM. In this model, the
five primary parameters are obtained using auxiliary equations whose details can be found in the refer-
ence [24]. Further, this model requires few parameters which are not readily available in the module’s
datasheet. For the modules used in e-bike station, they were obtained from CEC’s database [55].

5.2. Energy Yield
Energy yield (𝑘𝑊ℎ) is defined as the power generated by a PV system over a fixed period. The DC
side energy yield (𝐸ᐻᐺ) is given by eqn. 5.4.

𝐸ᐻᐺ = 𝐴ᑥᑠᑥ ∫
ᑥᑚᑞᑖᑡᑖᑣᑚᑠᑕ

𝑃ᐻᐺ,ᑄ𝑑𝑡 (5.4)

where 𝐴ᑥᑠᑥ is the total area of the PV modules and 𝑡𝑖𝑚𝑒𝑝𝑒𝑟𝑖𝑜𝑑 is the period over which energy
yield is to be calculated. Generally, daily, monthly and yearly yields are calculated for monitoring and
designing purposes.

5.3. Model comparison
Scope of electrical models
The electrical models discussed in sections 5.1.1 and 5.1.2 are used to estimate the power and energy
generated by the solar modules installed at the e-bike station. Initially, to evaluate the performance
difference between the models, 𝐺ᑇᑆᐸ and 𝑇ᑞ measured at the e-bike station are used. It is assumed
that, at any instant of time, the irradiance received by the modules is equal to that measured by the
weather station installed at the e-bike station. Since the weather station is installed at one corner of
the e-bike station it might happen that it is shaded and some modules might be receiving irradiance but
given the small area of the e-bike station, this will happen only for a few minutes and won’t have much
effect on the power prediction. Further, the effect of partial shading is not considered and this might
add up to some of the error in the power estimation.

Also, as already mentioned in section 4.3.1, it is assumed that the temperature of the cells is equal
to the module temperature. Further, while modeling power output, it is assumed that all modules are
at the same temperature. This is a valid assumption as all the modules are subjected to similar weather
conditions (𝑇ᑒᑞᑓ, 𝑊ᑤ and 𝐺ᑇᑆᐸ) except during partial shading conditions which occur only for a few
minutes during the whole day. The resolution of weather data is one minute and while calculating the
energy output of the PV modules, it is assumed that the power predicted at a given time step, remains
constant for the next one minute. This assumption might add some error to the energy calculations as
the data recorded by weather station and DC side of the panels are not time synchronized.

Additional losses
While calculating the power generated by a PV system, it is also important to take into consideration
additional losses due to the resistance of cables, interconnections, module mismatch and soiling. Typ-
ically, to account for all these losses, the system performance is de-rated by 3% [19]. Additionally,
one should also take care of losses due to the MPPT module which is around 1% of the total output.
In this thesis, while calculating the power generated by the modules, a de-rating factor of 2.5% was
1ፈᑡᑙ , ፈᑠ, ፑᑤ , ፑᑤᑙ and ፑᑤᑙ are the primary parameters which are common to all single diode equivalent circuit models
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considered to account for additional losses due to module mismatch and soiling. Ohmic losses were
calculated using eqn. 5.5.

𝑃ᑔᑒᑓᑝᑖ = 𝐼Ꮄ𝑅ᑔᑒᑓᑝᑖ (5.5)

where 𝑅ᑔᑒᑓᑝᑖ is the resistance of the cables used. In the e-bike station, 6𝑚𝑚Ꮄ ”PV1-F” cables
are used and they have a resistance of 0.00339 Ω/𝑚 at 20 ∘𝐶 [56]. The total length of the cables is
approximately 8𝑚 per module.

Module connections
The e-bike station is installed with 8 PV modules which are connected to each other as shown in the
schematic 5.4. The modules on the top and bottom in each column are connected in series, thus forming
four strings of modules. These are connected in parallel. The configuration was chosen to minimize
the shading losses due to the shadow of the EEMCS building.

Figure 5.4: Schematic of module connections.

5.3.1. Evaluation of electrical models
In this section, the performance of the two electrical models, namely Point Value Model (PVM) and
Single Diode Model by De Soto (SDM), are evaluated. Table 5.1 summarizes the datasets used in
this section to evaluate the models. Two different types of statistical parameters, Root Mean Square
Difference (RMSD) and percentage Relative Difference (%RD), were used to compare the performance
of the models.

Table 5.1: Summary of database used in this chapter.

Datasetname Source Period Variables used Purpose

e-bike data
E-bike station,
Delft, Nl

March-May ’17
𝑇ᑒᑞᑓ, 𝑇ᑞ,
𝑊ᑤ, 𝐺ᑇᑆᐸ

Used to compare accuracy
thermal and power models

Cabauw data CESAR, Nl April ’17
𝑇ᑒᑞᑓ,𝑊ᑤ,
𝐺𝐻𝐼, 𝐷𝑁𝐼,
𝐷𝐻𝐼

Evaluating effect of using data from
nearby meteorological station

Cabauw data CESAR, Nl Oct’16-May’17, 2013
𝑇ᑒᑞᑓ,𝑊ᑤ,
𝐺𝐻𝐼, 𝐷𝑁𝐼,
𝐷𝐻𝐼

To compare the models used to
design the e-bike station with
the improved models suggested
in this thesis
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To compare the accuracy of the models, measured module temperature (𝑇ᑄ) and incident irradiance
(𝐺ᑇᑆᐸ) at the e-bike station were used as inputs to the electrical models. The predicted values were
compared with the actual generated power. E-bike data from March-May 2017 was used for this part
of the study and more information about the dataset is available in section 4.3.1.

Figure 5.5: Instantaneous power prediction at the e-bike charging station.

Figure 5.5 shows the power predicted by the two models as compared to the measured value for one
week in April 17. It can be seen that, both the models mostly over-predict the power produced by the
models. To get a complete picture of the performance of the models, %RD was obtained for each of the
models. Figure 5.6a shows the cumulative % relative difference between modeled and measured power
for the two models, where the total number of samples were 69,759. In the bar chart, each bar shows the
percentage of the total number of samples which are in different ranges of %RD for the corresponding
model. The bottom most box (dark green) in each bar shows % of total samples less than 10% RD (also
indicated by number) whereas the topmost box (red) shows the % of samples having %RD greater than
80%. A model performs the best if it has the highest percentage of samples in the bottom most box
and least percentage of samples in the topmost box of the bar graph. Results of cumulative %RD for
electrical models imply that a much higher fraction (48.8% of total samples) of the results have an %RD
less than 10% for SDM as compared to PVM (21%). The results agree with the reported performance
of the two models in literature [27].

