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RESEARCH ARTICLE

Convergence behavior of single‑step GBLUP 
and SNPBLUP for different termination criteria
Jeremie Vandenplas1*  , Mario P. L. Calus1, Herwin Eding2, Mathijs van Pelt2, Rob Bergsma3 and Cornelis Vuik4 

Abstract 

Background:  The preconditioned conjugate gradient (PCG) method is the current method of choice for iterative 
solving of genetic evaluations. The relative difference between two successive iterates and the relative residual of the 
system of equations are usually chosen as a termination criterion for the PCG method in animal breeding. However, 
our initial analyses showed that these two commonly used termination criteria may report that a PCG method applied 
to a single-step single nucleotide polymorphism best linear unbiased prediction (ssSNPBLUP) is not converged yet, 
whereas the solutions are accurate enough for practical use. Therefore, the aim of this study was to propose two 
termination criteria that have been (partly) developed in other fields, but are new in animal breeding, and to compare 
their behavior to that of the two termination criteria widely used in animal breeding for the PCG method applied to 
ssSNPBLUP. The convergence patterns of ssSNPBLUP were also compared to the convergence patterns of single-step 
genomic BLUP (ssGBLUP).

Results:  Building upon previous work, we propose two termination criteria that take the properties of the system 
of equations into account. These two termination criteria are directly related to the relative error of the iterates with 
respect to the true solutions. Based on pig and dairy cattle datasets, we show that the preconditioned coefficient 
matrices of ssSNPBLUP and ssGBLUP have similar properties when using a second-level preconditioner for ssSNPBLUP. 
Therefore, the PCG method applied to ssSNPBLUP and ssGBLUP converged similarly based on the relative error of the 
iterates with respect to the true solutions. This similar convergence behavior between ssSNPBLUP and ssGBLUP was 
observed for both proposed termination criteria. This was, however, not the case for the termination criterion defined 
as the relative residual when applied to the dairy cattle evaluations.

Conclusion:  Our results showed that the PCG method can converge similarly when applied to ssSNPBLUP and to 
ssGBLUP. The two proposed termination criteria always depicted these similar convergence behaviors, and we recom-
mend them for comparing convergence properties of different models and for routine evaluations.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The current method of choice for genomic evaluations 
is the so-called single-step genomic best linear unbi-
ased prediction (ssGBLUP) that simultaneously analyses 
phenotypic and pedigree information of genotyped and 
non-genotyped animals with genomic information of 

genotyped animals [1]. The ssGBLUP model considers 
genomic information by combining genomic and pedi-
gree relationships into a combined genomic-pedigree 
relationship matrix [2, 3]. Equivalent models that directly 
estimate SNP effects and that do not rely on the genomic 
relationship matrix G , hereafter called ssSNPBLUP, were 
also proposed [4–6].

The solving method of choice in the last two decades 
for breeding value estimation models is the precondi-
tioned conjugate gradient (PCG) method with a tradi-
tional (block-)diagonal preconditioner [7]. However, 
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when applied to ssSNPBLUP, it results in poor conver-
gence [8, 9]. We have previously shown that using a sec-
ond-level preconditioner improves the PCG convergence 
rate considerably [9, 10].

An important parameter of an iterative solver is its 
termination criterion. A termination criterion should be 
defined to stop the iterative process at an appropriate 
level of convergence. The relative difference between two 
successive iterates and the relative residual of the sys-
tem of equations is often chosen as a termination crite-
rion for the PCG method in animal breeding [7, 11–13]. 
However, our initial analyses showed that these two com-
monly used termination criteria may report that a PCG 

method applied to ssSNPBLUP is not converged yet, 
whereas the solutions are accurate enough for practical 
use. Therefore, the aim of this study was to implement 
termination criteria that have been (partly) developed in 
other fields, but are new in animal breeding, and to com-
pare their behaviors to that of different termination crite-
ria that are widely used in animal breeding for the PCG 
method applied to ssSNPBLUP. A comparison of the con-
vergence patterns of ssSNPBLUP and of ssGBLUP was 
also performed.

Methods
Single‑step genomic evaluations
In this study, we investigate the convergence behavior of 
the PCG method applied to ssGBLUP [2, 14] and to the 
ssSNPBLUP linear equations system proposed by Gen-
gler et  al. [15] and by Liu et  al. [6]. The two systems of 
equations can be summarized as:

where j refers to ssGBLUP (j=G), or to the ssSNPBLUP 
proposed by Liu et al. [6] (j=L), Cj is a symmetric (semi-)
definite coefficient matrix, xj is the vector of solutions, 
and bj is the right-hand side of the linear system.

For simplicity, and without loss of generality, the differ-
ent matrices and vectors for ssGBLUP and ssSNPBLUP 
are described below for an univariate animal model.

Cjxj = bj ,

ssGBLUP
For ssGBLUP [1], the vector bG is equal to 

bG =







X
′
R−1y

W
′

nR
−1
n yn

W
′

gR
−1
g yg






 where the subscripts g and n refer to 

ng genotyped and nn non-genotyped animals, respec-
tively, y is the vector of records, and the matrices X , Wn 
and Wg are incidence matrices relating records to the 

corresponding effects, and the matrix R−1 =

[

R−1
n 0

0 R−1
g

]

 

is the inverse of the residual (co)variance structure 
matrix.

