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Preface 
 
Dear reader, 
 
A more fitting venue for writing this preface than the train home from Amersfoort could not 
be imagined. Yet here I sit, almost finished with what is undoubtedly the most daunting 
assignment of my years in education, which go back some twenty years already. 
 
Many a hardworking hour has been poured into the creation of the thesis before you. Some 
lovingly, others hated with a passion. Many coding away with furor, a few breaking personal 
procrastination records. But mostly it was a matter of chugging along steadily, celebrating 
small success and stepping over cobblestones along the way. 
 
At the beginning of this project, almost a year ago today, I could not have imagined the 
result that is here today. I have heard from many a graduate before me that you don't really 
know what you're doing and where you're going until you are at least half way there. They 
couldn't have been more right. 
 
First off, I would like to thank Nikola. He has always been at the ready to help out and bring 
structure to my progress. Although we didn't always see eye to eye, I couldn't have wished 
for a more helpful daily supervisor. Mart, thank you for keeping my feet on the ground while 
my mind was full of scientific abstractness, and of course for introducing me to a world of 
FOTs, BDSen, KrOLs, TAOs and TVTAs. Rob, Valeri and Jan Anne all provided invaluable 
contributions with their wealth of expertise and experience in their field of work, as well as 
their experience in working on graduation projects. 
 
Keeping my spirits up when working, or rather, while taking breaks, was a task entrusted to 
my colleagues from Asset Management and from Data Analytics in Amersfoort, and to those 
with whom I shared the graduation room when I was in Delft. Merely the foosball games 
and random banter made the daily commute a worthwhile ordeal. Finally, I cannot leave my 
friends at the graduation room at the faculty unmentioned. Seven people on a mission, a 
room that is on the small side for such company and a free coffee pass is all that is needed 
to forge companionship that I am sure is to stand the test of time and diverging careers. 
 
As for my work over the past months, I truly hope it will result in more than me graduating. 
Hopefully, it will provide a useful stepping stone the operations research community, and a 
tool by which train travel will become just a little bit nicer. I'm hopeful someone out there 
will take a little bit of inspiration from this work to make theirs a little better, just as I have 
from many who have worked in this field before me. 
 
My future as a proper, money-making, responsibility-taking, early-waking adult will start on 
November 1st, where I will see my colleagues at Arcadis again, just no longer as the intern. 
My starting position will be as a trainee in team Asset Management, of course hoping to 
develop myself further. 
 



 
 

As the world of transportation engineering and management is fairly small, I'm sure my 
paths will cross with many of you who work there or will do so. I wish you good luck on all 
your future endeavors, and be sure to let me know if ever you have important railway 
business to discuss, or simply want to drink a beer. 
 
Cheers, 
 

Maarten Giltaij 
Delft, October 2018 

 
  



 
 

Executive Summary 
Railways are important to modern society. It is a system that occasionally requires 
maintenance, which involves cost and service suspensions. However, maintenance is 
important to reduce failures. A trade-off is necessary. In the Netherlands, railway 
maintenance is performed by independent contractors. These parties are increasingly made 
responsible for the track they are maintaining, and also get increasing possibilities to 
improve their working methods. This includes the ability to innovate in scheduling 
maintenance. 
 
Currently, determining when and how often to maintain individual railway components is 
done manually, and only for the next year. What's more, maintenance is performed within 
fixed bounds. There is no tradeoff between cost, reliability and availability. This is not 
optimal. A better solution may exist than is found by manually creating a solution. An 
improvement could reduce the number of track failures, the cost of doing maintenance and 
the number of times the track needs to be closed for performing maintenance. What is 
desired is a problem formulation that captures all these goals. The main research question 
therefore states: 
 
"What is the optimal way of planning railway maintenance over the long term?" 
 
Railways are made up of many components, each of which has to function in order to host 
the train service. The preferred approach when maintaining these components is to bundle 
the maintenance operations that affect a service, that is, to reduce the required 
possessions. 
 
For a quantitative approach, a way to model degradation of the component is required. 
Failure of components is a stochastic process. Failure rate modelling can be used to 
estimate the probability of failure over time. Two statistical models, the additive Weibull 
distribution and the additive Gompertz-Makeham distribution, are presented. The 
parameters for these models can be determined with data on the components. 
 
Linear programming is a widely used tool for solving numerical optimization problems. The 
underlying assumption is that the relation between each parameter that can be changed 
and the overall desirability is linear. Even though the problem is not linear in itself, an 
unconventional transformation of the decision variables enables successful problem 
formulation. In this way, the costs of maintenance, possession and failure can be included in 
the objective function. 
 
In this thesis, a way to analyze the failure characteristics over time and to determine a 
maintenance schedule that is optimized for the cost of failure, the cost of maintenance and 
the cost of possessions is introduced. This is more than what has been done in other 
literature. Ultimately, it could serve to improve the maintenance planning of railways. 
 
Two models are presented that achieve the set goals. In both, the objective function is an 
expression of the total expected cost as a function of the chosen maintenance strategy. The 
models are able to solve problems that cannot be solved using models in existing literature. 



 
 

The formulation is very general, and could possibly be applied in many fields other than 
railways. They have the potential to improve the way maintenance to all kinds of degrading 
systems is planned. 
 
The first model optimizes a situation in which each component in the system has its own, 
repeating maintenance interval. The maintenance interval differs between components, but 
stays constant over time. The costs of maintenance, failure and possessions are taken 
together and minimized. 
 
The second model is an expansion of the first model in which the intervals are no longer 
constant over time, but are modelled individually. This is done by adding decision variables 
to the model for every single interval. The result is that the optimization produces a more 
efficient schedule. It does increase the required runtime substantially compared to the first 
model. 
 
A fictitious case was formulated in order to test model performance. These tests relate to 
numerical settings and to problem characteristics. For problems with three component 
types, performance is acceptable over a wide range of settings. Various problems of up to 
several years, assuming a time step of one week, can be solved within an hour. 
 
A test case based on real maintenance data was devised. Model input was created by 
estimating the failure rates of components in the data sets. Compared to the estimated 
performance of a conventional schedule, the optimized schedule reduced costs by 2.3%. 
 
The long-term planning and cost estimation of maintenance can be improved by using the 
model presented in this thesis. As opposed to current methods, a quantification of the 
expected cost of failure depending on the maintenance strategy is defined. 
 
Further development that builds on the model as presented could address certain 
uncertainties that are still present. The main uncertainty is, and probably remains, the 
predictive quality of the available data. Before major decisions can be based on the model, a 
more elaborate trial would be advisable. 
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1 Introduction 
1.1 Background 
Railways provide affordable and sustainable transportation to many passengers and 
shippers. However, railways need to be maintained, and this requires train services to be 
reduced or suspended temporarily. If a reduction of these timetable adjustments can be 
achieved, rail users profit. When scheduling maintenance, a trade-off has to be made 
between direct cost, reliability, user preferences, safety and availability. There is a lack of 
knowledge, coordination and incentive in the parties involved to improve the working 
methods. Improving and optimizing the way scheduled maintenance is planned could 
potentially yield benefits to customers and maintenance contractors. 
 
In the Netherlands, the railway network is publicly owned, but maintained by private 
contractors. Daily maintenance is contracted out on a regional basis. Figure 1 gives an 
overview of these regions. The maintenance contractors get assigned a certain amount of 
time to perform maintenance by the infrastructure manager (IM, ProRail in the 
Netherlands), which is defined in the contract between the two. This contract is based on 
the tender that is put out by the track manager. Included in this contract is a minimum 
availability of the infrastructure, expressed in a percentage of weighed time. Weights are 
allocated to track sections based on importance. 
 
The nature of contracts between the IM and the contractor is shifting from direct 
specification of work and hourly compensation, to performance targets and fixed sum 
payment with bonusses and reductions for performance. The task of planning maintenance 
is also transferred to the contractor, which explains why there is increased interest in 
efficient maintenance planning. 
 
The offer made by the contractor is a rough estimate of the time needed, and there is a 
strong incentive to offer a high track availability, as this increases the likelihood of being 
assigned the contract. The available amount of time is therefore not ideally matched to the 
maintenance requirement. If contractors have a better indication of the amount of 
resources that are needed to fulfill the requirement that is proposed in the tender prior to 
submitting that tender, risk is reduced for all parties involved. One way of doing this is by 
modelling the maintenance processes, for example in GIS or a mathematical model. The 
downside of this is that contractors need to invest more in a tender they are unsure to win. 
 
Furthermore, there is a preference by passengers for large maintenance projects, which 
cannot be performed within a weekend, to be performed during school holidays, when 
travel demand by commuters is lower. This does mean that maintenance may be performed 
at a moment in time that is not ideal from an engineering perspective. In addition, because 
this increases peak demand for maintenance resources, their utilization rates are worse and 
capital cost higher. 
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Figure 1, contracting areas, adapted from http://www.spoordata.nl/sites/default/files/2017-12-
11%20Contractgebiedenkaart.pdf 

As can be derived from the literature review in chapter 2, much research has been 
performed in the fields of railway maintenance, of failure modelling, and of optimization. 
However, an integrated approach that includes all these elements is not yet common. The 
potential for such an approach is that the planning of maintenance can be improved and 
possibly optimized. 
 
Using the latest advancements in data collection, the failure behavior of individual 
components can be modeled more accurately. When the failure probabilities and costs of 
components are known, the performance of the system as whole can also be evaluated. 
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1.2 Research Objective and Questions 
The practical purpose of the research is to improve the ability of infrastructure managers 
and contractors to plan maintenance depending on the requirements of the infrastructure 
components. This can be captured in the main research question: 

• What is the optimal way of planning railway maintenance over the long term? 
 
To be able to answer this very general question, it is broken down into four topics, which 
contain several sub questions each. 
 

1.2.1 Characterization 
To be able to do any kind of quantitative analysis on failure processes, one must first 
analyze and characterize the components under consideration. This is done through 
answering the following sub questions: 

• What are the challenges in the current way of determining a maintenance strategy 
for railway assets? 

• How can the failure probabilities of railway components over time be estimated? 
 

1.2.2 Optimization 
Once the quantitative properties of the effects of maintenance are known, this information 
can be used to determine the expected performance of a certain maintenance strategy. If 
the maintenance strategy is found that demonstrably has the best expected performance, 
the maintenance is optimized. 

• How can the costs resulting from failure be estimated in case the maintenance 
schedule is known? 

• How can the optimal schedule for performing maintenance to a certain track section 
and its associated cost be determined?  

 

1.2.3 Evaluation 
Before the model can be put into practical use, it is necessary to demonstrate its 
performance compared to the current methods that are used to plan maintenance. 

• How does an optimized maintenance schedule compare to a schedule that is up to 
the current state of the art? 

• How accurately and how far into the future can the cost of performing track 
maintenance be predicted? 

 

1.2.4 Valorization 
Once an optimization model for the long-term maintenance strategy is available, it is 
important to know in which way the model is useful to maintenance planners in the railway 
industry, and, on a larger scale, how optimization of railway maintenance is beneficial to 
society. 

• How can the model be used by railway maintenance engineers? 

• Will better optimization of maintenance contribute to reduced unplanned 
maintenance? 
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• How can the contract between the contractor and the infrastructure manager be 
specified, such that all the information necessary for optimizing maintenance is 
exchanged? 

 
By addressing each of these individual research questions, a well-supported answer to the 
main question can be given. 
 

1.3 Methodology 
The initial research, which served to find the knowledge gaps and clearly define the 
problem, was mainly conducted through doing interviews with engineers at Arcadis and a 
literature review. 
 
As the problem is an optimization problem, a kind of programming method is needed to 
solve it. Linear programming is a widely used tool for optimization problems. It allows for 
solving a large variety of optimization problems. There are several advantages and 
disadvantages to using linear programming. The main advantage is the availability of 
specialized solvers. If the problem is well defined, the exact solution algorithm will be 
determined by the solver. A disadvantage is that not all problems are linear. Linear 
programming uses decision variables that represent the decisions that are made in 
operating a system, an objective function that is used to determine the cost or benefit of a 
certain solution, and constraints that limit the decision variables to practical values. Cases 
where (some of) the decision variables are integers are called mixed integer linear 
programming (MILP). A specific form of mixed integer linear programming is binary 
programming. In such problems the decision variables are restricted to two values. If non-
linear functions are encountered that cannot be reformulated such that they are linear, 
unary encoding can be used. This is a technique to reformulate the program such that every 
level of the integer decision variable is represented by a single binary variable.  
 

1.4 Thesis Outline 
Before the research questions are answered in depth, initial research is conducted to 
provide an overview of knowledge that is already available on the topic. It can be found in 
chapter 2. Chapter 3 starts with the definitions and assumptions that underpin the models, 
after which the models are presented. The second model is an extension of the first. In 
chapter 4, the second model is evaluated. The performance is tested on a synthetic 
parameter set (the input of the model), and a test case, in which the input parameters are 
derived from real data, is tried. In chapter 5, conclusions and recommendations are given. A 
reflection on the work can be found in chapter 6. Information and documents that support 
the main text, but provide information that is too detailed too include in the main text, can 
be found in the appendices following the reflection.  
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2 Existing Knowledge and Practices 
2.1 Current Industry Practice 
The planning of maintenance is evolving under the changing priorities of both infrastructure 
managers and contractors. As contractors are no longer rewarded for executing 
maintenance, but for achieving and maintaining performance levels, the incentive for them 
has shifted from performing as much maintenance as billable to as little maintenance as 
needed.  
 
When applying for a tender, the contractor has to submit a price for which he will ensure 
the promised level of performance. The lowest bid wins, but if the actual cost of performing 
the maintenance exceeds the bid, the contractor loses money on the contract. Thus, a good 
estimation of what the cost of maintenance to the contractor will be helps the contractor 
win the contract while still making a profit. 
 
The planning of track decommissioning in order to perform planned track maintenance 
(track possession) is currently suboptimal. The industry relies mostly on the knowledge and 
experience of the employees. Most information is taken from previous projects. The main 
reasons that it is done in this way are that every contract area is different, that the cost of 
maintaining relies on a lot of factors as the maintenance operations are diverse and large in 
number, and that these maintenance operations should be coordinated with each other. 
This is why it is not ideal to simply plan maintenance for the individual components and 
combine the results into a schedule. 
 
Ever since railways were first constructed, experience has been gained on maintaining 
railways. Employees that have worked in the business are a valuable resource to railway 
maintenance contractors, as they are able to give useful indications of what is required to 
perform maintenance on a railway line. However, the informal nature of this knowledge 
usage prevents a reliable estimation of requirements that is replicable and consistent.  
 
A current trend in research on optimization and planning maintenance, both in the railway 
industry and other industries, is to use big data and predictive maintenance to improve the 
planning of maintenance (Núñez et al, 2014). Instead of doing maintenance according to a 
fixed schedule, maintenance is adjusted to the actual requirements of the elements in the 
system. However, in practice the planning methods used by contractors have not yet 
evolved along with these trends. 
 
Currently, planners have no way to use all of the information that is available effectively. 
The reliance on human knowledge is a limiting factor, because the human brain is far worse 
at evaluating large amounts of data than a computer. A formalized, integrated method for 
estimation of maintenance would solve these problems. 
 
Other railway sectors and different industries, for example train timetabling and finance, 
have used advanced optimization to increase performance and reduce uncertainty and 
unexpected results. Research into applying these techniques to railway maintenance 
planning may yield similar improvements. Ultimately, a better insight into the maintenance 
requirement over a longer time horizon will enable both contractors and IMs to better plan 
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maintenance and estimate the cost involved. It can contribute to a more affordable and 
more predictable railway system. 
 

2.2 Literature Review 
A fair amount of literature is available on optimizing maintenance scheduling in well-defined 
cases in other industries. Some inroads have been made into incorporating stochastic 
elements into maintenance models. Existing stochastic models have focused on specific 
types of maintenance process, e.g. ballast level degradation (Quiroga & Schnieder, 2010) 
and (Quiroga & Schnieder, 2012). However, a generalized approach for modeling failure and 
degradation on the strategical and tactical level as a function of failure processes is not 
available. 
 

2.2.1 Process Improvement 
Nyström (2008) did research into delay attribution by railway staff. He emphasizes the need 
for consistent measures of punctuality performance and requirements. Improved delay 
attribution can help in identifying and solving problems more quickly. 
 
Vet (2014) has investigated the organizational problems behind predictive track geometry 
maintenance. He provides suggestions for reorganization that should lead to improved 
maintenance procedures. 
 

2.2.2 Deterministic Models for Maintenance Planning 
Budai et al. (2006) present the Preventive Maintenance Scheduling Problem (PMSP). A 
solution and a heuristic are provided and compared. The objective function consists of a 
generalized possession cost and the maintenance cost. 
 
Budai et al. (2009) did further research on this problem, and provided a solution using a 
genetic algorithm, a memetic algorithm and a two-phase heuristic. These solutions are less 
conventional than most, and may provide building blocks for further research. 
 
Forsgren et al. (2013) have developed a model that reschedules trains to fit within windows 
of track possessions. However, scheduling maintenance itself is not considered. 
 
Higgins (1998) has written one of the earlier papers on optimizing maintenance schedules. 
His objectives were to minimize the finishing time, and to minimize interference with the 
regular timetable. 
 
Higgins et al. (1999) build on this research by introducing minor refinements and applying it 
to a different case. 
 
Huisman et al. (2005) have given a broad overview of the operations research challenges 
experienced by a train operating company, in this case NS (Nederlandse Spoorwegen, Dutch 
Railways). This does not include infrastructure maintenance planning, however maintenance 
availability is of importance to the train operating company and its customers. Train 
timetables have to be adapted to possessions for maintenance. 
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Li & Roberti (2017) have focused their research on large project maintenance, where track is 
closed for a longer period of time. They call this the Railway Track Possession Scheduling 
Problem (RTPSP). A mixed-integer linear program (milp) is used to find a solution. The 
objective is to minimize construction costs while satisfying operational constraints. 
 
Lidén & Joborn (2016a & 2016b) have written two papers on optimizing maintenance 
scheduling. An approach is used that incorporates traffic planning into maintenance 
planning. This approach is applied to a single-track railway in northern Sweden. 
 
Luan et al. (2017) developed a method for planning Preventive Maintenance Time Slots 
(PMTSs), whereby the timetable and the maintenance schedule are optimized 
simultaneously. The objective for the planning is to minimize deviation from the original 
timetable. Maintenance is planned as a virtual train. This approach simplifies the integration 
of maintenance into timetabling. 
 
Oh et al. (2006) created a solution for a Track Tamping Scheduling Problem (TTSP) in the 
context of the Korean high-speed railway system. 
 
Oyama and Miwa (2006) have made a model that optimizes scheduling of a multi tie 
tamper, based on a prediction of track condition, under a constraint of equipment 
availability. The objective function is therefore not related to the timetable, but rather to 
the physical state of the track. Optimizing a combination of track condition with for example 
cost and disruption would be an improvement to their model. 
 
