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𝑢̃, ũ Nonlocal displacements
𝑢ℎ ,uℎ FEM term of the local displacement
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Summary

It is widely recognized in engineering fracture mechanics that integral and differ-
ential forms of nonlocal damage models with a constant internal length scale suffer
from an incorrect representation of failure mechanisms either by spurious damage
growth or by incorrect damage initiation and propagation. In this regard, in this
thesis, a displacement-based gradient-enhanced damage model (GEDM) with a tran-
sient internal length scale is formulated and used for failure analysis of quasi-brittle
materials. Research is focused on mode-I and mode-II failure mechanisms.

In a GEDM, a local field is enhanced into a nonlocal field and the nonlocal
field is the output of the enhancement. Displacement-based GEDM enhances lo-
cal displacement fields into nonlocal displacement fields instead of enhancing local
equivalent strain fields into nonlocal equivalent strain fields, as in strain- and stress-
based GEDMs. The key ingredient of the proposed extension is a transient internal
length scale that tends to zero as the damage parameter tends to one. Various
expressions for this transient internal length scale are proposed, formulated, and
discussed. Also, the need for correction on the gradient activity operator in mode-II
failure is demonstrated. To this end, an anisotropic formulation of the displacement-
based GEDM is formulated and used to control the material failure mechanism in
mode-II failure. Examples of the new model regularization capabilities are com-
pared to the original/classical displacement-based GEDM with a constant internal
length scale.

Despite the existence of spurious damage growth in mode-I failure for two dimen-
sional problems (4-point bending beam example) for both the transient isotropic and
the transient anisotropic versions, spurious damage growth is eliminated for mode-I
failure in one-dimensional problems. Also, the proposed transient isotropic model
eliminates spurious damage growth for mode-II failure in two-dimensional problems.
However, the damage migration issue is not solved. This issue is addressed by the
implementation of the transient anisotropic model. The transient anisotropic model
has no damage spreading and damage migration issues in mode-II failure and re-
alistic damage initiation and propagation are guaranteed. These features enable
the representation of failure patterns i.e., thin crack-like shear-band. In practical
terms this leads to a non-broadening shear fracture process zone in the wake of the
crack tip, addressing one of the main criticisms of existing gradient damage models.
Applicability of the proposed models is demonstrated by representative one- and
two-dimensional examples.
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Samenvatting

Het wordt algemeen erkend in de technische breukmechanica dat integrale en dif-
ferentiële vormen van niet-lokale schademodellen met een constante interne lengte-
schaal lijden aan een onjuiste weergave van faalmechanismen, hetzij door oneigen-
lijke schadegroei of door onjuiste initiatie en voortplanting van schade. In dit ver-
band wordt in dit proefschrift een verplaatsingsgebaseerd gradiënt-verbeterd schade
model (GEDM) met veranderende interne lengteschaal geformuleerd en gebruikt
voor faalanalyse van quasi-brosse materialen. Het onderzoek richt zich op mode-I
en mode-II faalmechanismen.

In een GEDM wordt een lokaal veld verbeterd tot een niet-lokaal veld en het
niet-lokale veld is de output van de verbetering. Op verplaatsing gebaseerde GEDM
verbetert het lokale verplaatsingsveld in het niet-lokale verplaatsingsveld in plaats
van het lokale equivalent rekveld te versterken in een niet-lokaal equivalent rekveld,
zoals in op rek en spanning gebaseerde GEDM’s. Het belangrijkste ingrediënt van de
voorgestelde uitbreiding is een veranderende interne lengteschaal die naar nul gaat
naarmate de schadeparameter naar één gaat. Verschillende uitdrukkingen voor deze
veranderende interne lengteschaal worden voorgesteld, geformuleerd en besproken.
Ook wordt de noodzaak van correctie van de gradiëntactiviteitsoperator bij falen in
mode-II aangetoond. Hiervoor is een anisotrope formulering van het op verplaat-
sing gebaseerde GEDM geformuleerd en gebruikt om het materiaalfaalmechanisme
bij mode-II-falen te beheersen. Voorbeelden van de regularisatiemogelijkheden van
het nieuwe model worden vergeleken met de originele/klassieke op verplaatsing ge-
baseerde GEDM met een constante interne lengteschaal.

Ondanks het optreden   van oneigenlijke schadegroei in mode-I-falen voor tweedi-
mensionale problemen (bijvoorbeeld van een 4-punts buigbalk) voor zowel de veran-
derende isotrope als de veranderende anisotrope modellen, wordt de groei van valse
schade geëlimineerd voor mode-I-falen bij één-dimensionale problemen. Ook elimi-
neert het voorgestelde veranderende isotrope model oneigenlijke schade-groei voor
mode-II-falen bij twee-dimensionale problemen. Echter, het vertoont nog steeds een
probleem met de migratie van schade. Dit probleem wordt verholpen door de im-
plementatie van het veranderende anisotrope model. Het veranderende anisotrope
model vertoont geen schade-verspreiding en schade-migratieproblemen bij het fa-
len in mode-II en realistische schade-initiatie en voortplanting zijn gegarandeerd.
Deze kenmerken maken de weergave van faalpatronen mogelijk, d.w.z. een dunne
discrete afschuifband. In de praktijk leidt dit tot een niet-verbredende afschuif-
breukproceszone in de zone achter de scheurtip, waarmee één van de belangrijkste
punten van kritiek op bestaande modellen voor gradiëntschade wordt aangepakt.
De toepasbaarheid van de voorgestelde modellen wordt aangetoond met behulp van
representatieve één- en twee-dimensionale voorbeelden.
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1
Introduction

1.1. State­of­the­art
For numerous years, materials and structures with a quasi-brittle failure mechanism
have attracted significant interest in the computational mechanics community. The
representation of zero-thickness strain localization bands using nonlocal approaches
is still a significant challenge in computational fracture mechanics.

1.1.1. Quasi­brittle materials failure
A quasi-brittle material (such as concrete and mortar) has a fracture process zone
ahead of the crack tip and a large cracking zone prior to the final fracture. These
materials often possess defects, such as notches and voids. Their mechanical prop-
erties are unaffected by these defects when in their virgin and unstressed state,
and they exhibit linear elastic properties when subject to low tensile stresses. With
increasing loading, the stress field in the vicinity of defects may cause strain local-
ization within a band due to tensile straining while the material outside the band
unloads elastically. In these regions, under further straining, a crack will form [1].

1.1.2. Strain localization
By de Borst et al. [2], strain localization is defined as the appearance of narrow
regions in a structure where all further deformation tends to concentrate despite
monotonous loading from external forces. This means that large strains will develop
in a narrow region leads to increase in the amount of dissipated energy during soften-
ing upon mesh refinement. A region of the localized deformation can be represented
either by a strong discontinuity (incorporating a jump across the displacement field)
and a singularity in the strain field, or by two weak discontinuities (that separate
the failure zone from the remaining portion of the body by a band of small but finite
thickness and consist of a jump across the strain field) [3].

3
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1.1.3. Damage regularization
The numerical simulation of strain localization exhibits instability and mesh de-
pendency when a local damage model is used [4]. To address this issue, damage
regularization techniques have been developed to provide a smooth and continu-
ous transition from an undamaged state to a fully damaged state while maintaining
stability and avoiding mesh dependency. The fundamental idea behind damage reg-
ularization is to introduce a regularization term in the constitutive equations of the
material model. This term penalizes the formation of sharp discontinuities in the
material response. By introducing this regularization term, the material response
becomes smoother, allowing for a more stable and accurate simulation of damage
evolution.

One of the simplest regularization methods is the crack-band method [5, 6] which
modifies the stress-strain relationship to account for mesh size. More advanced regu-
larization techniques, such as nonlocal damage theories [7], introduce a characteristic
length parameter in the constitutive equation or additional regularization equations
or variables acting as localization limiters. Nonlocal damage models calculate dam-
age evolution by averaging strains over the neighborhood of a given point, where
the size of the neighborhood is determined by the length scale.

1.1.4. Gradient­based nonlocal damage models
The original two-field strain-based formulation of the gradient-enhanced damage
model (GEDM) [8] is a type of gradient-based nonlocal damage model which cou-
ples the equilibrium equation to a regularizing diffusion equation equipped with
a constant diffusion parameter. The diffusion parameter plays an important role
in the definition of the active nonlocal interactions between material points. This
parameter is known as length scale parameter in the damage mechanics commu-
nity, and its correlation to quantities related to the microstructure is a matter of
ongoing debate; in any case, it could be understood as a localization limiter to
obtain mesh-independent results. Due to the incorrect estimation of the active
nonlocal interactions with a constant length scale as shown in [9], the energy trans-
fer from integration points inside the fracture process zone to neighboring regions,
generates spurious damage growth when using gradient damage models [10]. This
phenomenon is more visible at high deformation levels [11]. Figure 1.1 illustrates a
schematic representation of spurious damage growth within the GEDM. Figure 1.1.i
to Figure 1.1.iv illustrate a schematic damaged zone for four benchmark examples
at different load increments (a to e on the force-displacement curve in Figure 1.1.v).
Note that bands of the damaged zones at different load increments are displayed
in different colors. In the shear-band problem (mode-II) shown in Figure 1.1.iv, a
schematic representation of the spurious damage migration indicates movement of
the starting point of the shear-band from point A (in the imperfection zone) to point
E (out of the imperfection zone), instead of producing a curved crack (shear-band)
starting at point A, as confirmed by numerical and experimental results from the
literature.
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Figure 1.1: Schematic representation of (i) spurious damage widening in a uniaxial tensile bar with
central imperfection, (ii) spurious damage widening in a four-point bending beam, (iii) spurious
damage widening in L-shaped specimen (iv) spurious damage widening and migration of starting
point (from A to E) in shear-band problem, and (v) force-displacement curve with indicated load-
increment levels (points a to e). The dashed black line/curve that is illustrated in figures i to iv,
shows a schematic representation of a crack that has been observed experimentally/numerically in
the literature.
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As a first attempt to solve this issue in the GEDMs, Geers et al. [10] proposed a
three-field strain-based model with a transient internal length scale. They utilized a
continuous transient activity parameter governed by an additional continuity equa-
tion. In [11] this issue has been more thoroughly investigated and a transient version
of the original two-field GEDM is formulated by incorporating a transient length
scale inside the regularization equation. Poh and Sun [12] adopted the micromor-
phic theory in which micro-process interactions are incorporated in the model by
using an exponential transient interaction function that is linked with the damage
field (transient two-field strain-based GEDM). Wu [13] proposed a geometrically
regularized gradient damage model with energetic equivalence and derived the con-
stitutive relations consistently from the standard framework of thermodynamics.
They concluded that the localization bandwidth approaches a finite limit value, not
exhibiting spurious damage growth. Nguyen et al. [14] introduced a modified evolv-
ing anisotropic nonlocal gradient parameter to eliminate spurious damage growth.
Negi et al. proposed two types of localizing gradient damage model with smoothed
and micromorphic stress-based anisotropic nonlocal interactions proposed in [15]
and [16], respectively.

A strain-based or a stress-based model with transient length scale does not lead
to a perfectly working model. Rather, it leads to a pathological behavior con-
sisting in the appearance of non-smooth fields as demonstrated by Vandoren and
Simone [17]. In an ideal GEDM with a transient length scale, the response at
high damage levels should tend to that of the local damage model and behave well
without oscillations for zero length scale values.

The displacement-based GEDM proposed by Rodŕıguez-Ferran et al. [18] is a
two-field GEDM equipped with a constant length scale. At variance with other
gradient-enhanced models, the diffusion equation is formulated in terms of the non-
local/smoothed displacement field rather than a nonlocal equivalent strain. Apart
from a constant length scale, the displacement-based model is a good candidate to
obtain a model that can properly describe failure initiation and evolution. In this
model, differently from classical strain-based models, the same interpolation order
for both solution fields (i.e., local and smoothed displacements) can be used.

1.1.5. Spurious/Incorrect damage growth in GEDM
Incorrect damage growth in the gradient-enhanced damage model is the unreal,
incorrect or mesh-dependent growth of damage that is caused either by incorrect
definition of the regularization equation or by incorrect definition of the nonlocal
interactions between material points. In the case of incorrect nonlocal interactions,
damage can grow in an incorrect manner from the time when damage is initiated in
a material point to the point at which it is fully damaged. This means that, when
the nonlocal interactions between material points is ”wrong”, both spurious damage
growth and physically realistic damage growth develop. There are three types of
incorrect damage growth that can be observed:

- incorrect damage initiation;
- incorrect damage widening; and
- incorrect damage migration.
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Incorrect damage initiation
The most commonly used method for describing crack initiation and propagation
in brittle materials is the linear elastic fracture mechanics (LEFM) theory. In the
LEFM, the crack is treated as an ideal crack, resulting in a stress singularity at
the crack tip, indicating that the stress is infinite. As shown by Simone et al.
[20], the strain-based gradient-enhanced damage model was also not able to predict
damage initiation correctly due to an inaccurate calculation of the location of the
maximum nonlocal equivalent strain. It is caused by an incorrect definition of the
regularization equation, which includes nonlocal equivalent strain as an additional
unknown parameter, resulting in oscillations in the solution field [17].

Incorrect damage widening
Spurious damage widening is a special case of the spurious damage growth. The term
”spurious/incorrect damage widening” is used in this thesis to describe the incorrect
increase in damage in a wider zone (see Figure 1.1) caused by the constant/non-
vanishing definition of the nonlocal interactions.

Incorrect damage migration
The term ”spurious/incorrect damage migration” describes the incorrect movement
of the starting point of the shear band (see Figure 1.1.iv) due to the lack of anisotropy
of the nonlocal interaction. According to this thesis, incorrect damage migration
can only be observed in mode-II. Incorrect damage migration in the model-II case
is the main motivation for developing the anisotropic model in this thesis.

1.1.6. First and second deviatoric strain invariants
With strain tensor,

𝝐 = [
𝜖xx 𝜖xy 𝜖xz
𝜖yx 𝜖yy 𝜖yz
𝜖zx 𝜖zy 𝜖zz

] , (1.1)

the first invariant of the strain tensor is defined as,

𝐼1 = trace (𝝐) = 𝜖xx + 𝜖yy + 𝜖zz, (1.2)

and the second deviatoric strain invariant is,

𝐽2 =
1
3 (𝜖

2
xx + 𝜖2yy + 𝜖2zz − 𝜖xx𝜖yy − 𝜖yy𝜖zz − 𝜖xx𝜖zz) + (𝜖2xy + 𝜖2yz + 𝜖2xz) . (1.3)

1.1.7. Modified von­Mises equivalent strain failure criterion
A modified von-Mises equivalent strain [21] is defined as:

𝑒 = 𝑘 − 1
2𝑘 (1 − 2𝜈)𝐼1 +

1
2𝑘
√( 𝑘 − 11 − 2𝜈 𝐼1)

2
+ 12𝑘
(1 + 𝜈)2

𝐽2, (1.4)

where 𝑘 = 𝑓c/𝑓t in which 𝑓c and 𝑓t are the uniaxial compressive and the uniaxial
tensile strengths of the material, respectively and 𝜈 is the Poisson's ratio and 𝐼1 is
the first strain invariant and 𝐽2 is the second deviatoric strain invariant.
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1.1.8. Exponential damage evolution function
An exponential damage softening law is defined as

𝜔 = 1 − 𝜅0𝜅 [1 − 𝛼 + 𝛼 exp (−𝛽(𝜅 − 𝜅0))] , (1.5)

where 𝜅 is a history parameter that stores the largest value of the nonlocal equivalent
strain, 𝑒̃, that the materiel point has experienced during the loading process (it is
therefore a non-decreasing function of strain). The initial value of 𝜅 at the first
load-increment is defined by the threshold value 𝜅0 of the nonlocal strain. The
material parameters 𝛼 and 𝛽 are positive and dimensionless and can be calibrated
by experimental tests; they define, respectively, a parameter for controlling the
residual stress and a parameter for controlling softening of a material point.

1.1.9. Loading indicator function
In Equation (1.5), damage initiates as soon as the nonlocal equivalent strain 𝑒̃
exceeds the threshold nonlocal strain value 𝜅0 and grows according to the Kuhn-
Tucker conditions [22]

𝑓 ≤ 0, 𝜅̇ ≥ 0, 𝑓𝜅̇ = 0, (1.6)

where the loading function,

𝑓 = 𝑒̃ − 𝜅, (1.7)

verifies if the material point undergoes loading (𝑓 ≥ 0) or unloading (𝑓 < 0). In
this thesis, the loading indicator function is defined as follows,

loading indicator function = {1 if 𝑓 ≥ 0
0 else

. (1.8)
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1.2. Objectives and outline
The main objective of this work is the development of a novel GEDM for failure anal-
ysis of quasi-brittle materials. Based on the available displacement-based GEDM
[18], transient and anisotropic models are proposed that aim to remove incorrect
nonlocal interactions that are the source for both incorrect damage widening and
incorrect damage migration issues. Throughout this thesis, the term incorrect dam-
age widening is used to refer to the incorrect damage growth caused by incorrect
isotropic definitions of the nonlocal interactions. The term incorrect damage migra-
tion refers to the incorrect damage growth due to the lack of anisotropy of nonlocal
interactions. These two incorrect damage types can not be clearly distinguished.
Both incorrect damage migration and widening as a result of incorrect isotropic
definition of nonlocal interactions, as well as incorrect anisotropic definition of the
nonlocal interactions may occur.

For the development of the new model, the following sub-objectives (SOs) are
defined:

- SO-1: Develop a damage model for removing incorrect damage widening.
- SO-2: Develop a damage model for removing incorrect damage migration.
Following this brief introduction, the rest of this thesis is organized as follows:
- In Chapter 2, different transient activity functions to address incorrect damage

widening in the displacement-based GEDM are proposed. A one-dimensional
benchmark example, a bar with central imperfection under tensile load, is con-
sidered and a mesh-sensitivity study is performed for the proposed transient
activity functions. We have selected four functions from among the fifteen
transient activity functions that have been tested and reported as the most
significant.

- The isotropic formulation of the transient displacement-based GEDM is for-
mulated and tested for two-dimensional problems in Chapter 3.

- Chapter 4 proposes an anisotropic formulation of the transient displacement-
based GEDM. The capabilities of the model with respect to the definition of
thin damage bands without damage widening and damage migration issues
are discussed.

- Lastly, some concluding remarks are presented in Chapter 5.
It should be noted that a full integration scheme is employed throughout this

thesis and for the two-dimensional studies that are presented in Chapters 3 and 4,
the transient activity function 𝑔𝑢̃ that is proposed for a one-dimensional case in
Section 2.3.4 is employed. Different types of boundary conditions (Dirichlet, homo-
geneous Neumann, non-homogeneous Neumann, and combined) are investigated by
Tamayo-Mas and Rodŕıguez-Ferran [23]. As part of the implementation process of
this thesis, all of these boundary conditions were tested and discussed. According
to Table 1.1, only the combined BC is reported in the thesis.

