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Abstract

In this thesis, we study the asymptotic behaviour and the dynamics of a one-dimensional active particle
model with excluded volume interactions. The model is a version of run-and-tumble motion, where a parti-
cle performs both symmetric random walks and active transport. The direction and the speed of the transport
are governed by an internal state process.

We show that this motion converges to Brownian motion upon diffusive scaling and determine the limiting
diffusion coefficient. The internal state converges to a stationary distribution, by which it manifests itself in
the diffusion coefficient. Furthermore, we prove that the active particle satisfies the large deviation principle.
This allows us to derive an implicit expression for the rate by which the probability of rare events tends to zero.

Numerically, we investigate the influence of excluded volume interactions on the diffusion coefficient and the
average velocity. We find that the velocity converges exponentially to its theoretical value as the number of
particles allowed per position increases. In addition, this exclusion number strongly influences the manner
in which the velocity decreases for high particle densities.

Predictions for the velocity as a function of particle density based on the model are compared to experimen-
tal data of the molecular motor kinesin-II. We find that model is not adequate for approximating the velocity
of molecular motors in crowded environments and extensions in the form of Langmuir kinetics are suggested.
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1
Introduction

Ensembles of many constituents that each dissipate energy from an internal or external source to perform
directed motion are called active matter systems. As a result of the conversion of energy into motion, sys-
tems of active matter defy the laws of equilibrium statistical physics. Over the past decades, active systems
have drawn increasing interest because of their rich emergent behaviour such as phase transitions and col-
lective motion [22]. Many models have been developed in order to understand collective phenomena from
the motile properties of the individual, interacting constituents of a system. Examples of active matter on
the nanoscale include bacteria and molecular motors [17]. On a larger scale, emergent phenomena in active
systems include the flocking of birds and the schooling of fish.

Considering active particles on a micro- and nanoscale, the motion of the particles has an active compo-
nent due to dissipation and a stochastic component due to thermal fluctuations, also referred to as Brownian
motion. In this thesis, we study a version of a one-dimensional active particle model known as the run-and-
tumble model (see for example [6, 13, 20]). Run-and-tumble particles combine random and driven motion,
where the direction of the driven motion shows sudden reversals. This type of motion has been observed for
different types of bacteria [11, 17].

The questions which we ask ourselves for the active particle model are centered around four main limit theo-
rems for stochastic processes. These form the foundation on which we build our analysis of the asymptotics
of the run-and-tumble model. Let us give a brief introduction to the limit theorems for a random walk process
X t in continuous time. Throughout the report the following principles will be thoroughly explained.

1. Law of large numbers: lim
t→∞

X t

t
= lim

t→∞
EX t

t
= v

First of all, the law of large numbers states that X t has a limiting asymptotic velocity v , which is almost
surely constant.

2. Central limit theorem: X t−v tp
t

d−→N (0,σ2)

Secondly, the central limit theorem prescribes that after scaling by a factor 1p
t

, X t − v t converges in

distribution to a Gaussian with mean zero and variance σ2.

3. Invariance principle: ε
(
Xε−2t − vε−2t

) ε→0−−−→Wσ2t
This principle is a strengthening of the central limit theorem. It states that under appropriate scaling
of time and position, the entire process - in contrast to the distribution at t = 1 for the central limit
theorem - converges to Brownian motion.

4. Large deviations: P
(

X t
t ≈ x

)
≈ e−t I (x)

Finally, the large deviation principle is about the asymptotic behaviour of the moment generating func-
tion of a random variable. In short, it states that the probability that X t

t is approximately equal to x,
decreases exponentially in t . The leading order in the exponent is I (x), a function that depends on
the value x and the moment generating function of X t . Because by the law of large numbers, X t

t is
approximately equal to v with probability 1, it holds that I (v) = 0.

1



2 1. Introduction

Here we will adopt a version of the run-and-tumble model on a lattice. The aim of this study is to derive
its asymptotic behaviour. In order to do so, we will derive the large deviation properties of the process and
determine if the invariance principle applies. The setting which we consider is simple in comparison to ac-
tual one-dimensional active processes. However, in contrast to other models, this particular model has been
shown to allow for exact computation of for instance the limiting diffusion coefficient and the asymptotic
velocity [21].

Moreover, we aim to provide a better understanding of the dynamics of run-and-tumble particles in presence
of excluded volume interactions and relate the dynamics to the Asymmetric Simple Exclusion Process (ASEP),
for which analytical results are known [9]. Finally, we will compare predictions based on run-and-tumble
motion with an exclusion principle to data for the biological process of intracellular transport by molecular
motors.

This report is structured as follows. In chapter 2 we focus on the theory of Markov processes, a category under
which the run-and-tumble process falls. Next, in chapter 3, we discuss Brownian motion and the invariance
principle, followed by an explanation of large deviations in chapter 4. The next two chapters contain our anal-
ysis of the asymptotic behaviour of a one-dimensional active particle model, where we first derive the central
limit theorem and subsequently determine the large deviation properties. In chapter 7 we study the influence
of excluded volume interactions among active particles on the transport coefficients. An application of the
model to the motion of the molecular motor kinesin-II is presented in chapter 8. Finally, our conclusions and
directions for future research are given in chapter 9.



2
Markov processes

This chapter provides background information on Markov processes, a type of stochastic process to which
the run-and-tumble process belongs. We will focus on theory of Markov processes in continuous time and
include an explanation of the Poisson distribution and exponential distribution, which are closely related to
each other and to continuous-time Markov processes. In addition, the concept of a Markov semigroup and
generator will be introduced. Finally we discuss stationary distributions and the detailed balance conditions
by which they can be found. This chapter is based on literature by G. Grimmett and D. Welsh [10] and F. Redig
[18].

2.1. Markov property
A stochastic process {X t , t ≥ 0} on a state space Ω is a Markov process if the distribution of future states of
the process is only dependent on the current state and not on the further past. A process which satisfies this
Markov property is also called memoryless. Mathematically, a Markov process is defined as follows [18]:

Definition 2.1 If for all t > 0, n ∈N, 0 < t1 < ... < tn < t and for all f :Ω→R bounded and measurable

E( f (X t )|X t1 , X t2 , ..., X tn ) = E( f (X t )|X tn ) (2.1)

then {X t , t ≤ 0} is a Markov process.

Different types of stochastic processes can have the Markov property. A well-known example is the random
walk, where the next position that a particle takes does not depend on where it has been in the past but only
on its current position and on random, independent increments. If the particle makes random jumps at fixed
time intervals, this is a discrete-time Markov process. The events of a Markov process can also take place in
continuous time. In that case the process is a family {X t , t ≥ 0} of random variables indexed by continuous
time.
Because this project is about continuous-time Markov processes, these will be covered in more detail in the
rest of this chapter. We begin with the fundamentals of memoryless processes in continuous time: the expo-
nential and Poisson distribution and their connection.

2.2. Poisson process
The Poisson process (Nt : t ≥ 0) models the counting of random events in continuous time. For example, the
number of decays of a radioactive source or the number of incoming calls at a call center can be described by
a Poisson process. (Nt : t ≥ 0) makes transitions of +1 and is constant and right-continuous in between two
transitions, as represented by figure 2.1. The number of transitions in a time interval is assumed to depend
only on the length of this interval and not on the moment in time. To summarise, a Poisson process satisfies
the following conditions:

(a) N0 = 0

(b) Stationarity of the increments: Nt+r −Ns+r has the same distribution as Nt −Ns for r > 0 and t ≥ s ≥ 0.

3



4 2. Markov processes

(c) Independence of the increments: for 0 ≤ t1 < ... < tn , n ≥ 1 the increments Nt1−N0, Nt2−Nt1 , ..., Ntn−Ntn−1

are independently distributed.

(d) Arrival rate: the process has an arrival rate λ> 0, i.e., for small positive h:
P(Nt+h −Nt = 0) = 1−λh +o(h)
P(Nt+h −Nt = 1) =λh +o(h)

Note that a function f satisfies f (h) = o(h), referred to as Landau’s notation, if f (h)/h → 0 in the limit h → 0.

Using the probability generating function, it can be derived from conditions (a)-(d) that Nt has the Poisson
distribution. For the derivation, we refer to chapter 9 of [16].

Figure 2.1: A representation of the Poisson process Nt with arrival times Ti of the events.

Poisson distribution A random variable Nt has a Poisson distribution with parameter λt if

P (Nt = k) = (λt )k e−λt

k !
. (2.2)

The variance and mean of Nt are given by

E(Nt ) =λt Var(Nt ) =λt t > 0.

Another property of the Poisson process which we will use when deriving the generator of a continuous-time
random variable is the following. For small h, the probability of two or more events happening within the
time window (t , t +h] is not significant, i.e. of order o(h). This can be derived from property (d) of a Poisson
process, namely:

P(Nt+h −Nt ≥ 2) = 1−P(Nt+h −Nt = 0)−P(Nt+h −Nt = 1)

= 1− (1−λh +o(h))− (λh +o(h))

= o(h).

(2.3)

Let us now look at the exponential distribution, and establish its connection with a Poisson process.

Exponential distribution A random variable X has an exponential distribution with parameter λ> 0 if the
probability density of X is

f (x) =λe−λx , x > 0. (2.4)

The arrival times Ti of Poisson events are defined by

T0 = 0

Ti = inf{t : Nt = i } for i = 1,2, ...,

such that the times between successive arrivals are

τi = Ti −Ti−1.



2.3. Continuous-time Markov processes 5

Theorem 2.2 For a Poisson process with parameter λt the inter-arrival times τi are independent random vari-
ables, having the exponential distribution with parameter λ.

Proof. From (2.2) it immediately follows that τ1 is exponentially distributed:

P(τ1 > t ) =P(Nt = 0) = e−λt .

For n ≥ 1 we have:

P(τn > t |τn−1 = s) =P(no event in(s, s + t ] |τn−1 = s)

(indep. of increments) =P(no event in (s, s + t ])

(stationarity of increments) =P(no event in (0, t ])

= e−λt ,

such that τn and τn−1 are independent and τn ∼ exp(λ) for n = 1,2, ... �

2.3. Continuous-time Markov processes
In the beginning of this chapter we defined what memorylessness means for a stochastic process, a sequence
of random variables (RV’s). For just one RV, the following definition applies:

Definition 2.3 A positive random variable X has the lack-of-memory property if:

P(X > a +b)|X > a) =P(X > b) for a,b ≥ 0 (2.5)

The following theorem gives a consequence for random variables that are continuous and lack memory:

Theorem 2.4 A continuous random variable X satisfies the lack-of-memory property if and only if X is expo-
nentially distributed.