The coefficient matrix CG is equal to:

where σ−2
u  is the inverse of the additive genetic variance, 

A−1 =

[

Ann Ang

Agn Agg

]

 is the inverse of the pedigree relation-

ship matrix, Agg is the pedigree relationship between 
genotyped animals, and G = 1−w

m ZZ′ + wAgg is the 
genomic relationship matrix with w being the proportion 
of variance (due to additive genetic effects) considered as 
residual polygenic effects, and m = 2

∑

po(1− po) with 
po being the allele frequency of the oth SNP. The matrix Z 
contains the SNP genotypes (coded as 0 for one homozy-
gous genotype, 1 for the heterozygous genotype, or 2 for 
the alternate homozygous genotype) centered by their 
observed means.

The vector of solutions is equal to xG =





β̂
ûn
ûg



 , where β 

is the vector of fixed effects, un is the vector of additive 
genetic effects for non-genotyped animals, and ug is the 
vector of additive genetic effects for genotyped animals.

ssSNPBLUP
For ssSNPBLUP [6], the vector bL is equal to 

bL =









X
′
R−1y

W
′

nR
−1
n yn

W
′

gR
−1
g yg
0









.

The coefficient matrix CL is equal to:

CG =







X
′
R−1X X

′

nR
−1
n Wn X

′

gR
−1
g Wg

W
′

nR
−1
n Xn W

′

nR
−1
n Wn + Annσ−2

u Angσ−2
u

W
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gR
−1
g Xg Agnσ−2

u W
′
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−1
g Wg +

�

Agg +G−1 − A−1
gg

�

σ−2
u




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where �L =

[

�L,11 �L,12

�L,21 �L,22

]

=

[

(

1
w − 1

)

A
−1
gg − 1

wA
−1
gg Z

− 1

wZ
′
A
−1
gg

1
wZ

′
A
−1
gg Z+ m

1−w I

]

.

The vector xL is equal to xL =









β̂
ûn
ûg
ĝ









 where g is the vec-

tor of SNP effects.
The equivalence between ssGBLUP and ssSNPBLUP can 

be shown by absorbing the equations of the SNP effects of 
ssSNPBLUP and by using the Woodbury matrix identity 
[16]:

PCG method
A PCG method is an iterative method that uses succes-
sive approximations to obtain more accurate solutions for 
a linear system at each iteration step [17]. In our imple-
mentation, the preconditioned system of linear equations 
of ssGBLUP and of ssSNPBLUP required by the PCG 
method has the form (with subscripts omitted):

where M̃ = DM with M being a (block-)diagonal precon-
ditioner defined below separately for each analysis, and D 
being an identity matrix for ssGBLUP, or a second-level 
diagonal preconditioner for ssSNPBLUP as proposed by 
Vandenplas et al. [10].

Termination criteria
The relative error in x at the i-th iteration of the PCG 
method is defined as:

where x̂i is an approximate solution of x at the i-th itera-
tion and ‖.‖ is the 2-norm.

Unfortunately, because the true solution x is unknown, 
the relative error in x ( er,i ) cannot be computed and used 
as termination criterion. Therefore, alternative termina-
tion criteria must be used. A good termination criterion 
is important for iterative solvers, and should identify 
when er,i is small enough to stop the iterative process. If 
this is not the case, the iterative process might be stopped 
too soon, resulting in useless approximate solutions, or 
take an unnecessary long time or never stop [18]. Relative 
termination criteria as those proposed below are scaling 

G−1 − A−1
gg =

(

1− w

m
ZZ′ + wAgg

)−1

− A−1
gg

=

(

1

w
− 1

)

A−1
gg −

1

w
A−1
gg Z

(

1

w
Z′A−1

gg Z+
m

1− w
I

)−1

Z′A−1
gg

1

w
.

(1)M̃−1Cx = M̃−1b,

(2)er,i =
�x − x̂i�

�x�
,

invariant, and are therefore usually preferred over abso-
lute termination criteria.

In animal breeding, the PCG method is often stopped 
when the relative residual (denoted by CR) is lower than 
or equal to a pre-defined threshold ǫCR , that is [11, 12]:

where ri = b− Cx̂i.
It can be shown that the termination criterion CR is 

related to the relative error in x , er,i (Eq. 2), as follows [19] 

(see Additional file 1 for a derivation):

where κ(C) is the effective spectral condition number of 
C defined as the ratio of its largest to smallest positive 
eigenvalues [20].

There are several drawbacks of the termination criterion 
CR (Eq. 3). First, the termination criterion CR may be dif-
ficult to satisfy when C is very ill-conditioned, and thus 
when κ(C) is large [18]. Second, the comparison of the 
convergence rates of the PCG method applied to differ-
ent systems of equations may lead to wrong conclusions if 
κ(C) associated with the compared systems are very differ-
ent. Indeed, using the same threshold ǫCR for the compared 
systems would result in PCG methods stopping at a same 
level of CR but at different levels of er . Finally, it is worth 
noting that κ(C) could be estimated at low costs during an 
unpreconditioned conjugate gradient (CG) process based 
on the equivalence of the CG and Lanczos methods [18, 
21]. However, this study focuses on PCG methods for solv-
ing preconditioned systems of equations. In this context, 
the correction of the termination criterion CR by κ(C) can-
not be applied because κ(C) cannot be computed easily for 
most large systems of equations.