As the main focus has been the definition of a new model that could address the
main drawbacks of the classical strain-based GEDM, a comparison of the results
with experimental data is out of the scope of this research. The computer code used
to generate the results presented in this work is based on the Jem/Jive library [24],
an object-oriented C++ code for finite element analysis. Gmsh software [25] is used
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Table 1.1: Summary of boundary conditions and their properties [23].

Homogeneous Non-homogeneous
Dirichlet Neumann Neumann Combined

Reproducibility 3 7 3 3
of order 1

Displacement smoothing 7 3 3 3
along the boundary

Local response 3 7 7 3
normal to boundaries

Volume preservation 3 7 7 3

to generate meshes, with the resulting mesh files sent as input to Jem/Jive. Using
the Paraview software [26], the contours are plotted by saving Jem/Jive outputs in
Paraview format. TikZ [27] is also used to plot all curves and evolutionary plots in
Chapter 2.
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[18] A. Rodŕıguez-Ferran, I. Morata, and A. Huerta, A new damage model based
on non-local displacements, International Journal for numerical and analytical
methods in geomechanics 29, 473 (2005).

[19] A. C. Eringen, C. Speziale, and B. Kim, Crack-tip problem in non-local elas-
ticity, Journal of the Mechanics and Physics of Solids 25, 339 (1977).

[20] A. Simone, H. Askes, and L. J. Sluys, Incorrect initiation and propagation
of failure in non-local and gradient-enhanced media, International Journal of
Solids and Structures 41, 351 (2004).

[21] J. De Vree, W. Brekelmans, and M. Van Gils, Comparison of nonlocal ap-
proaches in continuum damage mechanics, Computers and Structures 55, 581
(1995).

[22] H. W. Kuhn and A. W. Tucker, Nonlinear programming, in in Jerzy Neyman
(ed.), Proceedings 2nd Berkeley Symposium on Mathematical Statistics and
Probability (Berkeley, University of California Press, 1950) pp. 481–492.
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2
Transient

displacement­based GEDM:
One­dimensional study

It is widely recognized that both integral and gradient forms of the nonlocal
damage models with a constant internal length scale suffer from incorrect
representation of failure mechanisms by either spurious damage growth or
incorrect damage initiation and propagation. In this regard, in this chapter
different types of transient activity functions are proposed to address incor­
rect damage widening in the displacement­based gradient­enhanced dam­
age model. The key ingredient of the proposed extension is a gradient length
scale that tends to zero as the damage parameter tends to one. Various
expressions for this transient length scale are proposed and discussed. A
one­dimensional benchmark example, a bar under uniaxial tension, is con­
sidered and a mesh­sensitivity study is performed for the proposed tran­
sient activity functions. The results show the efficiency of the proposed tran­
sient displacement­based GEDM to remove damage widening in the one­
dimensional setting.
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2.1. Introduction
A constant internal length scale in the strain-based integral or differential nonlocal
damage models leads to an incorrect representation of failure mechanisms in terms
of damage initiation, evolution, and widening [1, 2]. While damage initiation can be
successfully addressed by means of anisotropic reformulations [3], damage widening
and evolution require procedures that aim to reduce the nonlocal interaction. To
the best of our knowledge, none of the procedures proposed so far in the context of
strain-based models derived from the gradient-enhanced damage model by Peerlings
et al. [4] has been successful. In this chapter, it is argued that this type of models
has intrinsic features that prevent a reasonably simple and general solution. Rather,
we advocate the use of displacement-based models.

Since the proposals of the nonlocal damage model of the integral type by Pijaudier-
Cabot and Bažant [5] and its differential reformulation by Peerlings et al. [4], the
study of failure processes in quasi-brittle materials has been addressed using strain-
based models in the vast majority of cases. A strain-based nonlocal damage model
is a regularized damage model in which damage is driven by a nonlocal equivalent
strain. In the context of the differential version (known in the literature as implicit
GEDM [4]), the nonlocal equivalent strain is a scalar field variable whose governing
equation is a diffusion equation (modified Helmholtz equation); coupling with the
equilibrium equation occurs through the dependence of the damage field on the non-
local equivalent strain which in turns depends on the strain tensor. Both integral
and differential versions were proposed with a constant length scale parameter.

The popularity of nonlocal models stems from their effectiveness in addressing
mesh dependency caused by strain-softening in the constitutive models of a rate-
independent media, together with their conceptual and implementational simplicity.
Nonetheless, despite their popularity, these models are inherently flawed because of:

1. incorrect damage initiation far from crack tip [2, 6];
2. incorrect damage widening during the localization process [1]; and
3. incorrect damage migration during the localization process in mode-II domi-

nated problems [2].
These issues are shared by both integral and differential versions of the nonlocal
damage model. Our current understanding leads to the conclusion that these issues
are caused by a constant length scale parameter and the anisotropy of the weight
function in both local and nonlocal models. Most of the literature is dedicated to
the solution of the first issue. The first to recognize the problems were Geers et al.
[1] who proposed a strain-based GEDM with a transient internal length scale. A
simpler version of this model was later proposed by Saroukhani et al. [7]. Notable
improvements were proposed by Poh and Sun [8], Wu [9], and Nguyen et al. [10].

The common strategy adopted in these models is the reduction of the internal
length scale through a scaling factor that decreases with increasing deformation
levels. In an ideal situation, the internal length scale should vanish, thus removing
nonlocal interaction and, consequently, eliminating incorrect damage growth. Since
the length scale does not go to zero, incorrect damage growth is going to take
place because the equation is a diffusion equation. As such, as long as there is a
diffusion equation there will be incorrect damage unless the internal length scale
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goes to zero and the model does not show any pathological behavior. Based on the
following strong-form governing equations, we can see that for both strain-based
and displacement-based models, the local displacement field as the first primary
unknown has 𝒞0 continuity between elements (a piecewise linear function), resulting
in 𝒞−1 continuity (a constant function) of the local equivalent strain field, 𝑒.

d𝜎
d𝑥 + 𝑏 = 0, (2.1)

regularization of strain-based ∶ 𝑒̃ − d
d𝑥 (𝑐

d𝑒̃
d𝑥) = 𝑒, (2.2)

regularization of displacement-based ∶ 𝑢̃ − d
d𝑥 (𝑐

d𝑢̃
d𝑥 ) = 𝑢, (2.3)

As the second primary unknown in the strain-based model, the nonlocal equivalent
strain field 𝑒̃, has 𝒞0 continuity. In the case of zero length scale, 𝓁0 = 0, the strong
form identity 𝑒̃ = 𝑒 must be satisfied. Therefore, in the strain-based model, the
continuity of the local and nonlocal equivalent strains are not consistent, leading to
oscillations in the solution field [3]. In the displacement-based model, the nonlocal
displacement field, as the second unknown has 𝒞0 continuity, leads to 𝒞−1 continuity
of the equivalent nonlocal strain field. With zero length scale, 𝓁0 = 0, the strong-
form identity 𝑢̃ = 𝑢 is inherently satisfied. Hence, unlike the strain-based model,
the displacement-based model has the same continuity for both local and nonlocal
strain fields. This fact naturally solves the issue of inconsistent continuity and
has the added advantage that oscillations in the solution field are eliminated for a
transient length scale. Another important feature of the displacement-based model
in its standard formulation [11] is the correct definition of the crack tip field.

Although damage widening has been discussed in detail for the strain-based
model, any other model with a diffusion equation equipped with a constant internal
length scale is prone to suffer from it. To the best of our knowledge, damage widening
is one of the main drawbacks of the standard formulation of the displacement-
based model. To properly present our proposal to address the damage widening
issue, this chapter is organized as follows. Section 2.2 derives the governing one-
dimensional equations of the displacement-based GEDM with transient length scale.
Definitions of the proposed transient activity functions are described in Section 2.3.
Different transient activity functions to address the incorrect damage widening in the
displacement-based GEDM are proposed. The performance of the proposed model
for the analysis of quasi-static failure by means of a one-dimensional benchmark
example, a bar with central imperfection under tensile load, is demonstrated in
Section 2.4. Lastly, some concluding remarks are presented in Section 2.5.
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2.2. Governing equations and discretization
2.2.1. Strong­form equations and boundary conditions
A one-dimensional displacement-based GEDM with a transient length scale is for-
mulated by means of a system of coupled differential equations expressed in terms
of the classical equilibrium equation and the regularizing diffusion equation as (see
[11] for the two-dimensional version)

d𝜎
d𝑥 + 𝑏 = 0, on 0 ≤ 𝑥 ≤ 𝐿, (2.4)

𝑢̃ − d
d𝑥 (𝑔𝑐

d𝑢̃
d𝑥 ) = 𝑢, on 0 ≤ 𝑥 ≤ 𝐿, (2.5)

subject to the following Dirichlet and Neumann boundary conditions applied on the
local displacement field 𝑢 and its gradient:

𝑢 = 𝑢, at 𝑥 = 0 and/or 𝑥 = 𝐿, (2.6)

𝜎 𝑛 = 𝑡, at 𝑥 = 0 and/or 𝑥 = 𝐿, (2.7)

and the following Dirichlet-type boundary condition applied on the nonlocal/smoothed
displacement field 𝑢̃:

𝑢̃ = 𝑢, at 𝑥 = 0 and 𝑥 = 𝐿, (2.8)

in which 𝑢 and 𝑡 are the prescribed displacement and traction at the boundaries,
respectively defined by 𝑢 = 𝑢𝑥=0 and 𝑡 = 𝑡𝑥=0 at 𝑥 = 0 and 𝑢 = 𝑢𝑥=𝐿 and 𝑡 = 𝑡𝑥=𝐿
at 𝑥 = 𝐿. The unit outward normal 𝑛 at the boundaries 𝑥 = 0 and 𝑥 = 𝐿 are
defined by 𝑛 = −1 and 𝑛 = 1, respectively and 𝜎 and 𝑏 are the stress and the body
force, respectively. The system of coupled equations consists of two main unknowns,
the local displacement field 𝑢 and the nonlocal displacement field 𝑢̃. The transient
activity function 𝑔 and the constant gradient activity parameter 𝑐 control the active
nonlocal interactions between microcracks. Details regarding the weak formulation
and the definition of the discrete governing equations are discussed next.

2.2.2. Weak formulation
The weighted residual approach is used to obtain the weak-form of the governing
equations. To this end, Equations (2.4) and (2.5) are multiplied by the scalar
functions 𝑤 and 𝑤̃, respectively. The resulting equations are then integrated over
problem domain 0 ≤ 𝑥 ≤ 𝐿 yielding

∫
𝐿

0
[𝑤 (d𝜎

d𝑥 + 𝑏)]d𝑥 = 0, (2.9)

∫
𝐿

0
[𝑤̃ (𝑢̃ − d

d𝑥 (𝑔𝑐
d𝑢̃
d𝑥 ))]d𝑥 = ∫

𝐿

0
[𝑤̃𝑢]d𝑥. (2.10)
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Using the identities

𝑤(d𝜎
d𝑥 ) =

d (𝑤𝜎)
d𝑥 − d𝑤

d𝑥 𝜎, (2.11)

𝑤̃ [ d
d𝑥 (𝑔𝑐

d𝑢̃
d𝑥 )] =

d
d𝑥 (𝑤̃𝑔𝑐

d𝑢̃
d𝑥 ) −

d𝑤̃
d𝑥 𝑔𝑐

d𝑢̃
d𝑥 , (2.12)

and

∫
𝐿

0
[d
(𝑤𝜎)
d𝑥 ]d𝑥 = 𝑤 [(𝜎)𝑥=𝐿 − (𝜎)𝑥=0] = 0, (2.13)

∫
𝐿

0
[ d
d𝑥 (𝑤̃𝑔𝑐

d𝑢̃
d𝑥 )]d𝑥 = 𝑤̃ [(𝑔𝑐

d𝑢̃
d𝑥 )𝑥=𝐿 − (𝑔𝑐

d𝑢̃
d𝑥 )𝑥=0] = 0, (2.14)

gives

∫
𝐿

0
[−d𝑤

d𝑥 𝜎 + 𝑤𝑏]d𝑥 = 0, (2.15)

∫
𝐿

0
[𝑤̃𝑢̃ + d𝑤̃

d𝑥 𝑔𝑐
d𝑢̃
d𝑥 ]d𝑥 = ∫

𝐿

0
[𝑤̃𝑢]d𝑥. (2.16)

2.2.3. Finite element discretization
The Bubnov-Galerkin method is employed for the discretization of the governing
weak-form equations. To this end, the local and nonlocal displacement fields, along
with the corresponding weight functions, are discretized as follows:

𝑢 = Nuℎ, 𝑤 = Nwℎ, d𝑢
d𝑥 =

dN
d𝑥u

ℎ, d𝑤
d𝑥 =

dN
d𝑥w

ℎ, (2.17)

𝑢̃ = Nũℎ, 𝑤̃ = Nw̃ℎ, d𝑢̃
d𝑥 =

dN
d𝑥 ũ

ℎ, d𝑤̃
d𝑥 =

dN
d𝑥 w̃

ℎ, (2.18)

in which the shape function matrix N interpolates both nodal displacements 𝑢 and
𝑢̃. For a linear element with nodes 𝑖 and 𝑗,

uℎ = [ 𝑢ℎ𝑖 𝑢ℎ𝑗 ]
T , (2.19)

ũℎ = [ 𝑢̃ℎ𝑖 𝑢̃ℎ𝑗 ]
T , (2.20)

wℎ = [ 𝑤ℎ𝑖 𝑤ℎ𝑗 ]T , (2.21)
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w̃ℎ = [ 𝑤̃ℎ𝑖 𝑤̃ℎ𝑗 ]T , (2.22)

N = [ 𝑁𝑖 𝑁𝑗 ] , (2.23)

dN
d𝑥 = [ 𝜕𝑁𝑖

𝜕𝑥
𝜕𝑁𝑗
𝜕𝑥 ] . (2.24)

Inserting the above relations into Equations (2.15) and (2.16) and considering
the expressions evaluated at integration points, 𝑝, yields

∑
𝑝
wℎT

dN
d𝑥

T

𝜎𝑝d𝑥𝑝 =∑
𝑝
wℎTNT𝑏𝑝d𝑥𝑝, (2.25)

∑
𝑝
[w̃ℎTNTNũℎ + w̃ℎT

dN
d𝑥

T

𝑔𝑐𝑝
dN
d𝑥 ũ

ℎ − w̃ℎTNTNuℎ]d𝑥𝑝 = 0, (2.26)

which have to hold for any choice of w and w̃. The term d𝑥𝑝 = 𝐽𝑝𝑤𝑝 is the volume
of the integration point obtained by multiplication of the Jacoabian matrix 𝐽 by
weight value 𝑤 at each integration point.

By defining M and D as the mass-like and diffusivity matrices

M =∑
𝑝
NTNd𝑥𝑝, (2.27)

D =∑
𝑝

dN
d𝑥

T

𝑔𝑝𝑐𝑝
dN
d𝑥 d𝑥𝑝, (2.28)

the final discretized form of the governing equations can be written as

∑
𝑝

dN
d𝑥

T

𝜎𝑝d𝑥𝑝 =∑
𝑝
NT𝑏𝑝d𝑥𝑝 + [NT𝑡𝑝]𝑥=0,𝐿 (2.29)

Mũℎ +Dũℎ −Muℎ = 0. (2.30)

Finally, the discretized governing equations are rewritten in terms of external
and internal nodal forces according to

f𝑢int = f𝑢ext, (2.31)
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f 𝑢̃int = f 𝑢̃ext, (2.32)

where

f𝑢int = ∑
𝑝

dN
d𝑥

T

𝜎𝑝d𝑥𝑝, (2.33)

f𝑢ext = ∑
𝑝
NT𝑏𝑝d𝑥𝑝 + [NT𝑡𝑝]𝑥=0,𝐿 , (2.34)

f 𝑢̃int = Mũℎ +Dũℎ −Muℎ , (2.35)

f 𝑢̃ext = 0. (2.36)

2.2.4. Consistent linearization
A consistent tangent stiffness is obtained by linearization of Equations (2.31) and
(2.32) at iteration 𝑖 + 1 with respect to the previous iteration 𝑖. Accordingly,

f𝑢ext,𝑖+1 = f𝑢int,𝑖 + 𝛿f
𝑢
int,𝑖+1, (2.37)

f 𝑢̃ext,𝑖+1 = f 𝑢̃int,𝑖 + 𝛿f
𝑢̃
int,𝑖+1, (2.38)

gives

𝛿f𝑢int,𝑖+1 = f𝑢ext,𝑖+1 − f𝑢int,𝑖 , (2.39)

𝛿f 𝑢̃int,𝑖+1 = f 𝑢̃ext,𝑖+1 − f 𝑢̃int,𝑖 , (2.40)

where

𝛿f𝑢int,𝑖+1 = ∑
𝑝
[dN
d𝑥

T

𝛿𝜎𝑝,𝑖+1]d𝑥𝑝, (2.41)

𝛿f 𝑢̃int,𝑖+1 =M𝛿ũℎ𝑖+1 −M𝛿uℎ𝑖+1 +D𝛿ũℎ𝑖+1 + 𝛿D𝑖+1ũℎ . (2.42)

To obtain the stress variation at integration point, 𝛿𝜎𝑝,𝑖+1, first, we assume the
free energy density potential function, 𝜓, as

𝜓 = 1
2(1 − 𝜔) 𝜖 ∶ 𝐸 ∶ 𝜖, (2.43)

where 𝜔 is the damage softening law and 𝐸 is the elastic modulus and 𝜖 is the strain.
Then, the stress and its derivative can be obtained through

𝜎 = 𝜕𝜓
𝜕𝜖 = (1 − 𝜔)𝐸𝜖, (2.44)
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from which
𝛿𝜎𝑖+1 = (1 − 𝜔𝑖) 𝐸𝛿𝜖𝑖+1 − 𝐸𝜖𝑖𝛿𝜔𝑖+1, (2.45)

with

𝛿𝜖𝑖+1 =
dN
d𝑥 𝛿u

ℎ
𝑖+1, (2.46)

𝛿 ̃𝜖𝑖+1 =
dN
d𝑥 𝛿ũ

ℎ
𝑖+1, (2.47)

