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Abstract

Phylogenetic networks represent the evolutionary history of organisms and the relationships
among them. In the field of phylogenetics research has been done to reconstruct these networks.
Several methods for reconstructing those networks have been developed over the years. One
of them is the softwired parsimony score and another, a fairly new method, is the parental
parsimony method. In theory this is a better and more accurate method, but before this thesis,
it was not tested yet. In this thesis, we compare the softwired and the parental parsimony
method in practice by implementing the methods and calculating their parsimony scores. The
results will show that the parental parsimony is a better and more accurate method in practice
as well.
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Introduction

On the Origin of Species, published on 24 November 1859, is a scientific piece of literature that
played a hugh role in the evolutionary biology. They even say that Darwin’s book was the
foundation of evolutionary biology. Soon after the publication of this book, the rumors came.
People were wandering whether this book implies that we, humans, are the descendants of Apes.
Some people thought, and some people still think, that gorillas, chimpanzees or orang-utans
are our ancestors. But this is not true. Not a single ape or monkey that is alive today, is an
ancestor of the human race. However, you could consider us cousins.

We share the same ancestor with some apes and we are close relatives, according to DNA
research. The study that does this research is called phylogenetics. Phylogenetics is the study
of the evolutionary history of organisms and the relationships among them. In this field, in
this study, biologist are trying to reconstruct the tree of life: this is a tree or a graph (in the
combinatorial sense of the word) that shows all the animal species or taxa and the relations
between them. Knowing how these trees work and what they look like, is very important
knowlegde, when you try to understand the processes of molecular evolution.

Phylogenetics studies the evolution of species from common ancestors and it shows its results in
a graph. But how do we evaluate these evolutionary changes? Most of those changes, we have
not seen ourselves. We only know which species live now and what their DNA looks like. This
thesis is about these phylogenetic networks and how we can reconstruct these networks. When
given a particular network and given the DNA sequences of the species that live now, we want
to assign DNA sequences to the internal nodes of this network. In this way, we can determine
what kind of species the ancestors of these species are. There are several mathematical methods
to do this, but in this thesis a method that is called the Maximum Parental Parsimony will be
discussed.

This method calculates the network that describes the evolutionary changes the best, according
to the parsimony principle. This principle basically says that the less evolutionary changes
has occurred, the more it is likely that the calculated network is the correct network. The
parental parsimony also calculates the (Parental) Parsimony Score for a network, which tells
us how many evolutionary changes has occurred. This score can be used to compare different
parsimony based methods.

This thesis is about writing and implementing an algorithm for this parental parsimony and
calculating the network that describes the evolutionary changes the best. The parsimony score
of multiple networks will be calculated for this method, which will give an indication whether
this method is better than another parsimony based method that is currently used, the softwired
parsimony. That is the main issue in this thesis: is the parental parsimony a better method,
than the softwired parsimony? Before a more formal description of the problem that is solved
in this thesis will be given, some terms and theories that are important for the understanding
of this problem will be discussed.
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Something else the reader should know about this thesis, is that before writing this thesis,
literature study has been done. This thesis is heavily based on the following literature:

• Cplex | ampl. http://ampl.com/products/solvers/solvers-we-sell/cplex/?gclid=
Cj0KEQjw4cLKBRCZmNTvyovvj-4BEiQAlsgQuEihHt− 5Pj3LQFR9
t8N0kQ8qUnwuHBXjc2exjRvEaAklF8P8HAQ.(Accessedon06/29/2017(CPL)

• Mpnet: Maximum parsimony on networks.http://homepages.cwi.nl/ iersel/MPNet/. (Ac-
cessed on 06/29/2017 (MPN)

• Diestel, R. (2000).Graphentheory. Springer. (3)

• Fischer, M., Van Iersel, L., Kelk, S., and Scornavacca, C. (2015). On computing the
maxi-mum parsimony score of a phylogenetic network (4)

• Papadimitriou, C. H. and Steiglitz, K. (1982).Combinatorial optimization: algorithms
andcomplexity. Courier Corporation (5)

• Van Iersel, L.Parental Parsimony: a new definition of parsimony for phylogenetic networks.
(Van Iersel et al.)
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Preliminairy

4-1 Phylogenetic Networks

Phylogenetics is the study of the evolutionairy history of organisms and the relationships among
them. A phylogenetic network is therefore a network that graphically displays these relation-
ships. For the display of these relationships, mathematical graphs are used, where the nodes
or vertices of the graph correspond with taxa and the edges display the relationships between
these taxa.

A graph, in the combinatorial sense of the word, consists points, which are called nodes or
vertices and lines between these points, which are called edges. These nodes and edges can be
labeled. A directed network or graph is a graph where every edge has a starting point and an
end point. With this in mind, for every node, we can define a indegree and outdegree: this is
the number of edges coming in and out of a node respectively. When there is not a node in
a graph with a indegree of 2 or more, we speak of a (phylogenetic) tree. When the maximum
in and outdegree of a node is 2 and the the total degree of every node is 3, then the graph is
binary. A phylogenetic network or graph also has leaves and roots. Leaves are the nodes with an
outdegree of zero and the roots are the nodes with an indegree of zero. We call a phylogenetic
network rooted if there is exactly one node with an indegree of zero. Phylogenetic networks are
also connected, which means that there is an undirected path from every node to every other
node. Or in other words, there is a directed path from the root to every node.

In this thesis only binary, directed acyclic graphs will be discussed. Acyclic means that directed
cycles are not permitted. A cycle is a number of vertices that are connected in a closed chain.
To shorten notation, we will use the following notation for networks: N = (V,E), where N
represents the network, V (N) is the set of nodes of N and E(N) is the set of edges of N . The
set of leaves will be denoted as L(N). When we speak of a rooted phylogenetic network, the
root of the network is denoted as ρN .

a b c d

Figure 4-1: A network N1 on X = {a, b, c, d}

Now consider the set of taxa (species) X,
then a phylogenetic network on X is a di-
rected, acyclic graph of which every leaf
is labeled by exactly one element from X.
An example of such a network is given
in figure 4-1. Note that in this figure
and in the rest of the figures in this the-
sis, edges are not drawn as directed, to
make the figures more clear, but they are
still considered as directed away from the
root. Considering a rooted, binary phy-
logenetic network N = (V,E), the reticulation nodes of N are exactly the nodes of V with an
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4-2 Parsimony 8

indegree of 2. Now the conclusion can be drawn that N is a (phylogenetic) tree if N has no
reticulation nodes, otherwise we speak of a phylogenetic network.

When considering two vertices u, v ∈ V , we could say that u is a parent of v and v a child
of u, when there is a directed edge (u, v) from u to v in E(N). To abbreviate, we use the
notation par(v) to denote te set of parents of v in N . Just as in biology, the terms ancestor
and descendant can be used as well. We let u be ancestor of v and v a descendant of u when
there is a directed path from u to v. Because there is always a path from a node to itself, we
say that v is a trivial ancestor and a trivial descendant of itself.

4-2 Parsimony

More information is now know about phylogenetic networks, so the parsimony-based methods
for the reconstruction of phylogenetic networks and finding the parsimony scores of these net-
works can be discussed. The problem these methods solve is the following: which species are
represented by the internal nodes of the phylogenetic networks? When you know what kind of
DNA is represented by the nodes, you know the kind of specie the internal node represents.
With the parsimony based methods, you basically look at the DNA sequences of these species
that are known and then you try to assign DNA sequences to the internal nodes of the network,
in a way that should be correct according to the parsimony principle.

The concept of maximum parsimony, this principle, is very useful in the reconstructing of
evolutionary networks. This principle is used in multiple disciplines of science and it basically
says that when you have two possible answers or explanations that fits the evidence of a problem,
then the simplest one is probably the correct one.

When reconstructing an evolutionary network, the primary assumption that is made, is that
the character changes in the DNA sequences do not occur often. So in our case, the most
simple explanation that explains the data the best, is the one where the phylogenetic network
has the least evolutionary changes for every character in the DNA sequences. Notice that with
maximum parsimony, the network has a minimum amount of changes.

When using the parsimony method on the given data - a network with leaves labeled with
an alignment of characters, each character of the sequence will be evaluated independently.
Therefore, a parsimony score PS(cj |T ) for each character cj of a phylogenetic tree T will be
calculated independently. Then you can calculate the score of an entire DNA sequence of length
n by summing over the different characters. The score PS(cj |T ) can be calculated after the
assigning of the internal nodes. PS(cj |T ) is the sum over all edges e of T of PS(cj |e), where
PS(cj |e) is the cost of the change per state for character cj over edge e. This means that
if at one end of an egde e = uv the node u has the states A,C and node v has the states
A, T , then one substitution had to take place. Now if you multiply this one substitution by
the cost of a change, you get PS(cj |e). Since only the DNA sequences of the leaves are known,
we need to assign the internal nodes sequences in such a way that the combination of them
minimizes PS(cj |T ). It is possible to do this for the entire sequence, but in this thesis, only a
single character will be considered at the time. After the score per character is calculated, you
can easily calculate the score for the entire alignment, by adding the scores of each character
together.

Given a set of taxa X and p ∈ N, a p-state character α on X is a function from X to {1, ..., p}.
α is binary if p = 2. This means that α is a function that labels the leafs - the nodes labeled
with taxa - with a states. These states corresponds with the possible characters for a position
in a DNA alignment. For example, a DNA alignment ABCAC corresponds with the states
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4-3 Hardwired and Softwired Parsimony 9

12312, where 1 is the state of the character on first position in the alignment. Now let α be such
a function and let T be a rooted phylogenetic tree on X. Then an extension τ of α is a p-state
character on V (T ) if ∀x ∈ X it holds that τ(x) = α(x). This means that the extension τ is a
function that labels all the nodes of T with states, with the constraint that α and τ give the
leaves the same states. Now consider such a τ and an edge uv ∈ E(T ), then the change cτ (uv)
on uv with respect to τ is 0 if τ(u) = τ(v) and considered to be 1 otherwise. Now given a tree
T on X and a p-state character α on X, when we take the minimum over all the extenstions τ
of α, the parsimony score on a tree T and α is defined as

PS(T, α) = min
τ

∑
uv∈E(T )

cτ (uv). (4-1)

4-3 Hardwired and Softwired Parsimony

Multiple combinatorial methods for reconstructing phylogenetic networks have been developed
over the last couple of years. Some of those methods are parsimony based. Three of those
are the exact methods that will be discussed in this thesis. When one moves the scope from
phylogenetic trees to phylogenetic networks, there are two definitions of maximum parsimony
methods are already known and there is one method that that is still being developed.

The first method is the hardwired parsimony method. The goal for this method is to assign
states to the internal nodes of the network, in such a way that the cost is minimized. The cost
is the number of edges that has a particular state at one end a different state at the other.
Ofcourse, we can define a parsimony score for this method. Given a network N on X and a
p-state character α on X, the hardwired parsimony score of N and α can be defined as follows:

PShw(N,α) = min
τ

∑
uv∈E(T )

cτ (uv) (4-2)

The minimum is taken over all the extensions τ of α to V (N). Note that the hardwired
parsimony score is exactly the same as the parsimony score for trees, as defined above.

When looking at phylogenetic trees, this method is well suited to reconstruct the tree en show
how the species have evolved. When we look at evolutionary histories in which a phenomenon
called reticulate evolution has occurred, this method no longer is the optimal one. Reticulate
evolution are events where a specie or a taxon inherits DNA from more than one ancestor. A
reticulation node represents such an event in a phylogenetic network.

a b c d

Figure 4-2: A tree displayed by the network N1 on X =
{a, b, c, d}.

For a reticulation node, this method
could count two changes, where it should
count only one. For example, consider a
reticulation node r with parents u and v.
Let r have the character state 1, while
u and v have character states 0. Since
edge (u, r) has state 1 at one and and
state 0 at the other end, a change has
occurred. Therefore, the hardwired par-
simony score counts a change over this
edge. For the edge (v, r) the same holds.

So in this example, the parsimony score counts two changes. However, looking from a phylo-
genetic point of view, it could be possible that the taxa that is represented by r had inherited
it’s state character from only one parent, and therefore only the character state of one parent

Parental Parsimony on Phylogenetic Networks



4-4 Parental Parsimony 10

had to change. Therefore, the parsimony score, which represents the amount of evolutionary
changes had to take place, is too high. Therefore this method is not the optimal one when
looking at a phylogenetic network.
In this thesis, as already explained above, the hypothesis of site independence is made. This
means that it is assumed that every different character of a DNA sequence independently evolves
through the network. The evolution of a single character is still best described by a tree, but
for the entire alignment a phylogenetic network describes the evolution better, because of the
presence reticulate events. That is why for the second method, which is called the softwired
parsimony, the parsimony score of a character on a network is defined as the (hardwired)
parsimony score of the best tree displayed by the network. In other words: the softwired
parsimony score is the lowest parsimony score of any tree displayed by the network. A displayed
tree of a network N is a tree T that we get if we take a subgraph of N and then suppress all
the nodes of in- and out-degree 1. That is, for a node v with an in- and out-degree of 1 in the
subgraph of N , we take the parent u and the child w and then write an edge in T from u to
w. We choose the notation T (N) to abbreviate the set of all phylogenetic trees on X that are
displayed by N . An example of a displayed tree can be found in figure 4-2. There you see a
displayed of network N1, given in figure 4-1 We can define the softwired parsimony score of a
network N on a set of taxa X and a p-state character α on X as the minimum parsimony score
of any tree on X displayed by N :

PSsw(N,α) = min
T∈T (N)

min
τ

∑
uv∈E(T )

cτ (uv). (4-3)

a b c d 0

0

1

1

1

1

01

Figure 4-3: Optimal extensions for a tree displayed by N1
for the softwired parsimony score

In figure 4-3 you can see an example of
a network where the softwired parsimony
is applied.
The softwired parsimony should be a bet-
ter method than the hardwired parsi-
mony, but it has a problem as well. Al-
though this method no longer counts two
changes for reticulation node, biological
speaking this method still gives a prob-
lem. A reticulation node can only have
one state and it has to choose between
the parents of this node. However, bio-
logical speaking this is not always what is happening. For example, let us consider the reticu-
lation node r which has two parents u and v, with two different states 0 and 1 respectively. It
could be possible that the specie that is represented by this reticulation node, is a specie with
both genes in it’s population. When looking at the descendants of r, it could be possible that
two different descendants have the same states as u and v. From a biological point of view, a
evolutionary change has not occurred in this situation. However, the softwired parsimony score
will assign to r one of the states of his parents. r has two descendants with different states,
so the softwired parsimony will count a change somewhere on one of the path’s from r to it’s
descendants. In this case, the parsimony score of the softwired parsimony is too high. That is
why a new variant of parsimony for phylogenetic networks is developed. A variant that does
not have the problems as described above. This method is called the parental parsimony.

