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Abstract

We propose a new approach for data-driven automated discovery of isotropic hyperelastic constitutive laws. The approach is
nsupervised, i.e., it requires no stress data but only displacement and global force data, which are realistically available through
echanical testing and digital image correlation techniques; it delivers interpretable models, i.e., models that are embodied by

arsimonious mathematical expressions discovered through sparse regression of a large catalogue of candidate functions; it is
ne-shot, i.e., discovery only needs one experiment — but can use more if available. The problem of unsupervised discovery
s solved by enforcing equilibrium constraints in the bulk and at the loaded boundary of the domain. Sparsity of the solution
s achieved by ℓp regularization combined with thresholding, which calls for a non-linear optimization scheme. The ensuing
ully automated algorithm leverages physics-based constraints for the automatic determination of the penalty parameter in the
egularization term. Using numerically generated data including artificial noise, we demonstrate the ability of the approach
o accurately discover five hyperelastic models of different complexity. We also show that, if a “true” feature is missing in
he function library, the proposed approach is able to surrogate it in such a way that the actual response is still accurately
redicted.
c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Unsupervised learning; Constitutive models; Hyperelasticity; Interpretable models; Sparse regression; Inverse problems

1. Introduction

Data-driven approaches enabled by machine learning tools and facilitated by the large availability of data through
odern experimental techniques are raising a rapidly growing interest in computational solid mechanics. A main

ocus of recent investigations has been the possibility to bypass or surrogate the development of material models,
ased on the recognition that, unlike the other components of a mechanical boundary value problem (conservation
aws and essential constraints), the constitutive modeling step is of empirical, non-epistemic nature. As follows, we
ttempt a brief overview of the main available approaches for reversible material behavior (elasticity).

Bypassing material modeling altogether is the core idea of the (constitutive) model-free data-driven computing
aradigm [1,2]. In these approaches, a boundary value problem is solved by retaining conservation laws and essential
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constraints, and substituting the constitutive model with the direct use of data. The pioneering approach in [1]
results in a data-driven solver which aims at assigning to each material point the state satisfying the conservation
laws that is closest to the dataset. The first demonstrations focused on linear elasticity [3–5] but recent attempts
extend it to geometrically nonlinear elasticity [3], general elasticity [4], elastodynamics [5], inelasticity [6], and
fracture mechanics [7]. In [8], the phenomenological constitutive model is replaced with an experimental constitutive
manifold, which is reconstructed from data using manifold learning methods. In a subsequent investigation focusing
on elasticity [2], the data are used to identify a polynomial approximation of the strain energy density. Recently,
this approach has been extended to a setting that fulfills the thermodynamics principles by construction [9]. More
recent contributions pursue a hybrid approach where data are used to construct automatic corrections to existing
hyperelastic and elastoplastic models [10,11].

A second stream of investigations has focused on the idea of surrogating constitutive models, e.g., through
piecewise polynomial interpolation [12,13] or artificial neural networks (ANNs). The first use of ANNs to encode
material models dates back to the 1990s [14]. The approach consists in replacing a constitutive relation with the
training of an ANN based on data. The trained ANN encodes the relation between input and output variables (in the
simplest case, strains and stresses, respectively) and can then be used as a black-box substitute of the constitutive
equations. The method was further developed for a variety of applications [14–18]. Over alternative approaches
to encode constitutive relations such as interpolations using piecewise linear functions, polynomial functions, or
radial basis functions (RBF), ANN and especially deep ANN possess several advantages [19]: using appropriate
regularization, they have good generalization properties to unseen data (albeit they show poor extrapolation beyond
the interpolatory hull of the training data); they work well even for complex, highly inhomogeneous or anisotropic
distribution of training points, i.e., dense along certain directions and sparse along others.

The above two categories of approaches are clearly uninterpretable from the standpoint of the material model,
s they suppress it or encode it with black-box ANNs, respectively. This limits the insight that they can bring
owards the physical understanding of the material behavior based on experimental observations. A further crucial
spect is that the vast majority of the approaches of both categories are rooted in supervised learning, i.e., they
eed data consisting of input–output pairs and thus must rely on stress data. Datasets may come from experimental
easurements, or be generated computationally by simulations at the lower scales within multiscale approaches

20–22]. For mechanical tests, stress data are only obtainable in the simplest situations, e.g. uniaxial tensile or
ending tests. The comprehensive observation of strain–stress relations relying on these tests is nearly impossible.
ultiscale simulations can generate training datasets, but their computational cost is still unaffordable. Recognition

f this issue is very recent in both the above categories of approaches. Within the data-driven computing paradigm, it
otivated the development of the data-driven identification method [23,24], which formulates the inverse problem

ssociated to the approach in [1]. By using only displacement field and load measurements, a set of admissible
aterial strain–stress states is recovered with no assumption on the constitutive equation. Within the stream of

esearch on surrogating constitutive models with ANNs, recent attempts to use only displacement and global force
ata have been performed in [19,25,26]. These approaches bear relation to the so-called physics-informed neural
etworks (PINN) [27]. The training of PINNs is performed with a cost function that, in addition to data, includes
he governing equations, initial and boundary conditions. However, for the time being, these methods are limited
o only very simple cases (constitutive models of known form with unknown parameters or unknown constitutive

odels but for one-dimensional cases) and very simple ordinary and partial differential equations (ODEs and PDEs)
e.g., common contemporary benchmarks include Burgers’ equation, Darcy flow, and the advection–diffusion

quation. In contrast, the “constitutive ingredient” (to be discovered) is much more complex and highly nonlinear
n most solid mechanics PDEs, even in hyperelasticity.

A recent inspiring stream of research initiated by the physics community focuses on automated discovery
f physical laws and governing equations [28]. These approaches are interpretable as they lead to closed-form
xpressions of the governing ODEs and PDEs for the investigated systems. A breakthrough was achieved in [29]
y departing from a high-dimensional library of nonlinear candidate functions and using sparse regression to only
elect the dominant items, thus uncovering parsimonious governing ODEs. The approach has drawn tremendous
ttention [30–38]. An important extension has addressed the data-driven discovery of PDEs with time and spatial
oordinates as variables [39,40]. Crucial improvements have been obtained by substituting numerical differentiation
ith automatic differentiation [41] and smoothing noisy data with neural networks [42–44]. These approaches do

ot limit in any way the form of the sought ODE or PDE, but only depart from the assumption of a possibly
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very large catalogue of candidate component functions. Thus, apart from the choice of this catalogue, they do not
leverage domain knowledge in the form of constraints stemming e.g. from conservation laws, thermodynamics, or
symmetry requirements and seek the direct determination of the entire PDE. The consequences are two-fold: if
directly applied to solid mechanics, these approaches may be more challenging than needed, and they may fail to
comply with the epistemic requirements based on physics which amount to essential components of solid mechanics
boundary value problems.