𝛿𝜔𝑖+1 = (
𝑑𝜔
𝑑 ̃𝜖 )𝑖

𝛿 ̃𝜖𝑖+1 = (
𝑑𝜔
𝑑𝜅 )𝑖

(𝑑𝜅𝑑𝑒̃ )𝑖
(𝑑𝑒̃𝑑 ̃𝜖 )𝑖

dN
d𝑥 𝛿ũ

ℎ
𝑖+1, (2.48)

yielding

𝛿𝜎𝑖+1 = (1 − 𝜔𝑖) 𝐸
dN
d𝑥 𝛿u

ℎ
𝑖+1 − 𝐸𝜖𝑖 (

𝑑𝜔
𝑑 ̃𝜖 )𝑖

dN
d𝑥 𝛿ũ

ℎ
𝑖+1. (2.49)

In general, D can be defined as a function of uℎ𝑖+1 and ũℎ𝑖+1 and therefore

𝛿D𝑖+1 = (
dD
duℎ

)
𝑖
𝛿uℎ𝑖+1 + (

dD
dũℎ

)
𝑖
𝛿ũℎ𝑖+1, (2.50)

leads to

𝛿f𝑢int,𝑖+1 = ∑
𝑝
[dN
d𝑥

T

(1 − 𝜔𝑝,𝑖) 𝐸𝑝
dN
d𝑥 ] 𝛿u

ℎ
𝑖+1d𝑥𝑝

− ∑
𝑝
[dN
d𝑥

T

𝐸𝑝𝜖𝑝,𝑖 (
d𝜔𝑝
d ̃𝜖𝑝

)
𝑖

dN
d𝑥 ] 𝛿ũ

ℎ
𝑖+1d𝑥𝑝, (2.51)

𝛿f 𝑢̃int,𝑖+1 = [−M+ dD
duℎ

ũℎ] 𝛿uℎ𝑖+1 + [M+D+ dD
dũℎ

ũℎ] 𝛿ũℎ𝑖+1. (2.52)

The governing equations in the Newton-Raphson iteration are expressed as

[ K
𝑖
𝑢𝑢 K𝑖𝑢𝑢̃

K𝑖𝑢̃𝑢 K𝑖𝑢̃𝑢̃
]

⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
4×4

[ 𝛿𝑢
𝑖+1

𝛿𝑢̃𝑖+1 ]⏝⎵⎵⏟⎵⎵⏝
4×1

= [
f𝑢ext,𝑖+1 − f𝑢int,𝑖
f 𝑢̃ext,𝑖+1 − f 𝑢̃int,𝑖

]
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

4×1

, (2.53)

with the components of the consistent tangent matrix given by, for a 2-node bar
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element,

K𝑖𝑢𝑢⏟
2×2

= ∑
𝑝
[dN
d𝑥

T

⏟
2×1

(1 − 𝜔𝑝,𝑖)⏝⎵⎵⏟⎵⎵⏝
scalar

𝐸𝑝⏟
scalar

dN
d𝑥⏟
1×2

]d𝑥𝑝, (2.54)

K𝑖𝑢𝑢̃⏟
2×2

= ∑
𝑝

⎡
⎢
⎢
⎢
⎣

−dN
d𝑥

T

⏟
2×1

𝐸𝑝⏟
scalar

𝜖𝑝,𝑖⏟
scalar

(d𝜔
d ̃𝜖 )𝑖⏝⎵⏟⎵⏝

scalar

dN
d𝑥⏟
1×2

⎤
⎥
⎥
⎥
⎦

d𝑥𝑝, (2.55)

K𝑖𝑢̃𝑢⏟
2×2

= −M⏟
2×2

+ dD
duℎ⏟
2×1

ũℎ⏟
1×2
, (2.56)

K𝑖𝑢̃𝑢̃⏟
2×2

= M⏟
2×2

+ D⏟
2×2

+ dD
dũℎ⏟
2×1

ũℎ⏟
1×2
, (2.57)

where

dD
duℎ

ũℎ⏝⎵⏟⎵⏝
2×2

= ∑
𝑝
[
d𝑔𝑝
duℎ⏟
1×2

ũℎ⏟
2×1

dN
d𝑥

T

⏟
2×1

𝑐𝑝⏟
scalar

dN
d𝑥⏟
1×2

]d𝑥𝑝, (2.58)

dD
dũℎ

ũℎ⏝⎵⏟⎵⏝
2×2

= ∑
𝑝
[
d𝑔𝑝
dũℎ⏟
1×2

ũℎ⏟
2×1

dN
d𝑥

T

⏟
2×1

𝑐𝑝⏟
scalar

dN
d𝑥⏟
1×2

]d𝑥𝑝. (2.59)
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2.3. Transient activity function
In this section, different transient activity functions are proposed to equip the
displacement-based GEDM with features for the removal of spurious damage growth.
The transient activity functions are defined in the following forms:

1. Binary function;
2. Function linked to the damage field;
3. Function linked to both damage and nonlocal equivalent strain fields; and
4. Function based on equivalent dissipation with the strain-based model.

2.3.1. Binary function
As a preliminary attempt for removing spurious damage growth in the displacement-
based GEDM, a binary function was selected in which 𝑔 changes from one to zero
when a material point is fully damaged (𝜔 = 1). It should be noticed that 𝜔 =
1 is never reached in the case of an exponential damage softening law (from a
computational view point this adds a requirement to identify a “fully” damaged
integration point by defining an extra model parameter as a critical damage value
in the form of 𝜔crit = 1 − 𝜖 in which 𝜖 is sufficiently small).

2.3.2. Transient activity function linked to the damage field
An improved version of the binary function that yields a smooth decay of the tran-
sient activity function from one to zero and also avoids the extra model parameter
𝜔crit is defined as a function of the damage field: 𝑔(𝜔, 𝑛) = 1 − 𝜔𝑛. The behavior
of this function depends on the values of the exponent 𝑛:

- For −∞ ≤ 𝑛 < 0, the function returns a negative value and is not acceptable;
- For 𝑛 = 0, the value of 𝑔 is constant (equal to zero) and results into a local

model;
- For 0 < 𝑛 < 1, the derivative of 𝑔 is non-zero for a fully damaged material

point;
- For 𝑛 = 1, the derivative of 𝑔 with respect to damage is equal to a constant

value;
- For 1 < 𝑛 < ∞, defining a transient activity function is acceptable; and
- For 𝑛 → ∞, the function behaves like a binary function, switching from one to

zero without the requirement of the definition of the extra parameter 𝜔crit.
There are qualitative differences in the derivative of the function with respect to
damage when 𝑛 ≤ 1 compared to the case 𝑛 > 1. We also noticed that simulations
performed with 𝑛 ≤ 1 were not stable. Hence, the exponent 𝑛 should be a real
number larger than one.
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Figure 2.1: Behavior of the transient activity function 𝑔 = 1 −𝜔𝑛 in terms of the exponent 𝑛.

The behavior of the transient activity function 𝑔(𝜔, 𝑛) = 1 − 𝜔𝑛 for increasing
damage levels and in terms of the exponent 𝑛 is plotted in Figure 2.1. The figure
shows that the speed of decay of the function is inversely proportional to the value
of the exponent 𝑛. Figure 2.2 shows the behavior of the transient activity function
for increasing nonlocal equivalent strain levels also in terms of the exponent 𝑛. At
the level of the nonlocal equivalent strain, the model with a smaller exponent 𝑛
value has lower nonlocal interactions (smaller g value).
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Figure 2.2: Behavior of the transient activity function 𝑔 = 1−𝜔𝑛 in terms of the nonlocal equivalent
strain.



2

26 2. Transient displacement­based GEDM: One­dimensional study

2.3.3. Transient activity function linked to both damage and
nonlocal equivalent strain fields

As it will be shown later, a binary activity function or a transient activity function
linked to the damage field are not optimal choices. The former choice gives rise to
the generation of unrealistic spikes in the solution fields when the damage profile
is smooth. Also, a similar issue arises by using 𝑔 = 1 − 𝜔𝑛 with a large value of
the exponent 𝑛. At first glance the function 𝑔 = 1 − 𝜔𝑛 with a small value of the
exponent 𝑛 is a good candidate for removing spurious damage growth. However,
based on our numerical investigation, localization happens too quickly and results
in mesh-dependent results for two-dimensional problems. Here, our aim is to define
a transient activity function in such a way that it decays to zero naturally and
leads to a delay of the localization process in a smoother manner. To this end, the
transient activity function presented in [3] is employed. This function links damage
and nonlocal equivalent strain fields as follows

𝑔𝑒̃(𝜔, 𝑒̃) = {
𝑒̃
𝜅0

if 𝑒̃ < 𝜅0
(1 − 𝜔) 𝑒̃𝜅0 else

, (2.60)

where 𝜔 = 1−𝜅0
𝜅 [exp(−𝛽(𝜅 − 𝜅0))] is the damage value obtained using the modified

exponential damage softening law obtained with 𝛼 = 1 and 𝛽 (the latter is as an
extra model parameter used to control the damage band size). In this thesis, to
avoid defining a new extra model parameter, we take 𝛽 = 𝛽 in which 𝛽 is the
material parameter used in the damage evolution law. It should anyway be stressed
that this is just a choice and 𝛽 can be different than 𝛽.

Figure 2.3 compares the force-displacement responses of strain-based and dis-
placement based GEDMs with a constant internal length scale and a transient ac-
tivity function 𝑔𝑒̃. Based on Figure 2.3, we notice that the displacement-based
model and the strain-based model produce the same force-displacement curves with
a constant length scale but different curves when equipped with the same transient
activity function 𝑔𝑒̃. This indicates that the displacement-based model dissipates
energy at a faster rate compared to the strain-based model, resulting in a more
brittle response when a transient activity function is employed.
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Figure 2.3: Comparison of force-displacement responses of the displacement-based and the strain-
based models with constant and transient activity function using 1600 elements (one row of four-
node quadrilateral elements).
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2.3.4. Transient activity function based on equivalent dissipa­
tion with the strain­based model

To compensate for the fast decay of the load-displacement curve in the displacement-
based model shown in Figure 2.3, we propose to enforce the same diffusion as the
strain-based model in the displacement-based model. Since the strain-based model
does not suffer from the issues described earlier about premature localization, this
leads to the conclusion that for the displacement-based model to produce acceptable
results the two models should somehow be made equivalent. This can be achieved
by using a strong-form equivalence of the two governing diffusion equations which
basically implies taking the derivative of the governing diffusion equation of the
displacement-based model and equating the two source terms. Hence, the actual
expression of the transient activity function in the displacement-based model de-
pends on the expression of the transient activity function in the strain-based model.

To derive a new transient activity function, consider the following governing
diffusion equations of the strain-based and the displacement-based models:

𝑒̃ − d
d𝑥 (𝑔𝑒̃𝑐𝑒̃

d𝑒̃
d𝑥) = 𝑒, (2.61)

𝑢̃ − d
d𝑥 (𝑔𝑢̃𝑐𝑢̃

d𝑢̃
d𝑥 ) = 𝑢. (2.62)

By equating the local strain fields, directly available from the first equation and
obtained from 𝑒 = d𝑢/d𝑥 applied to the second equation we obtain the relation

𝑒̃ − d
d𝑥 (𝑔𝑒̃𝑐𝑒̃

d𝑒̃
d𝑥) =

d
d𝑥 [𝑢̃ −

d
d𝑥 (𝑔𝑢̃𝑐𝑢̃

d𝑢̃
d𝑥 )] . (2.63)

Considering now 𝑐𝑒̃ = 𝑐𝑢̃ and by using 𝑒̃ = d𝑢̃/d𝑥 yield, after some simplifica-
tions, the following first-order linear ordinary differential equation

d𝑔𝑢̃
d𝑒̃ + 1𝑒̃ 𝑔𝑢̃ =

1
𝑒̃ 𝑔𝑒̃ , (2.64)
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whose general solution is

𝑔𝑢̃ =
∫∞0 exp (∫∞0

1
𝑒̃d𝑒̃)

1
𝑒̃𝑔𝑒̃d𝑒̃ + 𝐶1

exp (∫∞0
1
𝑒̃d𝑒̃)

(2.65)

=
∫∞0 − 1

𝑒̃2 exp (
1
𝑒̃)

1
𝑒̃𝑔𝑒̃d𝑒̃ + 𝐶1

− 1
𝑒̃2 exp (

1
𝑒̃)

= [∫
∞

0

1
𝑒̃ 𝑔𝑒̃d𝑒̃] + 𝐶2

= 1
𝑒̃ [∫

𝜅0

0
𝑔𝑒̃d𝑒̃ + ∫

∞

𝜅0
𝑔𝑒̃d𝑒̃] + 𝐶2

= 1
𝑒̃ [∫

𝜅0

0
( 𝑒̃𝜅0

)d𝑒̃ + ∫
∞

𝜅0
((1 − 𝜔) 𝑒̃𝜅0

)d𝑒̃] + 𝐶2

= 𝜅0
𝑒̃ +

1
𝑒̃ [∫

∞

𝜅0
(exp (−𝛽(𝜅 − 𝜅0))

𝑒̃
𝜅d𝑒̃)] + 𝐶2,

with 𝜅 = 𝑒̃

𝑔𝑢̃ =
𝜅0
𝑒̃ +

1
𝑒̃ [∫

∞

𝜅0
(exp (−𝛽(𝑒̃ − 𝜅0))d𝑒̃)] + 𝐶2. (2.66)

Integration of the above function yields

𝑔𝑢̃ = {
1 if 𝑒̃ < 𝜅0
1
𝑒̃ [𝜅0 −

1
𝛽 (exp (−𝛽(𝑒̃ − 𝜅0)) − 1)] else

. (2.67)

Figure 2.4 compares the force-displacement responses obtained with the proposed
𝑔𝑢̃ function against that obtained using the 𝑔𝑒̃ function. The figure indicates that
the two curves for the transient models are basically identical, with the displacement-
based model load-displacement curve being smoother than that corresponding to
the transient strain-based model at the end of the snap-back branch. Figure 2.5
compares the evolutions of different transient activity functions against the nonlocal
equivalent strain. It is evident that the proposed transient activity function 𝑔𝑢̃
delays the localization process and decays to zero at a slower pace compared to the
other two curves (red and black).
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ẽ-based, constant
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Figure 2.4: Comparison of force-displacement responses of the displacement-based and the strain-
based models with constant and transient activity functions using 1600 elements.
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Table 2.1: Uniaxial tensile bar: material and numerical parameters.

properties symbol value
Young's modulus 𝐸 20 × 103 MPa
Young's modulus of imperfection 𝐸imp 18 × 103 MPa
Poisson's ratio 𝜈 0
constant gradient activity parameter 𝑐 1 mm2

damage softening law 𝜔 exponential
damage-initiation threshold 𝜅0 10−4
softening parameter 𝛽 50
residual parameter 𝛼 0.99

2.4. Results and discussions
To check the performance of the proposed transient displacement-based GEDM,
a one-dimensional uniaxial bar with length of 100 mm and a central imperfection
subject to a uniaxial tensile load as shown in Figure 2.6 is used. The imperfection
is influenced by a 10 percent reduction of the Young's modulus in the central part
of the bar with length of 10 mm. Material and numerical parameters are listed in
Table 2.1.

For the discretization, a bilinear quadrilateral (Q4) element type is used for both
local and nonlocal displacement fields. The simulation starts with displacement
control until dissipation becomes significant or convergence becomes problematic in
the case of existence of snap-back in the load-displacement curve due to unloading.
Then the simulation continues with an energy-based arc-length control until loading
is detected; at that point the solution algorithm switches back to the displacement
control. It is important to note that, in simulations involving a binary activity
function as described in Section 2.4.2, only displacement control is utilized. This is
because multiple solutions can arise, leading to unreliable results when snap-back
occurs. A detailed discussion of this issue can be found in Section 2.4.2.

As shown in Table 2.1, damage growth at a material point (i.e., an integration
point) is described by an exponential damage softening law. In the following one-
dimensional example, the material is assumed to fail only in tension; hence, the
strain is only supposed to increase. Therefore the equivalent strain measure to be
used is the absolute value of the axial strain 𝑒̃ = | ̃𝜀𝑥𝑥|. This is identical to the value
obtained using the Mazar’s criterion where only the positive part of the strain is
considered. In the modified von-Mises equivalent strain model, this can be achieved
by using an infinite (i.e., very large) value of 𝑘.

100 mm

1 mm

10 mm

Fx/2,ux

Fx/2,ux

Figure 2.6: A uniaxial tensile bar with central imperfection: geometry and boundary conditions.
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Figure 2.7: Mesh sensitivity study using a constant length scale.

2.4.1. Damage spreading in the classical model
Figure 2.7 shows a mesh-sensitivity study for the one-dimensional tensile bar test
with the constant activity function. In this example, six mesh configurations with
50, 100, 200, 400, 800 and 1600 bilinear quadrilateral elements in the horizontal
direction and one element in vertical direction are employed. The evolution of
damage, nonlocal equivalent strain, and loading indicator function for the results
with 400 elements are plotted in Figure 2.8 a, b and c, respectively. For the standard
model the evolution of the transient activity function is constant (𝑔 = 1) and
is therefore not reported. Figure 2.8a shows that the damaged region expands
as the load increases. This is supported by the increasing values of the nonlocal
equivalent strain and the loading indicator function during the evolution process, as
demonstrated in Figure 2.8b and Figure 2.8c, respectively.

2.4.2. Preliminary binary function
Figure 2.9 shows a mesh-sensitivity study for the one-dimensional tensile bar test
with a binary gradient activity function. The curves are obtained with a displace-
ment control algorithm and the parameter 𝜔crit = 0.9999. The drops in the force-
displacement curves are due to the use of a displacement control algorithm to trace
the equilibrium path. Figure 2.10a, b, c, d and e show the evolution of damage, non-
local equivalent strain, loading indicator function, transient activity function and
horizontal displacement with 400 elements for the transient model with a binary
activity function, respectively. Apart from needing an extra input parameter 𝜔crit
as a critical damage level, the following numerical issues arise by using a binary
function:

- Spurious damage growth increases by using a larger value of 𝜔crit because the
model behaves like the standard model up until very high strain levels.

- As shown in Figure 2.11 for 𝑐 = 5 mm2, by using larger value of the length
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Figure 2.8: Evolution of (a) damage, (b) nonlocal equivalent strain and (c) loading indicator
function for the standard model with 400 elements and 𝑐 = 1 mm2. Evolution axis is up to 0.5
mm.

scale, the damage profile plateaus (becomes flat in a large central portion of the bar)
and strain localization happens in more than one random location in the central
region, mainly determined by round-off errors and the error tolerance used in the
Newton-Raphson iterative procedure (although the relative large value of the length
scale and critical damage level are also partly responsible for this behavior). Using
a strict error tolerance to identify the material points with maximum damage value
somehow solves the issue but the tolerance turns out to be problem-dependent.
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Figure 2.9: Mesh sensitivity study using transient model with binary activity function and 𝜔crit =
0.9999. The case with dashed blue line corresponds to the converged solution of the model with a
constant gradient activity parameter obtained using 1600 elements.