Peng et al. (2011) have made a model for a Track Maintenance Scheduling Problem (TMSP), 
which minimizes an objective function consisting of maintenance crew travel time and 
impact on operation. To this end, an iterative heuristic model is used. What makes this 
research interesting is the incorporation of track availability into the model. 
 
Ultrasonic Inspection Vehicles gather large amounts of useful data on the condition of the 
rail. Ideally, the vehicle detects each crack before the rail head fails. However, their 
availability is limited. Podofillini et al. (2006) propose a genetic algorithm that optimizes the 
use. Parallels may be found with other maintenance tasks to which the modelling structure 
may also be applied. 
 
Van Aken at al. (2017a, 2017b) formulated the Train Timetable Adjustment Problem (TTAP). 
The goal is to optimally reschedule trains to allow for maintenance works. Track possession 
itself is not incorporated into the model but taken as a given input. 
 
Vansteenwegen et al. (2015) have made an algorithm (the maintenance conflict avoidance 
algorithm) that adjusts the timetable to maintenance works. Allowing the algorithm to make 
small modifications to the routing and the timetable improves robustness. 
 

2.2.3 Stochastic Models of Railway Maintenance Requirements 
Consilvio et al. (2016) proposed a more general model, which includes stochastic elements 
into scheduling problems. This is very relevant to maintenance operations because the 
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amount of preventive maintenance and the probability of corrective maintenance are 
dependent on failures, which are stochastic in nature. 
 
Quiroga and Schnieder (2010) provide a heuristic to optimize the tamping schedule of high-
speed lines. The underlying model assumes the used quantification of track condition is a 
stochastic variable that is normally distributed. The maximum amount of track possession is 
taken as a boundary condition. The heuristic is very fast, which makes it ideal for comparing 
different scenarios. 
 
In 2011, the same authors published a paper on making a Monte Carlo model on 
longitudinal levelling of the ballast bed. Historical data is used to estimate distributions and 
the accompanying parameters. These are then used to optimize the tamping schedule. 
 
Zhang et al. (2012) have developed a maintenance optimization algorithm in the context of 
condition-based maintenance. The deterioration processes are considered, as are safety, 
maintenance cost and travel cost of the maintenance crews. 
 
A model for optimizing the number of inspections versus the number of failures of a single 
component subject to a non-homogenous Poisson process is formulated by Zhao et al. 
(2007). 
 

2.2.4 Stochastic Models of Processes in Other Applications 
Reliability engineering is applied in many industries, and several handbooks are available, 
e.g. Birolini (2007). It details many aspects of modeling and improving reliability of physical 
systems. 
 
Goei and Meisel (2013) have published on a scheduling problem for electricity network 
maintenance. Many parallels can be drawn between electricity network maintenance and 
railway maintenance. For example, edges in the network (power lines or track sections) 
have to be taken out of service before maintenance can be performed. Hence, techniques 
developed in this field of operations research can be applied to railway maintenance 
planning. 
 
Vromans (2005) has made an overview of the state-of-the-art of railway timetabling, as well 
as a model that incorporates stochastic elements. It can be used for creating and evaluating 
resilient timetables. According to the author, a unique feature is that it takes delay 
propagation into account. Without naming it as such, it is a form of Monte Carlo simulation. 
 

2.2.5 Reliability and Survival Models 
There has been a lot of research into modelling failure and reliability. 
 
An overview of techniques concerning the modeling of failure rates is found in Finkelstein 
(2008). Of particular interest is the description of different classes of lifetime distributions. 
The most common is the exponential distribution. However, such models assume that 
failure rates are constant over time and therefore not suitable for optimizing maintenance. 
A more useful, but still common and simple model is the Weibull distribution. It allows for a 
change in failure rate over time. A somewhat more advanced model is the Gompertz-
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Makeham distribution. A characteristic and possibly desirable property of this distribution is 
that the failure rate increases exponentially over time. In practice, the reliability of parts can 
drop off quickly after a threshold has been exceeded. 
 
Xie and Lai (1996) have used the Weibull distribution to propose the additive Weibull 
distribution. One Weibull distribution can either model the wear in (phase in which failure is 
mainly due to manufacturing, handling or installation errors) or wear out (phase in which 
failure is mainly due to aging, use and maintenance errors) of a part. A failure rate for a case 
where both are present is possible by simply adding up the two. The model has four 
parameters that enable fitting to data. This technique could possibly be applied to other 
distributions as well. 

 
2.2.6 Railway Infrastructure Maintenance 
Maintaining railway infrastructure can be decomposed into several different tasks. Esveld 
(2001) gives an overview of usual maintenance operations, a quick overview of key 
components is found in Amtrak (n.d.). The most important objects that need to be 
maintained and their respective maintenance operations are: 

• The catenary system (only on electrified lines) 
o Replacing the contact wire. As the carbon strips of trains pass along the 

contact wire, the wire, which is either made out of pure copper or a copper 
alloy. Specialized trucks with working platforms on the roof are used to 
provide access for the maintenance crew. New contact wire arrives on a coil 
and is installed. 

• The signaling and train protection system 
o Very strict safety measures are in place regarding the signaling and train 

protection system. 

• The rail 
o Rail grinding restores the original profile of the rail head. This is important, 

because the wheel-rail interface can deteriorate substantially if the contact 
patch deforms due to rail wear. This can impact vehicle running 
characteristics and the rate of wear of the wheels. 

o As rail grinding removes away a layer of the rail head, the rail head shrinks. 
After some time, grinding is no longer possible, and the rail needs to be 
replaced completely. Another reason for rail replacement can be the 
formation of cracks in the rail. 

• The sleepers 
o Occasionally sleepers (or ties in American English) have to be replaced 

because of deterioration. Sleepers can be made out of either wood or 
concrete, with the latter material being the most common one in current 
installations. It requires less maintenance. 

• The ballast bed 
o The ballast may become less supportive of the track. Tamping is supposed to 

solidify the ballast bed again. If there is not enough ballast available in the 
bed. After tamping, reprofiling the ballast is necessary. Advanced tamping 
machines can do all these actions in one run. Therefore, it can be regarded as 
one maintenance operation. 
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o Another measure that can be taken in addition to tamping operations is 
stone blowing. It fills the spaces that emerge when ballast assumes the shape 
of the sleepers. 

o The ballast will over time get contaminated with dirt. This reduces the 
stability. A solution to this is ballast cleaning. 

o As with rail grinding, ballast maintenance can only be done a limited number 
of times. At a certain point, the ballast bed will have to be replaced 
completely. 

• The switches 
o The moving parts of the switch need to be lubricated occasionally. 

 
What is lacking in the current scientific literature is an approach that builds on the 
knowledge on the physical characteristics of railway systems by integrating it into a 
quantitative optimization. Such an approach would fill a void that exists between the fields 
of optimization and railway engineering.  
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3 Definitions, Assumptions and Model 
3.1 Introduction 
Several steps are required to get to a well-supported optimization model. First, some 
definitions and assumptions need to be laid out. This is the foundation for all further 
modelling. Next, two statistical models that describe the failure characteristics of railway 
components are presented. These are then incorporated into a linear optimization model 
which is able to produce an optimal maintenance schedule. 
 

3.2 Definitions and Assumptions 
Railway maintenance can be characterized as either preventive maintenance or corrective 
maintenance. The two are interrelated, because effective preventive maintenance reduces 
the need for corrective maintenance. Both maintenance types will be included in this 
research, although corrective maintenance is not modelled.  
 
Preventive maintenance is intended to keep the asset operational. It is planned in advance, 
and ideally in such a way that normal operations are not affected. The degree to which it 
can be planned in advance varies. Preferably, it is performed at fixed intervals, but if 
deterioration of the component is faster than expected, it may have to planned on short 
notice. 
 
The state of the component is only dependent on the time since last maintenance. Other 
factors that may influence the failure probability are not considered. After each 
maintenance operation, the component functions as if it were new. 
 
A type of maintenance is only performed to an element once within one time period. In 
practice, there are no components that require multiple maintenance operations per week. 
Therefore, the time step is a week. This means that specific operational details, such as 
resource assignment and order of maintenance operations, are left out. The model does not 
have the accuracy needed to incorporate it. As such, the consequences of possessions with 
individual train services are not relevant. 
 
Corrective maintenance is either a repair of a part that is already broken, or maintenance 
that has to be performed urgently because the probability of breaking before the next 
scheduled repair is too high. If a component is broken or exceeds a safety limit that 
prohibits operations, the asset cannot be used until corrective maintenance is performed, 
and it is considered to have failed. Even though technically it may still function, the asset is 
no longer available for use and the cost of repair is incurred. Ideally, corrective maintenance 
is not needed, but in practice it is not economically efficient to attempt to prevent all 
failures.  
 
Repairs are considered to be minimal, as defined in Finkelstein (2008). The component that 
undergoes repair is in the exact state it was in before the failure occurred. This means the 
failure behavior does not change as a consequence of repairs, and that maintenance 
schedule does not have to be adapted. In fact, modelling of specific failure occurrences is 
not needed at all. 
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An element either functions or fails. There is no state of limited functionality. One instance 
where limited functionality would be possible in practice is a switch that is locked in a 
certain position. Trains can still run over the switch, but in one direction only. However, 
repair is still necessary. 
 
The costs for a possession are dependent on the moment of possession. This is done 
through using different costs for possessions depending on the week. Furthermore, 
possessions may have different sets of components and time lengths. This may be 
introduced by including multiple possessions within one week. 
 
Different individual components that have the same set of characteristics are aggregated 
into one category. It is not useful to model these separately, as the resulting schedule 
applicable to the components should be the same. 
 
A maintenance interval is the time between two maintenance operations. The expected 
number of failures in an interval is a function of only the length of the interval. 
 

3.3 Modeling Failure Distributions and Rates 
3.3.1 The Additive Weibull Distribution 
Failures occur randomly over time. When modeling the maintenance requirements 
associated with a single part of the railway system, one needs to know what the failure 
probabilities of this part are. The failure rate is a metric that is often used in reliability 
engineering. A definition can be found in (Verma et al., 2010, pp. 31-34). It represents the 
number of failures that can be expected within one unit of time if the failure rate is 
constant; a failure rate of three per year implies that on average three failures occur each 
year. Even if the failure rate is not constant, the expected number of failures over time can 
be calculated. Using this variable has one very convenient property: its integral is the 
cumulative hazard function (Rodriguez, n.d.). The cumulative hazard curve can be 
interpreted as the expected number of failures between 0 and 𝑡. If the cost of an 
occurrence of failure and the probability of failure are both known, the expected cost of 
failure can be calculated by multiplying the two: 
 

𝐶𝑜𝐹 × Λ(𝑡) 
(3.1) 

 
with: 
𝐶𝑜𝐹: 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒  
𝑡: 𝑡𝑖𝑚𝑒  
Λ(𝑡): 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 ℎ𝑎𝑧𝑎𝑟𝑑 𝑎𝑡 𝑡  
 
This means that, although the process of failure is stochastic by nature, it is not necessary to 
apply stochastic programming to obtain the cost of failure as a function of time. 
 
Failure in railway components, or indeed many physical structures, is driven by two factors: 
Break in (also called infant mortality) and wear out (Xie and Lai, 1995). These occur in 
consecutive phases, usually with a stable phase in between. Therefore, the failure 
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probability over time exhibits a certain behavior, that can be described as following a 
bathtub curve. Research into this (very specific) field has also been done by Chen et al. 
(2011) and Wang et al. (2002). 
 
For the purposes of optimization, a hazard function that approximates a bathtub curve, that 
is at the same time easily differentiable, is desired. Based on Xie and Lai, the additive 
Weibull model is used: 

𝜆(𝑡) = 𝑎𝑏(𝑎𝑡)𝑏−1 + 𝑐𝑑(𝑐𝑡)𝑑−1 
(3.2) 

 
with: 
𝜆(𝑡): ℎ𝑎𝑧𝑎𝑟𝑑 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑡  
𝑎: 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑏𝑟𝑒𝑎𝑘 𝑖𝑛  
𝑏: 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑏𝑟𝑒𝑎𝑘 𝑖𝑛  
𝑐: 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑤𝑒𝑎𝑟 𝑜𝑢𝑡  
𝑑: 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑤𝑒𝑎𝑟 𝑜𝑢𝑡  
 
Which can be rewritten into: 
 

𝜆(𝑡) = 𝑎𝑏𝑏𝑡𝑏−1 + 𝑐𝑑𝑑𝑡𝑑−1 
(3.3) 

 

As 𝑎𝑏 and 𝑐𝑑 are constant with respect to 𝑡, these can also be expressed in a single 
parameter 𝑎 and 𝑐. This simplifies calculations, at the expense of the scale parameters (𝑎 
and 𝑐) being less intuitive in use. A constant is introduced to allow for adjustment to the 
absolute level. The following hazard rate follows: 
 

𝜆(𝑡) = 𝑎𝑏𝑡𝑏−1 + 𝑐𝑑𝑡𝑑−1 + 𝑓 
(3.4) 

 
with: 
𝑓: 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  

𝑎 {
< 0, 𝑖𝑓 𝑏 < 0
> 0, 𝑖𝑓 𝑏 > 0

  

𝑏 < 1  
𝑐 > 0  
𝑑 > 2  
 
If the parameters 𝑎 = −1 , 𝑏 = −2, 𝑐 = 1 , 𝑑 = 3 are chosen, the curve of the hazard rate 
over time is visible in figure 2. 
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Figure 2, Example of the additive Weibull failure rate 

On the vertical axis is the failure rate, on the horizontal axis the time.  
 
The first term represents the break in phase, while the second one models the wear out. By 
adapting the five parameters, the model can be made to fit the behavior of the component. 
The constants will have to be estimated from observed data. The objective here is to 
minimize the sum of squared differences between predicted and observed values. Note that 
in cases where there is no break in period, the first function may simply be left out. 
 
If the estimated value of f results in a minimum lower than zero, the model will predict parts 
“unbreaking”. When applying real data to estimate the parameters, this may pose a risk. It is 
of course unrealistic and should be prevented by guaranteeing that the failure rate is 
nonnegative for all positive values. The time at which the failure rate is minimal can be 
obtained as follows: 
 

𝑑𝜆(𝑡𝑚𝑖𝑛)

𝑑𝑡
= 0 

(3.5) 
 

Taking the derivative of (3.4) yields: 
 

𝑎𝑏(𝑏 − 1)𝑡𝑚𝑖𝑛
𝑏−2 + 𝑐𝑑(𝑑 − 1)𝑡𝑚𝑖𝑛

𝑑−2 = 0 
(3.6) 

 
Which can be rewritten into: 
 

𝑡𝑚𝑖𝑛 = (−
𝑐𝑑(𝑑 − 1)

𝑎𝑏(𝑏 − 1)
)

1
𝑏−𝑑

 

(3.7) 
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with: 
𝑡𝑚𝑖𝑛: 𝑡 𝑎𝑡 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒  
 
The minimum value of the hazard rate should be at least zero. It is however possible for the 
estimated failure rate to drop below zero in case parameter 𝑓 is chosen incorrectly. The 
following inequality has to hold: 
 

𝜆(𝑡𝑚𝑖𝑛) ≥ 0 
(3.8) 

 
Inserting 𝑡𝑚𝑖𝑛 from (3.7) into (3.4) gives: 
 

𝑎𝑏 ((−
𝑐𝑑(𝑑 − 1)

𝑎𝑏(𝑏 − 1)
)

1
𝑏−𝑑

)

𝑏−1

+ 𝑐𝑑 ((−
𝑐𝑑(𝑑 − 1)

𝑎𝑏(𝑏 − 1)
)

1
𝑏−𝑑

)

𝑑−1

+ 𝑓 ≥ 0 

(3.9) 
 

Which can be rewritten into the (3.10). 
 

𝑎𝑏 (−
𝑐𝑑(𝑑 − 1)

𝑎𝑏(𝑏 − 1)
)

𝑏−1
𝑏−𝑑

+ 𝑐𝑑 (−
𝑐𝑑(𝑑 − 1)

𝑎𝑏(𝑏 − 1)
)

𝑑−1
𝑏−𝑑

+ 𝑓 ≥ 0 

(3.10) 
Bringing everything that is not f to the other side yields (3.11). 
 

𝑓 ≥ −𝑎𝑏 (−
𝑐𝑑(𝑑 − 1)

𝑎𝑏(𝑏 − 1)
)

𝑏−1
𝑏−𝑑

− 𝑐𝑑 (−
𝑐𝑑(𝑑 − 1)

𝑎𝑏(𝑏 − 1)
)

𝑑−1
𝑏−𝑑

 

(3.11) 
 

Using the hazard function, the cumulative hazard rate as in (.1) may be determined. Its 
definition is the integral of (7.4) over 0 to 𝑡. The integral for the additive Weibull distribution 
models is in (3.12). 
 

Λ(𝑡) = ∫ 𝜆(𝑡)𝑑𝑡
𝑡

0

= 𝑎𝑡𝑏 + 𝑐𝑡𝑑 + 𝑓𝑡 

(3.12) 
 

If one is interested in minimizing the number of failures over a set time horizon, the average 
number of failures per unit of time as a function of the maintenance interval is of interest. 
Depending on the distribution, the formula for the average failure rate over time is 
described in (3.13). 
 

𝐴𝐹𝑅(𝑡) =
Λ(𝑡)

𝑡
=

𝑎𝑡𝑏 + 𝑐𝑡𝑑 + 𝑓𝑡

𝑡
= 𝑎𝑡𝑏−1 + 𝑐𝑡𝑑−1 + 𝑓 

(3.13) 
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with: 
𝐴𝐹𝑅(𝑡): 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒 𝑎𝑡 𝑡  
 
The optimal maintenance strategy from a reliability point of view would be one that 
minimizes the average number of failures. This can be found analytically by minimizing 
(3.13). Its first derivative is: 
 

𝑑𝐴𝐹𝑅(𝑡)

𝑑𝑡
= 𝑎(𝑏 − 1)𝑡𝑏−2 + 𝑐(𝑑 − 1)𝑡𝑑−2 

(3.14) 
 

The maintenance interval that leads to the lowest average failure rate can then be found by 
equating (3.14) to zero and rewriting. For the additive Weibull distribution, it results in: 
 

𝑎(𝑏 − 1)𝑡𝑏−2 + 𝑐(𝑑 − 1)𝑡𝑑−2 = 0 
(3.15) 

 
Extracting 𝑡 gives (3.16). 