In this paper, inspired by the above ideas and tools, we propose a new approach which aims neither to bypass nor
o surrogate, but rather to automatically discover constitutive material models, focusing on isotropic hyperelasticity

in this first investigation. The approach delivers interpretable models, i.e., models that are embodied by parsimonious
athematical expressions based on sparse regression of a large catalogue of candidate functions, and is based

n unsupervised learning, i.e., it takes as input only experimentally measurable data in the form of full-field
isplacements, as obtainable e.g., from digital image correlation (DIC) techniques, and global force data delivered
y mechanical testing machines. Unsupervised discovery is achieved by enforcing the constraints stemming from
hysics, including balance of linear momentum and additional constraints for the elastic strain energy. Finally, using
achine learning jargon, our approach is one-shot, meaning that discovery only needs one experiment — but can

bviously use more if available. This is in contrast to conventional material model calibration techniques as well as
upervised learning methods, that require several different experiments (e.g., uniaxial or biaxial tension, shearing,
orsion, randomized strain paths, etc.).

. Unsupervised discovery of hyperelastic constitutive laws

.1. Problem setting

Consider a reference domain Ω ∈ R2, with boundary ∂Ω , subjected to a quasi-static mechanical test.2 Dirichlet
and Neumann boundary conditions are applied by the testing machine on ∂Ωu ⊆ ∂Ω and ∂Ωt = ∂Ω\∂Ωu ,
espectively. Without loss of generality, we assume the experiments delivering the data to be conducted in
isplacement control, so that the Neumann boundary conditions are homogeneous and the forces applied by the
esting machine to the specimen correspond to the reaction forces at the Dirichlet boundary.

Let X = {Xa
∈ Ω : a = 1, . . . , nn} denote a set of coordinates of nn nodes in the reference configuration

or which the displacements U = {ua
∈ R2

: a = 1, . . . , nn} are known. In the present two-dimensional setting,
his discrete full-field displacement dataset is assumed to be known through DIC measurements. The extension to
he three-dimensional setting would be conceptually straightforward and would require full-field displacement data
.g. from computed tomography combined with digital volume correlation. Additionally, the net reaction forces on
ortions of ∂Ωu (corresponding to, e.g., each loaded side of the specimen) are assumed to be known and emulate
he measurements from load cells.

Armed with these data, our objective is to discover the underlying constitutive law of the unknown material in
ne-shot (i.e., we only consider one loading experiment). We note that the experiment must be complex enough
o activate a diverse range of deformation modes. We demonstrate in Section 3 that biaxial tension of a plate with

hole suffices for this purpose. For the scope of this initial work, our key assumptions are that the material is
omogeneous, isotropic, and hyperelastic. Fig. 1 illustrates a step-by-step schematics of the proposed unsupervised
lgorithm, whereas a detailed description is presented in the following sections.

.2. Displacement field approximation via finite element mesh

To facilitate derivatives and integrals of the field quantities, we associate the grid at which the displacements are
nown to a finite element mesh with the nodal set X . The displacement field is then approximated as

u(X) =
nn∑

a=1

N a(X) ua, (1)

2 While we consider a two-dimensional setting here motivated by DIC experiments, the subsequent derivations are also applicable to the
three-dimensional case (which is not our focus here).
3
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Fig. 1. Schematics of the unsupervised algorithm for discovering interpretable hyperelastic constitutive laws. Starting from a deformed body
nder loading (a), the point-wise displacement measurements (b) are interpolated by constructing a finite element mesh (c). The resulting
ontinuous displacement field (d) is differentiated to obtain the strain field (e). The material strain energy density W is formulated as a

linear combination of a large catalogue of nonlinear features Q and unknown material parameters θ (f). The derivative of the strain energy
ensity with respect to the strain field yields the stress field (g). A joint optimization problem (k) is formulated to find the unknown material
arameters θ such that the weak form of the linear momentum balance in the bulk material (h) and the reaction force balance on the Dirichlet
oundaries (i) are satisfied. The joint optimization problem (k) also includes a sparsity-promoting regularization (j) to yield a parsimonious
nd interpretable material model (characterized by θopt).

here N a
: Ω → R is the shape function associated with the node of reference coordinate Xa . The deformation

radient is given by

F(X) = I +
nn∑

a=1

ua
⊗∇N a(X), (2)

here ∇ denotes the gradient operator with respect to the reference coordinates.

.3. Material model library

The objective is to find a constitutive law for the unknown material under consideration, e.g. a relation between
he deformation gradient F and the first Piola–Kirchhoff stress tensor P . Since the material is hyperelastic, our
bjective reduces to discovering the underlying strain energy density W (F) from which the stress can be derived
s P = ∂W/∂ F. Moreover, the objectivity requirement is a priori satisfied if we assume W to be a function of the

T
ight Cauchy–Green deformation tensor C = F F. Finally, in the scope of isotropic materials, the strain energy

4
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density can be further reduced to a function of the invariants of C as

W (C) ≡ W (I1(C), I2(C), I3(C)), with I1(C) = tr(C), I2(C) =
1
2

[tr(C)2
−tr(C2)], I3(C) = det(C).

(3)

We consider a large feature library Q : R3
→ Rn f of n f nonlinear functions of I1, I2, and I3 whose linear

ombination yields the strain energy density as

W (I1, I2, I3) = QT (I1, I2, I3) θ , (4)

here θ ∈ Rn f are the unknown material parameters to be estimated. In principle, any arbitrary strain energy density
an be represented by (4) if the feature library is appropriately chosen. In the context of our work, we choose the
ollowing library

Q(I1, I2, I3) =
[
( Ī1 − 3)i ( Ī2 − 3) j−i

: j ∈ {1, . . . , N }, i ∈ {0, . . . , j}
]T  

Generalized Mooney–Rivlin features

⊕
[
(J − 1)2k

: k ∈ {1, . . . , M}
]T  

Volumetric deformation features

⊕
[
log

(
Ī2/3

)]  
logarithmic feature

, (5)

here Ī1 = J−2/3 I1, Ī2 = J−4/3 I2, J = det(F) = I 1/2
3 , and ⊕ denotes vector concatenation. The choice of N and

M determines the total number of features n f . Throughout this work, N = M = 7 is chosen, resulting in n f = 43
eatures. The first set of features in (5) is motivated from polynomial hyperelasticity laws such as those described by
eneralized Mooney–Rivlin models for rubber-like materials [45–47]. The second set of features allows capturing
olumetric deformation in compressible elasticity. The third term is motivated from logarithmic features encountered
n models such as those proposed by Gent and Thomas [48]. We later exclude this term purposefully to test the
eneralization capability of our approach when the appropriate features are missing.

