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a b s t r a c t 

In the study of transient heat conduction in heterogeneous two-phase media, the local thermal non- 

equilibrium condition calls for the use of a two-equation model to appropriately describe different tem- 

peratures in the two phases. We propose for the two-equation model an FE 2 multi-scale framework that 

is capable of addressing nonlinear conduction problems. The FE 2 framework consists of volume-averaged 

macroscale equations, well-defined microscale problems, and the information exchange between the two 

scales. Compared to a traditional FE 2 method for the one-equation model, the proposed FE 2 framework 

introduces an additional source term at the macroscale that is upscaled from the microscale interfacial 

heat transfer. At variance with the tangent matrices (i.e., effective conductivity) of the heat flux, the tan- 

gent matrices of the interfacial heat transfer depend on the microscopic length scale. The proposed FE 2 

framework is validated against single-scale direct numerical simulations, and some numerical examples 

are employed to demonstrate its potential. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The need for a two-equation model to describe the transient 

eat conduction process in a two-phase medium has long been 

ecognized, especially when the local equilibrium condition breaks 

own [1–8] . Although computationally efficient, the conventional 

olume averaging method [ 9–11 ] is often limited to linear prob- 

ems due to the complexity in solving the closure problems for 

ffective transport properties and the interfacial heat transfer co- 

fficient. Here we propose an FE 2 multi-scale framework that al- 

ows for nonlinear transport for the two-equation model of tran- 

ient heat conduction in a two-phase medium. 

Transient transport phenomena in heterogeneous materials 

ave been traditionally addressed with the one-equation model, 

n which only one macroscale variable is defined on a homog- 

nized volume originally consisting of multiple phases (for sim- 

licity, we restrict the study to a two-phase medium). The one- 

quation model is suited to the local equilibrium assumption—

veraged temperatures of the two phases are close or even the 

ame—that usually holds when their transport properties are suffi- 

iently close and the microscopic length scale is adequately small 
∗ Corresponding author. 
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or fast heat transfer. However, when these conditions do not hold 

nd there is net heat transfer from one phase to the other, the lo- 

al equilibrium will break down. One such case is when there is a 

ignificant heat generation in any of the two phases (as discussed 

n Section 5.1.1 , Kuwahara et al. [3] , and Kaviany [12] ) or, analo-

ously, a kinetic reaction source in the biofilm phase in porous me- 

ia in environmental engineering applications [5,6] . Another sce- 

ario leading to equilibrium breakdown is when there is a great 

isparity of conductivity between the two phases (as discussed 

n Section 5.1.2 and Mahmoudi and Karimi [13] ). A more general 

escription is required for the separate treatment of average val- 

es in the two phases and the explicit description of the interfa- 

ial heat transfer [1,3,7,8,14,15] . This general strategy is termed the 

wo-equation model, according to the work by Quintard et al. [1,2] . 

The two-equation model is also required when the two phases 

re characterized by different physics. By way of example, in 

ithium-ion battery cells [16,17] , electrodes consist of active materi- 

ls, electrolyte, and conductive materials. During the (dis)charging 

rocess, lithium ions diffuse and migrate in the electrolyte, while 

ithium diffuses in the active material. The quantities of concern in 

he two phases, the concentration of lithium ions in the electrolyte 

nd concentration of lithium in the active material, differ in the 

hysical meaning and thus need to be considered as two differ- 

nt field variables, and their values are generally not equal [16,17] . 
under the CC BY-NC-ND license 
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hey are connected through the consistence of mass flux between 

he two phases ensured by chemical reactions occurring on the in- 

erface, described for example by the Butler-Volmer equation [16] . 

Traditionally, the two-equation model is solved analytically. Ho- 

ogenized diffusion equations are first derived at the macroscale 

ia the volume averaging method [11,18] . The so-called closure 

roblems are then defined on the averaging volume at the mi- 

roscale and solved for the effective transport coefficients and in- 

erfacial heat transfer coefficient needed in the homogenized equa- 

ions [1,9,19] . Despite of computational efficiency, this method is 

estricted to linear conduction problems and impaired by accuracy 

oncerns due to many simplification assumptions. 

Alternatively, an accurate and straightforward method is to per- 

orm a single-scale numerical simulation (also called direct numer- 

cal simulation in some fields; see Section 2.2 ). A single-scale sim- 

lation resolves the microscopic geometry and therefore is quite 

ccurate; the price for accuracy is the computational cost that 

ould be as high as rendering the simulation infeasible especially 

hen the problem domain spans spatial scales of several orders 

f magnitude. To avoid the significant simulation cost attached to 

 fully resolved domain and retain the same level of accuracy, a 

ulti-scale computational technique, called the FE 2 method, has 

een developed and successfully employed in applications ranging 

rom mechanical equilibrium problems [20–26] to transport prob- 

ems [27–35] . 

A brief review on the FE 2 method applied in transient dif- 

usion problems is given as follows. In the seminal works by 

zdemir et al. [27,28] , a transient heat conduction was consid- 

red at the macroscale while a steady-state diffusion was used 

t the microscale, without any heat sources. The transient ef- 

ect at the microscale and heat source terms were then consid- 

red by Larsson et al. [29] , followed by the extension to non- 

niform heat sources by Ramos et al. [31] . The model developed 

n Ramos et al. [31] was also applied to an engineering prob- 

em of filled elastomers [32] . To reduce the increased simulation 

ost caused by considering the microscale transient effect, Agges- 

am et al. [36] and Waseem et al. [33–35] developed model order 

eduction techniques within the FE 2 framework. 

These existing works however only apply to the one-equation 

odel as they consider one homogenized variable defined on the 

epresentative volume element (RVE) and use the effective mate- 

ial properties (stiffness, conductivity) of the whole RVE that may 

onsist of multiple phases. These frameworks cannot offer sepa- 

ate information for each phase (refer to Section 3.5 ), as needed 

n applications requiring a two-equation model. The aim of this 

tudy is to propose an FE 2 multi-scale framework for the two- 

quation model. We first employ the volume averaging method 

o derive the macroscale transient equations ( Section 3.1 ), thus 

learly demonstrating the physical meanings of the macroscale 

eld variables and other quantities. All the key ingredients of 

he FE 2 approach including two-way information flow and mi- 

roscale problem boundary conditions are then detailed in the re- 

ainder of Section 3 , followed by its numerical implementation 

n Section 4 . The two-scale framework is validated against single- 

cale direct numerical simulations through simple academic exam- 

les ( Section 5.1 ). 

