Deducing the Location of Glass Windows in 3D Indoor Environments

Mels Smit 13-01-2022

Mentor #1: Edward Verbree Mentor #2: Martijn Meijers Mentor CGI: Robert Voûte Delegate of BE: Lei Qu

In collaboration with:

Content

- Motivation
- Research Objective
- Theory
- Methodology
- Results
- Conclusion

Increase of Data

• The Global Datasphere has increased drastically

Motivation Rese

Research Objective

Theory Meth

Methodology

Results

3D Environments

Motivation

Research Objective

Theory

TUDelft

Methodology

Results Conclusion CG

Point Cloud

• Dataset that represents an environment using (millions of) points.

Motivation Researce

Research Objective

Theory Mo

Methodology Results

LIDAR

• LiDAR scanning captures points using laser to represent e.g. buildings

Glass

- Problematic material for laser scanning.
- Reflective

elft

- Transparent
- Still noticeable?

Motivation

Research Objective

Results

Conclusion

Methodology

Theory

Problem Statement

- Prevent uncomfortable or potentially dangerous situations
- Add glass to the scene

Research Objective

Theory

Methodology

Conclusion Results

Related Work

- Physical Manipulation
 - Window foil

- Active Illumination
 - Structured light

Motivation Res

Research Objective

Theory

Methodology

Results

Related Work

- Passive Methods
 - Depth properties

- Sensor Fusion
 - LiDAR + Sonar

Results

Motivation

Research Objective

Theory

Methodology

Related Work

- Mirror detection
 - Robot + SLAM

- Temperature monitoring
 - Glass = heat loss

Motivation Re

Research Objective

Theory

Methodology

Results

Downsides of other approaches

Different types of data

• Not always available

More expensive

- Different scanners
- Time to prepare scene

Motivation

Research Objective

Theory M

Methodology

Results

Research Question

How can the <u>location of glass</u> be deduced using only information acquired from <u>3D point clouds</u> and a <u>reference position</u>?

Motivation **Research Objective**

ve Theory

/ Methodology

ogy Results

Why can glass not be captured properly?

• Laser with wavelength of \approx 900 nm

• Possibility 1: Transmission

• Possibility 1: Transmission

ft

• Possibility 1: Transmission

• Possibility 2: Reflection

• Possibility 2: Reflection

• Possibility 2: Reflection

• Possibility 2: Reflection

Example of possibility 2 in the data

Motivation

Research Objective

Theory N

Methodology

Results

• Possibility 3: Direct reflection or absorption

• Possibility 3: Direct reflection or absorption

• Possibility 3: Direct reflection or absorption

Example of possibility 3 in the data

TUDelft

Motivation

Research Objective

<u>Theory</u>

Methodology

Results Conclusion

Overview Methodology

Input data

Motivation

Research Objective

Theory

Methodology

Results

Calculate Euclidean Distances

elft Motivation

Research Objective

Theory **Methodology**

Results

Mercator Projection

• Reference point = Projection Origin

Point Cloud \rightarrow 3D Histogram

3D Histogram \rightarrow 2D Image

Research Objective

elft

Motivation

Theory

Methodology

Results

Conclusion

CGI

CLAHE

• Histogram Equalization

Contrast Limitation

Motivation Rese

Research Objective

e Theory

Methodology

gy Results

CLAHE

Motivation Resea

Research Objective

ve Theory

Methodology

logy Results

Conclusion

CGI

CLAHE

UDelft Motivation

Research Objective

Theory

Methodology

Results

Canny Edge Detection

-1	0	1		1	2	1
-2	0	2		0	0	0
-1	0	1		-1	-2	-1
Sobel X			Sobel Y			

TUDelft Motivation

Research Objective

ve Theory

Methodology

gy Results

Conclusion

Canny Edge Detection

Motivation

elft

Research Objective

ective Theory

Methodology

ology Results

Contour Extraction

Motivation

Research Objective

Theory

Methodology

Results

Conclusion

CG

Rectangle Validation

Motivation

Research Objective

Theory

Methodology

- Contour simplification
 - Douglas-Peucker algorithm
 - 4 points as corners

Results

Rectangle Validation

What is considered a window?

• 4 corners 90° ± Error Margin

Theory **Methodology**

Results

Rectangle Validation

Research Objective

Theory

Get Regions of Interest based on Candidate Windows

 Pyramid-shaped region of interest in LiDAR point cloud with reference point as the origin/tip

Conclusion

Results

Cluster the Regions on Interest

- Density-Based Clustering
- Takes gaps in space into account

TUDelft

Motivation Resea

Research Objective

Theory

Methodology

Results Conclusion

Window Deduction

- Principal Component Analysis
- 3 eigenvalues and 3 eigenvectors per cluster

Research Objective

Theory

- Calculate geometrical features:
 - Linearity
 - Planarity
 - Sphericity
 - Verticality
 - Change of Curvature

Motivation

• Highest weighted average

Methodology Results

sion

Deduced Windows

TUDelft

Motivation Re

Research Objective

Theory

Methodology

y Results

Location

- Orange Hall
 - Wall of windows
 - Indoor windows
 - Open doors
 - Metal beams

Motivation Rese

Research Objective

Theory I

Methodology

Results Co

Scan locations

Motivation

TUDelft

Research Objective

Theory

Methodology

ogy <u>Results</u>

Location

- Leica RTC360
- Terrestrial Laser Scanner
- Range from 0.5 to 130 meter
- Up to 2 million points per second
- About 41 million point per scene

Motivation Resear

Research Objective

Theory

Methodology

logy <u>Results</u>

Results

Motivation

Research Objective

Theory

Methodology

Results

TUDelft

Motivation Resear

Research Objective

Theory Met

Methodology <u>Results</u>

Undetected window

- Intended window not found
 - Low scores on Linearity and Planarity
 - Rectangular cluster detected in the back

Research Objective

Theory N

Methodology

Results

Too many results

• Rectangular structures in the back are also found.