Another termination criterion that is often used in ani-
mal breeding, is the relative difference between two con-
secutive iterates (denoted by CD) of the PCG method, that 
is [11]:

A drawback of the termination criterion CD is that it is 
not related to the relative error in x , er,i . Therefore the 

(3)
�ri�

�b�
≤ ǫCR,

er,i ≤ κ(C)
�ri�

�b�
,

(4)
�x̂i−1 − x̂i�

�x̂i�
≤ ǫCD.
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termination criterion CD could be satisfied while er,i is 
still large.

A third termination criterion (denoted by CK) is defined 
as follows [21, 22]:

where µ1 is the smallest active eigenvalue (i.e. the small-
est positive eigenvalue that influences the convergence 
[23]) of M̃−1C.

It can be shown that the termination criterion CK is 
related to the relative error in x , er,i (Eq. 2), as follows [21, 
22]:

Therefore, this termination criterion CK allows the user 
to specify the desired relative accuracy ǫCK  in the com-
puted solution x̂i . To our knowledge, the termination cri-
terion CK was never applied in animal breeding, and is 
scarcely used in other fields.

Finally, we introduce a fourth termination criterion 
(denoted by CM) defined as follows (see Additional file 2 
for a derivation):

where κ
(

M̃−1C
)

 is the effective spectral condition num-
ber of M̃−1C.

It can be shown that the termination criterion CM is 
related to the relative error in x , er,i (Eq. 2), as follows (see 
Additional file 2 for a derivation):

Like the termination criterion CK, the termination crite-
rion CM is defined at the scale of the relative accuracy 
in x . Thus, the termination criterion CM allows the user 
to specify the desired relative accuracy in x . The termi-
nation criterion CM can be also considered as being the 
termination criterion CR applied to the preconditioned 
system of equations, instead of the system of equations 
directly (1). Finally, it is worth noting that the termina-
tion criterion CM is equal to the relative error in x if 
M̃ = C.

The termination criteria CK and CM require µ1 and 
κ

(

M̃−1C
)

 for their computation. The estimates of µ1 and 
of κ

(

M̃−1C
)

 can be obtained at low costs during the 
PCG process using the Lanczos method based on 

(5)
1

µ1

�M̃−1ri�

�x̂i�
≤ ǫCK ,

er,i ≤
1

µ1

�M̃−1ri�

�x̂i�
.

(6)κ

(

M̃−1C
)�M̃−1ri�

�M̃−1b�
≤ ǫCM ,

er,i ≤ κ

(

M̃−1C
)�M̃−1ri�

�M̃−1b�
.

information obtained from the PCG method, e.g., as pro-
posed by Kaasschieter [21] or as described below.

Relationships between termination criteria applied 
to ssGBLUP and ssSNPBLUP
When comparing the termination criterion CR between 
ssGBLUP and ssSNPBLUP, it is worth noting that 
�bG� = �bL� because all entries of the right-hand sides 
are the same, except for the entries corresponding to 
the SNP equations that are equal to 0. Therefore, when 
estimates for the common entries between x̂G and x̂L are 
equal (i.e., when β̂G = β̂L , ûn,G = ûn,L , and ûg ,G = ûg ,L ), 
any observed differences between CR for ssGBLUP and 
for ssSNPBLUP are a consequence of the presence of the 
estimates of SNP effects in the solution vector of ssS-
NPBLUP x̂L . More specifically, it can be shown in this 
case that the differences between CR for ssGBLUP and 
for ssSNPBLUP can be explained by the error due to the 
PCG iterative process in estimating the SNP effects ĝ , ǫL:
ǫL = ĝL −

(

1
wZ

′
A−1
gg Z+ m

1−w I
)−1

1
wA

−1
gg Zûg ,L.

Indeed, after some derivations (see Additional file 3 for 
details), we can show that:

where rL = bL − CLx̂L is the residual of the ssSNPBLUP 
system of equations, and rG = bG − CG x̂G is the residual 
of the ssGBLUP system of equations.

Finally, ‖xG‖ is approximately equal to ‖xL‖ (similarly 
for �x̂G� and �x̂L� ) when the common entries of both vec-
tors are equal. Indeed, the only different entries between 
these two vectors are the additional estimates of SNP 
effects that are of several thousand orders of magnitude 
lower than solutions of other fixed and random effects 
(e.g., genetic additive effects). Furthermore, the number 
of SNP effects (e.g., 50,000) is relatively low in compari-
son to the total number of equations in evaluations with a 
deep pedigree (e.g., with millions of animals). Therefore, 
the termination criterion er for ssGBLUP and for ssSN-
PBLUP should have similar values, provided that the 
common solutions of both systems are similar.

Data
The first data set used in this study, hereafter referred to 
as the FIN data set, was provided by Topigs Norsvin (The 
Netherlands). The other two data sets used in this study, 
hereafter referred to as KAR and LON data sets, were 
provided by CRV BV (The Netherlands).