4-4 Parental Parsimony

The parental parsimony score of a phylogenetic network will be explained in this section. This
is the parsimony score of a character on a network of the best parental tree of the network. A

Parental Parsimony on Phylogenetic Networks



4-4 Parental Parsimony 11

parental tree can be defined intuitively as follows. A parental tree is any tree that can be drawn
inside a network, where the nodes of the tree labeled with a taxon coincide with nodes of the
network. Note that when drawing, it is allowed to draw multiple branches of the tree through
the same network branch. This is not the case with displayed trees, because for a displayed
tree you need to take a subgraph of N . A parental tree is not a always subgraph. Biologically
speaking, the multiple branches of the drawn tree can represent different versions a gene present
in a population of a specie. This way, the problem described for the softwired parsimony is now
solved.

a b c d

Figure 4-4: A parental tree of the network
N1 on X = {a, b, c, d}.

A parental tree can be described more specific, but
still informal, as follows. A parental tree of N is
phylogenetic tree T on X, with two characteristics.
One property is that you can map all the nodes of
T onto nodes of N . The other property is that
you can map all the directed edges in T onto di-
rected paths in N , where the corresponding nodes in
the path in N with an in- and out-degree of 1, can
be suppressed to obtain T . These properties should
be in such a way that the leaves of T labeled with
an x ∈ X are mapped onto the leaves of N la-
beled with an x, for each x ∈ X. This projection
is not injective, therefore different nodes of T can be mapped onto the same node in N .

a bcb c d

Figure 4-5: The tree U∗(N1) used in the
formal definition of parental trees

To define the parental tree of a phylogenetic network
formally, it is first needed define the multi-labeled tree
U∗(N). A multi-labeld tree is a tree in which a taxon
in X can label more than one leaf. The tree U∗ is a
tree that is derived from N , such that the nodes of
U∗(N) are the directed paths in N , starting from ρN .
For each pair of paths π, π′ in N , there is an edge in
U∗(N) from π to π′ if and only if π′ = πe for some edge
in N . Futhermore, each path in N that starts at the
root ρN , ends at x ∈ X and is represented by a node in
U∗(N), is represented by a node in U∗(N) labeled by
x. An example can be found in figure 4-5, where you

see the multi-labeled tree U∗(N1) of network N1. Now the formal definition of a parental tree
can be given. A parental tree of N is a phylogenetic tree T on X that is displayed by U∗(N).
We abbreviate the set of all trees on X that are parental trees of N with PT (N).

a b c d11 00

0

1

1

Figure 4-6: Optimal extension for a
parental tree of N1 for the parental parsi-
mony score

With the all the described definitions, the parental par-
simony score can now be given. The parental parsi-
mony score of a network N and a character α is the
hardwired parsimony score of the best parental tree of
N . That is, the parental tree that gives the lowest par-
simony score. So the parental parsimony score is

PSpt(N,α) = min
T∈PT (N)

min
τ

∑
uv∈E(T )

cτ (uv). (4-4)

An example of optimal extension for a parental tree is
of the given network N1 in figure 4-1 is given in figure
4-6.
Calculating the parental parsimony score of a network
N on X and a p-state character α on X is also called

Parental Parsimony on Phylogenetic Networks



4-5 Lineage Functions 12

the Parental Parsimony Problem (ppp).

4-5 Lineage Functions

a

b

c d

Figure 4-7: A network N2 on X =
{a, b, c, d}, with a parental tree drawn in-
side.

As described in section 4-4 and in equation 4-4, the
parental parsimony score of N and α is the min-
imum (hardwired) parsimony score of any parental
tree of N. One might think that it is needed to cal-
culate all the parental trees of a network, in order
to find the parental tree that will give the minimum
score. This would be very cumbersome and fortu-
nately, this is not needed. To determine the parental
parsimony score, we can characterize parental parsi-
mony with lineage functions. A lineage function does
not give a the parental tree of the network, but given
a lineage function it is easy to find the correspond-
ing parental tree. It does characterize the parsimony
score of a tree very well. A lineage function basically does the following. It assigns a set
of states to every node in a network. This set of states of a node corresponds to all the
branches of parental trees that walk through each node and it tells which states the nodes
of these branches have. A formal definition of a lineage function can be given as follows.
Definition 1. Given a rooted phylogenetic network N on X and an integer p, a (p-width)
lineage function on N is the following:

f : V (N) 7→ ℘({1, ..., p}) (4-5)

where ℘(U) refers to the power set of U , which is the set of all subsets of U , including
the empty set and U itself.
If |f(ρN )| = 1, then f is a rooted lineage function.
Given a p-state character α on X, if (∀x ∈ X)f(x) = {α(x)} holds, then f is called a
α-consistent lineage function.

a bcc c d

Figure 4-8: The tree U∗(N2) on X =
{a, b, c, d}, with the same parental tree
drawn inside.

To determine the parental parsimony score of a net-
work, we use the weight of all the possible lineage func-
tions. This weight w(f) of a lineage function f is ac-
tually the parsimony score of the parental tree cor-
responding to f . So if one wants to determine the
parental parsimony score of a network N and a p-state
character, one should determine the lineage function
with the minimum weight. The definition of the weight
of a lineage function is a bit similar to the definition
of a change in the hardwired parsimony. The weight of
a lineage function f on a network N is calculated for
every vertex v ∈ V (N) separately and then the weight
of f is the sum over the vertices of N . To determine
the weight of a vertex v ∈ V , consider the set of states f(v) of v assigned by lineage function
f . Also consider the parents u of v and their assigned set of states f(u). Then the sets f(u)
are compared to the set f(v) and the weight of v is the number of states that are assigned to v,
but are not assigned to his parents. This is because this is the number of states of the branches
through the nodes u that needed to change, in order to let v have the states that f assigned to
it. A more formal and a more accurate definition of the weight w(f) of a lineage function f is
the following:

Parental Parsimony on Phylogenetic Networks
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Definition 1. Let f be a lineage function on N. Given a node v of N, the weight of v with respect
to f, denoted wf (v), is defined as

wf (v) =


0, if v = ρN

inf, if v 6= ρN and |f(v)| > ∑
u∈par(v) |f(u)|

|f(v)\ ∪u∈par(v) f(u)|, otherwise
(4-6)

The total weight of f is defined as follows:

w(f) =
∑

v∈V (N)
wf (v) (4-7)

The first part of the definition of wf (v) says that the weight of the root ρN is zero. This is
trivial, because ρN is the first vertex of the network and therefore there is not a parent with a
character state that can change in order to give ρN his state. The second part of the definition
says that there is no parental tree corresponding to the given lineage function. This is only the
case when there are more branches in a child node required than there are branches traveling
trough the parent node(s) to cover this number. For example, consider vertex v in a network
with a single parent u. Then a parental tree with one branch going through u and two branches
going through v does not exist.

To show that using the parental parsimony and lineages functions do not give the same problem
as described for the softwired parsimony in section 4-3, consider the following lineage function
on a network. Let us say that a node v has the assigned set {0,1} and let his parents u1 and u2
have the assigned sets {0} and {1} respectively. This corresponds with the fact that there are
two branches of a parental tree going to v, one from u1 and one from u2. As described above,
the cost of this for this node is 0, because there are no states assigned to v that are not assigned
to u. From a biological point of view, this should be correct, because v could inherit character
states from both parents.

As described above, to determine the parental parsimony score of a network, the weight of all the
possible lineage functions are considered, and then the smallest one is the parental parsimony
score. There are some restrictions. The lineage function needs to be rooted and α-consistent.
It needs to be rooted, which means that |f(ρN )| = 1, because for every parental tree that is
displayed by the network, there travels only one branch through the root. So in a network,
the lineage function should assign only one state to the root. The lineage function needs to
be α-consistent, which means that (∀x ∈ X)f(x) = {α(x)}, because the leaves of the network
are already labeled by X. So the lineage functions that should be considered are the ones that
correspond to the network and maps the leaves onto the states they should have according to
the given the p-state character α. Everything that is said in this section about lineage functions
and their relation to parental parsimony, can be summarized in the following equation.

Definition 1. For any binary network N on X and p-state character α on X,

PSpt(N,α) = {w(f): f is a rooted α-consistent lineage function on N } (4-8)
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Problem Description

A rooted phylogenetic network is a is a directed acyclic graph of which every leaf is labeled by
exactly one element from a set of taxa X, and with only one node that has a in-degree of zero.
These networks are used to describe the evolutionary history of organisms and the relationships
between them. We want to reconstruct these networks and we want to find out what kind
of taxa the internal nodes of such a network should have. To reconstruct such a network,
the DNA alignments of the taxa are being analyzed and then one tries to find out what the
DNA alignments of the internal nodes of the network should look like. This way we get more
knowledge about the process of molecular evolution. To reconstruct a phylogenetic network,
there are several methods that can be used. Three the parsimony-based methods will be: the
hardwired parsimony, the softwired and the parental parsimony. These methods are based
on the principle of parsimony: which says that when a phylogenetic network is reconstructed,
there should be as little as possible (evolutionary) changes. For each of those methods, the
changes that occur after the reconstruction are counted and they are called the parsimony
scores. A maximum parsimony score, is a score as small as possible. Because all three methods
are parsimony based, they can be compared. This is done by comparing the parsimony scores
of the methods and this way we can find out whether one is better than the other. From a
biological point of view, the softwired parsimony is more relevant than the hardwired parsimony,
and it certainly delivers a lower parsimony score. So we want to compare the softwired with the
parental parsimony. Therefore the main question in this thesis is the following: Is the parental
parsimony a better and more accurate method for reconstructing phylogenetic networks than
the softwired parsimony?

To solve this question, not only theoretical analysed need to be made, but it also needs to be
tested. So first of all, the Parental Parsimony Problem will be solved for an amount of networks.
The ppp has as input a network N on X and a p-state character α on X. The output is the
parental parsimony score PSpt(N,α). In order to solve this problem, the parental parsimony is
characterized with lineage functions. The reason this is done is because the parental parsimony
score is the minimum of the weights of all the rooted α-consistent lineage functions on N, which
is defined in section 4-5. Fortunately, it is not needed to calculate all the lineage functions in
order to get the weight of all the lineage functions on a network. First, the problem of finding
the lineage function with the minimum weight, is translated into an ilp formulation, described
in section 6-1. To solve this ilp, it was implemented in Java, so that it is possible to use an ilp
solver. The software that was used, was the ilp solver cplex. This software package assigns the
optimal values to the variables of the ilp problem. More information about cplex can be found
in section 6-2. Then using different methods in Java, this is translated back to our solution:
finding the parental parsimony score PSpt(N,α) for every input N and α and reconstructing
the network N by assigning states to the internal nodes of N . How this is done, is described in
section 6-3. Then the parental parsimony scores are calculated with the model that is written.
In the model, the methods to calculate the softwired parsimony are also implemented. Then in
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section 7 the scores PSpt(N,α) are compared to the scores of the softwired parsimony to see
whether the parental parsimony really is a better method.
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Methods

To answer the main question of our thesis, the Parental Parsimony Problem and the Softwired
Parsimony Problem need to be solved and compared to each other. Because the softwired par-
simony problem has already been solved and there is already an algorithm to find the softwired
parsimony score for a given network and p-state character, the focus on this thesis lies on solving
the ppp.

To solve the ppp - finding the Parental Parsimony Score of a network and a character α -
it needs to be translated into mathematics. To translate the problem into mathematics, it
needs to be written as a mathematical model that we are able to solve. One way to do this is
writing the problem as an Integer Linear Programming formulation. More information about the
formulation of the ilp is written in 6-1. After formulating the ilp, the ilp will be implemented,
so that the software cplex can be used to solve the ilp. Section 6-2 contains more information
about cplex. After cplex solved the model, the solution needs to be translated into something
that we can read and then the parsimony score and the lineage function can be deduced from
this solution. The idea’s behind the model that solves the ppp can be found in section 6-3.

In the section 7 the results of calculating the parental parsimony and the softwired parsimony
of 60 different networks are presented. The softwired and parental parsimony score will be
calculated for these network, several times, with different values assigned to the leaves of the
networks. Finally, these scores are compared to each other.