Proof. (based on the proof by Grimmet and Welsh in [10]) First, let X be exponentially distributed with param-
eter λ, such that its probability density function is given by (2.4). From this density function it follows that
P(X > u) = e−λu . For v, w ≥ 0 we have:

P(X > v +w | X > v) = P(X > v +w and X > v)

P(X > v)

= P(X > v +w)

P(X > v)

= e−λ(v+w)

e−λv

= e−λw =P(X > w),

(2.6)

such that X has the lack-of-memory property.
For the converse, suppose that X is continuous, positive and satisfies the lack-of-memory property. Let
H(v) := P(X > v) for v ≥ 0. We will show that H(v) = e−λv . As follows from (2.6), H satisfies H(v + w) =
H(v)H(w) for v, w ≥ 0. By taking v = w it follows that H(2v) = H(v)2. By induction it can be shown that

H(nv) = H(v)n for n = 0,1,2, ... . Letting v = v
n gives H(v) = H( v

n )n and thus H(v)
1
n = H( v

n ). It now also fol-

lows that H(v)
m
n = H( m

n v) for m ∈N. For v = 1 we have H(1)
m
n = H( m

n ), which defines the function e−λv for
non-negative rationals v . We consider λ> 0 to obtain a well defined probability density. By taking limits from
the right in the rational numbers, we obtain H(v) = e−λv for for arbitrary v ∈R. �

Transition rates Now let X t be a continuous-time Markov process on a finite state space Ω. For such a
process we do not consider transition probabilities - as for a discrete process - but ’rates’ c(x, y) ≥ 0 for a
transition from x to y . These can be interpreted as transition probabilities per unit of time. Because X t is



6 2. Markov processes

Markov, the time between transitions is exponentially distributed. This can be seen as follows. Let Tx be the
first time a jump away from position x takes place. We then have

P(Tx > t + s|Tx > s) =P(Xv = x,∀ s ≤ v ≤ t + s|Xw = x,∀0 ≤ w ≤ s)

=P(Xv = x,∀s ≤ v ≤ t + s|Xs = x)

=P(Tx > t ).

This implies Tx has the lack-of-memory property, according to definition 2.3. By theorem 2.4, the waiting
time for a transition is exponentially distributed. The process with transition rates c(x, y) is then described as
follows. From position X t = x, a jump takes place after an exponential time with rate cx =∑

y∈Ω c(x, y). With

probability p(x, y) = c(x,y)
cx

the position after this jump is y .

2.4. Markov semigroup
For a continuous-time Markov process {X t , t ≥ 0} on a state space Ω, the semigroup St applied to a function
f :Ω→R gives the expected value of f (X t ).

St f (x) = E( f (X t )|X0 = x) = Ex ( f (X t )) = ∑
y∈Ω

P(X t = y |X0 = x) f (y). (2.7)

P(X t = y |X0 = x), the probability that the position at time t is y , given that the initial position is x, will be
denoted by pt (x, y). ForΩ finite, St can be viewed as a matrix with these probabilities as elements: St (i , j ) =
pt (i , j ) for i , j ∈Ω. The function f can in this case be represented by the column vector [ f (y1) f (y2)... f (yN )]T

for Ω = {y1, y2, ..., yN }. However, this representation only applies for processes on a finite state space, and in
general St should be considered an operator instead of a matrix.
The transition probabilities of Markov process fulfill the Chapman-Kolmogorov equations, which read: pt+s (x, y) =∑

v∈Ω pt (x,k)ps (k, y). This ensures the semigroup property, which will be listed in the following proposition,
along with other properties.

Proposition 2.5 The Markov semigroup St satisfies properties:

(a) Identity at time zero: S0 = I , i.e. S0 f = f for all f

(b) Semigroup property: for all t , s > 0, f : St+s f = St (Ss f ) = Ss (St f ))

(c) Right continuity of the map t → St f

(d) Positivity: f ≥ 0 implies St f ≥ 0

(e) Normalization: St 1 = 1

(f) Contraction: max
x

|(St f )(x)| ≤ max
x

| f (x)|

Proof. We prove the properties in the discrete case.

(a) This follows from the definition: S0 f (x) = E( f (X0)|X0 = x) = f (x), which implies S0 = I .

(b)

Ss+t f (x) = E( f (Xs+t )|X0 = x) = f (x)

= ∑
y∈Ω

pt+s (x, y) f (y)

= ∑
y∈Ω

f (y)
∑

v∈Ω
pt (x,k)ps (k, y)

= ∑
v∈Ω

pt (x,k)
∑

y∈Ω
f (y)ps (k, y)

= ∑
v∈Ω

pt (x,k)E( f (Xs )|X0 = k)

= St (Ss f (x))

By interchanging t and s it can be shown that the above expression also equals Ss (St f (x)).
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(c) To show that the map t → St f (x) is right continuous, we need to show that lim
t↓c

St f (x) = Sc f (x).

We get lim
t↓c

St f = lim
∆t↓0

Sc+∆t f = Sc

(
lim
∆t↓0

S∆t f (x)

)
= Sc (S0 f (x)) = Sc f (x).

(d) For f ≥ 0, it holds that E( f (x)) ≥ 0 for all x, so St f (x) = E( f (X0)|X0 = x) ≥ 0.

(e) St 1 =∑
y∈Ω pt+s (x, y)1 = 1 because a sum of probabilities over the whole probability space is 1.

(f) max
x

∣∣(St f )(x)
∣∣= max

x

∣∣∣∣∣ ∑
y∈Ω

pt (x, y) f (y)

∣∣∣∣∣≤ max
x

∑
y∈Ω

pt (x, y)| f (y)| ≤ max
x

| f (x)| ∑
y∈Ω

pt (x, y) = max
x

| f (x)|

�

2.5. Generator
Let us consider d

dt St |t=0. We define the domain D(L) by

D(L) =
{

f : lim
t→0

St f − f

t
exists

}
.

For functions f ∈ D(L), the Markov generator corresponding to the Markov semigroup St , is given by [18]:

L f := d

dt
St f |t=0 = lim

t→0

St f − f

t
. (2.8)

From St+s f = St Ss f = Ss St f (property (b) of the semigroup) and d
dt St f |t=0 = L f , we can derive the following

relation:

d

dt
St = d

dt
St+s |s=0 = LSt = St L (2.9)

In case X t can take finitely many values, the semigroup and generator are matrices, related to each other by

St = e tL, (2.10)

where the exponent is defined in terms of its Taylor series:

e tL =
∞∑

n=0

t n

n!
Ln .

For L bounded, this exponent is always well-defined. In the next section we will see that for non-finiteΩ, the
set of functions for which (2.10) holds is restricted.

Let us return our attention to a general continuous-time Markov process where a transition from state x to
state y takes place at a certain rate c(x, y), as explained before. The total rate to exit state x is cx =∑

y∈Ω c(x, y).
Since the number of transitions is Poisson-distributed, the probability that 2 or more transitions take place
within the time interval [0, t ] is o(t )1, as derived in (2.3).
This means the semigroup can be expressed for small t:

St f (x) = Ex ( f (X t )) = Ex ( f (X t )1no jump)+Ex ( f (X t )1one jump)+o(t )

= f (x)P(no jump |X0 = x)+ ∑
y∈Ω

f (y)P(one jump toy |X0 = x)+o(t )

= f (x)e−cx t + ∑
y∈Ω

c(x, y)

cx
cx te−cx t f (y)+o(t )

= f (x)(1− cx t )+ ∑
y∈Ω

c(x, y)t f (y)+o(t )

= f (x)+ t
∑

y∈Ω
c(x, y)( f (y)− f (x))+o(t ).

(2.11)

1This notation is called Landau’s notation and represents a function that has a smaller order of magnitude than t as t → 0. So f (t ) = o(t )
when f (t )/t → 0 as t → 0.
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From (2.8) and (2.11), it follows that the generator of a continuous-time random walk is then equal to

L f (x) = ∑
y∈Ω

c(x, y)( f (y)− f (x)), (2.12)

i.e., the sum of possible changes of the test function multiplied by the rate of the corresponding change.

Generators are particularly useful because convergence of the generator implies weak convergence of the
corresponding process in topology on paths by the theorem of Trotter Kurtz. For more information about
weak convergence in path space, which involves uniformity in time, see for example Billingsley [2].

2.6. Stationary distributions
Let us look at stationary distributions of continuous-time Markov processes. Consider the Markov process
{X t : t ≥ 0} with semigroup St , on the finite state space Ω. The probability distribution of X t at time t is
related to the initial distribution µ by µt =µSt [18]. This can be written as

µt (x) = ∑
y∈Ω

µ(y)Pt (x, y), (2.13)

where Pt (x, y) is the matrix containing the transition probabilities pt (x, y), defined in section 2.4. Stated
differently, µt is the unique probability distribution such that

〈 f ,µt 〉 = 〈St f ,µ〉 (2.14)

with 〈 f ,µ〉 = ∑
x∈Ω

µ(x) f (x).

Definition 2.6 The probability distribution µt is stationary if µt =µ for all t . This is the case if and only if

〈St f ,µ〉 = 〈 f ,µ〉 (2.15)

By dividing by t and taking the limit t → 0, it follows from (2.15) that

〈L f ,µ〉 = 0 ∀ f (2.16)

Conversely, (2.15) can be obtained from (2.16). Namely, if 〈L f ,µ〉 = 0 for all f , 〈St f ,µ〉 is constant by the rela-
tion d

dt St f = LSt f .

From (2.12) we can derive that for a continuous-time Markov process, (2.16) implies∑
y∈Ω

[µ(x)c(x, y)−µ(y)c(y, x)] = 0. (2.17)

A stronger condition for stationarity is to require that the terms in the sum of (2.17) are zero. This is called the
detailed balance balance condition and is associated with equilibrium. For a process on a finite state space
with transition rates c(x, y), the stationary distribution µ can thus be found from the equation:

µ(x)c(x, y) =µ(y)c(y, x) ∀x, y ∈Ω (2.18)



3
Brownian motion

This chapter is about Brownian motion, a process that is closely connected to continuous-time random walk.
Robert Brown discovered the motion when he viewed pollen grains in water under a microscope. A mathe-
matical description, idealizing the motion of the pollen, was later given by Wiener. The Wiener process, as it
is also called, has a continuous state space and is defined as follows.

Definition 3.1 Brownian motion {Wt : t ≥ 0} satisfies the following properties:

(a) W0 = 0

(b) The increments are independent: for 0 ≤ t1 ≤ t2 ≤ ... ≤ tn : Wt2 −Wt1 ,Wt3 −Wt2 , ...,Wtn −Wtn−1 are indepen-
dent

(c) The increments are normally distributed: Wti −Wti−1 ∼N (0, ti − ti−1),
with N (µ,σ) the normal distribution with mean µ and variance σ

(d) The paths are continuous: t →Wt is continuous

One can also consider Brownian motion starting from a position x, which is defined via X t = x +N (0, t ).
From the independence of the increments it can be shown that {Wt , t ≥ 0} is a Markov process.

For Brownian motion on R, the semigroup applied to a function f ∈C0, with
C0 = { f :R→R, continuous and lim

x→±∞ f (x) = 0}, is given by

St f (x) =
∫
R

1p
2πt

e
−(y−x)2

2t f (y)dy. (3.1)

As the integral of (3.1) consists of continuous functions, the semigroup is a mapping St f : C0 →C0.

Let us determine the generator associated with this Markov process. To this end, the semigroup will be Taylor
expanded. We make use of the known first and second moment of the normal distribution: E(N (0, t )) = 0
and E(N 2(0, t )) = t . Take f :R→R, f ∈C∞

0 , i.e. f is in the class C0 and is infinitely differentiable. Then,

St f (x) = E[ f (x +N (0, t )]

= E[ f (x)+ f ′(x)N (0, t )+ 1

2
f ′′(x)N (0, t )2 +o(t )]

= f (x)+ 1

2
f ′′(x)t +o(t ).

Using (2.8), it follows that the generator of Brownian motion is given by LB f (x) = 1
2 f ′′(x). We see that LB f (x)

is not defined for all f ∈ C0. It has a non-trivial dense domain D(LB ) ⊂ C0. In this case St f (x) is the unique
solution to the partial differential equation

∂

∂t
Ψ(t , x) = 1

2

∂2

∂x2Ψ(t , x),

withΨ(0, x) = f (x).