(a) Cumulative %RD . (b) Average %RD vs the solar elevation.

Figure 5.6: Comparison of % relative difference results for the two electrical models (based on e-bike data March-May’17).

The results (5.6a) also indicate that despite using 𝑇ᑞ and 𝐺ᑇᑆᐸ measured at the e-bike station, more
than 25% of results (for SDM) have % relative difference greater than 20%. It could be because of
multiple reasons, like not accounting for the effect of partial shading, the variation of other module



5.3. Model comparison 59

losses (as a function of power produced) and low sensitivity of pyranometer when the sun is near the
horizon [57]. Figure 5.6a shows the plot of average %RD against the sun elevation and it is visible
that both the models have the highest average %RD for elevation angles below 15∘ and above 50∘. The
average %RD is large at low sun elevation angles due to the low sensitivity of the pyranometer. On the
other hand, for elevation greater than 50∘, the modules on the e-bike station are shaded by the EEMCS
building and since the effect of partial shading is not accounted for, the average %RD becomes high.

Discussion
Comparing the results of cumulative %RD, it is clear that the SDM performs better than the PVM. The
reason behind the underperformance of PVM is that it is highly dependent on the thermal coefficients
provided on the module’s datasheet and does not takes care of factors like module’s ideality factor, its
series and shunt resistance values and their variation with 𝑇ᑞ and 𝐺ᑇᑆᐸ. On the other hand, SDM does
not have this drawback as it uses experimentally derived module parameter and thus predicts power
output more accurately. Figure 5.7 shows the scatter plot of modeled and measured module efficiency
with increasing incident irradiance. Since PVM uses a negative thermal coefficient (𝜅) to calculate the
operating efficiency, it predicts efficiency close to zero for lower irradiance values. It can be observed
that the values predicted by SDM have the most overlap with measured efficiencies but it is still not
able to cover the low values of efficiency.

Figure 5.7: Comparison of modeled and measured ᎔ (ፓᑞ, ፆᑇᑆᐸ) for increasing incident irradiance (based on e-bike data
March-May ’17).

Energy yield comparison
The energy yield for the whole duration of the study was calculated using eqn. 5.4. The difference
between predicted and measured energy on a daily basis is shown in figure 5.8a. It can be seen that,
the difference in the prediction of daily energy yield is less than 0.20 𝑘𝑊𝐻/𝑚Ꮄ for PVM and 0.15
𝑘𝑊𝐻/𝑚Ꮄ for SDM. The average daily difference for PVM is 0.037 𝑘𝑊𝐻/𝑚Ꮄ and 0.027 𝑘𝑊𝐻/𝑚Ꮄ
for SDM. Further, it can be said that both the models tend to overestimate the energy produced.

Figure 5.8b shows a comparison of the monthly energy yield predicted and measured. Both the
models predict the energy yield in a close approximation of the measured values. It is important to
point out that the error in yield prediction decreases on a monthly basis because the underestimated and
overestimated values balance out each other during the integration step involved in yield calculation.

Effect of using modeled input data
In contrast to monitoring a PV systemwheremeasured𝐺ᑇᑆᐸ and𝑇ᑞ could be available, while designing
a PV system irradiance and thermal models are needed to obtain 𝐺ᑇᑆᐸ and 𝑇ᑞ using weather data from
a nearby meteorological station.
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(a) Comparison of difference between energy
predicted and measured. (b) Monthly energy predicted and measured.

Figure 5.8: Energy yield (based on e-bike data March-May ’17).

Figure 5.9: Root mean squared differences between modeled versus measured power when using data from nearby weather
station. (based on Cabauw and e-bike data Apr. ’17).

To evaluate the effect of using modeled 𝐺ᑇᑆᐸ and 𝑇ᑞ on the performance of the electrical model,
simulations were run using Cabauw data for the month of April-17. 𝐺ᑇᑆᐸ was modeled using Reindl
model (refer chapter 3) and 𝑇ᑞ was modeled using FD-TR (see chapter 4). Figure 5.9 shows the bar
chart of RMSD for four different cases : first, when both 𝐺ᑇᑆᐸ and 𝑇ᑞ are measured at the e-bike
station (Msr. 𝑇ᑞ+ 𝐺ᑇᑆᐸ), second, when 𝐺ᑇᑆᐸ is measured whereas and 𝑇ᑞ is modeled (Mod. 𝑇ᑞ+
Msr. 𝐺ᑇᑆᐸ), third, when only irradiance is modeled using Cabauw data (Mod. 𝐺ᑇᑆᐸ+ Msr. 𝑇ᑞ) and
finally when both 𝐺ᑇᑆᐸ and 𝑇ᑞ are modeled (Mod. 𝑇ᑞ+𝐺ᑇᑆᐸ). It can be observed from the results
that, using modeled irradiance, the RMSD increases by around 60 W for both the models. The use of
modeled 𝑇ᑞ does not have a significant effect. Thus, the performance of electrical models is seriously
affected by the quality of incident irradiance data available.

5.3.2. Comparison of design methodologies
In this section, the methodology used by G.G. Nair to design the e-bike station will be compared with
the findings of this thesis. The e-bike station was designed using Isotropic (Irradiance model), DuffieB
(Thermal model) and PVM (electrical model) models based on Cabauw data for the year 2013 [1]. The
shading analysis was done with the help of Meteonorm-Horicatcher and factors like location-specific
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SVF and albedo were not considered. However, in this thesis, it was found that Reindl, FD-TR and
SDM are the best performing irradiance, thermal and electrical models respectively. Further, the per-
formance of the irradiance models improves when shading factor and SVF calculated using Sketchup
and elevation dependent albedo is incorporated. Cabauw data (Oct’16-Apr’17) was used as an input to
both the methods. The results were verified using the e-bike data.

Figure 5.10: Comparison of cumulative %RD for each of the two methods (based on Cabauw and e-bike data
Oct’16-Apr’17). The bottom most box (dark green) in each bar shows % of total samples less than 10% RD whereas the

topmost box (red) shows the % of samples having %RD greater than 80%.