6-1 Integer Linear Programming Formulation

An ilp formulation of the problem contains an objective function - the function we want to
optimize - and the constraints of the problem, written in formula’s. With an ilp formulation,
all the formulas are linear and all the variables are restricted to be integers. This type of
formulation has been chosen because all the restrictions of the problem that is solved are linear.
The main reasons for using integer variables in modeling the ppp as a linear program are the
following: Some of the variables represent decisions and should therefore only take on the value
0 or 1. These special kind of integer values are called binary variables. The other variables
represent quantities that can only be an integer. The parsimony score will be computed and
this score is always an integer, because half changes do not exist in our model (and neither in
real DNA sequences). Another reason for choosing an ilp formulation to solve the ppp is that
although Integer Programming is NP-hard, ilp’s can be solved quickly by ilp solvers, such as
the software cplex that is used. More information about cplex can be found in section 6-2
about cplex.

The problem of solving the ppp is transformed into solving the problem of finding the minimum
weight lineage function, as described in section 4-5. In order to translate the ppp into an ilp, we
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need to translate the definition of the lineage function and its weight into an objective function,
restrictions and variables. Then the objective function will be minimizing the weight.

First of all, the input of the ilp is the same as the input of the ppp. The Input is a rooted
phylogenetic network N , with an edge set E, a node set V and a p-state character α(v). For a
leaf v, α(v) is the character-state that is given for the leave. ρN represents the the root of N.
So for the problem the following is given:

• Node set V ;

• Edge set E;

• ρN : the root of the network;

• p-state character α(v);

• Set states P = {1, ..., p};

Consider the lineage functions f , that assigns a set of states to each node v ∈ V . To translate
this into the ilp, the binary variable xv,s is used. This variable xv,s represents whether v has
state s ∈ P . We denote this input by

xv,s =
{

1, if v has state s
0, otherwise

The lineage functions that are considered need to be rooted and α-consistent. So we want the
lineage functions to assign exactly one state to the root ρN . This can be denoted by∑

s∈P
xρN ,s = 1, for the root ρN

An α-consistent lineage function means that the lineage function assigns to the leaves of N
exactly the states that α has assigned them. We can formulate these requirements in the
following two formulas:

xv,s = 0 for all v ∈ X , s 6= α(v)
xv,α(v) = 1 for all v ∈ X

We want to translate the weight w(f) of lineage function f into objective function of the ilp.
Because w(f) of f is the sum over the weight wf (v) of nodes v with respect to f , we will
translate weights of the nodes to the variables cv. These variables represent the cost of v. In
other words, they represent the amount of character states that changed over an edge from
parent u to child v . The objective function of the ilp will be the sum of all these variables. So
the objective function of our ilp will be the following:

minimize
∑
v∈V

cv (6-1)

More constraints are needed to translate the weight of lineage functions into the ilp. To help
us do that, recall the definition of wf (v) in definition 1 in section 4-5. It says that if v 6= ρN
and if |f(v)| ≤ ∑

u∈par(v) |f(u)|, then wf (v) is |f(v)\ ∪u∈par(v) f(u)|. A new variable will be
introduced. This new variable is yv,s and it indicates whether for node v, the state s is in the
set {f(v)\ ∪u∈par(v) f(u)}, where f(v) is the set of states assigned by the lineage function to
node v and f(u) is the set of states assigned by the lineage function to node u, a parent of v.
This means that if s is in this set, then v has a state s that neither of his parents u have. This
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way, we check per state s whether there has occurred a change over one of the egdes (u, v) ∈ E.
Translated into an constraint, this will give the following equation:

yv,s ≥ xv,s −
∑

u s.t.(u,v)∈E
xu,s for all v ∈ V, s ∈ P (6-2)

Notice that constraint 6-2 actually gives the weight of a node v per state s. So the entire weight
of v will be the sum over all the states. The sum over all the states of yv,s will be the cost of v
and corresponds to wf (v) of v. This will give us the following constraint:

cv ≥
∑
s∈P

yv,s for all v ∈ V (6-3)

Also notice that constraint 6-2 allows yv,s to be negative. This could happen when v does not
have s, but one of his parents u does have s. However, we do not want to yv,s to be negative,
because we the weight of a node can neither be negative. So we need the following constraint:

yv,s ≥ 0 for all v ∈ V , s ∈ P (6-4)

We need more constraints to fully characterize wf (v) in our ilp. One of the properties of wf (v)
is that the root of the network gives no weight. This requirement is given by the following
constraint:

yρN ,s ≥ 0 for all s ∈ P (6-5)

One last constraint is needed to fully translate wf (v) into our ilp formulation. The given
definition of wf (v) says that if v 6= ρN and |f(v) ≤∑

u∈par(v) |f(u)| for node v ∈ V holds, then
wf (v) is infinity. In other words: the considered lineage functions are restricted to assign to v a
number of states that is less than or equal to the sum of the amount of states that are assigned
to the parents of v. Formulated into a constraint, this will give the following:∑

s∈P
xv,s ≤

∑
u s.t.(u,v)∈E

∑
s∈P

xu,s for all v ∈ V (6-6)

To see the correctness of this constraint, consider the following. Because xv,s is equal to 1 when
v has state, the amount of states that v has is ∑

s∈P xv,s. Also, u is a parent of v when there
is an edge (u, v) from u to v in E. As explained above, solving the ilp will be done by cplex.
So the ilp that will be fed to cplex, will the summary of everything explained in this section.
This will give the ilp formulation and the following input for computing the parental parsimony
score of a phylogenetic network N = (V,E):

• Node set V ;

• Edge set E;

• ρN : the root of the network;

• p-state character α(v). For leaf v, parameter α(v) is the given character state at v;

• Set of states P = {1, ..., p};

• Binary variable xv,s. This variable indicates whether node v has state s;

• Binary variable yv,s. This variable indicates whether for node v, state s is in the set
{f(v)\ ∪u∈par(v) f(u)};

• Variable cv. This is the cost or the weight of node v;

Parental Parsimony on Phylogenetic Networks



6-2 CPLEX 19

minimize
v

∑
v∈V

cv

Subject to
∑
s∈P

xv,s ≤
∑
s∈P

∑
u s.t. (u,v)∈E

xu,s for all v ∈ V ,

xv,s = 0 for all v ∈ X , s 6= α(v) ,
yv,s ≥ 0 for all v ∈ V , s ∈ P ,
yv,s ≥ xv,s −

∑
u s.t. (u,v)∈E

xu,s for all v ∈ V, s ∈ P ,

xv,α(v) = 1 for all v ∈ X ,∑
s∈P

xρN ,s = 1 for the root ρN ,

yρN ,s = 0 for all s ∈ P ,
cv ≥

∑
s∈P

yv,s for all v ∈ V ,

xv,s ∈ {0, 1} .

6-2 CPLEX

To solve the mathematical models that are formulated in section 6-1 the software ibm ilog
cplex Optimizer (often referred to simply as cplex) from company IBM was used. cplex
solves large integer programming problems and large linear programming problems, but it also
solves convex and non-convex quadratic programming problems and convex quadratically con-
strained problems. There are different algorithms available in cplex. To solve linear program-
ming problems such as the ppp, either primal or dual variants of the simplex method or the
barrier interior point method are used. It also uses advanced branch-and-bound, feasibility
heuristics and cut generators (CPL).
In this thesis, cplex has been made use of in the following way. First we have a network N
written in a text file and we want to calculate the softwired and the parental parsimony score
score of this network. Then the software development platform Netbeans, written in Java, is
used to give cplex the correct input. The correct input is also a text file with the specific ilp
objective function and constraints for N . How such a specific ilp text file for a network looks,
is explained in section 6-3. Then cplex will solve this ilp and it will give a file back with the
solution. After that, various methods read the solution, determine the parsimony score and
give the lineage function that belongs to this solution.

6-3 Source Code OnlyParental

The fist step in solving the ppp for a given network N on X and a p-state character α on X,
is formulating the problem as an ilp. This was done in section 6-1. The second step is writing
a code in Java, so that this ilp can be implemented. Then this code makes a text file, with a
specific ilp formulation for the input N and α. This file is made so that cplex is able to read
this file and solve the formulated ilp. After cplex solved the ilp, it gives the solution and
this solution needs to be interpret so that the solution is readable. From this readable solution,
the parental parsimony score and the corresponding lineage function is deduced. The code that
has been written to make these steps and solves the ppp for a given network N and p-state
character α, is called OnlyParental and can be found in the Appendix B.
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All of the described steps above have already been done for the softwired parsimony. There
already exist an implemented algorithm to find the sofwired parsimony score for a given network
and a p-state character. The Java code with this algorithm is called MPNet. Because there
already exist such an implemented algorithm for the softwired parsimony and because of the
fact that the softwired parsimony and the parental parsimony have much in common, the code
OnlyParental has much in common with the code MPNet. In fact, before writing OnlyParental,
MPNet was analyzed thoroughly. After that, MPNet was modified in order to get the code that
is now called OnlyParental.

6-3-1 Main Ideas Behind the OnlyParental Algorithm

To save the reader of this thesis from exhausting reading, not the entire code of OnlyParental
is given in this section. The ideas behind OnlyParental will be explained in here, but if the
reader that still wants to see the entire code, Only Parental can be found in Appendix B.
To explain the main ideas behind OnlyParental and the main adjustments that are made to
MPNet in order to get OnlyParental, we first need to realize what the main differences are
between the parental parsimony and the softwired parsimony. There are two main differences
that need to be taken into account when implementing the algorithm to find the maximum
parental parsimony score. The first primary difference between the parental parsimony and the
softwired parsimony, is the fact that nodes are allowed to have multiple states assigned to them
when using the parental parsimony, in contrary to the softwired parsimony where a vertex can
have only one character state. The other important difference between the parental and the
softwired parsimony is the fact that the scores of both methods are calculated differently. For
the softwired parsimony, the score is calculated per edge, while for the parental parsimony, the
score is calculated per vertex.
Let us explain the steps that OnlyParental goes through, in order to get the parental parsimony
score for a given network and a p-state character.

1. The input of the model is a text file with a network and a file with characters, which says
with what the leaves are labeled. It is also possible to have as input only a text file with
a network and let the model assign random character states to the leaves.

2. OnlyParental reads the network file. It calculates the number of taxa, the number of
reticulations, the number of edges, the number of vertices and which vertex is connected
to which vertex. It puts all these data in different objects, so that methods that calculate
the parsimony score can be build with these objects.

3. It makes a text file and it puts in this file a specific ilp formulation from the given network
as input for cplex. What is meant by a specific, is the following. It makes the constraint
explicit per variable. It makes a String object, and adds the explicit constraints to this
String object. For example, if the input is a network N with node set V (N) = {1, 2, 3}
and set of states P = {0, 1}, then the strings of the constraint yv,s ≥ 0, for all v ∈ V , s
6= α(v) will be written as:

• y1,0 ≥ 0
• y1,1 ≥ 0
• y2,0 ≥ 0
• y2,1 ≥ 0
• y3,0 ≥ 0
• y3,1 ≥ 0
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Then it translates this String object into an text file that can be fed to cplex.

4. When the text file ILP.txt is finished, it feeds the text file to cplex.

5. Then it runs cplex, after which cplex will solve the ILP and puts the solution - the
values of the variables - in an object.

6. The solution from cplex will be translated back to strings, strings that give the values of
the variables of the ILP for the optimal solution. Then a method of OnlyParental reads
these strings and assigns to every vertex object in the model the correct states.

7. Finally, with 2 methods the model determines the parental parsimony score. One method
determines the parsimony directly from the values of the variables of the ILP, the other
method gives the parsimony score by calculating the weight of the lineage function after
all the states are assigned to the vertices. Two methods determine the parsimony score,
one as a double check that the correct parsimony score has been calculated.

6-3-2 Differences and Similarities between MPNet and OnlyParental

Multiple methods in the model MPNet are modified in order to make a model that could
calculate the parental parsimony score of a network. First of all, the Network class needed to
change. This class, which is basically a blueprint for the object Network(), was modified because
vertices are assigned a set of states in OnlyParental, instead of single states in MPNet. So objects
within Network() that first stored a single state, store a set of states in OnlyParental. Objects
that stored Strings with sets of states, store Strings with multi-sets of states in OnlyParental.

Fortunately, there were also many code lines that could be left the same. We will walk through
every step to explain whether it needed to change or not.

The first two steps of the steps describes above, are exactly the same for MPNet and for
OnlyParental.

Step 3 in OnlyParental differs from MPNet. This is the step where the ILP is implemented.
This is not unexpected, because the parental parsimony and the softwired parsimony have a
different ILP formulation. The way the ILP is implemented and fed to cplex is the same,
though. Also the step where cplex solves the ILP and gives a solution back is the same.

Step 6 in OnlyParental differs from MPNet again. This is due to the fact that the vertex objects
of the Network() object need to have a set of states instead of a single state. Therefore the
method that assignes the states to the vertices is different and the object that keeps track of
the states of every node is different.

Step 7 in OnlyParental completely differs from MPNet. This is due to the fact that the par-
simony score of OnlyParental is calculated using the weight of the lineage function, while in
MPNet the parsimony score is calculated by counting the edges that have a certain state at one
end and a different state at the other. OnlyParental uses a method that is called getScore(),
which is based on the weight of the lineage function. Per vertex v, it calculates the amount of
states v has that neither of his parents u have. That will be the weight per vertex with respect
to the corresponding lineage function.
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In this section we present the results we received after applying the method OnlyParental we
formulated in section 6 on the given data. The script of this algoritm can be found in Appendix
B [fixme]. As described in section 6, OnlyParental does the following with the given data: it
analyses the given data, implements the formulated ilp for our problem, then uses the software
package cplex to solve the problem for our input data and finally reads and gives us the solution
of our problem: finding the maximum parental parsimony score.