The components of the first Piola–Kirchhoff stress tensor are computed from (4) as

Pi j =
∂W (I1, I2, I3)

∂ Fi j
=

∂ QT (I1, I2, I3)
∂ Fi j

θ . (6)

he derivatives of the feature library Q with respect to the deformation gradient can be calculated by applying the
hain rule. Owing to the severe nonlinearities in Q, manual differentiation is intractable. Therefore, we compute
he derivatives via automatic differentiation (see [41] for a detailed review) that provides exact derivatives while
ypassing the computational expense and accuracy issues of symbolic and numerical differentiation, respectively.

The above choice of the feature library is conducive to both physical and mathematical interpretability of the
iscovered models and, unlike in model-free and ANN encoding approaches, leverages decades of physical and
henomenological knowledge in modeling of hyperelastic materials, and in particular of rubber-like materials. For
xample, (5) naturally admits physics-based models, e.g., the Neo-Hookean [49] and Isihara [50] models which
re derived via statistical homogenization of polymeric molecular chains. The model proposed by Arruda and
oyce [51], based on Langevin statistics of polymeric chains, does not have a closed form expression (due to

he presence of the inverse Langevin function) and, in practice, is often approximated by a Taylor series with
olynomial features which are already present in (5). The feature library also admits phenomenological models
uch as those proposed by Biderman [52], Haines and Wilson [53], Gent and Thomas [48], and many more. We
efer the reader to the aforementioned references for physical interpretation of their respective features. The library
an be easily expanded to include new features if needed, possibly based on the prior knowledge of general and/or
pecific features of the material behavior, e.g. when dealing with biological tissues rather than rubber-like materials.

oreover, physical constraints — e.g., material objectivity, material symmetries, stress-free reference configuration
i.e., P(F = I) = 0), can be satisfied automatically. In the present case, objectivity and material symmetry (isotropy)
re ensured a priori by (4), and a stress-free reference configuration is guaranteed by (5). Checking additional
onstraints [54] such as boundedness, coercivity, and convexity of the discovered strain energy density via (semi-
analytical methods is facilitated by the mathematically interpretable and parsimonious functional form. In general,
everaging such prior knowledge greatly reduces the solution space and makes the search for physically admissible

odels more tractable — particularly in the unsupervised setting, where the absence of stress data typically renders

he search highly ill-posed.

5
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2.4. Equilibrium constraints for unsupervised discovery

On the basis of the interpolated displacement data (Section 2.2) and the material model library (Section 2.3), the
bjective is now to find suitable material parameters θ , such that the physical constraints are satisfied, i.e., linear

momentum balance3 is fulfilled both in the bulk material and at the boundary. This is a crucial step, as the
nforcement of these physical constraints acts as a substitute for the availability of stress data and thus allows
or unsupervised discovery. Assuming negligible body forces, the weak formulation of linear momentum balance
n the reference domain Ω under quasi-static conditions is given by∫

Ω

P : ∇v dV −
∫

∂Ωt

t̂ · v dS = 0, ∀ admissible v, (7)

where t̂ is the surface traction acting on ∂Ωt (zero in the present displacement-controlled setting, but non-zero
for force-controlled experiments), and the test function v is admissible if it is sufficiently regular and vanishes on
the Dirichlet boundary ∂Ωu . Note that we prefer the weak to the strong formulation of linear momentum balance
because the double spatial derivatives required by the latter make it more sensitive to noise. This is also corroborated
by the preferred use of the weak formulation in solving inverse problems based on full-field measurements, e.g., by
applying the Virtual Field Method (see [55] for a review and [56] for a recent application to hyperelasticity). Such
methods show methodical parallels to the approach presented in this paper, however, they rely on the assumption
that the form of the constitutive law is known a priori.

Let D = {(a, i) : a = 1, . . . , nn; i = 1, 2} denote the set of all nodal degrees of freedom. D is further split
into two subsets of free and fixed (via Dirichlet constraints) degrees of freedom: Dfree

⊆ D and Dfix
= D\Dfree,

respectively. Using the same approximation basis as for u (Bubnov–Galerkin method), the test functions are
pproximated as

v(X) =
nn∑

a=1

N a(X) va, with va
i = 0 if (a, i) ∈ Dfix, (8)

he weak form (7) then reduces to
nn∑

a=1

va
·

[∫
Ω

P∇N a dV −
∫

∂Ωt

t̂ N a dS
]
= 0. (9)

ubstituting the unknown material model (6) and noting that (9) must hold for all admissible {va
: a = 1, . . . , nn},

e obtain the following componentwise force balance equations at all free degrees of freedom:∫
Ω

(
∂ QT

∂ Fi j
θ

)
∇ j N a dV −

∫
∂Ωt

t̂i N a dS = 0, ∀ (a, i) ∈ Dfree. (10)

here we use the Einstein summation convention. The integrals are computed via numerical quadrature on the mesh.
nder the assumption of material homogeneity, the material parameters θ do not depend on the spatial coordinates

nd can be written outside the integrals. This results in a linear system of equations for θ which can be vectorized
nd assembled into the form

Afreeθ = bfree, (11)

here Afree
∈ R|Dfree

|×n f and bfree
∈ R|Dfree

|.
The material parameters θ must also satisfy the force balance on the Dirichlet boundary ∂Ωu . For the degrees

f freedom under Dirichlet constraints, the reaction force must equal the internal force from the material, i.e.,

r̂a
i =

∫
Ω

(
∂ QT

∂ Fi j
θ

)
∇ j N a dV, ∀ (a, i) ∈ Dfix. (12)

In general, the reaction force is not known at every fixed degree of freedom. Instead, only the sums of the reaction
forces for subsets of the fixed degrees of freedom (each subset corresponding to one loaded side of the specimen and
one coordinate direction) are known, emulating force measurements in an experiment. Let nα be the number of these