9



10 3. Brownian motion

(a) Continuous-time random walk (b) Wiener process

Figure 3.1: A continuous-time symmetric random walk with Poisson jump times and a realisation of Brownian motion.

3.1. Brownian motion as scaling limit
Suppose we have a symmetric random walk X t , where a particle jumps to the right with rate 1

2 and to the left
with the same rate. According to (2.12), the generator of this continuous-time process is:

L f (x) = 1

2

(
f (x +1)+ f (x −1)−2 f (x)

)
. (3.2)

Let us look at this walk on a continuous space instead of on a lattice. To do so, the spacing between the lattice
sites should be decreased, i.e. the scaling x → εx for ε> 0 will be applied and the limit ε→ 0 will be taken.
If not only space is scaled but time as well, the process converges weakly on path space, as stated in the
following theorem:

Theorem 3.2 The process X ε
t := εX t/ε2 , obtained from X t by scaling x → εx and t → t

ε2 , converges weakly to
Brownian motion Wt in topology on paths.

Proof. To show weak convergence of X ε
t to Wt , we will show convergence of the generator of X ε

t to the gener-
ator LB f (x) of Brownian motion, as described in section 2.5.

Since L f (x) = limt↓0
St f (x)− f (x)

t , scaling time as t → t
ε2 is equivalent to considering L f (x)

ε2 , the generator of the

original process divided by ε2. After additionally applying a scaling of space to this generator, we obtain the
following generator for X ε

t :

Lε f (x) =
1
2

(
f (x +ε)+ f (x −ε)−2 f (x)

)
ε2 . (3.3)

Now let f ∈ D(LB ) be arbitrary. We will prove that lim
ε→0

Lε f (x) = LB f (x) by Taylor expansion of f (x + ε) and

f (x −ε):

lim
ε→0

Lε f (x) = lim
ε→0

1
2

(
f (x)+ε f ′(x)+ ε2

2 f ′′(x)+ f (x)−ε f ′(x)+ ε2

2 f ′′(x)+o(ε2)
)

ε2

= 1

2
f ′′(x) = LB f (x).

(3.4)

�
To form an intuition on Brownian motion as the scaling limit of random walk, see figure 3.1, which shows a
realisation of a continuous-time random walk next to a realisation of the Wiener process.
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3.2. Convergence of the characteristic function
It is not always possible to show convergence of a process by determining the limit of the generator. In section
5 we will for example encounter the following generator

Lε f (x,σ) =λ f ′′(x,σ)+ ησ

ε
f ′(x,σ)+ γσ

ε2 ( f (x,−σ)− f (x,σ)).

When taking the limit ε→ 0, this generator will not converge, because of the ε−1 and ε−2 terms.

However, one can also show weak convergence in terms of finite dimensional distributions of a process by
showing convergence of its characteristic function [10]. The characteristic function of a random variable X is
defined as

φX (q) = E
(
e i q X

)
and uniquely corresponds to the distribution of the random variable. By showing that the characteristic func-
tion of a process X ε(t ) converges to the characteristic function of X (t ), we thus obtain

(X ε(t1), X ε(t2), ..., X ε(tk ))
d−→ (X (t1), X (t2), ..., X (tk )) ∀t1, ..., tk

Let us again consider scaled random walk and show that its finite dimensional distributions converge to those
of Brownian motion. So far, we considered Brownian motion with diffusion coefficient 1, denoted as Wt . In
general, Brownian motion WDt with diffusion coefficient D has a N (0,Dt ) distribution. The characteristic
function of WDt is given by

E
(
e i qN (0,Dt )

)
=

∫ ∞

−∞
e i qx 1p

2πDt
e−

x2
2Dt dx = e−

1
2 Dt q2

. (3.5)

If we view the symmetric random walk (3.2) as a difference between two independent Poisson processes with
parameter 1

2 t , we can can compute the characteristic function directly. Let N+
t be the number of jumps to the

right and N−
t the number of jumps to the left in the time interval [0, t ]. We then have X t = N+

t −N−
t , which

gives

E
(
e i q X t

)
= E

(
e i q(N+

t −N−
t )

)
= E

(
e i qN+

t

)
E
(
e−i qN+

t

)
(N+

t ⊥ N−
t )

= e
t
2 (ei q−1)e

t
2 (e−i q−1)

= e t (cos(q)−1).

We used that the characteristic function of a Poisson random variable Y with parameter λ is given by Ee i qY =
eλ(ei q−1)[10]. Applying the same scaling as in theorem 3.2, we obtain

E
(
e i qεX t/ε2

)
= eε

−2t (cos(qε)−1) = e−2ε−2t sin2( qε
2

)
ε→0−−−→ e−

1
2 t q2

,

the characteristic function of Brownian motion with D = 1.

In chapter 5 we will compute the Laplace transform of the characteristic function of a process X t . To be able
to compare this to Brownian motion and find the diffusion coefficient, we determine the Laplace transform
of (3.5): ∫ ∞

0
e−

1
2 Dt q2

e−st dt = 1

s + q2

2 D
(3.6)





4
Large deviations

The theory of large deviations deals with the probability of very rare events, where the outcome deviates
strongly from the mean of the corresponding random variable. Think for example of flipping heads more
than two hundred times after another. This is very unlikely, yet the probability is not zero. The probability
that a sum of random variables Sn takes a value xn decays exponentially fast for large n:

P (Sn ≈ xn) ∼ e−nI (x)+o(n).

We are interested in the leading order of the decay and its dependence on the value x. The function I (x) in
the leading order is also called the large deviation entropy and can be derived from the microscopic states of
a system. It can then be used to describe the system’s macroscopic laws.

To illustrate when deviations are said to be ’large’, consider the sum Sn of n independent, identically dis-
tributed (i.i.d.) random variables with mean µ and variance σ2 < ∞. The weak law of large numbers says
that Sn converges to nµ in probability for large n. The deviation of Sn from its mean nµ is typically of the

order
p

n, because the central limit theorem (CLT) states that Sn−nµ
σ
p

n
converges in distribution to N (0,1) as

n tends to infinity. Now deviations are considered large when they are greater than the deviation which the
CLT prescribes. For instance {Sn ≤ nµ− bn} is an event with large deviation. The probability of such rare
events tends to zero as n goes to infinity. The large deviation principle (LDP) is about the rate at which the
probability decays to zero.

The theory presented in this chapter is based on literature by Dembo and Zeituni [7] and Den Hollander [8].
We will start by defining what a rate function is and when a probability measure satisfies the large deviation
principle. Next we give a concrete example of the large deviation properties of a sequence of i.i.d. random
variables. Finally the theorem by Gärtner and Ellis, which generalizes the LDP for non-i.i.d. random variables,
will be stated.

Definition 4.1 Let χ be a topological space, such that open and closed subsets are well-defined. A function
I :χ→ [0,∞] is called a good rate function if:

(a) I is lower semi-continuous1

(b) the level setsΨ(α) = {x : I (x) ≤α} of I are compact

Note that the lower semi-continuity implies that I attains its infimum on a closed set.

1If χ is a metric space, a function f : χ → [0,∞] is lower semi-continuous if liminf
n→∞ f (xn ) ≥ f (x) for all xn , x ∈ χ s.t. xn → x. Lower

semi-continuity of a function is equivalent to closedness of the level sets.

13
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Definition 4.2 A family of probability measures (Pn)n≥0 is said to satisfy the large deviation principle with rate
n and rate function I (x) if:

(a) I (x) is a good rate function

(b) limsup
n→∞

1

n
logPn(C ) ≤− inf

x∈C
I (x) ∀C ⊂χ closed

(c) liminf
n→∞

1

n
logPn(O) ≥− inf

x∈O
I (x) ∀O ⊂χ open

Let us from now on consider a sequence Zn of random variables on the probability space (R,B(R),P), where
B(R) denotes the Borel sigma algebra on R. When the family (Pn) is defined as

Pn(·) =P(Zn ∈ ·), (4.1)

the large deviation principle can be summarized as

P(Zn ≈ x) ≈ e−nI (x).

Definition 4.2(b) and (c) give an upper and lower bound that make this approximate statement precise. They
essentially state that the probability for Zn to deviate from its mean decays exponentially with rate function
I (x). In order to explain what the rate function is, we first define the free energy function:

F (α) := lim
n→∞

1

n
log

(
EeαZn

)
. (4.2)

The rate function is related to F (α) by the Legendre transform:

I (x) = sup
α∈R

(xα−F (α)). (4.3)

In situations where F (α) exists and is differentiable, the rate function can be found by determining the maxi-
mum of xα−F (α). This is the case in the next example.

Example 4.3 Suppose we have a sequence of independent, N (µ,σ2) distributed random variables Xi and are
interested in the deviation of

∑n
i=1 Xi from the expectation nµ. Recall that the moment generating function of

the Xi is given by EeαXi = eαµ+
α2σ2

2 . Because of the independence of the RV’s, the free energy function can be
computed directly:

F (α) = lim
n→∞

1

n
log

(
Eeα

∑n
i=1 Xi

)
= lim

n→∞
1

n

n∑
i=1

logEeαXi

= lim
n→∞

1

n

n∑
i=1

logeαµ+
α2σ2

2 =αµ+ 1

2
α2σ2.

Consequently, the rate function is:

I (x) = sup
α

(xα−µα− 1

2
α2σ2) = (x −µ)2

2σ2 .

Notice that I (x) is symmetric around µ and that I (µ) = 0.
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Figure 4.1: The function F (α) of example 4.3 with µ,σ equal to one. The value of the rate function I (x) for x = 5 is shown
as a dotted line.

Let us show that (4.3) indeed satisfies the properties of a good rate function. We will need that F (α) is convex,
which we already obtained for example 4.3 but can show to be true in general.

Lemma 4.4 The free energy function F (α) is convex.

Proof. Let λ ∈ [0,1]. By Hölder’s inequality with p = 1
λ and q = 1

1−λ , we have

F (λα1 +α2(1−λ)) = lim
n→∞

1

n
logE

(
eλα1 Zn e(1−λ)α2 Zn

)
≤ lim

n→∞
1

n
log

[(
Eeα1 Zn

)λ (
Eeα2 Zn

)1−λ]
=λF (α1)+ (1−λ)F (α2).

�
The convexity of the free energy ensures that its Legendre transform is always well-defined. In order to prove
that the Legendre transform of F (α) is a good rate function we need to make two assumptions:

(1) F (α) exists

(2) 0 ∈ int(DF ) for the set DF = {α ∈R : F (α) <∞}

Lemma 4.5 I (x) = sup
α∈R

(xα−F (α)) is a good rate function in the sense of definition 4.1.