. Preliminaries 

.1. Volume average operator 

With reference to a quantity x α (a scalar or vector) in the 

phase of a two-phase RVE ( Fig. 1 b), we define the volume av- 

rage operator with respect to the whole RVE as 

 x α 〉 = 
1 

V 

∫ 
V 

x α d V (1) 

α

2 
nd the intrinsic volume average [9] over the α phase as 

 α = 
1 

V α

∫ 
V α

x α d V , (2) 

here V denotes the total volume of the two-phase medium, 

nd V α is the volume of the α phase. The variable α represents 

ither β or σ. If the volume fraction of the α phase is defined as 

α = 
V α

V 

, 

he following relation between the two volume averages holds: 

 x α 〉 = ϵα x α . (3) 

.2. Single-scale description 

The composite under consideration consists of two phases—the 

atrix ( β phase) and the inclusion ( σ phase)—as shown in Fig. 1 a. 

he two phases possess different transport properties. Physical 

uantities associated with β phase and σ phase are distinguished 

y the subscripts β and σ, respectively. Transient heat conduction 

n the two-phase medium is governed by 

 β

∂u β

∂t 
+ ∇ · h β = r β in V β × ( 0 , t end ] and (4a) 

 σ
∂u σ

∂t 
+ ∇ · h σ = r σ in V σ × ( 0 , t end ] , (4b) 

here c , u , h , and r represent, respectively, volumetric heat capac- 

ty, temperature, heat flux, and the given volumetric heat source. 

he heat flux is described by Fourier’s law and expressed as 

 β = −k β

(
u β

)
∇ u β, (5a) 

 σ = −k σ ( u σ ) ∇ u σ, (5b) 

here the thermal conductivity for each phase is generally tem- 

erature dependent. 

Across the interface between the two phases, we consider the 

emperature continuity condition (i.e., u β = u σ). These two govern- 

ng equations can be readily solved by a standard finite element 

rogram. Specifically, each phase will be discretized to form con- 

orming mesh at the interface and a common node will be used. 

his solution strategy is referred to as the single-scale approach, 

nd it will be used as a reference for the proposed multi-scale ap- 

roach. 

. Multi-scale framework 

This section outlines the FE 2 computational framework where 

he governing equations at the two scales and the correspond- 

ng information-passing procedures are described. The two-scale 

ramework relies on the underlying principle of scale separa- 

ion [9,37] , which states that, referring to Fig. 1 a, the characteristic 

ength ( l c ) of the inclusions (e.g., radius), the size of the RVE ( l rve ),

nd the characteristic length of the macroscale domain ( L c ) should 

atisfy the constraint l c � l rve � L c . 

In the remainder of the paper, we use lower case letters to 

epresent microscale quantities while upper case letters refer to 

acroscale quantities. For example, the microscale temperature is 

enoted by u , while U represents the macroscale temperature. 

.1. Macroscale problem 

The macroscale governing equations are derived by volume- 

veraging the single-scale formulation presented in the previous 
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Fig. 1. (a) A two-phase medium consisting of the blue matrix ( β phase occupying V β) and gray inclusions ( σ phase occupying V σ) possessing different transport properties. 

(b) Microscopic representative volume element (RVE). The RVE boundary Γex is divided into two parts, each associated with a phase, such that Γex = Γβex 
∪ Γσex with Γβex 

∩ Γσex = 

Φ. The interface between the two phases is represented by two coinciding boundaries Γβσ and Γσβ belonging to the β and σ phases, respectively. L c , l rve , and l c characterize 

the typical length scales of the macroscopic domain, the RVE, and the microscopic constitute phase. 
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ection over an RVE. With reference to the RVE ( Fig. 1 b), applying

he volume average operator (1) to Eq. (4a) yields 

 β

∂〈 u β〉 
∂t 

+ 〈 ∇ · h β〉 = 〈 r β〉 in V β × ( 0 , t end ] . (6) 

he volume-averaged temperature 〈 u β〉 is expressed in terms of the 

ntrinsic average u β which is defined as the macroscale tempera- 

ure U β: 

 u β〉 = ϵβu β = ϵβU β, (7) 

here ϵβ is the volume fraction of the β phase. The volume- 

veraged flux divergence is split into two surface inte- 

rals ( Fig. 1 b): 

 ∇ · h β〉 = 
1 

V 

∫ 
V β

∇ · h β d V = 
1 

V 

∫ 
Γβex 

h β · n βex 
d Γ

+
1 

V 

∫ 
Γβσ

h β · n βσ d Γ, (8) 

here Γβex 
and Γβσ represent the RVE boundary contributed by 

he β phase and the interface with the σ phase, respectively, n βex 

s the outward-pointing unit vector normal to Γβex 
, and n βσ is the 

nit vector normal to Γβσ pointing from the β phase to the σ
hase. The volume-averaged heat source in the right-hand side of 

q. (6) is defined as the macroscale heat source 

 β = 〈 r β〉 , (9) 

here the volumetric heat source r β is a given quantity. 

Substituting Eq. (7) to (9) into Eq. (6) yields 

 βϵβ

∂U β

∂t 
+

1 

V 

∫ 
Γβex 

h β · n βex 
d Γ = R β −

1 

V 

∫ 
Γβσ

h β · n βσ d Γ. (10) 

he volume-averaged outflow of heat through the RVE bound- 

ry Γβex 
can be regarded as the divergence of the heat flux at a 

acroscale point: 

1 

V 

∫ 
Γβex 

h β · n βex 
d Γ = ∇ · H β, (11) 

nd the heat transfer from the β phase to the σ phase can be de- 

ned as the heat sink, or negative heat source, at a macroscale 

oint: 

1 

V 

∫ 
Γβσ

h β · n βσ d Γ = −Q β . (12) 

acroscale equation (10) can thus be expressed as 

 βϵβ

∂U β

∂t 
+ ∇ · H β = R β +Q β in Ω × ( 0 , t end ] , (13a) 

here Ω denotes the homogenized domain shared by both phases 

t the macroscale as shown in Fig. 2 a. Likewise, we can derive the

acroscale equation for the σ phase as 

 σϵσ
∂U σ

+ ∇ · H σ = R σ +Q σ in Ω × ( 0 , t end ] , (13b) 

∂t 

3 
here the macroscale temperature 

 σ = u σ = 
〈 u σ〉 
ϵσ

(14) 

epresents the intrinsic average of the temperature of the σ phase, 

he macroscale heat source 

 σ = 〈 r σ〉 (15) 

s the volume average of the given heat source r σ, and the addi-

ional macroscale heat source 

 σ = −
1 

V 

∫ 
Γσβ

h σ · n σβ d Γ (16) 

s caused by the interfacial heat transfer. 