3 Note that the angular momentum balance is automatically fulfilled in the described setting.
6
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subsets in ∂Ωu . For α = 1, . . . , nα , let Dfix,α
⊆ Dfix be the set of degrees of freedom under Dirichlet constraints for

hich the sum of the reaction forces R̂α is known, such that ∪nα
α=1Dfix,α

= Dfix and Dfix,α
∩Dfix,β

= ∅ for β ̸= α.
The force balance for each subset is given by

R̂α
=

∑
(a,i)∈Dfix,α

r̂a
i =

∑
(a,i)∈Dfix,α

∫
Ω

(
∂ QT

∂ Fi j
θ

)
∇ j N a dV, ∀ α = 1, . . . , nα. (13)

ote that each subset α only contains degrees of freedom corresponding to displacement components in one
irection, so that the sum of the corresponding reaction force components is meaningful. Following the integration
ia numerical quadrature, this can be rearranged into additional nα linear equations for θ of the form

Afixθ = bfix, (14)

here Afix
∈ Rnα×n f and bfix

∈ Rnα .
The system of equations (11) and (14) are overdetermined and can be solved collectively in the least squares

ense as

θopt
= arg min

θ

( Afreeθ − bfree2  
linear momentum balance

+λr
Afixθ − bfix2  

reaction force balance

)
, (15)

ith λr > 0 as a hyperparameter weighting the contribution of the reaction force balance term. This weighting
oefficient is important to ensure that both boundary and interior force balance terms are contributing to a similar
xtent to the value of the objective function. In the chosen spatial discretization/mesh (discussed in Section 3), the
umber of boundary points is approximately two orders of magnitude smaller than the number of interior points. To
nsure the similar influence of both sets of points in the optimization problem, λr = 100 was chosen to compensate

for the fewer equations arising from the boundary points and kept constant throughout the numerical experiments.
In our experience, small variations in λr do not have a significant influence on the solution to the minimization
problem stated above. However, a violation of the balance equations at the boundary or in the interior is observed
when choosing the order of magnitude of λr too small or too high, respectively. The above minimization problem
s also equivalent to solving

θopt
= Aeqb−1beqb, with Aeqb

= AfreeT Afree
+ λr AfixT Afix,

beqb
= AfreeT bfree

+ λr AfixT bfix.
(16)

During an experiment, multiple full-field displacement datasets are usually available at different load steps and
offer a richer information than from a single load step. Such information can be directly leveraged by additively
combining the respective least square losses, i.e.,

θopt
= arg min

θ

L∑
l=1

(Afree,lθ − bfree,l2
+ λr

Afix,lθ − bfix,l
2
)

, (17)

where the superscript l denotes the evaluation for load step l = 1, . . . , L . For the sake of notational clarity, the
subsequent derivations are only shown for a single load step but can be straightforwardly extended to the general
case.

2.5. Parsimony and sparsity promotion

Despite the optimization in (15) being convex and apparently overdetermined in θ , the nature of the problem
is significantly ill-posed due to the unsupervised nature of the learning problem — i.e., the lack of stress field
measurements. Both the feature library Q in (5) and the coefficients Aeqb are highly nonlinear functions of the
nodal displacements. Consequently, the condition number of Aeqb is large and the optimization problem (15) is
highly sensitive to noise in displacement data measurements. Our numerical experiments (presented in Section 3.2)
revealed that the optimization in (15) is not sufficient to identify the correct underlying material model. To address
this challenge, we turn to additional sources of conceptual knowledge that can be leveraged to compensate for the

lack of supervised data.

7
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The optimization problem in (15) yields a dense solution, i.e., most entries in θ are likely non-zero and
many terms in the feature library (5) will be included in the material model. Previous works using supervised
methods [45] have shown that material models with a large number of material parameters are less interpretable,
poor at extrapolation to unseen strains, and more likely to be physically inadmissible. In this light, we seek material
models that are parsimonious with as few features as possible to explain the displacement data.

To this end, we promote sparsity in θ by introducing an ℓp regularization in (15) as

θopt
= arg min

θ

(Afreeθ − bfree2
+ λr

Afixθ − bfix2
+ λp∥θ∥

p
p

)
, where ∥θ∥p =

( n f∑
i=1

|θi |
p

)1/p

.

(18)

The hyperparameters λp > 0 and p ∈ [0, 1] control the degree of sparsity desired in θ and thus the selection of
features that must be activated in the feature library (5). The ℓ0 regularization (p = 0) is equivalent to penalizing the
number of activated features and thus promotes parsimony and interpretability. However, the optimization becomes
a combinatorial subset selection problem which is computationally intractable for a large number of features.
Traditionally, the ℓ0 regularization is relaxed to the convex ℓ1 regularization (p = 1) which promotes sparsity
by zeroing out some coefficients while shrinking the rest. Also known as LASSO (least absolute shrinkage and
selection operator) [57], ℓ1 regularization offers a good compromise between computational complexity and model
interpretability. Within [0, 1], a smaller value of p more aggressively promotes sparsity and interpretability at the
cost of computational complexity (due to the higher degree of non-convexity in the penalty term) [58]. In our
numerical experiments, we observed p = 1/4 to be a reasonable choice for the scope of our work.

2.6. Numerical optimization strategy

2.6.1. Fixed-point iterative optimization
Due to the ℓp regularization with 0 < p < 1, the objective function in (18) is non-convex and not continuously

differentiable with respect to θ , thus, conventional gradient-based techniques such as gradient-descent and Newton
(or Newton-like) methods do not perform well. The development of new algorithms for optimization problems
including regularization terms of this type is an active research area — see, e.g., [59] and references therein for a
brief review. Tibshirani [57] proposed a fixed-point iterative strategy for the ℓ1-regularized problem by solving a
weighted ℓ2-regularized problem in each iteration. As follows, we generalize this idea to the ℓp-regularized problem.

