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The bending rigidity of two-dimensional (2D) materials is a key parameter for understanding the me-
chanics of 2D NEMS devices. The apparent bending rigidity of graphene membranes at macroscopic scale
differs from theoretical predictions at micro-scale. This difference is believed to originate from thermally
induced dynamic ripples in these atomically thin membranes. In this paper, we perform modal analysis
to estimate the effective bending rigidity of graphene membranes from the frequency spectrum of their
Brownian motion. Our method is based on fitting the resonance frequencies obtained from the Brownian
motion in molecular dynamics simulations, to those obtained from a continuum mechanics model, with
bending rigidity and pretension as the fit parameters. In this way, the effective bending rigidity of the
membrane and its temperature and size dependence, are extracted, while including the effects of dy-
namic ripples and thermal fluctuations. The proposed method provides a framework for estimating the
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macroscopic mechanical properties in other 2D nanostructures at finite temperatures.
© 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The exceptional mechanical properties of graphene have made
it a promising candidate for the next generation of 2D nano-
resonators with potential applications in pressure sensing [1,2],
mass sensing [3,4], and electronics [5—7]. A proper understanding
of the mechanics of this material is not only of fundamental interest
but also a key step towards the development of new devices.
Therefore, the elastic properties of graphene have been investi-
gated in many theoretical and experimental studies [8—13].

The bending rigidity of graphene, however, is still far from being
well-understood and compared to its Young's modulus, it is much
less investigated. This is due to the fact that for a single atom thick
membrane, this parameter is not determined by layer thickness,
but by the bending-induced changes in interactions between
electron orbitals. In fact, due to its low bending rigidity, as
compared to the limit of the continuum plate theories, graphene is
commonly assumed to have a membrane-like behavior with a
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negligible (zero) bending rigidity [11,12].

Direct measurement of bending rigidity has therefore been
challenging for mono-layer graphene, as well as other atomically
thin membranes. The mostly cited experimental value of 1.2eV was
derived from the phonon spectrum of graphite [14]. In another
study, Lindahl et al. [10] proposed a framework for extracting the
bending rigidity of a graphene membrane from the snap-through
behavior of its buckled configuration. Based on the proposed
method, the authors reported a bending rigidity of 7.1eV with a
large uncertainty of (-3eV to +4eV) for mono-layer graphene. In a
more recent study, Blees et al. [15], measured effective bending
rigidity of 103 — 104 eV. In this study, the authors have suggested
significant effects of thermal fluctuations as well as static wrinkles
on the obtained large bending rigidity.

On the other hand, many studies have investigated the theo-
retical limit of the bending rigidity of mono-layer graphene
[16—18]. The theoretical calculations of the bending rigidity for
mono-layer graphene have a large range of 0.69eV—0.83eV by
models using the Brenner potentials [19], 1.4eV—1.6eV by semi-
analytical and density functional theories [18,20,21], and
0.360eV—2.385eV by molecular mechanics simulations, varying

0008-6223/© 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/
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with size and aspect ratio of the membrane [22]. It has been re-
ported that bond-angle effects and the bond associated with the
dihedral angles are in fact the two dominant sources of the
apparent finite bending rigidity of graphene membranes [18]. In
addition to these effects, Roldan et al. [23] suggested that the
bending rigidity of graphene at finite temperatures is also highly
influenced by the thermodynamics. In Ref. [23], the authors used a
self-consistent theory of elastic membranes [24] and proposed a
thermodynamical approximation for the effective wave vector
dependent bending rigidity («) in formation of dynamic ripples:

K = ko + kpTA(qo/q)", (1)

where Tis the temperature, kg is the Boltzmann constant, kg = 1eV,
A = 59TW2-1) 5 — 0.85, and q is the wave number associated
with dynamic ripples. These ripples are shown to be large enough
to affect the effective macroscopic mechanical properties of
atomically thin membranes and ribbons [13,23,25—30]. Moreover,
qo = 2m\/Eap/ko [23,28], where E,p is the lateral stretching stiff-
ness of the membrane.