The macroscale heat fluxes ( H β and H σ) and the macroscale 

eat sources ( Q β and Q σ) due to interfacial heat transfer in 

he macroscale governing equation (13) are obtained through the 

icroscale computation. As schematically shown in Fig. 2 , the 

acroscale solution U β and U σ and their gradients at an integra- 

ion point are downscaled to define the microscale problem; the 

acroscale heat fluxes and sources as well as their tangents are 

hen computed from the microscale solution and upscaled. More- 

ver, in the microscale simulation the temperature continuity con- 

ition ( u β = u σ) and flux continuity, suggesting Q β +Q σ = 0, are si-

ultaneously enforced across the interface. 

.2. Downscaling 

The boundary conditions enforced at the microscale level are 

btained by downscaling macroscale quantities at each integration 

oint of the macroscale mesh: temperature U β and U σ, and their 

radients ∇ U β and ∇ U σ, respectively. For conciseness, these quan- 

ities are stored in a column vector as 

 = 

[(
∇ U β

)T 
U β ( ∇ U σ ) T U σ

]T 

. (17) 

.3. Microscale problem 

The microscale problem is defined on an RVE ( Fig. 2 b) asso- 

iated with a macroscale integration point. At variance with the 

ingle-scale description (4) , the governing equations at the mi- 

roscale neglect the time evolution terms and consider the steady- 

tate thermal equilibrium [27,29] , in view of the relatively small 

VE size. The governing equations are thus expressed as 

 · h β = b β in V β and (18a) 

 · h σ = b σ in V σ, (18b) 

here the constitutive relations for heat fluxes h β and h σ are the 

ame as in Eq. (5) . The two source terms b β and b σ are different



M. Zhuo International Journal of Heat and Mass Transfer 179 (2021) 121683 

Fig. 2. Homogenized domain at the macroscale, RVE at the microscale, and information exchange between macro- and micro-scales. Macroscale temperatures U β and U σ , and 

their gradients ∇ U β and ∇ U σ are downscaled as boundary conditions for the microscale RVE problem. The homogenized fluxes H β and H σ ( Eq. (33) ), volumetric interfacial 

heat transfer Q β ( Eq. (12) ) and Q σ ( Eq. (16) ), and their dependencies S β , S σ , T β , and T σ ( Eq. (34) ) on the macroscale quantities X ( Eq. (17) ) are then transferred back to the 

macroscale problem. Panel (b) shows also the boundaries used for the enforcement of periodic boundary conditions in the FE analysis of the RVE: left ( Γl ) and bottom ( Γb ) 

edges are categorized into the master boundary Γlb = Γl ∪ Γb , while the right ( Γr ) and top ( Γt ) edges (corresponding to Γl and Γb , respectively) are considered as parts of the 

slave boundary Γrt = Γr ∪ Γt . 

f

t  

t

i  

t

a

a

t

g

m

y  

a

fi

u

u

w

m

e

c

s

t

c

a

t

p

t

p

t

m

i

t

H

a

w

b

a

t

o

R

β

I

w

a

n

t

t

n

E∫

S∫

c

p

f

o

a

u

u

w

b

d

u

u

f

rom the given source terms r β and r σ in the single-scale equa- 

ion (4) . The prescribed heat sources ( r β and r σ) are included in

he macroscale governing equation (13) in an average sense—R β
n Eq. (9) and R σ in Eq. (15) —and will be indirectly reflected at

he microscale through the enforcement of consistent temperatures 

cross the two scales as expressed by Eq. (26) . The two terms b β
nd b σ actually reflect unknown heat sources caused by enforcing 

he constraint (26) , acting as constraint forces and regardless of the 

iven heat sources r β and r σ. 

Next, the microscale boundary conditions are derived from the 

acroscale quantities X ( Eq. (17) ). By convention in the FE 2 anal- 

sis, the microscale temperature profiles u β ( x ) and u σ ( x ), with x

s the position vector, can be decomposed into a spatially linear 

eld (first two terms) and a fluctuation filed (the last term): 

 β = U β + ∇ U β · ( x − x ra ) + ũ β, (19a) 

 σ = U σ + ∇ U σ · ( x − x rb ) + ũ σ, (19b) 

here x ra and x rb are reference points. 

In the FE 2 analyses of mechanical problems [23,37] , it is a com- 

on practice to assume that the macroscale deformation gradi- 

nt at a point is equal to the volume average of the microscale 

ounterpart over the whole RVE defined on that point. This as- 

umption, connecting the macro- and micro-scales, is known as 

he averaging theorem [38] . Likewise, in the FE 2 analysis of heat 

onduction [27] , the macroscale temperature gradient is usually 

ssumed to be equal to the volume average of the microscale 

emperature gradient. This assumption results from the sim- 

lest and widely-used first-order homogenization; the macroscale 

emperature gradient is used as a loading for the microscale 

roblem [29] through the boundary conditions imposed on 

he RVE. 

The transfer of temperature gradient for the one-equation 

odel [27] is as straightforward as the strain transfer. However, 

t requires special consideration in the two-equation model since 

here are two macroscale temperature gradients—∇ U β and ∇ U σ. 

ere we propose the following relations as an equivalent for the 

ssumption described above: 

1 

V 

∫ 
Γex 

u βn ex d Γ = ∇ U β, (20a) 

1 

V 

∫ 
Γex 

u σn ex d Γ = ∇ U σ, (20b) 

here n ex is the outward-pointing normal vector to the RVE 

oundary Γex and the surface integral is over the whole RVE bound- 
4 
ry Γex = Γβex 
∪ Γσex ( Fig. 1 b). The surface integral is equivalent to 

he previously mentioned volume integral via the divergence the- 

rem but is preferred especially when holes/voids exist in the 

VE [24,39,40] . Here, the σ phase regions act as holes for the 

phase, and vice versa. 