The first optimality condition of the optimization problem (18) is given by

2Aeqbθ + pλp
[
sgn(θ1)|θ1|

p−1, . . . , sgn(θn f )|θn f |
p−1]T

= 2beqb, (19)

where sgn denotes the sign or signum function. This is a nonlinear system of equations and calls for an iterative
solution strategy. Let θ (k) be the guess solution at the kth iteration. Within the (k + 1)th iteration , (19) is modified
as

2Aeqbθ (k+1)
+ pλpdiag

(⏐⏐⏐θ (k)
1

⏐⏐⏐p−2
, . . . ,

⏐⏐⏐θ (k)
n f

⏐⏐⏐p−2
)

θ (k+1)
= 2beqb, (20)

where we made use of sgn
(
θ

(k+1)
i

) ⏐⏐⏐θ (k+1)
i

⏐⏐⏐ = θ
(k+1)
i . Therefore, (19) is reduced to a linear system of equations

where the nonlinear terms are replaced by linear terms with weights based on the guess solution from the previous
iteration, θ (k). This further yields the fixed-point iterative scheme given by

θ (k+1)
←

[
Aeqb
+

pλp

2
diag

(⏐⏐⏐θ (k)
1

⏐⏐⏐p−2
, . . . ,

⏐⏐⏐θ (k)
n f

⏐⏐⏐p−2
)]−1

beqb. (21)

To avoid division by zero, whenever a coefficient
⏐⏐⏐θ (k+1)

i

⏐⏐⏐ < ϵtol for some tolerance ϵtol ≪ 1, the corresponding i th
feature is removed from the library Q and the fixed-point iteration scheme resumes with the remaining features
only. Further iterations are carried out until the sequence {θ (0), θ (1), θ (2), . . . , θ (k), θ (k+1), . . .} converges to a fixed
point such that

θ (k+1)
− θ (k)


∞

< ϵconv for a convergence tolerance ϵconv ≪ 1.
The objective function landscape becomes highly non-convex with the introduction of the ℓp regularization.

(0)
Depending on the choice of the initial guess θ , the outlined fixed-point iteration scheme may converge to different

8
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Fig. 2. Schematics of the numerical optimization strategy. Note that the value of n f decreases during the iterative strategy as progressively
more features are eliminated in the thresholding step.

local minima. For this reason, we perform multiple fixed-point iteration schemes in parallel, each with different
randomly generated initial guesses. If the convergence criterion is not satisfied in a pre-specified maximum number
of fixed-point iterations, the corresponding solution is discarded. From all the converged solutions, we finally choose
the one which leads to the smallest value of the objective function (18).

2.6.2. Physical admissibility and the penalty parameter
As discussed in Section 2.5, the hyperparameters λp and p determine the degree of sparsity of the solution.

Having selected p = 1/4 for our case (see Section 2.5), we now focus on the appropriate choice of λp (penalty
arameter). If λp is too high, the resulting model will be too sparse and may not be rich enough to explain the
isplacement data. On the other hand, if λp is too low, the optimization problem (18) becomes highly ill-posed and
ay yield physically inadmissible models.
In order to correctly estimate λp, we adopt an iterative strategy with the fixed-point algorithm nested inside it.

e start with a small initial value of λp = λ0
p > 0. If the resulting model (obtained via the fixed-point algorithm

escribed in Section 2.6.1) is physically admissible (in the sense explained next), the model is accepted. Otherwise,
p is multiplicatively increased by a factor κ > 1, i.e., λp = κλ0

p. The process is repeated until a physically
dmissible model is obtained. By gradually increasing λp, we ensure that the resulting model is not too sparse or
imple. Fig. 2 describes the schematics of the optimization procedure.

To verify the physical admissibility of a model, we perform a series of empirical checks. An hyperelastic strain
nergy density must satisfy W (F) ≥ W (I) = 0 for all physically admissible F. While it is computationally

intractable to verify this condition for all F, we can easily perform the check for the deformation gradients observed
in the domain Ω . If the strain energy density is negative at any quadrature point in the finite element mesh, the
material model is deemed inadmissible.

Additionally, consider the following deformation paths

FUT(γ ) =
[

1+ γ 0
0 1

]
, FUC(γ ) =

[ 1
1+γ

0
0 1

]
, FSS(γ ) =

[
1 γ

0 1

]
,

FBT(γ ) =
[

1+ γ 0
0 1+ γ

]
, FBC(γ ) =

[
1

1+γ
0

0 1
1+γ

]
, FPS(γ ) =

[
1+ γ 0

0 1
1+γ

]
, (22)
9
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which describe uniaxial tension (UT), biaxial tension (BT), uniaxial compression (UC), biaxial compression (BC),
simple shear (SS) and pure shear (PS). Along these deformation paths, the strain energy density must increase
monotonically, i.e., the following condition must hold true for all paths

0 < W (F(γi )) < W (F(γ j )) ∀ γi < γ j , γi , γ j ∈ (0,∞). (23)

or computational tractability, the above inequality is tested for a large number (nγ ) of samples of γi and γ j from
0, γmax) for some γmax ≫ 1. If the inequality is violated along any of the deformation paths in (22), the material
odel is rejected as unphysical.
While these checks are only empirical in nature, in our experience they proved sufficient to constrain the solution

pace and obtain satisfactory results, see Section 3.2. They also demonstrate that domain knowledge can be a very
seful complement to a “blind” algorithm and help in determining the parameters of an otherwise difficult estimation.
t is envisioned that a similar approach may involve the check of more rigorous mathematical properties of the
train energy density (e.g. polyconvexity or coercivity), which was not pursued in this work. Regardless of these
hecks, the mathematical interpretability and parsimony of the discovered models enable a posteriori verification
f e.g., polyconvexity with (semi-)analytical techniques, which is not feasible with black-box approaches including
eural networks and model-free methods.

.6.3. Thresholding
As a result of the ℓp regularization, the optimal solution obtained from the fixed-point iterations and physical

dmissibility tests contains a large number of material parameters that are close or equal to zero. These “inactive
eatures” can thus be permanently discarded from the initial library. This is performed through a simple thresholding
peration analogous to the one used for supervised sparse regression by Brunton et al. [29], i.e., all parameters whose
bsolute value is below a threshold θ̄ are set to zero. Subsequently, we can deactivate the ℓp regularization and solve
he unregularized optimization problem (15) for the remaining parameters. Note that the unregularized problem does
ot require an iterative technique and is solved directly using (16) . If any of the resulting non-zero parameters is
gain below the defined threshold θ̄ , the thresholding procedure is repeated until convergence is reached (see Fig. 2
or schematics).