(7)

�rL� =�

�

rG
0

�

+







�

0
1
wA

−1
gg Zσ−2

u ǫL

�

�

1
wZ

′
A−1
gg Z+ m

1−w I
�

σ−2
u ǫL






�,
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The FIN data set and associated variance components 
were extracted from an 11-trait genetic evaluation for 
grower-finisher traits. After extraction, the data file 
included 752,067 records with a single record per animal 
(all born before July 2017), and all records had missing 
observations for at least one trait. The pedigree included 
835,562 animals. The genotypes included 23,102 segre-
gating SNPs, and were associated with 38,488 animals. 
The 11-trait mixed model included random effects (lit-
ter, pen, group, additive genetic and residual), fixed co-
variables [weight at start, at halfway, and at the end of 
the feed intake trajectory, weight (linear and quadratic) 
nested within farm-line-sex, probability of the sire pass-
ing the favorable allele for insulin-growth factor 2 (IGF2)] 
and fixed cross-classified effects (trial, farm-line-sex, 
compartment within farm). The traits included aver-
age daily gain measured across two time periods, back 
fat, loin depth, and feed intake across the entire testing 
period (all as separate traits for purebred and crossbred 
animals), and feed intake across the second half of the 
testing period, for purebred animals only.

The KAR data set and associated variance components 
were from the four-trait routine genetic evaluation of 
December 2019 for temperament and milking speed of 
dairy cattle for the Netherlands and the Flemish region 
of Belgium [24, 25]. Performances in  each of  these two 
countries were considered as different traits. The data 
file included 4,058,154 records with a single record per 
animal. The pedigree included 6,344,482 animals. The 
genotypes included 37,995 segregating SNPs, and were 
associated with 123,644 animals. The four-trait mixed 
model included random effects (additive genetic and 
residual), fixed co-variables (heterosis and recombina-
tion) and fixed cross-classified effects (herd × year × sea-
son at classification, age at classification, lactation stage 
at classification, milk yield and month of calving) [24, 25].

The LON data set and associated variance compo-
nents were from the univariate routine genetic evalua-
tion of August 2019 for longevity of dairy cattle for the 
Netherlands and the Flemish region of Belgium [26, 
27]. The data file included 408,107,042 records associ-
ated with 12,528,520 animals. The pedigree included 
14,589,796 animals. The genotypes included 37,995 
segregating SNPs, and were associated with 120,000 
animals that were randomly selected among 192,714 gen-
otyped animals. The univariate random regression mixed 
model included random effects (Legendre polynomi-
als (5th order) and residual), fixed co-variables (hetero-
sis and recombination) and fixed cross-classified effects 
(herd  ×  year  ×  season  ×  lactation stage, year  ×  sea-
son  ×  age of first calving  ×  within-herd production 
level × lactation-stage, herd size change) [26, 27].

Analyses
The ssGBLUP and ssSNPBLUP systems for the three data 
sets were solved using a Fortran 2003 program that is 
described in Vandenplas et  al. [28]. All real vectors and 
matrices (including the preconditioner) were stored in-
memory using double-precision real arrays.

For the FIN data set, the preconditioner M had a block-
diagonal structure that included all equations for the 
fixed effects, and a block-diagonal structure for the ran-
dom effects with blocks corresponding to equations for 
all traits within a level (e.g., an animal). For the KAR data 
set, the preconditioner M included only the diagonal ele-
ments of the coefficient matrix for the fixed effects, and 
a block-diagonal structure for the random effects with 
blocks corresponding to equations for different traits 
within a level (see [9] for more details). For the LON data 
set, two different preconditioners were tested to evaluate 
their impact on convergence. In the first case, the precon-
ditioner M had a diagonal structure for all effects. Here-
after we refer to this evaluation as the LON evaluation. 
In the second case, the preconditioner M had a diagonal 
structure for the fixed effects, and blocks of elements for 
the random effects with blocks corresponding to equa-
tions for the different Legendre polynomials within a 
level (i.e. an animal). Hereafter we refer to this evalua-
tion as the LON +  block evaluation. For the three data 
sets, the proportion of variance (due to additive genetic 
effects) considered as residual polygenic effects, w, was 
assumed to be equal to 0.10 or 0.30 to evaluate its impact 
on convergence.

For analyzing the different termination criteria, all 
systems of equations were solved twice with the PCG 
method. All PCG processes iterated until the termina-
tion criterion CM or CK was ≤ 5. ∗ 10−3 , ensuring a 
relative error in the solution ≤ 5. ∗ 10−3 . Each solution 
vector obtained from the first iterative process, hereaf-
ter called manufactured solution, was pre-multiplied by 
the corresponding coefficient matrix to obtain a manu-
factured right-hand side. The systems of equations were 
then solved a second time after replacing the right-hand 
sides computed from the datasets by the manufactured 
right-hand sides. The manufactured solutions were there-
fore the true solutions of these systems of equations with 
manufactured right-hand sides. All results presented in 
this study are related to these systems of equations.

The smallest and largest eigenvalues that influence 
the convergence were approximated by the smallest 
and largest Ritz values, respectively. These extremal 
Ritz values were obtained every 200-th iteration, start-
ing at iteration 200, using the Lanczos method based on 
information obtained from the PCG method [21]. In our 
approach, the main computational cost consisted of the 
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Fig. 1  Logarithm of the smallest and largest Ritz values (on the y-axis) for the different evaluations. Smallest Ritz values are depicted for ssGBLUP 
with a proportion of residual polygenic variance equal to 10%, for ssGBLUP with a proportion of residual polygenic variance equal to 30%, for 
ssSNPBLUP with a proportion of residual polygenic variance equal to 10%, and ssSNPBLUP with a proportion of residual polygenic variance equal to 
30%

Table 1  Characteristics of systems for ssGBLUP and ssSNPBLUP

a  Percentage of variance (due to additive genetic effects) explained by residual polygenic effects
b  κ = Effective spectral condition number of the preconditioned coefficient matrix

