

Delft University of Technology

Tensor-based Kernel Machines with Structured Inducing Points for Large and High-
Dimensional Data

Wesel, Frederiek; Batselier, Kim

Publication date
2023
Document Version
Final published version
Published in
Proceedings of Machine Learning Research

Citation (APA)
Wesel, F., & Batselier, K. (2023). Tensor-based Kernel Machines with Structured Inducing Points for Large
and High-Dimensional Data. Proceedings of Machine Learning Research, 206, 8308-8320.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Tensor-based Kernel Machines with Structured Inducing Points for Large and
High-Dimensional Data

Frederiek Wesel Kim Batselier
Delft Center for Systems and Control

Delft University of Technology
Delft Center for Systems and Control

Delft University of Technology

Abstract

Kernel machines are one of the most studied fam-
ily of methods in machine learning. In the exact
setting, training requires to instantiate the ker-
nel matrix, thereby prohibiting their application
to large-sampled data. One popular kernel ap-
proximation strategy which allows to tackle large-
sampled data consists in interpolating product ker-
nels on a set of grid-structured inducing points.
However, since the number of model parameters
increases exponentially with the dimensionality
of the data, these methods are limited to small-
dimensional datasets. In this work we lift this limi-
tation entirely by placing inducing points on a grid
and constraining the primal weights to be a low-
rank Canonical Polyadic Decomposition. We de-
rive a block coordinate descent algorithm that ef-
ficiently exploits grid-structured inducing points.
The computational complexity of the algorithm
scales linearly both in the number of samples and
in the dimensionality of the data for any product
kernel. We demonstrate the performance of our
algorithm on large-scale and high-dimensional
data, achieving state-of-the art results on a laptop
computer. Our results show that grid-structured
approaches can work in higher-dimensional prob-
lems.

1 INTRODUCTION

Kernel machines, such as Support Vectors Machines (SVMs)
(Cortes and Vapnik, 1995) and Gaussian Processes (GPs)
(Rasmussen and Williams, 2006) are a family of machine
learning methods that handle inference of nonlinear func-
tions by lifting the data into a high and possibly infinite-

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

dimensional feature space and performing linear inference
therein. Because of their elegant formulation, their connec-
tion with reproducing kernel Hilbert spaces and the guaran-
tees which stem from their convex optimization setting, they
have become one of the most widely studied machine learn-
ing paradigms. Furthermore, kernel machines are known
for their connections with neural networks (Lee et al., 2018;
Novak et al., 2018; Garriga-Alonso et al., 2018) and for the
fact that they can be universal function approximators for a
suitable choice of kernel (Hammer and Gersmann, 2003).

The main limitation of kernel machines is that training in-
volves instantiating the kernel matrix which encodes the
similarities between all mapped data. This results in a
cost of at least O(N2), limiting their applicability to small
datasets. To obviate this problem, a number of low-rank
approaches based on random features (Rahimi and Recht,
2007; Yang et al., 2015) and inducing points (Williams and
Seeger, 2001; Smola and Bartlett, 2001; Csató and Opper,
2002; Quiñonero-Candela and Rasmussen, 2005; Snelson
and Ghahramani, 2006; Titsias, 2009; Meanti et al., 2020)
have been developed. Broadly speaking, these methods
seek a rank-M ≪ N approximation of the kernel func-
tion, which enables faster inference at cost of O(NM2).
However, this scaling forces the modeler to trade-off accu-
racy of the kernel approximation with the ability to process
large-scale data.

A popular family of approaches that is based on the Nys-
tröm approximation of kernel functions is Structured Kernel
Interpolation (SKI) (Wilson and Nickisch, 2015; Nickson
et al., 2015; Gardner et al., 2018; Stanton et al., 2021; Ya-
dav et al., 2021). SKI-methods do not sacrifice accuracy
for fast inference since they interpolate the kernel function
globally on a regularly spaced grid in order to exploit the en-
suing structure for computational gains. However, since the
number of interpolation points are placed on a regular grid,
and therefore the number of model parameters increases
exponentially with the dimensionality of the data, these
approaches are limited to small-dimensional datasets.

Recently, the Canonical Polyadic Decomposition (CPD)
(Kolda and Bader, 2009), a tool from multi-linear algebra,
has been applied in the context of kernel machines to by-

Tensor-based Kernel Machines with Structured Inducing Points for Large and High-Dimensional Data

pass the exponential growth of model parameters affecting
Fourier features-based approximations of stationary ker-
nels (Wesel and Batselier, 2021) by constraining the model
weights to be a CPD of low rank. This low-rank constraint
allows to learn a model with a linear number of model
parameters in the dimensionality D, but requires knowl-
edge of the spectral representation (Fourier transform) of
the kernel of choice which in general can be unknown or
non-analytical, requiring then further approximations. In
this paper we develop a CPD-based approach to learn from
any product kernel which allows grid-structured inducing
points methods to scale to both large-sampled and high-
dimensional data. We exploit the tensor-product structure
of grid-structured inducing point by constraining the model
weights to be a CPD of low-rank. Under this constraint,
we derive a block coordinate descent algorithm that allows
for the efficient training of kernel machines. Our algo-
rithm has a computational complexity of O(NDM

2
DR2)

and storage complexity of O(NR), where R is the rank of
the tensor-decomposition which controls the time versus
accuracy trade-off. We show through experiments that com-
petitive results in terms of performance can be obtained on
a laptop computer for data that is both large in sample size
as well as in dimensionality.

2 BACKGROUND

Notation Calligraphic italics indicate a function space
or vector space, e.g. X . We indicate as KXM the ker-
nel matrix which considers similarities between rows of
X and M such that [KXM]i,j = k (Xi,:,Mj,:). The
Kronecker tensor-product, Cartesian product, Hadamard
product and Hadamard division are denoted respectively
as ⊗, ×, ⊙ and ⊘. We denote a D-dimensional tensor
as w ∈ RI1×I2×···×ID . The vectorization of a tensor
w ∈ RI1×I2×···×ID is denoted by vec (w)i = wi1i2···iD ,
where i = i1 +

∑D
d=2(id − 1)

∏d−1
k=1 Ik. We denote the

Frobenius inner product by ⟨a, b⟩ := ⟨vec (a) , vec (b)⟩,
where a, b ∈ RI1×I2×···×ID .

Supervised Learning In the context of supervised learn-
ing, the goal is to estimate a function f (·) : X → Y given
only a finite set of i.i.d. input-output pairs (xn, yn)

N
n=1 s.t.

xn ∈ X , y ∈ Y, ∀n ∈ {1, . . . , N} generated by some
probability measure P (x, y). After defining a measure of
loss ℓ (f (x) , y) : X × Y → R+, this can be accomplished
by minimizing the (regularized) empirical:

Rempirical (f) =
1

N

N∑
n=1

ℓ (f (xn) , yn) + λ ||f ||2H , (1)

where λ ∈ R+ is a regularization hyperparameter which
enforces a penalty on model complexity.