. Numerical benchmarks

.1. Data generation

For the scope of this work, we emulate DIC data with artificial data generated via the finite element method
FEM). We consider a hyperelastic square plate with a hole (as shown in Fig. 3) under displacement-controlled
symmetric biaxial tension with the loading parameter δ. Due to the two-fold symmetry, only a quadrant of the plate
s considered with symmetry boundary conditions on the left and bottom boundaries. All lengths and displacements
re normalized with respect to the side length of the quadrant. The plate is assumed to be in plane strain conditions.4

he domain is meshed with linear triangular elements. For the prescribed boundary conditions (controlled via δ),
he nodal displacements are recorded from the FEM solution at a total of L load steps. The total horizontal reaction
orce on the left and right boundaries, and the total vertical reaction force on the top and bottom boundaries are also
ecorded. We specifically choose this combination of geometry and loading, in-contrast to traditional bi-axial tension
r torsion tests, because it leads to a strain field that is rich enough to solve the ill-posed problem of identifying
he material model with no stress data and just one experiment.

The FEM simulations are performed with the following material models:

• NH2: Neo-Hookean solid with quadratic volumetric strain energy
• NH4: Neo-Hookean solid with biquadratic volumetric strain energy
• IH: Isihara solid [50] with quadratic deviatoric strain energy
• HW: Haines–Wilson solid [53] with cubic deviatoric strain energy
• GT: Gent–Thomas solid [48] with logarithmic deviatoric strain energy

4 Note that, in plane strain, the right Cauchy–Green strain invariants are linearly dependent as I2 = (I1 + I3 − 1), thus the feature library
can be written as a function of only two invariants, i.e., Q(I , I ).
1 3

10
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Fig. 3. Geometry and boundary conditions of a quadrant of a plate with a hole under displacement-controlled asymmetric biaxial tension.

These models serve as benchmarks, as they are to be recovered through the exclusive use of nodal displacements
and reaction force data using our approach. The exact strain energy densities are listed in Table 1.

In contrast to the synthetically generated data, real DIC data are unavoidably affected by noise in the measured
isplacement field. To emulate real data, we add artificial noise to the synthetic displacement data coming from
he FEM simulations. As the noise in DIC measurements depends on the pixel accuracy of the imaging device, it
ould be unrealistic to assume the noise level to be proportional to the displacement magnitude. Instead, it is more

ealistic to assume the same absolute noise level (also referred to as noise floor) at every degree of freedom and for
very load step, independently of the corresponding magnitude of displacement. We therefore add artificial noise
o the displacement data such that

ua,l
i = ufem,a,l

i + unoise,a,l
i , unoise,a,l

i ∼ N (0, σ ) ∀ (a, i) ∈ D, l ∈ {1, . . . , L}, (24)

where ufem,a,l
i is the i th component of the displacement at node a at load step l obtained from the FEM, and unoise,a,l

i
denotes the noise added to it — taken as a Gaussian noise with zero mean and standard deviation σ > 0. A realistic
estimate for σ depends on the specimen size and the pixel accuracy of the measurement device. The noise floor
typically ranges within 0.1–1% of the pixel size (see, e.g., [60]) resulting in a reported strain measurement error
of less than 10−4 relative to the domain length scale [61]. We hence consider two noise levels σ ∈ {10−4, 10−3

}

(normalized with the plate quadrant length), which are (assuming sufficiently large specimen size and deformation)
representative of respectively low and high noise levels encountered in modern DIC experiments.

Displacement measurements from DIC are often denoised by assuming spatial smoothness in the data. In
previous works on data driven discovery of governing laws, denoising has been performed either as a preprocessing
step or simultaneously with the optimization problem [42–44]. Here, we preprocess the noisy displacements by
denoising using kernel ridge regression (KRR). The noisy displacements in U are spatially interpolated by a ridge
estimator kernelized by an RBF. The interpolation reduces the noise and the interpolated displacements are used
as inputs to our algorithm. In Appendix A, we briefly review KRR in the context of our work; for more details,
the reader is referred to Saunders et al. [62]. We specifically chose KRR as the denoiser because other methods
are either computationally expensive (e.g., Gaussian process regression), only limited to rectangular domains with
structured discretizations (e.g., Gaussian filters), prone to overfitting (e.g., neural networks), or prone to underfitting
(e.g., polynomial interpolation).

3.2. Results

All subsequent results are based on the parameters (including the algorithm hyperparameters) presented in

Appendix B, which were identified upon a careful testing phase. The strain energy densities discovered by the
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Table 1
Strain energy density of the (true) hidden and discovered material models for different noise levels σ .

Benchmarks Strain energy density (W )

NH2 Truth 0.5000( Ī1 − 3)+ 1.5000(J − 1)2

σ = 0 0.5000( Ī1 − 3)+ 1.5000(J − 1)2

σ = 10−4 0.4995( Ī1 − 3)+ 1.4998(J − 1)2

σ = 10−3 0.4936( Ī1 − 3)+ 1.4986(J − 1)2

NH4 Truth 0.5000( Ī1 − 3)+ 1.5000(J − 1)4

σ = 0 0.5000( Ī1 − 3)+ 1.5000(J − 1)4

σ = 10−4 0.5005( Ī1 − 3)+ 1.4973(J − 1)4

σ = 10−3 0.4848( Ī1 − 3)+ 1.4728(J − 1)4

IH Truth 0.5000( Ī1 − 3)+ 1.0000( Ī2 − 3)+ 1.0000( Ī1 − 3)2
+ 1.5000(J − 1)2

σ = 0 0.5000( Ī1 − 3)+ 1.0000( Ī2 − 3)+ 1.0000( Ī1 − 3)2
+ 1.5000(J − 1)2

σ = 10−4 0.5306( Ī1 − 3)+ 0.9576( Ī2 − 3)+ 0.9917( Ī1 − 3)2
+ 1.5041(J − 1)2

σ = 10−3 1.6323( Ī2 − 3)+ 1.5546( Ī1 − 3)( Ī2 − 3)+ 0.0304( Ī1 − 3)2( Ī2 − 3)3
+ 1.4498(J − 1)2

HW Truth 0.5000( Ī1 − 3)+ 1.0000( Ī2 − 3)+ 0.7000( Ī1 − 3)( Ī2 − 3)+ 0.2000( Ī1 − 3)3
+ 1.5000(J − 1)2

σ = 0 0.5000( Ī1 − 3)+ 1.0000( Ī2 − 3)+ 0.7000( Ī1 − 3)( Ī2 − 3)+ 0.2000( Ī1 − 3)3
+ 1.5000(J − 1)2

σ = 10−4 0.5853( Ī1 − 3)+ 0.9101( Ī2 − 3)+ 0.6475( Ī1 − 3)( Ī2 − 3)+ 0.2089( Ī1 − 3)3
+ 1.5050(J − 1)2

σ = 10−3 1.3600( Ī1 − 3)+ 1.4284( Ī2 − 3)3
+ 1.5469(J − 1)2

GT Truth 0.5000( Ī1 − 3)+ 1.5000(J − 1)2
+ 1.0000 log( Ī2/3)