𝑡 = (−
𝑐(𝑑 − 1)

𝑎(𝑏 − 1)
)

𝑑−𝑏

 

(3.16) 
 

However, this does not take the direct cost of maintenance into account. To determine the 
average total cost of a maintenance strategy, it should. The total cost over one maintenance 
period including both cost of maintenance and cost of failure is a function of the cost of 
failure, the expected number of failures (3.12) and the cost of maintenance: 
 

𝑇𝐶(𝑡) = 𝐶𝑜𝐹 × Λ(𝑡) + 𝐶𝑜𝑀 = 𝐶𝑜𝐹 × (𝑎𝑡𝑏 + 𝑐𝑡𝑑 + 𝑓𝑡) + 𝐶𝑜𝑀 
(3.17) 

 
with: 
𝑇𝐶(𝑡): 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑎 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡  
𝐶𝑜𝐹: 𝑇ℎ𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡  
𝐶𝑜𝑀: 𝑇ℎ𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑜𝑛𝑐𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡  
 
The total cost rate is (3.17) over time. It represents the average cost per unit of time of a 
maintenance interval, as opposed to the marginal cost or the total cost (3.17). This is 
relevant, because an expensive maintenance interval may be efficient if the cost is spread 
over a sufficient amount of time. It is defined as: 

𝑇𝐶𝑅(𝑡) = 𝐶𝑜𝐹 × AFR(𝑡) +
𝐶𝑜𝑀

𝑡
= 𝐶𝑜𝐹 × (𝑎𝑡𝑏−1 + 𝑐𝑡𝑑−1 + 𝑓) +

𝐶𝑜𝑀

𝑡
 

(3.18) 
 

𝑇𝐶𝑅(𝑡): 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑎 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡  
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The economically optimal maintenance interval assuming fixed maintenance intervals is 
found at the minimum of the total cost rate: 

𝑑𝑇𝐶𝑅(𝑡)

𝑑𝑡
= 0 

(3.19) 
Which can be rewritten using (3.18). 

𝐶𝑜𝐹 ×
𝑑𝐴𝐹𝑅(𝑡)

𝑑𝑡
−

𝐶𝑜𝑀

𝑡2
= 0 

(3.20) 
 
After inserting (3.14), (3.21) is obtained 

𝐶𝑜𝐹 × (𝑎(𝑏 − 1)𝑡𝑜𝑝𝑡
𝑏−2 + 𝑐(𝑑 − 1)𝑡𝑜𝑝𝑡

𝑑−2) −
𝐶𝑜𝑀

𝑡𝑜𝑝𝑡
2 = 0 

(3.21) 
 

with: 
𝑡𝑜𝑝𝑡: 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  

 

3.3.2 The Additive Gompertz-Makeham Distribution 
In the previous subsection, a model for determining the cost resulting from a maintenance 
strategy is presented that is based on a Weibull distribution. However, any distribution can 
be used, as long as a failure rate is defined, and that failure rate has an elementary integral. 
Another distribution that satisfies these criteria is the Gompertz-Makeham distribution 
(Finkelstein, 2008). Similar to the previous deterioration model, calculations can be made 
and the failure rate can be expressed in a function of 𝑡. This subsection serves the same 
purpose as the previous. In order to keep the subsections independently legible, most of 
this section's content are the same as the previous one's. The letters used for the 
parameters are the same, and have a similar meaning. 
 

𝜆(𝑡) = 𝑎𝑏𝑒𝑏𝑡 + 𝑐𝑑𝑒𝑑𝑡 + 𝑓 
(3.22) 

 
with: 
𝑎: 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑏𝑟𝑒𝑎𝑘 𝑖𝑛  
𝑏: 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑏𝑟𝑒𝑎𝑘 𝑖𝑛  
𝑐: 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑤𝑒𝑎𝑟 𝑜𝑢𝑡  
𝑑: 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑤𝑒𝑎𝑟 𝑜𝑢𝑡  
𝑓: 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  
𝑎, 𝑏 < 0  
𝑐, 𝑑 > 0  
 
Using the parameters 𝑎 = −1, 𝑏 = −1, 𝑐 = 0.0001, 𝑑 = 1, the failure rate looks is graphed 
in figure 3. 
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Figure 3, Example Additive Gompertz-Makeham failure rate 

On the vertical axis is the failure rate, on the horizontal axis the time.  
 
The first term represents the break in phase, while the second one models the wear out. By 
adapting the five parameters, the model can be made to fit the behavior of the component. 
The constants will have to be estimated from observed data. The objective here is to 
minimize the sum of squared differences between predicted and observed values. Note that 
in cases where there is no break in period, the first function may simply be left out. 
 
If the estimated value of f results in a minimum lower than zero, the model will predict parts 
“unbreaking”. When applying real data to estimate the parameters, this may pose a risk. It is 
of course unrealistic and should be prevented by guaranteeing that the failure rate is 
nonnegative for all positive values. The time at which the failure rate is minimal can be 
obtained as follows: 
 

𝑑𝜆(𝑡𝑚𝑖𝑛)

𝑑𝑡
= 0 

(3.23) 
 

Taking the derivative of (3.23) yields: 
 

𝑎𝑏2𝑒𝑏𝑡𝑚𝑖𝑛 + 𝑐𝑑2𝑒𝑑𝑡𝑚𝑖𝑛 = 0 
(3.24) 

 
Which can be rewritten into (3.25). 

 

𝑡𝑚𝑖𝑛 =
ln (−

𝑐𝑑2

𝑎𝑏2)

𝑏 − 𝑑
 

(3.25) 
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with: 
𝑡𝑚𝑖𝑛: 𝑡 𝑎𝑡 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒  
 
The minimum value of the hazard rate should be at least zero. It is however possible for the 
estimated failure rate to drop below zero in case parameter 𝑓 is chosen incorrectly. The 
following inequality has to hold: 

𝜆(𝑡𝑚𝑖𝑛) ≥ 0 
(3.26) 

Inserting 𝑡𝑚𝑖𝑛 from (3.25) into (3.22) gives: 
 

𝑎𝑏𝑒𝑏
ln(−

𝑐𝑑2

𝑎𝑏2)

𝑏−𝑑 + 𝑐𝑑𝑒𝑑
ln(−

𝑐𝑑2

𝑎𝑏2)

𝑏−𝑑 + 𝑓 ≥ 0 
(3.27) 

Which can be rewritten into (3.28): 
 

𝑎𝑏 (−
𝑐𝑑2

𝑎𝑏2
)

𝑏
𝑏−𝑑

+ 𝑐𝑑 (−
𝑐𝑑2

𝑎𝑏2
)

𝑑
𝑏−𝑑

+ 𝑓 ≥ 0 

(3.28) 
Bringing everything that is not f to the other side yields (3.29). 
 

𝑓 ≥ −𝑎 (−
𝑐𝑑2

𝑎𝑏2
)

𝑏
𝑏−𝑑

− 𝑐 (−
𝑐𝑑2

𝑎𝑏2
)

𝑑
𝑏−𝑑

 

(3.29) 
 

Using the hazard function, the cumulative hazard rate may be determined. Its definition is 
the integral of (3.22) over 0 to 𝑡. 
 

Λ(𝑡) = ∫ 𝜆(𝑡)𝑑𝑡
𝑡

0

= (𝑎𝑒𝑏𝑡 + 𝑐𝑒𝑑𝑡 + 𝑓𝑡 + 𝐶) − (𝑎𝑒𝑏×0 + 𝑐𝑒𝑑×0 + 𝑓 × 0 + 𝐶)

= 𝑎𝑒𝑏𝑡 + 𝑐𝑒𝑑𝑡 + 𝑓𝑡 − 𝑎 − 𝑐 
(3.30) 

 
Note that the constant component (𝑓𝑡) is identical between the two models. If one is 
interested in minimizing the number of failures over a set time horizon, the average number 
of failures per unit of time as a function of the maintenance interval is of interest. The 
formula for the average failure rate over time is described in (3.31): 
 

𝐴𝐹𝑅(𝑡) =
Λ(𝑡)

𝑡
=

𝑎𝑒𝑏𝑡

𝑡
+

𝑐𝑒𝑑𝑡

𝑡
+ 𝑓 −

𝑎

𝑡
−

𝑐

𝑡
 

(3.31) 
 

with: 
𝐴𝐹𝑅(𝑡): 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒 𝑎𝑡 𝑡  
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The optimal maintenance strategy from a reliability point of view would be one that 
minimizes the average number of failures. This can be found analytically by minimizing 
(3.31). Its first derivative is: 
 

𝑑𝐴𝐹𝑅

𝑑𝑡
=

𝑎𝑏𝑒𝑏𝑡

𝑡
−

𝑎𝑒𝑏𝑡

𝑡2
+

𝑐𝑑𝑒𝑑𝑡

𝑡
−

𝑐𝑒𝑑𝑡

𝑡2
+

𝑎

𝑡2
+

𝑐

𝑡2
 

(3.32) 
 

The maintenance interval that leads to the lowest average failure rate can then be found by 
equating (3.32) to zero and rewriting. For the additive Gompertz-Makeham distribution, it 
results in (3.33). 
 

𝑎𝑏𝑒𝑏𝑡

𝑡
−

𝑎𝑒𝑏𝑡

𝑡2
+

𝑐𝑑𝑒𝑑𝑡

𝑡
−

𝑐𝑒𝑑𝑡

𝑡2
+

𝑎

𝑡2
+

𝑐

𝑡2
= 0 

(3.33) 
 

This equation can be simplified into (3.34). The solution has to be computed numerically. 
 

𝑎𝑏𝑡𝑒𝑏𝑡 − 𝑎𝑒𝑏𝑡 + 𝑐𝑑𝑡𝑒𝑑𝑡 − 𝑐𝑒𝑑𝑡 + 𝑎 + 𝑐 = 0 
(3.34) 

 
However, this does not take the direct cost of maintenance into account. To determine the 
average total cost of a maintenance strategy, it should. The total cost over one maintenance 
period including both cost of maintenance and cost of failure is a function of the cost of 
failure, the expected number of failures (3.30) and the cost of maintenance: 
 

𝑇𝐶(𝑡) = 𝐶𝑜𝐹 × Λ(𝑡) + 𝐶𝑜𝑀 = 𝐶𝑜𝐹 × (𝑎𝑒𝑏𝑡 + 𝑐𝑒𝑑𝑡 + 𝑓𝑡 − 𝑎 − 𝑐) + 𝐶𝑜𝑀 
(3.35) 

 
with: 
𝑇𝐶(𝑡): 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑎 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡  
𝐶𝑜𝐹: 𝑇ℎ𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡  
𝐶𝑜𝑀: 𝑇ℎ𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑜𝑛𝑐𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡  
 
The total cost rate is (3.35) over time. It represents the average cost per unit of time of a 
maintenance interval, as opposed to the marginal cost or the total cost (3.35). This is 
relevant, because an expensive maintenance interval may be efficient if the cost is spread 
over a sufficient amount of time. It is defined as: 
 

𝑇𝐶𝑅(𝑡) =
𝑇𝐶

𝑡
= 𝐶𝑜𝐹 × AFR +

𝐶𝑜𝑀

𝑡
= 𝐶𝑜𝐹 × (

𝑎𝑒𝑏𝑡

𝑡
+

𝑐𝑒𝑑𝑡

𝑡
+ 𝑓 −

𝑎

𝑡
−

𝑐

𝑡
) +

𝐶𝑜𝑀

𝑡
 

(3.36) 
 

with: 
𝑇𝐶𝑅(𝑡): 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑎 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡  
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The economically optimal maintenance interval assuming fixed maintenance intervals is 
found at the minimum of the total cost rate: 

𝑑𝑇𝐶𝑅(𝑡)

𝑑𝑡
= 0 

(3.37) 
 

Which can be rewritten using (3.36) 

𝐶𝑜𝐹 ×
𝑑𝐴𝐹𝑅(𝑡)

𝑑𝑡
−

𝐶𝑜𝑀

𝑡2
= 0 

(3.38) 
 

After inserting (3.32), (3.39) is obtained 
 

𝐶𝑜𝐹 × (
𝑎𝑏𝑒𝑏𝑡

𝑡
−

𝑎𝑒𝑏𝑡

𝑡2
+

𝑐𝑑𝑒𝑑𝑡

𝑡
−

𝑐𝑒𝑑𝑡

𝑡2
+

𝑎

𝑡2
+

𝑐

𝑡2
) −

𝐶𝑜𝑀

𝑡𝑜𝑝𝑡
2 = 0 

(3.39) 
 

with: 
𝑡𝑜𝑝𝑡: 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  

 

3.4 Examples of Each Distribution 
The model for the Weibull model as discussed above is applied to a small fictitious case. The 
parameters are: 
a = [0.2 0.3 0.4]; 
b = [0.2 0.3 0.4]; 
c = [0.002 0.005 0.0035]; 
d = [2.8 2.2 2.5]; 
f = [0 0 0]; 

 
This case consists of three components. Each component has one value within each vector. 
The first parameter in each vector refers to the first component, et cetera. 
 
The failure rates for this case are presented in figure 4. 
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Figure 4, failure rates of the Weibull example 

The optimal maintenance intervals (t axis) for these functions are 17.1, 16.8 and 13.0 for the 
blue, orange and yellow lines respectively. This is caused by the higher CoF of the last 
component. 
 
An example of the Gompertz-Makeham specification can also be presented in a graph. The 
following parameter set was used: 
 
a = [-2 -3 -4]; 
b = [-0.2 -0.3 -0.4]; 
c = [2 5 8]; 
d = [0.016 0.016 0.02]; 
f = [0 0 0 0 0]; 

 
This is one of the parameter sets that is used to test the performance of the optimization 
model. The failure rates of these components are shown in figure 5. 
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Figure 5, failure rates of three components 

The three components have slightly different characteristics, with the first instance of each 
parameter being related to the blue line, the second one to the red line and finally the third 
instance to the yellow line. 
 
Which of these distributions is the most suited and what the corresponding parameters are, 
should be determined using observed data for each case individually. Generally, the model 
that produces the smallest sum-of-squares of the error is most suitable. This also means 
that the predictive and prescriptive qualities of the model are possibly highly dependent on 
the quality of the data. A post-hoc sensitivity analysis can confirm the model’s robustness. 
An example of such a process is in section 4.2. 
 

3.5 Optimization Models 
Using the calculations for the individual components, a model is set up to achieve an 
optimal maintenance strategy as a function of maintenance intervals. The objective of this 
model is to minimize the cost of the maintenance strategy by adjusting the schedule. This 
can be done by binary programming. 
 

3.5.1 Linear Programming and Optimizing Maintenance 
Arguably the most common tool in operations research is linear programming (LP). It allows 
for solving a large variety of optimization problems. Linear programming uses decision 
variables that represent the decisions that are made in operating a system, an objective 
function that is used to determine the cost or benefit of a certain solution, and constraints 
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that limit the decision variables to feasible values. A graphical representation of linear 
constraints in two dimensions with three constraints can be seen in figure 6. The colored 
areas are infeasible, so the solution has to be found within the white triangle that is not cut 
off by the constraints. Cases where (some of) the decision variables are integers are called 
mixed integer linear programming (MILP). The solution space is not a continuum, and 
instead consists of discrete points. Binary programming is a specific form of mixed integer 
programming, where each decision variable can only be zero or one. 
 

 
Figure 6, linear constraints 

3.5.2 Objective Function and Decision Variables 
The core of the linear optimization model is the objective function. It is used to calculate the 
cost of an alternative. It has to be a linear function of the decision variables. The decision 
variables of the model are the maintenance intervals for the different components and the 
necessity of possessions. As the maintenance interval cannot be specified more accurately 
than with a precision of one week, it is appropriate to use integer decision with a step of 
one week. The decision variable 𝑥𝑖  represents the fixed interval for each component 𝑖 while 
𝑦𝑗 represents a possession at 𝑗. If maintenance is performed and a possession is needed at 

time 𝑗, 𝑦𝑗 = 1, if not then 𝑦𝑗 = 0. Depending on the statistical model that is assumed (see 

section 3.3), an objective function is specified. 
 
An underlying assumption of linear programming is that the objective value changes linearly 
with each decision variable. However, the problem at hand has different characteristics. 
First, the expected cost of failure is not linear. Second, there have to be constraints on the 
decision variables for the possessions to be taken up that are not linearly related to the 
decision variables for the maintenance intervals. For example, a decision variable z for a 
maintenance operation and for y3 for a possession may have a relationship as shown in 
figure 7. Only the situation where there is maintenance (z=3), but no possession (y3=0) 
needs to be eliminated. With an ordinary implementation of a maintenance interval as a 
decision variable, the constraint cannot be expressed in linear programming. The red lines 
represent the possible constraints. Every constraint would also cut off feasible solutions, in 
which case an optimal solution can no longer be guaranteed. A solution is needed that 
makes it possible to solve this problem. 
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Figure 7, impossible constraint in integer linear programming 

 

3.5.3 Unary Encoding of Decision Variables 
A solution is provided by unary encoding (Refalo, 2000, Belov et al., 2016). Integrity enables 
a different way of specifying the decision variables: instead of using one integer decision 
variable, one binary variable for each possible value of the integer decision variable can be 
used. Conventionally, a single variable 𝑥 with the following properties would be used: 
 

𝑥 ≤ 𝑢, 
𝑥, 𝑢 ∈ ℕ 

(3.40) 
 

In other words, a nonnegative integer with upper bound 𝑢. For example, consider a decision 
variable with an upper bound of 5. By applying unary encoding, it is replaced by a set of 
binary variables 𝑥0 to 𝑥5, where each one represents a value of the single variable 𝑥. The 
following constraints apply: 
 
Every 𝑥𝑖  is binary for all values of 𝑖. 
 

𝑥𝑖 ∈ {0,1} ∀ 𝑖 ∈ {0 … 𝑢} 
(3.41) 

 
Exactly one of the decision variables 𝑥𝑖  is one. 
 

∑ 𝑥𝑖

𝑖∈{0…𝑢}

= 1  

(3.42) 
 

In all equations, 𝑥 can be replaced by the expression in (3.43) 
 

∑ 𝑖𝑥𝑖

𝑖∈{0…𝑢}

= 𝑥 

(3.43) 
 

The conventional term in the objective function would be: 
 

𝑐𝑥 
(3.44) 

This is now replaced by: 
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∑ 𝑐𝑖𝑥𝑖

𝑖

 

(3.45) 
 

It is important to note that 𝑐𝑖 can take any real value. The effect, of the maintenance 
interval on the objective function no longer has to be linear. 
 
The same problem as in figure 7 is expressed in figure 8. However, the decision variable z is 
now programmed using unary encoding. Because there is now a corner of the solution space 
that needs to be cut off, the problem is able to be solved by linear programming. 

 

 
Figure 8, constraint with unary encoding 

Possible negative effects include a large increase in the number of decision variables and 
being less efficient due to the inability for the optimization solver to take advantage of a 
continuous slope of the objective function. 
 

3.6 Fixed Interval Railway Maintenance Optimization Model 
3.6.1 Objective Function 
This model describes a situation in which the maintenance interval to each component is 
fixed, that is, the time between each different maintenance operations is always the same. 
This means it is not necessary to determine each interval length individually. 
 