Table 5.2: Root mean squared and mean bias differences between modeled versus measured for the two methodologies
(based on Cabauw and e-bike data Oct’16-Apr’17).

Methodology RMSD
Power (𝑊) Energy (kWh)

GG Nair (GG) 577.56 34.65
This thesis (AJ) 430.16 25.81

Figure 5.10 and table 5.2 show the comparison of cumulative %RD and RMSD for the two method-
ologies. ’GG’ refers to the results when models used by Nair were implemented for predicting the
power produced at the e-bike station. ’AJ’ refers to the case when the best models and modifications
suggested in this thesis were used. It is seen that results improved significantly when the methodology
proposed in this thesis was used. The number of samples having %RD less than 10% increased by 3.2%
and those having %RD greater than 80% decreased by 1%. 61,173 samples were compared. Similar
improvements were also seen in RMSD results for both power and energy modeling. The RMSD in
power prediction decreased by more than 145𝑊 whereas that for energy by almost 9 𝑘𝑊ℎ. The total
energy yield measured for the duration of Oct’16-Apr’17 was 418.13 𝑘𝑊ℎ (excluding missing data),
whereas GG and AJ predicted it to be 373.88 𝑘𝑊ℎ and 432.83 𝑘𝑊ℎ respectively. Both the models
underestimate the total energy produced, but clearly, yield predicted by AJ is closer to the actual value
as compared to GG.

A comparison of monthly DC energy yield predicted by the two methods (GG and AJ), based on
Cabauw data for the year 2013, is shown in figure 5.11. The total energy produced by each module
was 226 𝑘𝑊ℎ/yr and 290 𝑘𝑊ℎ/yr respectively. Since the actual yield would be slightly higher than
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that predicted by AJ, it is safe to assume that the energy produced per module would be around 300
𝑘𝑊ℎ/yr.

A quick calculation shows that, for the complete year, GG underestimates the energy yield by 511
𝑘𝑊ℎ (64 𝑘𝑊ℎ per module) than AJ. This means that the design of the PV system for the e-bike station
was based on an underestimated value of the energy yield. Though, in the case of the e-bike station,
this difference in yield does not require redesigning the whole system, for a larger system such errors
could lead to an oversized design. For instance, if the system to be designed had more than 100 panels,
the method of GG would underestimate the total energy yield by more than 6400 𝑘𝑊ℎ/yr which might
lead to installation of more than 20 extra solar panels (6400 𝑘𝑊ℎ/yr/300 𝑘𝑊ℎ/yr) to cover the energy
demand. Note that the calculation of the number of panels, required to cover the energy loss, is based
on the assumption that the actual energy produced by each module is slightly higher than that predicted
by AJ’s method. It will not only affect the cost of the system but also the required area. Using a more
accurate designing methodology, as one suggested in this thesis, one can significantly save on space as
well as capital costs.

Figure 5.11: Energy predicted using the two methods (based on Cabauw data 2013).

5.4. Conclusions
Electrical models are critical to determining the module efficiency and its power output under operating
conditions. In this chapter, the most commonly used electrical models, namely single diode model and
point value model, for predicting the DC side power output of a PV module were evaluated.

The following research questions were addressed :

How accurate are the existing electrical models?

It was found that SDM is much more accurate than PVM as it computes the effect of 𝑇ᑞ
and 𝐺ᑇᑆᐸ on the complete I-V curve and it is not just based on thermal coefficients. For the
studied period, around 75% of the results predicted by SDM and 41% by PVM had %RD
less than 20%. Further, daily energy yield prediction was compared, and on an average, the
difference between predicted and measured yield was 0.027 𝑘𝑊ℎ/𝑚Ꮄ for SDM and 0.037
𝑘𝑊ℎ/𝑚Ꮄ for PVM. As the system is grid-connected, the prediction error is almost insignif-
icant.
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How much effect do the inaccuracies in irradiance and thermal models have on the perfor-
mance of electrical models?

The effect of using thermal and irradiance models on instantaneous power prediction was
studied using Cabauw data (April-17). Statistical results showed that the RMSD increased
by more than 60𝑊, mainly due to inaccuracies in 𝐺ᑇᑆᐸ prediction.

Using the method of the designer of the e-bike station, how well does the energy yield predicted
match with the measured data after installation?

When the methodology used to design the e-bike station (designed by G.G Nair [1]) was
implemented to predict the power and energy yield at the e-bike station, results showed that
it has an RMSD of 577 W and only 8.9% of percent of total samples used, had an %RD less
than 10%. Also, this method was found to underestimate the energy produced by the e-bike
station by almost 76 𝑘𝑊ℎ (based on Cabauw and e-bike data from Oct’16-Apr’17).

Do the improvements suggested in this thesis, improve the quality of prediction of energy yield?

The methodology proposed in this thesis improves the performance of energy yield pre-
diction. The energy yield predicted was only 17 𝑘𝑊ℎ less than the measured value (based
on Cabauw and e-bike data from Oct’16-Apr’17). As compared to Nair’s methodology, the
RMSD in power prediction decreased by more than 140𝑊 and by almost 9 𝑘𝑊ℎ for energy
prediction. Also, the number of samples having %RD less than 10% increased by more than
3.2%.

In general, it was observed that SDMmodel is best suited for modeling the PV modules installed
on the e-bike station. The only disadvantage with SDM is that it requires knowledge of experi-
mentally derived parameters which are usually not provided by the module manufacturer. PVM
is a good alternative to develop a simple electrical model of the PV module using the information
available on the module’s datasheet. Further, the improvements suggested in this thesis signifi-
cantly improve the energy yield prediction as compared to the models used by the designer of the
e-bike station.





6
Conclusions and Recommendations

6.1. Conclusions
The motivation of this thesis is to study different irradiance, thermal and electrical models used to
model a PV system and suggest methods to improve their performance. The models are evaluated
usingmeteorological data fromCabauw and data measured at the e-bike charging station. The following
research questions were formulated and resolved in this thesis.

1. For the climate of the Netherlands, study and improve decomposition models

(a) Which is the most accurate decomposition model ?
It was found that amongst the existing decomposition models, RE-2 and OH perform the
best for the climatic conditions of the Netherlands.

(b) What are the drawbacks of existing decomposition models and how can they be improved?
The best performing existing models are developed using hourly irradiance data and they
ignore the fluctuating nature of solar radiation. Nowadays, irradiance data having a temporal
resolution as low as a minute is available and it should be used to update the coefficients of
existing models.