7-1 Data Analysis

The data we received consists of a set of 60 different networks. When our method solves the
ppp for the given network, it first analyses the network. We found out that there is a great
variety in the networks of the given data. The smallest network contains 124 vertices, 139
edges and 16 reticulations, while the biggest network contains 808 vertices, 923 edges and 116
reticulations. For the rest of the networks, the amount of reticulations, vertices and edges lies
somewhere between the mentioned numbers. As for the number of taxa of the networks, the
following holds: ten networks consist of 50 taxa, ten networks consist of 100 taxa, eleven consist
of 150 taxa, ten consist of 200 taxa, ten networks consist of 250 taxa and the last nine networks
consist of 300 taxa.

7-2 Results

To get the results that are described in this section, the following was done. First of all, the
networks of the given data were ordered with respect to the the number of taxa they have and
then the networks were numbered, from 1 up to and including 60. The given data set contains
networks, but the set does not contain any p-state characters α(v) that assigns states to the
leaves. That is why we let the method OnlyParental assign states to the leaves, randomly. This
was done with three different sizes of state set P : with two different character states, with
three different character states and with four different character states. So for every network,
the parental parsimony score and the softwired parsimony score were calculated with three
different amounts of character states. Therefore, we ran our algorithm OnlylParental 180 times
in total. All the results of these 180 experiments are given in the tables in Appendix A-1,
Appendix A-2 and Appendix A-3. In this section a summary of the results is given.

7-2-1 |P | = 2

The outcome of the experiments where the size of the set of states P is 2, can be viewed in
figure 7-1. Here you see a figure with per network, the corresponding value of the softwired
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parsimony score (in blue) and the parental parsimony score (in orange). Clearly can be seen,
that the parental parsimony score is lower than the softwired parsimony score for all the networks
except one, where they are equal. This is confirmed by the tables in the Appendix A-1.

When we take all the softwired scores of the 60 networks together, we get a score of 2744. That
is an average softwired parsimony score of 45,7 per network. For the parental parsimony scores,
all the scores together add up to 1619 and an average of 27,0. This is nearly the half of the
average of the softwired parsimony scores. Also can be deduced that the difference between the
scores of the methods is 1125, which comes down to a difference of 18,75 per network. To see
all the possible scores, check the tables in Appendix A-1.
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Figure 7-1: Parsimony Scores with |P | = 2, with the number of the networks on the x-axis and
the corresponding parsimony scores on the y-axis.

7-2-2 |P | = 3

For all the experiments where the size of the set of states P is 3 the following holds. Figure 7-2
shows the softwired parsimony score in blue and the parental parsimony score in orange. Also
here clearly can be seen that for every network the softwired parsimony score is higher than the
parental parsimony score, except for network 9, where they are equal. To see the exact scores
of both of the methods of every network, check the tables in Appendix A-2.

All the softwired scores of the 60 networks together add up to 4054. All the scores of the
parental parsimony scores add up to 2769. The averages of the softwired and the parental
parsimony scores per network are 67,5 and 46,2 respectively. The difference between the scores
of the methods is 1282, which comes down to a difference of 21,4 per network.
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Figure 7-2: Parsimony Scores with |P | = 3, with the number of the networks on the x-axis and
the corresponding parsimony scores on the y-axis.

7-2-3 |P | = 4

The outcome of the experiments where the size of the set of states P is 4, can be viewed in
figure 7-3. Here you see a figure with per network, the corresponding value of the softwired
parsimony score (in blue) and the parental parsimony score (in orange). Clearly can be seen that
the parental parsimony score is lower than the softwired parsimony score for all the networks
except for network 9 again, where they are equal. To see the exact scores of the softwired
parsimony and the parental parsimony on the networks, check the tables in Appendix A-3.
Furthermore, adding all the softwired parsimony scores together gives a total score of 4923.
Doing the same for the parental parsimony, gives a score of 3595. The average scores of the
softwired and the parental parsimony per network are 82,0 and 95,1, respectively. The difference
between the scores of the methods is 1328 in total and 22,1 per network.

7-2-4 Results Combined

With the 60 networks that were given, we run our method OnlyParental three times per method.
Each time with a different size of P , as described above. This was done, to see whether we
could get more information about the difference between the scores of the parental parsimony
and the softwired parsimony.
From the 180 experiments that were done, we made the figures that are shown above. What
immediately stood out, was the fact that the parental parsimony score of every network was
lower than the softwired parsimony score, regardless of the size of P , except for network 9. For
this network, the parsimony scores were exactly the same.
What also stood out, was the fact that the parsimony scores were higher for both methods,
when |P | was bigger. This is a bit obvious, because with more different states possible, the
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Figure 7-3: Parsimony Scores with |P | = 4, with the number of the networks on the x-axis and
the corresponding parsimony scores on the y-axis.

leaves had more different states and therefore there had to occur more changes. However, what
is also noteworthy, is that it seemed that when there are more states, there is a less significant
difference between the two parsimony methods. So we calculated per experiment the difference
between the two scores, and divided this by the softwired score. Let us call this score the relative
difference of the scores. This gave figure 7-4.

In this figure, the x-axis represents the 60 networks and the y-axis represents the relative
difference. The gray line represents the experiments where |P | equals two, the orange line
represents the experiments where |P | equals three and the blue line represents the experiment
where |P | is equal to four. What can be seen in this figure, is that the gray line is almost
always above the orange line. Also the orange line is almost always above the blue line. In the
results we got, when |P | = 2, the relative difference was only in 7 experiments smaller than the
relative difference when |P | = 3. Also, the relative difference when |P | = 3, was only 3 times
smaller bigger than the relative difference when |P | = 4. This means that the relative difference
gets smaller when |P | gets larger. This would imply that the difference between the parsimony
scores is indeed less significant when |P | is bigger.
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Conslusion, Discussion and
Recommendations

8-1 Conclusion

In this thesis the following question was addressed: Is the parental parsimony a better and
more accurate method for reconstructing phylogenetic networks than the softwired parsimony?
To solve this question, 180 experiments where done, where the the parental parsimony score
and the softwired parsimony score of 60 different networks were calculated with three different
amount of state set sizes and then compared with each other.
To be able to do these experiments, we first needed to find out how we can solve the Parental
Parsimony Problem, which gives the parental parsimony score PSpt(N,α) of a network N on a
set of taxa X and a p-state character α on X. In order to solve the ppp we characterized the
the parental parsimony with lineage functions and translated the ppp into finding the minimum
weight lineage function as described in section 4-5. Then we translated this problem into an ilp
formulation as described in section 6-1, so that we could implement the problem in Java and
use the ilp solver cplex. After writing the model OnlyParental in Java and implementing an
algorithm to find the softwired parsimony scores of an input network as well, we were able to
do the experiments to see whether the parental parsimony scores were lower than the softwired
parsimony scores.
In the section Results, all the outcomes of the 180 experiments were described. The outcome
of every experiment are the two parsimony scores. In every outcome except one, the parental
parsimony score was smaller than the softwired parsimony score. For network 9, the scores
were equal. We think that this is due to the fact that for this network, the best parental tree
is equal to the best tree displayed by the network. For the rest of the tested networks it holds
that the parental parsimony scores are significant smaller than the softwired scores. A side note
must be added that the larger |P | is, the less significant the difference between the scores is.
Recall that the smaller the parsimony score of a parsimony based method is, the more likely it
is that the reconstruction the method gives is the correct one. The parental parsimony score is
smaller than the softwired score in the most cases and equal to the softwired parsimony score in
a few cases. Therefore, we can conclude that parental parsimony is a better and more accurate
method for reconstructing phylogenetic networks than the softwired parsimony, but for some
networks, the softwired parsimony and the parental parsimony are equal.

8-1-1 Discussion and Recommendations For Further Research

We concluded in the section above that the parental parsimony scores of the tested networks are
significant smaller than the softwired parsimony scores of these networks. Also was concluded
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that the bigger |P | is, the smaller the significance will be. These conclusions immediately
cause more questions. How significant is the difference? Which factors have influence on this
difference and how do these factors have influence on the difference? Also, for one of the tested
networks, the scores were equal. In which cases is the softwired parsimony equal to the parental
parsimony? All the described questions can serve as material for further research.

Besides these questions, there are more subjects that would get more attention if we continued
this project. The next step of the project would be to improve the script of OnlyParental and
let the method graphically display the found network after applying the parental parsimony
method. Also, when a network and a character α with the corresponding minimum weight
lineage function is given, one could determine what the parental tree of the network would be.
Finally we have seen that the computation time of the parental parsimony score in OnlyParental
for only one character is sometimes more than two seconds. Calculating the parental parsimony
score for a very large network (more than 300 taxa) of one character would take more time and
calculating an entire alignment would take even a greater amount of time. For a method that
should be able to compute the parental parsimony score quickly, two seconds is a long time. So
another next step would be to make the algorithm much faster.
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Appendix A: Results of the
Experiments

A-1 Appendix A.1: Tables with |P | = 2

Network number 1 2 3 4 5 6 7 8 9 10
Number of character states 2 2 2 2 2 2 2 2 2 2
Number of taxa 50 50 50 50 50 50 50 50 50 50
Number of reticulations 17 16 17 16 17 18 16 20 17 16
Softwired Parsimony Score 11 16 13 15 16 15 14 11 15 14
Parental Parsimony Score 10 11 3 11 5 8 10 8 15 11

Network number 11 12 13 14 15 16 17 18 19 20
Number of character states 2 2 2 2 2 2 2 2 2 2
Number of taxa 100 100 100 100 100 100 100 100 100 100
number of reticulations 39 37 37 35 38 36 38 38 33 39
Softwired Parsimony Score 24 25 26 28 28 29 25 28 20 25
Parental Parsimony Score 19 13 24 11 19 22 21 19 16 19

Network number 21 22 23 24 25 26 27 28 29 30
Number of character states 2 2 2 2 2 2 2 2 2 2
Number of taxa 150 150 150 150 150 150 150 150 150 150
Number of reticulations 53 54 53 48 53 53 53 58 55 58
Softwired Parsimony Score 36 40 41 45 42 40 35 40 44 43
Parental Parsimony Score 18 19 28 35 32 32 25 14 20 27

Network number 31 32 33 34 35 36 37 38 39 40
Number of character states 2 2 2 2 2 2 2 2 2 2
Number of taxa 150 200 200 200 200 200 200 200 200 200
number of reticulations 56 71 76 75 77 73 70 70 70 74
Softwired Parsimony Score 35 52 53 50 51 54 56 55 56 56
Parental Parsimony Score 20 35 31 35 24 27 45 36 13 29

Network number 41 42 43 44 45 46 47 48 49 50
Number of character states 2 2 2 2 2 2 2 2 2 2
Number of taxa 200 250 250 250 250 250 250 250 250 250
number of reticulations 72 92 93 92 96 91 87 89 90 93
Softwired Parsimony Score 53 70 62 66 61 70 63 69 68 68
Parental Parsimony Score 16 33 40 36 42 59 33 44 45 29
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A-2 Appendix A.1: Tables with |P | = 3 32

Network number 51 52 53 54 55 56 57 58 59 60
Number of character states 3 3 3 3 3 3 3 3 3 3
Number of taxa 300 300 300 300 300 300 300 300 300 300
number of reticulations 72 92 93 92 96 91 87 89 90 93
Softwired Parsimony Score 76 73 78 81 76 73 75 77 80 83
Parental Parsimony Score 56 40 57 51 38 39 17 54 28 42

A-2 Appendix A.1: Tables with |P | = 3

Network number 1 2 3 4 5 6 7 8 9 10
Number of character states 3 3 3 3 3 3 3 3 3 3
Number of taxa 50 50 50 50 50 50 50 50 50 50
Number of reticulations 17 16 17 16 17 18 16 20 17 16
Softwired Parsimony Score 19 22 21 18 22 15 23 20 22 18
Parental Parsimony Score 18 19 8 15 11 10 18 16 22 16

Network number 11 12 13 14 15 16 17 18 19 20
Number of character states 3 3 3 3 3 3 3 3 3 3
Number of taxa 100 100 100 100 100 100 100 100 100 100
number of reticulations 39 37 37 35 38 36 38 38 33 39
Softwired Parsimony Score 39 40 39 41 43 36 39 41 42 39
Parental Parsimony Score 31 24 37 18 36 30 33 31 35 32

Network number 21 22 23 24 25 26 27 28 29 30
Number of character states 3 3 3 3 3 3 3 3 3 3
Number of taxa 150 150 150 150 150 150 150 150 150 150
Number of reticulations 53 54 53 48 53 53 53 58 55 58
Softwired Parsimony Score 60 57 58 61 58 64 56 63 59 54
Parental Parsimony Score 31 40 43 52 44 48 39 22 36 39

Network number 31 32 33 34 35 36 37 38 39 40
Number of character states 3 3 3 3 3 3 3 3 3 3
Number of taxa 150 200 200 200 200 200 200 200 200 200
number of reticulations 56 71 76 75 77 73 70 70 70 74
Softwired Parsimony Score 55 76 79 71 73 80 78 80 82 73
Parental Parsimony Score 39 58 52 53 47 52 67 60 39 48