Proof. For part (a) of the definition note that αx as well as F (α) are lower semi-continuous functions, where
the latter can be shown using Fatou’s lemma. Since I (x) is the supremum of αx −F (α), it is also lower semi-
continuous.
To prove part (b) of the definition it remains to show that the level sets are bounded, as the lower semi-
continuity already implies they are closed. By assumption (2) it follows that there exists a δ > 0 such that
B2δ(0) ⊂ int(DF ). As F (α) is convex, it is continuous on the open subset int(DF ) of R. Hence there is a c <∞
such that sup

α∈Bδ(0)
F (α) = c. This gives

I (x) ≥ sup
α∈Bδ(0)

{αx −F (α)} ≥ δ|x|− c,

such that |x| ≤ I (x)+c
δ . Hence, the level sets of I (x) are bounded and closed, and therefore compact. �
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4.1. The Gärtner-Ellis theorem
We continue with the Gärtner-Ellis theorem that states the large deviation principle for dependent random
sequences. In chapter 6 we are going to study the large deviations of the run-and-tumble model and will
encounter a free energy function that is differentiable and strictly convex. This is why we present a slightly
more simple version of the theorem, limited to strictly convex functions F (α) yet adequate for our purposes.
Note that the Gärtner-Ellis theorem also applies to random sequences on a d-dimensional space, even though
we work with α and x in R.

Theorem 4.6 (Gärtner−Ellis theorem) Let Pn , F (α) and I (x) be defined as in (4.1), (4.2) and (4.3) respectively.
If F (α) is continuously differentiable and strictly convex on R, then:

(a) limsup
n→∞

1

n
logPn(C ) ≤− inf

x∈C
I (x) ∀C ⊂R closed

(b) liminf
n→∞

1

n
logPn(O) ≥− inf

x∈O
I (x) ∀O ⊂R open

For a proof of theorem 4.6, we recommend to read [8] or [7].

In chapter 6 we will apply the Gärtner-Ellis theorem. We then take the sets C = x and O = Bε(x). For ε→ 0,
the limit superior and limit inferior converge to one limit and the LDP gives:

lim
ε→0

lim
n→∞

1

n
logP(Xn ∈ Bε) =−I (x).

Theorem 4.6 also applies to continuous-time random sequences. The discrete variable n can be replaced by
t if a rate one Poisson process is used to determine when Xn takes place.

4.2. The free energy and moments of a random variable
Since the free energy function is the limit of the cumulant generating function of a random variable X t , the
moments of X t can be obtained from F (α). By taking the derivative with respect to α and evaluating at α= 0,
the following scaled limits of the expectation and the variance are obtained:

dF

dα

∣∣∣∣
α=0

= lim
t→∞

1

t

E
(
X t eαX t

)
E
(
eαX t

) ∣∣∣∣∣
α=0

= lim
t→∞

E(X t )

t

d2F

dα2

∣∣∣∣
α=0

= lim
t→∞

E(X 2
t )−E(X t )2

t

We used that limα→0 and limt→∞ may be interchanged by the dominated convergence theorem.

If X t is for example Brownian motion, then F ′(0) is equivalent to the velocity, which is zero, and F ′′(0) to the
diffusion constant of the motion.



5
One-dimensional active particle model

In this chapter we derive the asymptotic behaviour of a version of one-dimensional run-and-tumble mo-
tion. The dynamics of various active particles can be described by the run-and-tumble model, in which a
particle performs symmetric random walk and additionally moves in a direction that is reoriented at random
moments in time (’tumbles’). In different bacterial systems this motion has been observed, for example for
myxobacteria [17]. Recent studies on run-and-tumble particles were performed by Demaerel and Maes [6],
by Van Ginkel, Van Gisbergen and Redig [20] and by Malakar et al. [13]
The particular motion which we treat is described by the position on a discrete lattice and the internal state
of a particle. This internal state may represent a chemomechanical state of a biological agent and is assumed
to be independent of its position in this model. The state controls the preferred direction of motion, the rate
at which the particle jumps to different positions and the rate at which the internal state changes. This is dif-
ferent from run-and-tumble models that have been studied before, where the internal state influences either
the direction of motion, such as in [13], or the rate.

Here we will focus on two possible internal states: {±1}, where +1, −1 correspond to a preference to move in
the positive and negative direction respectively. To summarise the motion, a particle at position x ∈ Z and
with internal state σ can make transitions to

• position x +1 or x −1, both with rate λσ (nearest neighbour random walk),

• position x +σ with rate ησ (transport),

• state −σ with rate γσ (state change).

The process can be visualised as motion on two copies ofZ, each corresponding to an internal state, and rates
γσ for switching between the lattices.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5 −4 −3 −2 −1 0 1 2 3 4 5
σ = 1

σ = -1

λ1λ1

η1

η−1

λ−1 λ−1

γ1
γ−1

Figure 5.1: Schematic diagram of the possible transitions and corresponding rates of the run-and-tumble model. Particles at (x,σ) = (2,1)
and (−3,−1) are depicted, but the rates apply to a particle at any position with the same internal state σ.

17
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The generator of this process on the state spaceΩ=Z× {1,−1}, as follows from (2.12), is given by:

L f (x,σ) =λσ( f (x +1,σ)+ f (x −1,σ)−2 f (x,σ))+ησ( f (x +σ,σ)− f (x,σ))+γσ( f (x,−σ)− f (x,σ)). (5.1)

As defined before, the semigroup applied to f is St f (x,σ) = Ex,σ f (X t ,σt ) = E( f (X t ,σt ) |x0 = x,σ0 =σ). Using
the Kolmogorov backward equation (2.9), we can determine how the expectation of a test function f (x,σ)
evolves:

d

dt
St f (x,σ) = d

dt
Ex,σ f (X t ,σt ) = LEx,σ f (X t ,σt )

=λσ
(
Ex,σ f (X t ,σt )+Ex,σ f (X t ,σt )−2Ex,σ f (X t ,σt )

)+ησ (
Ex+σ,σ f (X t ,σt )−Ex,σ f (X t ,σt )

)
+γσ

(
Ex,−σ f (X t ,σt )−Ex,σ f (X t ,σt )

) (5.2)

Because the generator, and therefore the semigroup, commutes with spatial translation (see appendix A), the
following translation invariance property holds:

Ex+a,σ f (X t ,σt ) = Ex,σ f (X t +a,σt ) ∀a ∈R (5.3)

Since our goal is to derive the limit of the characteristic function, we take f (x,σ) = e i qx . Applying (5.3) to (5.2)
gives

d

dt
Ex,σe i q X t =λσ

(
Ex,σe i q(X t+1) +Ex,σe i q(X t−1) −2Ex,σe i q X t

)
+ησ

(
Ex,σe i q(X t+σt ) −Ex,σe i q X t )

)
+γσ

(
Ex,−σe i q X t −Ex,σe i q X t

)
=λσ(e i q +e−i q −2)Ex,σe i q X t +ησ(e i qσ−1)Ex,σe i q X t

+γσ
(
Ex,−σe i q X t −Ex,σe i q X t

)
(5.4)

Let us first derive the limiting distribution of a simplification, where η1 = η−1 = 1 and γ1 = γ−1 = 1. We will
prove the following theorem:

Theorem 5.1 εX tε−2 , the position and time scaled path of run-and-tumble motion given by (5.1) with η1 =
η−1 = γ1 = γ−1 = 1, converges in finite dimensional distribution to WtD, Brownian motion with diffusion con-
stant D=λ1 +λ−1 +2, as ε→ 0.

Proof. If we view Ex,σe i q X t as a column vector indexed by the two possible internal states, (5.4) is a system of
differential equations coupling Ex,1e i q X t and Ex,−1e i q X t . We can write the system in matrix form

d

dt

(
Ex,1e i q X t

Ex,−1e i q X t

)
=

(
λ1(2cos q −2)+ (e i q −1)−1 1

1 λ−1(2cos q −2)+ (e−i q −1)−1

)(
Ex,1e i q X t

Ex,−1e i q X t

)
, (5.5)

where we shall denote the matrix by M(q).

In order to transform this system of differential equations into a system of linear equations, we take the
Laplace transform in t. Let L

{
f (t )

}= F (s) = ∫ ∞
0 e−st f (t )dt . The following property, which can be verified by

partial integration, holds for the Laplace transform:

L

{
d

dt
f (t )

}
= sF (s)− f (0).

Returning to the evolution of the characteristic function, we define S(q, s,σ) =L
{
Ex,σe i q X t

}
, such that

M(q)

(
S(q, s,1)

S(q, s,−1)

)
= s

(
S(q, s,1)

S(q, s,−1)

)
+

(
Ex,1e i q X t

Ex,−1e i q X t

)∣∣∣∣
t=0

. (5.6)

Upon assuming the initial position to be X0 = 0 and the internal state to be σ0 = 1, we find

S(q, s,1) = (1,0)
(
sI −M(q)

)−1
(
1
1

)
. (5.7)
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Note that the initial internal state does not influence the limiting distribution, so the limit can also be found
by considering S(q, s,−1).

Since
(
sI −M(q)

)
is a two-by-two matrix, its inverse can be computed directly:

(
sI −M(q)

)−1 = 1

det
(
sI −M(q)

) (
s −2λ1(cos q −1)− (e i q −1)+1 1

1 s −2λ−1(cos q −1)− (e−i q −1)+1

)
, (5.8)

with

det
(
sI −M(q)

)= s2 +2s +4λ1λ−1(cos q −1)2+
2(cos q −1)

[
λ1(e i q −1)+λ−1(e−i q −1)−1− (s +1)[λ1 +λ−1 +1]

]
.

(5.9)

Next, we will apply the same scaling which we used to determine the limiting distribution of continuous-time
random walk in theorem 3.2. The scaling of x by a factor ε and t by a factor ε−2 corresponds to the scaling of
S(q, s,σ) to ε2S(εq,ε2s,σ). Namely,∫ ∞

0
e−stEe i qεX tε−2 dt = ε2

∫ ∞

0
e−sε2τEe i qεXτdτ= ε2S(εq,ε2s).

From (5.7-5.9), it follows that

ε2S(εq,ε2s,1) =
ε2

[
ε2s +2−2λ1(cosεq −1)− (e iεq −1)

]
ε4s2 +2ε2s +4λ1λ−1(cosεq −1)2 +2(cosεq −1)

[
λ1(e iεq −1)+λ−1(e−iεq −1)− (ε2s +1)[2λ1 +λ−1 +1]

]
ε→0−−−→ 1

s + q2

2 (λ1 +λ−1 +2)
.

(5.10)

As (3.6) indicates, this is the Laplace transform of Ee i qWDt with D=λ1 +λ−1 +2. �

The first contribution, (λ1+λ−1), is due to the random walk part of the motion, while the second contribution
is due to the active transport at rate one in either direction and the switching between the states at rate one.
With a different approach, Van Gisbergen derived that the limiting diffusion constant of a run-and-tumble
process in which λ is independent of the internal state contains a term 2λ [21]. A similar term appears in
(5.10), with an average of the random walk rates for the different internal states instead of λ.

5.1. State-dependent transport
The derivation can now be extended to run-and-tumble motion where not only the random walk rate λσ
depends on the internal state, but the transport rate as ησ well. Let us first determine what the mean dis-
placement would be for this process. To accomplish that we consider a simplified process that only involves
asymmetric transport. The jumps to the right and to the left are both Poisson distributed with parameters
tη+ and tη− respectively. The total position is

X t = N+
t −N−

t ,

such that the mean equals E(X t ) = E(N+
t )−E(N−

t ) = (η+−η−)t .