Evaluation Modela #Equations #Iterations Smallest eig. Largest eig. κ b

FIN ssGBLUP (10) 11,373,208 4912 3.270 ∗ 10−6 3.924 1.200 ∗ 106

ssGBLUP (30) 11,373,208 4929 3.269 ∗ 10−6 3.934 1.203 ∗ 106

ssSNPBLUP (10) 11,627,330 5001 3.270 ∗ 10−6 3.921 1.199 ∗ 106

ssSNPBLUP (30) 11,627,330 4937 3.269 ∗ 10−6 3.931 1.202 ∗ 106

KAR ssGBLUP (10) 26,709,604 3902 2.882 ∗ 10−6 5.062 1.757 ∗ 106

ssGBLUP (30) 26,709,604 3968 2.379 ∗ 10−6 5.063 2.128 ∗ 106

ssSNPBLUP (10) 26,861,584 4037 2.811 ∗ 10−6 5.062 1.801 ∗ 106

ssSNPBLUP (30) 26,861,584 3988 2.366 ∗ 10−6 5.063 2.140 ∗ 106

LVD ssGBLUP (10) 96,688,714 5431 6.248 ∗ 10−6 8.635 1.382 ∗ 106

ssSNPBLUP (10) 96,916,684 5888 5.312 ∗ 10−6 8.935 1.682 ∗ 106

LVD + block ssGBLUP (10) 96,688,714 1761 1.672 ∗ 10−5 4.160 2.488 ∗ 105

ssGBLUP (30) 96,688,714 1959 1.295 ∗ 10−5 4.161 3.212 ∗ 105

ssSNPBLUP (10) 96,916,684 2542 1.140 ∗ 10−5 6.201 5.441 ∗ 105

ssSNPBLUP (30) 96,916,684 2336 1.260 ∗ 10−5 5.686 4.513 ∗ 105
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eigendecomposition of a tridiagonal matrix of size equal 
to the number of iterations and computed following 
Eq. 2.3 in Kaasschieter [21].

The smallest Ritz value was used to estimate µ1 , needed 
for the termination criterion CK, and the ratio of the 
largest and smallest Ritz values was used to approximate 
κ

(

M̃−1C
)

 , needed for the termination criterion CM. Our 
initial analyses showed that the termination criteria CK 
and CM could result in stopping the iterative process too 
soon (i.e. before a desired level of accuracy of the solu-
tions is achieved), because the smallest Ritz values com-
puted at the beginning of the iterative process are poor 
estimates of the smallest active eigenvalues of the pre-
conditioned coefficient matrix. Therefore, starting values 
for µ1 and κ

(

M̃−1C
)

 were provided to the PCG method. 
These starting values for µ1 ( κ

(

M̃−1C
)

 ) were replaced by 
the Ritz value-based estimates when they became larger 
(smaller) than their corresponding estimates. Based on 
previous experiences, the starting values used for µ1 
( κ
(

M̃−1C
)

 ) were set to 10−6 ( 106 ) for FIN, 10−5 

( 1.5 ∗ 106 ) for KAR, 10−5 ( 106 ) for LON, and 2 ∗ 10−5 
( 105 ) for LON + block.

The solution vector was saved in a binary file every 
100-th iteration starting at iteration 200. After termina-
tion, using the manufactured solutions as true solutions, 
the relative error in x , er,i , was computed every 100-th 
iteration. The termination criteria CR and CD, as well as 
�M̃−1ri�
�x̂i�

 and �M̃
−1ri�

�M̃−1b�
 , were computed at each iteration. 

After the last PCG iteration was finished, the largest and 
smallest Ritz values were computed. The termination cri-
teria CK and CM were then retrospectively computed for 
all iterations, with µ1 being approximated by the smallest 
Ritz value, and κ

(

M̃−1C
)

 by the ratio of the largest and 
smallest Ritz values. The termination criterion CR for 
ssSNPBLUP was also computed by excluding equations 
for SNP effects.

Finally, from a practical point of view, a relative error in 
the solution ≤ 5. ∗ 10−3 might not be required in routine 
evaluations, and the iterative process could be stopped 
sooner. We investigated this assumption by determin-
ing the number of iterations needed to achieve a maxi-
mal absolute difference between intermediate and true 

Fig. 2  Relative errors in the solutions for the different evaluations. Relative errors in the solutions are depicted for ssGBLUP with a proportion 
of residual polygenic variance equal to 10%, for ssGBLUP with a proportion of residual polygenic variance equal to 30%, for ssSNPBLUP with a 
proportion of residual polygenic variance equal to 10%, and ssSNPBLUP with a proportion of residual polygenic variance equal to 30%
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genetic effects (or Legendre polynomials) lower than 1% 
of a genetic standard deviation for all the traits. The num-
ber of iterations needed to achieve a Pearson correla-
tion greater than 0.99990 between intermediate and true 
genetic effects (or Legendre polynomials) for each trait 
separately was also determined.