Network number 41 42 43 44 45 46 47 48 49 50
Number of character states 3 3 3 3 3 3 3 3 3 3
Number of taxa 200 250 250 250 250 250 250 250 250 250
number of reticulations 72 92 93 92 96 91 87 89 90 93
Softwired Parsimony Score 78 94 97 105 98 103 95 100 90 94
Parental Parsimony Score 36 60 69 63 69 92 60 69 64 50
Network number 51 52 53 54 55 56 57 58 59 60
Number of character states 3 3 3 3 3 3 3 3 3 3
Number of taxa 300 300 300 300 300 300 300 300 300 300
number of reticulations 72 92 93 92 96 91 87 89 90 93
Softwired Parsimony Score 114 121 121 116 107 118 118 123 110 116
Parental Parsimony Score 93 82 100 88 62 80 43 91 56 73
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A-3 Appendix A.1: Tables with |P | = 4

Network number 1 2 3 4 5 6 7 8 9 10
Number of character states 3 3 3 3 3 3 3 3 3 3
Number of taxa 50 50 50 50 50 50 50 50 50 50
Number of reticulations 17 16 17 16 17 18 16 20 17 16
Softwired Parsimony Score 25 25 22 24 25 25 25 22 26 23
Parental Parsimony Score 24 23 11 20 15 19 22 18 26 21
Network number 11 12 13 14 15 16 17 18 19 20
Number of character states 3 3 3 3 3 3 3 3 3 3
Number of taxa 100 100 100 100 100 100 100 100 100 100
number of reticulations 39 37 37 35 38 36 38 38 33 39
Softwired Parsimony Score 40 45 45 47 49 51 47 53 47 47
Parental Parsimony Score 33 33 44 27 43 41 42 42 39 40
Network number 21 22 23 24 25 26 27 28 29 30
Number of character states 3 3 3 3 3 3 3 3 3 3
Number of taxa 150 150 150 150 150 150 150 150 150 150
Number of reticulations 53 54 53 48 53 53 53 58 55 58
Softwired Parsimony Score 71 68 72 75 69 71 70 71 73 71
Parental Parsimony Score 37 45 57 65 57 58 58 35 45 55
Network number 31 32 33 34 35 36 37 38 39 40
Number of character states 3 3 3 3 3 3 3 3 3 3
Number of taxa 150 200 200 200 200 200 200 200 200 200
number of reticulations 56 71 76 75 77 73 70 70 70 74
Softwired Parsimony Score 61 95 89 93 97 91 95 96 101 102
Parental Parsimony Score 45 78 63 75 67 59 85 74 59 68
Network number 41 42 43 44 45 46 47 48 49 50
Number of character states 3 3 3 3 3 3 3 3 3 3
Number of taxa 200 250 250 250 250 250 250 250 250 250
number of reticulations 72 92 93 92 96 91 87 89 90 93
Softwired Parsimony Score 93 120 113 120 119 126 122 120 121 120
Parental Parsimony Score 45 83 85 80 91 115 81 89 90 72
Network number 51 52 53 54 55 56 57 58 59 60
Number of character states 4 4 4 4 4 4 4 4 4 4
Number of taxa 300 300 300 300 300 300 300 300 300 300
number of reticulations 72 92 93 92 96 91 87 89 90 93
Softwired Parsimony Score 143 136 141 140 140 137 139 145 147 137
Parental Parsimony Score 117 101 114 106 93 99 62 113 95 96
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Appendix B: Script of method
OnlyParental

import java.io.*;
import java.util.*;
import ilog.concert.*;
import ilog.cplex.*;

public class OnlyParental {

// uses CPLEX
public static boolean DEBUG = false;
public static boolean SILENT = false;
static int GAP = 9999;

public static void main(String[] args) {
//System.out.println("parental parsimony score is" + ps);

Long seed = new Long(487641078);
Random generator = new Random(seed);
int maxstates = 0;

if (args.length < 2 || args.length > 9) {
System.out.println("----------- OnlyParental -----------");
System.out.println("Software for computing the (hardwired and ...

softwired) maximum parsimony scores of a phylogenetic network");
System.out.println("Uses CPLEX");
System.out.println("----------- USAGE -----------");
System.out.println("java OnlyParental network.tree sequences.fasta ...

[options]");
System.out.println("network.tree should contain at least one network ...

in e-newick format");
System.out.println("sequences.fasta should contain, on each line, a ...

taxon name followed by a space and a character state, or a ...

sequence of character states");
System.out.println("---------- OPTIONS ----------");
System.out.println("--nolabels\t hides taxon labels");
System.out.println("--nostates\t hides character states");
System.out.println("--softwired\t only compute the softwired ...

parsimony score, not the hardwired one");
System.out.println("--hardwired\t only compute the hardwired ...

parsimony score, not the softwired one");
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//System.out.println("--approx\t compute an approximation (faster)");
System.out.println("--rand k\t use character states randomly chosen ...

from 1 to k");
System.out.println("--silent k\t do not show intermediate results");
System.out.println("-Djava.library.path=[path to cplex.jar]\t to ...

tell java the location of cplex.jar");
return;

}

boolean nolabels = false;
boolean nostates = false;
boolean onlysoftwired = false;
boolean onlyhardwired = false;
boolean rand = false;
int num_states = -1;
boolean relax = false;
for (int i = 1; i < args.length; i++) {

if (args[i].equals("--nolabels")) {
nolabels = true;

} else if (args[i].equals("--nostates")) {
nostates = true;

} else if (args[i].equals("--softwired")) {
onlysoftwired = true;

} else if (args[i].equals("--hardwired")) {
onlyhardwired = true;

} else if (args[i].equals("--silent")) {
SILENT = true;

} else if (args[i].equals("--approx")) {
relax = true;

} else if (args[i].equals("--rand")) {
rand = true;
try {

num_states = Integer.parseInt(args[i + 1]);
} catch (NumberFormatException nfe) {

System.out.println("** Integer number of states required");
return;

}
i++;

} else if (i > 1) {
System.out.println("Unknown option: " + args[i]);
return;

}
}

String netwerkFile = args[0];
if (!SILENT) {

System.out.println("\\ ** Reading e-newick from " + netwerkFile + ...

"...");
}

File file = new File(netwerkFile);
BufferedReader reader = null;
String newick = null;
Vector<String> newicks = new Vector();
try {

reader = new BufferedReader(new FileReader(file));
while ((newick = reader.readLine()) != null) {

newicks.add(newick);
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}
reader.close();

} catch (FileNotFoundException e) {
e.printStackTrace();
return;

} catch (IOException e) {
e.printStackTrace();
return;

}

Vector<Integer> num_taxa = new Vector();
Vector<Integer> num_retic = new Vector();
Vector<Integer> hardwired_score = new Vector();
Vector<Integer> softwired_score = new Vector();
Vector<Double> hardwired_time = new Vector();
Vector<Double> softwired_time = new Vector();

// loop through input networks
for (String n : newicks) {

if(n.equals("")) continue;

if (newicks.indexOf(n) > 0 & !SILENT) {
System.out.println("***** Results so far *****");
System.out.println("***** Random seed: " + seed);
System.out.println("***** Numbers of taxa: " + num_taxa.toString());
System.out.println("***** Numbers of reticulations: " + ...

num_retic.toString());
System.out.println("***** Hardwired parsimony scores: " + ...

hardwired_score.toString());
System.out.println("***** Softwired parsimony scores: " + ...

softwired_score.toString());
System.out.println("***** Computation time hardwired parsimony ...

score: " + hardwired_time.toString());
System.out.println("***** Computation time softwired parsimony ...

score: " + softwired_time.toString());
}

System.out.println("\\ ** Processing network " + (newicks.indexOf(n) ...

+ 1) + " out of " + newicks.size());

// System.out.println("\\ ** Read the following:");
// System.out.println("\\ " + newick);

Long hardwiredTime = new Long(0);
Long softwiredTime = new Long(0);

Network.TAXON_LABELS = new Vector();
Network.STATE_LABELS = new Vector();
if (!SILENT) {

System.out.println("\\ ** Parsing...");
}
Network N = Network.newick2netwerk(n);

Vector<Vector<Character>> allStates = new Vector();
Vector<String> taxa = new Vector();

if (!rand) {
// read character states from file
String characterFile = args[1];
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if (!SILENT) {
System.out.println("\\ ** Reading character data from " + ...

characterFile + "...");
}

file = new File(characterFile);
String record = null;
try {

reader = new BufferedReader(new FileReader(file));
Vector<Character> states = new Vector();
while ((record = reader.readLine()) != null) {

if (record.length() == 0 || record.startsWith("//")) {
continue; // ignore comments and empty lines

}
if (record.startsWith(">")) {

if (!states.isEmpty()) {
allStates.add(states);
states = new Vector();

}
String[] data = record.split(" ");
taxa.add(data[0].substring(1));
if (data.length > 1) {

for (char a : data[1].toCharArray()) {
states.add(a);

}
}

} else {
String[] data = record.split(" ");
if (data.length > 1) {

if (!states.isEmpty()) {
allStates.add(states);
states = new Vector();

}
taxa.add(data[0]);
for (char a : data[1].toCharArray()) {

states.add(a);
}

} else {
for (char a : data[0].toCharArray()) {

states.add(a);
}

}
}

}
if (!states.isEmpty()) {

allStates.add(states);
}
reader.close();

} catch (FileNotFoundException e) {
e.printStackTrace();
return;

} catch (IOException e) {
e.printStackTrace();
return;

}
} else {

// assign random states
if (!SILENT) {
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System.out.println("\\ ** Assigning random character states");
}
for (int i = 0; i < Network.TAXON_LABELS.size(); i++) {

Vector<Character> states = new Vector();
int c = generator.nextInt(num_states) + 1;
char cc = (char) (c + 65);
states.add(cc);
allStates.add(states);
taxa.add(Network.TAXON_LABELS.elementAt(i));

}
}

if (taxa.size() != Network.TAXON_LABELS.size()) {
System.out.println("Error: character and network do not have the ...

same number of taxa.");
System.out.println("Network taxa: " + ...

Network.TAXON_LABELS.toString());
System.out.println("Character taxa: " + taxa.toString());
return;

} else if (!taxa.containsAll(Network.TAXON_LABELS)) {
// System.out.println(taxa.toString());
// System.out.println(Network.TAXON_LABELS);
System.out.println("Error: character and network do not have ...

identical taxon sets.");
System.out.println("Network taxa: " + ...

Network.TAXON_LABELS.toString());
System.out.println("Character taxa: " + taxa.toString());
return;

}

int ss = 0; // softwired parsimony score
int hs = 0; // hardwired parsimony score
String uOutFile = netwerkFile + ".hardwiredPS.dot";
String uPDFFile = uOutFile + ".pdf";
String rOutFile = netwerkFile + ".softwiredPS.dot";
String rPDFFile = rOutFile + ".pdf";
String eol = System.getProperty("line.separator");

// construct vector with all vertices
// this also numbers the vertices
N.cleanNetwork();
int[] num = new int[1];
num[0] = Network.TAXON_LABELS.size() + 1;
Vector<Network> vertices = N.getVertices(num);

if (!OnlyParental.SILENT) {
System.out.println("\\ ** Network has " + ...

Network.TAXON_LABELS.size() + " taxa.");
}
if (!OnlyParental.SILENT) {

System.out.println("\\ ** Network has " + vertices.size() + " ...

vertices.");
}

// construct vector with all edges
Vector<Vector<Network>> edges = N.getEdges();
if (!OnlyParental.SILENT) {

System.out.println("\\ ** Network has " + edges.size() + " edges.");
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}

// construct vector with all reticulations
// this also numbers the vertices
N.cleanNetwork();
num[0] = Network.TAXON_LABELS.size() + 1;
Vector<Network> reticulations = N.getReticulations(num);
if (!OnlyParental.SILENT) {

System.out.println("\\ ** Network has " + reticulations.size() + ...

" reticulations.");
}

for (int state_index = 0; state_index < ...

allStates.elementAt(0).size(); state_index++) {

int hcs = 0; // hardwired parsimony score of this character
int scs = 0; // softwired parsimony score of this character

if (!SILENT && allStates.elementAt(0).size() > 1) {
System.out.println("\\ ** Processing character " + ...

(state_index + 1) + " out of " + ...

allStates.elementAt(0).size() + "...");
}

// clear existing character states
N.clearStates();
//N.cleanNetwork();
Network.STATE_LABELS = new Vector();

// add character data to network
int k = N.setCharacterStates(taxa, allStates, state_index);
if (k > maxstates) {

maxstates = k;
}

if (Network.STATE_LABELS.isEmpty()) {
System.out.println("\\ ** No states.");
continue;

}

if (Network.STATE_LABELS.size() == 1) {
System.out.println("\\ ** Only one state.");
continue;

}

if (!OnlyParental.SILENT) {
System.out.println("\\ ** Character has " + k + " states.");

}

// compute parsimony scores
// first softwired
if (!onlyhardwired) {

if (!SILENT) {
System.out.println("** ----- Solving softwired ILP with ...

CPLEX ------");
}
Long startingTime = System.currentTimeMillis();
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// compute softwired parsimony score
computePS(true, relax, N, vertices, edges, reticulations);
if (relax) {

// in case some states are still -1 we assing them a value
N.roundStates(true);

}
scs = N.getScore(true);
N.resetSeen();

N.finaliseStates(state_index, true);
N.resetSeen();

//update time
softwiredTime += System.currentTimeMillis() - startingTime;
if (!SILENT) {

System.out.println("** ----- Finished solving softwired ...

ILP with CPLEX -----");
}

}

// now hardwired
int rel_hcs = 0;

/* if (!onlysoftwired) {

Long startingTime = System.currentTimeMillis();
if (!SILENT) {

System.out.println("** ----- Solving hardwired ILP with ...

