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ABSTRACT: Information storage in vivo will lead to next-generation
identification and security authentication. Here, an information storage method
was proposed for in vivo application by using a pair of lanthanide-doped
nanoprobes (NdNPs and ErNPs) with orthogonal emissions in the second near-
infrared window. The information is stored in different fluorescence channels
separately, while the selective readout could be realized by simply manipulating
excitation wavelengths. The small-animal experiments primarily confirm the
applicability of this method in vivo. The binary numbers ″1″ and ″0″ are
implanted under the mice’s skin, and the corresponding signals ″on″ and ″off″
can be collected by charge-coupled devices under different laser filter
combinations. The design of lanthanide-doped probes with the nanoscale
features and orthogonal emissions is expected to provide a new strategy for
information storage in vivo. The lanthanide materials with excellent down-
conversion near-infrared fluorescence performance have shown great application
potential in the field of photonics.
KEYWORDS: rare earth-based nanoparticles, second near-infrared window, orthogonal, multichannel imaging, information storage

■ INTRODUCTION
Rapid identification and security authentication have drawn
great attention in the field of photonics.1−4 Storing information
in vivo is considered one of the attractive solutions to this
technical requirement as it is direct and applicable.5 By
integrating and transforming complex information into
physical signals (e.g., magnetic and optical signals), it is
possible to read out the information of interest from living
biosystems directly.6−14 Fluorescence imaging is a mature and
noninvasive technique for signal readout,15−17 which has
shown its potential in information storage in vitro and could be
useful for in vivo applications.18−21

Due to their superior photostability and biocompatibil-
ity,22−26 lanthanide-doped nanoprobes are widely used in
bioimaging.27−30 Therefore, the lanthanide-doped nanoprobes
are outstanding candidates for fluorescence-based in vivo
information storage.20,31,32 It is notable that, contributing to
the unique 4f−4f electron layers of lanthanide ions, the
lanthanide-doped nanoprobes exhibit line-shaped absorbance
and emission bands with narrow half-width peaks and good
orthogonality, which would further allow us to establish
multichannel information storage for different purposes.33−37

Conventionally, the selective separation of emissions depends
on the use of filters or their lifetime, which requires either
complex operation or expensive instruments, thereby being
difficult for practical transformation.38−40 Benefiting from the
line-shaped absorbance bands, it is possible to selectively excite

lanthanide ions with specific excitation, avoiding the use of
extra accessional equipment, which would be facile for
operation and of great interest to actual practice. Compared
with traditional NIR-I or visible light, NIR-II fluorescence has
higher tissue penetration depth and lower tissue absorption
and scattering.20,41 Therefore, the NIR-II luminescence has
superiority in the field of information storage in vivo.
Here, a pair of lanthanide-doped nanoprobes, NaYF4:Gd@

NaYF4:Nd@NaYF4 (NdNPs) and NaYF4:Gd@NaErF4@
NaYF4 (ErNPs), was constructed as fluorescent labels of
information. The lanthanide-doped probes with the nanoscale
features (∼27 nm) and NIR-II orthogonal emissions for
information storage were investigated in vitro and in vivo.

■ RESULTS AND DISCUSSION
NaYF4:Gd@NaYF4:Nd@NaYF4 (NdNPs) and NaYF4:Gd@
NaErF4@NaYF4 (ErNPs) are synthesized by a typical
solvothermal method.41−43 The transmission electron micro-
scope images indicate that the as-prepared NdNPs and ErNPs
have uniform spherical morphology with a similar size
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distribution of ∼27 nm (Figure 1B,C and Figure S1). The
energy-dispersive X-ray analysis and the powder X-ray
diffraction patterns confirm the as-designed chemical compo-
sition and hexagonal crystal phase of NdNPs and ErNPs,
respectively (Figures S2 and S3). After coating the inert shell,
their emissions were significantly enhanced because of the
protection of the photoluminescence layer by the second inert
shell (Figure S4). The upconversion luminescence (UCL)
spectra and UCL images of NaYF4:Gd@NaErF4 and ErNPs
also support the protection of the photoluminescence layer by
the NaYF4 shell (Figure S5). The 4F3/2 → 4I11/2 and 4F3/2 →
4I13/2 of Nd3+ endow NdNPs with two sharp emission peaks
centered at 1064 and 1330 nm in the second near-infrared
window (NIR-II) under 730 nm excitation, while the 4I13/2 →
4I15/2 of Er3+ contributes to the 1550 nm emission of ErNPs
under 980 nm excitation (Figure 1A). Therefore, by
manipulating the excitation wavelengths and using appropriate
filters, the fluorescence signal at different wavelengths could be
selectively collected, which forms multiple fluorescence
channels for information storage.
Based on the absorbance and emission spectra of NdNPs