2.1 Kernel Machines

Kernel machines model f as linear in the mapped data, i.e.

f (x) = ⟨φ (x) ,w⟩ , (2)

and ℓ to be convex. Here φ (·) : X → H is the feature
map which lifts the data in a high (and possibly infinite-
dimensional) reproducing kernel Hilbert space H where
linear inference is possible, and w are the model weights.
In practice, this explicit mapping can be avoided by con-
sidering a kernel function k (·, ·) : X × X → R such that
k (x,x′) = ⟨φ (x) ,φ (x′)⟩. By the representer theorem
(Schölkopf et al., 2001) we have in fact that:

f (x) =

N∑
n=1

αnk (xn,x) , (3)

which implies that we only need to estimate multipliers
α ∈ RN . Depending on the choice of loss function dif-
ferent kernel machines arise, for instance hinge loss leads
to support vector machines, squared loss to Kernel Ridge
Regression (KRR), which is the same estimator as the Gaus-
sian process regression posterior mean. In case of squared
loss, Equation (1) can be minimized exactly from the corre-
sponding dual optimization problem:

(KXX + λN I)α = y. (4)

In practice, since the kernel evaluations between all points
need to be computed, the computational cost of training in
the dual is at least O(N2), limiting its usefulness to small-
sampled data.

Structured Data One way to enable exact inference on
large-scale data is to exploit existing structure in the data. A
particular fortunate case arises when the data lies on a Carte-
sian grid x(1) ×x(2) × · · · ×x(D) where each x(d) ∈ RNd

such that N =
∏D

d=1 Nd, and when considering product
kernels of the form:

k (xi,xj) =

D∏
d=1

k(d)
(
x
(d)
i , x

(d)
j

)
, (5)

where xi,xj ∈ RD. In this case the kernel matrix KXX

is the Kronecker product of small matrices Kx(d)x(d) ∈
RNd×Nd (Saatchi, 2011, Equation 5.7):

KXX = Kx(1)x(1) ⊗Kx(2)x(2) ⊗ · · · ⊗Kx(D)x(D) . (6)

Storing the full kernel matrix KXX ∈ RN×N can
then be avoided by storing smaller kernel matrices
Kx(1)x(1) , . . . ,Kx(D)x(D) without ever computing the
tensor-products. Exact training can then be accomplished
withO(DN1+ 1

D) operations by exploiting the properties of
the Kronecker product (Saatchi, 2011; Gilboa et al., 2015).

Frederiek Wesel, Kim Batselier

Unstructured Data One way to enable faster inference
to unstructured data is to consider the Nyström method
(Williams and Seeger, 2001; Suykens, 2002), whose key
idea is to approximate the spectrum of the full kernel matrix
KXX by means of a restricted number of kernel evaluations
at a subset of M ≪ N inducing points denoted by M , tra-
ditionally sampled at random (Williams and Seeger, 2001)
from the data X , defining hence the Nyström approximation
(Williams and Seeger, 2001, Equations 8-9):

KXX ≈KXML−TL−1KMX :=KNyström, (7)

where L is such that KMM = LLT. Embedding Equa-
tion (7) in Equation (1) under the assumption of squared
loss gives rise to a linear least-squares problem which can
be solved from the normal equations:(

L−1KMXKXML−T + λN I
)
w = L−1KMXy, (8)

This formulation enables training at the computational cost
of O(NM2 +M3) and storage cost of O(M2). As argued
previously however, these complexities force to chose be-
tween the accuracy of the approximation and the ability to
process large-scale data, as M ≪ N for any computational
gains. When one considers stationary product kernels, one
naive approach would be to locate a large number of induc-
ing points M ≫ N on a Cartesian grid and to exploit the
ensuing Toeplitz (one-dimensional inputs) and Kronecker
(higher-dimensional inputs) structures for computational
gains, as in Equation (6). Since this alone only alleviates
the complexity associated with KMM , plenty of research
has focused on approximating KXM which accounts for
the dominant O(NM2) term. One of these methods is
Structured Kernel Interpolation (SKI) (Wilson and Nickisch,
2015). In SKI, the cross-covariance matrix KXM is ap-
proximated by local interpolation, i.e. KXM ≈ PKMM ,
where P is a sparse interpolation matrix with 2D non-zero
elements per row (in case of linear interpolation), giving
rise to the SKI kernel

KXX ≈ PKMMP T :=KSKI. (9)

When considering a stationary product kernel KMM has
a Toeplitz structure (one-dimension) or a Kronecker prod-
uct structure of Toeplitz matrices (higher-dimensions). SKI
takes advantage of these structures by approximately solving
(KSKI + λI)

−1
y using Krylov subspace methods which

rely on matrix-vector products. Since P is sparse and
KMM is structured, each iteration of SKI costs only
O(N +M logM) operations and O(NM) memory. How-
ever, since M scales exponentially in D, SKI is limited
to sets of data of small dimensionality D < 5 (Wilson
and Nickisch, 2015). In order to mitigate this exponential
dependency in D, Gardner et al. (2018) approximate the ker-
nel matrix of a stationary product kernel as the Hadamard
product of rank-R SKI kernel matrices in order to perform
fast matrix-vector products in a divide-and-conquer fashion.

Although this approach overcomes the curse of dimension-
ality, it requires the storage of R copies (typically 30) of
the dataset limiting its applicability to data of moderate
dimensionality.

Recent extensions and improvement of the SKI framework
are the handling of online data (Stanton et al., 2021), its re-
formulation as a Bayesian linear regression problem (Yadav
et al., 2021) and the use of a permutohedral lattice instead of
a Cartesian grid (Kapoor et al., 2021). This latter approach
reduces the number of neighboring points from 2D to D+1,
alleviating the curse of dimensionality by allowing training
at O(D2(N +M)). However, this latter approach is most
effective only for D ≤ 20 (Kapoor et al., 2021) due to the
quadratic scaling in D of the computational complexity and
the decreasing accuracy of the kernel approximation as D
increases.

2.2 Tensor Decompositions

The most common tensor decompositions are the Canonical
Polyadic Decomposition (CPD) (Hitchcock, 1927; Kolda
and Bader, 2009), the Tucker decomposition (Tucker, 1966)
and the tensor train decomposition (Oseledets, 2011). A
rank-R CPD decomposes a tensor w ∈ RM1×M2×···×MD

as a sum of R outer products of vectors w(d) ∈ RMd such
that:

vec(w) =

R∑
r=1

w(1)
r ⊗w(2)

r ⊗ · · · ⊗w(D)
r , (10)

where the rank R is defined as the smallest R such that
Equation (10) holds exactly (Hitchcock, 1927; Kolda and
Bader, 2009). Here W (d) ∈ RMd×R are the factor matrices
such that [W (d)]:,r = w

(d)
r . Storing w in decomposed

form requires then only to store D factor matrices, requiring
R
∑D

d=1 Md memory units as opposed to M =
∏D

d=1 Md.
Because of this compression, tensor decompositions have
been used to reduce the number of model parameters in deep
learning models by tensorizing and decomposing weights
(Novikov et al., 2015; Tjandra et al., 2017; Yang et al., 2017;
Khodak et al., 2020), or compressing filters which have
tensorial structure by definition, e.g. convolutions (Favier
and Bouilloc, 2009; Lebedev et al., 2015; Batselier et al.,
2017).