CPLEX ------");
}

// compute hardwired parsimony score
N.clearInternalStates();
computePS(false, relax, N, vertices, edges, reticulations);
N.roundStates(false);
N.resetSeen();
hcs = N.getScore(false);
N.resetSeen();
N.finaliseStates(state_index, false);
N.resetSeen();

//update time
hardwiredTime += System.currentTimeMillis() - startingTime;
if (!SILENT) {

System.out.println("** ----- Finished solving hardwired ...

ILP with CPLEX -----");
}

}*/

ss += scs;
// hs += hcs;

}

// compute edge support
N.computeRetEdgeSupport();

// output
Vector<String> networkStrings;
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if (!onlyhardwired) {

if (newicks.size() == 1) {
// write output network to file
networkStrings = N.toDot(nolabels, nostates, true);
try {

BufferedWriter out = new BufferedWriter(new ...

FileWriter(rOutFile));
for (String line : networkStrings) {

out.write(line + eol);
}
out.close();
if (!SILENT) {

System.out.println("** Network for softwired ...

parsimony score in DOT format has been written ...

to: " + rOutFile);
}

} catch (IOException e) {
System.out.println("** Could not write output network to ...

file.");
}

try {
String line;
Process p = Runtime.getRuntime().exec("dot -Tpdf " + ...

rOutFile + " -O");
BufferedReader bre = new BufferedReader(new ...

InputStreamReader(p.getErrorStream()));
while ((line = bre.readLine()) != null) {

if (!SILENT) {
System.out.println(line);

}
}
bre.close();
p.waitFor();
System.out.println("** Network for softwired parsimony ...

score in PDF format has been written to: " + rPDFFile);

} catch (Exception err) {
System.out.println("** Could not convert network to PDF ...

format.");
}

}
}

if (!onlysoftwired) {

if (newicks.size() == 1) {

networkStrings = N.toDot(nolabels, nostates, false);
try {

BufferedWriter out = new BufferedWriter(new ...

FileWriter(uOutFile));
for (String line : networkStrings) {

out.write(line + eol);
}
out.close();
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} catch (IOException e) {
return;

}

if (!SILENT) {
System.out.println("** Network for hardwired parsimony ...

score in DOT format has been written to: " + uOutFile);
}

try {
String line;
Process p = Runtime.getRuntime().exec("dot -Tpdf " + ...

uOutFile + " -O ");
BufferedReader bre = new BufferedReader(new ...

InputStreamReader(p.getErrorStream()));
while ((line = bre.readLine()) != null) {

System.out.println(line);
}
bre.close();
p.waitFor();
if (!SILENT) {

System.out.println("** Network for hardwired ...

parsimony score in PDF format has been written ...

to: " + uPDFFile);
}

} catch (Exception err) {
System.out.println("** Could not convert network to PDF ...

format.");
}

}
}

N.cleanNetwork();
if (!SILENT) {

System.out.println("***** Number of taxa: " + ...

Network.TAXON_LABELS.size());
}
if (!SILENT) {

System.out.println("***** Number of reticulations: " + ...

reticulations.size());
System.out.println("***** Number of characters: " + ...

allStates.elementAt(0).size());
System.out.println("***** Number of character states: " + ...

maxstates);
}

if (!onlysoftwired & !SILENT) {
System.out.println("***** Hardwired Parsimony Score: " + hs);

}
if (!onlyhardwired & !SILENT) {

System.out.println("***** Softwired Parsimony Score, no, ...

Parental Parsimony Score: " + ss);
}

if (!SILENT) {
System.out.println("***** Computation time for Hardwired ...

Parsimony Score " + hardwiredTime / 1000 + " seconds.");
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System.out.println("***** Computation time for Softwired ...

Parsimony Score: " + softwiredTime / 1000 + " seconds.");
}
num_taxa.add(Network.TAXON_LABELS.size());
num_retic.add(reticulations.size());
hardwired_score.add(hs);
softwired_score.add(ss);
hardwired_time.add(hardwiredTime / 1000.0);
softwired_time.add(softwiredTime / 1000.0);

}

if (newicks.size() > 1) {
System.out.println("***** Finished all networks");
System.out.println("***** Random seed: " + seed);
System.out.println("***** Numbers of taxa: " + num_taxa.toString());
System.out.println("***** Numbers of reticulations: " + ...

num_retic.toString());
System.out.println("***** Hardwired parsimony scores: " + ...

hardwired_score.toString());
System.out.println("***** Softwired parsimony scores: " + ...

softwired_score.toString());
System.out.println("***** Computation time hardwired parsimony ...

score: " + hardwired_time.toString());
System.out.println("***** Computation time softwired parsimony ...

score: " + softwired_time.toString());
}

// this can be use to compute average computation times per run
if (newicks.size() == 60) {

for (int run = 0; run < 6; run++) {
double hwsum = 0;
double swsum = 0;
for (int i = run * 10; i < run * 10 + 10; i++) {

hwsum += hardwired_time.elementAt(i);
swsum += softwired_time.elementAt(i);

}
System.out.println("***** Avg computation time hardwired run " + ...

(run + 1) + ": " + (hwsum / 10.0));
System.out.println("***** Avg computation time softwired run " + ...

(run + 1) + ": " + (swsum / 10.0));
}

}
}

public static double computePS(boolean softwired, boolean relax, Network N, ...

Vector<Network> vertices, Vector<Vector<Network>> edges, ...

Vector<Network> reticulations) {
double ps = -1; // the parsimony score

// Vector of Strings with ILP formulation
Vector<String> ILPStrings = new Vector();
String eol = System.getProperty("line.separator");

// generate ILP for CPLEX
int k = Network.STATE_LABELS.size(); //int k is number of states
ILPStrings.add("MINIMIZE"); // writes "minimize"
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// objective function
String obj = "";
boolean gotone = false; //need to start with c_w
for (Network v : vertices){ //loops through vertices

if (v.state == GAP) { //state cant be gap
continue;

}
if (gotone) {

obj += " + ";
}
gotone = true;
obj += "c_" + v.number;

}

ILPStrings.add(obj);
ILPStrings.add("Subject To");

//vertex constraints
//constraint 6: sum over states of x_root,s = 1
for (Network v : vertices) { //loop trough vertices

if (v.isRoot) {
String con = ""; //make a string
for (int s = 0; s < k; s++) { //loop through states

if (s > 0) { //start with an x first
con += " + ";

}
con += "x_" + v.number + "," + s; //x_number of root states

}
con += " = 1";
ILPStrings.add(con); //so now som over states of ...

x_root,s = 1.
}

}
//constraint 8: weight y of root is 0 for every state s

for (Network v : vertices) {
if (v.isRoot) {

for (int s = 0; s < k; s++) { //loop through states
String con = "y_" + v.number + "," + s + " = 0";
ILPStrings.add(con);

}
}

}

//constraint 3: weight y_v,s ≥0
for (Network v : vertices) {

for (int s = 0; s < k; s++) {
String con = "y_" + v.number + "," + s + " ≥0";
ILPStrings.add(con);

}
}

//constraint 9: c_v - sum over all states of y_v,s ≥0
for (Network v : vertices) {

String con = "";
for (int s = 0; s < k; s++) { //loop through states
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con += " - y_" + v.number + "," + s; //y_number of root states
}
ILPStrings.add("c_" + v.number + con + " ≥" + 0);

}

//constraint 2 and 5: x_v,s = 0 for every v in X and s != a(v), and ...

x_v,s = 1 if s = a(v)
for (Network v : vertices) { // loop through all vertices

if (v.isLeaf) { //we are only interested in the leaves
int a = v.state;
for (int s = 0; s < k; s++) { //loop through all states

if (a == s) { //see if the state is the state of ...

the leaf
ILPStrings.add("x_" + v.number + "," + s + " = 1");

} else { //if a!=a, //if the state we are ...

looking at, is not equal to the state of v, x = 0
ILPStrings.add("x_" + v.number + "," + s + " = 0");

}
}

}
}
// edge constraints, constraint 4 //y_v,s ≥x_v,s ...

- sum over parents u x_u,s
for (Network v : vertices) { //for every vertex v in V.

//Network u = v.parent; // get parent u of v
if (v.isRoot){

continue;
}
if (v.isLeaf && v.state != GAP) { //if v is leaf, then x_v,a(v)=1

int s = v.state;
String xvs = "x_" + v.number + "," + s;
String yvs = "y_" + v.number + "," + s;
String xus = ""; //0 if v is root and u does ...

not exist.
boolean first = true; //to see if we already have a first element

for (Network u : v.parents) { //loops through parents u of v

// if (first) {
// xus = "x_" + u.number + "," + s; //if u is first ...

parent of v: start the string with this x
// } else {

xus += " + x_" + u.number + "," + s;
// }

first = false; //after we have the first element, ...

this boolean is false
}
// now we have for leaf v everything to make the string
//String con = yvs + "≥" + xvs + "-1*(" + xus + ")"; ...

//every variable has to be on the left hand side (LHS)
String con = yvs + " - " + xvs + xus + " ≥" + 0;
ILPStrings.add(con);

} else if (v.isLeaf) {
//v is a gap
// no constraint

} else {
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for (int s = 0; s < k; s++) { //loop through all the states
String xvs = "x_" + v.number + "," + s;
String yvs = "y_" + v.number + "," + s;
String xus = "";
boolean first = true; //to see if we already have a first ...

element
for (Network u : v.parents) { //loops through parents u ...

of v
//is u parent of v? if Yes: add to string

// if (first) {
// xus = "x_" + u.number + "," + s; //if u is ...

first parent of v: start the string with this x
// } else {

xus += " + x_" + u.number + "," + s;
// }

first = false; //after we have the first ...

element, this boolean is false
}

// now we have for leaf v everything to make the string
//String con = yvs + "≥" + xvs + "-1 *(" + xus + ")"; ...

//everything on LHS?
String con = yvs + " - " + xvs + xus + " ≥" + 0;
ILPStrings.add(con);

}
}

}
//Constraint 1: sum(over s) x_v,s - sum(over s) sum(over u in ...

par(v)) x_u,s ≤0
for (Network v : vertices) { //loop through all vertices

if(v.isRoot){
continue;

}
String con1 = ""; //make a string for som over x_v,s
String con2 = "0"; //make a string for sum over s of sum ...

over edges into v of x_u,s
for (int s = 0; s < k; s++) { //loop through states

if (s > 0) { //start with an x first
con1 += " + ";

}
con1 += "x_" + v.number + "," + s; //con1 is now sum over s ...

of x_v,s
}
boolean first = true; //to see if we already have a first element
for (int s = 0; s < k; s++) { //loop through states

for (Network u : v.parents) { //need to build something that ...

gets the parents of v, loops through all vertices
if (first) {

con2 = "x_" + u.number + "," + s; //if u is first ...

parent of v: start the string with this x
} else {

con2 += " - x_" + u.number + "," + s;
}
first = false; //after we have the first element, ...

this boolean is false
}

}
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// String con = con1 + "-1*(" + con2 + ")≤0"; //som x_v,s - ...

som over som x_u,s ≤0
String con = con1 + " - " + con2 + " ≤0"; //this ...

is better?
ILPStrings.add(con);

}

//constraint 7: x is 0 or 1
// bounds
if (relax) { //relax mean relaxation: no integers

ILPStrings.add("Bounds");
for (Network vertex : vertices) { ...

//loops through vertices
if (vertex.isLeaf) { ...

// dont do anything when x is a leaf, why??
continue;

}
for (int s = 0; s < k; s++) { ...

//loop through states
ILPStrings.add("0 ≤x_" + vertex.number + "," + s + " ≤1"); ...

//adds bounds, x between 0 and 1
}

}
} else {

ILPStrings.add("Binary"); //when everything is binary:
//this will give every variable
for (Network vertex : vertices) { //loops through vertices

if (vertex.isLeaf) { //doesnt give leafs
continue;

}
for (int s = 0; s < k; s++) {

ILPStrings.add("x_" + vertex.number + "," + s);
}

}
}

//---------------------
ILPStrings.add("End");

// write ILP to file
try {

BufferedWriter out = new BufferedWriter(new FileWriter("ILP.tmp"));
for (String line : ILPStrings) {

out.write(line + eol);
}
out.close();

} catch (IOException e) {
return -1;

}

// ----- run CPLEX -----
try {

IloCplex cplex = new IloCplex(); ...

//make new CPLEX object: to solve our model

//! fileName is the name of the file where your ILP is
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cplex.importModel("ILP.tmp"); ...

//imports our ILP Model

//! uncomment this to suppress visual output from cplex
cplex.setOut(null);

//! this is the solving bit
if (cplex.solve()) { ...

//returns boolean, whether cplex has found a solution
IloNumVar[] var = parse(cplex); ...

//if cplex found a solution, then var is now the solution
//(parse ...

translates ...

from ...

cplex ...

to ...

java

//! read the optimal solution
double x[] = cplex.getValues(var); ...

//puts solution in an double array
int yCounter = 0;
if (relax) { ...

//i'm not going to relax it, let this be
// give each vertex a state with maximum x_{v,s} value
for (int loop = 0; loop < x.length; loop++) {

String varname = var[loop].getName();
String[] splitVarName = varname.split("_");
if (splitVarName[0].equals("x")) {

// this is an x-variable (indicating character state)
String[] doubleSplit = splitVarName[1].split(",");
int vertexNum = Integer.parseInt(doubleSplit[0]);
int stateValue = Integer.parseInt(doubleSplit[1]);
Network v = N.getVertex(vertexNum);
// give the corresponding vertex the right state
if(x[loop] > v.stateDouble) {

v.state = stateValue;
v.stateDouble = x[loop];

}
} else {

// this is a c-variable: skip
}

}
} else {

for (int loop = 0; loop < x.length; loop++) {
System.out.println(var[loop].getName() + " = " + ...

x[loop]); //let us read what the values of the ...

variables are
String varname = var[loop].getName(); ...