Results
Ritz values and effective spectral condition numbers
The Ritz values computed at different iterations are 
depicted in Fig.  1. For the four evaluations, the largest 
Ritz values varied between 3.9 and 8.9, and are well esti-
mated within less than 200 iterations (Fig.  1; Table  1). 
Furthermore, within each of the four evaluations, the 
largest Ritz values of equivalent ssGBLUP and ssSNPB-
LUP were almost equal. Regarding the smallest Ritz val-
ues, their estimates follow a similar pattern for ssGBLUP 
and ssSNPBLUP. Therefore, they are of similar order for 
each of the four evaluations, and varied between 10−5 
and 10−6 after termination (Fig. 1; Table 1). In all cases, 
both the largest and the smallest Ritz values for ssGB-
LUP and ssSNPBLUP do not seem to be influenced by 

the proportion of variance assigned to the residual poly-
genic effects. Finally, similar extremal Ritz values asso-
ciated with different ssGBLUP and ssSNPBLUP resulted 
similar estimates of effective spectral condition numbers 
for these linear systems (i.e. all around 106 ; Table 1). 

Termination criteria
Termination criteria er , CD, CK, and CM, shown in 
Figs. 2, 3, 4, 5, 6, show similar patterns for ssGBLUP and 
ssSNPBLUP for the four evaluations, and independently 
of the proportion of additive genetic variance assigned 
to the residual polygenic effects. This is not the case 
for the termination criterion CR that is associated with 
a pattern for ssSNPBLUP applied to KAR, LON, and 
LON +  block a few folds higher than the correspond-
ing pattern of CR for ssGBLUP. This behavior is not 
observed for FIN. Excluding the equations of the SNP 
effects for computing the termination criterion CR for 
ssSNPBLUP resulted in a pattern similar to the corre-
sponding pattern for CR of ssGBLUP for all four evalu-
ations (Fig. 7).     

Maximal absolute differences between intermedi-
ate and true genetic effects (or Legendre polynomials) 

Fig. 3  Termination criteria for the FIN data set. Termination criteria are depicted for ssGBLUP with a proportion of residual polygenic variance equal 
to 10%, for ssGBLUP with a proportion of residual polygenic variance equal to 30%, for ssSNPBLUP with a proportion of residual polygenic variance 
equal to 10%, and ssSNPBLUP with a proportion of residual polygenic variance equal to 30%
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lower than 1% of a genetic standard deviation for all 
traits were obtained for FIN after about 65% of the 
total number of iterations needed to satisfy a thresh-
old of 5 ∗ 10−3 for CK or CM, after around 35–47% for 
KAR, and after around 90% for LON and LON + block 
(Table  2). Even fewer iterations were needed to reach 
correlations between intermediate and true genetic 
effects (or Legendre polynomials) higher than 0.99990: 
around 53% of the total number of iterations for FIN, 
around 27% for KAR, and between 63 and 77% for LON 
and LON + block (Table 3). 

Discussion
Convergence behavior of the PCG method
The rate of convergence of CG-based methods depends 
not only on the effective spectral condition number of 
the (preconditioned) coefficient matrix of the system 
being solved, but also on the distribution of eigenval-
ues of the (preconditioned) coefficient matrix [23, 29]. 
For the data sets used in this study, the PCG meth-
ods applied to ssGBLUP and ssSNPBLUP show an 
approximately linear convergence behavior in the loga-
rithm of the relative error in the solution x , er . Similar 

convergence behaviors can be also observed for other 
termination criteria in this study, as well as in other 
studies that used the PCG method to solve pedigree 
BLUP or ssGBLUP (e.g., [11, 12, 30]). These approxi-
mately linear convergence behaviors suggest that the 
spectra of the preconditioned coefficient matrices 
are composed of eigenvalues that are well distributed 
across the whole spectrum. This implies that these 
spectra have no, or only a few, isolated eigenvalues 
[23]. Such a well-distributed spectrum and linear con-
vergence were also observed by Vandenplas et  al. [9] 
who computed the entire spectrum of a preconditioned 
coefficient matrix for a small system of ssSNPBLUP 
developed by Mantysaari and Stranden [31]. Therefore, 
the rate of convergence of the PCG method applied 
to ssGBLUP or ssSNPBLUP mainly depends on the 
effective spectral condition number of the associated 
preconditioned coefficient matrix, and not on its asso-
ciated distribution of eigenvalues. It follows that the 
PCG method applied to different evaluations (ssGBLUP 
or ssSNPBLUP) associated with similar effective spec-
tral condition numbers should result in similar rates 
of convergence, convergence behavior, and number 

Fig. 4  Termination criteria for the KAR data set. Termination criteria are depicted for ssGBLUP with a proportion of residual polygenic variance equal 
to 10%, for ssGBLUP with a proportion of residual polygenic variance equal to 30%, for ssSNPBLUP with a proportion of residual polygenic variance 
equal to 10%, and ssSNPBLUP with a proportion of residual polygenic variance equal to 30%
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of iterations to meet a defined threshold of a specific 
termination criterion, provided that the termination 
criterion does not depend on the properties of the dif-
ferent systems, or considers them adequately. This was 
the case for the evaluations FIN, KAR, and LON. The 
different ssGBLUP and ssSNPBLUP evaluations for 
LON + block were associated to slightly different effec-
tive spectral condition numbers, resulting in different 
numbers of iterations to satisfy the same termination 
criterion.

Termination criteria
Four termination criteria were compared across differ-
ent combinations of data sets and models. One of them, 
the termination criterion CR, is related to the residual of 
the system, and shows different patterns when applied 
to ssGBLUP and ssSNPBLUP. These different behaviors 
can be explained by the errors in the estimates of the 
SNP effects. Indeed, excluding the SNP equations from 
the termination criterion CR for ssSNPBLUP resulted 
in patterns similar to those of ssGBLUP (Eq. (7); Fig. 7). 