Tensor decompositions have also been used to reduce the
exponential number of parameters which arise when learn-
ing from tensor-product feature maps by constraining the
weight tensor to be a low-rank tensor decomposition. So far
these models have considered trigonometric (Stoudenmire
and Schwab, 2016), polynomial (Novikov et al., 2018; Chen
et al., 2018) and Fourier feature maps (Wesel and Batse-
lier, 2021), where the latter are used to induce stationary
product kernels. Furthermore, in the context of GPs, tensor
decompositions have been used to reduce the complexity
of multi-output GPs (Zhe et al., 2019) and in the context of

Tensor-based Kernel Machines with Structured Inducing Points for Large and High-Dimensional Data

stochastic variational GPs to compress the mean of the varia-
tional posterior distribution (Izmailov et al., 2018). However
the former method is not designed to handle data which is
larger in the number of samples, as it scales withO

(
DN2

)
,

while the latter does not work for D > 10, as it becomes
unpractical to store the interpolation grid, forcing to train
on D ≤ 10-dimensional embeddings of the data.

In the following section, building on the works of Wilson
and Nickisch (2015) and Wesel and Batselier (2021), we
derive in the context of classical kernel machines a block-
coordinate descent algorithm whose computational com-
plexity at training scales with O(NDM

2
DR2) requiring

O(NR) memory, allowing to tackle large-scale and large
dimensional problems as demonstrated experimentally in
Section 4.

3 GRID-STRUCTURED KERNEL
MACHINES

In our approach we consider product kernels (Equation (5))
and Nyström inducing points (Equation (7)), which inspired
by Wilson and Nickisch (2015) we place on a Cartesian grid
m(1) ×m(2) × · · · ×m(D), where each m(d) ∈ RMd and
M =

∏d
d=1 Md. This approximation recovers the underly-

ing kernel as M →∞ (Evans and Nair, 2018, Theorem 1).
We have already seen in Equation (6) how KMM can be
stored and manipulated efficiently by considering its tensor-
product structure by indexing it as a tensor. This allows for
the efficient computation of its Cholesky factor L (Saatchi,
2011, Theorem 5.2) from

Km(1)m(1) ⊗Km(2)m(2) ⊗ · · · ⊗Km(D)m(D)

=L(1)L(1)T
⊗L(2)L(2)T ⊗ · · · ⊗L(D)L(D)T (11)

=
(
L(1) ⊗ · · · ⊗L(D)

)
︸ ︷︷ ︸

L

(
L(1) ⊗ · · · ⊗L(D)

)T
︸ ︷︷ ︸

LT

,

as it inherits the tensor-product structure. Similarly, each
row kxM of KXM has a tensor-product structure:

kxM = kx1m(1) ⊗ kx2m(2) ⊗ · · · ⊗ kxDm(D) ,

derivations can be found in the supplementary material. By
the mixed-product property of the tensor-product (Saatchi,
2011, Equation 5.10) we have that:

kxML−T = kx1m(1)L(1)−T
⊗ · · · ⊗ kxDm(D)L(D)−T

.

The computational benefits associated with this tensor-
product structure can however not be exploited without
further assumptions, as model evaluations

〈
kxML−T,w

〉
will require in fact still O(M) computations and the ’un-
packing’ of the tensor-product structure. In the next para-
graph, we will show how one can leverage fully the tensorial
structure of kxML−T by assuming that the model weights

are a rank-R CPD tensor. This will allow to consider both
large and high-dimensional datasets with grid-structured in-
ducing points, by effectively reducing the number of model
parameters from M to RDM

1
D .

We now wish to minimize the empirical risk Equation (1)
under a convex loss, with the additional constraint that the
weight tensor w has a rank-R CPD structure:

min
w

1

N

N∑
n=1

ℓ
(〈
kxnML−T,w

〉
, yn
)
+ λ ⟨w,w⟩ ,

(12)

subject to CP-rank (w) = R, (13)

where if R is chosen to be the true CPD rank of w, the
solution of Equation (1) associated with Equation (7) is
recovered. In this case, w is furthermore also unique un-
der mild conditions (Sidiropoulos and Bro, 2000). As we
will see, this constraint enables to fully exploit the rank-1
CPD structure of kxML−T by allowing to optimize one
CPD factor matrix W (d) of w at a time, enabling to tackle
large-sampled and large-dimensional datasets with modest
hardware. This is accomplished by exploiting the multilin-
earity of tensor decomposition which allows to express the
empirical risk as a linear function of the d-th factor matrix
W (d). Minimizing the risk successively for each factor ma-
trix yields a well-known block coordinate descent (Carroll
and Chang, 1970; Harshman, 1970; Kolda and Bader, 2009)
algorithm for which each subproblem is convex and exhibits
local linear convergence (Uschmajew, 2012, Theorem 3.3).
Similar properties hold when constraining w to be a low-
rank tensor train decomposition or Tucker decomposition.
However, the number of elements in the Tucker decom-
position scales exponentially in D, while the tensor train
decomposition models explicitly the correlations between
features, yielding for the same rank, different models de-
pending on the ordering of the features. In contrast to other
decompositions, our CPD-based approach enables to reduce
the costs of storage by clever in-place updates. Further-
more, recent theoretical advances in the domain of tensor
decomposition show that the VC dimension and pseudodi-
mension of models of the form of Equation (2), where w
is a rank-R tensor decomposition, are independent of the
choice of decomposition of w and instead upper bounded
by the number of parameters (Khavari and Rabusseau, 2021,
Theorem 7), further motivating the choice of modeling w as
a CPD. Following (Wesel and Batselier, 2021), we begin by
showing how the risk can be expressed only as a function of
W (d). The model term can in fact be rewritten exactly as:〈

kxML−T,w
〉
=
〈
g(d) (x) , vec

(
W (d)

)〉
. (14)

Here

g(d) (x) := vec

kxm(d)L−T ⊗

⊙
p ̸=d

(
kxm(p)L(p)−T) .

Frederiek Wesel, Kim Batselier

The regularization term is

⟨w,w⟩ =
〈
vec
(
W (d)T

W (d)
)
, vec

(
H(d)

)〉
. (15)

where

H(d) :=

⊙
p ̸=d

(
W (p)T

W (p)
) .