(c) Is it possible to improve the performance of decomposition models using local irradiance
data?
Two new decomposition models, Dutch-I and Dutch-II, were developed using minute data
from Cabauw, NL and were found to be more accurate than the existing ones. Therefore,
it can be concluded that the performance of existing models can be improved by using
location-specific irradiance data to derive the coefficients of the piecewise correlations.

2. Evaluate and optimize transposition models to compute the irradiance on the plane of array of the
e-bike station

(a) Which are the most accurate transposition models to be used in urban location?
It was found that Reindl and Hay/Davies models are most suited for the climate of Nether-
lands.

(b) How important is shading analysis to irradiance modeling and what is the most reliable
technique to incorporate it?
For the location of the e-bike station, shading analysis can reduce RMSD in irradiance pre-
diction by almost 50𝑊/𝑚Ꮄ (i.e almost 5% of incident power during noon) for all the mod-
els. Two different methods of shading analysis : Meteonorm-Horicatcher and 3-Dmodeling
were compared. It was found that using Sketchup is the most accurate way to do shading
analysis.

65
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(c) How can the performance of existing models be improved by using location-specific pa-
rameters like sky view factor and albedo?
Using both location-specific SVF and elevation dependent albedo significantly improved
the prediction of 𝐺ᑇᑆᐸ. The number of samples having %RD below 10% increased by al-
most 1% and those having %RD greater than 80% decreased by almost 7% for the all the
models. It is a significant percentage as the number of samples compared were 56,243.

(d) What is the effect of using decomposition models instead of measured diffuse and direct
irradiance?
When a combination of decomposition and transposition models was used, they produced
almost equivalent results as compared to the use of just transposition models.

3. Evaluate thermal models best suited for predicting module temperature of a closed system like
the e-bike station

(a) Which is the best performing thermal model?
FD-TR is best suited for predicting the module temperature at the e-bike station. It has the
an RMSD of 1.91∘𝐶 and an MBD of -0.71∘𝐶. Also, almost 69% of values predicted were
having %RD less than 10%.

(b) Does the time step between the data used for modeling have an impact on the performance
of the models?
The models are not affected by the time-step of the data used except for the FD-SS model.
Even for the FD-SS model, the performance with minute data is poor only for higher values
of incident irradiance. The overall performance of FD-SS increases significantly when the
time step between samples is increased to an hour instead of a minute.

(c) What is the effect of using weather data from nearby meteorological stations on the perfor-
mance of thermal models?
Use of modeled 𝐺ᑇᑆᐸ and 𝑊ᑤ introduces higher errors in the prediction of module tem-
perature as compared to the case when measured 𝐺ᑇᑆᐸ and𝑊ᑤ are used, but the errors are
within the acceptable range. It was also observed that most of the error gets introduced due
to inaccuracies in the transposition model and not by the thermal model itself.

4. Compare existing solar cell electrical models to compute the DC power and energy output of the
e-bike charging station

(a) How accurate are the existing electrical models?
It was found that the single diode model by De Soto is much more accurate than point value
model. For the duration of Mar-May’17, around 75% of the results predicted by SDM and
41% by PVM had %RD less than 20%.

(b) How much effect do the inaccuracies in irradiance and thermal models have on the perfor-
mance of electrical models?
The effect of using thermal and irradiance models on instantaneous power prediction was
studied using Cabauw data (April’17). Statistical results showed that the RMSD increased
by more than 60𝑊 mainly due to inaccuracies in 𝐺ᑇᑆᐸ prediction.

(c) Using the method of the designer of the e-bike station, how well does the energy yield
predicted match with the measured data after installation?
When the methodology used to design the e-bike station (designed by G.G Nair [1]) was
implemented to predict the power and energy yield at the e-bike station, results showed that
it has an RMSD of 577 W and only 8.9% of percent of total samples used were having an
%RD less than 10%. Also, this method was found to underestimate the energy produced
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by the e-bike station by almost 76 𝑘𝑊ℎ (based on Cabauw and e-bike data from Oct’16-
Apr’17).

(d) Do the improvements suggested in this thesis, improve the quality of prediction of energy
yield?
The methodology proposed in this thesis improves the performance of energy yield predic-
tion. The energy yield predicted was only 17 𝑘𝑊ℎ less than the measured value (based
on Cabauw and e-bike data from Oct’16-Apr’17). As compared to Nair’s methodology, the
RMSD in power prediction decreased by more than 145𝑊 and by almost 9 𝑘𝑊ℎ for energy
prediction. Also, the number of samples having %RD less than 10% increased by more than
3.2%.

Finally, it can be concluded the findings of this thesis will help to predict the power and energy yield
of e-bike station more accurately.

6.2. Recommendations
Though this report is comprehensive, the author had to restrict himself to meet various goals in a lim-
ited time. However, some more improvements could be considered to improve the performance of an
irradiance, thermal and electrical models of the PV system.

6.2.1. Irradiance modeling
Decomposition models
The performance of decomposition models could be further improved by evaluating the dependence of
the diffuse fraction on factors like air mass, cloud cover etc. Cloud imagery obtained from satellites
could be processed to get more details about the cloud cover and hence, can be used to predict diffuse
irradiance. Also, advanced programming techniques like neural networks could be used to improve the
performance of decomposition models.

Transposition models
The transposition models are the most important part of PV system modeling and there is a lot of scope
to improve their performance, especially the sky diffuse and ground reflected component. The new
irradiance model based on ray tracing showed promising results and showed that the reflected irradiance
from nearby structures can also be taken into consideration. However, this model underperforms during
partly cloudy conditions and a combination of best performing standard transposition model and the ray
tracing method could be used based on the clearness index of the day.

Shading analysis
While doing the shading analysis in this project, the effect of only big structures like EEMCS and
CEG building was taken into consideration. It could be improved by considering effect of trees and
other small structure. Further, methods, like the use of LIDAR data, could be implemented along with
Sketchup to incorporate the effect of the far-off objects on the horizon of the e-bike station.

6.2.2. Thermal modeling
The thermal model could be further improved by evaluating the temperature of each module separately
and creating a detailed structure of the e-bike station. Also, the losses due to conduction could be taken
into account.