and ErNPs (Figure S6 and Figure 1D,E), a series of excitation-
filter combinations are optimized to selectively collect
fluorescence signals at a specific wavelength (Figure 2A).
Under 730 nm irradiation, only NdNPs are excited, and
thereby, the fluorescence at 1064 and 1330 nm could be

simultaneously collected by using a 1000 nm long-pass filter
(Figure 2B). Similarly, the 1550 nm fluorescence of ErNPs
could be collected by a 1250 nm long-pass filter under the
specific 980 nm irradiation (Figure 2C). Notably, when using
an 800 nm laser as an excitation resource, due to their
overlapped absorbance peak, the two emission peaks of NdNPs
and one peak of ErNPs could be collected (Figure 2D). The
signal intensity of NdNPs and ErNPs was weaker using 800
nm laser than that from 730 or 980 nm laser (Figure S7). The
above results are confirmed not only by the spectra but by the
fluorescence images, which indicate that our excitation-filter
combination would be applicable for fluorescence imaging as
well.
To further demonstrate the applicability of information

storage using the as-designed nanoprobes and method,
information storage and fluorescence imaging-based readout
are performed in vitro. The binary number combinations ″1−
0−1″, ″0−1−1″, and ″1−1−1″ are stored in separate 730-,
980-, and 800-excited NIR-II fluorescence channels corre-
sponding to the on−off signals collected by the charge-coupled
device (Figure 3A and Figure S8). It is noticed that the signal
difference is sharp between ″1″ and ″0″, where a broad
threshold could be applied to translate the information from
the collected signals (Figure 3B). These results illustrate the
possibility of information storage in different NIR-II
fluorescence channels, which motivated us to perform the

Figure 1. (A) Energy level diagram and the corresponding transition of Nd3+ and Er3+and flow diagram of the synthesis of the core−shell−shell
NdNPs and ErNPs. TEM images of (B) NdNPs and (C) ErNPs. NIR spectra of NdNPs and ErNPs excited using (D) 730 nm and (E) 980 nm
lasers, respectively.
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small-animal experiment by using the mice model. Hydrophilic
NaYF4:Gd@NaYF4:Nd@NaYF4-PEG (NdNPs-PEG) and
NaYF4:Gd@NaErF4@NaYF4-PEG (ErNPs-PEG) with no
significant cytotoxicity to cells were constructed (Figure S9).
The luminescence spectra of hydrophilic NdNPs-PEG and
ErNPs-PEG showed that the fluorescence intensity of
hydrophilic NdNPs-PEG and ErNPs-PEG was weaker than
OA-capped NdNPs and OA-capped ErNPs. Additionally, the
NIR-II signal intensities were positively correlated with its
concentration (Figure S10). Upon in situ injection, the same
binary number combinations were implanted under the mice’s
skin (Figure 4A). Similar results were observed as the in vitro
experiment, which could contribute to the high penetration of
NIR-II fluorescence in tissues. The signals ″on″ and ″off″,

corresponding to ″1″ and ″0″, respectively, could be sharply
identified from the fluorescence images (Figure 4B).