Applying this reasoning to the run-and-tumble model which involves transport to the right for σ = 1 and
transport to the left for σ = −1, we obtain a mean displacement of E(X t ) = (µ1η1 −µ−1η−1)t . In this expres-
sion [µ1,µ−1] is the stationary distribution of the internal state σt (a continuous-time Markov process with
finite state space {1,−1}). This distribution is attained quickly relative to the limiting distribution of X t . As
described in 2.6, the stationary distribution can be found by solving (2.18). When the rates γ1 and γ−1 to
switch to the other internal state are equal, this simply results in [µ1,µ−1] = [ 1

2 , 1
2

]
.
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We will now return to the original process, comprising symmetric random walk, active transport and switch-
ing of the internal state. Since the random walk motion has mean zero, the average displacement of this
process with state-dependent rates is 1

2 (η1 − η−1)t . As opposed to the derivation for the previous model,
in which the transport was symmetric, we will now determine the limiting distribution of X t − v t , where
v := 1

2 (η1 −η−1).

In contrast to 5.5, the diagonal elements of M(q) are now

2λσ(cos(q)−1)−1+ησ
(
eσi q −1

)
.

The matrix
(
sI −M(q)

)−1 undergoes the same alteration, such that its determinant becomes:

det
(
sI −M(q)

)= s2 +2s +4λ1λ−1(cos q −1)2+

2(cos q −1)

[
−η1η−1 +

∑
σ∈{1,−1}

λσησ(e i qσ−1)− (s +1)[λσ+ησ(e i qσ−1)]

]
.

(5.11)

The scaling which we apply to this process is X t −v t → ε
(
Xε−2t − v tε−2

)
and the corresponding Laplace trans-

form is: ∫ ∞

0
e−stEe i qε

(
Xε−2 t−v tε−2)

d t = ε2
∫ ∞

0
Ee i qεXτe−i qετv e−sτε2

dτ= ε2S(εq,ε2s + i qεv).

Using (5.7) and (5.11), it can be derived that in this case:

lim
ε→0

ε2S(εq,ε2s + i qεv) = 1

s + q2

2

[
λ1 +λ−1 + η1+η−1

2 + (η1+η−1
2

)2
] (5.12)

The contribution to the diffusive coefficient due to transport contains the transport rates weighted by the
stationary distribution of the internal state, similar to the random walk contribution.

If we do not require γ1 and γ−1 to be equal, the averaging over the stationary distribution can be observed

even more clearly. As follows from (2.18), the stationary distribution is given by [µ1,µ−1] =
[

γ−1
γ1+γ−1

, γ1
γ1+γ−1

]
. As

a sanity check we can take the limit of γ1 to infinity and find a distribution of [0,1]. This indeed corresponds
to immediate switching from σ= 1 to −1.

Applying the same method as before, we find that the limiting diffusion coefficient of X t −(µ1η1−µ−1η−1)t is
equal to

D = 2λ1γ−1 +2λ−1γ1

γ1 +γ−1
+ η1γ−1 +η−1γ1

γ1 +γ−1
+ 2γ1γ−1(η1 +η−1)2 +2η1η−1(γ1 −γ−1)2

(γ1 +γ−1)3 . (5.13)

The first term of this expression is equivalent to the first term of (5.10), which can be rewritten as 2( 1
2λ1 +

1
2λ−1). Instead of the factors 1

2 , the more general stationary distribution [µ1,µ−1] in terms of the rates γ1 and
γ−1 appears. The second term of (5.13) contains the transport rates, also weighed by the stationary distribu-
tion of the internal state.

Upon setting γ1 = aΓ1, γ−1 = aΓ−1 and taking the limit a →∞, we obtain

D = 2

(
λ1Γ−1

Γ1 +Γ−1
+ λ−1Γ1

Γ1 +Γ−1

)
+ η1Γ−1

Γ1 +Γ−1
+ η−1Γ1

Γ1 +Γ−1
.

The last term of (5.13) goes to zero. This limit is a version of the so called slow-fast limit. The name originates
from the fact that the generator of a process with random walk and drift (without internal states), after scaling
time and position, is given by

Lε f (x) =λ f ′′(x)+ε−1η f ′(x)

Here we see that the random walk part converges slowly while the dissipative part converges quickly (note
the high drift rate because of the factor ε−1). The third term of (5.13) is an addition to this slow-fast limit due
to the activity of the particle.
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5.2. General random walk
In the previous models, the particle was assumed to make random walk jumps to nearest neighbour sites
only. Let us generalize this to a process where a random walk jump to position z ∈Z is made with rate p(z,σ):

L f (x,σ) =∑
z

p(z,σ)
(

f (x + z,σ)− f (x,σ)
)+ησ (

f (x +σ,σ)− f (x,σ)
)+ (

f (x,−σ)− f (x,σ)
)

. (5.14)

We will consider two different situations, where first p(z,σ) is a product of σ− and z-dependent rates and
secondly p(z,σ) can not be separated:

(a) p(z,σ) = p(z)λσ with p(z) = p(−z) and
∑

z z2p(z) <∞.

(b) p(z,σ) with
∑

z zp(z,σ) = 0, such that the mean of the random walk part is still zero.

In both cases we will again determine the asymptotic behaviour of X t− 1
2 (η1−η−1)t , meaning that the analysis

of the previous section still largely applies. The off-diagonal elements of the matrix M(q) remain the same,
but the diagonal elements are now

(a) λσ
∑

z p(z)(cos(qz)−1)−1+ησ
(
eσi q −1

)
(b)

∑
z p(z,σ)(e i qz −1)−1+ησ

(
eσi q −1

)
,

where in case (a) the symmetry of the transition rate p(z) was used.

Similarly to how (5.12) was derived, we obtain the following limiting scalar behavior for case (a):

lim
ε→0

ε2S(εq,ε2s + i qεv) = 1

s + q2

2

[
1
2 (λ1 +λ−1)

∑
z z2p(z)+ η1+η−1

2 + (η1+η−1
2

)2
] . (5.15)

The factor 1
2 in front of the sum of λ’s comes from the fact that one jump to position X t + z is considered,

compared to a jump to X t +1 and one to X t −1 in (5.1).

For case (b) we obtain:

lim
ε→0

ε2S(εq,ε2s + i qεv) = 1

s + q2

2

[∑
z z2(p(z,1)+p(z,−1))+ η1+η−1

2 + (η1+η−1
2

)2
] . (5.16)

Alike (5.10) and (5.12), the contribution to the diffusion constant due to the random walk part contains an
average of the rates over the internal states: 1

2 (λ1 +λ−1)
∑

z z2p(z) in case (a) and
∑

z z2(p(z,1)+p(z,−1)) in

case (b). Moreover, we observe that
(η1+η−1

2

)2 + η1+η−1
2 is an addition solely due to the activity of the particles.

It is unaffected by the form of the symmetric random motion.





6
Large deviations of the run-and-tumble

model

From the characteristic function of run-and-tumble motion which we derived in chapter 5 it is a small step
towards studying the large deviation properties of the position X t . We will derive the large deviation free
energy function F (α). As described in chapter 4, this function allows to determine the rate function I (x) and
offers a different method to find the limiting diffusion coefficient and asymptotic velocity of the motion. The
next theorem states the large deviation results of the run-and-tumble model considered in chapter 5.

Theorem 6.1 The position corresponding to run-and-tumble motion with generator (5.1) and γ1 = γ−1 = γ

satisfies the large deviation principle with free energy function:

F (α) = (cosh(α)−1)(λ1 +λ−1)+ η1

2
(eα−1)+ η−1

2
(e−α−1)−γ+ A, (6.1)

where

A =
√[

(cosh(α)−1)(λ1 −λ−1)+ η1

2
(eα−1)− η−1

2
(e−α−1)

]2
+γ2. (6.2)

The rate function I (x) is equal to the Legendre transform of the free energy:

I (x) = sup
α∈R

(αx −F (α)).

Proof. In order to compute the large deviation free energy

F (α) = lim
t→∞

1

t
log

(
Ex,σeαX t

)
,

we first derive Ex,σeαX t from equation (5.5). This can be achieved by exponentiating the matrix M(−iα),
where the argument q has been replaced by −iα.

M(−iα) =
(
λ1(2coshα−2)+η1(eα−1)−γ γ

γ λ−1(2coshα−2)+η−1(e−α−1)−γ
)
=

(
M1,1 M1,2

M2,1 M2,2

)
To determine e t M(−iα), we diagonalise the matrix M(−iα) = PDP−1, with D a diagonal matrix, such that

e t M(−iα) =
∞∑

n=0

t n

n!
(PDP−1)n = Pe tD P−1.

The matrices P and D are given by:

P =
(

M1,1−M2,2−2A
2γ

M1,1−M2,2+2A
2γ

1 1

)

D =
(
φ1 0
0 φ2

)
=

( 1
2 (M1,1 +M2,2)− A 0

0 1
2 (M1,1 +M2,2)+ A

)
23
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We again assume X0 = 0 and find the following expressions for E0,1eαX t and E0,−1eαX t :

E0,1eαX t = (1,0)e t M(−iα)
(
1
1

)
= eφ1t

(
2A2 −γ− A(M1,1 −M2,2)

2A

)
+eφ2t

(
2A2 +γ+ A(M1,1 −M2,2)

2A

)
(6.3)

E0,−1eαX t = (0,1)e t M(−iα)
(
1
1

)
= 1

4A

(
eφ1t (2A+M1,1 −M2,2 −2γ)+eφ2t (2A− (M1,1 −M2,2)+2γ)

) (6.4)

Finally, we need to take the logarithm, divide by t and apply the limit t →∞.
Note that the following inequalities hold:

2A = 2

√
1

4
(M1,1 −M2,2)2 +γ2 > (M1,1 −M2,2) and 2A > 2γ.

As a result, the terms in front of eφ1t and eφ2t in (6.4) are strictly positive. Hence, we can use that for a,b,c,d ∈
R, a,c > 0

lim
t→∞

1

t
log(aebt + ced t ) = max{b,d},

a lemma which we prove in appendix A. We then obtain lim
t→∞

1

t
log

(
E0,−1eαX t

) = φ2, the largest eigenvalue of

M(−iα).

To determine the same limit for (6.3) we cannot use lemma A.1 directly, because the term before eφ1t is only

positive for small γ, γ≤ M1,1−M2,2

2
√

1
4 (M1,1−M2,2)2+γ2

to be precise. However, φ1 < 0, φ2 > 0 and the term in front of eφ2t

is strictly positive, such that the first term of (6.3) goes to zero and the second term goes to infinity as t goes
to infinity. In this way, the limit of 1

t multiplied by the logarithm of (6.3) also returns the largest of the two
eigenvalues.

For both initial internal states we therefore find

F (α) =φ2 = (cosh(α)−1)(λ1 +λ−1)+ η1

2
(eα−1)+ η−1

2
(e−α−1)−γ+ A,

with A defined by (6.2). �

To gain more insight in the found free energy function, let us look at the limit γ→∞. This corresponds to the
particles switching their internal state at a very high rate, such that the stationary distribution will quickly be
attained. We find

lim
γ→∞F (α) = (cosh(α)−1)(λ1 +λ−1)+ η1

2
(eα−1)+ η−1

2
(e−α−1)−γ

+γ
√

1+ (cosh(α)−1)(λ1 −λ−1)+ η1
2 (eα−1)− η−1

2 (e−α−1)

γ2

≈ (cosh(α)−1)(λ1 +λ−1)+ η1

2
(eα−1)+ η−1

2
(e−α−1)−γ+γ

+ (cosh(α)−1)(λ1 −λ−1)+ η1
2 (eα−1)− η−1

2 (e−α−1)

2γ
+o

(
1

γ

)
= (cosh(α)−1)(λ1 +λ−1)+ η1

2
(eα−1)+ η−1

2
(e−α−1).
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This is indeed the free energy function of diffusion with rate λ1 +λ−1 and transport in the positive direction
with rate η1

2 and in the negative direction with rate η−1
2 .