//varnaam is the String of the ...

solution in var
int intvalue = (int) Math.round(x[loop]); ...

// rond de solution af op integer, ...

noem deze intvalue
if (intvalue == 1) { ...

//als ...

intvalue ==1, dan is x_v,s =1 en gebruiken we hem
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String[] splitVarName = varname.split("_"); ...

//splitst de string van varname in ...

x/y en v,s
if (splitVarName[0].equals("y")) {

//this is a y-variable (counting the changes), we ...

could do something with this
yCounter++; ...

// ...

This will count the number of y_v,s that are ...

1, so basically the parsimony score.

/* This below is for softwires ...

parsimony
int edgenum = Integer.parseInt(splitVarName[1]);
Vector<Network> edge = ...

softwiredILP.edges.elementAt(edgenum);
Network u = edge.elementAt(0);
Network v = edge.elementAt(1);
int index = v.parents.indexOf(u);
// record that this edge was switched on for this ...

character
Vector<Boolean> used = new Vector();
used.setSize(v.parents.size());
used.set(index, true);
v.retEdgeUsed.set(state_index,used);
*/

}

if (splitVarName[0].equals("x")) {
// this is an x-variable (indicating character state)
String[] doubleSplit = splitVarName[1].split(","); ...

//splits in x en v,s
int vertexNum = Integer.parseInt(doubleSplit[0]); ...

//kijkt naar v, dit is vertexNum
int stateValue = Integer.parseInt(doubleSplit[1]); ...

//kijkt naar s, dit is stateValue
// give the corresponding vertex the right state
N.setStates(vertexNum, stateValue); ...

//Hier moet iets anders komen,
//N.setVectorStates(vertexNum, stateValue);
System.out.println("In ComputePS, we have the ...

following vertices with the following states: ...

"+ vertexNum + " vertexnumm en state value "+ ...

stateValue);
} else {

// this is a c-variable: skip
}

}
}
System.out.println("according to computePS and the yCounter, ...

the parsimony score is "+ yCounter);
}

}

//! this gets the objective function value, rounded to an int
ps = cplex.getObjValue();
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//! this deallocates the CPLEX resources
cplex.end();

} catch (IloException e) {
System.out.println("Something went wrong with CPLEX.");
System.out.println(e.getMessage());
System.exit(0);

}

return ps;
}

private static IloNumVar[] parse(IloCplex cplex) throws IloException {
HashSet<IloNumVar> vars = new HashSet<IloNumVar>();
Iterator it = cplex.iterator();
IloLinearNumExpr expr;
IloLinearNumExprIterator it2;
while (it.hasNext()) {

IloAddable thing = (IloAddable) it.next();
if (thing instanceof IloRange) {

expr = (IloLinearNumExpr) ((IloRange) thing).getExpr();
it2 = expr.linearIterator();
while (it2.hasNext()) {

vars.add(it2.nextNumVar());
}

} else if (thing instanceof IloObjective) {
expr = (IloLinearNumExpr) ((IloObjective) thing).getExpr();
it2 = expr.linearIterator();
while (it2.hasNext()) {

vars.add(it2.nextNumVar());
}

} else if (thing instanceof IloSOS1) {
vars.addAll(Arrays.asList(((IloSOS1) thing).getNumVars()));

} else if (thing instanceof IloSOS2) {
vars.addAll(Arrays.asList(((IloSOS2) thing).getNumVars()));

} else if (thing instanceof IloLPMatrix) {
vars.addAll(Arrays.asList(((IloLPMatrix) thing).getNumVars()));

}
}
IloNumVar[] varray = vars.toArray(new IloNumVar[1]);
return varray;

}

}

class Network {

static int MAX_RET = 0; // for printing purposes
static int GAP = 9999;
static Vector<String> TAXON_LABELS = new Vector();
static Vector<Character> STATE_LABELS = new Vector();
Vector<Network> children;
Vector<Network> parents;
int state;
Vector<Integer> MultiStates; //not sure which one i'm using
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LinkedHashSet<Integer> PStates; //not sure which one i'm using
double stateDouble;
Vector<Character> softwiredStates;
Vector<String> parentalStates;
Vector<Character> hardwiredStates;
Vector<Double> retEdgeSupport;
boolean isLeaf;
String label;
Vector TreeVertices;
int aafComp;
boolean isRoot;
int retNum;
boolean seen;
public int number;

public Network() {
isLeaf = false;
label = null;
parents = new Vector();
children = new Vector();
TreeVertices = new Vector();
MultiStates = new Vector(); //vector of states
PStates = new LinkedHashSet(); //LinkedHashSet of states, this object ...

does not contain duplicates
aafComp = -1;
retNum = -1;
seen = false;
isRoot = false;
number = 0;
state = -1;
stateDouble = -1;
parentalStates = new Vector();
hardwiredStates = new Vector();
softwiredStates = new Vector();
retEdgeSupport = new Vector();

}

public static Network newick2netwerk(String newick) {
if (newick.endsWith(";")) {

int lastclosepar = newick.lastIndexOf(")");
newick = newick.substring(0, lastclosepar + 1);

} else {
return null;

}
Network N = newick2netwerk(newick, new Vector());
N.isRoot = true;
N.cleanNetwork();

// suppress indegree-1 outdegree-1
N.suppress();

return N;
}

public boolean setState(int vertex_num, int state) {
if(this.number == vertex_num) {

this.state = state; //will be ...

used for finalise states
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return true;
}
for (Network child : children) {

boolean cb = child.setState(vertex_num, state);
if(cb) {

return true;
}

}
return false;

}

public boolean setStates(int vertex_num, int state){ //give ...

the correct vertex the correct state, N.setStates(vertexNum, stateValue);
if(this.number == vertex_num){ ...

//checks if we are looking at the correct vertex
this.PStates.add(state); ...

//gives the vertex we are looking at, the state we want, PStates ...

is a LinkedHashSet
return true; //then ...

we are done
}
for(Network child: children){ //if ...

we are not looking at the correct vertex, look at the children of ...

this vertex
boolean cb = child.setStates(vertex_num, state); ...

//check if we want the children
if(cb){ //loop ...

through childeren until we found the correct vertex with ...

corresponding vertex number, this is an iteration
return true; //we ...

are done
}

}
return false;

}

public Network getVertex(int vertex_num) {
if(this.number == vertex_num) {

return this;
}
for (Network child : children) {

Network v = child.getVertex(vertex_num);
if(v != null) {

return v;
}

}
return null;

}

public void suppress() {
for (Network child : children) {

child.suppress();
if (child.children.size() == 1 && child.parents.size() == 1) {

// indegree-1 outdegree-1
// suppress
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Network grandchild = child.children.elementAt(0);
children.setElementAt(grandchild, children.indexOf(child));
grandchild.parents.setElementAt(this, ...

grandchild.parents.indexOf(child));
}

}
}

public static Network newick2netwerk(String newick, Vector<Network> ...

reticulations) {
int lastclosepar = newick.lastIndexOf(")");
int lasthash = newick.lastIndexOf("#");
int lastcolon = newick.lastIndexOf(":");

// get rid of weights
if (lastcolon > lastclosepar & lastcolon > lasthash) {

return newick2netwerk(newick.substring(0, lastcolon), reticulations);
}

Network N = new Network();

if (newick.startsWith("(")) {
if (lastclosepar < newick.length() - 1 && newick.charAt(lastclosepar ...

+ 1) == '#') {
// a new reticulation
reticulations.add(N);
N.retNum = new Integer(newick.substring(lastclosepar + 3, ...

newick.length()));
Network child = newick2netwerk(newick.substring(0, lastclosepar ...

+ 1), reticulations);
N.children.add(child);
child.parents.add(N);
return N;

} else {
// split vertex
int openpar = 0;
int closepar = 0;
int start = 1;
Vector<String> childrenNewick = new Vector();
for (int i = 0; i < newick.length(); i++) {

if (newick.charAt(i) == '(') {
openpar++;

}
if (newick.charAt(i) == ')') {

closepar++;
}
if ((openpar == closepar + 1) && (newick.charAt(i) == ',')) {

childrenNewick.add(newick.substring(start, i));
start = i + 1;

}
if (i == newick.length() - 1) {

childrenNewick.add(newick.substring(start, i));
}

}

for (String childNewick : childrenNewick) {
Network child = newick2netwerk(childNewick, reticulations);
N.children.add(child);
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child.parents.add(N);
}
return N;

}

} else {
if (newick.startsWith("#H")) {

// a reticulation
N.retNum = Integer.parseInt(newick.substring(2, newick.length()));
for (Network reticulation : reticulations) {

if (reticulation.retNum == N.retNum) {
// an existing reticulation
N.children.add(reticulation);
reticulation.parents.add(N);
return N;

}
}

} else {
// a leaf
if (newick.contains("#")) {

// a reticulation leaf
int hash = newick.indexOf("#");
N.retNum = Integer.parseInt(newick.substring(hash + 2, ...

newick.length()));

// check if we've already seen this reticulation
for (Network reticulation : reticulations) {

if (reticulation.retNum == N.retNum) {
// an existing reticulation
N.children.add(reticulation);
reticulation.parents.add(N);
return N;

}
}

// apparently this is a new reticulation
reticulations.add(N);
Network child = new Network();
child.isLeaf = true;
String lab = newick.substring(0, hash);
child.label = lab;
N.children.add(child);
child.parents.add(N);
TAXON_LABELS.add(lab);

} else {
// a normal leaf
N.isLeaf = true;
N.label = newick;
TAXON_LABELS.add(newick);

}
}

}
return N;

}

public String toString() {
String output;
// returns eNewick string of the network
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if (isLeaf) {
return label + ":1.0";

}

String childString1 = ((Network) children.elementAt(0)).toString();

if (parents.size() > 1) {
// reticulation
if (seen) {

output = "#H" + retNum;
} else {

MAX_RET++;
retNum = MAX_RET;
seen = true;
if (childString1.startsWith("(")) {

output = childString1 + "#H" + retNum;
} else {

output = "(" + childString1 + ")" + "#H" + retNum;
}

}
return output;

}

output = "(" + childString1;

for (int i = 1; i < children.size(); i++) {
output += "," + ((Network) children.elementAt(i)).toString();

}
output += "):1.0";
if (parents.isEmpty()) {

output += ";";
}
return output;

}

public void computeRetEdgeSupport() {
retEdgeSupport = new Vector();
for(Network parent : parents) {

retEdgeSupport.add(0.0);
}
if (parents.size() > 1) {

for (int i = 0; i < softwiredStates.size(); i++) {
char c = softwiredStates.elementAt(i);
int numParentsWithC = 0;
for(Network parent : parents) {

char d = parent.softwiredStates.elementAt(i);
if (c == d) {

numParentsWithC++;
}

}
//double score = 1.0 / (numParentsWithC * softwiredStates.size());
for (int p = 0; p < parents.size(); p++) {

Network parent = parents.elementAt(p);
char d = parent.softwiredStates.elementAt(i);
if (c == d & numParentsWithC == 1) {
//if (c == d) {

retEdgeSupport.setElementAt(retEdgeSupport.elementAt(p) + ...

1, p);
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}
}

}
// normalise
int total = 0;
for (int p = 0; p < parents.size(); p++) {

total += retEdgeSupport.elementAt(p);
}
if (total != 0) {

for (int p = 0; p < parents.size(); p++) {
retEdgeSupport.setElementAt(retEdgeSupport.elementAt(p) / ...

total, p);
}

}
}
// recurse
for(Network child : children) {

child.computeRetEdgeSupport();
}

}

public int setCharacterStates(Vector<String> taxa, ...

Vector<Vector<Character>> states, int state_index) {
// returns the number of states
if (isLeaf) {

for (String taxon : taxa) {
if (label.equals(taxon)) {

char s = ...

states.elementAt(taxa.indexOf(taxon)).elementAt(state_index);
if (s != '-' & s != '?') {

if (!STATE_LABELS.contains(s)) {
STATE_LABELS.add(s);

}
this.state = STATE_LABELS.indexOf(s);

} else {
this.state = GAP;

}
}

}
} else {

for (Network child : children) {
child.setCharacterStates(taxa, states, state_index);

}
}
return STATE_LABELS.size();

}

public void resetSeen() {
seen = false; if (!isLeaf) {

for (Network child : children) {
child.resetSeen();

}
}

}

public void cleanNetwork() {
MAX_RET = 0;
seen = false;
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retNum = -1;
number = 0;
if (!isLeaf) {

for (Network child : children) {
child.cleanNetwork();

}
}

}

//for states in LinkesHashSet
public int getScore(boolean softwired) { //input is N: ...