6.2.3. Electrical modeling
The performance of electrical models could be further improved by considering partial shading on the
modules.
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Irradiance models

Table A.1: List of symbols used to describe decomposition and transposition models

Nomenclature

𝐺𝐻𝐼 global horizontal irradiance (𝑊/𝑚Ꮄ) 𝑇ᑒ outdoor air temperature (∘𝐶)
𝐷𝐻𝐼 diffuse horizontal irradiance (𝑊/𝑚Ꮄ ) 𝜙 relative humidity (%)

𝐷𝑁𝐼 direct normal irradiance
on a horizontal surface (𝑊/𝑚Ꮄ)

𝐺ᑥ
monthly average global irradiance
on a horizontal surface (𝑊/𝑚Ꮄ)

𝐸ᑤᑔ
extraterrestrial
solar irradiance (𝑊/𝑚Ꮄ )

𝐴𝑀 air mass at actual pressure
(dimensionless)

𝐺ᑇᑆᐸ
total solar irradiance on
plane of array (𝑊/𝑚Ꮄ )

𝐴ᑤ solar azimuth angle (∘)

𝐺ᑕᑚᑣ
total direct irradiance on
a tilted surface (𝑊/𝑚Ꮄ )

𝐴ᑞ module azimuth angle (∘)

𝐺ᑘᑣᑠᑦᑟᑕ
total ground reflected irradiance
on a tilted surface (𝑊/𝑚Ꮄ )

𝛼 sun altitude (∘)

𝐺ᑕᑚᑗ
total diffused irradiance
on a tilted surface (𝑊/𝑚Ꮄ )

𝛽ᑞ
module tilt angle with
horizontal surface (∘)

𝐺ᑕᑚᑗ,ᐿᑓ
horizon-brightening component of
𝐺ᑕᑚᑗ (𝑊/𝑚Ꮄ )

𝜃ᑫ solar zenith angle

𝐺ᑕᑚᑗ,ᑀᑤᑠ isotropic component of 𝐺ᑕᑚᑗ (𝑊/𝑚Ꮄ ) 𝜃ᑚ air mass at standard

𝐺ᑕᑚᑗ,ᐺᑤ circumsolar component of 𝐺ᑕᑚᑗ (𝑊/𝑚Ꮄ ) 𝐴𝑀ᑣ
pressure (1013.25 mbar)
(dimensionless)

𝐸ᑒ
extraterrestrial solar
constant irradiance (1367𝑊/𝑚Ꮄ )

𝑝 the local air-pressure (mbar)

𝑘ᑥ clearness index (dimensionless) 𝑁 day number in the year (No.)
𝑘ᑕ diffuse fraction (dimensionless) 𝑛 number of data
𝐴ᑚ anisotropic index (dimensionless)
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A.1. Irradiance modeling
A.1.1. Decomposition models
In all the models, once diffused fraction (𝑘ᑕ ) is determined from the piecewise correlations, the diffused
irradiance (𝐷𝐻𝐼) is then obtained by eqn. A.1.

𝐷𝐻𝐼 = 𝑘ᑕ × 𝐺𝐻𝐼 (A.1)

And the direct irradiance (𝐷𝑁𝐼) is obtained from eqn. A.2.

𝐷𝑁𝐼 = 𝐺𝐻𝐼 − 𝐷𝐻𝐼
cos(𝜃ᑫ)

(A.2)

Orgill and Holands model (OH)
Orgill and Hollands (1977) adapted the Liu and Jordan model for hourly clearness index 𝑘ᑥ and diffused
fraction 𝑘ᑕ using 4 years of irradiance data from Toronto, Canada [10]. They divided the data set into
three ranges based on the value of 𝑘ᑥ to represent clear, partly cloudy and complete overcast and found
linear relations between 𝑘ᑕ and 𝑘ᑥ in those ranges as per eqns. A.3, A.4 and A.5.

Interval: 𝑘ᑥ < 0.35 𝑘ᑕ = 1 − 0.249𝑘ᑥ (A.3)

Interval: 0.35 ≤ 𝑘ᑥ ≤ 0.75 𝑘ᑕ = 1.577 − 1.84𝑘ᑥ (A.4)

Interval: 𝑘ᑥ > 0.75; 𝑘ᑕ = 0.177 (A.5)

Erbs model (ER)
Erbs et al. (1982) used higher order polynomial fit to find correlations between 𝑘ᑕ and 𝑘ᑥ but they used
𝐷𝑁𝐼 and 𝐺𝐻𝐼 data from 5 stations in USA [11]. 𝐷𝐻𝐼 was obtained from 𝐷𝑁𝐼 by rearranging eqn. A.2.
The relations between 𝑘ᑥ and 𝑘ᑕ is as per eqns. A.6, refeqn:Ap-7 and A.8.

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ∶ 𝑘ᑥ ≤ 0.22; 𝑘ᑕ = 1 − 0.09𝑘ᑥ (A.6)

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ∶ 0.22 < 𝑘ᑥ ≤ 0.8 𝑘ᑕ = 0.9511 − 0.1604𝑘ᑥ + 4.39𝑘Ꮄᑥ − 16.64𝑘Ꮅᑥ + 12.34𝑘Ꮆᑥ (A.7)

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ∶ 𝑘ᑥ > 0.8 𝑘ᑕ = 0.165 (A.8)

Reindl model (RE)
Reindl et al. (1990) found piecewise correlations between 𝑘ᑕ and 𝑘ᑥ based on 𝐺𝐻𝐼 and 𝐷𝐻𝐼 data ob-
tained from 5 different locations in the USA and Europe [12]. They proposed three different relations.
First relation uses only clearness index, second uses sun altitude(𝛼) in addition to 𝑘ᑥ, whereas the third
one uses clearness index, sun altitude, outdoor air temperature (𝑇ᑒ) and the relative humidity (𝜙) of
the location. These three models will be referred as Re-1, Re-2 and Re-3 respectively and are given by
eqns. A.9-A.17.