If we consider γ= 0, on the other hand, the free energy becomes

F (α) = (cosh(α)−1)(λ1+λ−1)+η1

2
(eα−1)+η−1

2
(e−α−1)−

∣∣∣(cosh(α)−1)(λ1 −λ−1)+ η1

2
(eα−1)− η−1

2
(e−α−1)

∣∣∣ .

We see that in this case the free energy and therefore the rate function only depends on one of the two internal
states at the same time. The free energy is either (cosh(α)−1)λ1+η1(eα−1) or (cosh(α)−1)λ−1+η−1(e−α−1),
depending on the sign of the term in absolute value. Since setting γ= 0 results in a constant internal state, it
is in line with our expectations that only the state with the highest rate influences the free energy.

Furthermore, under the condition that the transport rates ησ are zero and the random walk ratesλσ are equal,
the free energy function reduces to 2λ(cosh(α)−1), the free energy of symmetric random walk with rate λ.

Finally, remark that F (α) 6= F (−α) when the transport rates η1 and η−1 are unequal. This means that the rate
function I (x) is asymmetric, as one would expect when there is net transport.

Rate function The rate function I (x) can be found by maximizing αx–F (α). Since F is continuously differ-
entiable, we can set α̂= F ′−1(x) and find the rate function as: I (x) = α̂x −F (α̂).

The derivative of F (α) is equal to

dF

dα
=sinh(α)(λ1 +λ−1)+ 1

2

(
η1eα+η1e−α

)+[
(cosh(α)−1)(λ1 −λ−1)+ η1

2 (eα−1)− η−1
2 (e−α−1)

][
sinh(α)(λ1 +λ−1)+ 1

2

(
η1eα+η1e−α

)]√[
(cosh(α)−1)(λ1 −λ−1)+ η1

2 (eα−1)− η−1
2 (e−α−1)

]2 +γ2
.

An analytic expression of the inverse of this function can not be obtained, yet we can determine its values
numerically. The following figure shows the rate function I (x) for different parameters η1 and γ.

Figure 6.1: The rate function I (x) from theorem 6.1. For both subfigures, the rates λ1 = λ−1 = 0.6 and η−1 = 1 apply. We took γ= 3 and
varied η1 in the left plot, while we took η1 = 3 and varied γ in the right plot.
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Asymptotic velocity and diffusion constant Let us determine F ′(0) and F ′′(0) and compare the results to
the asymptotic velocity and diffusion constant found previously by scaling of the characteristic function. Like
in section 5.1, we take γ= 1 and obtain

dF

dα

∣∣∣∣
α=0

= 1

2
(η1 −η−1) (6.5)

and
d2F

dα2

∣∣∣∣
α=0

=λ1 +λ−1 + η1 +η−1

2
+

(η1 +η−1

2

)2
. (6.6)

The first derivative of F at zero is indeed in accordance with the asymptotic velocity that we derived by means
of the stationary distribution of the internal state. Moreover, (6.6) is equal to the limiting diffusion constant
of the run-and-tumble motion (see (5.12)).
Because F (α) can be analytically extended in neighbourhood of the origin in the complex plane, it follows
from [4] that the central limit theorem applies to the process, with mean and variance given by (6.6) and (6.5).



7
Collective dynamics under exclusion

interactions

So far, we investigated the properties of an individual particle on a lattice exhibiting active motion. We de-
rived the limiting diffusion coefficient and the asymptotic velocity of a run-and-tumble particle that moves
without spatial restrictions. In reality, active particles on a linear filament, such as motor proteins, can often
not move freely. At high motor densities they are for example hindered by fellow motors which they cannot
overtake. When multiple particles are not able to occupy the same position, the process is subject to an ex-
clusion principle. This exclusion affects the motility of the particles and can give rise to jams. In this chapter
we study the effect of exclusion on the motility of run-and-tumble particles by means of numerical simula-
tions. We will determine how the average diffusion coefficient and average velocity depend on the particle
density ρ and the maximum allowed number of particles per site k. Let us start by introducing an existing
and well-studied exclusion process.

7.1. Exclusion processes
Equipped with an exclusion principle, the run-and-tumble model becomes closely related to a paradigmatic
model in non-equilibrium statistical physics: the asymmetric simple exclusion process (ASEP). In this one-
dimensional interacting particle model, particles enter the first site of a finite lattice at rate ken . From there,
they can hop forward or backward with rates k f and kb < k f respectively. Upon arriving at the final site of the
lattice, a particle exits at rate kex . Throughout the process, only one particle can occupy a site at a given time.
This model is studied extensively, since it can be used to describe traffic flow as well as biological processes
such as the translation of mRNA by ribosomes. Moreover, this model is exactly solvable: Derrida constructed
a formalism that allows the current and density profiles to be determined exactly [9]. The density profiles
depend on the boundary conditions and can be categorized into different phases, where the flux is either
maximal, limited by the entrance rate or limited by the exit rate of particles.

When only forward motion is considered (kb = 0), one obtains a Totally Asymmetric Simple Exclusion Pro-
cess (TASEP). For the TASEP model with particle density ρ, the probability for a site to be empty is 1−ρ. The
velocity of the particles is then given by the forward hopping rate multiplied by the probability that the next
site is empty: v = k f (1−ρ).

A main difference between the ASEP model and run-and-tumble motion under influence of exclusion is that
run-and-tumble motion is governed by an independent state process which determines if a particle is in a
forward or backward mode of motion. Also, run-and-tumble motion incorporates symmetric random walk
(diffusion) whereas the ASEP and TASEP models describe asymmetric motion. Finally, we will focus on mo-
tion in a closed system instead of a system with open boundaries in this chapter.

27
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7.2. Method
With a rejection-based Monte Carlo algorithm, the paths of N particles that move according to equation (5.1),
figure 5.1 and an exclusion limit of k particles per position, will be numerically computed. The paths are as-
sumed to obey periodic boundary conditions on a linear segment of size L, such that the process actually
takes place on a ring. The process will be sampled by the highest total rate at which transitions take place:
R = N ·maxσ{2λ(σ)+η(σ)+γ(σ)}. Recall that λ(σ) is the random walk rate, η(σ) the rate of active transport
and γ(σ) the rate at which the internal state σ changes. The Monte-Carlo algorithm for simulating the paths
of N particles, made with help of Dr. S. Grosskinsky, is described in pseudocode below:

Algorithm 1 Calculate x(t ) = {xi (t ); i ∈ 1, ..., N }

set t = 0
define k, the maximum number of particles allowed per site
let R = N ·maxσ{2λ(σ)+µ(σ)+γ(σ)}
generate an equidistant distribution for x(0) over the lattice of length L
draw σ(0) ∈ {1,−1}N from a uniform distribution.
while t < tmax do

t ← t +Exp(R)/N
pick a particle index i from {1, ..., N }
compute the total transition rate r (σi ) of particle i in state σi : r (σi ) = 2λ(σi )+µ(σi )+γ(σi ),
if Unif(0,1)≤ r (σi )

R then
determine the move of particle i by a draw from a multinomial distribution with probabilities{
λ(σi )
r (σi ) , λ(σi )

r (σi ) , η(σi )
r (σi ) , γ(σi )

r (σi )

}
for respectively: one step to the left, to the right, to the direction indicated

by σi (t ) or for a flip of the internal state
if the move is a state change then
σi (t ) =−σi (t −1)

end if
if the move is a step of length 1 to site l then

xi (t ) = l if the occupation of site l is less than k, otherwise no move is made
end if

end if
end while

From the simulated paths x(t ) we will determine the average diffusion coefficient and the velocity. Since one-
dimensional Brownian motion with diffusion coefficient D has a N (0,Dt ) distribution, D will be determined
by dividing the sample variance of the position by the elapsed time. Let ri = xi (t )−xi (0) denote the displace-
ment of particle i after time t and r denote the sample mean of the ri . We determine the average diffusion
coefficient and average velocity of a set of N particles according to

Dav = S

t
= 1

t

∑N
i=1(ri − r )2

N −1
and vav = 1

N t

N∑
i=1

ri , (7.1)

where S denotes the sample variance of the displacements.

7.3. Results
Unless stated otherwise, the following rates for the run-and-tumble motion (in s−1) were used to obtain the
results:

λ1 = 0.6 η1 = 1.7 γ1 = 0.7

λ−1 = 0.6 η−1 = 1 γ−1 = 1.2

such that there is net transport in the positive x-direction. The velocity of the transport and the diffusion
constant can be calculated from (2.18) and (5.13). Rounded to two decimal places, they are given by v =
4.55 sites/s and D = 0.71 sites2/s. Next, let us look at the influence of an exclusion constraint on these quan-
tities.
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7.3.1. Diffusion coefficient
The diffusion coefficient is only well-defined if the variance of the displacement scales linearly with time. If
this relation is nonlinear, the motion is called anomalous diffusion, for which we do not speak of a diffusion
coefficient. We thus begin by examining the variance as a function of time.

Figure 7.1: The sample variance of the displacement against time. For these data 400 particles were placed on a segment
of 1000 sites with exclusion constraint k = 4. The dashed line shows the theoretical variance: Dt , where D = 0.71 sites2/s
is the analytically derived diffusion constant.

Figure 7.1 shows the sample variance in a situation where the exclusion constraint has a small influence on
the motion: 350 particles were simulated on a lattice of 1000 sites under the condition that no more than 4
particles could occupy a site. Next to the sample variance, the theoretical variance of the motion is plotted.

(a) N = 40 (b) N = 540

Figure 7.2: The sample variance S of the displacement of 40 (left) and 540 particles (right) against time. A lattice of 600 sites and exclusion
constraint of k = 1 were used.

On the other hand, figure 7.2 shows the sample variance of motion that is highly influenced by the exclusion
constraint. The plots were obtained using the parameters L = 600 and k = 1 and correspond to a particle
number of (a): N = 40 and (b): N = 540.

Presumably the fluctuations and non-linearity of the sample variance are caused by the fact that particles
cannot overtake each other. Let us verify this assumption by changing the nearest neighbour random walk
to next-nearest neighbour random walk and leaving all other parameters and characteristics of the model
unaltered. In other words, the steps that are taken at rate λ(σ) have length 2 instead of length 1. Figure (7.3)
shows the sample variance for this motion:
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Figure 7.3: The sample variance S of the displacement of 540 particles against time. A lattice of 600 sites and exclusion
constraint of k = 1 were used. For this simulation the particles did not perform nearest neighbour random walk but
next-nearest neighbour random walk.

As figure 7.3 shows, the sample variance behaves linearly as a function of time, in contrast to the sam-
ple variances shown in figure 7.2. The gradient is approximately 0.2, lower than the theoretical gradient of
0.71 sites2/s.

We conclude that run-and-tumble particles with an exclusion limit of k = 1 do not exhibit normal diffusion,
when simulated on a ring. In the same situation but with next-nearest neighbour random walk, it is possible
to determine the average diffusion coefficient, described by (7.1). This diffusion coefficient is found to be
lower than the theoretical value.

7.3.2. Velocity
Unlike the diffusion coefficient, the average velocity of the particles is always well-defined. We can therefore
determine the behaviour of the velocity as a function of the allowed number of particles per site k, ranging
from k = 1 (hard-core exclusion) to k = 10. Below, the average velocity scaled by the expected velocity is
shown for 350 and 500 particles.