Using the termination criterion CR for ssSNPBLUP 
may lead to wrong conclusions, such as apparently non-
accurate solution estimates while they are actually accu-
rate enough for practical use. Another wrong conclusion 
could be that the PCG method applied to ssSNPBLUP 
poorly converges in comparison to ssGBLUP.

The two termination criteria CK and CM are related 
to the solutions of the system, and show similar pat-
terns when applied to ssGBLUP and ssSNPBLUP, inde-
pendently of the data set or of the preconditioner used. 
Because the number of SNP effects is a small propor-
tion of the total number of equations in large evalua-
tions, and because the SNP effect estimates are relatively 
small in comparison to the estimates of the other solu-
tions, convergence properties of the PCG method applied 
to ssGBLUP and ssSNPBLUP based on CK and CM are 
comparable. Based on these observations and on the 
properties of the four different termination criteria, the 
termination criteria CK and CM can be recommended 
for comparing convergence properties of different mod-
els with similar vectors of solutions. Based on our results, 

Fig. 5  Termination criteria for the LON data set when using a diagonal preconditioner. Termination criteria are depicted for ssGBLUP with a 
proportion of residual polygenic variance equal to 10%, and ssSNPBLUP with a proportion of residual polygenic variance equal to 10%
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it seems that the termination criterion CD can be a good 
alternative to CK and CM for comparing convergence 
properties when no implementation of these two latter 
criteria is available. Finally, the termination criteria CK 
and CM are also recommended for use in routine evalu-
ations, because they allow the users to specify a desired 
relative accuracy in x.

Threshold for termination criteria
The threshold applied in this study for the termination 
criteria CK and CM was quite severe (i.e., 5 ∗ 10−3 ). 
From a practical point of view, such an accuracy in the 
solutions is not required in routine evaluations, and the 
iterative process can be stopped sooner. For example, 
correlations between intermediate and true breeding val-
ues higher than 0.99990 were achieved within 27 and 77% 
of the total numbers of iterations needed to reach the 
severe threshold for CK and CM (Table 3). At this stage, 
Pearson correlations between intermediate and true SNP 
effects were all higher than 0.999. Based on the values 

obtained for the different termination criteria (Tables 2, 
3), thresholds for both CK and CM around 0.2 for FIN, 
2. for KAR, and 0.03 for LON and LON + block should 
therefore ensure enough accuracy in the solutions associ-
ated to the studied data sets for practical use. However, 
the adequacy of these thresholds should be checked and 
adapted for each evaluation.

Implementation for CK and CM
In practice an estimate of the smallest active eigenvalue 
µ1 needed for the termination criterion CK, or of the 
effective spectral condition number needed for the ter-
mination criterion CM, is unknown until the termina-
tion of the iterative process. Our initial analyses with an 
approach based on the Lanczos method to update an 
estimate of µ1 at each iteration (similarly to the approach 
proposed by Kaasschieter [21]), showed us that such an 
approach may lead to stop the iterative process too soon, 
i.e. before a desired level of accuracy of the solutions is 
achieved (results not shown). This undesirable behavior 

Fig. 6  Termination criteria for the LON data set when using a block-diagonal preconditioner. Termination criteria are depicted for ssGBLUP with a 
proportion of residual polygenic variance equal to 10%, for ssGBLUP with a proportion of residual polygenic variance equal to 30%, for ssSNPBLUP 
with a proportion of residual polygenic variance equal to 10%, and ssSNPBLUP with a proportion of residual polygenic variance equal to 30%
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was avoided by using conservative starting values for µ1 
and κ

(

M̃−1C
)

 . These default values can be determined 
based on a previous analysis of a similar data set, or on 
previous experiences. Finally, the computation of the 
Ritz values at regular intervals (e.g., every 100-th itera-
tion) allows to reduce its cost on the whole PCG process, 
even if this cost is relatively small. The main cost of the 
computation of the Ritz values is the eigendecomposi-
tion of a tridiagonal matrix of size equal to the number 
of iterations. In our analyses, each eigendecomposition 
took less than 1 s (wall clock time) until around 3000 
iterations.

Conclusions
In this study, we proposed two termination criteria for 
the PCG algorithm that consider the properties of the 
system of equations being solved, and that can be related 
to the relative error in the solutions. Based on our imple-
mented approaches and results, we showed that the PCG 
algorithms applied to ssSNPBLUP and ssGBLUP show 
similar convergence patterns, provided that the termina-
tion criterion does not depend on the properties of the 
different systems, or considers them adequately. We also 
showed that the Ritz values, that are approximations of 
the eigenvalues of the preconditioned coefficient matrix 
and that can be computed directly from the PCG out-
puts, are a good tool to better understand the conver-
gence behavior of the PCG algorithm.