The derivations of Equation (14) and Equation (15), which
hold for d = 1, 2 . . . , D, can be found in the supplementary
material. Substitution of Equation (14) and Equation (15)
into Equation (12) leads to a convex optimization problem
for vec

(
W (d)

)
, consisting in practice to training a kernel

machine with RM
1
D model parameters:

min
vec(W (d))

1

N

N∑
n=1

ℓ
(〈

g(d) (xn) , vec
(
W (d)

)〉
, yn

)
+λ
〈
vec
(
W (d)T

W (d)
)
, vec

(
H(d)

)〉
,

(16)

which in case of squared loss can be solved exactly by means
of the normal equations(

G(d)T
G(d) + λNH(d) ⊗ I

)
vec
(
W (d)

)
= G(d)T

y,

(17)
where

[
G(d)

]
i,:

= g(d) (xi). The computational cost of

solving Equation (17) exactly is ofO(NM
2
DR2+M

3
DR3),

where the first term accounts for constructing the relevant
squared matrices and the second term accounts for solving
the linear system. The storage requirements are O(M 2

DR2)

if one builds up G(d)T
G(d) as a series of N rank-1 up-

dates. Alternating the minimization by iterating across all
factor matrices, i.e. for d = 1, 2, . . . , D yields the a block
coordinate algorithm which is well studied in the tensor
community (Kolda and Bader, 2009; Uschmajew, 2012).
Section 4 shows how the algorithm converges to suitable
minima in all our experiments and is numerically stable.
The computational complexity of our proposed Algorithm
CPD-SIP is then O(NDM

2
DR2 +DM

3
DR3).

Implementation Details Note that we could have consid-
ered in Equation (12) the linearly equivalent feature map
kxM which e.g. under squared loss and without rank con-
straints gives rise to the following regularized linear least-
squares problem (KXM

TKXM+KMM)w̄ = KXM
Ty,

where w̄ = L−Tw. However this formulation is prone to
numerical instability, as the singular values of KXM are
not scaled by L, as discussed in (Rasmussen and Williams,
2006, Chapter 3.4.3). As a consequence when embedded in
CPD-SIP , G(d) has a higher condition number and spirals
out of control after a few iterations.

The naive storage cost of O(ND(M
2
DR2)) can be reduced

by a factor D by updating G(d) and H(d) in-place and by

Algorithm CPD-Structured Inducing Points (CPD-SIP).

Require: Inputs X ∈ RN×D, outputs y ∈ RN , kernel
function k(·, ·) : R×R→ R, loss ℓ(·, ·) : R×R→ R+,
number of basis M̂ ∈ N+ : M̂ := M

1
D , CP-rank

R ∈ N+, max iterations S ∈ N+

Ensure: Factor matrices W (d) ∈ RM̂×R, d = 1, 2, . . . , D
1: s← 0
2: G← ones(M̂,R)
3: H ← ones(N,R)
4: ComputeKmm using Equation (6)
5: L← chol (Kmm) from Equation (11)
6: for d = D,D − 1, . . . , 1 do
7: W (d) ← randn(M̂,R)
8: W (d) ←W (d)/

∣∣∣∣W (d)
∣∣∣∣

9: G← G⊙ (KXmL−TW (d))

10: H ←H ⊙ (W (d)T
W (d))

11: end for
12: repeat
13: s← s+ 1
14: for d = 1, 2, . . . , D do
15: H ←H ⊘ (W (d)T

W (d))
16: G← G⊘ (KXmL−TW (d))
17: Solve Equation (16) for vec

(
W (d)

)
18: W (d) ← reshape(vec

(
W (d)

)
)

19: H ←H ⊙ (W (d)T
W (d))

20: G← G⊙ (KXmL−TW (d))
21: end for
22: until Convergence or s = S

locating the inducing points on a dimension-independent
grid, see Algorithm CPD-SIP , where we denote these in-
place updated matrices as G and H respectively. Since
these operations are O(NR), they do not affect the compu-
tational complexity. The storage complexity can be further
reduced by carrying out the updates for G (e.g. in line 9
of Algorithm CPD-SIP) in batches of one or more rows
of kxmL−T, which can be computed on-the-fly, bringing
it down to O(NR). Of course, if memory is not an issue,
speedup up to a constant factor can be easily obtained by
caching kXmL−T, however this is not a requirement by any
means. A summary of the computational and storage com-
plexities of various SKI-related methods is given in Table 1,
where we can observe that the computational complexity
of CPD-SIP scales linearly in N and D, while having a
storage complexity which is independent on D. All meth-
ods except the Simplex-GP, whose complexity scales with
O(D2), place the inducing points on a Cartesian grid. As
a result, either an exponential number of computations or
R copies of the whole dataset are required, prohibiting to
tackle large-dimensional (in this case D > 20 (Kapoor et al.,
2021)) data.

Tensor-based Kernel Machines with Structured Inducing Points for Large and High-Dimensional Data

Selecting the hyperparameters In CPD-SIP , the CP-
rank R is introduced as additional hyperparameter, which
similarly to other SKI-based approaches (Wilson and Nick-
isch, 2015; Gardner et al., 2018) we advocate to select based
on the computational budget at hand: M should be chosen
first as to provide an accurate representation of the kernel,
possibly to machine precision. This can be ensured for in-
stance by means of cross-validation on a portion of unseen
data. R can then be chosen in order to fill in the remainder
of the available computational and memory budget.

4 EXPERIMENTS

We implemented CPD-SIP in MathWorks MATLAB. The
implementation and instructions to reproduce the re-
sults are available at https://github.com/fwesel/
CPD-SIP. We scale the inputs in order to lie in the unit
hypercube [0, 1]

D. In case of regression problems, we stan-
dardize the responses to have zero mean and unit variance.
In case of binary classification, we consider only the sign
±1 of the responses (Suykens and Vandewalle, 1999). We
initialize the factor matrices W (d) with standard normal
numbers and normalize them to have unit norm. In all our
experiments we set the number of iterations to S = 20
(consistent with Wesel and Batselier (2021), as we define
iterations as half a sweep). All the experiments were run
on the Intel Core i7-10610U 1.8GHz CPU of a Dell Inc.
Latitude 7410 laptop with 16GB of RAM. In what follows
we present a series of three numerical experiments. Therein
we demonstrate how our algorithm is stable and recovers
the underlying KRR baseline with small values of R. We
show how it compares with other grid-structured approaches
managing to extend their applicability to data large in di-
mensionality (D = 384) or sample-size (N = 5000 000).