In this paper, we propose a novel approach based on modal
analysis for direct estimation of the macroscopic bending rigidity of
graphene membranes. Our method incorporates the effect of
Brownian motion and the resulting ripples on the bending rigidity.
We determine a single bending rigidity and pretension with which
our model can accurately reproduce up to 10 vibration modes and
natural frequencies obtained from atomistic simulations. Further-
more, we show that our obtained bending rigidity can be best fitted
with an effective wave number q.;f = /R, to Equation (1), where R
is the radius of the membrane.

The proposed approach for determining the bending rigidity of
graphene is outlined as follows: In Section 2, we derive a contin-
uum mechanics (CM) model for the resonance frequencies of a
prestressed circular graphene membrane as a function of its pre-
tension and bending rigidity. In Section 3, we employ Molecular
Dynamics (MD) simulations to model the Brownian motion in the
graphene membrane at finite temperatures. The natural fre-
quencies of the MD model are obtained by applying Fast Fourier
Transform (FFT) to the time signals extracted from MD. Finally, in
Section 4, by fitting the resonance frequencies obtained from the
Brownian motion, to those obtained from CM, the effective bending
rigidity is extracted. Moreover, in Section 5, the effects of different
temperatures and radii of the membrane on the bending rigidity
are discussed, and the results are compared to Equation (1).

2. Governing equations

In this section, we propose a model for obtaining the resonance
frequencies of a prestressed circular graphene membrane as a
function of its pretension and bending rigidity. In addition to the
symmetry, the choice of circular drums is because 2D NEMS devices
with circular shape yield better structural flexibility compared to
other geometries and have no corners or sharp edges that can
induce high residual stresses in practical applications [31]. How-
ever, it should be mentioned that the bending rigidity of graphene
membranes, particularly at small scales, is expected to depend on
the shape of the membrane as well [22].

We obtain the equations of motion by using the von Karman
plate theory [32] and by following Lagrangian approach. In our
formulation, bending rigidity (k) and the pretension (ng) of the
membrane are considered to be unknown parameters that will be
calibrated by means of MD simulations. In this approach, we
approximate the transverse displacement component by a super-
position of a finite number of suitably chosen basis functions:

w(t,r,0) = Zq,(t)cp r.0), (2)

where g; are the time dependent generalized coordinates and ®;
are the admissible shape functions. Here, the vibration modes of a
circular membrane (with negligible bending stiffness) are
employed as the shape functions [33]:

Winn(r, 0) :]m<ﬂmn£>cos(m0), m=0,1,.n=1,2,... (3)

where r and # are polar coordinates, R is the radius of the mem-
brane, J; is the m™ order Bessel function of the first kind, and 8,,, is
the n root of the Bessel function. The chosen subset for the
spectral projection is &= [Wo] ,Wiq, Woq, Wy, W31, Wi, Wy,
Wo,, Wo3, Ws1] which correspond to the modes with the 10 lowest
frequencies, and it will be shown that these are sufficient for
obtaining a converged bending rigidity.

Next, in order to form the Lagrange equations, the total po-
tential energy and kinetic energy of the system shall be obtained.
In linear vibrations, the total strain energy of a circular membrane
with bending rigidity consists of two terms: (i) the membrane
term which is the stretching potential energy of a classical plate
where the nonlinear in-plane displacement due to transverse
deflection is neglected and only the terms due to the pretension
(ng) are included, and (ii) the bending term which is similar to the
bending potential of a classical Kirchhoff plate in small deflections
and rotations [32]. Therefore, the potential energy can be obtained
in terms of transverse displacement component and its de-
rivatives as:
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where » is the Poisson's ratio. Assuming temperature independent
material properties, the pretension due to a thermal strain can be
derived as [32]:

aE
ng = — 0 AT, (5)

in which E;p is the lateral stretching stiffness of the membrane, « is
the thermal expansion coefficient, and AT is the temperature
change in the membrane. The kinetic energy of the membrane with
a density of p and a thickness of h is given by