RE-1

Interval: 0 < 𝑘ᑥ ≤ 0.3 𝑘ᑕ = 1.020 − 0.248𝑘ᑥ (A.9)

Interval: 0.3 < 𝑘ᑥ ≤ 0.78 𝑘ᑕ = 1.45 − 1.67𝑘ᑥ (A.10)

Interval: 𝑘ᑥ > 0.78 𝑘ᑕ = 0.147𝑘ᑥ (A.11)

RE-2
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Interval: 0 < 𝑘ᑥ ≤ 0.3 𝑘ᑕ = 1.020 − 0.254𝑘ᑥ + 0.0123 sin 𝛼 (A.12)
Interval: 0.3 < 𝑘ᑥ ≤ 0.78 𝑘ᑕ = 1.4 − 1.749𝑘ᑥ + 0.177 sin 𝛼 (A.13)

Interval: 𝑘ᑥ > 0.78 𝑘ᑕ = 0.486𝑘ᑥ − 0.182 sin 𝛼 (A.14)
RE-3

Interval: 0 < 𝑘ᑥ ≤ 0.3 𝑘ᑕ = 1.0 − 0.232𝑘ᑥ + 0.0239 sin 𝛼 − 0.000682𝑇ᑒ + 0.019𝜙 (A.15)

Interval: 0.3 < 𝑘ᑥ ≤ 0.78 𝑘ᑕ = 1.329 − 1.716𝑘ᑥ + 0.267 sin 𝛼 − 0.00357𝑇ᑒ + 0.106𝜙 (A.16)
Interval: 𝑘ᑥ > 0.78 𝑘ᑕ = 0.426𝑘ᑥ + 0.256 sin 𝛼 − 0.00349𝑇ᑒ + 0.0734𝜙 (A.17)

Maxwell’s Direct Insolation Simulation Code Model (DISC)
Maxwell developed a quasi-physical decomposition model to predict direct irradiance (𝐷𝑁𝐼) from𝐺𝐻𝐼.
The model was developed using 1 year data from Atlanta, Georgia, USA and was validated using data
from three different U.S. sites [13]. DISC differs from other models as it uses direct beam clearness
index (𝐾ᑟ) and a clear sky Kn denoted by 𝐾ᑟᑔ instead of diffused fraction(𝑘ᑕ ) as a dependent variable.
Eqns. A.18-A.26 explains the implementation of DISC model. 𝐷𝑁𝐼 is calculated from extraterrestrial
irradiance using eqn. A.18.

𝐷𝑁𝐼 = 𝐸ᑒ𝐾ᑟ (A.18)
Where

𝐾ᑟ = 𝐾ᑟᑔΔ𝐾ᑟ (A.19)
and

Δ𝐾ᑟ = 𝑎 + 𝑏exp(ᐺ∗ᐸᑄ) (A.20)
The clear sky limit 𝐾ᑟᑔ is obtained from air mass AM using eqn. A.21.

𝐾ᑟᑔ = 0.8660.122𝐴𝑀 + 0.0121𝐴𝑀Ꮄ0.000653𝐴𝑀Ꮅ + 0.000014𝐴𝑀Ꮆ (A.21)
where,

𝐴𝑀 = 𝐴𝑀ᑣ (
𝑝

1013.25) (A.22)

The air mass (𝐴𝑀), is obtained from the standard pressure 𝐴𝑀ᑣ using Kasten’s formula as per eqn.
A.23 [33].

𝐴𝑀ᑣ = [cos(𝜃ᑫ) + 0.15(93.885 − 𝜃ᑫ)ᎽᎳ.ᎴᎷᎵ]
ᎽᎳ

(A.23)
Further, the constants a, b and C re obtained from 𝑘ᑥ from eqns.A.24-A.26 as given below.

Interval: 𝑘ᑥ ≤ 0.6 (A.24)
𝑎 = 0.512 − 1.56𝑘ᑥ + 2.286𝑘Ꮄᑥ − 2.222𝑘Ꮅᑥ

𝑏 = 0.37 + 0.962𝑘ᑥ
𝑐 = −0.28 + 0.923𝑘ᑥ − 2.048𝑘Ꮄᑥ

Interval ∶ 𝑘ᑥ > 0.6 (A.25)
𝑎 = −5.743 + 21.77𝑘ᑥ − 27.49𝑘Ꮄᑥ + 11.56𝑘
𝑏 = 41.4 − 118.5𝑘ᑥ + 66.05𝑘Ꮄᑥ + 31.9𝑘Ꮅᑥ

𝑐 = −47.01 + 184.2𝑘ᑥ − 222𝑘Ꮄᑥ + 73.81𝑘Ꮅᑥ (A.26)
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A.1.2. Transposition model
Isotropic model
It is the simplest of all transposition models and assumes that the diffuse irradiance is uniformly dis-
tributed over the sky dome [15]. It calculates the diffused irradiance received by a tilted surface by
eqn. A.27 . This model performs well for completely cloudy skies but as the sky becomes clearer its
performance decreases.

𝐺ᑕᑚᑗ = 𝐷𝐻𝐼 (
1 + cos 𝛽ᑞ

2 ) (A.27)

Hay & Davies
The Hay and Davies (Hay/Davies) model takes into account circumsolar and isotropic diffused com-
ponents. They defined an “anisotropy index” given by eqn. A.28 to give weightage to the circumsolar
(𝐺ᑕᑚᑗ,ᐺᑤ) and isotropic components [14]. A part of the diffused irradiance is treated as circumsolar and
is projected onto the tilted surface similar to beam radiation(see eqn. A.29).

𝐴ᑚ =
𝐷𝑁𝐼
𝐸ᑒ

(A.28)

𝐺ᑕᑚᑗ,ᐺᑤ = 𝐷𝑁𝐼.𝐴ᑚ. cos(𝜃ᑚ) (A.29)

The remaining diffused component is considered to be isotropic in nature and transposed using eqn.
A.30. Equation A.31 gives the complete relation for the sky diffused component on module.

𝐺ᑕᑚᑗ,ᑀᑤᑠ = 𝐴ᑚ.𝐷𝐻𝐼. (
1 + cos 𝛽ᑞ

2 ) (A.30)

𝐺ᑕᑚᑗ=𝐺ᑕᑚᑗ,ᐺᑤ + 𝐺ᑕᑚᑗ,ᑀᑤᑠ (A.31)

Hay/Davies models is suited for clear sky days when anisotropy index is high and circumsolar
diffuse has a significant contribution to Gdif.

Reindl
Reindl et al. proposed a model to predict sky diffused component on tilted surface which takes care of
all three components of the diffused irradiance [58]. It extends the work of Hay/davies and adds a term
to calculate diffused component due to horizon brightening (𝐺ᑕᑚᑗ,ᐿᑓ) given by eqn. A.32. Equation
A.33 gives the complete relation used by Reindl to calculate the 𝐺ᑕᑚᑗ.