4.1 Non-Stationary Kernel

The Banana dataset (Hensman et al., 2015) is a two-
dimensional binary classification dataset which is often
used in the context of low-rank kernel machines to visually
demonstrate their characteristics. The dataset comprises
N = 5300 data points roughly split in two classes. We
consider the non-stationary separable polynomial kernel
k(x,x′) =

∏D
d=1(1+ xdx

′
d)

5, λ = 1×10−6
/N and consider

M = 2500 inducing points, 50 per dimension, located on an
equidistant Cartesian grid. We then proceed to train a Kernel
Ridge Regression classifier of Equation (4) and CPD-SIP
with the same hyperparameter λ. Since the problem is two-
dimensional, w is a matrix and has rank R = M

1
D = 50.

In Figure 1 we can observe that for low values of R the clas-
sification boundary is similar to the one of the KRR baseline
where there is more data. This is because CPD-SIP seeks
to minimize the empirical risk, and when provided with
very few parameters it will seek to improve the classifi-
cation boundary where the data is denser. We notice that

already for R = 6 the classification boundary is indistin-
guishable from the one of KRR. As we will see next, the
assumption of a small rank is valid also when dealing with
higher-dimensional and large-sampled data.

4.2 Comparison with SKI

In order to compare our method with SKI, we consider
seven UCI datasets (Dua and Graff, 2017), five of which are
considered also by Kapoor et al. (2021). We compare our ap-
proach against SKIP (Gardner et al., 2018) and Simplex-GP
(Kapoor et al., 2021). We consider the Gaussian kernel and
locate M = 10D inducing points on a equidistant Cartesian
grid and model w as a rank-20 CPD. In order to train a
model in approximately the same function space, we select
our hyperparameters l and λ by means of maximizing the
log-likelihood of an exact GP model (Rasmussen and Nick-
isch, 2010) constructed on a small random uniform subset
of 2000 points. We then validate our model by means of
3-fold cross validation and report in Table 2 the Standard-
ized Root Mean Squared Error (RMSE) with one standard
deviation. While training we keep track of the quality of our
inducing-point approximation kxML−T by sampling uni-
formly at random a subset E of 1000 points and computing
the relative error ||KEE−KEML−TL−1KME ||/||KEE ||, which
we report in Table 2. Here we can observe that the quality of
the approximation approaches machine precision on many
datasets, allowing the modeler to chose R according to the
remaining computational budget.

In Table 2 we can observe that notwithstanding the sub-
optimal choice of hyperparameters, our model is competi-
tive in term of performance with the other inducing-points
based approaches. Notably, although the seven considered
datasets range vastly in the number of samples, they do not
do so in the dimensionality, as all methods pay a heavy com-
putational or storage-related price when scaling to higher-
dimensional data. This is not the case of CPD-SIP which
contrary to SKIP, does not require the contemporary storage
of D N ×R matrices, which allows us to tackle datasets of
large dimensionality such as Slice with D = 384. Training
our model on the laptop CPU requires then (11 274±189) s
for the Song dataset and (4724± 198) s for the HouseElec-
tric, compared to a per-epoch (1075 ± 176) s of Simplex-
GP (Kapoor et al., 2021, Table 4) on a Titan RTX GPU
with 24GB of RAM. Training on the Slice dataset took
(226± 2) s.

4.3 Large-Scale Classification

In order to demonstrate the favorable complexity of CPD-
SIP when dealing with a larger number of samples, we
consider the SUperSYmmetry dataset (SUSY) (Baldi et al.,
2014; Dua and Graff, 2017), an binary classification 18-
dimensional dataset consisting of 5 000 000 samples, whose
first 8 features consist of particle detector measurements,

https://github.com/fwesel/CPD-SIP
https://github.com/fwesel/CPD-SIP

Frederiek Wesel, Kim Batselier

Table 1: Computational and storage complexities of various SKI-based approaches when exploiting stationary structure. For
SKIP R is typically chosen to be between 20 and 100 (Kapoor et al., 2021).

Method Complexities

Computational Storage
KRR (Suykens, 2002) O(N3) O(N2)

SKI (Wilson and Nickisch, 2015; Yadav et al., 2021) O(N +M logM) O(NM)

SKIP (Gardner et al., 2018) O(NDR+RM
1
D logM +NR3 logD +NR2) O(DNR)

Simplex-GP (Kapoor et al., 2021) O(ND +MD2)) O(MD)

CPD-SIP O(D(NM
2
D R2 +M

3
D R3)) O(NR)

R = 2 R = 3 R = 6 R = M
1
D = 50

Figure 1: Classification boundary of the two-dimensional Banana dataset for increasing CPD-ranks R for the non-stationary
product kernel k(x,x′) =

∏D
d=1(1+xdx

′
d)

5. The dashed line is the KRR decision boundary while the full line corresponds
to CPD-SIP . The black crosses are the locations of the inducing points. In the last plot the chosen CP-rank matches the true
(matrix) rank of w.

while the following 10 are high-level features engineered
from the first 8. We consider M = 20D inducing points,
and R = 5, 10, 15, 20. As is standard on this dataset, train-
ing is performed on the first 4 500 000 points and test on the
remainder. We train both on only low-level and low-level
plus high-level features. We use the Guassian kernel with l
as the mean of the standard deviations of the features and
λ = 2×10−5

/N and report in Table 3 the Area Under the
Curve (AUC), misclassification error and training time of
our and other methods in literature. In Table 3 we can see
that already for R = 5 our CPD-SIP scores similarly to
VISH (Dutordoir et al., 2020), whose reliance on numeri-
cally unstable spherical harmonics prohibits it however to
be deployed on data with D > 9. For higher values of R,
the performance rivals with DNNs. Others results on the
dataset are from (Chen et al., 2017) where the authors obtain
a misclassification rate of 20.1% in 2400 s on a cluster with
IBM POWER8 12-core CPUs and 512 GB RAM.

5 CONCLUSION

In this work we build on the idea of placing inducing points
on a Cartesian grid in order to exploit the computationally
favorable arising tensorial structure. This allows us to ob-
tain a good approximation of the kernel function on the
whole domain, without sacrificing accuracy or the ability

to tackle large-dimensional problems. In contrast to SKI
and inducing points-related literature, we are in fact able
to overcome the curse of dimensionality which affects both
computational and storage-related complexities of these
structured approaches by modeling the weights as a rank-
R CPD decomposition. We show by means of numerical
experiments how our approach is viable even on modest
hardware. Note that all operations in CPD-SIP can be ex-
pressed as a series of matrix-vector products, enabling for
efficient (multi-)GPU implementations. Furthermore, since
our approach allows to learn from any product kernel, it al-
lows to consider the SKI kernel of Equation (9), which can
be a product kernel depending on the the choice of interpola-
tion strategy (Wilson and Nickisch, 2015). This could then
allow for cheap caching of the features and further speedup
by exploiting to the sparse structure in combination with
stationary product kernels. One limitation of our approach
is that its computational complexity scales with O(ND),
prohibiting its application to data with a large number of
samples and dimensionality, e.g. in case of categorical fea-
tures. Another limitation, which we did not encounter in
the experiments, is that the low-rank hypothesis is certainly
not always justified, especially when dealing with highly
complicated functions. We think that a possible remedy
might be to seek for a different kernel space where the low-
rank assumption would hold. Furthermore, although our