■ CONCLUSIONS
In summary, an in vivo information storage method is proposed
based on a pair of lanthanide-doped nanoprobes (∼27 nm)
and is confirmed in the small-animal model by in situ
implantation. From a perspective, more fluorescence channels
could be introduced to store multiple different information in
vivo. Also, optical devices could be established based on this
strategy as implantation for complex information storage, and
machine learning technology could be applied to identify and
process. In vivo information storage based on lanthanum-

Figure 2. (A) Schematic diagram of collecting optimal NIR-II optical signal readout of NdNPs and ErNPs with a series of excitation-filter
combinations. NIR spectra and (inset) NIR pseudo-color images of NdNPs and ErNPs excited by (B) 730 nm, (C) 980 nm, and (D) 800 nm laser,
respectively.

Figure 3. (A) NIR pseudo-color images of a 1 × 3 array containing NdNPs, ErNPs, and the mixture of NdNPs and ErNPs excited by 730, 980, and
800 nm laser by only filtering the incident light; the binary number combinations ″1−0−1″, ″0−1−1″, and ″1−1−1″ are stored in separate 730-,
980-, and 800-excited NIR-II fluorescence channels. (B) Averaged fluorescence intensity of the corresponding line position.

ACS Applied Nano Materials www.acsanm.org Article

https://doi.org/10.1021/acsanm.2c03951
ACS Appl. Nano Mater. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/suppl/10.1021/acsanm.2c03951/suppl_file/an2c03951_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsanm.2c03951/suppl_file/an2c03951_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c03951?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c03951?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c03951?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c03951?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c03951?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c03951?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c03951?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c03951?fig=fig3&ref=pdf
www.acsanm.org?ref=pdf
https://doi.org/10.1021/acsanm.2c03951?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


doped nanoprobes has broad application prospects and
promotes the development of photonics.

■ EXPERIMENTAL SECTION
The Synthesis of NaYF4:Gd@NaYF4:Nd@NaYF4 and

NaYF4:Gd@NaErF4@NaYF4 Nanoparticles. The NaYF4:Gd,
NaYF4:Gd@NaYF4:Nd, NaYF4:Gd@NaErF4, NaYF4:Gd@
NaYF4:Nd@NaYF4 (NdNPs), and NaYF4:Gd@NaErF4@NaYF4
(ErNPs) nanoparticles were synthesized according to the previously
reported solvothermal method. For details, please see the Supporting
Information.

The Synthesis of NaYF4:Gd@NaYF4:Nd@NaYF4-PEG and
NaYF4:Gd@NaErF4@NaYF4-PEG Nanoparticles. NdNPs dispersed
in 0.5 mL of cyclohexane were deposited by adding 6 mL of ethanol.
The NdNPs were dispersed in 2 mL of CHCl3 into a round-bottomed
flask after centrifugation. Then, 6.2 mg of DSPE-m-PEG-2000 and 2.7
mg of DSPC were added into the round-bottomed flask. The CHCl3
was removed by a rotary evaporator at 50 °C for 5 min, and then 2
mL of deionized water was injected and stirred for 1 h. After
centrifugation and dispersing in 2 mL of deionized water,
NaYF4:Gd@NaYF4:Nd@NaYF4-PEG (NdNPs-PEG) was obtained.
The synthesis of hydrophilic NaYF4:Gd@NaErF4@NaYF4-PEG
(ErNPs-PEG) was similar to that of NdNPs-PEG.

Optical Properties of the Synthesized Nanoparticles. NIR-II
spectra of all synthesized nanoparticles were collected using 800 nm
laser (240 mW), 730 nm laser (240 mW), and 980 nm laser (230
mW). The activator concentrations of all nanoparticles were 0.03
mmol unless otherwise specified, and the slit width was 1 nm during
the spectral test unless otherwise specified.

NIR Imaging In Vivo. The nude mouse (body weight was about
20 g), which was subcutaneously injected NdNPs-PEG, the mixture of
NdNPs-PEG and ErNPs-PEG, ErNPs-PEG aqueous dispersion (100
μL, 10 mg mL−1) into up, middle, and down positions, which were
marked with the circle, was anesthetized with 100 μL of 1%
pentobarbital sodium salt aqueous solution by intraperitoneal
injection for the following multicolor imaging. The bright field
image was collected by NIR CCD within ambient light, and the NIR-
II imaging photos were recorded by NIR CCD under the irradiation
of 730, 980, and 800 nm laser, respectively.
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