σ = 0 0.5000( Ī1 − 3)+ 1.5000(J − 1)2
+ 0.9999 log( Ī2/3)

σ = 10−4 0.4978( Ī1 − 3)+ 1.5002(J − 1)2
+ 1.0095 log( Ī2/3)

σ = 10−3 0.3578( Ī1 − 3)+ 0.4695( Ī2 − 3)+ 1.5152(J − 1)2

GT⋆ Truth 0.5000( Ī1 − 3)+ 1.5000(J − 1)2
+ 1.0000 log( Ī2/3)

σ = 0 0.4105( Ī1 − 3)+ 0.3783( Ī2 − 3)+ 1.5040(J − 1)2

σ = 10−4 0.3974( Ī1 − 3)+ 0.4011( Ī2 − 3)+ 1.5045(J − 1)2

σ = 10−3 0.3578( Ī1 − 3)+ 0.4695( Ī2 − 3)+ 1.5152(J − 1)2

GT⋆ denotes the case where the logarithmic feature is excluded from the feature library Q.

roposed unsupervised algorithm from the data generated with the five chosen material models are reported in
able 1. A comparison of the strain energy densities of the true models and the discovered models along three of

he deformation paths in (22) – in particular, uniaxial tension (UT), simple shear (SS) and pure shear (PS) – is
resented in Fig. 4. Fig. 5 further shows such a comparison for selected stress components, which can be deduced
rom the strain energy density by differentiating (6). As follows, these results are discussed for the three different
oise levels (σ ) artificially superposed to the displacement measurements.

In the case of displacements without noise (σ = 0), all the material models are exactly discovered with negligible
rrors in the magnitude of the material parameters. In the low noise case (σ = 10−4), the material models are
gain correctly discovered (i.e., all the correct features are identified). There are small differences in the material
arameters, which however do not affect the accuracy of the strain energy density. This conclusion is corroborated
y the negligible difference in the plots of the strain energy densities and stress components along the chosen
eformation paths in Figs. 4 and 5.

In the high noise case (σ = 10−3), the discovered models show good agreement with the hidden models for the
wo Neo-Hookean solids (NH2 and NH4). However, the unsupervised algorithm fails to correctly identify the model
eatures for the Isihara (IH), Haines–Wilson (HW) and Gent–Thomas (GT) solids. Despite the difference in the
unctional form, the discovered model for the GT solid shows good agreement with the true model in Figs. 4 and 5.
owever, the discovered models for the IH and HW solids deviate from the true models — particularly at large pure

hear deformations. Hence, in these cases, they only serve as good approximations in the small deformation regime.
his also reveals the limitations in the extrapolatory capability of our approach in the case of high noise levels.
pecifically, data with higher noise levels require larger displacements and loadings to improve the generalizability
f the discovered models to larger deformations. This is also expected because the higher-order and nonlinear
eatures are more dominant at larger deformations only. Moreover, the chosen experiment does not feature very

arge levels of pure shear deformations, which explains why the discovered model for higher noise deviates from
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Fig. 4. Strain energy density W (F(γ )) along different deformation paths (see (22)) of the (true) hidden and discovered material models for
ifferent noise levels σ . The discovered models for the σ = 0 case are omitted as they are exactly equal to the hidden models. GT⋆ denotes
he case when the logarithmic feature is excluded from the feature library Q.

he true model especially along this deformation path. Using experiments with more complex strain fields,5 or using
ore than one experiment, is expected to be beneficial in cases where high noise levels are to be expected.

5 See [55] and references therein for a variety of possible experimental setups.
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T

Fig. 5. Stress components P11(FUT(γ )) along uniaxial tension deformation path, P12(FSS(γ )) along simple shear deformation path and
P22(FPS(γ )) along pure shear deformation path (see (22)) of the (true) hidden and discovered material models for different noise levels σ .

he discovered models for the σ = 0 case are omitted as they are exactly equal to the hidden models. GT⋆ denotes the case when the
logarithmic feature is excluded from the feature library Q.

The question arises whether the unsupervised algorithm generalizes well when the feature library cannot represent
the hidden material model due to the lack of the corresponding feature(s). To this end, we purposefully exclude the
logarithmic feature log( Ī2/3) from the feature library Q (n f = 42 in this case). Interestingly, in this situation the
discovered models for the GT solid, denoted by GT⋆ (Table 1 and Figs. 4 and 5), surrogate the logarithmic feature
by its linearization, i.e., by the feature ( Ī2 − 3). This is also observed for the high noise level (σ = 10−3), for
which it also occurs when the logarithmic feature is included in the feature library. The strain energy density and
stress response is nevertheless reproduced quite accurately (Figs. 4 and 5). These results suggest that the proposed
14
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approach is able not only to identify but also to surrogate model features, depending on the availability of such
features in the catalogue of candidate functions, in such a way that the predicted response of the model is accurately
reproduced.

4. Conclusions and outlook

We developed a new unsupervised sparse regression approach for automated discovery of constitutive models
or hyperelastic material behavior. The approach requires only measurable (displacement and global force) data,
ulfills many important physics constraints a priori, and delivers interpretable models from a potentially very large
ibrary of candidate functions by enforcing the satisfaction of linear momentum balance in the interior and at the
oundary of the domain. In order to discover parsimonious models with as little non-zero terms as possible, we
dopt a sparsity promoting technique based on the classical ℓp regularization and, unlike in the previous literature,

we determine the corresponding penalty parameter automatically through the enforcement of additional physics
constraints. The devised algorithm combines this regularization with thresholding in a fully automatic fashion. In
our numerical experiments, where the datasets were obtained by finite element simulations with or without added
artificial noise, the approach was shown to be able to correctly identify five chosen hyperelastic models out of a
large catalogue of functions based on only one loading experiment (i.e., in machine learning jargon, in one shot),
with an accuracy depending on the magnitude of the noise and on the complexity of the model. For no or low noise,
the models were identified perfectly or to high accuracy. For high noise, very accurate results were still obtained
for the simplest models whereas the most complex ones were surrogated by others with reduced accuracy. In such
cases, it is envisioned that loading experiments with more complex strain states and larger deformation levels as
well as the availability of datasets from different experiments will be of help. Finally, we also showed that, if a
“true” feature is missing in the library of candidate functions, the proposed approach is able to surrogate it in such
a way that the actual response is still accurately predicted.