(a) N = 350 (b) N = 500

Figure 7.4: The scaled average velocity vav
v0

against the maximum number of particles per site k for particle numbers N = 350 and

N = 500 and lattice size L = 1000. Each data point is an average of three simulations, of which the standard deviation is shown as an error

bar. The continuous lines show a least square error fit of the form vav
v0

(k) = 1− b
v0

· e−k/a to the data. The obtained fit parameters are

a = 0.48±0.07, b = 2.3±0.7 and a = 0.69±0.06, b = 1.4±0.2 for 350 and 500 particles respectively.

Based on the data in figure 7.4, we presume that the velocity depends on the exclusion limit k in an expo-
nential manner. Indeed, we can fit the data with a functional form vav

v0
(k) = 1− b

v0
· e−k/a . In order to verify

that the velocity vav is well described by this proposed function, we consider a log-linear plot of vav
v0

against



7.3. Results 31

k at a high particle density (figure 7.5). The exponential nature of the increase can best be observed for high
densities, where the expected velocity v0 is attained at larger values of k compared to low particles densities.
At particle densities below 0.25, the maximum velocity is already attained at k = 2, such that no information
can be extracted on how the velocity increases to its maximum.

Figure 7.5: The scaled average velocity vav
v0

against the maximum number of particles per site k on a linear y-scale (left) and 1− vav
v0

on a logarithmic y-scale (right). Parameters N = 1000 and L = 1000 were used to obtain these results. Each data point is an average of
three simulations, of which the standard deviation is shown as an error bar. The left plot includes a least square error fit of the form
v(k) = 1− b

v0
·e−k/a to the data. The obtained fit parameters are a = 0.90±0.01 and b = 2.14±0.04.

From the fitted exponential curves we can determine the characteristic number of particles per site, a, for dif-
ferent particle densities. The a-values and the corresponding uncertainties obtained from the least squares
approximations are shown in figure 7.6. The values for b, ranging between 1.4 and 3.4, can be found in ap-
pendix B.

Figure 7.6: The values of a corresponding to the curve of best fit of the form vav
v0

= 1− b
v0

e−k/a to the obtained average
velocities. The obtained uncertainty in a is shown as an error bar

Note that for particles densities greater than one, the fit function can be fully described by one parameter. In
that case, the x-intercept of the function is equal to the particle density.
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Next, we will study the effect of particle density on the average velocity more directly. Below, vav is shown as
a function of the normalised density ρ

k for exclusion limits of one to four particles per site.

For all considered values of k, the velocity vav approaches the expected velocity v0 in the limit ρ
k → 0 and

decreases to 0 as ρ
k → 1. The way in which these limits are attained varies strongly per value of k. The relation

between the velocity and normalised density is almost linear for k = 1 while it could obey a power law with
power greater than one for 2, 3 and 4 particles allowed per site. Let us investigate if this is the case by apply-
ing a least squares approximation of the form vav

v0
= 1− (ρ

k

)q
to the data. The results are summarized in the

following figure and table:

Figure 7.7: The scaled average velocity vav
v0

against the normalised particle density
ρ
k for k = 1 to 4. The data for k = 1,2

were obtained using L = 1000 while for k = 3,4 a smaller lattice of length 800 was used. Each data point is an average over
three simulations, of which the standard deviation is shown as an error bar. Least squares approximations of the form
vav
v0

= 1−
(
ρ
k

)q
are included as dotted lines.

Table 7.1: The values of q that minimize the square error between the function vav
v0

= 1−
(
ρ
k

)q
and the data from figure

7.7. The obtained uncertainty in q is given by u(q).

k q u(q)
1 0.849 0.005
2 1.569 0.005
3 2.25 0.02
4 2.97 0.01

Note that the differences in q between subsequent k-values lie very close to each other: 0.72, 0.68 and 0.72.
Furthermore remark that in the limit k →∞, vav will approach the constant function v0.
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7.4. Discussion
By simulating next-nearest neighbour random walk, we tested the hypothesis that the observed non-linearity
and fluctuations of the sample variance are mainly a result of particles not being able to overtake each other.
When a site can still only be occupied by one particle at a time and the particles diffuse to next-nearest neigh-
bour sites, the sample variance is indeed found to increase linearly with time. The fact that the gradient is
much lower than the expected diffusion constant, indicates that the exclusion constraint still strongly influ-
ences the motion.
When further investigating the diffusive properties of this model, the accuracy of Dav can still be improved
by determining the displacement in multiple time intervals of the same trajectory. In this way, the sample
variance for a certain value of t is an average of multiple displacements instead of just one.

Next to the diffusive behaviour, we analysed the influence of the number of particles allowed per site k on
the average velocity. The decrease in vav for decreasing k appears to be well described by an exponential
function, as the linearity of the data points in figure 7.5(b) for low k confirms. The characteristic number of
particles per site a which we derived from the fitted curves increases as a function of density, as expected. For
low particle densities, the uncertainties in a and b are relatively large, since the velocity increases very rapidly
as a function of k. The values of the fit parameters are more accurate for higher particle densities.

The manner in which the velocity decreases for higher particle densities differs strongly as a function of k.
Power laws of the normalised density were fitted to the data to quantify and better understand the difference
in velocity behaviour. For k = 1, all data points lie on the fitted curve within their uncertainty. Moreover, the
relative uncertainty in the obtained power is 0.6% and indicates that the curve fit is of good quality. For k = 3
and k = 4, the curves correspond slightly less well to the data, especially for normalised densities around 0.5
particles/site. The differences in obtained powers for subsequent k-values lie close to each other. Simula-
tions for higher k could be performed to investigate if in this case a power law remains a good approximation
and if the increase in power for increasing k remains approximately constant.
As described in section 7.1, the velocity depends linearly on the density in the TASEP model. Remarkably,
our model gives a power of 0.849±0.005 for k = 1. A possible explanation for the faster velocity decrease as
a function of density is the fact that our model includes bidirectional motion, whereas motion in the TASEP
model is strictly forward. By determining the velocity for very low rates of diffusion and backward transport
compared to the forward transport rate, it can be verified if the bidirectional motion accounts for the devia-
tion from the TASEP model.

For further research on the run-and-tumble model, it is interesting to simulate motion where the rates have a
spatial dependence. In that situation, the analysis of section 5 does not apply and it is more difficult to analyt-
ically derive the limiting distribution. However, via simulations it may be possible to for example determine
the steady state density and velocity profile.
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Modelling kinesin motion

In this chapter we will turn to an application of the one-dimensional transport model for which we have al-
ready derived the limiting distribution, determined the large deviation properties and studied the dynamics
under influence of excluded volume interactions. We will apply the run-and-tumble model in combination
with an exclusion constraint to the motion of a molecular motor, responsible for transport of large compo-
nents along linear filaments within cells. The particle velocity as a function of density which we obtain from
numerical simulations will be compared to experimental data of kinesin-II motors to investigate how well the
model can describe kinesin motility in a crowded environment.

8.1. Molecular motors
Within the dynamical environment of a biological cell, there is a constant need of transportation of cell com-
ponents. Small components can diffuse within the cytoplasm but larger components like organelles or vesi-
cles are taken to their destination by molecular motors. Molecular motors are enzymes that convert chemical
energy, obtained from hydrolysing ATP, into mechanical energy. Most molecular motors perform linear mo-
tion along filaments that are part of the cytoskeleton of the cell. For example the motor proteins dynein and
kinesin move along microtubule filaments, while myosin uses actin filaments as its track. The motor proteins
have a defined direction in which they move, due to the polarity of the filament they ’step’ on. Kinesins move
towards the plus end of microtubules (away from the nucleus) while dyneins move towards the minus end.
Myosins, that are among other things responsible for muscle contraction, move in the plus direction on actin
filaments (with an exception for myosin-IV).

As already mentioned, the molecular motor which we will apply our model to is kinesin-II. This motor drives
intraflagellar transport in cilia [3]. In order to model its motion well, we need to be familiar with the struc-
tural characteristics of microtubules as well as the stepping motion of kinesin molecules. Therefore, we will
provide an introduction to microtubules and to the motility of kinesin.

Figure 8.1: A representation of a microtubule and the αβ-tubulin dimers from which it is constructed.
Published by Thomas Splettstoesser under the Creative Commons Attribution-Share Alike 4.0 International license, on
https://commons.wikimedia.org/wiki/File:Microtubule_structure.png.
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8.1.1. Microtubules
Microtubules are hollow cylinders with 13 protofilaments [1]. Each of the protofilaments is built up of αβ-
tubulin dimers with a length of 8 nm, that are positioned head to tail. Figure 8.1 shows the alignment of the
tubulin dimers in a microtubule.

8.1.2. Mechanochemical cycle of kinesin
Kinesin molecules have two motor domains (heads) that are connected to a tail domain by a coiled-coil stalk
[1]. To the tail domain, cellular cargo can bind. The motor domains step forward on a microtubule in a head-
over-head manner. During a step, the lagging motor head unbinds from its tubulin dimer and passes the
leading head, before attaching to the next available tubulin binding site. At first, the lagging head is tightly
bound to the microtubule and to ATP, which it hydrolyses in order to detach from the tubulin. Meanwhile,
dissociation of ADP which was bound to the leading head, followed by binding of ATP, drives the motion of
the rear head. This process repeats itself, where with each step the molecule takes itself and its cargo 8 nm
closer to the plus end of the protofilament.

Figure 8.2: Illustration of heterotrimeric kinesin-II with two distinct motor subunits on the left, the coiled-coil stalk in the
middle and a subunit called KAP bound to the tail domain.
From the Vale lab, https://valelab.ucsf.edu/motors/motortoolboxkinesin/, that permits the use of its illustra-
tions for educational purposes.

Even though kinesin mostly moves away from the cell nucleus, steps in the opposite direction also take place.
The frequency of such backsteps is higher at larger loads. Currently, backsteps are thought to be a forward
step with reversed direction. However, recent research suggests that movement in the opposite direction
should be considered slips rather than steps [19]. Multiple different methods to incorporate backstepping
in the mechanochemical cycle of kinesin have been proposed, but it is still a topic of debate what the right
explanation is and whether or not ATP is required for a backstep [5].

When applying the run-and-tumble model to kinesin motors, we can account for backstepping by theσ=−1
state and let σ= 1 correspond to the normal forward motion. In the next section, we will further elaborate on
how the model should be adjusted to the motion of kinesin on microtubules.

8.2. Method
The simulation algorithm explained in section 7.2 needs to be slightly adapted in order to apply it to the
motion of kinesin. Since kinesin is a dimeric protein, a motor is assumed to occupy two subsequent lattice
sites in the model. This corresponds to the assumption that both motor heads are bound to the microtubule
filament. Furthermore, the stepping rates need to be chosen such that the net velocity corresponds to the
velocity of kinesin at low densities. As a reference, we will use the results from recent research on the crowd-
ing dynamics of heterotrimeric kinesin-II by Kushwaha, Acar, Miedema, Denisov, Schall and Peterman [12].
In this research they performed kinesin-II motility assays using Total Internal Reflection Fluorescence (TIRF)
microscopy. Microtubules were attached to a glass slide, to which labeled and unlabeled kinesin-II molecules
(in a PEM12 buffer) could bind. For further details of the experimental method, we refer to [12].
Applying particle tracking to a single molecule assay, Kushwaha et al. obtained an average velocity of 0.33±
0.01µm/s. Correlation analysis for multiple motors yielded a velocity of 0.30±0.02µm/s for densities below

https://valelab.ucsf.edu/motors/motortoolboxkinesin/
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10 motors/µm.
Setting the length of a lattice site in our model to 8 nm, the length of a tubulin dimer, this latter velocity is
equal to 38±3 sites/s.