Substituting Eq. (19a) into Eq. (20a) results in 

1 

V 

∫ 
Γex 

u βn ex d Γ = ∇ U β +
1 

V 

∫ 
Γex 

ũ βn ex d Γ. (21) 

n the derivation, n ex should be evaluated at every point on the 

hole RVE boundary including the portion for the σ phase ( Γσex ) 

lthough u β is only defined in the β phase. This procedure is 

ecessary because the σ phase is the complementary voids of 

he β phase in the RVE. To the void phase σ we can attach fic- 

itious u β values and null conductivity, analogous to null stiff- 

ess in mechanical problems [24,40] . Comparison of Eq. (21) with 

q. (20a) yields 
 

Γex 

ũ βn ex d Γ = 0 , (22a) 

imilarly, for the σ phase we arrive at 
 

Γex 

ũ σn ex d Γ = 0 . (22b) 

Constraints (22) are enforced by means of periodic boundary 

onditions [23,24,41] as “periodic boundary conditions have been 

roven to be most versatile” [37] , not only for periodic but also 

or arbitrary microstructures [42] . For the two-phase composition 

f the RVE boundary in Fig. 2 b, the periodic boundary conditions 

re stated as 

˜ β ( x lb ) = ũ β ( x rt ) , (23a) 

˜ σ ( x lb ) = ũ σ ( x rt ) , (23b) 

here x lb represents an arbitrary point on the left and bottom 

oundaries and its counterpart on the right and top boundaries is 

enoted as x rt . Substituting Eq. (23) into Eq. (19) leads to 

 β ( x lb ) − u β ( x rt ) − ∇ U β · ( x lb − x rt ) = 0 , (24a) 

 σ ( x lb ) − u σ ( x rt ) − ∇ U σ · ( x lb − x rt ) = 0 . (24b) 

The temperature continuity condition at the two-phase inter- 

ace is also enforced and expressed as [ 
u β

] 
Γβσ
−
[ 
u σ

] 
Γσβ
= 0 . (25) 
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oreover, from the definition of the macroscale temperatures in 

q. (7) and (14) , we have two additional constraints: 

 β −U β = 0 , (26a) 

 σ −U σ = 0 . (26b) 

These two extra constraints are necessary for the solution of the 

icroscale problem as they 1) allow us to objectively determine 

nique microscale solutions for each phase (the reference points in 

q. (19) are not determined), and 2) enforce the consistency of the 

tored heat in each phase between the macro- and micro-scales. 

he latter aspect is fundamental: enforcing the heat consistency 

onstraint indirectly applies the heat source to the microscale gov- 

rning equation (18) , which is only explicitly implemented in the 

acroscale equation (13) . 

.4. Upscaling 

To close the information exchange loop, the homogenized 

uxes H β and H σ and their tangent matrices are calculated from 

he microscale solution and upscaled to the macroscale compu- 

ation ( Fig. 2 ). The homogenized fluxes are pragmatically calcu- 

ated as the volume averages of the corresponding microscale heat 

uxes [38] : 

 β = 
1 

V 

∫ 
V β

h β d V , (27a) 

 σ = 
1 

V 

∫ 
V β

h σ d V . (27b) 

For the sake of numerical implementation, the volume integrals 

re often transformed into surface integrals. The right-hand side of 

q. (27a) is reformulated as 

1 

V 

∫ 
V β

h βd V = 
1 

V 

∫ 
V β

[ 
∇ ·
(
x h β

)
− x ∇ · h β

] 
d V 

= 
1 

V 

∫ 
Γβex 

x h β · n βex 
d Γ + �� 1 

V 

∫ 
Γβσ

x h β · n βσ d Γ − 1 

V 

∫ 
V β

x b β d V �	, (28) 

here the divergence theorem and the microscale governing equa- 

ion (18a) are used in the derivation. The last two terms in the 

racket of Eq. (28) approximate to each other and can be ne- 

lected. The demonstration is as follows. Applying volume integral 

o Eq. (18a) yields 

1 

V 

∫ 
V β

(
∇ · h β − b β

)
d V = 0 

= 
1 

V 

∫ 
Γβex 

h β · n βex 
d Γ +

1 

V 

∫ 
Γβσ

h β · n βσ d Γ − 1 

V 

∫ 
V β

b β d V . (29) 

he first term in the right-hand side of Eq. (29) actually van- 

shes. According to the periodic boundary condition (24a) , we eval- 

ate h β · n βex 
at the master boundary Γlb (left and bottom edges) 

o be the opposite of that at the corresponding slave boundary 

rt (right and top edges). This is called the anti-periodic normal 

ux boundary condition [27] and its enforcement through Lagrange 

ultipliers is detailed in Section 4.2 . Therefore, the last two terms 

n Eq. (29) should cancel out each other. Multiplying them by a 

osition vector gives 

1 

V 

∫ 
Γβσ

x c h β · n βσ d Γ = 
1 

V 

∫ 
V β

x c b β d V , (30) 

here x c denotes the geometry center of the RVE. The unknown 

eat source b β due to the constraint (26a) is uniform in the RVE 

omain because a single Lagrange multiplier is used to impose the 
5 
onstraint (26a) . Therefore, the right-hand term in Eq. (30) is equal 

o the last term in Eq. (28) 

1 

V 

∫ 
V β

x c b β d V = 
1 

V 

∫ 
V β

x b β d V . (31) 

n view of Eqs. (30) and (31) , the subtraction in the bracket of 

q. (28) is calculated as 

1 

V 

∫ 
Γβσ

x h β · n βσ d Γ − 1 

V 

∫ 
V β

x b β d V 

= 
1 

V 

∫ 
Γβσ

( x − x c ) h β · n βσ d Γ. (32) 

ue to the relatively small RVE size, the right-hand term in 

q. (32) can be assumed to be null and thus ignored, which has 

lso been numerically validated in our simulations. The above 

erivations also apply to the σ phase, and hence the macroscale 

eat fluxes in Eq. (27) can be expressed in terms of surface inte- 

rals as 

 β = 
1 

V 

∫ 
Γβex 

x h β · n βex 
d Γ, (33a) 

 σ = 
1 

V 

∫ 
Γσex 

x h σ · n σex d Γ. (33b) 

The volumetric interfacial heat transfer Q β and Q σ are calcu- 

ated according to Eqs. (12) and (16) . Moreover, the dependencies 

 β = 
∂H β

∂X 

, T β = 
∂Q β

∂X 

, (34a) 

 σ = 
∂H σ

∂X 

, T σ = 
∂Q σ

∂X 

(34b) 

f these quantities with respect to the macroscale quanti- 

ies X ( Eq. (17) ) are also passed back to the macroscale. 