Minimizing the total cost of the interval would simply result in using the shortest possible 
interval. Hence, the appropriate objective is to minimize the average cost over time. the 
sum of the Total Cost Rate over the planning horizon and the cost of possessions will be 
minimized. The formula (3.18) has to be adapted into a linear form through unary encoding. 
Note that the decision variables 𝑥𝑖𝑘 have two indices; 𝑖 and 𝑘. Index 𝑖 represents the 
component, while 𝑘 is an index that is added to allow for unary encoding. 
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min ∑ ∑ (𝐶𝑜𝐹𝑖 × (𝑎𝑖𝑘
(𝑏𝑖−1) + 𝑐𝑖𝑘

(𝑑𝑖−1) + 𝑓𝑖) +
𝐶𝑜𝑀𝑖

𝑘
) × 𝑊 × 𝑥𝑖𝑘

𝑉𝑖

𝑘=1

𝐶

𝑖=1

+ ∑ 𝐶𝑜𝑃𝑖𝑦𝑖

𝑊

𝑖

 

(3.35) 
 

where: 
𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖, 𝑓𝑖: The parameters of the failure distribution as described in section 3.3. 
𝐶: 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛  
𝑉𝑖: 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ  
𝐶𝑜𝐹𝑖: 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖  
𝑥𝑖𝑘: 𝑇ℎ𝑒 𝑏𝑖𝑛𝑎𝑟𝑦 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 ℎ𝑎𝑣𝑖𝑛𝑔 𝑎 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑓 𝑘  
𝐶𝑜𝑀𝑖: 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖  
𝑊: 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑒𝑘𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛  
𝐶𝑜𝑃𝑖: 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖  
𝑦𝑖: 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖  
 
If the objective function is based on the additive Gompertz-Makeham distribution (3.36), it 
becomes: 
 

min ∑ ∑ (𝐶𝑜𝐹𝑖 (
𝑎𝑖𝑒

𝑏𝑖𝑘

𝑏𝑖𝑘
+

𝑐𝑖𝑒
𝑑𝑖𝑘

𝑑𝑖𝑘
+ 𝑓𝑖 −

𝑎𝑖

𝑏𝑖𝑘
−

𝑐𝑖

𝑑𝑖𝑘
) +

𝐶𝑜𝑀𝑖

𝑘
) × 𝑊 × 𝑥𝑖𝑘

𝑉𝑖

𝑘=1

𝐶

𝑖=1

+ ∑ 𝐶𝑜𝑃𝑖𝑦𝑖

𝑊

𝑖=1

 

(3.46) 
 

As the value of 𝑓𝑖  is constant, it can be taken out of the objective function at will. The 
meaning of the variables is the same as for the other distribution. 
 

3.6.2 Constraints 
The model is subject to two constraints. Inequality (3.47) represents the requirement to 
have a possession at every multiple of the possession interval. This is used to include the 
cost of possession into the objective. It promotes a schedule in which maintenance is 
synchronized to reduce costs resulting from possessions. 
 

𝑥𝑖𝑘 − ∑
1

⌊
𝑊
𝑘

⌋
× 𝑦𝑗×𝑘

⌊
𝑊
𝑘

⌋

𝑗=1

≤ 0 ∀ 𝑖 ∈ {1. . . 𝐶}, 𝑘 ∈ {1. . . 𝑊} 

(3.47) 
 

For example, consider a planning horizon of 10 weeks and a maintenance interval of 3 
weeks for component 𝑖. The number of maintenance operations is 3. Maintenance happens 
in week 3, 6 and 9. Possession need to be assigned in these weeks. Filling in (3.47) yields: 
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𝑥𝑖𝑘 − ∑
1

⌊
𝑊
𝑘

⌋
× 𝑦𝑗×𝑘

⌊
𝑊
𝑘

⌋

𝑗=1

= 1 − ∑
1

⌊
10
3 ⌋

× 𝑦𝑗×3

⌊
10
3

⌋

𝑗=1

= 1 − (
1

⌊
10
3 ⌋

𝑦1×3 +
1

⌊
10
3 ⌋

𝑦2×3 +
1

⌊
10
3 ⌋

𝑦3×3)

= 1 − (
1

3
𝑦3 +

1

3
𝑦6 +

1

3
𝑦9) ≤ 0 ∀ 𝑖 ∈ {1. . . 𝐶}, 𝑘 ∈ {1. . . 𝑊} 

(3.48) 
 

Evidently, (3.47) is satisfied if and only if 𝑦3, 𝑦6 and 𝑦9 all have a value of one. 
 
This constraint cannot be modelled as an MILP problem without unary encoding, as the 
number of elements of the summation would depend on a decision variable. 
 
Additionaly, to ensure exactly one interval length is selected for each component, constraint 
(3.49) is added. 
 

∑ 𝑥𝑖𝑘

𝑉𝑖

𝑘=1

= 1 ∀ 𝑖 ∈ {1. . . 𝐶} 

(3.49) 
 
Appendix II contains the MATLAB code for this model. 
 

3.6.3 Properties, Possibilities and Limitations 
The fixed interval railway maintenance optimization problem is able to optimally design 
maintenance schedules, given that the maintenance intervals for each component are 
constant. This is actually fairly common in practice and allows for a relatively simple model 
formulation which in turn enables solving large problems, for example with many 
components and a long planning horizon. However, the state of maintenance at the 
beginning of the schedule is not included. in the model. Hence, a component will not be 
maintained until after one full interval has passed. Furthermore, a fixed interval may not be 
the best possible solution as the ability to make maintenance operations coincide by making 
small adjustments to the schedule is not available. 
 

3.7 Individual Interval Railway Maintenance Optimization 
Model 
The formulation for this optimization problem is an extension of the previous problem. The 
major difference is that instead of using one variable for a component, which describes its 
interval, a set of variables is used to define each individual interval. The advantage is that a 
more accurate planning can be made. For example, it may be beneficial to deviate from the 
ideal interval to have the maintenance coincide with other maintenance operations. 
 

3.7.1 Decision Variables 
The model has three sets of decision variables. First, 𝑥𝑖𝑗𝑘 defines if the 𝑗th maintenance 

interval to component 𝑖 has a value of 𝑘. The third index is needed in this model to define 
the different successive intervals between maintenance operations. Second, 𝑦𝑖 defines the 
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occurrence of a possession at time 𝑖. Finally, 𝑧𝑖𝐽𝑘 is an auxiliary variable that is needed to 

properly apply constraints to the other decision variables. It can be thought of as the point 
in time on which a maintenance operation takes place. For example, if last maintenance was 
at -5, and the first two intervals are 10 long, the first two maintenance operations are at 5 
and 15. 
 

3.7.2 Objective Function 
The objective function for the expected cost of failure that is presented here is derived from 
the additive Gompertz-Makeham lifetime distribution. The objective function becomes: 
 

min ∑ ∑ ∑(𝐶𝑜𝐹𝑖 × (𝑎𝑒𝑏𝑘 + 𝑐𝑒𝑑𝑘 + 𝑓𝑘) + 𝐶𝑜𝑀𝑖𝑗𝑘)

𝑉𝑖

𝑘=0

𝐼𝑚𝑎𝑥𝑖

𝑗=1

× 𝑥𝑖𝑗𝑘

𝐶

𝑖=1

+ ∑ 𝐶𝑜𝑃𝑖𝑦𝑖

𝑊

𝑖

 

(3.50) 
 

where: 
𝐶: the components in the system under consideration. 
𝐼𝑚𝑎𝑥𝑖: The maximum number of maintenance intervals of component 𝑖. Note that a 
maximum of n maintenance intervals implies a maximum of n-1 maintenance operations. 
This is because it is assumed that there is no maintenance at the beginning or the end of the 
contract period. 
𝑉𝑖: The possible values of the interval length for component 𝑖. 
𝐶𝑜𝐹𝑖: The cost of failure of component 𝑖. 
𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖, 𝑓𝑖: The parameters of the failure distribution as described in section 3.2. 
𝑥𝑖𝑗𝑘: The decision variable representing interval 𝑗 of component 𝑖 being 𝑘 long. 

𝐶𝑜𝑀𝑖𝑗𝑘: The cost of maintenance at interval 𝑗 to component 𝑖 for interval length 𝑘. 

𝑊: The weeks within the planning horizon. 
𝐶𝑜𝑃𝑗: The cost of possession at week 𝑗. 

𝑦𝑖: The decision variable representing a possession at time 𝑗.  
 
A difficulty is that the number of maintenance operations to each component should ideally 
not be fixed, but also optimized. This is made possible by introducing an interval of 0. For 
each interval of 0, one less maintenance operation is performed. This is a fictitious situation 
in which two maintenance situations are planned at the same time. Of course, in reality, 
maintenance would only be performed once. To account for this, there is no cost of 
maintenance in case of an interval of 0. Thus: 
 
𝐶𝑜𝑀𝑖𝑗𝑘 equals the cost of maintenance if 𝑗 > 1 and 𝑘 > 0. 

𝐶𝑜𝑀𝑖𝑗𝑘 equals 0 else. 

 
Function (3.50) differs from the objective function from the model for constant intervals, as 
the objective function no longer contains the average expected cost per unit of time, but 
the total expected cost per interval. 
 

3.7.3 Constraints 
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There are three groups of constraints. The constraints are organized in such a way that 
whenever maintenance is planned, a possession is required. The first constraints (3.51) 
restrict the auxiliary variables. First, the auxiliary decision variables are linked to the 
decision variables for intervals. Through this constraint, the auxiliary variables are defined 
such that they can be used in constraint (3.53).  
 
 

∑ ∑ 𝑘𝑥𝑖𝑗𝑘

𝑉𝑖

𝑘=0

𝑙

𝑗=1

− ∑ 𝑘𝑧𝑖𝑘𝑙

𝑊

𝑘=0

= 0 ∀ 𝑖 ∈ {1. . . 𝐶}, 𝑙 ∈ {1. . . 𝑂𝑖}  

(3.51) 
with: 
𝑙: The maintenance operations of component 𝑖. As there is a maintenance operation in 
between each interval, there are always one fewer maintenance operations than intervals. 
𝑉𝑖: The possible values of the interval length for component 𝑖. 
𝑥𝑖𝑗𝑘: The decision variable representing interval 𝑗 of component 𝑖 being 𝑘 long. 

𝑧𝑖𝑘𝑙: The decision variable representing maintenance operation 𝑙 of component 𝑖 taking 
place at 𝑘. 
𝑂𝑖: The set of maintenance operations to component 𝑖. 
 
Next up, constraint (3.52) ensures the maintenance intervals cover all of the planning 
horizon. 
 

∑ ∑ 𝑘𝑥𝑖𝑗𝑘

𝑉𝑖

𝑘=0

𝐼𝑚𝑎𝑥𝑖

𝑗=1

= 𝑊 ∀ 𝑖 ∈ {1. . . 𝐶} 

(3.52) 
 

The last category (3.53) connects the maintenance operations to the possessions, ensuring 
there is a possession when there is maintenance. 
 

∑ ∑ 𝑧𝑖𝑘𝑙

𝑂𝑖

𝑙=1

𝐶

𝑖=1

− 𝑀𝑦𝑘 < 0.5 ∀ 𝑘 ∈ {1. . . 𝑊} 

(3.53) 
 

The right-hand side is 0.5, because the function has to be at most zero and always has an 
integer outcome. Any value that is greater than or equal to 0, but smaller than 1 can be 
used, and will result in the same model outcome. Using 0.5 instead of 0, which might be a 
more obvious choice, yields slight performance benefits. For the same reason, this 
technique is also applied elsewhere. 
 

A Big M notation is used. In this case, 𝑀 should have the largest value ∑ ∑ 𝑧𝑖𝑘𝑙
𝑂𝑖
𝑙

𝐶
𝑖  could 

theoretically take on. In other words, all maintenance operations to all components. Hence: 
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𝑀 = ∑ 𝑂𝑖

𝐶

𝑖=1

 

(3.54) 
 

Additionally, constraints are included that prevent outcomes that violate the requirements 
of modelling using binary variables. This means a situation where a single interval or 
auxiliary does not have exactly one value. 
 

∑ 𝑥𝑖𝑗𝑘

𝑉𝑖

𝑘=0

= 1 ∀ 𝑖 ∈ {1. . . 𝐶}, 𝑗 ∈ {1. . . 𝐼𝑚𝑎𝑥𝑖} 

(3.55) 
 

∑ 𝑧𝑖𝑘𝑙

𝑊

𝑘=0

= 1 ∀ 𝑖 ∈ 𝐶{1. . . 𝐶}, 𝑙 ∈ {1. . . 𝑂𝑖} 

(3.56) 
 

This model as coded in MATLAB is found in appendix III. 
 

3.7.4 Comparison with the Fixed Interval Railway Maintenance 
Optimization Problem 
Compared to the problem presented in section 3.6, the problem in this section has some 
key advantages. The limitation regarding state of maintenance at the beginning of the 
planning horizon is solved, as is the limitation on varying the schedule. It is also able to make 
small adjustments to the schedule, for example extending an interval by a week to have it 
coincide with another maintenance operation. 
 
The solution of this problem requires the addition of many more decision variables. This will 
mean that for the same problem size, the complexity is much larger. In other words, for 
given maximum computing resources, the possible problem size is smaller. The model using 
fixed intervals should be more suited to very large problems, as there are fewer decision 
variables and constraints. All in all, these two different optimization problems have their 
own different strengths and weaknesses, and they should be regarded as complementary to 
each other. 
 

3.7.5 Improving Performance of the Individual Interval Railway 
Maintenance Optimization Model  
The script in which the model is implemented was written iteratively. After all desired 
functionality was added, measures were taken to reduce the computational complexity as 
much as possible. These measures include: 

1. Eliminating decision variables whose information can also be taken from other 
decision variables. In order to do this, some of the constraints had to be rewritten 
such that all the coefficients for the decision variable that was to be eliminated are 
zero. 
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2. Reducing the number of nonzero elements for constraints. Experimentation has 
shown that a large number of nonzeros can increase runtime dramatically. By using 
the variables for the points in time to constrain the next point in time rather than 
taking the sum of all intervals has reduced the number of nonzeros in the equations. 

3. Transforming equality constraints into inequality constraints. Each equality 
constraint in a numerical model is in practice a set of two inequality constraints of 
the form: 𝑐 − 𝑒 ≤ 𝑥 ∙ 𝑎 ≤ 𝑐 + 𝑒, where c is the constant in right hand side, e is a 
small numerical error, x is the decision variable and a is the coefficient associated 
with x. If the requirement for the equation to be equal to c can be transformed into 
a requirement to be equal to or smaller than c, such a constraint can be 
transformed into an inequality and performance can be increased. 

4. Adding constraints that ensure a unique solution. For each interval, a value of zero 
means that there is effectively no interval. This can lead to different solutions being 
exactly the same in practice, and also having the same objective function. For 
example, it means that a solution where the second interval is forty and the third 
one zero, and a solution where the second interval is zero and the third forty are 
both optimal. Eliminating such possibilities improves runtimes. 

 

3.7.6 Improved Reformulation of the Individual Interval Railway 
Maintenance Optimization Model Using Unary Encoding 
The formulation of the problem in 3.7.1 through 3.7.3 was improved by taking the measures 
in 3.7.5. The objective function is now expressed as follows: 
 

min ∑ (∑ 𝐶𝑜𝐹𝑖 × (𝑎𝑒𝑏𝑘 + 𝑐𝑒𝑑𝑘 + 𝑓𝑘) × 𝑥𝑖1𝑘

𝑉𝑖

𝑘=0

𝐶

𝑖=1

+ ∑ ∑(𝐶𝑜𝐹𝑖 × (𝑎𝑒𝑏𝑘 + 𝑐𝑒𝑑𝑘 + 𝑓𝑘) + 𝐶𝑜𝑀𝑖) × 𝑥𝑖𝑗𝑘

𝑉𝑖

𝑘=1

𝐼𝑖

𝑗=2

) + ∑ 𝐶𝑜𝑃𝑖𝑦𝑖

𝑊

𝑖

 

(3.57) 
 

The difference is that the intervals from number 2 up can no longer take on a value of zero. 
A zero interval for component 𝑖 at interval 𝑗 now emerges as an absence of any 𝑥𝑖𝑗𝑘. This is 

why a different summation (starting at 𝑘 = 0) is applied to the first interval than to all 
subsequent intervals (starting at 𝑘 = 1). As 𝐶𝑜𝑀𝑖  only appears before decision variables 
where it is applicable (𝑗 > 1 and 𝑘 > 0), the indices 𝑗 and 𝑘 are no longer needed. 
 
Some of the auxiliary decision variables can be eliminated, as the relevant expression can 
also be expressed other decision variables. To be exact, the variables related to the moment 
of maintenance operation 1 and 𝑛 − 1 are not needed. The graphical representation 
becomes: 
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start 21 3

xi2 xi3

n-3 n-1n-2 end

Xi(n-2) Xi(n-1) Xinxi1

zi1
zi2

zi(n-4)
zi(n-3)

 
Figure 9, graphical representation of the decision variables in the improved model 

 
The first moment of maintenance (𝑧𝑖1) is no longer expressed in an auxiliary variable, as the 
value of the first interval (𝑥𝑖1) is identical per definition (see also figure 9). The moment of 
the second maintenance operation is expressed as follows: 
 

∑ 𝑘𝑥𝑖1𝑘

𝑉𝑖

𝑘=0

+ ∑ 𝑘𝑥𝑖2𝑘

𝑉𝑖

𝑘=1

+ ∑ (𝑊 − 𝑘) 𝑧𝑖1𝑘

𝑊−1

𝑘=0

= 𝑊 ∀ 𝑖 ∈ {1. . . 𝐶} 

(3.58) 
 

In the case of 𝑘 = 𝑊𝑒𝑒𝑘𝑠 the value of the coefficient for 𝑧𝑖1𝑘 becomes zero. The 
summation related to 𝑧 only goes to 𝑊𝑒𝑒𝑘𝑠 − 1. As this is the case for the coefficients in all 
other constraints that apply to this decision variable, it can be eliminated altogether. It is an 
example of application of technique 1 and 2. 
 
Every moment from 3 up is defined as the sum of the previous moment plus the interval in 
between, instead of as the sum of all preceding intervals. This also reduces the number of 
nonzero elements in the constraints, and is another application of technique 2. 
 