To model kinesin-II , we use the following rates (in s−1):

λ1 = 10 η1 = 100 γ1 = 37

λ−1 = 10 η−1 = 48 γ−1 = 50
(8.1)

The rates ησ and γσ were chosen such that the asymptotic velocity is in accordance with the velocity of
kinesin-II at low densities. The asymptotic velocity, obtained from the stationary distribution (2.18), is 37.1 sites/s.
The non-zero random walk rates λσ account for displacements due to thermal noise. At the nanoscale these
fluctuations are not negligible. Since thermal noise is a result of collisions with small molecules and is inde-
pendent of the mechanochemical state of a particle, λ1 and λ−1 are taken equal.

The way to model a microtubule should be carefully considered. In section 7.3.2, we found that modelling
a single lane with a certain k-value is not equivalent to using the same amount of independent lanes. In or-
der to model the motility of kinesin-II , we decide to model the microtubule protofilaments as independent
lanes. The reason behind this choice is that at high densities, motors can hardly make sidesteps, since the
neighbouring tubulins will already be occupied by other motors.

With the rates of (8.1) and an exclusion parameter of k = 1, we will run simulations for different particle
numbers. In this way we can study the motility of kinesin-II as predicted by our model and compare this to
experimentally observed data.

8.3. Results
The following figure shows the average velocity obtained from the simulations for different number of parti-
cles on a lattice of length 1000. Using that one site represents a tubulin dimer of 8 nm long, the velocity has
been given in µm/s and the particle density in particles/µm. Additionally, the kinesin-II velocity determined
by Kushwaha et al. [12] from an in vitro motility assay is shown in figure 8.3. From time series of TIRF images
they extracted average velocities and corresponding densities of kinesin-II motors per µm of microtubule.
With our Monte Carlo algorithm we simulated one linear filament. Best agreement between the predicted
velocities and the experimental data was obtained when dividing the densities from the experimental data by
13. This is the amount of protofilaments of a microtubule.
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Figure 8.3: The velocity v against the particle density ρ. The data marked with a cross are the average velocities of three
simulations of the Monte Carlo algorithm, with standard deviations shown as error bars. The data marked with a diamond
show the velocity and its uncertainty of kinesin-II motors, as experimentally determined by Kushwaha et al. [12].

8.4. Discussion
From figure 8.3, it follows that our model predicts a steeper velocity decrease when the kinesin density in-
creases than experimentally observed. In addition, the experimentally determined velocity starts to decrease
at lower densities: at a density of 1.8 particles/µm, the measured velocity has decreased by 11%, while the
predicted velocity has only decreased a similar amount at a density of 6.3 particles/µm.
A model in which particles move under hard core exclusion with expected velocity equal to the maximum
motor velocity does not seem sufficient to capture the dynamics of kinesin-II under crowded circumstances.
Note that this can still be better established by comparing the predictions from the model to results of multi-
ple experimental studies.

A main characteristic of kinesin motility that is not incorporated in the model is the binding and unbinding
of motors to the filament. In reality, molecular motors attach to a location on the track and detach again after
a period of time. Since this results in a more dynamic distribution of the particles over the lattice, it will likely
influence the average particle velocity as well. In addition, the waiting time of kinesin molecules before a de-
tachment or a backstep is longer than before a forward step [19], which of course affects the average velocity.
It is of interest to determine if including attachment and detachment in the model (referred to as Langmuir
kinetics, see for example [14, 15]) would increase the resemblance to the experimental data. The detachment
rates could in this case be determined from a measured average run-length of the molecular motor. More-
over, the average run length would provide an extra quantity, next to the velocity, to calibrate our model with.
For example, a better estimate of the diffusion rates λ1 and λ−1 could then be made. Namely, these rates do
not influence the average velocity but will influence the average run length of the particles.

The rates ησ and γσ for making forward or backward steps and for changing the direction of motion respec-
tively, were taken such that the asymptotic velocity corresponds to the maximum motor velocity. The ratio
between forward and backward motion for the rates given by (8.1) is 2.8. As of yet, research data on the condi-
tions and frequency of molecular motor backstepping is rather limited and a reference for the ratio between
forward and backward steps of kinesin-II could not be obtained. If such data would be available, the pre-
dictions of our model for kinesin-II could be improved by taking more suitable ησ and γσ, while keeping the
expected velocity constant. However, an adaptation of this kind is not expected to eliminate the deviation
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from the experimental data on its own.

Another point of discussion when comparing our simulated results to experimental data is sidestepping of
kinesin-II motors. In our model we neglected sidestepping of motors to a neighbouring protofilament. The
reason behind this is that we ran simulations with high motor densities relative to the maximum motor den-
sity of ∼ 39 motors per µm per lane observed by Kushwaha et al.[12] At densities close to this maximum, the
occupation of sites on a protofilament is greater than 50% and it will be difficult for motors to step to a parallel
protofilament. It therefore does not seem likely that the assumption of no sidestepping causes the deviation
between the simulated and experimental data.
This deviation was smallest when setting the number of accessible lanes to 13. An optimal number of lanes
less than 13 would be more accurate, however. Namely, not all protofilaments could be occupied by motors
in the motility assay, because of hindrance by the glass slide and neighbouring motors. The actual number
of accessible lanes depends on the experimental setup as well as the size of the molecular motors and their
cargo.

A final remark is that the extent to which a molecular motor is affected by crowding varies largely among
motors, even within the kinesin family. Kushwaha et al. also performed motility assays for kinesin-I and OSM-
31, whose velocities both decrease at significantly lower densities than for kinesin-II . This difference can not
be obtained only by varying the parameters of the currently used run-and-tumble model under exclusion
interactions. Further extensions to the proposed model are required in order to give a good description of
molecular motor motion in a crowded environment, which does not appear to be governed merely by simple
exclusion.

1OSM-3 is homodimeric kinesin-II from C. elegans [12]
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Conclusion

Run-and-tumble motion as studied in this thesis, converges to Brownian motion under diffusive scaling of
the position and time. We showed this by convergence of the characteristic function of the scaled process. We
computed the limiting diffusion coefficient, which exhibits homogenisation over the stationary distribution
of the internal state. In addition, this run-and-tumble model is shown to satisfy the large deviation principle,
from which it follows that the central limit theorem applies to the process. By involving the free energy func-
tion, we derived an implicit expression for the rate by which the probability of rare events tends to zero.

By means of simulations, we studied the influence of excluded volume interactions between the active par-
ticles on a lattice and discovered that no normal diffusion takes place when particles cannot overtake each
other. The average velocity of the particles is found to converge exponentially to its expected value as the
number of particles allowed per position increases. Furthermore, as the lattice becomes crowded with parti-
cles, the velocity decreases, where the manner of this decrease depends strongly on the number of particles
allowed per site.

The active particle model with excluded volume constraints was applied to the motion of the molecular motor
kinesin-II. We predicted the average velocity for different motor densities and compared this to experimental
data from Kushwaha et al. [12]. The velocity decrease deviates from the measured velocity of kinesin-II. From
this we conclude that the motion of molecular motors in crowded circumstances is an intricate process that
cannot merely be described by a model with active transport, thermal noise and simple exclusion. By also
including binding and unbinding of motors to the lattice in the model, a better approximation of the dynam-
ical behaviour of molecular motor ensembles may be obtained. Finally, as a direction of further research we
suggest to (numerically) analyse the case of spatial inhomogeneity in the rates of motion.
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A
A.0.1. Commutation of the semigroup and translation
The generator of the run-and-tumble process with internal state dependence (5.1) commutes with translation
in space. Define the translation operator τa f (x,σ) = f (x+a,σ). The commutativity can be derived as follows

(Lτa f )(x,σ) =λ(σ)(τa f (x +1,σ)+τa f (x −1,σ)−2τa f (x,σ))+η(σ)(τa f (x +σ,σ)−τa f (x,σ))

+γ(σ)(τa f (x,−σ)−τa f (x,σ))

=λ(σ)( f (x +a +1,σ)+ f (x +a −1,σ)−2 f (x +a,σ))+η(σ)( f (x +a +σ,σ)− f (x +a,σ))

+γ(σ)( f (x +a,−σ)− f (x +a,σ))

=(τaL f )(x,σ).

(A.1)

From the relation St = e tL , which can be defined in terms of its Taylor series, it follows that the semigroup
commutes with spacial translation as well. Namely, when L commutes with τa , so does Ln .

A.0.2. Limit and logarithm

In the the derivation of F (α) a limit of the form lim
t→∞

1

t
log( f (t )+ g (t )) appears, where f and g are positive,

real-valued functions. With the following lemma we can determine such limits:

Lemma A.1 Let f (t ), g (t ) : [0,∞] → (0,∞] and assume that lim
t→∞

1

t
log

(
max
t→∞{ f (t ), g (t )}

)
exists, then

lim
t→∞

1

t
log( f (t )+ g (t )) = lim

t→∞
1

t
log

(
max
t→∞{ f (t ), g (t )}

)
.

Proof. Suppose, without loss of generality, that max
t→∞{ f (t ), g (t )} = f (t ). To prove the lemma, it suffices to show

that

limsup
t→∞

1

t
log( f (t )+ g (t )) ≤ lim

t→∞
1

t
log f (t ) ≤ liminf

t→∞
1

t
log( f (t )+ g (t )).

The first inequality follows from the fact that

f (t )+ g (t ) ≤ 2max{ f (t ), g (t )} ∀t ≥ 0,

which implies

limsup
t→∞

1

t
log( f (t )+ g (t )) ≤ lim

t→∞
1

t

(
log f (t )+ log2

)= lim
t→∞

1

t
log f (t ).
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For the second inequality, note that f (t )+ g (t ) > f (t ). As a consequence,

liminf
t→∞

1

t
log( f (t )+ g (t )) ≥ lim

t→∞
1

t
log f (t ).

�

For the derivation of the free energy function F (α), lemma (A.1) can be used to determine that

lim
t→∞

1

t
log(aebt + ced t ) = max{b,d},

with a,b,c,d ∈R and a,c > 0.



B

(a) N = 250 (b) N = 600

(c) N = 800 (d) N = 1200

Figure B.1: The average velocity scaled by the expected velocity vav
v0

against the maximum number of particles per site k for particle

numbers N = 250, 600, 800, 1200. A lattice size of L = 1000 was used for the data of subfigures (a)-(c); the data in subfigure (d) were
obtained using L = 700. Each data point is an average of three simulations, of which the standard deviation is shown as an error bar.

Least squares approximations of the form vav
v0

= 1− b
v0

· e−k/a were applied to the data. The values of a for the best fit are plotted in

figure 7.6 and the values for b can be found in table B.1 below.
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Table B.1: The values of b that minimize the square error between the function vav
v0

= 1− b
v0

e−k/a and the average veloci-
ties for different k-values, obtained from simulations. The obtained uncertainty in b is given by u(b).

N b u(b)
250 3 1
350 2.3 0.7
400 3 1
500 1.4 0.2
600 1.57 0.04
800 1.88 0.08
1000 2.14 0.04
1200 3.4 0.3
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