Fig. 7  Logarithm of termination criterion CR computed by excluding the SNP effects for different evaluations. Termination criterion CR is depicted 
for ssGBLUP with a proportion of residual polygenic variance equal to 10%, for ssGBLUP with a proportion of residual polygenic variance equal to 
30%, for ssSNPBLUP with a proportion of residual polygenic variance equal to 10%, and ssSNPBLUP with a proportion of residual polygenic variance 
equal to 30%



Page 13 of 15Vandenplas et al. Genet Sel Evol           (2021) 53:34 	

Table 2  Number of iterations needed to reach a difference (for each trait) between intermediate and true estimates of genetic effects 
(or Legendre polynomials) lower than 1%

Values of termination criteria corresponding to the number of iterations are reported
aPercentage of variance (due to additive genetic effects) explained by residual polygenic effects
bThe solutions were stored and evaluated every 100-th iteration
c er = relative errors in the solutions

Evaluation Modela # Iterationsb er c CR CD CK CM

FIN ssGBLUP (10) 3200 4.432 ∗ 10−3
4.295 ∗ 10−8 1.134 ∗ 10−5 0.105 0.327

ssGBLUP (30) 3200 4.864 ∗ 10−3
3.162 ∗ 10−8 1.922 ∗ 10−5 0.181 0.444

ssSNPBLUP (10) 3200 2.724 ∗ 10−3
3.719 ∗ 10−8 1.871 ∗ 10−5 0.155 0.448

ssSNPBLUP (30) 3200 4.600 ∗ 10−3
5.168 ∗ 10−8 1.536 ∗ 10−5 0.172 0.412

KAR ssGBLUP (10) 1800 8.745 ∗ 10−4
6.520 ∗ 10−8

5.535 ∗ 10−6 0.431 0.877

ssGBLUP (30) 1400 9.561 ∗ 10−4
7.483 ∗ 10−7

8.794 ∗ 10−6 1.163 2.372

ssSNPBLUP (10) 1900 8.180 ∗ 10−4
6.845 ∗ 10−6

4.194 ∗ 10−6 0.444 0.905

ssSNPBLUP (30) 1500 8.181 ∗ 10−4
4.504 ∗ 10−6

6.830 ∗ 10−6 0.802 1.636

LON ssGBLUP (10) 5200 9.709 ∗ 10−5
1.590 ∗ 10−9

6.699 ∗ 10−8 0.006 0.023

ssSNPBLUP (10) 5600 1.126 ∗ 10−4
6.966 ∗ 10−7

5.583 ∗ 10−8 0.006 0.025

LON + block ssGBLUP (10) 1600 4.178 ∗ 10−5
1.868 ∗ 10−8 5.976 ∗ 10−7 0.010 0.039

ssGBLUP (30) 1800 5.085 ∗ 10−5
5.054 ∗ 10−9 5.041 ∗ 10−7 0.011 0.042

ssSNPBLUP (10) 2000 6.559 ∗ 10−5
4.742 ∗ 10−6 7.822 ∗ 10−7 0.021 0.083

ssSNPBLUP (30) 2100 5.314 ∗ 10−5
1.372 ∗ 10−6 4.656 ∗ 10−7 0.013 0.052

Table 3  Number of iterations needed to reach a Pearson correlation (for each trait) between intermediate and true estimates of 
genetic effects (or Legendre polynomials) greater than 0.99990

Values of termination criteria corresponding to the number of iterations are reported
aPercentage of variance (due to additive genetic effects) explained by residual polygenic effects
bThe solutions were stored and evaluated every 100-th iteration
c er = relative errors in the solutions

Evaluation Modela # Iterationsb er c CR CD CK CM

FIN ssGBLUP (10) 2700 9.547 ∗ 10−3 1.623 ∗ 10−7
4.237 ∗ 10−5 0.241 0.749

ssGBLUP (30) 2600 1.282 ∗ 10−2
7.813 ∗ 10−8 3.195 ∗ 10−5 0.327 0.802

ssSNPBLUP (10) 2500 9.372 ∗ 10−3 1.274 ∗ 10−7
5.587 ∗ 10−5 0.530 1.533

ssSNPBLUP (30) 2700 1.069 ∗ 10−2 2.117 ∗ 10−7
4.144 ∗ 10−5 0.335 0.805

KAR ssGBLUP (10) 1100 3.460 ∗ 10−3 3.293 ∗ 10−7
3.967 ∗ 10−5 2.595 5.284

ssGBLUP (30) 1100 3.675 ∗ 10−3
1.063 ∗ 10−6 2.904 ∗ 10−5 4.096 8.354

ssSNPBLUP (10) 1100 4.115 ∗ 10−3 1.851 ∗ 10−5
1.683 ∗ 10−5 2.737 5.572

ssSNPBLUP (30) 1100 4.039 ∗ 10−3 1.135 ∗ 10−5
2.435 ∗ 10−5 4.189 8.544

LON ssGBLUP (10) 3900 1.607 ∗ 10−4
1.540 ∗ 10−8 6.789 ∗ 10−7 0.060 0.235

ssSNPBLUP (10) 4100 1.974 ∗ 10−4
1.849 ∗ 10−6 5.344 ∗ 10−7 0.069 0.267

LON + block ssGBLUP (10) 1300 1.476 ∗ 10−4
2.273 ∗ 10−8

2.121 ∗ 10−6 0.040 0.154

ssGBLUP (30) 1500 1.177 ∗ 10−4
1.987 ∗ 10−8

2.003 ∗ 10−6 0.043 0.165

ssSNPBLUP (10) 1600 1.393 ∗ 10−4
1.549 ∗ 10−5

2.839 ∗ 10−6 0.073 0.282

ssSNPBLUP (30) 1800 9.499 ∗ 10−5
5.961 ∗ 10−6

1.352 ∗ 10−6 0.039 0.153
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