∑ 𝑘𝑥𝑖𝑗𝑘

𝑉𝑖

𝑘=0

− ∑ (𝑊 − 𝑘) 𝑧𝑖(𝑗−2)𝑘

𝑊−1

𝑘=0

+ ∑ (𝑊 − 𝑘) 𝑧𝑖(𝑗−1)𝑘

𝑊−1

𝑘=0

= 0 ∀ 𝑖 ∈ {1. . . 𝐶}, 𝑗

∈ {3 … 𝐼𝑚𝑎𝑥𝑖 − 2}  
(3.59) 

 
The moment of the last maintenance operation is also no longer expressed separately. The 
constraint that applies to the possession for the last maintenance operation is now based on 
the final maintenance interval. As such, the constraint defining the total planning horizon is 
defined as the sum of the second to last maintenance operation and the two last intervals: 
 

∑ 𝑘𝑥𝑖(𝐼𝑚𝑎𝑥𝑖−1)𝑘

𝑉𝑖

𝑘=1

+ ∑ 𝑘𝑥𝑖(𝐼𝑚𝑎𝑥𝑖)𝑘

𝑉𝑖

𝑘=1

− ∑ (𝑊 − 𝑘) 𝑧𝑖(𝐼𝑚𝑎𝑥𝑖−3)𝑘

𝑊−1

𝑘=0

= 0 ∀ 𝑖 ∈ {1. . . 𝐶} 

(3.60) 
 
 

The next constraint (3.61) is used to ensure that a possession is applied in case any element 
gets a maintenance at the beginning of the planning horizon. 
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∑ 𝑥𝑖1 0

𝐶

𝑖=1

− 𝑀1𝑦0 < 0.5  

(3.61) 
 
Again, a big M expression is used. In this case, the big M should account for the case that all 
components are maintained at the beginning of the planning horizon. The following applies: 

𝑀1 = 𝐶 
(3.62) 

 
The constraints applicable to weeks after zero are: 
 

∑ (𝑥𝑖1𝑘 + 𝑥𝑖(𝐼𝑚𝑎𝑥𝑖)(𝑊−𝑘) + ∑ 𝑧𝑖𝑗𝑘

𝐼𝑚𝑎𝑥𝑖−3

𝑗=1

)

𝐶

𝑖=1

− 𝑀2𝑦𝑘 < 0.5 ∀ 𝑘 ∈ {1 … 𝑊 − 1} 

(3.63) 
 

The value of big M is the same as in the initial model: 

𝑀2 = ∑(𝐼𝑚𝑎𝑥𝑖 − 1)

𝐶

𝑖=1

 

(3.64) 
 

The unary encoding constraints for each first interval are unchanged from the initial 
formulation: 

∑ 𝑥𝑖1𝑘

𝑉𝑖

𝑘=0

= 1 ∀ 𝑖 ∈ {1. . . 𝐶} 

(3.65) 
 

As there is now a possibility that the intervals other than the first have no value at all 
(meaning the interval is zero), the constraints for each subsequent interval are: 
 

∑ 𝑥𝑖𝑗𝑘

𝑉𝑖

𝑘=1

< 1.5 ∀ 𝑖 ∈ {1. . . 𝐶}, 𝑗 ∈ {2 … 𝐼𝑚𝑎𝑥𝑖} 

(3.66) 
 

These constraints are now inequalities as proposed in point 3. As with (3.53), 1.5 is used 
instead of 1 for performance benefits. 
 
Finally, for the moments of maintenance the unary encoding constraints are now also 
inequalities. It is no longer needed for at least one of the decision variables for each 
moment to be a one. 
 

∑ 𝑧𝑖𝑘𝑙

𝑊−1

𝑘=0

< 1.5 ∀ 𝑖 ∈ {1. . . 𝐶}, 𝑙 ∈ {1 … 𝐼𝑚𝑎𝑥𝑖 − 3} 
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(3.67) 
 

If ∑ 𝑧𝑖𝑗𝑘
𝑊𝑒𝑒𝑘𝑠−1
𝑘=0 = 0, the end of the planning horizon was reached using only earlier 

maintenance operations. Explicit definition of this moment is not necessary. 
 
Finally, there is a set of constraints (3.58) to ensure a unique solution as mentioned in point 
4. While not strictly necessary to arrive at an optimal solution, experimentation has shown 
that runtimes are reduced by including this constraint. This is probably due to the solver not 
having to explore all optimal branches of the problem. They can be cut off before the next 
optimal solution is found due to this constraint. 
 

∑ 𝑥𝑖(𝑗−1)𝑘

𝑉𝑖

𝑘=1

− ∑ 𝑥𝑖𝑗𝑘

𝑉𝑖

𝑘=1

> −0.5 ∀ 𝑖 ∈ {1. . . 𝐶}, 𝑗 ∈ {3 … 𝐼𝑚𝑎𝑥𝑖} 

(3.68) 
 

This model as implemented in MATLAB can be found in appendix IV. 
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4 Results 
4.1 Experimentation 
For any model to be relevant to industry users, it should be able to perform in practical 
situations. The input data as well as the output should be clearly defined and interpretable. 
The model should produce results reliably and within a practical amount of time.  
 
Experimentation was performed to determine the behavior of the model under different 
circumstances. The inputs were changed, and the resulting runtimes evaluated and 
compared. First off, three standard parameter sets are defined, which are used for all 
performance testing. The input set was varied to account for specific characteristics of the 
problem. The order of the values of each parameter was randomly changed between each 
component. This step should account for any typical results that stem from the specific test 
problem. 
 
This data is synthetic. While the values are in the order of magnitude that may be expected 
when using real data, there is no direct basis in practice. All simulations were run three 
times consecutively on the same parameter set to account for randomness in computer 
activity. The process was automated using the script in appendix XI. The numbers given are 
the medians of the three obtained figures for the first parameter set. The latter two 
parameter sets showed the same general trend without exception, hence a thorough 
analysis of this data is superfluous. Nonetheless, the resulting schedules are included in the 
appendices. 
 
The results of each experiment are the maintenance intervals for the components and the 
necessary possessions. To make comparisons easier, a graph is used to present each result.  

 
Figure 10, Example solution graph 
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An example of such a graph is in figure 10. In this case, a system with three components and 
a planning horizon of 200 weeks was optimized. On the horizontal axis is the time in weeks. 
The grey horizontal bands marked one to three represent the three components in the 
system. Each black vertical bar is a maintenance operation to the component. The 
horizontal grey bar marked P works in the same way but visualizes the possessions. When 
two black bars are in the same position horizontally, the components are maintained at the 
same time. In the example, it is clear to see that components 1 and 2 are always maintained 
at the same time, and that the maintenance operations are spaced equally. 
 
A test loop was used to vary individual parameters. These parameters are chosen because 
they are suspected to have an influence on the computational performance of the model. 
The parameters that are varied are: 
 

• Computational input 
o Optimality gap 
o Presolve setting 
o Number of processor threads 

• Problem input 
o Wear out shape parameter 
o Cost of possession 

▪ Level of cost of possession 
▪ Varying cost of possession over time 

o Planning horizon 
o Number of components 

 
All computing was performed on a 2012 Dell XPS 8500, with an Intel Core i7-8770 quad core, 
eight thread 3.4 GHz processor, and 8 GB 1,600 MHz DDR3 memory. The software used is 
Gurobi Optimizer 8.0.0 and MATLAB R2018a. All runtimes are in seconds, unless otherwise 
noted. 
 

4.1.1 Optimality Gap 
The optimality gap is the difference between the best feasible solution and the lower 
bound. An optimality gap of 0 means that the absolute optimal solution is found. The 
default setting for Gurobi is 0.0001, which means the solution returned is within 0.01% of 
the global optimum. Care should be taken in the interpretation of this value in case the 
objective value does not have an absolute zero point, for example if negative profit is a 
possibility. However, as an objective value of zero in this case represents zero cost, a 
relative definition of the optimality gap is meaningful. 
 
Reducing the required optimality gap can help to lower runtimes of the model, while still 
giving a satisfactory result. To determine the difference between optimal and suboptimal 
solutions, a solution for several levels of optimality gap were requested. The exact 
experiment is found in appendix XIII. The runtimes are presented in table 1. 
 
Table 1, performance as a function of the specified optimality gap 

Specified optimality gap (%) Median runtime Actual optimality gap (%) 
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0 112.4 0 

0.1* 91.3 0.10 

0.3* 66.2 0.30 

1 17.9 0.74 

3 7.7 2.58 

10 1.8 6.65 

30 1.7 6.65 

 
In the first two cases of nonzero optimality gap (noted by a *), the optimal solution was 
found (this was checked against the first run), but the optimality gap had not yet fully 
closed. The results are presented in figure 11. 
 

 
Figure 11, runtimes as a function of optimality gap setting 

The resulting schedules can be found in appendix XXV. As the runtime improvements are 
very significant, specifying a higher optimality gap may be useful should the resources not 
be available to solve to optimality. Depending on the demands of the end user, the 
suboptimal solutions may be usable in practice. The results where the optimality gap is still 
very large are clearly suboptimal. For example, there are multiple maintenance intervals 
with a value of 1 in the cases of a 30% optimality gap. A longer solution time would 
definitely be worthwhile in those cases. 
 

4.1.2 Presolve Setting 
Presolve is an automatic operation by Gurobi before numerical computation of the objective 
takes place. Presolve is a procedure that simplifies the problem by eliminating redundant 
constraints. The number of nonzero elements in the constraints is reduced, and the solution 
time is less. However, presolve takes up resources by itself, which may negate the gains 
from faster processing. A description of the methods and purpose of presolve is given at 
(Gurobi, n.d.). A thorough evaluation of presolve in Gurobi is given by Achterberg et al. 
(2016). 
 
By running the experiment in appendix XIV, the performance of the model using all different 
presolve settings was tested. The results of this test are in table 2 and figure 12. 
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Table 2, performance as a function of presolve setting 

Presolve 
setting 

Presolve 
time (s) 

Removed 
columns 

Removed 
rows 

Median 
runtime 

Median remaining 
optimality gap (%) 

-1 (automatic) 0.03 70 0 363.9 0 

0 (off) - - - 3,600 0.46 

1 
(conservative) 

0.03 70 0 551.3 0 

2 (aggressive) 0.23 285 198 112.7 0 

 

 
Figure 12, runtimes as a function of presolve setting 

Clearly, presolve has a beneficial effect of solution times. The aggressive setting results in 
the most benefits. The additional time needed for presolve is negligible compared to the 
improvement in runtime. Therefore, it is advisable to manually set aggressive presolve when 
using this model. Interestingly, automatic and conservative presolve removed the same 
number of columns and no rows, in the same amount of time, yet there is a large 
performance gap between the two. The spread in runtimes was very small for each setting 
(under 15 seconds), so either different columns were removed or the presolve setting alters 
the actual solving strategy. 
 

4.1.3 Number of Processor Threads 
The processor in the computer that was used for simulation has four physical cores and can 
execute eight threads. For some problems and solvers, parallelization can significantly 
improve runtime, which offers potential for benefitting from computers with many 
processor cores or distributed computing. To find out whether this is the case for this 
problem, the number of used processor threads was varied using the params.threads 
parameter. In addition of one to eight, there is an automatic setting 0. The experiment in 
appendix XV yielded the results in table 3 and figure 13. 
 
Table 3, performance as a function of thread setting 

Thread setting Median runtime Improvement over next lower setting (%) 
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0 (automatic) 205.8  

1 450.5  

2 263.0 41.6 

3 243.8 7.3 

4 192.9 20.9 

5 229.8 -19.1 

6 144.5 37.1 

7 187.3 -29.7 

8 113.3 39.5 

 

 
Figure 13, runtimes as a function of processor threads 

As can be seen, the improvement from utilizing more threads is meaningful. It is likely that 
increasing the processor core count will improve runtimes. During computations, the 
computer was not memory limited. This leaves core count, clock speed and possibly 
memory speed as limitations in hardware to computation times. While stepping up from an 
odd number of threads to an even number yields clear benefits, the opposite seems to be 
true for stepping up from an even number to an odd number. In general, it is advisable to 
use every thread available in the computer. However, should the user of the model be 
inclined to restrict this number (e.g. to retain processing power for other tasks), specifying 
n-2 threads is smarter than using n-1. Note that this does not hold for systems with 4 
threads. Furthermore, using the automatic setting is ill advised. Performance when using a 
manually selected setting is better, except when using very few threads.  
 

4.1.4 Wear Out Shape Parameter d 
The first parameter related to the actual component that was varied was d. It represents the 
shape parameter of the wear out rate. Also presented in the table is the theoretical optimal 
maintenance interval for each component. The exact specification and meaning of these 
variables can be found in chapter 7. The experiment (appendix XVI) results in the 
performance in case d is either half or twice the normal value. The performance is in table 4 
and figure 14. 
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Table 4, performance as a function of the wear out shape parameter 

d topt Median runtime Number of possessions 

0.008 0.008 0.01 132 108 79 1.2 3 

0.016 0.016 0.02 66 54 40 111.7 6 

0.032 0.032 0.04 33 27 20 3,600 14 

 

 
Figure 14, runtimes as a function of d 

The results show that components that wear out faster increase the problem size and slow 
down the optimization significantly. This is simply due to having to plan more maintenance 
operations. It can clearly be seen in the solution graphs in appendix XXIV. Techniques to 
speed up the program are mentioned in paragraph 11.7, should it be required that such a 
schedule is solved quickly. 
 

 Cost of Possession 
Next, the influence of the cost of possession on the runtime was investigated. The difficulty 
of determining the optimal solution may be increased as the cost of possession is larger. The 
algorithm may not be able to cut of sets of decision variables as easily if both the decision 
variables related to failure and those related to possession have a strong effect on the 
outcome. By varying the cost of possession from 0.25 to 25000 in exponential steps of 
roughly 101/2, varying results are found. The exact experiment specification is in appendix 
XVII, and the resulting schedules in appendix XXII. The results of this experiment are in table 
5 and figure 15. 
 
Table 5, performance as a function of the cost of possession 

CoP runtime number of possessions 

0.25 2.8 11 

0.8 3.1 11 

2.5 6.9 9 

8 19.6 8 

25 28.3 7 

80 112.4 6 
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250 1770.3 4 

800 424.4 3 

2500 643.8 3 

8000 462.8 2 

25000 148.6 2 

 

 
Figure 15, runtime as a function of cost of possession 

As the cost of possession tends to zero, the problem simply involves minimizing the cost of 
maintenance and the cost of failure, and the decision variables related to cost of possession 
do not influence the cost of possession. However, for very large values of CoP, the problem 
simplifies into minimizing the number of possessions as the role of failure and maintenance 
becomes secondary. Any solution that requires more possessions than the minimum can be 
cut off immediately. 
 

4.1.5 Varying Cost of Possession 
Realistically, some points in time may be more suitable for performing maintenance than 
others. The reasons for this can be manifold, but in any case, the consequence is that a 
small adjustment in the planning of maintenance can have tangible benefits. To simulate 
such a problem, two parameter sets in which the cost of possession alternates between 50 
and 150 is generated. In the first case, this happens for every other possession, in the 
second one the lower value is applied every fifth possession. The experiment loop is 
described in appendix XVIII. It is expected that the maintenance will be assigned to the 
cheaper possessions. In table 6 and figure 16, the effect on performance is displayed. 
 
Table 6, performance as a function of alternating cost of possession 

Cost of possession Median runtime Possessions in expensive week 

always 80 113.3 - 

once 150, once 50, etc. 37.6 0 

four times 150, once 50, etc. 13.8 0 
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Figure 16, runtime as a function of cost of possession 

As expected, the cheaper weeks were used to perform maintenance. While not dramatically 
different, the differences in schedule are visible in appendix XXIII. The problem solved 
quicker in the cases where the cheap possession was rare. As with 11.5, the algorithm will 
attempt to cut off certain decision variables. As soon as a feasible solution is found (through 
heuristics) that uses the decision variables associated with cheap weeks, the expensive 
weeks can be cut off. In practice, varying costs of possession over time are no obstacle to 
planning maintenance using the model. In fact, this experiment has shown that it will 
probably be solved quicker than a situation where all possession costs are equal. 
 

4.1.6 Planning Horizon 
The script was tested for runtime performance to give an indication of the problem size that 
can be solved in a reasonable amount of time. In this case, a situation with three 
components was optimized. The parameters were chosen such that the optimal 
maintenance intervals are between 18 and 36 weeks. The test specified that times up to 
3,600 seconds were evaluated, and that three consecutive overruns would terminate the 
test. An exact specification is in appendix XIX. The results in table 7 and figure 17 were 
obtained. 
 
Table 7, performance as a function of the planning horizon 

planning horizon 
(weeks) 

runtime 
(s) 

time at which best solution was 
found (s) 

remaining optimality 
gap (%) 

200 111.1  0 

205 443.0  0 

210 386.4  0 

215 2,522.7  0 

220 3,600  0.16 

225 3,600  0.23 

230 3,177.8  0 

235 3,600  0.24 

240 3,600 1769 0.07 

245 1,914.1 55 0 
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250 1,576.3 74 0 

255 2,057.3 690 0 

260 1,252.2 63 0 

265 1,381.1 40 0 

270 3,600 51 0.04 

275 3,600 483 0.30 

280 3,600 1,764 0.38 

 

 
Figure 17, runtime as a function of planning horizon with an optimality gap of 0 

In practice, optimization of up to 265 timesteps can be solved quickly. As a timestep in this 
case represents one week, a planning horizon of five years is realistic. It is noteworthy that 
in the last three cases convergence continued at a steady rate, and that given enough time, 
a solution can be expected. Given that for long term maintenance planning runtimes of days 
or even weeks are not problematic, and that much better computing hardware is available, 
the limitation on problem size with three components should not be an objection to 
practical implementation. 
 
To explore the possibilities of the model, should abundant computing resources be 
available, an experiment was performed on very long planning horizons. It is specified in 
appendix XXI. The value of the planning horizon was increased in steps of 100 until there 
was no solution found after one hour of solution time. The results are in table 8 and figure 
18. 
 
Table 8, performance over long planning horizons 

planning 
horizon 

runtime time at which first solution was 
found 

remaining optimality gap 
(%) 

450 8.7 8 2.65 

500 251.6 101 7.87 

550 215.9 111 9.06 

600 1,615.2 1268 8.69 

650 257.0 183 9.92 

700 427.3 205 9.57 
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750 876.4 357 9.70 

800 1,599.5 410 9.44 

850 70.6 70 2.74 

900 730.2 488 2.40 

950 2,538.5 577 7.89 

1000 3,273.5 1120 9.86 

1050 2,113.3 558 9.73 

1100 3,232.1 916 8.91 

1150 3,600 1277 13.06 

 

 
Figure 18, runtime as a function of planning horizon with an optimality gap of 10% 

Should the problem still be too large to solve, rescaling the problem will decrease problem 
complexity and runtimes significantly. For example, a step size of one week may be replaced 
by a step size of two weeks, effectively halving the total number of time steps. Of course, 
this goes at the expense of accuracy. Another strategy for improving the time needed to 
solve the problem is to apply the model for individual interval planning to the first n weeks, 
and resorting to fixed intervals thereafter, or to apply the model for individual interval 
planning consecutively. At the end of the planning horizon of the model for individual 
interval planning, all components should be in a similar, degraded state. This effectively 
breaks the total problem down into smaller subproblems that will be faster to solve than 
the problem as a whole. However, the schedule that is produced will probably not be 
globally optimal. 
 