The upscaled tangent matrices in Eq. (34) express general de- 

endences on all the downscale macroscale quantities, as X in- 

ludes both U β and U σ as well as their gradients. This feature 

s especially important to multi-physics problems where highly- 

oupled constitutive relations are used at the microscale. The FE 2 

ownscaling-upscaling procedure thus serves to numerically up- 

cale the general nonlinear constitutive relation at the microscale 

o the macroscale. 

.5. Comparison with one-equation model 

The obvious similarity between the structures of the one- 

nd two-equation models calls for a simple comparison. 

dding Eqs. (13a) and (13b) together results in 

 

∂U 

∂t 
+ ∇ · H = R β + R σ, (35) 

here the volumetric heat capacity 

 = c βϵβ + c σϵσ (36) 

epresents the volume-averaged heat capacity, the homogenized 

emperature is the total thermal energy over the volume-averaged 

eat capacity 

 = 
c βϵβU β + c σϵσU σ

c 
, (37) 

nd the macroscale heat flux H is equal to 

 = H β +H σ . (38) 

omparing the preceding equations with those in the one-equation 

odel in Özdemir et al. [27] , it can be seen that the volume- 

veraged heat capacity c and the macroscale heat flux H (sub- 

tituting Eq. (27) into Eq. (38) ) have the same meanings as 
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−

efined in Özdemir et al. [27] . The macroscale temperature in 

zdemir et al. [27] is not defined with an explicit meaning, but 

rom this comparison we know it has exactly the same meaning 

s U in Eq. (37) , i.e., the total thermal energy over the volume-

veraged heat capacity, but not the volume-averaged tempera- 

ure 

 = ϵβU β + ϵσU σ . (39) 

owever, if the heat capacities of the two phases are the same 

 c β = c σ), the macroscale temperature ( Eq. (37) ) of the one-

quation model reduces to the volume-averaged temperature. 

Because of the equivalence, the one-equation model can be con- 

idered as a special case of the two-equation model. 

. Implementation of the multi-scale framework 

This section provides the numerical implementation of the FE 2 

ramework: the finite element procedures for the macroscale and 

icroscale problems and the numerical scheme for the calcula- 

ion of the upscaled quantities. We condense the standard finite 

lement procedures (readers are referred to textbooks [43,44] for 

ore details) while elaborate the necessary steps specific to the 

E 2 method, i.e., the boundary setting of microscale problem and 

xtraction of homogenized quantities. Note that all vectors are col- 

mn vectors by default. 

.1. Finite element method for macroscale problem 

According to standard finite element procedures, the weak form 

f the macroscale governing equation (13) is expressed as 

 

Ω
c βϵβ

∂U β

∂t 
δU β d V −

∫ 
Ω
∇ δU β · H β d V −

∫ 
Ω

(
Q β + R β

)
δU β d V 

+

∫ 
∂Ω

H βδU β d Γ = 0 , (40a) 

 

Ω
c σϵσ

∂U σ

∂t 
δU σ d V −

∫ 
Ω
∇ δU σ · H σ d V −

∫ 
Ω

( Q σ + R σ ) δU σ d V 

+

∫ 
∂Ω

H σδU σ d Γ = 0 , (40b) 

here δU β and δU σ are variations of field variables, H β and H σ are 

rescribed heat fluxes at the macroscale boundaries ∂Ω, and R β
nd R σ are calculated from given microscale heat sources via 

qs. (9) and (15) . 

The macroscale heat fluxes H β and H σ and the heat sources Q β
nd Q σ due to interfacial heat transfer at an integration point are 

alculated from the microscale problem solution and generally de- 

end on temperatures U β and U σ. Because of the coupling of the 

wo governing equations, they are solved simultaneously; there- 

ore, each node in the spatial discretization has two degrees of 

reedom, one for U β and the other for U σ. 

A standard finite element approximation is used to discretize 

he field variables in the spatial domain, and the weak statement 

n matrix notation is rewritten as 

 β = 

∫ 
Ω

c βϵβN 

T N 

ΔU β

Δt 
d V −

∫ 
Ω

B 

T H β d V −
∫ 

Ω

(
Q β + R β

)
N 

T d V 

+

∫ 
∂Ω

H βN 

T d Γ = 0 , (41a) 
6 
 σ = 

∫ 
Ω

c σϵσN 

T N 

ΔU σ

Δt 
d V −

∫ 
Ω

B 

T H σ d V −
∫ 

Ω
( Q σ + R σ) N 

T d V 

+

∫ 
∂Ω

H σN 

T d Γ = 0 , (41b) 

here N collects the shape functions associated with all the 

odes of the discretized macroscale domain and matrix B contains 

erivatives of the shape functions. 

The backward Euler method is used for the discretization of 

he time derivative terms in Eq. (40) (see more details in refer- 

nces [31,35] ). In Eq. (41) , the temperature increments ΔU β and 

U σ are evaluated between the current time step and the last 

onverged time step, and Δt denotes the time step size; the 

acroscale fluxes H β and H σ and the heat sources Q β and Q σ are 

pproximated by the values of the current time step. 