1 27 R
- Eph/ /wz rdrdd. (6)
0 0

As a consequence, the Lagrangian of the system (L = K — U) can
be formulated as a function of the unknown parameters g;, ng, and
k, as well as the known variables R, h, E;p and ». Using Lagrange
equations, a set of n equations describing the motion of the
membrane in terms of g; is obtained. The set of equations of motion
can be expressed in the matrix form as:
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Md + Kq =0, (7)

where K and M are the equivalent stiffness and mass matrices,

. . . — aZU - aZK .
respectively, in which k; = 300 and m;; = 34,00 Moreover, q is the
vector comprising time dependent generalized coordinates. The
resonance frequencies can be directly determined from the char-

acteristic equation of this system (i.e. det(ﬁ_lﬁ— iwz) =0).

It should be noted that the stiffness matrix (ﬁ), and hence the
obtained resonance frequencies (wiCM) will be functions of the
pretension (ng) and bending rigidity (k). These frequencies are in-
dependent of the value of the elastic modulus, since, the elastic

modulus only affects the nonlinear dynamics of the membrane at
large amplitudes [12] and not the linear response.

3. Numerical implementation

In order to perform MD simulations, we use LAMMPS software
[34]. In this software, the equations of motion are integrated using
the velocity-Verlet integrator algorithm, with a time-step of 1 fs.
The simulations are performed for a circular, flat, mono-layer gra-
phene sheet with a radius of 1-10 nm. The atoms in this structure

-10 -5 0 5 10

°
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=

(b)

Fig. 1. The schematics of MD model. a) The circular, flat, mono-layer graphene sheet
with a radius of 10 nm (blue dots), and three rows of atoms along the boundary at
which the degrees of freedom is restricted (red dots). b) A snapshot of the Brownian
motion of the membrane with radius of R = 10 nm, and T= 300 K. (A colour version of
this figure can be viewed online.)

are ordered in a hexagonal grid with an inter-atomic distance of
1.42 A (see Fig. 1a). The forces between atoms are described by the
Tersoff potential, which is commonly used for modeling the atomic
interactions in diamond, graphite, and graphene [17].

Since the initial position of the atoms may not exactly corre-
spond to equilibrium or the minimum potential state, the system is
relaxed by minimizing the total potential energy. The minimization
is performed by the Polak-Ribiere conjugate gradient algorithm
[35]. The iterations are terminated when the energy is less than 1 x
10-19 eV or when the forces are less than 1 x 1010 eV/A. While
relaxing the system, the out of plane motion is inhibited, to prevent
curling of the membrane. After the relaxation, the edge is fully
clamped by restricting all the translational degrees of freedom of
three rows of atoms along the boundary.

Next, the system is allowed to equilibrate in the constant vol-
ume and constant temperature ensemble (NVT) using the Nose-
Hoover thermostat algorithm [36]. In this stage, the Nose-Hoover
thermostat guarantees the Maxwell-Boltzmann velocity distribu-
tion, while the damping parameter is 20 fs, which is sufficient in the
stable temperature conditions. The algorithm is performed for 50
ps (i.e. 50000 time-steps) to ensure a stable temperature is ach-
ieved. The results of our simulations show that a 50 ps of NVT
simulation is sufficient to equilibrate the largest membrane (20-nm
diameter graphene) for our highest simulation temperature. During
thermalization, the boundaries of the membrane are fixed. This
means the membrane will be tensioned, as a result of the negative
thermal expansion of graphene [37,38]. Finally, the vibration
response is studied in an energy conserving ensemble (NVE).