 

4.1.7 Number of Components 
All previous trials were based on a case of three component categories. However, if more 
maintenance categories should be included in the optimization, the solution time increases. 
Based on the initial scenario, a scenario with five components was created, where the 
additional components have characteristics that lay outside the bounds of the 
characteristics of the existing components. It can be found in appendix IX through XI. These 
parameter sets were experimented with using the test loop in appendix XX. 
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Table 9, performance as function of number of components 

Number of components Runtime Remaining optimality gap (%) 

1 0.5 0 

2 1.1 0 

3 110.6 0 

4 207.9 0 

5 3,600 0.12 

 

 
Figure 19, runtime as a function of number of components 

As can be derived from table 9 and figure 19, the problem is substantially increased in 
complexity as the number of components is increased. The usability of the model may 
decrease as the problem is complicated by a larger number of components. 
 

4.1.8 Comparison with Initial Implementation of the Model 
 

An initial version of the model, where the decision variables and constraints are defined as 
straight forward as possible, was used for establishing the effectiveness of the 
improvement. Compared to the improved version of the model, the runtimes are orders of 
magnitude higher. To be precise, a model where none of these measures are applied, but 
which solves the same problem and results in the same objective value, at 3,600 seconds, 
the model had not yet converged to optimality. The remaining optimality gap was 0.24%. As 
the improved model had a runtime of 111 seconds, the initial model is more than 32 times 
slower. 
 
In addition, the improved model without the unicity constraints (fourth bullet in list) was 
evaluated. Even though the number of nonzero elements in the linear constraint matrix is 
smaller, having multiple solutions that have to be evaluated increases the runtime 
markedly. In fact, without these constraints, the model performs worse than the initial 
model. All results are in table 10 and figure 20. 
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Table 10, performance of optimized versus unoptimized models 

 Runtime Remaining 
optimality gap 
(%) 

Rows in linear 
constraint 
matrix 

Columns in 
linear 
constraint 
matrix 

Nonzeros in 
linear 
constraint 
matrix 

Improved 112.3 0 247 3560 12992 

Initial 3,600 0.24 239 3869 12359 

Improved, but 
without unicity 
constraints 

3,600 0.53 247 3560 10746 

 

 
Figure 20, runtime of different model versions 

4.1.9 Conclusion 
The model can be applied to realistic problem sizes and specifications without taking 
problematically long computation times. By changing specific settings, the performance of 
the model was optimized. Certain values of the parameters affect the performance of the 
model, without changing the model structure. This means it is hard to draw general 
conclusions on the model performance, that can be applied to input data with different 
characteristics. 
 

4.2 Test Case 
A realistic case for two different components was formulated. The components chosen are 
switches and insulated joints. These components are both load-carrying parts of the rail, and 
fairly maintenance intensive. It should be noted that it may be regarded as a proof of 
concept rather than a practically applicable solution of the maintenance schedules. For this, 
more accurate data as well as differentiation to component subtypes and failure types 
would be advisable. 
 
A realistic case for two different components was formulated. The components chosen are 
switches and insulated joints. These components are both load-carrying parts of the rail, and 
fairly maintenance intensive. It should be noted that it may be regarded as a proof of 
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concept rather than a practically applicable solution of the maintenance schedules. For this, 
more accurate data as well as differentiation to component subtypes and failure types 
would be advisable. 
 
Real data were used to get to parameters that reflect realistic failure behavior. Tables that 
contain all preventive and corrective maintenance operations were available for the two 
component types. The information in the table includes the object, whether the 
maintenance was corrective or preventive, the specification code of the maintenance, a 
short description of the work, and the planned and actual execution dates. The procedure to 
obtain the parameters is in appendix XXXIII. 
 
 

 
Figure 21, histogram of failure of switches as a function of time since last maintenance with bin size 7 days 

 
For this histogram, the times of corrective maintenance since preventive maintenance to 
switches are binned in weeks. As can be seen in figure 21, the number of occurrences per 
value is very low for higher values. The failure times are grouped into bins of a more 
practical size (50 days) to smooth out the data. The resulting histogram is in figure 22. 
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Figure 22, histogram of failure of switches as a function of time since last maintenance with bin size 50 days 

 
After adjustment for already maintained components (step 7, Appendix XXXIII), the 
histogram becomes heavier on the right side. A bathtub shape that is typical of degrading 
components emerges. This can be seen in figure 22. 
 

 
Figure 23, adjusted histogram of failure of switches as a function of time since last maintenance with bin size 50 days 

 
The adjusted failure count for switches is estimated using both the Gompertz-Makeham and 
the Weibull distribution. A least squares of errors optimization yields the parameters of the 
distribution and the goodness of fit. The Gompertz-Makeham distribution provided more 
explained variance than Weibull distribution; 68.8 percent and 63.4 percent respectively. 
The adjusted observed failure count and predicted failure count can be seen in black and 
striped respectively in figure 23. 
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Figure 24, observed and predicted failure counts of switches 

The same procedure was followed with the data on insulated joints. The fitting of the 
Gompertz-Makeham function to the insulated joint data resulted in an explained variance of 
36.0 percent, while with the Weibull function 35.2 percent of variance can be explained. The 
resulting histogram is in figure 24. 
 

 
Figure 25, observed and predicted failure counts of insulated joints  

The obtained parameters as defined in section 3.3 are presented in table 13. These 
parameters are ready to be used in the optimization model. 
 
Table 11, estimated parameters on switch and insulated joint data 
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switch -6.603 -0.02028 1524 0.0006557 -0.1511 

insulated joint -0.05677 -0.05067 120.1 0.0005460 -0.009412 

 
These parameters were introduced into the optimization model. Additionally, realistic 
values (confidential) were used for cost of maintenance, failure and possession. The 
planning horizon was set to 261 weeks, or 5 years, and the ratio of switches to insulated 
joints was 1 to 10. This is a rough estimation, based on the fact that for every switch at least 
4 insulated joints are needed, and that each section of straight track is also separated by 
two insulated joints to the next. This ratio is in the same order of magnitude as in a station 
area. As the exact number of switches and insulated joints does not change the optimization 
a long as their ratio is the same, this assumption suffices to produce a representative test 
case. The time since the last maintenance operation was assumed to be 30 weeks for 
switches and 20 for insulated joints. If a maintenance interval of 52 weeks is applied 
consistently, the schedule in figure 25 is produced, where 1 denotes the switches, 2 denotes 
the insulated joints and P denotes the possessions. 
 
Using the statistical analysis only, optimized intervals can already be determined. This is 
done by solving equation (3.39) for each component individually. The results show that the 
maintenance intervals for the components without taking the cost of possession into 
account, is 126 and 61 weeks for switches and insulated joints respectively. Based on this 
figure, a maintenance schedule that continuously applies this interval can be used. This 
schedule is pictured in figure 26.  
 
The total optimization model also minimizes the cost of possession. This can be seen when 
After 6.91 seconds of runtime, an optimality gap of zero was achieved. The resulting 
schedule has one maintenance operation for the switches and three for the insulated joints. 
The completely optimized schedule is in figure 27. 
 

 
Figure 26, conventional schedule 



52 
 

 
Figure 27, schedule when intervals are optimized individually 

 

 
Figure 28, optimized schedule 

 
Table 12, comparison of different schedules applied to the test case 

 Conventional intervals Optimized intervals Optimized schedule 

Value of the objective function 716.4 703.4 699.9 
Number of possessions 8 6 3 

Number of maintenance 
operations to switches 

5 2 1 

Number of maintenance 
operations to insulated joints 

5 4 3 

Objective function compared to 
conventional intervals 

100 % 98.2 % 97.7 % 

Objective function compared to 
optimized intervals 

101.8 % 100 % 99.5 % 

Objective function compared to 
optimized schedule 

102.4 % 100.5 % 100 % 

 
Comparing the three schedules in table 12, the difference in objective function is small. 
Even so, small improvements such as these would amount to sizeable profits over the longer 
term. As the difference in number of maintenance operations and number of possessions is 
substantial, it seems that the cost of failure is a large factor in this case. Either that is true, 
or the parameters are based on an overestimation of failures. 



53 
 

 
Considering that better analysis methods and the use of better data could improve the 
performance of the model, there is potential for delivering further improvements. 
Furthermore, differentiated maintenance, as is already applied to switches, can also 
improve the usefulness of the model. This could be included by splitting components to 
which it is applied into multiple separate groups, for example based on frequency of use.  
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5 Conclusion and Recommendations 
5.1 Conclusion 
Based on the research that was performed, the research questions can be fully answered. 
 

5.1.1 Characterization 
• What are the challenges in the current way of determining a maintenance strategy 

for railway assets? 
The current practice is to maintain all components that need maintenance according to a 
fixed schedule, whereby the intervals are usually multiples or fractions of a year. Based on 
decades of experience, the resulting performance is acceptable. However, this is by no 
means optimal. Statistical analysis of failures in railway components will give a better 
indication of what maintenance intervals are cost efficient. 
 
Furthermore, there is no incentive for the contractor to have the assets perform well 
beyond the end of the contract. This means maintenance that is desirable to the owner of 
the asset may not be performed by the contractor, and left to the next contractor. A model 
for failure processes can be used by for example the infrastructure manager to assess the 
impact of a maintenance strategy in the long run. 

 
• How can the failure probabilities of railway components over time be estimated? 
The failure probability of a railway component is not constant. In fact, if it were, 
maintenance would not have any benefit. Whether or not a component will actually fail 
depends on many different factors. Failure rates of mechanical components are typically 
increasing over time. This is called wear-out. Two ways of modeling increasing failure rates 
is by a Weibull or a Gompertz-Makeham distribution. In addition, such components may 
have a decreasing failure rate in the initial stages after maintenance. This can be modelled 
by having a separate function for this break-in phase, and adding it to the existing function 
for wear-out. In a test case, the Gompertz-Makeham distribution was better able to explain 
the variance in the moment of failure of switches. 
 

5.1.2 Optimization 
• How can the costs resulting from failure be estimated in case the maintenance 

schedule is known? 
As performing maintenance and applying possessions is not stochastic, it does not need to 
be estimated. However, the maintenance schedule affects the reliability of the components, 
which is stochastic. Using the estimated failure rate function, the expected number of 
failures can be computed. Assuming the cost of failures is constant, the expected cost due 
to failures can be computed by multiplying the expected number of failures with the cost of 
each failure. 
 

• How can the optimal schedule for performing maintenance to a certain track section 
and its associated cost be determined?  

What constitutes an optimal schedule depends on three main factors; maintenance, 
possessions and expected number of failures. All of these can be expressed as a linear 
function of the maintenance schedule. Therefore, the problem of optimizing the 
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maintenance schedule for railway components can be solved by a binary optimization 
model. A model is presented that produces a maintenance schedule that is optimal 
regarding cost of maintenance, cost of possession and cost of failure. 
 
By applying the model, a feasible maintenance schedule is created. The outcome of the 
optimization is a solution for which the objective value is optimal. This objective value 
represents an estimation of the aforementioned costs. Hence, if this objective value is 
minimized, the expected cost is minimized. It can be used by contractors to determine an 
appropriate bid for a maintenance contract for the area that is optimized. It contains the 
number of times as well as the times each component is maintained. This can be used to 
allocate sufficient resources including workers, equipment and materials, and to acquire 
these if necessary. 
 

5.1.3 Evaluation 
• How does an optimized maintenance schedule compare to a schedule that is up to 

the current state of the art? 
A case study of two component types revealed that the optimal maintenance interval is in 
both cases higher than the current maintenance interval. Percentage wise, the differences 
are small, but given the large expenditure in an absolute sense, the gains may still be 
significant. Furthermore, better data analysis may contribute to further improvement over 
the current results. 
 

• How accurately and how far into the future can the cost of performing track 
maintenance be predicted? 

The model is not theoretically limited to a certain planning horizon. Depending on the 
model parameters, it is possible to plan many years ahead. However, in practice it may not 
make sense to do this. As the planning horizon increases, so does the uncertainty about the 
quality of the prediction on failure. Besides, the usefulness of planning further ahead than 
the contract extends has no added use in practice. 
 

5.1.4 Valorization 
• How can the model be used by railway maintenance engineers? 
Given that there is enough data available, maintenance engineers can make a long-term 
planning for managing assets. The model is able to produce a solution that is optimal under 
the assumptions as defined. While these assumptions are not perfect, they resemble reality 
closely enough for the model to produce a good starting point for more accurate planning. 
In this way, it is a useful addition to the skills and tools that are already available. 
 

• Will optimization of maintenance contribute to reduced unplanned maintenance? 
For each case individually, the expected number of failures of the optimal solution and the 
current solution can be compared. There is a tradeoff between investing in maintenance 
and suffering failures. Consequently, an optimal maintenance schedule could work both 
ways. In case there is too much maintenance in the current situation, there may be less 
overall cost despite increasing the number of failures if the frequency of maintenance is 
reduced. Furthermore, failure is a stochastic process. Care should be taken to avoid drawing 
conclusions from results of small samples. 
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• How can the contract between the contractor and the infrastructure manager be 
specified, such that all the information necessary for optimizing maintenance is 
exchanged? 

To be able to apply the model effectively, data on the assets is needed, preferably of high 
quality. In case the contractor is new to the area, this data will have to be supplied by either 
the infrastructure manager or the previous contractor. What is needed is a standard 
procedure for logging maintenance and failures, and making the resulting data available to 
both the IM and the contractor. 
 

5.2 Recommendations for Further Research 
5.2.1 Quadratic Reformulation 
An implementation using quadratic constraints is possible. The non-linear part of the 
objective function would have to be locally approximated by a quadratic function by 
matching the second derivative in a specified point. The constraint that defines the 
relationship between the intervals and the possessions would be: 
 

(𝑥𝑖,𝑗 − 𝑘)
2

+ 𝑦𝑘 > 0.5 ∀ 𝑖 ∈ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 𝑗 ∈ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑜𝑓𝑖, 𝑘 ∈ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑒𝑘𝑠 

(5.1) 
 

where: 
𝑥𝑖,𝑗 is the moment of maintenance operation 𝑗 to component group 𝑖 

𝑦𝑘 is whether there is a possession at time 𝑘 
 
While the number of decision variables is sharply reduced, the number of constraints 
increases significantly. Performance may be better or worse. A implementation of this 
formulation, and a comparison with the model as proposed should answer this question. 
 

5.2.2 Practical Limitations 
Practical limitations, such as limits on the numbers and types of maintenance operations 
carried out concurrently, are not included in the model as it is now. Formulating these as 
linear or quadratic constraints and adding them to the existing model could enhance the 
practical value of the model. 
 

5.2.3 Application in Other Domains 
The formulation of the model was based on the requirements from the railway industry, but 
very similar problems will exist in other industries. The essence of the optimization, 
balancing cost due to failure, cost due to maintenance and cost due to inoperability, should 
be familiar to any industry that has systems with multiple stochastically failing components. 
The general nature of the model formulation allows for quick adaption to optimizing other 
systems with these characteristics. 
 

5.2.4 Use in Cost-Benefit Analysis 
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A cost-benefit analysis contains estimations of cost over the lifetime of a system. The model 
has the potential to provide a standardized approach for estimating the failure and 
maintenance cost of a railway and enable a quantitative comparison. 
 

5.2.5 Data Collection 
As with any model that relies on observed data, the quality of that data largely determines 
the quality of the model result. Unfortunately, the data that is required for the model is not 
yet available as accurately as possible. Having an accurate estimation of the failure rate 
function of all the components that are part of the optimization is a requirement for having 
a schedule that is not only optimal according to the model, but also performs well in 
practice. 
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6 Reflection 
Working from both TU Delft and Arcadis offered me the opportunity to approach the 
problem at hand from both a scientific and a more practical point of view. It has definitely 
been useful to attempt to bring these two drastically different ways of working together, as 
the resulting work has both a solid scientific foundation as well as a possibility for 
application in practice. 
 
What anybody who starts working in railway engineering will notice is that the business is 
rather conservative. Even though more attention is being given to cutting off inefficient 
ways of working, breaking down old attitudes and procedures takes time. Solid proof and 
testing are required to convince and reassure actors within the industry of the added value 
of innovative approaches to asset management. 
 
Operations research offers many new techniques that will improve the way railway assets 
are managed in the future. Big data and optimization can enable contractors to more 
accurately predict failures, both in the short term by monitoring developing problems, and 
in the long term by applying statistical models. It is in the latter category that this research 
comes in. 
 
A less common technique within linear optimization was required to get to the end product. 
While it required a lot of trial and error, the result is a model that can be used to help the 
railway industry and possibly other industry where deteriorating systems are maintained. 
The model as it stands today has growth potential, as I am sure the possibilities from 
improving the model are not yet fully exhausted. 
 
What has been difficult is getting access to data that is accurate enough to make a good 
case study on. Unfortunately, the data that was readily available was only on switches. As 
the strength of the model is to design maintenance schedules for multiple components in 
parallel, application to a real-life case study has proven to be difficult. 
 
Which brings us to what is still a weakness of this approach. Good data is needed to make 
reliable and accurate predictions and plans over the long term, and this is not always 
available. What's more, the required computing power for five components is already rather 
high. A more efficient implementation of the model would probably be needed in cases 
where the maintenance to many more components is planned simultaneously. 
 