We now collect the two sets of discrete equations in 

q. (41) and the two field variables in the format of F = [ F β F σ] T ,

 = [ U β U σ] T , respectively. The Newton-Raphson iteration proce- 

ure is then employed to solve the system of discrete equations 

 (U n ) = 0 (42) 

t the current time step n ( t = t n ). The system of linearized equa-

ions at iteration step k is expressed as 

 (U 

k+1 
n − U 

k 
n ) + F (U 

k 
n ) = 0 , (43) 

here the global tangent matrix K is evaluated at iteration step k

s 

 = 
[ 

∂F 
∂U n 

] 
k 
= 

[ 
K ββ K βσ

K σβ K σσ

] 
k 

. (44) 

To compute the residual vector F in Eq. (41) , the macroscale 

uxes H β and H σ at each integration point are directly upscaled 

rom the microscale problem solution and their formulations are 

resented in Section 4.3 via Eq. (52) ; likewise, the macroscale heat 

ources Q β and Q σ are obtained through Eq. (53) . The tangent ma- 

rix K is calculated from the upscaled tangent matrices S β, S σ, T β,

nd T σ, and its four components is expressed as 

 ββ = 
∂F β

∂U β
= 

∫ 
Ω

c βϵβ

Δt 
N 

T N d V −
∫ 

Ω
B 

T 
∂H β

∂U β
d V −

∫ 
Ω

N 

T 
∂Q β

∂U β
d V , 

(45a) 

 βσ = 
∂F β

∂U σ
= −
∫ 

Ω
B 

T 
∂H β

∂U σ
d V −

∫ 
Ω

N 

T 
∂Q β

∂U σ
d V , (45b) 

 σβ = 
∂F σ
∂U β

= −
∫ 

Ω
B 

T ∂H σ

∂U β
d V −

∫ 
Ω

N 

T ∂Q σ

∂U β
d V , (45c) 

 σσ = 
∂F σ
∂U σ

= 

∫ 
Ω

c σϵσ

Δt 
N 

T N d V −
∫ 

Ω
B 

T ∂H σ

∂U σ
d V −

∫ 
Ω

N 

T ∂Q σ

∂U σ
d V , 

(45d) 

here all the stiffness matrices for the macroscale fluxes ( H β and 

 σ) and heat sources ( Q β and Q σ) can be found in Eqs. (B.13) and

B.14) . 

.2. Finite element method for microscale problem 

The weak form of the microscale governing equation (18) is ∫ 
V β

∇ δu β ·
(
−k β∇ u β

)
d V +

∫ 
Γβex 
∪ Γβσ

δu βh β · n β d Γ

−
∫ 

V β

δu βb β d V = 0 , (46a) 
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∫ 
V σ

∇ δu σ · ( −k σ∇ u σ ) d V +

∫ 
Γσex ∪ Γσβ

δu σh σ · n σ d Γ

−
∫ 

V σ

δu σb σ d V = 0 . (46b) 

The boundary terms on Γβex 
∪ Γβσ and Γσex ∪ Γσβ do not rep- 

esent any prescribed Neumann boundary conditions but reflect 

nknown fluxes caused by the constraints of periodic boundary 

onditions (24) and temperature continuity condition (25) at the 

nterface. The heat source terms containing b β and b σ are also 

ot given but caused by the constraint of consistent temperatures 

cross the macro- and micro-scales (26) . All these constraints are 

nforced through the Lagrange multiplier method, and correspond- 

ngly we denote the heat fluxes due to the periodic boundary con- 

itions (24) by λβ, p and λσ, p , the heat fluxes due to the tempera- 

ure continuity condition (25) by λβσ and λσβ ( λσβ = −λβσ), and the 

eat sources due to the consistent temperature constraint (26) by 

β, b and λσ, b . The weak form (46) is thus reformulated as 
 

V β

∇ δu β ·
(
k β∇ u β

)
d V +

∫ 
Γβex 

δu βλβ, p dΓ +

∫ 
Γβσ

δu βλβσ dΓ

−
∫ 

V β

δu βλβ, b d V = 0 , (47a) 

 

V σ

∇ δu σ · ( k σ∇ u σ ) d V +

∫ 
Γσex 

δu σλσ, p dΓ +

∫ 
Γσβ

δu σλσβ dΓ

−
∫ 

V σ

δu σλσ, b d V = 0 . (47b) 

The weak form (47) is further supplemented with the varia- 

ional forms for the enforcement of the periodic boundary condi- 

ions (24) and temperature continuity condition (25) : 
 

Γβex 
∪ Γσex ∪ Γβσ

δ λA d Γ = 0 , (48) 

here A represents the left-hand formulations of periodic bound- 

ry conditions (24) and temperature continuity condition (25) . 

Inserting the discrete expressions of the field variables and their 

radients into the weak form (47) gives the discretized system of 

overning equations 

 

V β

B 

T k βBu β d V +

∫ 
Γβex 

N 

T λβ, p d Γ +

∫ 
Γβσ

N 

T λβσ d Γ −
∫ 

V β

N 

T λβ, b d V = 0 , 

(49a)

 

V σ

B 

T k σBu σ d V +

∫ 
Γσex 

N 

T λσ, p d Γ −
∫ 

Γσβ

N 

T λβσ d Γ −
∫ 

V σ

N 

T λσ, b d V = 0 . 

(49b)

Conductivities k β and k σ are in general temperature dependent, 

nd their derivatives need therefore to be considered in the calcu- 

ation of the tangent matrices. The equations in Eq. (49) are solved 

n their own domains where each node has one degree of free- 

om. The discretization at the interface between the two phases 

s conforming, but two coinciding nodes, rather than a common 

ode, are assigned with one node for one phase. The temperature 

ontinuity and flux continuity constraints are explicitly enforced 

hrough Lagrange multipliers between the two coinciding nodes. 

The discrete version of the constraints of the periodic bound- 

ry conditions (24) and temperature continuity condition (25) is 

btained from Eq. (48) by means of the point collocation 

ethod [45] and expressed in Eqs. (A.1) to (A.3) . The con- 

traint (26) is directly discretized by inserting discrete expressions 

f the field variables and expressed in Eq. (A.4) . These boundary 
7 
onditions and constraints, listed in Eqs. (A.1) to (A.4) , are ex- 

ressed in matrix form as 

u + CX = 0 , (50) 

here u = [ u β u σ] T collects all the nodal unknowns as concatena- 

ion of vectors u β and u σ, and A and C are constant coefficient 

atrices that can be readily obtained after sorting Eqs. (A.1) to 

A.4) consistently with u . 