Tensor-based Kernel Machines with Structured Inducing Points for Large and High-Dimensional Data

Table 2: Predictive Standardized RMSE with one standard deviation on five UCI datasets (Kapoor et al., 2021, Table 2)

Dataset RMSE Rel. Approx. Error

D↓ N SKIP Simplex GP CPD-SIP CPD-SIP
Precipitation 3 628 474 1.032± 0.001 0.939 ± 0.001 0.974± 0.000 (0.81± 1.03)× 10−2

Protein 9 45 730 0.817± 0.012 0.571 ± 0.003 0.705± 0.004 (1.94± 1.74)× 10−2

HouseElectric 11 2 049 280 NA 0.079 ± 0.002 0.084± 0.002 (1.63± 8.24)× 10−14

Elevators 17 16 599 0.447± 0.037 0.510± 0.018 0.382 ± 0.005 (6.37± 4.67)× 10−15

KeggDirected 20 48 827 0.487± 0.005 0.095± 0.002 0.089 ± 0.001 (3.17± 0.81)× 10−13

Song 90 515 345 NA NA 0.800 ± 0.003 (2.40± 1.40)× 10−5

Slice 386 53 500 NA NA 0.094 ± 0.002 (2.79± 1.65)× 10−12

Table 3: Predictive AUC, misclassification rate and training time with one standard deviation on the SUSY dataset. Results
for Bayesian decision tree (BDT) and neural networks (NNs) are from (Baldi et al., 2014, Table 2), while the result for VISH
is from (Dutordoir et al., 2020, Table 3).

AUC 1-Accuracy (%) Time (s)

Technique Low-level Complete Complete Complete

BDT 0.850± 0.003 0.863± 0.003 NA NA
NN 0.867± 0.002 0.875± 0.001 NA NA
Dropout NN 0.856± 0.001 0.873± 0.001 NA NA
DNN 0.872± 0.001 0.876± 0.001 NA NA
Dropout DNN 0.876 ± 0.001 0.879 ± 0.001 NA NA
VISH 0.859± 0.001 NA NA NA
CPD-SIP (R = 5) 0.862± 0.002 0.872± 0.002 20.04± 0.01 1641± 21
CPD-SIP (R = 10) 0.867± 0.000 0.874± 0.000 19.82± 0.01 4650± 15
CPD-SIP (R = 15) 0.872± 0.000 0.875± 0.000 19.74± 0.00 6773± 52
CPD-SIP (R = 20) 0.872± 0.000 0.876± 0.000 19.68± 0.01 9446± 23

Frederiek Wesel, Kim Batselier

approach is inherently non-probabilistic, our work allows
to approximately carry out one of the two GP tasks, namely
data fitting. Interesting further directions would be to in-
vestigate the regularizing effects of the low-rank constraint,
to incorporate this exact approach in a probabilistic frame-
work allowing for uncertainty quantification and possibly
Bayesian model selection.

Acknowledgements

We would like to thank the anonymous reviewers for their
suggestions and improvements. Frederiek Wesel, and
thereby this work, is supported by the Delft University of
Technology AI Labs program. The authors declare no com-
peting interests.

References

P. Baldi, P. Sadowski, and D. Whiteson. Searching for
exotic particles in high-energy physics with deep learning.
Nature Communications, 5(1):4308, July 2014. [6, 8]

K. Batselier, Z. Chen, and N. Wong. Tensor Network alter-
nating linear scheme for MIMO Volterra system identifi-
cation. Automatica, 84:26–35, Oct. 2017. [3]

J. D. Carroll and J.-J. Chang. Analysis of individual dif-
ferences in multidimensional scaling via an n-way gener-
alization of “Eckart-Young” decomposition. Psychome-
trika, 35(3):283–319, Sept. 1970. [4]

J. Chen, H. Avron, and V. Sindhwani. Hierarchically Com-
positional Kernels for Scalable Nonparametric Learning.
Journal of Machine Learning Research, 18(66):1–42,
2017. [7]

Z. Chen, K. Batselier, J. A. K. Suykens, and N. Wong. Par-
allelized Tensor Train Learning of Polynomial Classifiers.
IEEE Transactions on Neural Networks and Learning
Systems, 29(10):4621–4632, Oct. 2018. [3]

C. Cortes and V. Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, Sept. 1995. [1]

L. Csató and M. Opper. Sparse On-Line Gaussian Processes.
Neural Computation, 14(3):641–668, Mar. 2002. [1]

D. Dua and C. Graff. UCI Machine Learning Repository,
2017. [6]

V. Dutordoir, N. Durrande, and J. Hensman. Sparse Gaus-
sian Processes with Spherical Harmonic Features. In
International Conference on Machine Learning, pages
2793–2802. PMLR, Nov. 2020. [7, 8]

T. Evans and P. Nair. Scalable Gaussian Processes with
Grid-Structured Eigenfunctions (GP-GRIEF). In Inter-
national Conference on Machine Learning, pages 1417–
1426. PMLR, July 2018. [4]

G. Favier and T. Bouilloc. Parametric complexity reduc-
tion of Volterra models using tensor decompositions. In
2009 17th European Signal Processing Conference, pages
2288–2292, Aug. 2009. [3]

J. Gardner, G. Pleiss, R. Wu, K. Weinberger, and A. Wilson.
Product Kernel Interpolation for Scalable Gaussian Pro-
cesses. In Proceedings of the Twenty-First International
Conference on Artificial Intelligence and Statistics, pages
1407–1416. PMLR, Mar. 2018. [1, 3, 6, 7]

A. Garriga-Alonso, C. E. Rasmussen, and L. Aitchison.
Deep Convolutional Networks as shallow Gaussian Pro-
cesses. In International Conference on Learning Repre-
sentations, Sept. 2018. [1]

E. Gilboa, Y. Saatçi, and J. P. Cunningham. Scaling Multi-
dimensional Inference for Structured Gaussian Processes.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 37(2):424–436, Feb. 2015. [2]

B. Hammer and K. Gersmann. A Note on the Universal
Approximation Capability of Support Vector Machines.
Neural Processing Letters, 17(1):43–53, Feb. 2003. [1]

R. A. Harshman. Foundations of the PARAFAC procedure :
Models and conditions for an. UCLA Working Papers in
Phonetics, 16:1–84, 1970. [4]

J. Hensman, A. Matthews, and Z. Ghahramani. Scalable
Variational Gaussian Process Classification. In Artificial
Intelligence and Statistics, pages 351–360. PMLR, Feb.
2015. [6]