𝐺ᑕᑚᑗ,ᐿᑓ = 𝐷𝐻𝐼. [(1 − 𝐴ᑚ). (
1 + cos 𝛽ᑞ

2 ) .√𝐷𝐻𝐼𝐺𝐻𝐼 sin
Ꮅ (𝛽ᑞ2 )] (A.32)

𝐺ᑕᑚᑗ = 𝐷𝐻𝐼.𝐴ᑚ. cos(𝜃ᑚ) + 𝐷𝐻𝐼.(1 − 𝐴ᑚ). (
1 + cos 𝛽ᑞ

2 ) . [1 + √𝐷𝐻𝐼𝐺𝐻𝐼 sin
Ꮅ (𝛽ᑞ2 )] (A.33)
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Sandia Model
A new empirical model was developed by David King at Sandia national laboratories using measured
irradiance data. It is given by eqn. A.34 , where the first term accounts for isotropic diffuse component
and second term is an empirically derived correction term to account for the circumsolar and horizon
brightening diffuse components.

𝐺ᑕᑚᑗ = 𝐷𝐻𝐼 (
1 + cos 𝛽ᑞ

2 ) + 𝐺𝐻𝐼 ((0.012𝜃ᑫ − 0.04) × (1 − cos(𝛽ᑞ))2 ) (A.34)

Additionally, Sandia model uses an empirical relation(eqn. A.35) to derive the albedo factor, which
is used for calculating the ground reflected component.

𝜌 = 0.012 × (𝜃ᑫ − 0.04) (A.35)

Perez Model
It is the most complex transposition model which computes all the three sub-components of the sky
diffuse irradiance [16, 17]. It uses empirically derived coefficients to determine the contribution of
isotropic, circumsolar and horizon brightening components. The sky diffused component is given by
equation A.36.

𝐺ᑕᑚᑗ = 𝐷𝐻𝐼 [(1 − 𝐹Ꮃ) (
1 + cos(𝛽ᑞ)

2 ) + 𝐹Ꮃ
𝑎
𝑏 + 𝐹Ꮄ sin(𝛽ᑞ)] (A.36)

Here, 𝐹1 and 𝐹2 are circumsolar and horizon brightness coefficients, respectively, and a and b are
factors dependent on angle of incidence and tilt of the module. The terms a and b are computed using
eqns. A.37 and A.38, respectively.

𝑎 = max(0∘, cos 𝜃ᑚ) (A.37)

𝑏 = max(cos 85∘, cos 𝜃ᑫ) (A.38)

The coefficients 𝐹1 and 𝐹2 depend on two other sky condition parameters clearness 𝑣𝑎𝑟𝑒𝑝𝑠𝑖𝑙𝑜𝑛 and
brightness Δ. These factors are defined in eqns. A.39 and A.40, respectively.

𝜀 =
ᐻᐿᑀᎼᐻᑅᑀ
ᐻᐿᑀ + 1.041𝜃Ꮅᑫ
1 + 1.041𝜃Ꮅᑫ

(A.39)

Δ = 𝑚𝐷𝐻𝐼𝐸ᑒ
(A.40)

F1 and F2 are then computed in Eqs. A.41 and A.42, respectively.

𝐹Ꮃ = max [0, (𝑓ᎳᎳ + 𝑓ᎳᎴΔ +
𝜋𝜃ᑫ
180𝑓ᎳᎵ)] (A.41)

𝐹Ꮄ = 𝑓ᎴᎳ + 𝑓ᎴᎴΔ +
𝜋𝜃ᑫ
180𝑓ᎴᎵ (A.42)

The coefficients 𝑓11, 𝑓12, 𝑓13, 𝑓21, 𝑓22, and 𝑓23 were derived using statistical analysis of em-
pirical data for specific locations. Two different sets of coefficients were derived for this model [17, 17].





B
Extra results

B.1. Decompostion models

Table B.1: Percentage of results with corresponding maximum % relative difference for decomposition models based on
CESAR data.

Model <10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% >80%

2016

OH 57.05 11.74 9.21 7.13 5.30 3.70 2.99 1.22 1.66
Er 56.77 13.77 8.93 6.30 4.93 3.88 3.10 1.29 1.01
Re-1 52.95 13.70 10.86 7.71 5.22 3.68 2.85 1.66 1.37
Re-2 56.22 11.72 8.76 6.59 4.93 3.82 2.65 1.55 3.77
Re-3 55.47 14.70 10.06 6.65 3.91 2.63 1.68 0.90 4.01
DISC 51.59 14.49 10.93 8.86 6.01 3.84 2.69 1.26 0.33
Dutch-I 59.66 10.60 7.89 6.37 4.89 3.22 2.19 1.19 4.01
Dutch-II 62.05 11.65 8.12 6.34 4.25 2.94 1.88 0.99 1.79

2014

OH 58.47 12.45 9.33 6.84 5.29 3.77 2.40 1.07 0.38
Er 57.67 13.70 8.94 6.57 5.15 3.91 2.68 1.13 0.25
Re-1 54.09 14.86 10.38 7.34 5.32 3.54 2.80 1.48 0.20
Re-2 58.40 12.38 9.17 7.10 4.87 3.28 2.18 1.20 1.42
Re-3 56.06 14.73 10.16 7.08 4.28 2.65 1.51 0.78 2.75
DISC 50.38 13.29 10.29 8.91 7.18 4.84 3.40 1.46 0.25
Dutch-I 62.50 11.68 8.69 6.28 4.54 2.72 1.49 0.83 1.28
Dutch-II 63.93 11.71 8.59 6.11 4.29 2.68 1.31 0.62 0.76
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Table B.2: Comparison of the models based on MBD, RMSD and CRSS for three years.