After the desired temperature is achieved, the thermal fluctua-
tions of the graphene membrane are monitored for 20ns. The atoms
coordinates are saved every 0.5 ps (i.e. 500 time-steps), which
corresponds to approximately 20 points per vibration period of the
fifth resonance of a graphene membrane with a radius of 10 nm in
300 K. To avoid under-sampling, the coordinates of the atoms are
saved every 0.1 ps for membranes with radii of smaller than 3 nm.
The MD simulations are repeated for 4—6 times for each combi-
nation of temperature and radius. Fig. 1b, shows one snapshot of
the Brownian motion of a graphene membrane with a radius of
10 nmat T=300K. The dynamic ripples due to thermal fluctua-
tions can be clearly observed in this figure.

The time response of the position of an atom in the center of the
membrane due to these thermal fluctuations over time is shown in
Fig. 2. It can be observed that the range of the deflection at the
center of the membrane is in the order of graphene's thickness
(0.335nm). Thus, graphene at room temperature behaves as a
dynamically corrugated plate that has a corrugation amplitude
similar to its thickness. This shows the importance of including
thermal fluctuations in the estimation of graphene's mechanical
properties, and also provides a mechanism by which the effective
bending rigidity of graphene depends on temperature.

It should be mentioned that the amplitude of thermal fluctua-
tion even at high temperatures is relatively small which ensures
that the resonance frequencies are not largely affected by non-
linearities. In order to observe nonlinear effects, large amplitude
vibrations are needed which would require imposing a large initial
velocity/displacement to the membrane [39,40]. However, this
amplitude dependent frequency in graphene has been shown to be
eventually damped to the linear frequencies of the membrane
during thermalization [41]. Since in our work, the idea is to obtain
linear frequencies, we only look into the final stabilized condition
that includes the natural frequencies that are required to obtain a
converged bending rigidity.

By applying FFT to the obtained MD time signal, the natural
frequencies of the membrane are obtained. The FFT is performed on
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Fig. 2. Transverse position of the center atom over time, while R =10 nm, and
T=300K. (A colour version of this figure can be viewed online.)

the transverse displacement of atoms (orthogonal to the surface of
the pristine graphene sheet), and then, the average of the FFT
spectra of all atoms is considered as the frequency spectrum
[42,43]. Fig. 3a shows the frequency spectrum obtained by aver-
aging the FFT responses of the time signals of the atoms.

4. Identification technique

To identify resonance frequencies from MD simulations, the
time response shall be filtered with respect to the associated
modes. This filtering is performed by using the orthogonality of
vibration modes, i.e. by projecting the time response on a certain
mode shape [33]. This projection shall be performed via a dot
product between the snap-shots of the MD transverse motion and
the vector describing the vibration modes at the position of all
atoms. The analytic solutions for the mode shapes of a circular
clamped membrane are used for the vibration modes. For each of
the mode shapes, a time-trace of the resulting dot product is
determined and an FFT is applied. Fig. 3b shows the filtered fre-
quency response of the first few modes of vibrations, indicated in
different colors. By determining the peak frequency of each of the
mode shapes, the first 10 resonance frequencies (i.e. wf"’D ) of the MD

0.3

0.2

FFT

0.1r

0 50 100 150 200
Frequency [GHz]

(a)

model are determined.

Next, the resonance frequencies from CM (i.e. w(x, ng)) is
numerically fitted to the obtained set of resonance frequencies
from MD (i.e. wf”D). The fitting is performed by a least squares
method and using « and ng as fit parameters. The squared
normalized error of N resonance frequencies between the two
methods is minimized, where the error is defined as:

e el
= : (8)

e =

It shall be noted that mathematically, only two resonance fre-
quencies are needed to determine « and ng, since it involves solving
2 equations with 2 unknowns. However, retaining higher modes is
necessary to increase the accuracy because the radius of curvature
of the membrane at higher frequency modes is relatively smaller,
and therefore, the associated resonance frequencies are more
sensitive to the bending rigidity. Moreover, by employing a higher
number of degrees of freedom, one can assure that the model in (7)
can better describe the dynamic ripples due to Brownian motion.