Motivation Rese

Research Objective

Theory

Methodology

Results

Nothing found in region

- Properly labeled to not include a result
 - Means invalid candidate window

Motivation

Results

Theory

Methodology

Too large results

- Correct window indication
 - Beam behind it is also detected

Results

Motivation Research Objective

Theory

Methodology

Too large results

ft

Motivation

- Initial candidate window was too large
 - Still correct but with extra data around it

Research Objective

Theory

Problems other scenes

CGI

Workaround

• Enlarging the closing kernel

Motivation

- Initially 3x3 kernel now 13x13 kernel
- Lowers details in scenes, but increases simplicity and reach

Research Objective

Theory

Methodology

Conclusion

Results

TUDelft Motivation

Research Objective

ve Theory

Methodology

gy **Results**

elft Motivation

Research Objective

Theory

Methodology

Results

- No windows in this scene is correct
- Mistaken contour was part of the door frame

Motivation Research

Research Objective

Theory Me

Methodology

Results

Motivation

Delft

Research Objective

ve Theory

Methodology

bgy <u>Results</u>

Conclusion

Motivation

How can the <u>location of glass</u> be deduced using only information acquired from <u>3D point clouds</u> and a <u>reference position</u>?

ve Theory

Methodology

Results

Conclusion

- Mixed Results
 - Difficult testing scene
- Possibility for deduction is shown!
- But...
 - Similar objects get recognized
 - Rectangular clusters
 - Beams
 - Issue with separating object

Motivation Resea

Research Objective

Theory Methodology

Future work

- Usage of different data to enhance the point cloud
 - Different datatypes to help with logic of deducing the location of glass
- Further investigation of point neighbourhoods
 - Once windows have been found more can be said on point classification
- Combination of multiple scans
 - Iteratively improve results by enhancing and validating them from other angles
- Deep Learning
 - Help find proper contours or clusters

Questions?

CGI

References to figures

- Slide 4: <u>https://insights.nikkoam.com/articles/2019/12/whats causing the exponential</u>
- Slide 5 left: <u>https://www.autodesk.com/solutions/3d-environment-modeling-workflow</u>
- Slide 5 right: <u>https://www.arkance-systems.be/be/what-is-a-digital-twin/</u>
- Slide 6: <u>https://sketchfab.com/3d-models/point-cloud-demo-natural-history-museum-london-05940cf8ceaa44b4852bb6f04537cb97</u>
- Slide 7: Mohamed Saleh Sedek in 3D Range Sensors Capture, Transform and Modeling of Defects
- Slide 8: https://www.indiamart.com/proddetail/white-glass-window-20165587897.html
- Slide 9: <u>https://m.facebook.com/Window-cleaner-memes-785200235176784</u>
- Slide 10 top: https://www.amazon.nl/Rhodesy-Raamfolie-zelfklevend-anti-uv-hitte-slaapkamer/dp/B07RHYW1SN/ref=asc_df_B07RHYW1SN/
- Slide 10 bottom: https://www.stemmer-imaging.com/media/uploads/sis/ST/STEMMER-IMAGING-EN-Inspecting-transparent-objects.pdf
- Slide 11 top: I. Lysenkov, V. Eruhimov, and G. Bradski. Recognition and pose estimation of rigid transparent objects with a kinect sensor. Robotics, 273(273-280):2, 2013.
- Slide 11 bottom: M. Ye, Y. Zhang, R. Yang, and D. Manocha. 3D reconstruction in the presence of glasses by acoustic and stereo fusion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4885–4893, 2015.

TUDelft

References to figures

- Slide 12 top: S.-W. Yang and C.-C. Wang. On solving mirror reflection in LIDAR sensing. IEEE/ASME Transactions on Mechatronics, 16(2):255–265, 2011.
- Slide 12 bottom: M. Jarząbek-Rychard, D. Lin, and H.-G. Maas. Supervised detection of façade openings in 3D point clouds with thermal attributes. Remote Sensing, 12(3): 543, 2020.
- Slide 30: <u>https://www.omnicalculator.com/math/3d-distance</u>
- Slide 31 left: <u>https://gisgeography.com/cylindrical-projection/</u>
- Slide 31 right: https://geodesy.noaa.gov/TOOLS/XYZ/xyz.shtml
- Slide 37: https://www.researchgate.net/figure/Lena-and-its-Canny-edge-based-image-95 fig2 324069876
- Slide 40: D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, 10(2):112–122, 1973.
- Slide 47: <u>https://www.braaksma-roos.nl/project/bk-city/</u>
- Slide 67: <u>https://www.geoweeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews.com/news/5-geospatial-questions-that-will-be-answered-at-geo-weeknews/5-geospatial-questions-that-will-be-answered-at-geospatial-geospatial-questions-that-will-be-answered-at-geospatial-questions-that-will-be-answered-at-geospatial-geospatial-questions-that-will-be-answered-at-geospatial-geospatial-geospatial-geospatial-geospatial-geospatial-geospatial-geospat</u>