2.4. Results and discussions

2

35

(a)

da
m

ag
e

0 20 40 60 80 100

0

0.5

1

x
evo

lutio
n

da
m

ag
e

(b)

no
nl

oc
al

eq
.

st
ra

in

0 20 40 60 80 100

0

0.5

1

x
evo

lutio
nno

nl
oc

al
eq

.
st

ra
in

(c)

lo
ad

in
g

in
di

ca
to

r
fu

nc
tio

n

0 20 40 60 80 100

0

0.5

1

x
evo

lutio
n

lo
ad

in
g

fu
nc

tio
n

(d)

1−
𝑔

0 20 40 60 80 100

0

0.5

1

x
evo

lutio
n

1
−

g

(e)

di
sp

la
ce

m
en

t

0 20 40 60 80 100

0

0.2

0.4

x
evo

lutio
ndi

sp
la

ce
m

en
t

(m
m

)

Figure 2.10: Evolution of (a) damage, (b) nonlocal equivalent strain, (c) loading indicator function,
(d) 1 − 𝑔 and (e) horizontal displacement using a binary activity function with 400 elements,
𝜔crit = 0.9999 and 𝑐 = 1 mm2. Evolution axis is up to 0.5 mm.
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Figure 2.11: Evolution of (a) damage, (b) nonlocal equivalent strain, (c) loading indicator function,
(d) 1−𝑔 and (e) horizontal displacement using a binary activity function with 400 elements (𝜔crit =
0.9999 and 𝑐 = 5 mm2). The spikes in panels (b) and (d) appear when the damage profile is flat
(due to relative large value of length scale, critical damage level, and tolerance). Such a behavior
happens for instance with a slack error tolerance (equal to 10−4 for displacements control instead
of 10−6 or 10−2 for energy control instead of 10−4). In these cases, the solution field localizes
incorrectly in more than one element leading to the creation of more than one spike in the damage
evolution plot. The expected final profiles should contain a single spike in the center of the bar.
Evolution axis is up to 0.4367 mm.
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2.4.3. Transient activity function linked to the damage field
The problem with the transient activity functions 𝑔(𝜔, 𝑛) = 1 − 𝜔𝑛 is that the de-
creasing nonlocal interaction between material points is too fast, causing premature
mesh-sensitivity as illustrated in Figure 2.13 for 𝑛 = 4. Mesh sensitivity, in this
case, starts as soon as the load-displacement curve shows a snap-back response. We
can postpone the appearance of the snap-back point by increasing the exponent 𝑛
until the response becomes identical to that of the standard model (i.e., a constant
gradient activity function). The problem with large values of the exponent 𝑛 is the
appearance of damage spreading. As shown in Figure 2.12, a mesh configuration
with 1600 elements is used to investigate the effect of the exponent 𝑛 on the force-
displacement responses, and the responses are compared to the force-displacement
response obtained by the model with a constant length scale. It is evident that in-
creasing the exponent 𝑛 delays localization. By using 𝑛 = ∞ the function 𝑔 = 1−𝜔𝑛
tends to the binary function and decays to zero without needing an extra input pa-
rameter 𝜔crit.

Figure 2.13 shows a mesh-sensitivity study in terms of the force-displacement
curves performed with 𝑔 = 1 − 𝜔4. Figure 2.14 shows that by using 𝑔 = 1 − 𝜔4
damage broadening is removed, but, as shown in Figure 2.13, the convergence to a
mesh-dependent results is too slow means requirement of a very fine mesh size in
the damaged region. In addition, our numerical investigations in a two-dimensional
setting shows its mesh-dependency. The local response of the model in terms of
damage and nonlocal equivalent strain fields offers a more complete picture of what
is happening: the only way to stop damage spreading is to stop spreading of the
nonlocal equivalent strain.

A possible solution is to delay the decay of the transient activity function with
the introduction of a residual 𝑅 and a critical damage value 𝜔crit to set the transient
activity function to zero. Such a modification allows the model to build up damage
up to significant strain level thus releasing a reduced amount of elastic energy after
the critical damage level is reached. The residual 𝑅 can be introduced by a modifi-
cation of the 𝑔(𝜔, 𝑛) function as in 𝑔(𝜔, 𝑛, 𝑅, 𝜔crit) = 1− (1− 𝑅)𝜔𝑛. This function
however can generate spikes (as shown in Figure 2.11) when the damage profile is
too flat.
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Figure 2.12: Effect of 𝑛 in 𝑔 = 1 − 𝜔𝑛 on the force-displacement response (with 1600 elements).
The case with dashed blue line corresponds to the converged solution of the model with a constant
gradient activity parameter obtained using 1600 elements.
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Figure 2.13: Mesh sensitivity study using 𝑔 = 1−𝜔4. The case with dashed blue line corresponds
to the converged solution of the model with a constant gradient activity parameter obtained using
1600 elements.
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Figure 2.14: Evolution of (a) damage, (b) nonlocal equivalent strain, (c) loading indicator function,
(d) 1 − 𝑔 and (e) horizontal displacement using 𝑔 = 1 − 𝜔4 with 400 elements. Evolution axis is
up to 0.05 mm.
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2.4.4. Transient activity function from strain­based model
Figure 2.15 shows a mesh-sensitivity study obtained with the 𝑔𝑒̃ function. The
evolutions of damage, nonlocal equivalent strain, loading indicator function, tran-
sient activity function and horizontal displacement with 400 elements are plotted
in Figure 2.16a, b, c, d and e, respectively. Comparison of the force-displacement
curves with the force-displacement curves obtained by 𝑔 = 1 − 𝜔4 indicates the
performance of this function to delay the localization process (and the spikes in the
evolution profiles discussed earlier are not present anymore).

0 5 ·10−2 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

displacement (mm)

fo
rc

e
(N

)

constant
100
200
400
800
1600

Figure 2.15: Mesh sensitivity study using a transient activity function 𝑔𝑒̃ from a strain-based
model. The case with dashed blue line corresponds to the converged solution of the model with a
constant gradient activity parameter obtained using 1600 elements
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Figure 2.16: Evolution of (a) damage, (b) nonlocal equivalent strain, (c) loading indicator function,
(d) 1−𝑔 and (e) horizontal displacement using a transient activity function 𝑔𝑒̃ with 400 elements.
Evolution axis is up to 0.25 mm.
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2.4.5. Transient activity function based on an equivalent dis­
sipation with the strain­based model

Figure 2.17 shows a mesh-sensitivity study using the 𝑔𝑢̃ function. The results are
mesh independent. It means the dissipation tends to a non-zero value. The evo-
lutions of damage, nonlocal equivalent strain, loading indicator function, transient
activity function and horizontal displacement with 400 elements are plotted in Fig-
ure 2.18a, b, c, d and e respectively. The loading indicator function in Figure 2.18c
shows no damage spreading.
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Figure 2.17: Mesh sensitivity study using a transient activity function 𝑔𝑢̃. The case with dashed
blue line corresponds to the converged solution of the model with a constant gradient activity
parameter obtained using 1600 elements.
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Figure 2.18: Evolution of (a) damage, (b) nonlocal equivalent strain, (c) loading indicator function,
(d) 1−𝑔 and (e) horizontal displacement using a transient activity function 𝑔𝑢̃ with 400 elements.
Evolution axis is up to 0.25 mm.
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2.5. Conclusions
A displacement-based gradient enhanced damage model equipped with a transient
activity function solves the problem of incorrect damage widening in a one dimen-
sional setting, bridging damage and fracture mechanics for quasi-brittle failure. The
model can appropriately describe the discontinuous nature of the displacement field
at final stages of failure. Hence, the problem of spurious damage growth in the orig-
inal displacement-based GEDM is eliminated. Here, we relied on a one-dimensional
situation to derive the transient activity functions. Among the fifteen transient ac-
tivity functions that have been tested, four functions were selected for this chapter.
We have observed that not all transient activity functions are suitable. Those with
fast decays to zero for instance give rise to mesh-dependency.
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[5] G. Pijaudier-Cabot and Z. P. Bažant, Nonlocal damage theory, Journal of en-
gineering mechanics 113, 1512 (1987).

[6] A. Simone, G. N. Wells, and L. J. Sluys, From continuous to discontinuous
failure in a gradient-enhanced continuum damage model, Computer Methods
in Applied Mechanics and Engineering 192, 4581 (2003).

[7] S. Saroukhani, R. Vafadari, and A. Simone, A simplified implementation of a
gradient-enhanced damage model with transient length scale effects, Compu-
tational Mechanics 51, 899 (2013).

[8] L. H. Poh and G. Sun, Localizing gradient damage model with decreasing in-
teractions, International Journal for Numerical Methods in Engineering 110,
503 (2017).

[9] J.-Y. Wu, A geometrically regularized gradient-damage model with energetic
equivalence, Computer Methods in Applied Mechanics and Engineering 328,
612 (2018).

[10] T. H. A. Nguyen, T. Q. Bui, and S. Hirose, Smoothing gradient damage model
with evolving anisotropic nonlocal interactions tailored to low-order finite el-
ements, Computer Methods in Applied Mechanics and Engineering 328, 498
(2018).

[11] A. Rodŕıguez-Ferran, I. Morata, and A. Huerta, A new damage model based
on non-local displacements, International Journal for numerical and analytical
methods in geomechanics 29, 473 (2005).

http://dx.doi.org/ 10.1016/S0045-7825(98)80011-X
http://dx.doi.org/ 10.1016/S0045-7825(98)80011-X
http://dx.doi.org/10.1016/j.ijsolstr.2003.09.020
http://dx.doi.org/10.1016/j.ijsolstr.2003.09.020
http://dx.doi.org/ 10.1016/j.cma.2017.12.027
http://dx.doi.org/ 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
http://dx.doi.org/ 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
http://dx.doi.org/ 10.1061/(ASCE)0733-9399(1987)113:10(1512)
http://dx.doi.org/ 10.1061/(ASCE)0733-9399(1987)113:10(1512)
http://dx.doi.org/10.1016/S0045-7825(03)00428-6
http://dx.doi.org/10.1016/S0045-7825(03)00428-6
http://dx.doi.org/10.1007/s00466-012-0769-8
http://dx.doi.org/10.1007/s00466-012-0769-8
http://dx.doi.org/10.1002/nme.5364
http://dx.doi.org/10.1002/nme.5364
http://dx.doi.org/10.1016/j.cma.2017.09.027
http://dx.doi.org/10.1016/j.cma.2017.09.027
http://dx.doi.org/ 10.1016/j.cma.2017.09.019
http://dx.doi.org/ 10.1016/j.cma.2017.09.019
http://dx.doi.org/10.1002/nag.422
http://dx.doi.org/10.1002/nag.422




3
Transient

displacement­based GEDM:
Two­dimensional study

In this chapter, a transient length­scale extension of the displacement­based
gradient­enhanced isotropic damage model for two­dimensional problems is
proposed. Model formulation and implementation are thoroughly discussed,
and its regularization capabilities are compared to those of the correspond­
ing constant length­scale version in classical benchmark problems. Despite
the existence of spurious damage growth in mode­I failure, in mode­II failure
realistic damage initiation, growth and propagation are guaranteed.
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3.1. Introduction
As outlined in Section 2.1, there is a need to develop a transient displacement-based
GEDM in order to deal with incorrect damage widening and migration issues.

Throughout this chapter, we will be focusing on answering the following question:
Would it be possible to use the transient activity function that has been formu-

lated and used as part of the previous chapter in a one-dimensional setting in order
to eliminate the spurious damage growth in a two-dimensional setting as well?

To answer this question, it is necessary to investigate the difference between
one- and two-dimensional damage regularization approaches. We believe that there
is currently no reliable continuous damage model without damages spreading and
migration issues in higher dimensions that can provide mesh-independent results
when the length scale tends to zero. This is considered to be one of the major
limitations associated with the continuous damage theory, and one that cannot be
ignored.

The purpose of this chapter is to present some preliminary steps toward de-
veloping a reliable continuous damage model that does not suffer from problems
associated with damage widening and migration issues in higher dimensions. This
highlights the necessity of investigating the fidelity of the proposed transient activ-
ity functions in the previous chapter in a two-dimensional setting. For this purpose,
two-dimensional studies have been conducted using the transient activity function
𝑔𝑢̃ that was proposed in Section 2.3.4 for the one-dimensional case. The performance
of the proposed model in two-dimensional problems will be evaluated based on its
ability to eliminate spurious damage widening and damage migration in mode-I and
mode-II failure mechanisms.

This chapter is organized as follows: Section 3.2 contains the governing equations
of the displacement-based GEDM with transient length scale for two-dimensional
problems. Section 3.3 presents the results of the two-dimensional displacement-
based GEDM equipped with the transient length scale defined in Section 2.3. We
conclude this chapter in Section 3.4 with some comments about the pros and cons
of the proposed model.
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3.2. Governing equations and discretization
3.2.1. Strong­form equations and boundary conditions
A two-dimensional displacement-based gradient-enhanced damage model with tran-
sient activity is formulated by a system of coupled differential equations expressed
in terms of the classical equilibrium equation and a diffusion equation as

∇𝑠 ⋅ 𝝈 + b = 0, in Ω, (3.1)

ũ− ∇ ⋅ (𝑔𝑐∇ũ) = u, in Ω, (3.2)

subject to Dirichlet and Neumann boundary conditions applied on the local dis-
placement field u and its gradient as

u = u, on Γu, (3.3)

𝝈n = t, on Γt, (3.4)

and the following Dirichlet type and non-homogeneous Neumann boundary condi-
tions applied on the nonlocal displacement field ũ and its gradient

ũ ⋅ n = u ⋅ n, on Γ, (3.5)

n ⋅ ∇ũ ⋅ t = n ⋅ ∇u ⋅ t, on Γ, (3.6)

where boundary Γ = Γu ∪ Γt and Γu ∩ Γt = ⊘ in which u and t are the prescribed
local displacement and traction vectors applied on boundaries Γu and Γt, respectively,
and 𝝈 and b are the stress tensor and the body forces vector, respectively. The unit
outward normal and tangent vectors on the boundary Γ are defined by n = [𝑛𝑥 , 𝑛𝑦]

T

and t = [𝑡𝑥 , 𝑡𝑦]
T
, respectively and ∇𝑠 and ∇ are the gradient operators applied on

the local and nonlocal displacement fields , respectively and defined as

∇𝑠 =
⎡
⎢
⎢
⎢
⎣

𝜕
𝜕𝑥 0
0 𝜕

𝜕𝑦
𝜕
𝜕𝑦

𝜕
𝜕𝑥

⎤
⎥
⎥
⎥
⎦

, ∇ =

⎡
⎢
⎢
⎢
⎢
⎣

𝜕
𝜕𝑥 0
𝜕
𝜕𝑦 0
0 𝜕

𝜕𝑥
0 𝜕

𝜕𝑦

⎤
⎥
⎥
⎥
⎥
⎦

. (3.7)

The parameters 𝑔 and 𝑐 control the active nonlocal interactions between micro-
cracks in which 𝑔 is a transient activity function and 𝑐 = 𝓁20 is a constant gradient
activity parameter. Details regarding the weak formulation and the definition of
the discrete governing equations are discussed next.
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3.2.2. Weak formulation
The weighted residual approach is used to obtain the weak-form of the governing
equations. To this end, the governing strong-form equations, Equations (3.1) and
(3.2), are multiplied by the vectorial functions w and w̃, respectively. The resulting
equations are then integrated over problem domain Ω yielding

∫
Ω

[w ⋅ (∇𝑠 ⋅ 𝝈 + b)]dΩ = 0, (3.8)

∫
Ω

[w̃ ⋅ (ũ− ∇ ⋅ (𝑔𝑐∇ũ))]dΩ = ∫
Ω

[w̃ ⋅ u]dΩ. (3.9)

Using the identities

w ⋅ (∇𝑠 ⋅ 𝝈) = ∇𝑠 ⋅ (w ⋅ 𝝈) − ∇𝑠w ∶ 𝝈, (3.10)

w̃ ⋅ [∇ ⋅ (𝑔𝑐∇ũ)] = ∇ ⋅ (w̃ ⋅ 𝑔𝑐∇ũ) − ∇w̃ ∶ 𝑔 𝑐∇ũ, (3.11)

and

∫
Ω

[∇ ⋅ (w̃ ⋅ 𝑔𝑐∇ũ)]dΩ = ∫
Γ
[w̃ ⋅ (𝑔𝑐∇ũ ⋅ n)]dΓ , (3.12)

∫
Ω

[∇𝑠 ⋅ (w ⋅ 𝝈)]dΩ = ∫
Γt
[w ⋅ (𝝈 ⋅ n)]dΓ = ∫

Γt
[w ⋅ t]dΓ , (3.13)

and substituting them into Equations (3.8) and (3.9) lead to

∫
Ω

[∇𝑠w ∶ 𝝈]dΩ = ∫
Ω

[w ⋅ b]dΩ +∫
Γt
[w ⋅ t]dΓ , (3.14)

∫
Ω

[w̃ũ+ ∇w̃ ∶ 𝑔 𝑐∇ũ− w̃u]dΩ = ∫
Γ
[w̃ ⋅ (𝑔𝑐∇ũ ⋅ n)]dΓ . (3.15)

To apply the non-homogeneous Neumann boundary condition (the right-hand side
of Equation (3.15)), we can decompose w̃ as an arbitrary function in the form of
w̃ = (w̃ ⋅ t) ⋅ t + (w̃ ⋅ n) ⋅ n such that w̃ ⋅ n = 0 leads to the final weak-form of the
governing equations as

∫
Ω

[∇𝑠w ∶ 𝝈]dΩ = ∫
Ω

[w ⋅ b]dΩ +∫
Γt
[w ⋅ t]dΓ , (3.16)

∫
Ω

[w̃ũ+ ∇w̃ ∶ 𝑔 𝑐∇ũ− w̃u]dΩ = ∫
Γ
[(w̃ ⋅ t) ⋅ t ⋅ (𝑔𝑐∇ũ ⋅ n)]dΓ . (3.17)
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3.2.3. Finite element discretization
The Bubnov-Galerkin method is employed for the discretization of the weak-form
of the governing equations. To this end, the local and nonlocal displacement fields,
along with the corresponding weight functions, are discretized at the element level
as follows:

u = Nuℎ, wu = Nwℎu, ∇𝑠u = ∇𝑠Nuℎ, ∇𝑠wu = ∇𝑠Nwℎu, (3.18)