The error between the natural frequencies obtained via CM and
MD models decreases by including higher modes in the fitting
process and leads to a converged value for the bending rigidity.
Fig. 4 shows the normalized error (e) obtained from Equation (8), as
a function of the fitting parameters. This figure confirms that
including higher modes in the fitting process decreases the surface
area of the minimum error, and leads to a more accurate bending
rigidity. These graphs clearly show the necessity of incorporating
multiple modes in the approximation in order to reach a converged
solution.

5. Results and discussion

The convergence of the bending rigidity and pretension versus
the number of modes retained in the fitting procedure is shown in
Fig. 5a and Fig. 5b, respectively. The error bars in these figures show
the standard error based on 6 simulations for each point. It is seen
that, at room temperature, by including 10 natural frequencies, the
solution converges to a bending rigidity of 2.7eV and the corre-
sponding pretension due to thermal strain is obtained as 0.41 N/m.
It should be mentioned that the pretension calculated explicitly
from MD is neither constant nor uniform due to the nature of the
Brownian motion at the atomic level. However, the average mean-
value pretension obtained from MD simulations at 300 K is 0.32 N/
m which is in the same range as calculated by our method.

Moreover, it can be observed from Fig. 5a that the obtained

0 20 40 60 80 100
Frequency [GHz]

(b)

Fig. 3. a) Averaged frequency spectrum of the time response of all atoms and b) filtered frequency spectrum for the first 3 modes, while R = 10 nm, and T=300K. (A colour version

of this figure can be viewed online.)
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Fig. 5. a) The obtained bending rigidity « as a function of the number of frequencies in the fitting process (blue dots) and the approximated one with gesr = 7/R (red dashed line)

from Equation (1) [23], and b) The obtained pretension ng as a function of the number of frequencies in the fitting process (blue dots) converging to a pretension of 0.41 N/m (black
dashed line), for R = 10 nm at T=300K. (A colour version of this figure can be viewed online.)

effective bending rigidity is converging to the bending rigidity
obtained by Equation (1) [23] when using an effective wave num-
ber gesf = m/R. 1t should be noted that g, is found between discrete
wave numbers that fit in the membrane. The obtained value of
and qe¢ are not only affected by the simultaneous fit of 10 modes
with different wavelengths, but also depend on the circular ge-
ometry of the drum.

The normalized error between the obtained resonance fre-
quencies using the proposed model with the optimized parameters
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Fig. 6. The normalized error between the obtained resonance frequencies using the proposed model with the optimized parameters and those of MD simulations in percentage

and those of MD simulations are shown in Fig. 6. As it can be
observed, by using only 2 modes in the fitting process, the error
between the higher frequencies is relatively large. By using 10
modes, the error between the frequencies of two methods will be
less than 5%, which stresses the importance of retaining higher
modes of vibrations in the identification process. The ratio between
the first 10 resonance frequencies and the fundamental frequency
(w7 = 28.8GHz) for one set of simulations are shown in Fig. 7. For
comparison, the results of associated MD simulations and those

B mode 4 = B mode 7

H mode 5 15 Emode 8

“mode 6 u mode 9
10 = mode 10

Error in frequencies (%)

R TTITTm

2 3 4 5 6 7 8 9 10
Number of modes

6 7 8 9 10

(¢)



B. Sajadi et al. / Carbon 139 (2018) 334—341 339

5 -
Y [ R
4 I . % * ¥*
+ 3t ¢ .« 7
2 |
37,1
L ¢ MD results
1l e * CM membrane
@ optimized x and n,
O 1 ! 1 L !
0 2 4 6 8 10
Mode number (i)
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colour version of this figure can be viewed online.)
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for R = 10 nm. (A colour version of this figure can be viewed online.)