N.getScore(true)
// returns the parsimony score
int s_s = 0; // softwired score, also ...

weight of lineage function
int parentCount = 0; //will count number of ...

states a parent of v has , method size did not work
int stateCount = PStates.size(); // will count ...

the number of states v has
/*
if (this.state == GAP) { //this was some kind of ...

check, dont know if we will need this.
return 0;

}*/

//first part of lineage function: weight is 0 if v is root
if(!this.isRoot) { //if this is ...

the root, weight and score is 0, so we do nothing with the root and ...

root has no parents
//second part: weight is inf if v 6=pN and |f(v)| > union(over u in ...

par(v))[ |f(u)| ]
/* Iterator<Integer> itr1 = PStates.iterator();

while(itr1.hasNext()){ //loops ...

through elements of HashSet and thus counts the number of states ...

v has
stateCount++; //remember ...

that there are no duplicates in a LinkedHashSet
}

for(Integer u: PStates){
stateCount++;

}*/
for(Network parent : parents){

parentCount += parent.PStates.size();
}

// for (Network parent : parents) { //loops ...

through parents of v
// Iterator<Integer> itr2 = parent.PStates.iterator(); //makes ...

iterator that goes through the LinkedHashSet of the parent
// while(itr2.hasNext()){ //loops ...

through elements: if the iterator hasn't a next element, this is the ...

last element
// parentCount++; //counts ...

the number of parents in the HashSet of the parent
// }
// } //we are ...

going to check whether v has more states than his parents together
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if(stateCount > parentCount){ // if |f(v)| > ...

union(over u in par(v))[ |f(u)| ], then w is inf
s_s = -999999; //weight would ...

be inf, but with a negative integer we also show that ...

something is wrong
System.out.println("the weight of vertex number " + this.number ...

+ " is infinity"); //let us know which vertex goes wrong
}
//third part: weight of the lineage function is |f(v) \ sum(over u ...

in par(v))[ f(u) ] |
//Iterator<Integer> itr3 = PStates.iterator();
//while(itr3.hasNext()){ //loop through ...

elements of f(v), check per element whether Uf(u) has it
Iterator<Integer> itr5 = PStates.iterator(); //check the ...

elements of PStates
while (itr5.hasNext()){

System.out.println("elements in PStates of vertex " + ...

this.number + " are: "+ itr5.next() + ", so the size is "+ ...

PStates.size() );
}
for(Integer w : PStates){ //loop through ...

elements of this.PStates
//we will put the states of the parent in an arraylist, so that ...

we can compare these states with state w
int statesOfParent = 0; //counts the ...

number of states of a parent
boolean firstParent = true;
ArrayList statesOfBothParents = new ArrayList(); //we are ...

going to put states of all parents in this arraylist
for(Network parent : parents){ //loop through ...

parents of this(v)
//Iterator<Integer> itr4 = parent.PStates.iterator();
if(firstParent){ //check if you ...

have first parent
for(Integer u: parent.PStates){ //check for first ...

parent how much states it has
statesOfParent++; //counts the ...

number of states of a parent

}
firstParent = false; //we have had the ...

first parent
statesOfBothParents.addAll(parent.PStates); //add ...

all states of the first parent in statesOfBothParents
}
if(!firstParent){ //if it is not ...

the first parent, add all the states from the second ...

parent in statesOfBothParents, from index statesOfParent
statesOfBothParents.addAll(statesOfParent,parent.PStates); ...

//add all states of the first parent, beginning from ...

the first empty index.
}

}
boolean oneTheSame = false; //we will ...

compare the state w with all the states of the parents
for(int s = 0; s < statesOfBothParents.size(); s++ ){ //loop ...

through all the states of all the parents
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if(w == statesOfBothParents.get(s)){ ...

//checks whether one of the ...

parents has a state s that is the same as state w
oneTheSame = true ; // says one of ...

the parents has one of the same states as w
}

}
if(!oneTheSame){

s_s++;
}

}
}
this.seen = true;
for (Network child : children) {

if (!child.seen) {
int childscore = child.getScore(softwired);
s_s += childscore;

}
}
System.out.println("in getScore, it calculates the following parsimony ...

scores: "+ s_s);
return s_s;

}

public Vector<String> toDot(boolean nolabels, boolean nostates, boolean ...

softwired) {
// returns vector with the network in dot format
Vector<String> out = new Vector();
out.add("strict digraph G {");
int[] num = new int[1];
num[0] = 1000;
this.cleanNetwork();
out.addAll(this.nodes2dot(num, nolabels, nostates, softwired));
out.addAll(this.arcs2dot(softwired));
out.add("}");
this.cleanNetwork();
return out;

}

public Vector<String> nodes2dot(int num[], boolean nolabels, boolean ...

nostates, boolean softwired) {
Vector<String> out = new Vector();
if (number != 0) {

return out; // already visited
}
if (isLeaf) {

// this is a leaf
number = TAXON_LABELS.indexOf(label) + 1;
//System.out.println(number + " [shape=circle, width=0.3, label=\"" ...

+ label + " (" + STATE_LABELS.elementAt(state) + ")\"" + "];");
//System.out.println(number + " [shape=circle, width=0.3, label=\"" ...

+ STATE_LABELS.elementAt(state) + "\"" + "];");
String slabel = "";
if (softwired) {

for (char cstate : softwiredStates) {
if (cstate == GAP) {

slabel += '-';
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} else {
slabel += cstate;

}
}

} else {
for (char cstate : hardwiredStates) {

if (cstate == GAP) {
slabel += '-';

} else {
slabel += cstate;

}
}

}
if (nolabels) {

if (!nostates) {
out.add(number + " [shape=box, width=0.2, label=\"" + slabel ...

+ "\"" + "];");
} else {

out.add(number + " [shape=point];");
}

} else {
if (!nostates) {

out.add(number + " [shape=box, width=0.2, label=\"" + label ...

+ "\\n" + slabel + "\"" + "];");
} else {

out.add(number + " [shape=none, label=\"" + label + "\"];");
}

}
} else {

number = num[0];
//System.out.println(number + " [shape=point];");
//System.out.println(number + " [shape=circle, width=0.3, label=\"" ...

+ STATE_LABELS.elementAt(state) + "\"" + "];");
String slabel = "";
if (softwired) {

for (char cstate : softwiredStates) {
slabel += cstate;

}
} else {

for (char cstate : hardwiredStates) {
slabel += cstate;

}
}
if (!nostates) {

out.add(number + " [shape=box, width=0.2, label=\"" + slabel + ...

"\"" + "];");
} else {

out.add(number + " [shape=point];");
}
for (Network child : children) {

num[0]++;
out.addAll(child.nodes2dot(num, nolabels, nostates, softwired));

}
}
return out;

}

public Vector<String> arcs2dot(boolean softwired) {
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// returns the arcs in dot format
Vector<String> out = new Vector();
for (Network child : children) {

int intlabel = -1;
double doublelabel = -1;
/*
if(child.parents.size()>1 & softwired & SourceCodeTest.USE_CPLEX) {
// find the fraction of characters using this edge
int index = child.parents.indexOf(this);
doublelabel = 0.0;
for(int s = 0; s < numchar; s++) {
Boolean b = child.retEdgeUsed.elementAt(s).elementAt(index);
if(b!=null && b) {
doublelabel++;
}
}
doublelabel = doublelabel / numchar;
* */

if (child.parents.size() > 1 & softwired) {
// find the fraction of characters that could be inherited over ...

this edge
/*
doublelabel = 0;
for (int i = 0; i < softwiredStates.size(); i++) {

if ((softwiredStates.elementAt(i) == ...

child.softwiredStates.elementAt(i)) | ...

(child.softwiredStates.elementAt(i) == '-')) {
doublelabel++;

}
}
doublelabel = doublelabel / numchar;
*/
doublelabel = ...

child.retEdgeSupport.elementAt(child.parents.indexOf(this));
doublelabel = Math.round(doublelabel*10.0) / 10.0;

} else {
// find the number of changes on this edge
intlabel = countChanges(this, child, softwired);

}
if (doublelabel != -1) {

out.add(number + " -> " + child.number + "[color=blue,label=" + ...

doublelabel + "]");
} else if (softwiredStates.size() == 1 | hardwiredStates.size() == ...

1) {
if (intlabel > 0) {

out.add(number + " -> " + child.number + "[color=red]");
} else {

out.add(number + " -> " + child.number + "[color=black]");
}

} else {
//out.add(number + " -> " + child.number + ...

"[colorscheme=dark28,color=" + (changes+1) + "]");
if (intlabel > 0) {

out.add(number + " -> " + child.number + "[color=red,label=" ...

+ intlabel + "]");
} else {

out.add(number + " -> " + child.number + "[color=black]");
}
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}
}
seen = true;
for (Network child : children) {

if (!child.seen) {
out.addAll(child.arcs2dot(softwired));

}
}
return out;

}

public int countChanges(Network vertex, Network child, boolean softwired) {
int changes = 0;
if (softwired) {

for (int i = 0; i < child.softwiredStates.size(); i++) {
char childstate = child.softwiredStates.elementAt(i);
if (childstate == '-') {

continue;
}
boolean change = true;
for (Network parent : child.parents) {

if (parent.softwiredStates.elementAt(i).equals(childstate)) {
change = false;

}
}
if (change) {

changes++;
}

}
} else {

for (int i = 0; i < vertex.hardwiredStates.size(); i++) {
char mystate = vertex.hardwiredStates.elementAt(i);
char childstate = child.hardwiredStates.elementAt(i);
if (childstate == '-') {

continue;
}
if (childstate != mystate) {

changes++;
}

}
}
return changes;

}

public Vector<Network> getVertices(int num[]) {
Vector out = new Vector();
if (number != 0) {

return out; // already visited
}
if (isLeaf) {

// this is a leaf
number = TAXON_LABELS.indexOf(label) + 1;
out.add(this);

} else {
number = num[0];
out.add(this);
for (Network child : children) {

num[0]++;
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out.addAll(child.getVertices(num));
}

}
return out;

}

public Vector<Network> getReticulations(int num[]) {
Vector out = new Vector();
if (number != 0) {

return out; // already visited
}
if (parents.size() > 1) {

out.add(this);
}
if (isLeaf) {

number = TAXON_LABELS.indexOf(label) + 1;
} else {

number = num[0];
for (Network child : children) {

num[0]++;
out.addAll(child.getReticulations(num));

}
}
return out;

}

public Vector<Vector<Network>> getEdges() {
Vector out = new Vector();
for (Network child : children) {

Vector edge = new Vector();
edge.add(this);
edge.add(child);
out.add(edge);

}
seen = true;
for (Network child : children) {

if (!child.seen) {
out.addAll(child.getEdges());

}
}
return out;

}

public void roundStates(boolean softwired) {
// rounding procedure for states
if (state == -1) {

if (softwired) {
// for the softwired parsimony score, we make the state equal to ...

the state of at least one parent
// we choose the parent whose state is equal to the state of a ...

maximum number of children
if (parents.size() > 0) {

Network bestParent = null;
int bestnum = 0;
for (Network parent : parents) {

int num = 0;
for (Network child : children) {

if (parent.state == child.state) {
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num++;
}

}
if (num ≥bestnum) {

bestnum = num;
bestParent = parent;

}
}
state = bestParent.state;

} else {
// the root we give state 0 (if it's not yet integral)
state = 0;

}
} else {

// for the hardwired parsimony score, we round to the nearest ...

integer
state = (int) Math.rint(stateDouble);

// might want to do something more clever here

}
}
for (Network child : children) {

child.roundStates(softwired);
}

}

public void clearStates() {
state = -1;
stateDouble = -1;
//if (!STATE_LABELS.isEmpty()) {
// STATE_LABELS = new Vector();
//}
for (Network child : children) {

child.clearStates();
}

}

public void clearInternalStates() {
if(!isLeaf) {

state = -1;
stateDouble = -1;

}
//if (!STATE_LABELS.isEmpty()) {
// STATE_LABELS = new Vector();
//}
for (Network child : children) {

child.clearInternalStates();
}

}

public void finaliseStates(int index, boolean softwired){ //parentalStates ...

will be a vector with a string (a set) of characters per state_index
seen = true; //we are going ...

to iterate through network N, so we need to know if this vertex is ...

already seen
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String s = new String(); //create string, we ...

are going to put the characters in this string
boolean first = true; //first element of ...

string does not need a ","
ArrayList ArrayPStates = new ArrayList(); //make new arraylist
ArrayPStates.addAll(PStates); ////Put elements of ...

LinkedHashSet in a ArrayList, so we can loop through elements

for(int i = 0; i<ArrayPStates.size(); i++){ //loop through ...

elements of ArrayPStates
int intObj = Integer.parseInt(ArrayPStates.get(i).toString()); //we ...

need to make int's of the Integer Objects in ArrayPStates, for ...

the STATE_LABELS.elementAt method
if(first){ //only for ...

the first, we don't need a ","
s += STATE_LABELS.elementAt(intObj); //add the ...

actual characters of state_labels to the string s
first = false;

} else{
s += ", " + STATE_LABELS.elementAt(intObj); //add the ...

corresponding character in s
}

}
if(softwired){ //bit ...

unnecessary
if(index ≥parentalStates.size()){ //if index ...

is bigger than the size, we can just add s at the end of ...

parentalStates. When a new string needs to be placed at this ...

index, the current string will move one index forward.
parentalStates.addElement(s); // put ...

the string s in the vector<string> on the correct spot ...

(state_index)
}
else{

parentalStates.setElementAt(s, index);
}

}
}

public Network cloneLeaf() {
Network leaf = new Network();
leaf.label = label;
leaf.isLeaf = true;
return leaf;

}

public Network getTree(int index) {
// returns tree obtained by using the reticulation edge specified by ...

index for each reticulation
Network tree = new Network();
if (isLeaf) {

return (Network) this.cloneLeaf();
}
for (Network child : children) {

if (child.parents.size() == 1 || child.parents.indexOf(this) == ...

index) {
Network treeChild = child.getTree(index);
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tree.children.add(treeChild);
treeChild.parents.add(tree);

}
}
return tree;

}
}
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