The Lagrange multipliers λβ, p , λσ, p , and λβσ representing heat 

uxes on the boundaries and interface are discretized in the pro- 

ess of deriving Eqs. (A.1) to (A.3) and stacked together with the 

wo scalar Lagrange multipliers λβ, b and λσ, b in the vector form 

s λ. The vector of Lagrange multipliers is then associated with the 

odal unknowns u : w = [ u λ] T . 

The system of nonlinear equations Eq. (49) augmented by 

q. (50) is also solved by the Newton-Raphson iteration scheme 

s reported in Section 4.1 . At iteration step k , the increment of the 

olution Δw 

k+1 can be computed from [ 
K A 

T 

A 0 

] [ 
Δu 

Δλ

] 
+

[ 
f + A 

T λ
Au + CX 

] 
= 0 , (51) 

here f represents the vertical stack of the first term of 

q. (49a) and first term of Eq. (49b) . 

.3. Upscaling of macroscale quantities 

This section details the calculation of the homogenized 

uxes ( H β and H σ), the macroscale heat sources ( Q β and Q σ), and

he tangent matrices ( S β, S σ, T β, and T σ) based on the microscale

nite element solution. By comparison of Eqs. (49) and (51) , the 

agrange multipliers λ that pertain to the periodic boundary condi- 

ions and temperature continuity condition represent the integrals 

f heat fluxes over the area of influence of each node at the bound- 

ry/interface. According to Eq. (33) , the macroscale fluxes can be 

alculated through Lagrange multipliers as: 

 β = 
1 

V 

∫ 
Γβex 

(
x m 

N 

T 
)

λβ, p d Γ = 
1 

V 

x m 

∫ 
Γβex 

N 

T λβ, p d Γ = 
1 

V 

x m 

A 

T λβ, p , 

(52a) 

 σ = 
1 

V 

∫ 
Γσex 

(
x m 

N 

T 
)

λσ, p d Γ = 
1 

V 

x m 

∫ 
Γσex 

N 

T λσ, p d Γ = 
1 

V 

x m 

A 

T λσ, p , 

(52b) 

here matrix x m 

is a 2-by- n m 

array listing the coordinates of all 

he n m 

nodes of the microscale mesh, λβ, p and λσ, p refer to the 

omponents of λ that are associated with the periodic boundary 

onditions ( Eqs. (A.1) and (A.2) ) imposed on Γβex 
and on Γσex , re- 

pectively. With an abuse of notation, the coefficient matrix A 

T in 

q. (50) needs to be recast here to accommodate λβ, p and λσ, p . 

The macroscale heat sources due to interfacial heat transfer are 

omputed according to Eqs. (12) and (16) as 

 β = −
1 

V 

∫ 
Γβσ

λβσ d Γ = − 1 

V 

Γβσ∑ 

A 

T λβσ, (53a) 

 σ = −
1 

V 

∫ 
Γσβ

λσβ d Γ = − 1 

V 

Γσβ∑ 

A 

T λβσ, (53b) 

here λβσ denotes components of λ related to the temperature 

ontinuity condition (A.3) imposed on nodes on Γβσ and Γσβ ( λσβ

ot discretized). Also, the coefficient matrix A 

T in Eq. 50 is shrunk 

o accommodate λβσ but is different in Eqs. (53a) and (53b) be- 

ause of different nodes on Γβσ and Γσβ. The coefficient matri- 

es in Eqs. (53a) and (53b) however ensures that Q β +Q σ = 0. In
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Nested two-scale solution procedures of the FE 2 method. 
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qs. (52) and (53) , all the Lagrange multipliers take the values at 

he converged state of the microscale iteration. 

The tangent matrices of the homogenized fluxes ( H β and H σ) 

nd heat sources ( Q β and Q σ) with respect to the downscaled 

uantities X are derived by applying a small variation to X and 

ompute the according changes in the flux and source terms. The 

etailed derivation can be found in Appendix B and the expres- 

ions of the tangent matrices are 

 β = 
δ H β

δ X 

= 
1 

V 

x m 

A 

T δβ, p 
ˆ K 

−1 ˆ C , S σ = 
δ H σ

δ X 

= 
1 

V 

x m 

A 

T δσ, p ˆ K 

−1 ˆ C , 

(54a) 

 β = 
δQ β

δ X 

= − 1 

V 

Γβσ∑ 

A 

T δβσ
ˆ K 

−1 ˆ C , T σ = 
δQ σ

δ X 

= − 1 

V 

Γσβ∑ 

A 

T δβσ
ˆ K 

−1 ˆ C . 

(54b) 

Finally, we summarize the nested two-scale solution procedure 

n Table 1 for better understanding of the information flow loop 

etween the macro- and micro-scales. Note that the downscaling- 

pscaling procedure occurs at each iteration step for the solution 

t any time step, numerically serving the constitutive relation at 

he macroscale. 

. Results and discussion 

We first present some numerical examples for the purpose of 

alidation in Section 5.1 where the FE 2 simulation results are com- 

ared with the results of the single-scale direct numerical simula- 

ion (reference solutions). The numerical examples are tailored to 

how noticeable temperature difference between the two phases 

nd thus to demonstrate the capability of the FE 2 framework in 

olving the two-equation model. The first example ( Section 5.1.1 ) 

ocuses on the interfacial heat transfer between the two phases, 
8 
hich cannot be captured by the one-equation model [27,31] , and 

gnores the spatial diffusion at the macroscale by having a uni- 

orm macroscale temperature field. The macroscale spatial heat 

uxes are then considered in the second example ( Section 5.1.2 ) 

hat considers both the linear and nonlinear conduction and in 

he third example ( Section 5.1.3 ) that features a significant conduc- 

ivity difference. Finally, the microscale RVE simulation results are 

iscussed in Section 5.2 to offer some insights into the interfacial 

eat transfer coefficient and the microscopic length scale effects. 

.1. Comparison with single-scale simulations 

.1.1. Interfacial heat transfer 

Consider the insulated two-phase slab problem studied by 

amos et al. [31] using a one-equation model. As shown in Fig. 3 ,

he two-phase slab consists of a regular array of 140 × 70 unit cells, 

ith each unit cell consisting of an inclusion ( σ phase) embedded 

n a matrix ( β phase). Both phases are isotropic and have constant 

ut different conductivities whose values are listed in Table 2 to- 

ether with other simulation parameters. The insulated boundary 

ondition h = 0 for t ∈ (0 , t end ] is imposed at the boundary, and 

he initial condition u 0 = 0 
◦C is enforced in the whole domain. The 

imulation time is t end = 30 s. 