ũ = Nũℎ, wũ = Nwℎũ, ∇ũ = ∇Nũℎ, ∇wũ = ∇Nwℎũ, (3.19)

in which the same shape function matrix, N, is employed to interpolate displacement
fields, u and ũ, and the weight functions, wu and wũ. Inserting the above relations
into the final weak form (Equations (3.16) and (3.17)) and expressing the stress and
strain tensors in their vector form yield

∑
𝑝
wℎu

T∇𝑠NT𝝈𝑝d𝑣𝑝 =∑
𝑝
wℎu

TNTb𝑝d𝑣𝑝 +∫
Γt
wℎu

TNTt𝑝dΓ , (3.20)

∑
𝑝
[wℎũ

TNTNũℎ +wℎũ
T∇NT𝑔𝑝𝑐∇Nũℎ −wℎũ

TNTNuℎ]d𝑣𝑝 =

∑
𝑝
[(wℎũ

TNT
𝑝 ⋅ t𝑝) ⋅ t𝑝 ⋅ (𝑔𝑝𝑐∇Nũℎ ⋅ n𝑝)]dΓ𝑝, (3.21)

which have to hold for any choice of wu and wũ. By removing wu and wũ from
both sides of the equations results in

∑
𝑝
∇𝑠NT𝝈𝑝d𝑣𝑝 =∑

𝑝
NTb𝑝d𝑣𝑝 +∫

Γt
NTt𝑝dΓ , (3.22)

∑
𝑝
[NTNũℎ + ∇NT𝑔𝑝𝑐∇Nũℎ − NTNuℎ]d𝑣𝑝 =

∑
𝑝
[(NT

𝑝 ⋅ t𝑝) ⋅ t𝑝 ⋅ (𝑔𝑝𝑐∇Nũℎ ⋅ n𝑝)]dΓ𝑝. (3.23)

Now, by defining M and D as the mass-like and diffusivity matrices

M = ∑
𝑝
NTNd𝑣𝑝, (3.24)

D = ∑
𝑝
∇NT𝑔𝑝𝑐∇Nd𝑣𝑝, (3.25)
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and the matrix

K𝜕Ω =∑
𝑝
[(NT

𝑝 ⋅ t𝑝) ⋅ t𝑝 ⋅ (𝑔𝑝𝑐∇N ⋅ n𝑝)]dΓ𝑝, (3.26)

that can be written as

K𝜕Ω =∑
𝑝
[NT

𝑝a𝑝𝑔𝑝𝑐∇N]dΓ𝑝, (3.27)

with

a𝑝 = [
𝑛𝑥𝑡2𝑥 𝑛𝑦𝑡2𝑥 𝑛𝑥𝑡𝑥𝑡𝑦 𝑛𝑦𝑡𝑥𝑡𝑦
𝑛𝑥𝑡𝑥𝑡𝑦 𝑛𝑦𝑡𝑥𝑡𝑦 𝑛𝑥𝑡2𝑦 𝑛𝑦𝑡2𝑦 ] , (3.28)

the discretized form of the governing equations is expressed as

∑
𝑝
∇𝑠NT𝝈𝑝d𝑣𝑝 =∑

𝑝
NTb𝑝d𝑣𝑝 +∫

Γt
NTt𝑝dΓ , (3.29)

Mũℎ +Dũℎ −Muℎ −K𝜕Ωuℎ = 0. (3.30)

Finally, the discretized governing equations are rewritten in terms of external
and internal nodal forces according to

fuint = fuext, (3.31)

f ũint = f ũext, (3.32)

in which

fuint = ∑
𝑝
∇𝑠NT𝝈𝑝d𝑣𝑝, (3.33)

fuext = ∑
𝑝
NTb𝑝d𝑣𝑝 +∫

Γt
NTt𝑝dΓ , (3.34)

f ũint = Mũℎ +Dũℎ −Muℎ −K𝜕Ωuℎ , (3.35)

f ũext = 0. (3.36)

3.2.4. Consistent linearization
A consistent tangent stiffness is obtained by linearization of Equations (3.31) and
(3.32) at iteration 𝑖 + 1 with respect to the previous iteration 𝑖. Accordingly,

fuext,𝑖+1 = fuint,𝑖 + 𝛿f
u
int,𝑖+1, (3.37)

f ũext,𝑖+1 = f ũint,𝑖 + 𝛿f
ũ
int,𝑖+1, (3.38)
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gives

𝛿fuint,𝑖+1 = fuext,𝑖+1 − fuint,𝑖 , (3.39)

𝛿f ũint,𝑖+1 = f ũext,𝑖+1 − f ũint,𝑖 , (3.40)

where

𝛿fuint,𝑖+1 = ∑
𝑝
[∇𝑠NT𝛿𝝈𝑝,𝑖+1]d𝑣𝑝, (3.41)

𝛿f ũint,𝑖+1 = M𝛿ũℎ𝑖+1 −M𝛿uℎ𝑖+1 +D𝛿ũℎ𝑖+1

+ 𝛿D𝑖+1ũℎ −K𝜕Ω𝛿uℎ𝑖+1 − 𝛿K𝜕Ω𝑖+1uℎ . (3.42)

To obtain the stress variation, 𝛿𝝈𝑖+1, we assume the free energy density potential
function

𝜓 = 1
2(1 − 𝜔) 𝝐 ∶ 𝓒 ∶ 𝝐, (3.43)

which leads to the expressions of the stress tensor and its derivative:

𝝈 = 𝜕𝜓
𝜕𝝐 = (1 − 𝜔)𝓒 ∶ 𝝐, (3.44)

𝛿𝝈𝑖+1 = (1 − 𝜔𝑖) 𝓒𝛿𝝐𝑖+1 − 𝓒𝝐𝑖𝛿𝜔𝑖+1, (3.45)
with 𝓒 the fourth order elastic moduli tensor and

𝛿𝝐𝑖+1 = ∇𝑠N𝛿uℎ𝑖+1, 𝛿𝝐̃𝑖+1 = ∇𝑠N𝛿ũℎ𝑖+1, (3.46)

𝛿𝜔𝑖+1 = (
𝜕𝜔
𝜕𝝐̃ )𝑖

𝛿𝝐̃𝑖+1 = (
𝜕𝜔
𝜕𝜅 )𝑖

(𝜕𝜅𝜕𝑒̃ )𝑖
(𝜕𝑒̃𝜕𝝐̃)𝑖

∇𝑠N𝛿ũℎ𝑖+1. (3.47)

With these expressions, the stress increment is written as

𝛿𝝈𝑖+1 = (1 − 𝜔𝑖) 𝓒∇𝑠N𝛿uℎ𝑖+1 − 𝓒𝝐𝑖 (
𝜕𝜔
𝜕𝝐̃ )𝑖

∇𝑠N𝛿ũℎ𝑖+1. (3.48)

The matrices D and K𝜕Ω are defined as a function of both uℎ𝑖+1 and ũℎ𝑖+1. Hence,
their linearizations give

𝛿D𝑖+1 = (
𝜕D
𝜕uℎ )𝑖

𝛿uℎ𝑖+1 + (
𝜕D
𝜕ũℎ )𝑖

𝛿ũℎ𝑖+1, (3.49)

𝛿K𝜕Ω𝑖+1 = (
𝜕K𝜕Ω
𝜕uℎ )𝑖

𝛿uℎ𝑖+1 + (
𝜕K𝜕Ω
𝜕ũℎ )𝑖

𝛿ũℎ𝑖+1. (3.50)
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Substitution of the above variations into Equations (3.41) and (3.42) leads to

𝛿fuint,𝑖+1 =∑
𝑝
[∇𝑠NT(1 − 𝜔𝑖) 𝓒∇𝑠N] 𝛿uℎ𝑖+1d𝑣𝑝 −

∑
𝑝
[∇𝑠NT𝓒𝝐𝑖 (

𝜕𝜔
𝜕𝝐̃ ) ∇

𝑠N] 𝛿ũℎ𝑖+1d𝑣𝑝, (3.51)

𝛿f ũint,𝑖+1 = [−M−K𝜕Ω +
𝜕D
𝜕uℎ ũ

ℎ − 𝜕K𝜕Ω𝜕uℎ uℎ] 𝛿uℎ𝑖+1 +

[M+D+ 𝜕D
𝜕ũℎ ũ

ℎ − 𝜕K𝜕Ω𝜕ũℎ uℎ] 𝛿ũℎ𝑖+1. (3.52)

Finally, the discretized governing equations at a Newton-Raphson iteration read

[ K
𝑖
uu K𝑖uũ

K𝑖ũu K𝑖ũũ
]

⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
16×16

[ 𝛿u
𝑖+1

𝛿ũ𝑖+1 ]⏝⎵⎵⏟⎵⎵⏝
16×1

= [
fuext,𝑖+1 − fuint,𝑖

−f ũint,𝑖
]

⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝
16×1

, (3.53)

with components

K𝑖uu⏟
8×8

= ∑
𝑝
[∇𝑠NT⏝⏟⏝
8×3

(1 − 𝜔𝑖)⏝⎵⏟⎵⏝
scalar

𝓒⏟
3×3
∇𝑠N⏟
3×8

]d𝑣𝑝, (3.54)

K𝑖uũ⏟
8×8

= ∑
𝑝

⎡
⎢
⎢
⎢
⎣

−∇𝑠NT⏝⏟⏝
8×3

𝓒⏟
3×3

𝝐𝑖⏟
3×1

(𝜕𝜔𝜕𝝐̃ )𝑖⏝⎵⏟⎵⏝
1×3

∇𝑠N⏟
3×8

⎤
⎥
⎥
⎥
⎦

d𝑣𝑝, (3.55)

K𝑖ũu⏟
8×8

= −M⏟
8×8

−K𝜕Ω⏟
8×8

+ 𝜕D
𝜕uℎ⏟
8×1

ũℎ⏟
1×8

− 𝜕K𝜕Ω𝜕uℎ⏝⎵⏟⎵⏝
8×1

uℎ⏟
1×8
, (3.56)

K𝑖ũũ⏟
8×8

= M⏟
8×8

+ D⏟
8×8

+ 𝜕D
𝜕ũℎ⏟
8×1

ũℎ⏟
1×8

− 𝜕K𝜕Ω𝜕ũℎ⏝⎵⏟⎵⏝
8×1

uℎ⏟
1×8
, (3.57)



3.2. Governing equations and discretization

3

55

in which

𝜕D
𝜕uℎ ũ

ℎ
⏝⎵⏟⎵⏝
8×8

= ∑
𝑝
[
𝜕𝑔𝑝
𝜕uℎ⏟
1×8

ũℎ⏟
8×1
∇NT⏟
8×4

𝑐⏟
scalar

∇N⏟
4×8
]d𝑣𝑝, (3.58)

𝜕D
𝜕ũℎ ũ

ℎ
⏝⎵⏟⎵⏝
8×8

= ∑
𝑝
[
𝜕𝑔𝑝
𝜕ũℎ⏟
1×8

ũℎ⏟
8×1
∇NT⏟
8×4

𝑐⏟
scalar

∇N⏟
4×8
]d𝑣𝑝, (3.59)

𝜕K𝜕Ω
𝜕uℎ uℎ⏝⎵⎵⏟⎵⎵⏝
8×8

= ∑
𝑝
[
𝜕𝑔𝑝
𝜕uℎ⏟
1×8

uℎ⏟
8×1

NT⏟
8×2

a𝑝⏟
2×4

𝑐⏟
scalar

∇N⏟
4×8
]dΓ𝑝, (3.60)

𝜕K𝜕Ω
𝜕ũℎ uℎ⏝⎵⎵⏟⎵⎵⏝
8×8

= ∑
𝑝
[
𝜕𝑔𝑝
𝜕ũℎ⏟
1×8

uℎ⏟
8×1

NT⏟
8×2

a𝑝⏟
2×4

𝑐⏟
scalar

∇N⏟
4×8
]dΓ𝑝, (3.61)

where 𝑝 is a material/integration point.
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3.3. Results and discussions
In this section, the merit of the proposed transient displacement-based GEDM is
demonstrated by means of two-dimensional benchmark examples. First, as a mode-I
failure example, a four-point bending test is modeled and the results are compared
against the displacement-based model with a constant internal length scale to show
the efficiency of the proposed model for the removal of spurious damage growth.
Then, the formation of shear bands under model-II failure is investigated on a plate
with an imperfection. Finally, the performance of the model is evaluated through an
L-shaped panel test in order to obtain a thin crack-like damage band. Both local and
nonlocal displacement fields are simulated using quadrilateral linear (Q4) element
types with full integration schemes. The modified von-Mises equivalent strain [1] is
employed to calculate both local and nonlocal equivalent strains. It should be noted
that the transient activity function 𝑔𝑢̃ that is proposed in Section 2.3.4 is employed.

3.3.1. Mode­I failure: a notched four­point concrete beam
A four-point bending beam specimen reported experimentally in [2] is considered.
This example illustrates the performance of the proposed transient displacement-
based GEDM for removing the incorrect damage widening in two-dimensional prob-
lems under mode-I failure. As shown in Figure 3.1a, a specimen with a vertical
crack at the center of the bottom edge and with dimensions 500 mm × 100 mm
with uniform thickness 50 mm under plane strain condition and simply supported
with a span of 450 mm is investigated. Geometry and boundary conditions are also
shown in Figure 3.1a. The vertically downward loads are applied at two points tri-
secting the span, and the vertical displacement at point A with an offset of 7.5 mm
from the center-line of the beam is monitored. Due to the symmetry (symmetric
geometry and boundary conditions), only half of the specimen is simulated as shown
in Figure 3.1b. The numerical parameters and material properties are taken from
[3] and are listed in Table 3.1.

Table 3.1: Four-point bending beam: material and damage parameters.

symbol value
Young's modulus 𝐸 40 × 103 MPa
Poisson's ratio 𝜈 0.2
constant gradient activity parameter 𝑐 4 mm2

damage softening law 𝜔 exponential
damage threshold equivalent strain 𝜅0 7.5 × 10−5
softening parameter 𝛽 300
residual parameter 𝛼 0.92
compressive to tensile strength ratio 𝑘 10
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Figure 3.1: Four-point bending beam: geometry and boundary conditions for (a) full specimen and
(b) half specimen (unit of length: mm).

For the mesh sensitivity study, four pre-refined mesh configurations with bilinear
quadrilateral elements and with element sizes in the central part (damaged zone)
of the beam equal to 2.5, 1.25, 0.625 and 0.3125 mm, respectively are generated
using Gmsh [4]. The corresponding force-displacement curves are plotted in Fig-
ure 3.2 and compared to those obtained with the displacement-based model with a
constant length scale. As shown in Figure 3.2, apart from a more brittle response of
the proposed transient length scale model in comparison with the constant length
scale model, the load-displacement curves show that the transient model is properly
regularized and a mesh size equal to 1.25 mm, almost half of the length scale size,
𝓁0 = 2 mm, is sufficient to guarantee an almost converged solution.

To investigate the efficiency of the proposed model in the removal of incorrect
damage widening at high deformation level, the load was further increased com-
pared to the level reached in Figure 3.2. The load-displacement curves with high
deformation level for both transient and constant length scale models are reported in
Figure 3.3. The damage, nonlocal equivalent strain, loading indicator function and
𝑔 contours at snap-shot d (before starting the high deformation level) are compared
in Figure 3.3. The corresponding contours at all indicated snap-shots in Figure 3.3
are compared in Figure 3.5. For plotting the contours of both Figures 3.4 and 3.5,
the finest mesh configuration with element sizes 0.3125 mm is employed.
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Figure 3.2: Four-point bending beam: a mesh-sensitivity study for the models with an evolving
𝑔𝑢̃ (solid) and a constant length scale (dashed).
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Figure 3.3: Four-point bending beam: force-displacement curves used to verify the presence of the
incorrect damage widening in the transient isotropic model.



3.3. Results and discussions

3

59

(i)

(ii)

(iii)

Figure 3.4: Four-point bending beam: comparison of the final (i) damage, (ii) loading indicator
function and (iii) 𝑔 contours with (left) constant model and (right) transient isotropic model at
displacement point e. The ranges of all figures are [0: blue, 1: red].

From the analysis of the contours shown in Figures 3.4 and 3.5, the presence
of incorrect damage widening, albeit limited compared to the constant model, is
still evident in the region around the crack tip. In the results obtained from the
proposed transient model (i.e., the one shown in the right part of the figures), the
growth of both damaged region and loading indicator function are observed in the
lower part of the crack-tip, as evident from the comparison of sub-figures (a) and
(e) in Figure 3.5. Based on the results of this example, it can be concluded that the
proposed transient isotropic model failed to eliminate the incorrect damage widening
issue in two-dimensional problems under mode-I failure.
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Figure 3.5: Four-point bending beam: evolution of (i) damage, (ii) loading indicator function and
(iii) 𝑔 contours at different load-increments (left) with constant model and (right) transient model.
The ranges of all figures are [0: blue, 1: red]
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Table 3.2: Shear-band problem: material and damage parameters.

symbol value
Young's modulus 𝐸 20 × 103 MPa
Poisson's ratio 𝜈 0.2
constant gradient activity parameter 𝑐 2 mm2, 0.5 mm2

damage softening law 𝜔 exponential
damage threshold equivalent strain 𝜅0 10−4
softening parameter 𝛽 300
residual parameter 𝛼 0.99
compressive to tensile strength ratio 𝑘 1

3.3.2. Mode­II failure: shear­band problem
As a second two-dimensional test, the shear-band problem shown in Figure 3.6a and
reported numerically in [5] is considered. Aim of this example is to show the per-
formance of the proposed transient displacement-based GEDM in two-dimensional
problems under mode-II failure. Due to symmetry, only half of the specimen is nu-
merically simulated as shown in Figure 3.6b. The numerical parameters and material
properties are listed in Table 3.2. As indicated in Table 3.2, the shear-band problem
is studied with two values of the constant gradient activity parameter: 𝑐 = 2 mm2

and 𝑐 = 0.5 mm2. A damage threshold equivalent strain in the imperfection zone
equals half that reported in Table 3.2.
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h
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h

2h

Fy,uy
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10 ×

h
20

h

h
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(b)

Figure 3.6: Shear-band problem: geometry and boundary conditions for the specimen in biaxial
compression: (a) full specimen and (b) half specimen. The shaded part indicates the zone with
reduced material property values (unit of length: mm).
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Figure 3.7: Shear-band problem: mesh-sensitivity study for 𝑐 = 2 mm2.