obtained from a classical membrane model (with zero bending ri-
gidity) are also plotted in this figure. As can be observed, by using a
single optimized value for pretension and bending rigidity, our CM
model can very well reproduce all the 10 natural frequencies of the
MD model, while it is clear that a membrane model that neglects
the bending rigidity of graphene cannot capture the observed dy-
namic behavior, especially for the higher resonance modes.
Furthermore, using the proposed method, the temperature,
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and size dependence of the bending rigidity can be studied. In this
regard, Fig. 8 shows the obtained bending rigidity as a function of
temperature. Included in the figure is also the bending rigidity
obtained from Equation (1) with ge;f = m/R. As can be seen, both
methods predict an increase in the bending rigidity with
increasing temperature. As it was mentioned before, the increase
of bending rigidity of membranes with a crystalline and hexatic
order has been previously predicted by Ref. [24]. In fact, it has
been shown that the stretching energy of membranes due to
thermalization drastically increases the effective bending rigidity
at long wavelengths. Therefore, if we fix the boundaries before
thermalization, and let the membrane to be stretched due to its
negative thermal expansion, this stretching can directly result in
an increase of bending stiffness. As such, if during the thermali-
zation process, the boundary condition is eliminated and the
graphene membrane is allowed to shrink, the bending rigidity will
monotonically reduce with temperature [44,45]. Therefore, the
boundary condition is also influential in the apparent bending
rigidity of the membrane. It shall be also noted that for very high
temperatures, the thermal softening due to short wavelength
undulations can dominate stiffening effects, and therefore, it is
expected that bending rigidity converges or even decreases at
such thermal condition [24].

The increase in the bending rigidity can be also explained by the
entropic effects in graphene. In fact, graphene's bending rigidity
resembles an entropic spring, like a rubber band, in which entropy
and thermodynamics affect elasticity. In such systems, the free
energy A = U — TS is a sum of the internal energy U and the product
of temperature T and entropy S. The external force F needed for
reversible isothermal extension of such a spring is F = dA/dx =
dU/dx — TdS/dx = k(T)x. Therefore, the effective stiffness k(T) in-
creases with temperature due to the reduction in entropy
(dS/dx < 0) upon elongation in the spring or rubber band.

In Fig. 9a and b, we report the bending rigidity for different radii
of the membrane for temperatures of 100 and 300 K. It can be seen
that the bending rigidity increases monotonically with the radius of
the membrane, and it fits Equation (1) when g = 7/R. It should be
noted that Equation (1) suggests a monotonic increase in the
bending rigidity of the membrane with radius and temperature
with no convergence. But extrapolating the formula for very large
graphene membranes yields large numbers whose correctness is
hard to prove or trust. At the scale at hand, we do not observe any
convergence of bending rigidity either. Additional simulations
performed on a 20 nm radius membrane at 300K also gave a
similar trend of increase and an equivalent bending rigidity of
3.9eV.
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Fig. 9. The obtained bending rigidity « (dots) and the approximated one with g.gr = 7/R (dashed line) from Equation (1) [23], at a) T=300K and b) T= 100 K. (A colour version of

this figure can be viewed online.)



340 B. Sajadi et al. / Carbon 139 (2018) 334—341

Moreover, the obtained trend in the size dependency (i.e. the
monotonic increase with size) is in agreement with the molecular
mechanics simulations of the microscopic temperature-
independent bending rigidity for rectangular membranes [22].
This size dependence can be attributed to two main reasons: (i) at
small scales the atoms are more bounded for free thermal fluctu-
ations and therefore, they appear as relatively less dynamic as
compared to larger scales; and (ii) at small scales the macroscopic
and microscopic bending rigidities are physically non-
distinguishable. As a result, our obtained bending rigidity at R = 1
nm is close to the microscopic temperature-independent values of
1.4eV—1.6eV [18,20—22,28].

6. Conclusions

In conclusion, we used modal analysis for direct estimation of
the macroscopic bending rigidity of graphene membranes. The
current work confirms that the bending rigidity in graphene
membranes depends on the temperature and membrane size.
Moreover, our obtained bending rigidity at small scales is in
agreement with the size-dependent renormalized bending rigidity
predicted by the statistical mechanics of elastic membranes with a
crystalline or hexatic order. Our method is not only suitable for
obtaining the bending rigidity of graphene but is also useful for
characterization of other nano-materials, while incorporating
thermal fluctuations.
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