All in all, the project and the resulting product have yet to prove itself, but are hopefully 
provide a positive influence to both maintenance engineering and my personal and 
professional development. 
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II  Implementation of the Fixed Interval 
Railway Maintenance Optimization Problem 
ncomponents = size(a,2); 

  
ObjectiveCoefficient = zeros((ncomponents+1)*nweeks,1); 

  
% Cost of maintenance interval 
for i = 1:ncomponents 
    ObjectiveCoefficient((i-1)*nweeks+1:i*nweeks) = 

(CoF(i)*(a(i)*exp(b(i)*[1:nweeks])./[1:nweeks]+c(i)*exp(d(i)*[1:nweeks])./[

1:nweeks]-a(i)./[1:nweeks]-

c(i)./[1:nweeks])+CoM(i)./[1:nweeks])*NumberOfComponentsOfType(i)*nweeks; 
end 

  
% Cost of possession 
ObjectiveCoefficient(ncomponents*nweeks+1:(ncomponents+1)*nweeks) = CoP; 

  
% Preallocate LinearConstraintMatrix 
LinearConstraintMatrix = 

zeros(ncomponents*(nweeks+1),(ncomponents+1)*nweeks); 

  
% Possession constraints 
LinearConstraintMatrix(1:ncomponents*nweeks,1:ncomponents*nweeks) = 

eye(ncomponents*nweeks); 

  
for i = 1:nweeks 
    NumberOfMoments = floor(nweeks/i); 
    for j = 1:ncomponents 
        LinearConstraintMatrix((j-

1)*nweeks+i,ncomponents*nweeks+(1:NumberOfMoments)*i) = -1/NumberOfMoments; 
    end 
end 
RightHandSide = zeros(ncomponents*nweeks,1); 
Sense = repmat('<',ncomponents*nweeks,1); 

  
% Exactly one interval per component 
for i = 1:ncomponents 
    LinearConstraintMatrix(ncomponents*nweeks+i,(i-1)*nweeks+1:i*nweeks)=1; 
end 
RightHandSide(ncomponents*nweeks+1:ncomponents*(nweeks+1)) = 1; 
Sense(ncomponents*nweeks+1:ncomponents*(nweeks+1)) = '='; 

  
model.A = sparse(LinearConstraintMatrix); 
model.obj = ObjectiveCoefficient; 
model.sense = Sense; 
model.vtype = 'B'; 
model.rhs = RightHandSide; 

  
solution = gurobi(model) 

  
sparse(solution.x) 
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III  Initial Implementation of the Individual 
Interval Railway Maintenance Optimization 
Problem 
ncomponents = size(a,2); 

  
% Preallocate variables 
t_opt = zeros(1,ncomponents); 

  
for i=1:ncomponents 
    % Determine the optimal maintenance interval 
    syms t 
    eqn = CoF(i)*(a(i)*b(i)*exp(b(i)*t)/t-

a(i)*exp(b(i)*t)/t^2+c(i)*d(i)*exp(d(i)*t)/t-

c(i)*exp(d(i)*t)/t^2+a(i)/t^2+c(i)/t^2)-CoM(i)/t^2 == 0; 
    solution = vpasolve(eqn,t); 
    t_opt(i) = double(solution); 
end 

  
nintervalvalues = min(nweeks,ceil(2*t_opt)); 
nintervals = ceil(nweeks./t_opt); 

  
% Preallocate variables 
ObjectiveCoefficient = 

zeros(sum(nintervals.*(nintervalvalues+1))+sum(nintervals-

1)*(nweeks+1)+nweeks,1); 
LinearConstraintMatrix = zeros(2*sum(nintervals)+sum(nintervals-

1)+nweeks,sum(nintervals.*(nintervalvalues+1))+sum(nintervals-

1)*(nweeks+1)+nweeks); 
ModelSense = zeros(2*sum(nintervals)+sum(nintervals-1)+nweeks,1); 
ModelSense = char(ModelSense); 
RightHandSide = zeros(2*sum(nintervals)+sum(nintervals-1)+nweeks,1); 

  
% Cost of failure as a function of maintenance interval 
for i = 1:ncomponents 
    ObjectiveCoefficient(sum(nintervals(1:i-1).*(nintervalvalues(1:i-

1)+1))+(1:nintervalvalues(i)+1)) = 

NumberOfComponentsOfType(i)*(CoF(i)*(a(i)*exp(b(i)*((0:nintervalvalues(i))+

TimeSinceLastMaintenance(i)))+c(i)*exp(d(i)*((0:nintervalvalues(i))+TimeSin

ceLastMaintenance(i)))+f(i)*((0:nintervalvalues(i))+TimeSinceLastMaintenanc

e(i))-a(i)-c(i))-

CoF(i)*(a(i)*exp(b(i)*TimeSinceLastMaintenance(i))+c(i)*exp(d(i)*TimeSinceL

astMaintenance(i))+f(i)*TimeSinceLastMaintenance(i)-a(i)-c(i))); 
    for j = 1:nintervals(i)-1 
        ObjectiveCoefficient(sum(nintervals(1:i-1).*(nintervalvalues(1:i-

1)+1))+j*(nintervalvalues(i)+1)+(1:nintervalvalues(i)+1)) = 

NumberOfComponentsOfType(i)*(CoF(i)*(a(i)*exp(b(i)*(0:nintervalvalues(i)))+

c(i)*exp(d(i)*(0:nintervalvalues(i)))+f(i)*(0:nintervalvalues(i))-a(i)-

c(i))+[0 repmat(CoM(i),[1,nintervalvalues(i)])]); 
    end 
end 

  
% Add cost of possessions 
ObjectiveCoefficient(sum(nintervals.*(nintervalvalues+1))+sum(nintervals-

1)*(nweeks+1)+(1:nweeks)) = CoP; 
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% Define the points in time 
for i = 1:ncomponents 
    for j = 1:nintervals(i)-1 
        for k = 1:j 
            LinearConstraintMatrix(sum(nintervals(1:i-

1))+j,sum(nintervals(1:i-1).*(nintervalvalues(1:i-1)+1))+(k-

1)*(nintervalvalues(i)+1)+(1:nintervalvalues(i)+1)) = 0:nintervalvalues(i); 
        end 
        LinearConstraintMatrix(sum(nintervals(1:i-

1))+j,sum(nintervals.*(nintervalvalues+1))+sum(nintervals(1:i-1)-

1)*(nweeks+1)+(j-1)*(nweeks+1)+(1:nweeks+1)) = -(0:nweeks);         
    end 
    LinearConstraintMatrix(sum(nintervals(1:i)),sum(nintervals(1:i-

1).*(nintervalvalues(1:i-1)+1))+(1:nintervals(i)*(nintervalvalues(i)+1))) = 

repmat(0:nintervalvalues(i),[1,nintervals(i)]); 
    RightHandSide(sum(nintervals(1:i))) = nweeks; 
end 

  
ModelSense(1:sum(nintervals)) = '='; 

  
% Define the possessions 
LinearConstraintMatrix(sum(nintervals)+(1:nweeks),sum(nintervals.*(ninterva

lvalues+1))+(1:sum(nintervals-1)*(nweeks+1))) = repmat([eye(nweeks) 

zeros(nweeks,1)],[1,sum(nintervals-1)]); 
LinearConstraintMatrix(sum(nintervals)+(1:nweeks),sum(nintervals.*(ninterva

lvalues+1))+sum(nintervals-1)*(nweeks+1)+(1:nweeks)) = -sum(nintervals-

1)*eye(nweeks); 
ModelSense(sum(nintervals)+(1:nweeks)) = '<'; 
RightHandSide(sum(nintervals)+(1:nweeks)) = 0.5; 

  
% Ensure every interval has one value 
for i = 1:ncomponents 
    for j = 1:nintervals(i) 
        LinearConstraintMatrix(sum(nintervals)+nweeks+sum(nintervals(1:i-

1))+j,sum(nintervals(1:i-1).*(nintervalvalues(1:i-1)+1))+(j-

1)*(nintervalvalues(i)+1)+(1:nintervalvalues(i)+1)) = 1; 
    end 
end 

  
ModelSense(sum(nintervals)+nweeks+(1:sum(nintervals))) = '='; 
RightHandSide(sum(nintervals)+nweeks+(1:sum(nintervals))) = 1; 

  
% Ensure every moment has at most one value 
for i = 1:ncomponents 
    for j = 1:nintervals(i)-1 
       LinearConstraintMatrix(2*sum(nintervals)+nweeks+sum(nintervals(1:i-

1)-1)+j,sum(nintervals.*(nintervalvalues+1))+sum(nintervals(1:i-1)-

1)*(nweeks+1)+(j-1)*(nweeks+1)+(1:nweeks+1)) = 1; 
    end 
end 

  
ModelSense(2*sum(nintervals)+nweeks+(1:sum(nintervals-1))) = '='; 
RightHandSide(2*sum(nintervals)+nweeks+(1:sum(nintervals-1))) = 1; 

  
model.A = sparse(LinearConstraintMatrix); 
model.obj = ObjectiveCoefficient; 
model.sense = ModelSense; 
model.vtype = 'B'; 
model.rhs = RightHandSide; 
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solution = gurobi(model,params); 

  
Indices = find(round(solution.x)==1); 

  
% Preallocate variables 
Intervals = zeros(ncomponents,max(nintervals)); 
Moments = zeros(ncomponents,max(nintervals-1)); 

  
% Get the intervals 
for i = 1:ncomponents 
    for j = 1:nintervals(i) 
        Intervals(i,j) = Indices(sum(nintervals(1:i-1))+j)-

sum(nintervals(1:i-1).*(nintervalvalues(1:i-1)+1))-(j-

1)*(nintervalvalues(i)+1)-1; 
    end 
end 

  
Intervals 

  
% Get the moments 
for i = 1:ncomponents 
    for j = 1:nintervals(i)-1 
        Moments(i,j) = Indices(sum(nintervals)+sum(nintervals(1:i-1)-1)+j)-

sum(nintervals.*(nintervalvalues+1))-sum(nintervals(1:i-1)-1)*(nweeks+1)-

(j-1)*(nweeks+1)-1; 
    end 
end 

  
Moments 

  
% Get the possessions 
Possessions = Indices(sum(nintervals)+sum(nintervals-1)+1:end)-

sum(nintervals.*(nintervalvalues+1))-sum(nintervals-1)*(nweeks+1)-1 
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IV  Improved Implementation of the 
Individual Interval Railway Maintenance 
Optimization Problem 
 

ncomponents = size(a,2); 

  
% Preallocate variables 
t_opt = zeros(1,ncomponents); 

  

for i=1:ncomponents 
    % Determine the optimal maintenance interval 
    syms t 
    eqn = CoF(i)*(a(i)*b(i)*exp(b(i)*t)/t-

a(i)*exp(b(i)*t)/t^2+c(i)*d(i)*exp(d(i)*t)/t-

c(i)*exp(d(i)*t)/t^2+a(i)/t^2+c(i)/t^2)-CoM(i)/t^2 == 0; 
    solution = vpasolve(eqn,t); 
    t_opt(i) = double(solution); 
end 

  
nintervalvalues = min(ceil(2*t_opt),nweeks); 
nintervals = max(ceil(nweeks./t_opt)+1,4); 

  
% Preallocate variables 
ObjectiveCoefficient = 

zeros(sum(nintervals.*nintervalvalues+1)+sum(nintervals-3)*(nweeks-

1)+nweeks,1); 
LinearConstraintMatrix = zeros(2*sum(nintervals-

2)+nweeks+sum(nintervals)+sum(nintervals-

3),sum(nintervals.*nintervalvalues+1)+sum(nintervals-3)*(nweeks-1)+nweeks); 
ModelSense = zeros(2*sum(nintervals-

2)+nweeks+sum(nintervals)+sum(nintervals-3),1); 
ModelSense = char(ModelSense); 
RightHandSide = zeros(2*sum(nintervals-

2)+nweeks+sum(nintervals)+sum(nintervals-3),1); 

  
% Cost of failure as a function of maintenance interval 
for i = 1:ncomponents 
    ObjectiveCoefficient(sum(nintervals(1:i-1).*nintervalvalues(1:i-

1)+1)+(1:nintervalvalues(i)+1)) = 

NumberOfComponentsOfType(i)*(CoF(i)*(a(i)*exp(b(i)*((0:nintervalvalues(i))+

TimeSinceLastMaintenance(i)))+c(i)*exp(d(i)*((0:nintervalvalues(i))+TimeSin

ceLastMaintenance(i)))+f(i)*((0:nintervalvalues(i))+TimeSinceLastMaintenanc

e(i))-a(i)-c(i))-

CoF(i)*(a(i)*exp(b(i)*TimeSinceLastMaintenance(i))+c(i)*exp(d(i)*TimeSinceL

astMaintenance(i))+f(i)*TimeSinceLastMaintenance(i)-a(i)-c(i))); 
    for j = 1:nintervals(i)-1 
        ObjectiveCoefficient(sum(nintervals(1:i-1).*nintervalvalues(1:i-

1)+1)+j*nintervalvalues(i)+1+(1:nintervalvalues(i))) = 

NumberOfComponentsOfType(i)*(CoF(i)*(a(i)*exp(b(i)*(1:nintervalvalues(i)))+

c(i)*exp(d(i)*(1:nintervalvalues(i)))+f(i)*(1:nintervalvalues(i))-a(i)-

c(i))+CoM(i)); 
    end 
end 

  
% Add cost of possessions 
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ObjectiveCoefficient(sum(nintervals.*nintervalvalues+1)+sum(nintervals-

3)*(nweeks-1)+(1:nweeks)) = CoP; 

  

  
% Define the points in time 
for i = 1:ncomponents 
    LinearConstraintMatrix(sum(nintervals(1:i-1)-2)+1,sum(nintervals(1:i-

1).*nintervalvalues(1:i-1)+1)+(1:nintervalvalues(i)+1)) = 

0:nintervalvalues(i); 
    LinearConstraintMatrix(sum(nintervals(1:i-1)-2)+1,sum(nintervals(1:i-

1).*nintervalvalues(1:i-1)+1)+nintervalvalues(i)+1+(1:nintervalvalues(i))) 

= 1:nintervalvalues(i); 
    LinearConstraintMatrix(sum(nintervals(1:i-1)-

2)+1,sum(nintervals.*nintervalvalues+1)+sum(nintervals(1:i-1)-3)*(nweeks-

1)+(1:nweeks-1)) = nweeks-(1:nweeks-1); 

     
    for j = 1:nintervals(i)-4 
        LinearConstraintMatrix(sum(nintervals(1:i-1)-

2)+1+j,sum(nintervals(1:i-1).*nintervalvalues(1:i-

1)+1)+(j+1)*nintervalvalues(i)+1+(1:nintervalvalues(i))) = 

1:nintervalvalues(i); 
        LinearConstraintMatrix(sum(nintervals(1:i-1)-

2)+1+j,sum(nintervals.*nintervalvalues+1)+sum(nintervals(1:i-1)-3)*(nweeks-

1)+(j-1)*(nweeks-1)+(1:nweeks-1)) = (1:nweeks-1)-nweeks; 
        LinearConstraintMatrix(sum(nintervals(1:i-1)-

2)+1+j,sum(nintervals.*nintervalvalues+1)+sum(nintervals(1:i-1)-3)*(nweeks-

1)+j*(nweeks-1)+(1:nweeks-1)) = nweeks-(1:nweeks-1); 
    end 

     
    LinearConstraintMatrix(sum(nintervals(1:i)-2),sum(nintervals(1:i-

1).*nintervalvalues(1:i-1)+1)+(nintervals(i)-

2)*nintervalvalues(i)+1+(1:nintervalvalues(i))) = 1:nintervalvalues(i); 
    LinearConstraintMatrix(sum(nintervals(1:i)-2),sum(nintervals(1:i-

1).*nintervalvalues(1:i-1)+1)+(nintervals(i)-

1)*nintervalvalues(i)+1+(1:nintervalvalues(i))) = 1:nintervalvalues(i); 
    LinearConstraintMatrix(sum(nintervals(1:i)-

2),sum(nintervals.*nintervalvalues+1)+sum(nintervals(1:i-1)-3)*(nweeks-

1)+(nintervals(i)-4)*(nweeks-1)+(1:nweeks-1)) = (1:nweeks-1)-nweeks; 

     
    RightHandSide(sum(nintervals(1:i-1)-2)+1) = nweeks; 
    RightHandSide(sum(nintervals(1:i-1)-2)+(2:nintervals(i)-2)) = 0; 
end 

  
ModelSense(1:sum(nintervals-2)) = '='; 

  
% Define the possessions 
for i = 1:ncomponents 
    LinearConstraintMatrix(sum(nintervals-

2)+(1:nintervalvalues(i)+1),sum(nintervals(1:i-1).*nintervalvalues(1:i-

1)+1)+(1:nintervalvalues(i)+1)) = eye(nintervalvalues(i)+1); 
    LinearConstraintMatrix(sum(nintervals-2)+(nweeks-

nintervalvalues(i)+1:nweeks),sum(nintervals(1:i).*nintervalvalues(1:i)+1)-

(0:nintervalvalues(i)-1)) = eye(nintervalvalues(i)); 
    if nintervalvalues(i) == nweeks 
        LinearConstraintMatrix(sum(nintervals-

2)+nintervalvalues(i)+1,sum(nintervals(1:i-1).*nintervalvalues(1:i-

1)+1)+nintervalvalues(i)+1) = 0; 
    end 
end 
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LinearConstraintMatrix(sum(nintervals-

2)+(2:nweeks),sum(nintervals.*nintervalvalues+1)+(1:sum(nintervals-

3)*(nweeks-1))) = repmat(eye(nweeks-1),[1,sum(nintervals-3)]); 
LinearConstraintMatrix(sum(nintervals-

2)+(1:nweeks),sum(nintervals.*nintervalvalues+1)+sum(nintervals-3)*(nweeks-

1)+(1:nweeks)) = -sum(nintervals-1)*eye(nweeks); 
ModelSense(sum(nintervals-2)+(1:nweeks)) = '<'; 
RightHandSide(sum(nintervals-2)+(1:nweeks)) = 0.5; 

  
% Ensure every interval has at most one value 
for i = 1:ncomponents 
    LinearConstraintMatrix(sum(nintervals-2)+nweeks+sum(nintervals(1:i-

1))+1,sum(nintervals(1:i-1).*nintervalvalues(1:i-

1)+1)+(1:nintervalvalues(i)+1)) = 1; 
    ModelSense(sum(nintervals-2)+nweeks+sum(nintervals(1:i-1))+1) = '='; 
    RightHandSide(sum(nintervals-2)+nweeks+sum(nintervals(1:i-1))+1) = 1; 
    for j = 1:nintervals(i)-1 
        LinearConstraintMatrix(sum(nintervals-2)+nweeks+sum(nintervals(1:i-

1))+1+j,sum(nintervals(1:i-1).*nintervalvalues(1:i-

1)+1)+j*nintervalvalues(i)+1+(1:nintervalvalues(i))) = 1; 
        ModelSense(sum(nintervals-2)+nweeks+sum(nintervals(1:i-1))+1+j) = 

'<'; 
        RightHandSide(sum(nintervals-2)+nweeks+sum(nintervals(1:i-1))+1+j) 

= 1.5; 
    end 
end 

  
% Ensure every moment has at most one value 
for i = 1:ncomponents 
    for j = 1:nintervals(i)-3 
       LinearConstraintMatrix(sum(nintervals-

2)+nweeks+sum(nintervals)+sum(nintervals(1:i-1)-

3)+j,sum(nintervals.*nintervalvalues+1)+sum(nintervals(1:i-1)-3)*(nweeks-

1)+(j-1)*(nweeks-1)+(1:nweeks-1)) = 1; 
    end 
end 

  
ModelSense(sum(nintervals-2)+nweeks+sum(nintervals)+(1:sum(nintervals-3))) 

= '<'; 
RightHandSide(sum(nintervals-2)+nweeks+sum(nintervals)+(1:sum(nintervals-

3))) = 1.5; 

  
% No interval n without interval n-1 
for i = 1:ncomponents 
    for j = 1:nintervals(i)-2 
        LinearConstraintMatrix(sum(nintervals-

2)+nweeks+sum(nintervals)+sum(nintervals-3)+sum(nintervals(1:i-1)-

2)+j,sum(nintervals(1:i-1).*nintervalvalues(1:i-

1)+1)+j*nintervalvalues(i)+(1:nintervalvalues(i))) = 1; 
        LinearConstraintMatrix(sum(nintervals-

2)+nweeks+sum(nintervals)+sum(nintervals-3)+sum(nintervals(1:i-1)-

2)+j,sum(nintervals(1:i-1).*nintervalvalues(1:i-

1)+1)+(j+1)*nintervalvalues(i)+(1:nintervalvalues(i))) = -1; 
    end 
end 

  
ModelSense(sum(nintervals-2)+nweeks+sum(nintervals)+sum(nintervals-

3)+(1:sum(nintervals-2))) = '>'; 
RightHandSide(sum(nintervals-2)+nweeks+sum(nintervals)+sum(nintervals-