The mesh-sensitivity study for 𝑐 = 2 mm2 is performed using four uniform
mesh configurations with the bilinear quadrilateral elements and the full integration
scheme and with element sizes equal to 3, 1.5, 0.75 and 0.375 mm, respectively.
For 𝑐 = 0.5 mm2 five mesh configurations with the bilinear quadrilateral elements
and the full integration scheme and with element sizes equal to 3, 1.5, 0.75, 0.375
and 0.1875 mm, are employed. The first coarse mesh consists of 400 elements for
both local and nonlocal displacement fields. The medium, fine, finest and tiny
mesh configurations contain 1,600, 6,400, 25,600 and 102,400 elements, respectively.
The corresponding force-displacement curves for different mesh configurations for
𝑐 = 2 mm2 and 𝑐 = 0.5 mm2 are plotted in Figure 3.7 and Figure 3.8, respectively.
In these figures, the curves are also compared against the force-displacement curves
obtained with a constant length scale model.
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Figure 3.8: Shear-band problem: mesh-sensitivity study for 𝑐 = 0.5 mm2.
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An analysis of the load-displacement curves in Figures 3.7 and 3.8 indicate that,
despite the fact that the proposed transient model has a more brittle response when
compared to a model with a constant length scale, the regularization of the transient
model has been successfully performed and that a mesh size of half of the length
scale size (element size equal to 0.75 mm for 𝑐 = 2 mm2 and the element size equal
to 0.375 mm for 𝑐 = 0.5 mm2) is sufficient to guarantee almost convergence. It is
also significant to note that the force-displacement curve shown in Figure 3.7 for
𝑐 = 2 mm2 with the element size equal to 0.375 mm is not smooth at the softening
part, and we have not been able to determine the reason for this.

The mesh configuration with the element size equal to 0.375 mm (mesh configu-
ration 160 × 160) is used to investigate the efficiency of the transient model in the
removal of spurious damage growth. The load level has been increased up until a
final displacement equal to 0.4 mm; the force-displacement responses are depicted
for 𝑐 = 2 mm2 and 𝑐 = 0.5 mm2 in Figure 3.9 and Figure 3.10, respectively. The
corresponding damage, nonlocal equivalent strain, loading indicator function and 𝑔
contours at different load-increments indicated with the snap-shots for 𝑐 = 2 mm2

and 𝑐 = 0.5 mm2 are compared in Figures 3.11 and 3.12, respectively. The con-
tours in Figures 3.11 and 3.12 indicate that the transient model, in contrast to the
constant model, does not exhibit the incorrect widening of damage. The efficiency
of the proposed transient model in addressing the issue of damage widening has
been determined by analyzing the localized contour of the loading indicator func-
tion, as depicted in sub-figure (e) of Figures 3.11 and 3.12. However, the results
were affected by incorrect damage migration, leading to an incorrect final migration
point of damage outside of the imperfection zone before the inclined damage profile
(i.e., the shear band) appeared. This point is illustrated with a black dashed line
in Figures 3.11 and 3.12. In conclusion, despite the existence of incorrect dam-
age migration, albeit to a lesser extent than in the constant model, the proposed
transient activity function, with an isotropic gradient activity function, can be uti-
lized to resolve the incorrect damage widening issue when mode II failure occurs in
two-dimensional problems.
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Figure 3.9: Shear-band problem: force-displacement curves with 𝑐 = 2 mm2 using the 160 × 160
mesh configuration for the study on spurious damage growth.
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Figure 3.10: Shear-band problem: force-displacement curves with 𝑐 = 0.5 mm2 using 160 × 160
mesh configuration for checking spurious damage growth.
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(iii) g
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Figure 3.11: Shear-band problem: evolution of (i) damage, (ii) loading indicator function and (iii)
𝑔 contours with 𝑐 = 2 mm2 at different load-increments on 160 × 160 mesh configuration, (top)
constant model, (bottom) transient model. The ranges of all figures are [0: blue, 1: red]
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(i) damage

(ii) loading indicator function

(iii) g
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Figure 3.12: Shear-band problem: evolution of (i) damage, (ii) loading indicator function and (iii)
𝑔 contours with 𝑐 = 0.5 mm2 at different load-increments on 160 × 160 mesh configuration, (top)
constant model, (bottom) transient model. The ranges of all figures are [0: blue, 1: red]
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Table 3.3: L-shaped panel: numerical and material parameters.

symbol value
Young's modulus 𝐸 16.5 × 103 MPa
Poisson's ratio 𝜈 0.18
constant gradient activity parameter 𝑐 0.5 mm2

damage softening law 𝜔 exponential
damage threshold equivalent strain 𝜅0 2 × 10−4
softening parameter 𝛽 250
residual parameter 𝛼 0.96
compressive to tensile strength ratio 𝑘 10

3.3.3. L­shaped panel test
Finally, we consider the L-shaped panel test conducted by Winkler [6, 7] which
is governed by mode-I failure. Aim of this example is to show the capability of
the proposed model to produce a curved and thin damage band. The geometrical
properties and boundary conditions are shown in Figure 3.13. A specimen with
long edge 500 mm, short edge 250 mm and thickness 100 mm under plane stress
condition is investigated. A vertical displacement is applied. The material and
numerical parameters are listed in Table 3.3.
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20

uy

Figure 3.13: L-shaped panel test: geometry and boundary conditions (unit of length: mm).
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Figure 3.14: L-shaped problem: force-displacement curve for checking spurious damage growth.

Figure 3.14 shows the force-displacement response of the L-shaped specimen and
the corresponding damage, nonlocal equivalent strain, loading indicator function
and 𝑔 contours at different load-increments are depicted in Figure 3.15, respec-
tively. Also, the final contours on the full specimen are shown in Figure 3.16. The
results indicate that while the proposed transient model is effective for obtaining
a curved and thin damage band, a detailed contours analysis (by zooming in Par-
aview software [8]) shown in Figure 3.15 suggests that the results are affected by
the incorrect widening of damage within the area surrounding the notch. This ex-
ample indicates that the proposed transient activity function cannot solve the issue
of incorrect damage widening in mode-I failure, which supports our conclusion from
the first benchmark example.

(i) damage

(ii) loading indicator function

(iii) g
a b c d e

Figure 3.15: L-shaped panel test: (i) damage, (ii) loading indicator function and (iii) 𝑔 contours
at different load-increments. The ranges of all figures are [0: blue, 1: red]
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(i) damage

(ii) loading indicator function

(iii) g

Figure 3.16: L-shaped panel test: final (i) damage, (ii) loading indicator function and (iii) 𝑔
contours. The ranges of all figures are [0: blue, 1: red]
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3.4. Conclusions
This chapter addressed the problem of incorrect damage widening in the gradient-
enhanced damage models in a two-dimensional setting. The solution proposed relies
on the use of a transient length scale in a displacement-based gradient-enhanced
damage model. The choice of a displacement-based model over a classical strain-
based model is dictated by some intrinsic features of the former. At variance with
classical strain-based models [9], the displacement-based model by Rodŕıguez-Ferran
et al. [10] does not show any pathological behavior when the length scale is set equal
to zero and does not alter the representation of the elastic strain field governing
damage initiation ahead of a crack tip [3, 5, 11]. However, being based on a diffusion
equation, damage widening is an inherent feature if the length scale is kept constant.

As discussed in Chapter 2, the performance of the model strongly depends upon
the function that governs the length scale decay. Here we have shown that a mode-I
function performs reasonably well also in a mode-II dominated problem. A more
in-depth analysis, beyond the heuristic perspective employed in this case, seems
however necessary.

In spite of the heuristic definition of the transient length scale, the model can
appropriately describe all stages of failure in a continuous setting, from damage
initiation to strain localization, irrespective of the thickness of the damage band
relative to the specimen size and of the deformation level.

The two-field displacement-based gradient-enhanced damage model has an obvi-
ous disadvantage compared to any two-field gradient-enhanced damage model based
on a strain-based diffusion equation: the increased number of the degrees of free-
dom. While in strain-based formulations only one extra degree of freedom per node
is needed, irrespective of the spatial dimensions of the problem, in displacement-
based formulations the number of extra degrees of freedom per node is equal to the
spatial dimensions of the problem.
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4
Anisotropic

displacement­based GEDM:
Two­dimensional study

A transient­anisotropic displacement­based gradient­enhanced damagemodel
is proposed for failure analysis of quasi­brittle materials. This formulation is
useful to control the material behavior when tensile or compressive strains
are activated or deactivated unequally at different directions. The proposed
model contrasts with existing gradient damage models by enhancing the dis­
placement field rather than a nonlocal strain field or related state variable.
The need for a correction on the gradient activity operator to obtain the correct
kinetics is demonstrated by adjusting the gradient activity parameter upon
strain localization. In practical terms this leads to a non­broadening frac­
ture process zone in the wake of the crack tip, addressing one of the main
criticisms of existing gradient damage models.
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4.1. Introduction
To represent the effects of the presence of a random distribution of microcracks
within the framework of continuum damage mechanics, an internal variable called
internal length scale is usually employed in regularized descriptions of degradation.
In the majority of cases, this quantity has been assumed to be a constant scalar,
although there are also numerous examples of its tensorial representation. For ho-
mogeneous materials with isotropic material properties, a scalar internal length
scale would be sufficient. However, a considerable number of materials in engi-
neering applications such as bones, composites, woods, concrete, and rocks show
heterogeneous behavior. Heterogeneity implies anisotropic degradation, and its in-
corporation into continuum damage models is necessary to properly describe crack
patterns in strongly anisotropic materials.

Several anisotropic damage models have been proposed with the aim to repre-
sent the anisotropic degradation of quasi-brittle materials. These models are useful
to control the material behavior when tensile or compressive strains are activated/
deactivated with more or less smoothness. For instance, numerical formulations
for anisotropic phase-field modeling of brittle fracture have been investigated in
[1]. Nguyen et al. [2] proposed a phase-field model that could reproduce energeti-
cally a non-free anisotropic crack bifurcation within a framework allowing for robust
and fast numerical simulations. In [3] the standard one-variable phase-field/gradient
damage model, able to regularize Griffith’s isotropic brittle fracture problem, was ex-
tended to describe different degradation mechanisms through several distinct dam-
age variables. Li and Maurini [4] revisit the crack kinking problem in materials with
strongly anisotropic surface energies by using a variational phase-field model. The
phase-field term has a regularizing effect, energetically penalizing the crack curva-
ture. Wu et al. [5] studied the failure of carbon fiber reinforced epoxy laminates
using an anisotropic gradient-enhanced continuum damage model embedded in a
mean-field homogenization scheme. Vandoren and Simone [6] proposed two types
of anisotropic stress-based gradient-enhanced damage models to address the issue
of spurious damage growth typical of standard gradient-enhanced damage models.
Both models are based on a decreasing interaction length upon decreasing stresses
and do not require additional model parameters or extra degrees of freedom when
compared to standard gradient-enhanced models.

This chapter aims to present a family of the anisotropic damage models for
the quasi-brittle materials characterized by their capabilities to describe nonlinear
progressive stiffness recalculation. The proposed gradient-enhanced damage model
contrasts with existing gradient-enhanced damage models by enhancing the dis-
placement field rather than a nonlocal strain or related state variable. The need for
a correction on the gradient activity operator is demonstrated. By reducing the gra-
dient activity upon strain localization, the correct field representation for mode-II
failure can be obtained. Applicability of the proposed framework is demonstrated
by means of representative numerical examples. It should be noted that for the
two-dimensional studies, the transient activity function 𝑔𝑢̃ that is proposed for a
one-dimensional case in Section 2.3.4 is employed.

Following this brief introduction, Section 4.2 is devoted to the formulation and
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finite element discretization of a new class of the anisotropic damage models char-
acterized by their abilities to remove the incorrect damage widening and damage
migration issues. In Section 4.3 the first two types of anisotropic gradient activity
tensors are reviewed and then a new anisotropic gradient activity function is pro-
posed. Section 4.4, is focused on the numerical benchmark shear-band example to
highlight the robustness of the model for failure analysis of quasi-brittle materials
in mode-II failure. Finally, some concluding remarks are presented in Section 4.5.
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4.2. Governing equations and discretization
4.2.1. Strong­form equations and boundary conditions
A two-dimensional displacement-based gradient-enhanced damage model with an
anisotropic length scale is formulated by a system of a coupled differential equations
expressed in terms of the classical equilibrium equation and the modified Helmholtz
(diffusion) equation as

∇𝑠 ⋅ 𝝈 + b = 0, in Ω, (4.1)

ũ− ∇ ⋅ (c∇ũ) = u, in Ω, (4.2)

subject to Dirichlet and Neumann boundary conditions applied to the local displace-
ment field u and its gradient as

u = u, on Γu, (4.3)

𝝈n = t, on Γt, (4.4)

and the following Dirichlet and non-homogeneous Neumann boundary conditions
applied to the nonlocal displacement field ũ and its gradient as

ũ ⋅ n = u ⋅ n, on Γ, (4.5)

n ⋅ ∇ũ ⋅ t = n ⋅ ∇u ⋅ t, on Γ, (4.6)

where boundary Γ = Γu ∪ Γt and Γu ∩ Γt = ⊘ in which u and t are the prescribed
displacement and traction vectors, respectively and 𝝈 is the stress tensor and b is
the vector of body forces. Matrix c controls the active nonlocal interactions between
microcracks and u and ũ are local and smoothed displacement vectors, respectively
and n and t are the outward unit normal vector and tangent vector on the boundary
Γ, respectively. The gradient operators ∇𝑠 and ∇ are used for the local and nonlocal
displacements and in 2D are defined as

∇𝑠 =
⎡
⎢
⎢
⎢
⎣

𝜕
𝜕𝑥 0
0 𝜕

𝜕𝑦
𝜕
𝜕𝑦

𝜕
𝜕𝑥

⎤
⎥
⎥
⎥
⎦

, (4.7)

∇ =

⎡
⎢
⎢
⎢
⎢
⎣

𝜕
𝜕𝑥 0
𝜕
𝜕𝑦 0
0 𝜕

𝜕𝑥
0 𝜕

𝜕𝑦

⎤
⎥
⎥
⎥
⎥
⎦

. (4.8)
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4.2.2. Weak formulation
The weighted residual approach is used to obtain the weak-form of the governing
equations. To this end, Equations (4.1) and (4.2) are multiplied by the vectorial
functions w and w̃, respectively. The resulting equations are then integrated over
the problem domain Ω to yield

∫
Ω

[w ⋅ (∇𝑠 ⋅ 𝝈 + b)]dΩ = 0, (4.9)

∫
Ω
[w̃ ⋅ (ũ− ∇ ⋅ (c∇ũ))]dΩ = ∫

Ω

[w̃ ⋅ u]dΩ. (4.10)

Next, the identities

w ⋅ (∇𝑠 ⋅ 𝝈) = ∇𝑠 ⋅ (w ⋅ 𝝈) − ∇𝑠w ∶ 𝝈, (4.11)

w̃ ⋅ [∇ ⋅ (c∇ũ)] = ∇ ⋅ (w̃ ⋅ c∇ũ) − ∇w̃ ∶ c∇ũ, (4.12)

and

∫
Ω

[∇𝑠 ⋅ (w ⋅ 𝝈)]dΩ = ∫
Γt
[w ⋅ (𝝈 ⋅ n)]dΓ = ∫

Γt
[w ⋅ t]dΓ , (4.13)

∫
Ω
[∇ ⋅ (w̃ ⋅ c∇ũ)]dΩ = ∫

Γ
[w̃ ⋅ (c∇ũ ⋅ n)]dΓ , (4.14)

substituted into Equations (4.9) and (4.10) lead to

∫
Ω

[∇𝑠w ∶ 𝝈]dΩ = ∫
Ω

[w ⋅ b]dΩ +∫
Γt
[w ⋅ t]dΓ , (4.15)

∫
Ω
[w̃ũ+ ∇w̃ ∶ c∇ũ− w̃u]dΩ = ∫

Γ
[w̃ ⋅ (c∇ũ ⋅ n)]dΓ . (4.16)

To apply non-homogeneous Neumann boundary condition (Equation (2.8)b) we can
decompose w̃ as an arbitrary function w̃ = (w̃ ⋅ t) ⋅ t+(w̃ ⋅n) ⋅n such that w̃ ⋅n = 0
leading to

∫
Ω

[∇𝑠w ∶ 𝝈]dΩ = ∫
Ω

[w ⋅ b]dΩ +∫
Γt
[w ⋅ t]dΓ , (4.17)

∫
Ω
[w̃ũ+ ∇w̃ ∶ c∇ũ− w̃u]dΩ −∫

Γ
[(w̃ ⋅ t) ⋅ t ⋅ (c∇ũ ⋅ n)]dΓ = 0, (4.18)

For a two-dimensional problem c = 𝑔c in which the transient activity function
𝑔 and the matrix c control the active nonlocal interactions between microcracks.
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4.2.3. Finite element discretization
The Bubnov-Galerkin method is employed for the discretization the weak-form of
the governing equations. To this end, the local and nonlocal displacement fields,
along with the corresponding weight functions, are discretized at the element level
as follows:

u = N𝑝uℎ, wu = N𝑝wℎu, ∇𝑠u = ∇𝑠N𝑝uℎ, ∇𝑠wu = ∇𝑠N𝑝wℎu, (4.19)

ũ = N𝑝ũℎ, wũ = N𝑝wℎũ, ∇ũ = ∇N𝑝ũℎ, ∇wũ = ∇N𝑝wℎũ, (4.20)

The shape function matrix N𝑝 is used to interpolate both nodal values u and ũ,
and ∇𝑠 and ∇ are the gradient operators for the local and nonlocal displacements,
respectively. For a quadrilateral linear element,

N𝑝 = [
𝑁𝑝1 0 𝑁𝑝2 0 𝑁𝑝3 0 𝑁𝑝4 0
0 𝑁𝑝1 0 𝑁𝑝2 0 𝑁𝑝3 0 𝑁𝑝4 ] , (4.21)

∇𝑠N𝑝 =
⎡
⎢
⎢
⎢
⎣

𝜕𝑁𝑝1
𝜕𝑥 0 𝜕𝑁𝑝2

𝜕𝑥 0 𝜕𝑁𝑝3
𝜕𝑥 0 𝜕𝑁𝑝4

𝜕𝑥 0
0 𝜕𝑁𝑝1

𝜕𝑦 0 𝜕𝑁𝑝2
𝜕𝑦 0 𝜕𝑁𝑝3

𝜕𝑦 0 𝜕𝑁𝑝4
𝜕𝑦

𝜕𝑁𝑝1
𝜕𝑦

𝜕𝑁𝑝1
𝜕𝑥

𝜕𝑁𝑝2
𝜕𝑦

𝜕𝑁𝑝2
𝜕𝑥

𝜕𝑁𝑝3
𝜕𝑦

𝜕𝑁𝑝3
𝜕𝑥

𝜕𝑁𝑝4
𝜕𝑦

𝜕𝑁𝑝4
𝜕𝑥

⎤
⎥
⎥
⎥
⎦

, (4.22)