F. L. Hitchcock. The Expression of a Tensor or a Polyadic as
a Sum of Products. Journal of Mathematics and Physics,
6(1-4):164–189, 1927. [3]

P. Izmailov, A. Novikov, and D. Kropotov. Scalable Gaus-
sian Processes with Billions of Inducing Inputs via Tensor
Train Decomposition. In International Conference on Ar-
tificial Intelligence and Statistics, pages 726–735. PMLR,
Mar. 2018. [4]

S. Kapoor, M. Finzi, K. A. Wang, and A. G. G. Wilson.
SKIing on Simplices: Kernel Interpolation on the Per-
mutohedral Lattice for Scalable Gaussian Processes. In
Proceedings of the 38th International Conference on Ma-
chine Learning, pages 5279–5289. PMLR, July 2021. [3,
5, 6, 7, 8]

B. Khavari and G. Rabusseau. Lower and Upper Bounds
on the Pseudo-Dimension of Tensor Network Models.
In Advances in Neural Information Processing Systems,
May 2021. [4]

M. Khodak, N. A. Tenenholtz, L. Mackey, and N. Fusi.
Initialization and Regularization of Factorized Neural
Layers. In International Conference on Learning Repre-
sentations, Sept. 2020. [3]

T. G. Kolda and B. W. Bader. Tensor Decompositions and
Applications. SIAM Review, 51(3):455–500, Aug. 2009.
[1, 3, 4, 5]

V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S.
Lempitsky. Speeding-up Convolutional Neural Networks
Using Fine-tuned CP-Decomposition. In ICLR (Poster),
Jan. 2015. [3]

Tensor-based Kernel Machines with Structured Inducing Points for Large and High-Dimensional Data

J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington,
and J. Sohl-Dickstein. Deep Neural Networks as Gaus-
sian Processes. In International Conference on Learning
Representations, Feb. 2018. [1]

G. Meanti, L. Carratino, L. Rosasco, and A. Rudi. Kernel
methods through the roof: Handling billions of points ef-
ficiently. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Informa-
tion Processing Systems, volume 33, pages 14410–14422.
Curran Associates, Inc., 2020. [1]

T. Nickson, T. Gunter, C. Lloyd, M. A. Osborne, and
S. Roberts. Blitzkriging: Kronecker-Structured Stochas-
tic Gaussian Processes. arXiv:1510.07965 [stat], Oct.
2015. [1]

R. Novak, L. Xiao, Y. Bahri, J. Lee, G. Yang, J. Hron, D. A.
Abolafia, J. Pennington, and J. Sohl-dickstein. Bayesian
Deep Convolutional Networks with Many Channels are
Gaussian Processes. In International Conference on
Learning Representations, Sept. 2018. [1]

A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov.
Tensorizing neural networks. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 28.
Curran Associates, Inc., 2015. [3]

A. Novikov, I. Oseledets, and M. Trofimov. Exponential
machines. Bulletin of the Polish Academy of Sciences:
Technical Sciences; 2018; 66; No 6 (Special Section on
Deep Learning: Theory and Practice); 789-797, 2018.
[3]

I. V. Oseledets. Tensor-Train Decomposition. SIAM Journal
on Scientific Computing, 33(5):2295–2317, Jan. 2011. [3]

J. Quiñonero-Candela and C. E. Rasmussen. A Unifying
View of Sparse Approximate Gaussian Process Regres-
sion. Journal of Machine Learning Research, 6(65):1939–
1959, 2005. [1]

A. Rahimi and B. Recht. Random features for large-scale
kernel machines. In Proceedings of the 20th International
Conference on Neural Information Processing Systems,
NIPS’07, pages 1177–1184, Red Hook, NY, USA, Dec.
2007. Curran Associates Inc. [1]

C. E. Rasmussen and H. Nickisch. Gaussian Processes for
Machine Learning (GPML) Toolbox. Journal of Machine
Learning Research, 11(100):3011–3015, 2010. [6]

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes
for Machine Learning. Adaptive Computation and Ma-
chine Learning. MIT Press, Cambridge, Mass, 2006. [1,
5]

Y. Saatchi. Scalable Inference for Structured Gaussian
Process Models. PhD thesis, University of Cambridge,
Cambridge, Nov. 2011. [2, 4, 12]

B. Schölkopf, R. Herbrich, and A. J. Smola. A Gen-
eralized Representer Theorem. In D. Helmbold and

B. Williamson, editors, Computational Learning The-
ory, Lecture Notes in Computer Science, pages 416–426,
Berlin, Heidelberg, 2001. Springer. [2]

N. D. Sidiropoulos and R. Bro. On the uniqueness of multi-
linear decomposition of N-Way arrays. Journal of Chemo-
metrics, 14(3):229–239, 2000. [4]

A. Smola and P. Bartlett. Sparse Greedy Gaussian Process
Regression. In Advances in Neural Information Process-
ing Systems, volume 13. MIT Press, 2001. [1]

E. Snelson and Z. Ghahramani. Sparse Gaussian Processes
using Pseudo-inputs. In Advances in Neural Information
Processing Systems, volume 18. MIT Press, 2006. [1]

S. Stanton, W. Maddox, I. Delbridge, and A. G. Wilson. Ker-
nel Interpolation for Scalable Online Gaussian Processes.
In Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, pages 3133–3141.
PMLR, Mar. 2021. [1, 3]

E. M. Stoudenmire and D. J. Schwab. Supervised learn-
ing with tensor networks. In Proceedings of the 30th
International Conference on Neural Information Process-
ing Systems, NIPS’16, pages 4806–4814, Red Hook, NY,
USA, Dec. 2016. Curran Associates Inc. [3]

J. Suykens and J. Vandewalle. Least Squares Support Vector
Machine Classifiers. Neural Processing Letters, 9(3):
293–300, June 1999. [6]

J. A. K. Suykens, editor. Least Squares Support Vector
Machines. World Scientific, River Edge, NJ, 2002. [3, 7]

M. Titsias. Variational Learning of Inducing Variables in
Sparse Gaussian Processes. In Proceedings of the Twelth
International Conference on Artificial Intelligence and
Statistics, pages 567–574. PMLR, Apr. 2009. [1]

A. Tjandra, S. Sakti, and S. Nakamura. Compressing re-
current neural network with tensor train. In 2017 Inter-
national Joint Conference on Neural Networks (IJCNN),
pages 4451–4458, May 2017. [3]

L. R. Tucker. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31(3):279–311, Sept.
1966. [3]

A. Uschmajew. Local Convergence of the Alternating Least
Squares Algorithm for Canonical Tensor Approximation.
SIAM Journal on Matrix Analysis and Applications, 33
(2):639–652, Jan. 2012. [4, 5]

F. Wesel and K. Batselier. Large-Scale Learning with
Fourier Features and Tensor Decompositions. In Ad-
vances in Neural Information Processing Systems, May
2021. [2, 3, 4, 6, 12]