We believe that the proposed approach has the potential for many future developments, including the employment
on experimental data6 in the two- and three-dimensional settings and the extension to the more complex cases of
non-homogeneous, anisotropic, and irreversible material behavior.
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Appendix A. Denoising via kernel ridge regression (KRR)

Here, we provide a brief review of KRR in the context of this work. For more details, the reader is referred
to Saunders et al. [62].

Let y =
(
y1, y2, . . . , ynn

)T
∈ Rnn denote a vector of noisy scalar measurements, where ya is the measurement

at the node of reference coordinate Xa
∈ X . We assume an ansatz for the denoised field ŷ : Ω → R as

ŷ(X) = ϕ(X)T β, (A.1)

here ϕ : Ω → Rd denotes a highly nonlinear map to the d-dimensional feature space and β ∈ Rd performs a
linear combination of the rows of ϕ. Here, d is assumed to be much higher than the number of measurements,
i.e., d ≫ nn , and can even be infinite.

The objective is to determine the coefficients β such that the differences between noisy and denoised measure-
ments are minimized subject to ℓ2 regularization (also known as ridge regularization), i.e.,

βopt
= arg min

β
∥Φβ − y∥2

+ ξ∥β∥2, with Φ =
[
ϕ(X1), ϕ(X2), . . . ,ϕ(Xnn )

]T
∈ Rnn×d . (A.2)

6 Depending on the experimental setting, the algorithmic framework may need to be reformulated considering the plane stress assumption.
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Here, ξ > 0 controls the strength of the ℓ2 regularization. The first optimality condition of (A.2) yields

βopt
=
(
ξ I +ΦTΦ

)−1  
d×d

ΦT y. (A.3)

This involves inverting a d × d matrix, which is computationally intractable if d is infinite.
To make (A.3) tractable, we perform the following manipulation,

βopt
=
(
ξ I +ΦTΦ

)−1
ΦT (ξ I +ΦΦT ) (ξ I +ΦΦT )−1  

=I

y =
(
ξ I +ΦTΦ

)−1

×
(
ξΦT
+ΦTΦΦT ) (ξ I +ΦΦT )−1 y. (A.4)

his is rearranged into

βopt
=
(
ξ I +ΦTΦ

)−1 (
ξ I +ΦTΦ

)
ΦT (ξ I +ΦΦT )−1 y, (A.5)

hich further simplifies to

βopt
= ΦT (ξ I +ΦΦT )−1  

nn×nn

y. (A.6)

Notably, (A.3) reduces to inverting a finite-dimensional nn×nn matrix which is computationally tractable in contrast
o a d × d matrix (recall, d ≫ nn).

Substituting (A.6) into the ansatz (A.1), the denoised field is obtained as

ŷ(X) = ϕ(X)T βopt
= ϕ(X)TΦT (ξ I +ΦΦT )−1 y. (A.7)

e then use the kernel trick [63]. For X, X̃ ∈ Ω , let

K(X, X̃) = ϕ(X)T ϕ(X̃), (A.8)

be a positive definite kernel defining the inner product in the feature space ϕ. The denoised field is then reduced
o

ŷ(X) =k(X)T (ξ I + K )−1 y,
with ka(X) = K(X, Xa) and Kab = K(Xa, Xb), ∀ a, b ∈ {1, . . . , nn}.

(A.9)

he trick is that we only need to define a valid kernel K (must satisfy the requirements of an inner product) to
olve for the denoised field, without actually ever defining the (possibly infinitely-dimensional) feature space ϕ. To
his end, we choose the RBF kernel defined as

K(X, X̃) = exp

(
−∥X − X̃∥2

2χ2

)
, (A.10)

where χ > 0 controls the length scale of the kernel. Since KRR does not assume a parametric ansatz (ϕ remains
undefined in (A.1)), it is a non-parametric regression.

In the context of this work, the displacement components are denoised separately by setting y = (u1
1, u2

1, . . . ,nn
1 )T and y = (u1

2, u2
2, . . . , unn

2 )T in (A.9). The only hyperparameters are the regularization strength (ξ ) and kernel
ength scale (χ ). These hyperparameters are optimized by minimizing the error

∑nn
a=1 ∥ŷ(Xa) − ya

∥
2 via random

search.
We note that KRR is equivalent to estimating the posterior mean in Gaussian process regression [64,65]. However,

the latter also has additional complexity as it provides uncertainties and posterior sampling for the predictions
ŷ (unlike the deterministic framework of KRR). Consequently, despite the asymptotic computational complexity
of both regressions being O(n3

n), we observed that KRR is significantly faster for moderately-sized problem
(nn ∼ 104

− 105) in the context of this work.

Appendix B. Numerical protocol and computational costs

Table A.2 lists the default set of parameters and hyperparameters used in the data generation and the proposed

algorithm. For the NH2 and NH4 models, displacement data from L = 4 load steps are considered. For the rest of
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Table A.2
Default parameters and hyperparameters for the data generation and the proposed algorithm.

Parameter Notation Value

Number of nodes in mesh nn 63,601
Number of reaction force constraints nα 4
Number of load steps L NH2, NH4: 4

IH, HW, GT: 8
Loading parameter δ {0.1× l : l = 1, . . . , L}
Number of features n f {42, 43}
Coefficient for reaction force balance λr 100
ℓp regularization p 1/4
Initial coefficient for ℓp regularization λ0

p 0.01
Multiplicative factor for increasing λp κ 5
Number of parallel fixed-point iterations – 200
Maximum number of fixed-point iteration steps – 200
Number of samples for admissibility checks nγ 75
Maximum loading parameter for admissibility checks γmax 109

Zero tolerance for θ during fixed-point iteration ϵtol 10−6

Convergence tolerance for θ during fixed-point iteration ϵconv 10−3

Threshold for θ after fixed-point iteration θ̄ 0.01
Displacement noise standard deviation σ

{
0, 10−4, 10−3}

the models, i.e., IH, HW, and GT, with higher order terms in the strain energy density, the number of considered
load steps is increased to L = 8 to allow for similar maximum strain levels as in the simpler models.

For the chosen number of nodes (nn) in the spatial discretization, the computational time needed to execute the
algorithm depicted in Fig. 2 with one initial guess for the fixed-point iterations is of the order of ten minutes for
an average modern processor. We highlight that the processes of fixed-point iterations with different initial guesses
can be executed in an embarrassingly parallel fashion on a distributed cluster.
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