∇N𝑝 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜕𝑁𝑝1
𝜕𝑥 0 𝜕𝑁𝑝2

𝜕𝑥 0 𝜕𝑁𝑝3
𝜕𝑥 0 𝜕𝑁𝑝4

𝜕𝑥 0
𝜕𝑁𝑝1
𝜕𝑦 0 𝜕𝑁𝑝2

𝜕𝑦 0 𝜕𝑁𝑝3
𝜕𝑦 0 𝜕𝑁𝑝4

𝜕𝑦 0
0 𝜕𝑁𝑝1

𝜕𝑥 0 𝜕𝑁𝑝2
𝜕𝑥 0 𝜕𝑁𝑝3

𝜕𝑥 0 𝜕𝑁𝑝4
𝜕𝑥

0 𝜕𝑁𝑝1
𝜕𝑦 0 𝜕𝑁𝑝2

𝜕𝑦 0 𝜕𝑁𝑝3
𝜕𝑦 0 𝜕𝑁𝑝4

𝜕𝑦

⎤
⎥
⎥
⎥
⎥
⎦

. (4.23)

The same shape functions are used to interpolate the nodal values of the weight
functions wu and wũ. Inserting the above relations into Equations (4.18) and (4.18),
and expressing the stress and strain tensors in their vector form yields

∑
𝑝
wℎu

T∇𝑠NT
𝑝𝝈𝑝d𝑣𝑝 =∑

𝑝
wℎu

TNT
𝑝b𝑝d𝑣𝑝 +∫

Γt
wℎu

TNT
𝑝t𝑝dΓ , (4.24)

∑
𝑝
[wℎũ

TNT
𝑝N𝑝ũℎ +wℎũ

T∇NT
𝑝c𝑝∇N𝑝ũℎ −wℎũ

TNT
𝑝N𝑝uℎ]d𝑣𝑝

−∑
𝑝
[(wℎũ

TNT
𝑝 ⋅ t𝑝) ⋅ t𝑝 ⋅ (c𝑝∇N𝑝ũℎ ⋅ n𝑝)]dΓ𝑝 = 0. (4.25)

These relations have to hold for any choice of wu and wũ. By defining M and D as
the mass and diffusivity matrices, respectively, as

M =∑
𝑝
NT
𝑝N𝑝d𝑣𝑝, (4.26)
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D =∑
𝑝
∇NT

𝑝c𝑝∇N𝑝d𝑣𝑝, (4.27)

and defining

K𝜕Ω =∑
𝑝
[(NT

𝑝 ⋅ t𝑝) ⋅ t𝑝 ⋅ (c𝑝∇N𝑝 ⋅ n𝑝)]dΓ𝑝 =∑
𝑝
[NT

𝑝a𝑝c𝑝∇N𝑝]dΓ𝑝, (4.28)

in which

a𝑝 = [
𝑛𝑥𝑡2𝑥 𝑛𝑦𝑡2𝑥 𝑛𝑥𝑡𝑥𝑡𝑦 𝑛𝑦𝑡𝑥𝑡𝑦
𝑛𝑥𝑡𝑥𝑡𝑦 𝑛𝑦𝑡𝑥𝑡𝑦 𝑛𝑥𝑡2𝑦 𝑛𝑦𝑡2𝑦 ] , (4.29)

the discretized form of the governing equations is obtained:

∑
𝑝
∇𝑠NT

𝑝𝝈𝑝d𝑣𝑝 =∑
𝑝
NT
𝑝b𝑝d𝑣𝑝 +∫

Γt
NT
𝑝t𝑝dΓ , (4.30)

Mũℎ +Dũℎ −Muℎ −K𝜕Ωuℎ = 0. (4.31)

Finally, the discretized governing equations are rewritten in terms of external
and internal nodal forces according to

fuint = fuext, (4.32)

f ũint = f ũext, (4.33)

in which

fuint = ∑
𝑝
∇𝑠NT

𝑝𝝈𝑝d𝑣𝑝, (4.34)

fuext = ∑
𝑝
NT
𝑝b𝑝d𝑣𝑝 +∫

Γt
NT
𝑝t𝑝dΓ , (4.35)

f ũint = Mũℎ +Dũℎ −Muℎ −K𝜕Ωuℎ , (4.36)

f ũext = 0. (4.37)

4.2.4. Consistent linearization
A consistent tangent stiffness is obtained by linearization of Equations (4.32) and
(4.33) at iteration 𝑖 + 1 with respect to the previous iteration 𝑖. Accordingly,

fuext,𝑖+1 = fuint,𝑖 + 𝛿f
u
int,𝑖+1, (4.38)

f ũext,𝑖+1 = f ũint,𝑖 + 𝛿f
ũ
int,𝑖+1, (4.39)
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gives

𝛿fuint,𝑖+1 = fuext,𝑖+1 − fuint,𝑖 , (4.40)

𝛿f ũint,𝑖+1 = f ũext,𝑖+1 − f ũint,𝑖 , (4.41)

where

𝛿fuint,𝑖+1 =∑
𝑝
[∇𝑠NT

𝑝𝛿𝝈𝑝,𝑖+1]d𝑣𝑝, (4.42)

𝛿f ũint,𝑖+1 =M𝛿ũℎ𝑖+1 −M𝛿uℎ𝑖+1 +D𝛿ũℎ𝑖+1 +
𝛿D𝑖+1ũℎ −K𝜕Ω𝛿uℎ𝑖+1 − 𝛿K𝜕Ω𝑖+1uℎ . (4.43)

To obtain stress variation 𝛿𝝈𝑖+1 we assume the free energy density potential
function

𝜓 = 1
2(1 − 𝜔) 𝝐 ∶ 𝓒 ∶ 𝝐, (4.44)

from which the stress tensor and its derivative can be obtained through

𝝈 = 𝜕𝜓
𝜕𝝐 = (1 − 𝜔)𝓒 ∶ 𝝐, (4.45)

𝛿𝝈𝑖+1 = (1 − 𝜔𝑖) 𝓒𝛿𝝐𝑖+1 − 𝓒𝝐𝑖𝛿𝜔𝑖+1, (4.46)

where 𝓒 is the fourth order elastic moduli tensor and

𝛿𝝐𝑖+1 = ∇𝑠N𝑝𝛿uℎ𝑖+1, 𝛿𝝐̃𝑖+1 = ∇𝑠N𝑝𝛿ũℎ𝑖+1, (4.47)

𝛿𝜔𝑖+1 = (
𝜕𝜔
𝜕𝝐̃ )𝑖

𝛿𝝐̃𝑖+1 = (
𝜕𝜔
𝜕𝜅 )𝑖

(𝜕𝜅𝜕𝑒̃ )𝑖
(𝜕𝑒̃𝜕𝝐̃)𝑖

∇𝑠N𝑝𝛿ũℎ𝑖+1. (4.48)

The stress variations is therefore expressed as

𝛿𝝈𝑖+1 = (1 − 𝜔𝑖) 𝓒∇𝑠N𝑝𝛿uℎ𝑖+1 − 𝓒𝝐𝑖 (
𝜕𝜔
𝜕𝝐̃ )𝑖

∇𝑠N𝑝𝛿ũℎ𝑖+1. (4.49)

Considering that D and K𝜕Ω are a function of uℎ𝑖+1 and ũℎ𝑖+1 as

𝛿D𝑖+1 = (
𝜕D
𝜕uℎ )𝑖

𝛿uℎ𝑖+1 + (
𝜕D
𝜕ũℎ )𝑖

𝛿ũℎ𝑖+1, (4.50)

𝛿K𝜕Ω𝑖+1 = (
𝜕K𝜕Ω
𝜕uℎ )𝑖

𝛿uℎ𝑖+1 + (
𝜕K𝜕Ω
𝜕ũℎ )𝑖

𝛿ũℎ𝑖+1, (4.51)
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leads to the expressions

𝛿fuint,𝑖+1 =∑
𝑝
[∇𝑠NT

𝑝(1 − 𝜔𝑖) 𝓒∇𝑠N𝑝] 𝛿uℎ𝑖+1d𝑣𝑝 −

∑
𝑝
[∇𝑠NT

𝑝𝓒𝝐𝑖 (
𝜕𝜔
𝜕𝝐̃ ) ∇

𝑠N𝑝] 𝛿ũℎ𝑖+1d𝑣𝑝, (4.52)

𝛿f ũint,𝑖+1 = [−M−K𝜕Ω +
𝜕D
𝜕uℎ ũ

ℎ − 𝜕K𝜕Ω𝜕uℎ uℎ] 𝛿uℎ𝑖+1 +

[M+D+ 𝜕D
𝜕ũℎ ũ

ℎ − 𝜕K𝜕Ω𝜕ũℎ uℎ] 𝛿ũℎ𝑖+1. (4.53)

The system of discrete equations at a Newton-Raphson iteration is therefore
expressed as

[ K
𝑖
uu K𝑖uũ

K𝑖ũu K𝑖ũũ
]

⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
16×16

[ 𝛿u
𝑖+1

𝛿ũ𝑖+1 ]⏝⎵⎵⏟⎵⎵⏝
16×1

= [
fuext,𝑖+1 − fuint,𝑖
f ũext,𝑖+1 − f ũint,𝑖

]
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

16×1

, (4.54)

where the components of the consistent tangent matrix are

K𝑖uu⏟
8×8

= ∑
𝑝
[∇𝑠NT

𝑝⏝⏟⏝
8×3

(1 − 𝜔𝑖)⏝⎵⏟⎵⏝
scalar

𝓒⏟
3×3
∇𝑠N𝑝⏝⏟⏝
3×8

]d𝑣𝑝, (4.55)

K𝑖uũ⏟
8×8

= ∑
𝑝

⎡
⎢
⎢
⎢
⎣

−∇𝑠NT
𝑝⏝⏟⏝

8×3

𝓒⏟
3×3

𝝐𝑖⏟
3×1

(𝜕𝜔𝜕𝝐̃ )𝑖⏝⎵⏟⎵⏝
1×3

∇𝑠N𝑝⏝⏟⏝
3×8

⎤
⎥
⎥
⎥
⎦

d𝑣𝑝, (4.56)

K𝑖ũu⏟
8×8

= −M⏟
8×8

−K𝜕Ω⏟
8×8

+ 𝜕D
𝜕uℎ⏟
8×1

ũℎ⏟
1×8

− 𝜕K𝜕Ω𝜕uℎ⏝⎵⏟⎵⏝
8×1

uℎ⏟
1×8
, (4.57)

K𝑖ũũ⏟
8×8

= M⏟
8×8

+ D⏟
8×8

+ 𝜕D
𝜕ũℎ⏟
8×1

ũℎ⏟
1×8

− 𝜕K𝜕Ω𝜕ũℎ⏝⎵⏟⎵⏝
8×1

uℎ⏟
1×8
, (4.58)
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with

𝜕D
𝜕uℎ ũ

ℎ
⏝⎵⏟⎵⏝
8×8

= ∑
𝑝
[
𝜕𝑔𝑝
𝜕uℎ⏟
1×8

ũℎ⏟
8×1
∇NT

𝑝⏟
8×4

c𝑝⏟
4×4

∇N𝑝⏟
4×8

+ 𝑔𝑝⏟
scalar

𝜕c𝑝
𝜕uℎ⏟
1×8

ũℎ⏟
8×1
∇NT

𝑝⏟
8×4

∇N𝑝⏟
4×8

]d𝑣𝑝, (4.59)

𝜕D
𝜕ũℎ ũ

ℎ
⏝⎵⏟⎵⏝
8×8

= ∑
𝑝
[
𝜕𝑔𝑝
𝜕ũℎ⏟
1×8

ũℎ⏟
8×1
∇NT

𝑝⏟
8×4

c𝑝⏟
4×4

∇N𝑝⏟
4×8

+ 𝑔𝑝⏟
scalar

𝜕c𝑝
𝜕ũℎ⏟
1×8

ũℎ⏟
8×1
∇NT

𝑝⏟
8×4

∇N𝑝⏟
4×8

]d𝑣𝑝, (4.60)

𝜕K𝜕Ω
𝜕uℎ uℎ⏝⎵⎵⏟⎵⎵⏝
8×8

= ∑
𝑝
[
𝜕𝑔𝑝
𝜕uℎ⏟
1×8

uℎ⏟
8×1

NT
𝑝⏟

8×2

a𝑝⏟
2×4

c𝑝⏟
4×4

∇N𝑝⏟
4×8

+ 𝑔𝑝⏟
scalar

𝜕c𝑝
𝜕uℎ⏟
1×8

uℎ⏟
8×1

NT
𝑝⏟

8×2

a𝑝⏟
2×4

∇N𝑝⏟
4×8

]dΓ𝑝,(4.61)

𝜕K𝜕Ω
𝜕ũℎ uℎ⏝⎵⎵⏟⎵⎵⏝
8×8

= ∑
𝑝
[
𝜕𝑔𝑝
𝜕ũℎ⏟
1×8

uℎ⏟
8×1

NT
𝑝⏟

8×2

a𝑝⏟
2×4

c𝑝⏟
4×4

∇N𝑝⏟
4×8

+ 𝑔𝑝⏟
scalar

𝜕c𝑝
𝜕ũℎ⏟
1×8

uℎ⏟
8×1

NT
𝑝⏟

8×2

a𝑝⏟
2×4

∇N𝑝⏟
4×8

]dΓ𝑝.(4.62)



4.3. Gradient activity function

4

83

4.3. Gradient activity function
In the proposed anisotropic formulation of displacement-based gradient-enhanced
damage model, the constant gradient activity parameter 𝑐 is replaced by a second-
order tensor c = 𝑔c in which the transient activity function 𝑔 and the matrix c
control the active nonlocal interactions between microcracks. The matrix c for a
two-dimensional case is defined as

c =
⎡
⎢
⎢
⎣

𝑐𝑥𝑥 𝑐𝑥𝑦 0 0
𝑐𝑦𝑥 𝑐𝑦𝑦 0 0
0 0 𝑐𝑥𝑥 𝑐𝑥𝑦
0 0 𝑐𝑦𝑥 𝑐𝑦𝑦

⎤
⎥
⎥
⎦
. (4.63)

In case of isotropic diffusion, 𝑔 = 1 and the shear components of the c matrix
are zero (𝑐𝑥𝑦 = 𝑐𝑦𝑥 = 0) and 𝑐𝑥𝑥 = 𝑐𝑦𝑦 = 𝑐 in which 𝑐 = 𝓁20. Below, first we describe
two types of anisotropic models proposed in the stress-based GEDM [6]. Then, we
propose a new anisotropic function to better capture the material anisotropy.

4.3.1. Anisotropic model based on principal stresses and with
a constant length scale

As a first preliminary version, as defined in [6], the gradient activity function is
modified by expressing it as a function of the principal stresses:

𝑐𝑥𝑥 =
𝑐 (𝜎2𝑥𝑥 + 𝜏2𝑥𝑦)

𝐸2𝜅20
, (4.64)

𝑐𝑦𝑦 =
𝑐 (𝜎2𝑦𝑦 + 𝜏2𝑥𝑦)

𝐸2𝜅20
, (4.65)

𝑐𝑥𝑦 = 𝑐𝑦𝑥 =
𝑐𝜏𝑥𝑦 (𝜎𝑥𝑥 + 𝜎𝑦𝑦)

𝐸2𝜅20
, (4.66)

and with a constant activity function, 𝑔 = 1. These choices imply
𝜕𝑔𝑝
𝜕u = 0,

𝜕𝑔𝑝
𝜕ũ = 0, (4.67)

and
𝜕c𝑝
𝜕u =

𝜕c𝑝
𝜕𝝈𝑝

𝜕𝝈𝑝
𝜕𝝐𝑝

𝜕𝝐𝑝
𝜕u =

𝜕c𝑝
𝜕𝝈𝑝

(1 − 𝜔𝑝) 𝓒∇𝑠N𝑝, (4.68)

where 𝓒 is the fourth order elastic moduli tensor and
𝜕c𝑝
𝜕ũ =

𝜕c𝑝
𝜕𝝈𝑝

𝜕𝝈𝑝
𝜕𝜔𝑝

𝜕𝜔𝑝
𝜕𝜅𝑝

𝜕𝜅𝑝
𝜕𝑒̃𝑝

𝜕𝑒̃𝑝
𝜕𝝐̃𝑝

𝜕𝝐̃𝑝
𝜕ũ = −

𝜕c𝑝
𝜕𝝈𝑝

𝓒𝝐𝑝
𝜕𝜔𝑝
𝜕𝜅𝑝

𝜕𝜅𝑝
𝜕𝑒̃𝑝

𝜕𝑒̃𝑝
𝜕𝝐̃𝑝

∇𝑠N𝑝. (4.69)

The derivatives 𝜕c𝑝
𝜕𝝈𝑝

are defined as

𝜕c𝑝
𝜕𝝈𝑝

= [
𝜕𝑐𝑥𝑥𝑝
𝜕𝝈𝑝

𝜕𝑐𝑦𝑦𝑝
𝜕𝝈𝑝

𝜕𝑐𝑥𝑦𝑝
𝜕𝝈𝑝

] (4.70)
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4.3.2. Anisotropic model based on equivalent stresses com­
bined with a transient length scale from strain­based
model

As an improved version of the previous anisotropic model to avoid the oscillations
in the force-displacement responses, a model based on an equivalent stress measure
has been proposed [6]. In this model, an anisotropic gradient activity function is
combined with a transient activity function to improve model performance. To this
end, the following expressions of the components of the c matrix are used:

𝑐𝑥𝑥 =
𝑐 (𝜎2𝑥𝑥 + 𝜏2𝑥𝑦)
max(𝜎21 , 𝜎22 )

, (4.71)

𝑐𝑦𝑦 =
𝑐 (𝜎2𝑦𝑦 + 𝜏2𝑥𝑦)
max(𝜎21 , 𝜎22 )

, (4.72)

𝑐𝑥𝑦 = 𝑐𝑦𝑥 =
𝑐𝜏𝑥𝑦 (𝜎𝑥𝑥 + 𝜎𝑦𝑦)
max(𝜎21 , 𝜎22 )

, (4.73)

in which 𝜎1 and 𝜎2 are the principal stresses and the transient length scale expression
from a strain-based model is employed:

𝑔 = {
1 if 𝑒̃ < 𝜅0
(1 − 𝜔) 𝑒̃𝜅0 else , (4.74)

in which 𝜔 = 1 − 𝜅0
𝜅 [exp(−𝛽(𝜅 − 𝜅0))] is the damage value computed by using

the modified exponential damage softening law obtained with 𝛼 = 1; 𝛽 is an extra
model parameter used to control the damage band. It should be noticed that 𝛽 can
be different than 𝛽, which is the material parameter used in the damage evolution
law.