C. Williams and M. Seeger. Using the Nyström Method
to Speed Up Kernel Machines. In Advances in Neural
Information Processing Systems 13, pages 682–688. MIT
Press, 2001. [1, 3]

Frederiek Wesel, Kim Batselier

A. Wilson and H. Nickisch. Kernel Interpolation for Scal-
able Structured Gaussian Processes (KISS-GP). In Pro-
ceedings of the 32nd International Conference on Ma-
chine Learning, pages 1775–1784. PMLR, June 2015. [1,
3, 4, 6, 7]

M. Yadav, D. Sheldon, and C. Musco. Faster Kernel Inter-
polation for Gaussian Processes. In Proceedings of The
24th International Conference on Artificial Intelligence
and Statistics, pages 2971–2979. PMLR, Mar. 2021. [1,
3, 7]

Y. Yang, D. Krompass, and V. Tresp. Tensor-Train Re-
current Neural Networks for Video Classification. In
International Conference on Machine Learning, pages
3891–3900. PMLR, July 2017. [3]

Z. Yang, A. Wilson, A. Smola, and L. Song. A la Carte
– Learning Fast Kernels. In Artificial Intelligence and
Statistics, pages 1098–1106. PMLR, Feb. 2015. [1]

S. Zhe, W. Xing, and R. M. Kirby. Scalable High-Order
Gaussian Process Regression. In Proceedings of the
Twenty-Second International Conference on Artificial In-
telligence and Statistics, pages 2611–2620. PMLR, Apr.
2019. [3]

Tensor-based Kernel Machines with Structured Inducing Points for Large and High-Dimensional Data

6 Kronecker Structures

6.1 Kronecker Product Structure of KMM Saatchi (2011)

Let us consider product kernels, where the inducing points mi,mj ∈ RD live on a Cartesian grid m(1) ×m(2) × · · ·m(D)

where m(d) ∈ RMd . Then:

[KMM]i,j = k(mi,mj) = k1(m
(1)
i1

,m
(1)
j1

)k2(m
(2)
i1

,m
(2)
j2

) · · · kD(m
(D)
iD

,m
(D)
jD

),

where i = i1 +
∑D

d=2(id− 1)
∏d−1

k=1 Mk and j = j1 +
∑D

d=2(jd− 1)
∏d−1

k=1 Mk with id = 1, . . . ,Md and jd = 1, . . . ,Md.
The definition of the Kronecker product implies that

KMM = Km(1)m(1) ⊗Km(2)m(2) ⊗ · · · ⊗Km(D)m(D) ,

where Km(d)m(d) ∈ RMd×Md .

6.2 Row-wise Khatri-Rao Product Structure of KXM

Let us consider product kernels, where the inducing points mj ∈ RD live on a Cartesian grid m(1) ×m(2) × · · ·m(D)

where m(d) ∈ RMd . Then:

[KXM]i,j = k(xi,mj) = k1(xi1 ,m
(1)
j1

)k2(xi2 ,m
(2)
j2

) · · · kD(xiD ,m
(D)
jD

),

where j = j1 +
∑D

d=2(jd − 1)
∏d−1

k=1 Mk, jd = 1, . . . ,Md and i = 1, . . . , N . The definition of the Kronecker product
implies that

[KXM]i,: = kxiM = kxi1
m(1) ⊗ kxi2

m(2) ⊗ · · · ⊗ kxiD
m(D) .

where kxid
m(d) ∈ RMd .

6.3 Model and Regularization Terms

Following (Wesel and Batselier, 2021) we make use of the multi-linearity property of the CPD and rely on re-ordering the
summations. Here M =

∏D
d=1 Md.

〈
kxML−T,w

〉
=

〈
kx1m(1)L(1)−T

⊗ kx2m(2)L(2)−T
⊗ · · · ⊗ kxDm(D)L(D)−T

,

R∑
r=1

w(1)
r ⊗w(2)

r ⊗ · · · ⊗w(D)
r

〉

=

M1∑
m1=1

· · ·
Md∑

md=1

· · ·
MD∑

mD=1

R∑
r=1

kx1m(1)L(1)−T
:m1

w(1)
m1r · · ·kxdm(d)L(d)−T

:md
w(d)

mdr
· · ·kxDm(D)L(D)−T

:mD
w(D)

mDr

=

Md∑
md=1

R∑
r=1

(
kxdm(d)L(D)−T

:md

M1∑
m1=1

kx1m(1)L(1)−T
:m1

w(1)
m1r · · ·

MD∑
mD=1

kxDm(D)L(D)−T
:mD

w(D)
mDr

)
w(d)

mdr

= vec
(
kxdm(d)L(d)−T

⊗
(
kx1m(1)L(1)−T

W (1) ⊙ · · · ⊙ kxDm(D)L(D)−T
W (D)

))T
vec
(
W (d)

)
=
〈
g(d) (x) , vec

(
W (d)

)〉
The derivation of the regularization term in of follows a similar reasoning as for the data-fitting term:

⟨w,w⟩ =

〈
R∑

r=1

w(1)
r ⊗w(2)

r ⊗ · · · ⊗w(D)
r ,

R∑
r=1

w(1)
r ⊗w(2)

r ⊗ · · · ⊗w(D)
r

〉

=

M1∑
m1=1

· · ·
Md∑

md=1

· · ·
MD∑

mD=1

R∑
r=1

R∑
p=1

w(1)
m1r w

(1)
m1,p · · ·w

(d)
mdr

w(d)
md,p
· · ·w(D)

mDr w
(D)
piD

=

R∑
r=1

R∑
p=1

(
Md∑

md=1

w(d)
mdr

w(d)
mdp

)(
M1∑

m1=1

w(1)
m1r w

(1)
m1p · · ·

MD∑
mD=1

w(D)
mDr w

(D)
mDp

)

Frederiek Wesel, Kim Batselier

=

R∑
r=1

R∑
p=1

(
w(d)T

r w(d)
p

)(
w(1)T

r w(1)
p ⊙ · · · ⊙w(D)T

r w(D)
p

)
= vec

(
W (d)T

W (d)
)T

vec
(
W (1)T

W (1) ⊙ · · · ⊙W (D)T
W (D)

)
=
〈
vec
(
W (d)T

W (d)
)
, vec

(
H(d)

)〉

	INTRODUCTION
	BACKGROUND
	Kernel Machines
	Tensor Decompositions

	GRID-STRUCTURED KERNEL MACHINES
	EXPERIMENTS
	Non-Stationary Kernel
	Comparison with SKI
	Large-Scale Classification

	CONCLUSION
	Kronecker Structures
	Kronecker Product Structure of 1 saatchiscalable2011
	Row-wise Khatri-Rao Product Structure of 1
	Model and Regularization Terms