Model MBD (𝑊/𝑚Ꮄ) RMSD(𝑊/𝑚Ꮄ) CRSS

2016 2015 2014 2016 2015 2014 2016 2015 2014

OH -16.0 -17.0 -19.5 55.4 54.7 56.8 4182.3 4074.6 4270.4
Er -18.7 -20.2 -22.4 58.3 57.9 60.3 4338.0 4273.1 4521.1
Re-1 -20.2 -21.4 -23.8 60.3 59.6 62.0 4767.9 4680.3 4927.5
Re-2 -6.2 -7.7 -10.1 50.9 50.2 50.4 3928.0 3749.1 3786.4
Re-3 0.1 -1.2 -4.7 65.7 65.8 63.0 4882.0 4802.8 4932.9
DISC -24.6 -25.9 -29.0 57.4 58.1 61.8 5549.7 5712.9 6193.7
Dutch-I 1.9 0.7 -2.8 45.6 44.5 43.5 3253.8 3088.2 3132.5
Dutch-II -2.4 -2.9 -6.6 44.3 45.5 46.4 3125.2 3072.3 3291.1

B.2. Transposition models

(a) Without any shading factor (b) After using shading factor from Sketchup

Figure B.1: Comparison of standard transposition models based on cumulative % relative difference (using e-bike data
Oct.’16-Apr.’17). The bottom most box (dark green) in each bar shows % of total samples less than 10% RD whereas the

topmost box (red) shows the % of samples having %RD greater than 80%. versus measured for each of the five transposition
models (Oct,16- Apr,17).



C
Data descritpion

C.1. Detail about missing data

C.1.1. CESAR data

Decomposition models were evaluated using CESAR data from the year 2014-2016. Figures C.1 and
C.2 below shows the number of hours of missing data in each month.

(a) CESAR data 2013 (b) CESAR data 2014

Figure C.1: Hours of missing data from CESAR database for year 2013 and 2014.

77
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(a) CESAR data 2015 (b) CESAR data 2016

Figure C.2: Hours of missing data from CESAR database for year 2015 and 2016.

For the year 2017, CESAR data was available till April-17 except for the month of March. Figure
C.3 shows the bar chart of number of hours of missing data per month for year 2017.

Figure C.3: Hours of missing data from CESAR database for year 2017.

Ebike data

E-bike data was used for validation of transposition, thermal and power models. For validating the
transposition models data fromOct-16 toMay-17 was used whereas for thermal and power models, data
from Mar-17 to May-17 was used as module temperature data became available only after 8th-Mar-17.
Figure C.4 and C.5 shows the plot of number hours of missing data per month for e-bike weather station
and module temperature data respectively. It should be noted that while validating thermal and power
models, it was made sure that only those samples were used were data for both weather station and
module temperature was available.
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(a) Monthly distribution of missing data (b) Daily distribution of missing data

Figure C.4: Hours of missing data from E-bike weather station data for the period of Oct-16 to May-17

(a) CESAR data 2015 (b) CESAR data 2016

Figure C.5: Hours of missing data from CESAR database for year 2015 and 2016.





D
Wind speed scaling

Table D.1: Roughness Classes and Roughness Length Table [49]

Rough-
ness Class

Roughness
Length

Energy
Index (%)

Landscape Type

0 0.0002 100 Water surface

0.5 0.0024 73
Completely open terrain with a smooth surface,
e.g.concrete runways in airports, mowed grass, etc.

1 0.03 52
Open agricultural area without fences and hedgerows and
very scattered buildings. Only softly rounded hills

1.5 0.055 45
Agricultural land with some houses and 8 metre tall
sheltering hedgerows with a distance of approx. 1250 metres

2 0.1 39
Agricultural land with some houses and 8 metre
tall sheltering hedgerows with a distance of approx. 500 metres

2.5 0.2 31
Agricultural land with many houses, shrubs and plants, or 8 metre
tall sheltering hedgerows with a distance of approx. 250 metres

3 0.4 24
Villages, small towns, agricultural land with many or tall sheltering
hedgerows, forests and very rough and uneven terrain

3.5 0.8 18 Larger cities with tall buildings

4 1.6 13
Very large cities with
tall buildings and skycrapers
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A
Glossary

A.1. List of Acronyms
PV Photovoltaic

KNMI Koninklijk Nederlands Meterological Instituut

CESAR Cabauw Experimental Site for Atmospheric Research

GMT Greenwich Mean Time

GHI Global Horizontal Irradiance

DHI Diffuse Horizontal Irradiance

DNI Direct Normal Irradiance

POA Plane of Array

ER Erbs

OH Orgill and Hollands

Re Reindl

DISC Direct Insolation Simulation Code Model

RMSD Root Mean Square Difference

MBD Mean Bias Difference

RD Relative Difference

CRSS Composite Residual Sum Square

MATLAB Matrix Laboratory

EEMCS Electrical Engineering, Mathematics and Computer Science

CEG Civil Engineering and Geoscience

AM Air Mass

SF Shading Factor

89



90 A. Glossary

SVF Sky View Factor

Al Albedo

LT LightTools

SK Sketchup

FD Fluid Dynamic

NOCT Nominal Operating Cell Condition

STC Standard Test Conditions

SDM Single Diode Model

PVM Point Value Model

DC Direct Current

NREL National Renewable Energy Laboratory

SAM System Advisory Model

CIGS Cadminum Indium Gallium Selenide

A.2. List of symbols
𝑘ᑥ Clearness index

𝑘ᑕ Diffuse fraction

𝑘ᑥᑞ Modified clearness index (Dutch-I and Dutch-II)

𝐸ᑒ Extraterrestial irradiance

𝐸ᑤᑔ solar constant

𝜃ᑫ Solar zenith angle

𝑛 Number of samples

𝛼ᑤ Sun elevation angle

𝐴ᑤ Sun azimuth angle

𝐴𝑚 Module azimuth angle

𝜃ᑚ Angle of incidence on module

𝐺ᑇᑆᐸ Irradiance on plane of array

𝐺ᑕᑚᑣ Direct beam irradiance

𝐺ᑘᑣᑠᑦᑟᑕ Ground reflected component

𝑊ᑤ Wind speed

𝑇ᑅᑆᐺᑋ Module temperature are NOCT
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𝑇ᑒᑞᑓ Ambient temperature

𝜂 Module efficiency

𝑇ᑞ Module temperature

𝛼 Absorption by Solar Module

𝜏 Transmission coefficient of solar module

𝑇ᑔᑖᑝᑝ Cell temperature

𝑉ᑠᑔ Open-circuit voltage

𝐼ᑤᑔ Short- circuit current

𝑉ᑞᑡᑡ Maximum Power point Voltage

𝑃ᑞᑡᑡ Maximum Power Point Power

𝐼ᑞᑡᑡ Maximum Power point Current
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