Taking the derivative of the transient activity function gives

𝜕𝑔𝑝
𝜕u = 0, (4.75)

𝜕𝑔𝑝
𝜕ũ = {

0 if 𝑒̃ < 𝜅0
𝜕𝑔𝑝
𝜕𝑒̃𝑝

𝜕𝑒̃𝑝
𝜕𝝐̃𝑝

𝜕𝝐̃𝑝
𝜕ũ else . (4.76)
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4.3.3. Modified anisotropic model based on equivalent stresses
combined with a transient length scale based on equiv­
alent dissipation with the strain­based model

Although the gradient activity functions presented in the previous chapters work
correctly in the strain-based model, our numerical investigations showed their de-
ficiencies when combined with the displacement-based GEDM. The anisotropic
model based on principal stresses and with a constant length scale shows oscil-
lations in the force-displacement response. Also, both models show a too brittle
force-displacement response. To avoid these issues, a new anisotropic model based
on equivalent stress, combined with a transient length scale which is based on an
equivalent dissipation with the strain-based model, is proposed. In this model

𝑐𝑥𝑥 =
𝑐 (𝜎2𝑥𝑥 + 𝜏2𝑥𝑦)
max(𝜎21 , 𝜎22 )

, (4.77)

𝑐𝑦𝑦 =
𝑐 (𝜎2𝑦𝑦 + 𝜏2𝑥𝑦)
max(𝜎21 , 𝜎22 )

, (4.78)

𝑐𝑥𝑦 = 𝑐𝑦𝑥 =
𝑐𝜏2𝑥𝑦

max(𝜎21 , 𝜎22 )
, (4.79)

and a transient length scale based on the equivalent dissipation with the strain-based
model that has been proposed in Section 2.3.4 is employed:

𝑔 = 𝑔𝑢̃ = {
1 if 𝑒̃ < 𝜅0
1
𝑒̃ [𝜅0 −

1
𝛽 (exp (−𝛽(𝑒̃ − 𝜅0)) − 1)] else

. (4.80)

Taking the derivative of the transient activity function gives

𝜕𝑔𝑝
𝜕u = 0, (4.81)

𝜕𝑔𝑝
𝜕ũ = {

0 if 𝑒̃ < 𝜅0
𝜕𝑔𝑝
𝜕𝑒̃𝑝

𝜕𝑒̃𝑝
𝜕𝝐̃𝑝

𝜕𝝐̃𝑝
𝜕ũ else . (4.82)
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4.4. Results and discussions
In this section, the merits of the proposed anisotropic displacement-based gradient-
enhanced damage model for failure analysis of quasi-brittle materials is demon-
strated by means of a two-dimensional benchmark example. The modified anisotropic
model based on equivalent stresses equipped with a transient length scale that is
based on an equivalent dissipation with the strain-based model (presented in Sec-
tion 4.3.3) is employed. First, the performance of the proposed model is investigated
for removing spurious damage growth in model-I failure by means of a notched four-
point concrete beam test (see Figure 3.1 and Table 3.1). Then, the formation of
shear-bands in model-II failure is investigated on a plate with an imperfection (see
Figure 3.6 and Table 3.2). A linear quadrilateral element-type with a full integration
scheme is used for both local and smoothed displacement fields. These numerical
tests use the transient activity function 𝑔𝑢̃ that is proposed in Section 2.3.4 and the
modified gradient activity function presented in Section 4.3.3. It should be noticed
that in the following results a constant gradient activity matrix is used during a load
increment (this means that the components of the gradient activity matrix are kept
constant in the Newton-Raphson iterations of a load increment). According to the
anisotropic gradient activity matrix, c, defined in Section 4.3, its components up-
date between load increments with respect to the stress components. Although the
transient anisotropic formulation is consistently linearized, which means the con-
vergence is quadratic, in the simulations with variable components of the gradient
activity matrix in the Newton-Raphson iterations, the solution is not converging
after the start of damage growth.

4.4.1. Mode­I failure: a notched four­point concrete beam
Aim of this example is to show the performance of the proposed transient anisotropic
model for removing the incorrect damage widening in two-dimensional problems
under mode-I failure. For the mesh sensitivity study, four pre-refined mesh config-
urations with bilinear quadrilateral elements and with element sizes in the central
part (damaged zone) of the beam equal to 2.5, 1.25, 0.625 and 0.3125 mm are gen-
erated using Gmsh [7]. The corresponding force-displacement curves are plotted
in Figure 4.1 and compared to those obtained with the transient isotropic model
proposed and tested in the previous chapters. As shown in Figure 4.1, apart from
a more brittle response of the proposed transient anisotropic model in comparison
with the transient isotropic model, the load-displacement curves show that the tran-
sient anisotropic model is properly regularized and a mesh size equal to 1.25 mm,
almost half of the length scale size 𝓁0 = 2mm, is sufficient to guarantee a converged
mesh-independent solution. Also, the figure indicates that the proposed transient
anisotropic model shows faster mesh convergence in comparison with the transient
isotropic model. As a conclusion, the proposed transient anisotropic model is less
sensitive to changes in the mesh size because by employing an anisotropic length
scale the unnecessary nonlocal interactions that exist in the isotropic model are
excluded.
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Figure 4.1: Four-point bending beam: mesh-sensitivity study for the transient anisotropic model
with evolving 𝑔𝑢̃ (solid) and the isotropic model with evolving 𝑔𝑢̃ (dashed).

After analyzing the specimen under various deformation levels labeled as a, b,
and c, in Figure 4.2, it became apparent that the efficiency of the proposed model
in the removal of the incorrect damage widening can be evaluated with the same
deformation level obtained in Figure 4.1. Hence, there was no need to increase
the deformation level any further. Results are reported for the proposed transient
anisotropic and the transient isotropic models in Figure 4.2. In Figure 4.3 the final
damage, nonlocal equivalent strain, loading indicator function and 𝑔 contours on the
half of the specimen are compared and the corresponding contours at the indicated
snap-shots are compared in Figure 4.4 using the finest mesh configuration with the
element size equal to 0.3125 mm.
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Figure 4.2: Four-point bending beam: force-displacement curves used to verify the presence of the
incorrect damage widening in the transient anisotropic model.
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Figure 4.3: Four-point bending beam: comparison of the final (i) damage, (ii) loading indicator
function and (iii) 𝑔 contours with (left) transient isotropic model and (right) transient anisotropic
model at displacement point c. The ranges of all figures are [0: blue, 1: red].

Analysis of the contours in Figures 4.3 and 4.4 reveals that there is still evidence
of incorrect damage widening around the crack tip. As shown in sub-figure (c) of
Figure 4.4, for the results obtained from the proposed transient-anisotropic model
discussed in this chapter (i.e., the one displayed on the right side of the figures),
both the damaged region and the loading indicator function exhibit a widening trend
around the crack tip. It is evident from the comparison with the results obtained
from the proposed transient model discussed in the previous chapter (i.e., displayed
on the left side of the figure) that the incorporation of the proposed anisotropy has
adversely affected the results. In conclusion, the results of this example demonstrate
that the proposed transient anisotropic model is unable to completely eliminate the
incorrect damage widening issue in two-dimensional problems under mode-I failure
condition.
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Figure 4.4: Four-point bending beam: evolution of (i) damage, (ii) loading indicator function
and (iii) 𝑔 contours at different load-increments (left) with transient isotropic model and (right)
transient anisotropic model. The ranges of all figures are [0: blue, 1: red]
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4.4.2. Mode­II failure: shear­band problem
This example is intended to demonstrate the performance of the proposed transient
anisotropic displacement-based GEDM for removing the incorrect damage migration
issue in the two-dimensional problems under mode-II failure. As indicated in Ta-
ble 3.2, the shear-band problem is studied with two values of the constant gradient
activity parameter: 𝑐 = 2 mm2 and 𝑐 = 0.5 mm2.

The mesh-sensitivity study for 𝑐 = 2mm2 is performed using four uniform mesh
configurations with bilinear quadrilateral elements with sizes equal to 3, 1.5, 0.75 and
0.375 mm, respectively. The first coarse mesh consists of 400 four-node quadrilateral
elements for both local and nonlocal displacement fields. The medium, fine and
finest mesh configurations contain 1,600, 6,400 and 25,600 elements, respectively.
The corresponding force-displacement curves are plotted in Figure 4.5.

An analysis of the load-displacement curves in Figure 4.5 indicate that, despite
the fact that the proposed transient anisotropic model has a more brittle response
when compared to the transient isotropic model, the regularization of the transient
anisotropic model has been successfully performed and that a mesh size of half the
length scale size (element size equal to 0.75 mm for 𝑐 = 2 mm2) is sufficient to
guarantee an almost mesh-independent solution. In addition, it is noteworthy that
the force-displacement curve shown in Figure 4.5 for 𝑐 = 2 mm2 with the element
size equal to 0.375 mm is not smooth at the softening part, and we have not been
able to determine the cause.

0 5 ·10−2 0.1
0

25

50

75

100

125

displacement (mm)

fo
rc

e
(N

)

isotropic anisotropic
20×20
40×40
80×80
160×160

Figure 4.5: Shear-band problem: mesh-sensitivity study for 𝑐 = 2 mm2.
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Figure 4.6: Shear-band problem: force-displacement curves with 𝑐 = 2 mm2 using the 160 × 160
mesh configuration to check spurious damage growth.

The discretization with element size equal to 0.375 mm (mesh configuration 160
× 160) is used to investigate the efficiency of the model for the removal of spuri-
ous damage growth (widening and migration). The load level has been extended
compared to the mesh-sensitivity study and the force-displacement responses for
𝑐 = 2 mm2 and 𝑐 = 0.5 mm2 are depicted in Figures 4.6 and 4.7, respectively.
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Figure 4.7: Shear-band problem: force-displacement curves with 𝑐 = 0.5 mm2 using 160 × 160
mesh configuration to check spurious damage growth.
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Figure 4.8: Shear-band problem: evolution of (i) damage, (ii) loading indicator function and (iii)
𝑔 contours with 𝑐 = 2 mm2 at different load-increments on 160 × 160 mesh configuration, (top)
transient isotropic model, (bottom) transient anisotropic model. The ranges of all figures are [0:
blue, 1: red]

The corresponding damage, nonlocal equivalent strain, loading indicator function
and 𝑔 contours at different load-increments indicated with the snap-shots for the
proposed transient anisotropic model with 𝑐 = 2 mm2 and 𝑐 = 0.5 mm2 are
compared in Figures 4.8 and 4.9 against the transient isotropic model, respectively.
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Figure 4.9: Shear-band problem: evolution of (i) damage, (ii) loading indicator function and (iii)
𝑔 contours with 𝑐 = 0.5 mm2 at different load-increments on 160 × 160 mesh configuration, (top)
transient isotropic model, (bottom) transient anisotropic model. The ranges of all figures are [0:
blue, 1: red]

Figures 4.8 and 4.9 illustrate that the transient anisotropic model does not ex-
hibit incorrect damage migration and is able to resolve the incorrect widening issue
as well as the transient isotropic model. The proposed transient anisotropic model’s
efficiency in addressing the issue of damage widening has been determined by an-
alyzing the localized contour of the loading indicator function, as depicted in sub-
figures (e) of Figures 4.8 and 4.9. Furthermore, comparing the intersection points
of the black dashed line (which indicates the final migration point of the transient
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isotropic model) with the sub-figure (e) of the loading indicator function in Fig-
ures 4.8 and 4.9 indicates that, unlike the transient isotropic model, the results of
the transient anisotropic model were not affected by incorrect damage migration.
This leads to a correct final migration point of damage resulting in the starting point
of the shear band remaining in the imperfection zone. In conclusion, the proposed
transient anisotropic model is capable of resolving both incorrect damage widening
and migration issues when mode-II failure occurs in two-dimensional problems.
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4.5. Conclusions
A transient anisotropic displacement-based gradient-enhanced damage model is for-
mulated and used for failure analysis of quasi-brittle materials. In the proposed
anisotropic formulation, the nonlocal interactions between the integration/material
points are related to the stress states of the integration points. As a result of
the anisotropic length scale based on the stress states, a relationship is established
between the global response of the specimen (force-displacement curve) and the
local response at integration points (strain-stress curve). First, the performance
of the proposed model is evaluated for mode-I failure by means of a 4-point con-
crete beam test. The results show a deficiency of the proposed transient anisotropic
model for removing spurious damage growth in mode-I failure and the presence of
incorrect damage widening is still evident. Then, the model is tested for mode-II
failure by means of a shear-band example. The results indicated that the proposed
transient anisotropic model solves both incorrect damage widening and damage mi-
gration issues in the shear-band problem. A comparison of the force-displacement
responses of the anisotropic and isotropic models indicated that the proposed tran-
sient anisotropic formulation has a higher mesh convergence rate than the transient
isotropic model. As a result, in the case of mode-II failure, the transient anisotropic
model provides more reliable results than the transient isotropic model.
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5
Conclusions

A novel displacement-based gradient-enhanced damage model was proposed for
bridging damage and fracture mechanics in quasi-brittle materials failure analysis to
address incorrect damage initiation, widening, and migration issues observed with
the gradient-based continuous damage models. To achieve this objective, a transient
gradient activity function, as well as an anisotropic gradient activity function, were
incorporated into the original displacement-based gradient-enhanced damage model.
The original displacement-based model appropriately describes the discontinuous
nature of the displacement field at the final failure stages. The proposed transient
and anisotropic displacement-based gradient-enhanced damage models were numer-
ically implemented into a two-field finite element method and applied on one- and
two-dimensional benchmark examples under mode-I and mode-II failure conditions.

To achieve this goal, in Chapter 2, we relied on a one-dimensional setting to
derive a new transient activity function. This chapter summarizes four transient ac-
tivity functions that were chosen from fifteen transient activity functions that have
been tested. These novel transient activity functions mobilize strain localization
only in the damage process zone and neutralize it elsewhere. We have observed that
the definition of a proper transient activity function requires careful consideration
since some choices, such as those that decay rapidly from one to zero (meaning a
fast localization process), result into mesh-dependent solutions. As the preliminar-
ily transient activity function in the binary form was proposed in Section 2.3.1, its
mesh-sensitivity study confirmed the correctness of the proposed regularization pro-
cess. However, this model requires the input parameter 𝜔crit as a critical damage
level, and by increasing this parameter, the model reverted to the original model
with a constant length scale and exhibited again the incorrect damage widening
issue. Furthermore, there is still no correct combination of the critical damage
value, the constant gradient activity parameter, and the error tolerance used in the
Newton-Raphson iterative procedure. When these parameters are combined incor-
rectly, and the damage profile is smooth, strain can also be localized incorrectly
at more than one random location (generation of unrealistic spikes in the solution
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fields) during a one-dimensional test. To avoid the extra model parameter 𝜔crit
that was presented in the binary function, the transient activity function that is
linked only to the damage field was tested and its mesh-sensitivity study confirmed
the correctness of the regularization process proposed in Section 2.3.2. Our nu-
merical investigations demonstrated that this transient activity function is unable
to produce mesh-independent results in a two-dimensional setting, despite the fact
that the model solved the incorrect damage widening in a one-dimensional setting.
Due to the fast localization process of the proposed transient activity function, this
transient activity function was unable to produce mesh-independent results with a
reasonable fine mesh size in the damaged region. A problem similar to the unrealis-
tic spike generation arises when using 𝑔 = 1−𝜔𝑛 with a large exponent 𝑛. A third
transient activity function was proposed in Section 2.3.3 to reduce the speed of the
localization process, which takes into account both damage and nonlocal equivalent
strain fields. Using this function, the mesh-sensitivity study confirmed its mesh-
independency in a one-dimensional setting. However, this model failed to produce
mesh-independent results for two-dimensional problems with a reasonable fine mesh
size in the damaged region. As for the last transient activity function, in order to
postpone the localization process in the displacement-based GEDM based on the
same diffusion as the classical strain-based GEDM, a transient activity function
was proposed in Section 2.3.4 and tested in Section 2.4.5 for one-dimensional prob-
lems. It was also tested in a two-dimensional setting that confirmed its capability to
produce mesh-independent results with a reasonable fine mesh size in the damaged
region.

Based on the pros and cons of the aforementioned functions in a one-dimensional
setting, two-dimensional benchmark examples were simulated in order to evalu-
ate these functions and determine a proper transient activity function in a two-
dimensional setting, subject to mode-I and mode-II failure conditions. As a result
of our two-dimensional numerical studies of different transient activity functions,
we concluded that the transient activity function proposed in Section 2.3.4, based
on equivalent dissipation, could be applied in this setting.

In Chapter 3, a transient displacement-based GEDM was formulated by incor-
porating the transient activity function in Section 2.3.4, and tested on the three
benchmark examples. In this formulation, a constant (isotropic) gradient activ-
ity parameter was used. The numerical study indicated that by incorporating the
transient length scale into the formulation of the displacement-based model, the
incorrect damage widening, one of the main deficiencies of the existing gradient-
enhanced damage models, is eliminated in mode-II failure. However, the proposed
transient isotropic model in a two-dimensional setting does not perform as well as
expected since it still shows incorrect damage widening in mode-I failure as well
as incorrect damage migration in mode-II failure. These issues were addressed in
Chapter 4 by the incorporation of an anisotropic gradient activity function, instead
of the constant (isotropic) gradient activity function used in the formulation pre-
sented in Chapter 3. The results of a 4-point bending beam showed a deficiency of
the proposed transient anisotropic model for removing the incorrect damage widen-
ing in mode-I failure. Then, the model is tested for mode-II failure by means of a
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shear-band example. The results indicated that the proposed transient anisotropic
model was able to solve both the issue of incorrect damage widening as well as the
issue of damage migration in mode-II failure.

From a computational viewpoint an obvious deficiency of the proposed tran-
sient and anisotropic displacement-based gradient-enhanced damage models is the
increase in the size of the element stiffness matrix (a 1.33 size increase in two-
dimensional problems and a 1.5 size increase in three-dimensional problems com-
pared to the element stiffness matrix of the strain-based gradient damage model).
This increase could lead to problems for very large systems. In those cases, a suitable
iterative solver could be considered. In addition, an adaptive coupled formulation
of the governing equations can be used by activating the diffusion equation only in
the damaged region.

In summary, the proposed model in this thesis could resolve the incorrect dam-
age widening issue in a one-dimensional setting. However, it failed to resolve all
incorrect damage widening and migration issues in a two-dimensional setting. It
is therefore important to note that the displacement-based GEDM, which incorpo-
rates an anisotropic gradient activity function and a transient activity function, is
merely the continuation of the process of developing a reliable model for quasi-brittle
material failure analysis that is not currently available. The proposed displacement-
based model requires further research in order to solve the incorrect widening and
migration of damage as well as to reduce its computational cost.
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