3)+(1:sum(nintervals-2))) = -0.5; 
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model.A = sparse(LinearConstraintMatrix); 
model.obj = ObjectiveCoefficient; 
model.sense = ModelSense; 
model.vtype = 'B'; 
model.rhs = RightHandSide; 

  
solution = gurobi(model,params); 

  
Indices = find(round(solution.x)==1); 

  
% Preallocate variables 
Intervals = zeros(ncomponents,max(nintervals)); 
Moments = zeros(ncomponents,max(nintervals-3)); 

  
% Get the intervals 
for i = 1:ncomponents 
    Intervals(i,1) = Indices(Indices>sum(nintervals(1:i-

1).*nintervalvalues(1:i-1)+1) & Indices<=sum(nintervals(1:i-

1).*nintervalvalues(1:i-1)+1)+nintervalvalues(i)+1)-sum(nintervals(1:i-

1).*nintervalvalues(1:i-1)+1)-1; 
    for j = 1:nintervals(i)-1 
        if any(Indices>sum(nintervals(1:i-1).*nintervalvalues(1:i-

1)+1)+j*nintervalvalues(i)+1 & Indices<=sum(nintervals(1:i-

1).*nintervalvalues(1:i-1)+1)+(j+1)*nintervalvalues(i)+1) 
            Intervals(i,j+1) = Indices(Indices>sum(nintervals(1:i-

1).*nintervalvalues(1:i-1)+1)+j*nintervalvalues(i)+1 & 

Indices<=sum(nintervals(1:i-1).*nintervalvalues(1:i-

1)+1)+(j+1)*nintervalvalues(i)+1)-sum(nintervals(1:i-

1).*nintervalvalues(1:i-1)+1)-j*nintervalvalues(i)-1; 
        end 
    end 
end 

  
Intervals 

  
% Get the moments 
for i = 1:ncomponents 
    for j = 1:nintervals(i)-3 
        if 

any(Indices>sum(nintervals.*nintervalvalues+1)+sum(nintervals(1:i-1)-

3)*(nweeks-1)+(j-1)*(nweeks-1) & 

Indices<=sum(nintervals.*nintervalvalues+1)+sum(nintervals(1:i-1)-

3)*(nweeks-1)+j*(nweeks-1)) 
            Moments(i,j) = 

Indices(Indices>sum(nintervals.*nintervalvalues+1)+sum(nintervals(1:i-1)-

3)*(nweeks-1)+(j-1)*(nweeks-1) & 

Indices<=sum(nintervals.*nintervalvalues+1)+sum(nintervals(1:i-1)-

3)*(nweeks-1)+j*(nweeks-1))-sum(nintervals.*nintervalvalues+1)-

sum(nintervals(1:i-1)-3)*(nweeks-1)-(j-1)*(nweeks-1); 
        end 
    end 
end 

  
Moments 

  
% Get the possessions 
Possessions = 

Indices(Indices>sum(nintervals.*nintervalvalues+1)+sum(nintervals-
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3)*(nweeks-1))-sum(nintervals.*nintervalvalues+1)-sum(nintervals-

3)*(nweeks-1)-1   
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V  First input parameter set 
 
a = [-2 -3 -4]; 
b = [-0.2 -0.3 -0.4]; 
c = [2 5 8]; 
d = [0.016 0.016 0.02]; 
f = [0 0 0 0 0]; 
CoF = [6 8 12]; 
CoM = [2 3 4]; 
CoP = 80; 
NumberOfComponentsOfType = [40 30 20]; 
TimeSinceLastMaintenance = [40 30 20]; 
nweeks = 200; 
params.MIPGap = 0; 
params.threads = 0; 
params.presolve = 2; 
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VI  Second Input Parameter Set 
a = [-4 -1 -5]; 
b = [-0.1 -0.4 -0.2 -0.5 -0.3]; 
c = [11 5 1 8 2]; 
d = [0.016 0.012 0.02 0.024 0.016]; 
f = [0 0 0 0 0]; 
CoF = [8 4 12 16 6]; 
CoM = [3 1.5 6 2 4]; 
CoP = 80; 
NumberOfComponentsOfType = [10 50 40 30 20]; 
TimeSinceLastMaintenance = [20 30 10 40 50]; 
nweeks = 200; 
params.MIPGap = 0; 
params.Threads = 8; 
params.Presolve = 2; 
params.TimeLimit = 3600; 
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VII  Third Input Parameter Set 
a = [-4 -5 -2]; 
b = [-0.4 -0.1 -0.2 -0.3 -0.5]; 
c = [1 5 11 2 8]; 
d = [0.016 0.016 0.024 0.012 0.02]; 
f = [0 0 0 0 0]; 
CoF = [12 16 4 6 8]; 
CoM = [3 2 6 4 1.5]; 
CoP = 80; 
NumberOfComponentsOfType = [40 50 30 10 20]; 
TimeSinceLastMaintenance = [50 40 10 20 30]; 
nweeks = 200; 
params.MIPGap = 0; 
params.Threads = 8; 
params.Presolve = 2; 
params.TimeLimit = 3600; 
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VIII  First Input Parameter Set for up to Five 
Components 
a = [-2 -3 -4 -1 -5]; 
b = [-0.2 -0.3 -0.4 -0.1 -0.5]; 
c = [2 5 8 1 11]; 
d = [0.016 0.016 0.02 0.012 0.024]; 
f = [0 0 0 0 0]; 
CoF = [6 8 12 4 16]; 
CoM = [2 3 4 1.5 6]; 
CoP = 80; 
NumberOfComponentsOfType = [40 30 20 50 10]; 
TimeSinceLastMaintenance = [40 30 20 50 10]; 
nweeks = 200; 
params.MIPGap = 0; 
params.Threads = 8; 
params.Presolve = 2; 
params.TimeLimit = 3600; 
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IX  Second Input Parameter Set for up to 
Five Components 
a = [-4 -1 -5 -3 -2]; 
b = [-0.1 -0.4 -0.2 -0.5 -0.3]; 
c = [11 5 1 8 2]; 
d = [0.016 0.012 0.02 0.024 0.016]; 
f = [0 0 0 0 0]; 
CoF = [8 4 12 16 6]; 
CoM = [3 1.5 6 2 4]; 
CoP = 80; 
NumberOfComponentsOfType = [10 50 40 30 20]; 
TimeSinceLastMaintenance = [20 30 10 40 50]; 
nweeks = 200; 
params.MIPGap = 0; 
params.Threads = 8; 
params.Presolve = 2; 
params.TimeLimit = 3600; 
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X  Third Input Parameter Set for up to 
Five Components 
a = [-4 -5 -2 -3 -1]; 
b = [-0.4 -0.1 -0.2 -0.3 -0.5]; 
c = [1 5 11 2 8]; 
d = [0.016 0.016 0.024 0.012 0.02]; 
f = [0 0 0 0 0]; 
CoF = [12 16 4 6 8]; 
CoM = [3 2 6 4 1.5]; 
CoP = 80; 
NumberOfComponentsOfType = [40 50 30 10 20]; 
TimeSinceLastMaintenance = [50 40 10 20 30]; 
nweeks = 200; 
params.MIPGap = 0; 
params.Threads = 8; 
params.Presolve = 2; 
params.TimeLimit = 3600; 
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XI  Overall Test Loop 
 
clear 
for k = 1:3 
    TestLoopd 
    TestLoopCoP 
    TestLoopCoPvarying 
    TestLoopMIPGap 
    TestLoopThreads 
    TestLoopPresolve 
end 

  
AllIntervals = 

{IntervalsCoP,IntervalsCoPvarying,Intervalsd,IntervalsMIPGap}; 

  
Mediand = median(RunTimed); 
MedianCoP = median(RunTimeCoP); 
MedianCoPvarying = median(RunTimeCoPvarying); 
MedianThreads = median(RunTimeThreads); 
MedianPresolve = median(RunTimePresolve); 
MedianGapPresolve = median(GapPresolve); 

  
save('TotalTestLoop2506.mat') 

   



80 
 

XII  Test Loop for Optimality Gap 
 
ThreeComponents 

  
MIPGapset = [0 0.001 0.003 0.01 0.03 0.1 0.3]; 
RunTimeMIPGap = zeros(1,size(MIPGapset,2)); 
clear IntervalsMIPGap 

  
for MIPGap = MIPGapset 
    params.MIPGap = MIPGap; 
    BinaryIndividual5 
    RunTimeMIPGap(MIPGapset==params.MIPGap) = solution.runtime; 
    IntervalsMIPGap(:,:,MIPGapset==params.MIPGap) = Intervals; 
end 
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XIII  Test Loop for Presolve Setting 
 
ThreeComponents 

  
RunTimePresolve = zeros(1,4); 

  
for Presolve = -1:2 
    params.presolve = Presolve; 
    BinaryIndividual5 
    RunTimePresolve(Presolve+2) = solution.runtime; 
end 
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XIV  Test Loop for Number of Processor 
Threads 
 
ThreeComponents 

  
RunTimeThreads = zeros(1,5); 

  
for Threads = 0:4 
    params.threads = Threads; 
    BinaryIndividual5 
    RunTimeThreads(Threads+1) = solution.runtime; 
end 
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XV  Test Loop for Wear Out Shape 
Parameter d 
 
ThreeComponents 

  
dset = [d/2;d;d*2]; 

  
for iteration = 1:size(dset,1) 
    d=dset(iteration,:); 
    BinaryIndividual5 
    RunTimed(k,iteration) = solution.runtime; 
    Possessionsd(iteration) = size(Possessions,1); 
    Intervalsd{iteration} = Intervals; 
    TOpts(iteration,:) = t_opt; 
end 
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XVI  Test Loop for Cost of Possession 
 
ThreeComponents 

  
CoPset = [0.25 0.8 2.5 8 25 80 250 800 2500 8000 25000]; 

  
for CoP = CoPset 
    BinaryIndividual5 
    RunTimeCoP(k,CoP==CoPset) = solution.runtime; 
    IntervalsCoP{CoP==CoPset} = Intervals; 
    PossessionCoP(CoPset==CoP) = size(Possessions,1); 
end 
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XVII Test Loop for Varying Cost of 
Possession 
ThreeComponents 

  
BinaryIndividual5 
RunTimeCoPvarying(k,1) = solution.runtime; 
IntervalsCoPvarying{1} = Intervals; 

  
CoP = repmat([150 50],[1,nweeks/2]); 
BinaryIndividual5 
RunTimeCoPvarying(k,2) = solution.runtime; 
IntervalsCoPvarying{2} = Intervals; 

  
CoP = repmat([150 150 150 150 50],[1,nweeks/5]); 
BinaryIndividual5 
RunTimeCoPvarying(k,3) = solution.runtime; 
IntervalsCoPvarying{3} = Intervals; 
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XVIII Test Loop for Planning Horizon 
ThreeComponents 

  
iteration = 0; 
step = 5; 
exceedances = 0; 

  
while exceedances < 3 
    BinaryIndividual5 
    iteration = iteration+1; 
    RunTimenweeks(k,iteration) = solution.runtime; 
    Gapnweeks(k,iteration) = solution.mipgap; 
    nweeks = nweeks+step; 
    if solution.runtime < params.TimeLimit-1 
        exceedances = 0; 
    end 
    if solution.runtime > params.TimeLimit-1 
        exceedances = exceedances+1; 
    end 
end   
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XIX  Test Loop for Number of Components 
FiveComponents 
astable = a; 

  
for l = 1:size(astable,2) 
    a = astable(1:l) 
    BinaryIndividual5 
    RunTimeSize(k,l) = solution.runtime; 
    IntervalsSize{k,l} = Intervals; 
end 
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XX  Test Cycle that Explores Long Planning 
Horizons 
ThreeComponents 

  
iteration = 0; 
params.MIPGap = 0.1; 
nweeks = 400; 
clear solution 

  
while not(exist('solution') && isequal(solution.status,'TIME_LIMIT')) 
    iteration = iteration+1; 
    nweeks = nweeks+50; 
    BinaryIndividual5 
    RuntimeConvergence(iteration,1) = nweeks; 
    RuntimeConvergence(iteration,2) = solution.runtime; 
    IntervalsConvergence{iteration} = Intervals; 
end 
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XXI  Resulting Schedules from 
Experimentation on Cost of Possession, 
Parameter Set 1 

 
CoP = 0.25 

 
CoP = 0.8 
 
 



90 
 

CoP = 2.5 

 
CoP = 8 
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CoP = 25 
 

CoP = 80 
 



92 
 

CoP = 250 

 
CoP = 800 
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CoP = 2,500 

 
CoP = 8,000 



94 
 

 
CoP = 25,000 
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XXII Resulting Schedules from 
Experimentation on Alternating Cost of 
Possession, Parameter Set 1 

 
CoP = 80 

 
CoP = 50, 150, etc. 
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CoP = 50, 50, 50, 50, 150, etc. 
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XXIII Resulting Schedules from 
Experimentation on Wear Out Shape 
Parameter, Parameter Set 1 

 
d is half of normal 

 
d is normal 



98 
 

 
d is double of normal 
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XXIV Resulting Schedules from 
Experimentation on Optimality Gap, 
Parameter Set 1 

  
Optimality gap = 0% 
 

 
Optimality gap = 0.1% 



100 
 

 

 
Optimality gap = 0.3% 
 

 
Optimality gap = 1% 



101 
 

 

 
Optimality gap = 3% 
 

 
Optimality gap = 10% 



102 
 

 
Optimality gap = 30% 
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XXV Resulting Schedules from 
Experimentation on Cost of Possession, 
Parameter Set 2 
 

 
CoP = 0.25 
 

 
CoP = 0.8 



104 
 

 

 
CoP = 2.5 
 

 
CoP = 8 



105 
 

 

 
CoP = 25 

  
CoP = 80 



106 
 

 

 
CoP = 250 
 

 
CoP = 800 



107 
 

 

 
CoP = 2,500 
 

 
CoP = 8,000 



108 
 

 
CoP = 25,000 
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XXVI Resulting Schedules from 
Experimentation on Alternating Cost of 
Possession, Parameter Set 2 
 

 
CoP = 80 
 

 
CoP = 50, 150, etc. 
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CoP = 50, 50, 50, 50, 150, etc. 
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XXVII Resulting Schedules from 
Experimentation on Wear Out Shape 
Parameter, Parameter Set 2 
 

 
d is half of normal 
 

 
d is normal 



112 
 

 
d is double of normal 
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XXVIII Resulting Schedules from 
Experimentation on Optimality Gap, 
Parameter Set 2 
 

 
Optimality gap = 0% 
 

 
Optimality gap = 0.1% 
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Optimality gap = 0.3% 
 

 
Optimality gap = 1% 



115 
 

 
Optimality gap = 3% 
 

 
Optimality gap = 10% 
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Optimality gap = 30% 
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XXIX Resulting Schedules from 
Experimentation on Cost of Possession, 
Parameter Set 3 

 
CoP = 0.25 

 
CoP = 0.8 



118 
 

 
CoP = 2.5 

 
CoP = 8 



119 
 

 
CoP = 25 

 
CoP = 80 



120 
 

 
CoP = 250 

 
CoP = 800 



121 
 

 
CoP = 2,500 

 
CoP = 8,000 
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CoP = 25,000 
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XXX Resulting Schedules from 
Experimentation on Alternating Cost of 
Possession, Parameter Set 3 

 
CoP = 80 

 
CoP = 50, 150, etc. 
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CoP = 50, 50, 50, 50, 150, etc. 
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XXXI Resulting Schedules from 
Experimentation on Wear Out Shape 
Parameter, Parameter Set 3 

 
d is half of normal 

 
d is normal 



126 
 

 
d is double of normal 
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XXXII Resulting Schedules from 
Experimentation on Optimality Gap, 
Parameter Set 3 
 

 
Optimality gap = 0 
 

 
Optimality gap = 0.001 
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Optimality gap = 0.003 
 

 
Optimality gap = 0.01 
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Optimality gap = 0.03 
 

 
Optimality gap = 0.1 
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Optimality gap = 0.3 
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XXXIII Method for Applying the Optimization 
Model 
 
The data consists of individual maintenance records. Each line in the spreadsheet is a 
maintenance operation. For each maintenance operation, several properties are available, 
including the object to which it is applied, the date on which it was executed. 
 

1. The lines are ordered by object, then by date of execution. 

2. Lines that do not contain the required data are excluded. 

3. The lines are classified as either preventive or corrective maintenance. In this case, 

only the lines with the most common maintenance code for each object (ba.ar.05 for 

switches and ba.0006 for insulated joints) are classified as preventive. All other 

maintenance operations are considered to be corrective.  

4. For each occurrence of preventive maintenance, the time between the repair of the 

component and the last time regular maintenance was performed, is determined. 

5. These data points are divided into bins. The bins are chosen such that irregularities 

are mostly smoothed out, while enough detail remains to enable the fitting of a 

distribution. For the two examples in the case study, a bin size of 50 days was 

chosen. 

6. If available, the time since the previous maintenance operation is calculated.  

7. Not all maintenance intervals are equal. To compensate for the reduced occurrence 

of longer maintenance intervals, the proportion of components not having received 

maintenance for each time is determined. The failure count of each bin is then 

divided over this number to get an adjusted failure count. That number decreases, as 

maintenance reduces the number of components associated with each consecutive 

bin. If for example half the components in the dataset are maintained within the 

year, then failures that occur one year after the last maintenance has taken place, 

should be weighed with a factor of two. 

8. For each bin, the corrected failure rate is determined by dividing the number of 

failures by the correction factor related to that bin. 

9. A failure rate function is formulated. It is a function of the statistical parameters. 

10. Initial values for the statistical parameters are chosen. This can be done manually as 

the initial values only serve as a starting point for the optimization in the next step. 

11. Through optimization (for example using the Analysis ToolPak in Microsoft Excel), 

the parameters are adjusted such that the sum of squared differences between the 

estimated and the actual number of failures is minimized. 

12. The parameters are checked for feasibility. If the constraint in equation (3.10) is 

violated, the optimization in step 11 should be redone with this constraint explicitly 

defined. 

13. For the estimation of usable parameters, data of sufficient quality is needed. This 
means that the failure rate function is fitted in a way that explains a substantial 
amount of the variance. A post-hoc check is performed to prove that this is the case. 



132 
 

The explained variance, expressed in a percentage, is calculated with formula 
(XXXIII.1). 

𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = (1 −
∑ (𝑋𝑖 − 𝑋𝑖̂)

2
𝑖

∑ (𝑋𝑖 − 𝑋̅)2
𝑖

) × 100% 

(XXXIII.1) 
 

with: 
𝑋𝑖: The observed number of failures in bin 𝑖 

𝑋𝑖̂: The predicted number of failures in bin 𝑖 
𝑋̅: The average number of failures over all bins 
 