The insulated boundary condition generates a homogeneous 

emperature field at the macroscale. We can therefore safely use 

 single square bilinear quadrilateral element with edge length 

f 0.1m as the macroscale mesh ( Fig. 3 c). At each integration point

f the macroscale element, we take one unit cell as the corre- 

ponding RVE. For the single-scale simulation we employ a single 

nit cell due to the expected homogeneity of the solution fields. 

rom the single-scale simulation, the intrinsic average of the tem- 

eratures of the β and σ phases over the unit cell are defined as u β
nd u σ, according to Eq. (2) , and serve as references for the two 

acroscale solutions U β and U σ, respectively. Moreover, the aver- 
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Fig. 3. An insulated two-phase slab (a) with width 1m and height 0.5m. The slab consists of a regular arrangement of unit cells (140 × 70); each unit cell (b) with edge 

length l β = 1 /140 m consists of two phases ( β and σ). The diameter of the inclusion ( σ phase) is d = 0 .65 l β . The initial temperature is 0 ◦C everywhere and heat is generated 

in the σ phase; all the parameters are listed in Table 2 . Panel (c) shows the computational mesh for the FE 2 method: a square bilinear quadrilateral element is used for the 

macroscale mesh and 2436 linear triangular elements for the RVE mesh. The single-scale discretization of a unit cell in panel (d) is the same as that of the RVE. 

Fig. 4. Comparison between the FE 2 simulation results and the results of the single-scale simulations. (a) Temperature increases with time due to the heat generation in 

the inclusion. The macroscale temperatures U β and U σ are obtained from the two-equation model with the FE 2 framework, while U is from the one-equation model. The 

average temperatures u β and u σ are intrinsic averages over the β and σ phases of the unit cell, respectively, and u refers to the average over the whole unit cell as defined 

in Eq. (55) . (b) Volumetric interfacial heat transfer Q β normalized by the given volume-averaged heat source R σ ( Table 2 ). 
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ge temperature u of the whole unit cell, defined as 

 = ϵβu β + ϵσu σ, (55) 

s compared to the solution of the one-equation model in Eq. (35) , 

hich is independently obtained from the FE 2 method and not cal- 

ulated as the weighted average of U β and U σ by Eq. (39) . 

The FE 2 simulation results are compared with results from the 

ingle-scale simulation in Fig. 4 . The macroscale temperature fields 

 β and U σ, defined in Eqs. (7) and (14) , agree with the aver-

ge temperatures u β and u σ predicted by the single-scale simula- 

ion ( Fig. 4 a), respectively. The macroscale temperature U obtained 

ith the one-equation model agrees with the average tempera- 

ure u of the whole unit cell obtained with the single-scale sim- 

lation. As u is the weighted average of u β and u σ ( Eq. (55) ), it is

nferred that U matches with the weighted average of U β and U σ: 

q. (39) holds. This agreement numerically validates the relation 

etween the two models: the one-equation model is a special case 

f the two-equation model, as shown in Section 3.5 . 

Fig. 4 b shows the temporal evolution of the interfacial heat 

ransfer Q β ( Eq. (12) ) normalized by the given heat source 

 σ ( Eq. (15) ): it increases sharply in the beginning and then quickly 

tabilizes. In this example, the heat is generated in the σ phase 

nd partially flows into the β phase, increasing the temperatures of 

oth phases simultaneously. The normalized interfacial heat trans- 

er measures the fraction of the heat generation R σ that goes to 

he matrix (the β phase). In the plateau stage, the normalized heat 

ransfer converges to the volume fraction of the β phase, suggest- 

ng that the distribution of the heat generation between the two 

hases reaches an equilibrium and is determined by the volume 

raction. Again, the agreement between the FE 2 simulation results 

nd results of the single-scale simulation validates the computa- 

ional framework for the two-equation model. 

Actually, the temperature difference between the two phases, as 

hown above, is also of interest to Ramos et al. [31] and shown in

ig. 12 of their paper. However, since they used the one-equation 
9 
odel, the temperature difference at the macroscale was not pre- 

ented; instead, they reported the temperatures of a “hot” point in 

he σ phase and a “cold” point in the β phase of an RVE. 

The temperature profile in an RVE ( Fig. 5 a) by our FE 2 simula-

ion also resembles the temperature profile in the unit cell ( Fig. 5 b)

btained with the single-scale simulation. The temperature varia- 

ion in each phase can be reproduced in our two-equation model 

hanks to the transfer of the two macroscale temperatures to the 

icroscale RVE ( Eq. (26) ) and the microscale boundary conditions. 

he one-equation model will however yield a uniform RVE tem- 

erature field as shown in Fig. 13a of Ramos et al. [31] unless 

he microscale transient effect is taken into account (Fig. 13b of 

amos et al. [31] ). 

.1.2. Nonlinear heat conduction 

This example considers the same two-phase medium as in 

ig. 3 a and b but with different boundary conditions in order 

o allow for heat conduction at the macroscale, as shown in 

ig. 6 a. Neumann boundary conditions are enforced at the hori- 

ontal edges, while Dirichlet boundary conditions are imposed at 
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Fig. 6. (a) The same two-phase slab as in Fig. 3 , but with different boundary conditions. In this case the slab is insulated at the upper and lower edges and constant 

temperatures are applied at the left- and right-hand edges. The initial temperature is 0 ◦C everywhere. (b) For the FE 2 simulation, the macroscale mesh consists of 40 

bilinear quadrilateral elements and the mesh is denser at the two sides; the microscale RVE mesh is the same as the RVE mesh in Fig. 3 . (c) The single-scale simulation is 

performed on a mesh consisting of a layer of 140 side-by-side unit cells, each discretized as the RVE. 

Fig. 7. Comparison between the FE 2 and single-scale simulation results. Panels (a) and (c) show the results for the linear conduction case and panels (c) and (d) for the 

nonlinear conduction case. Quantities U β and U σ refer to the macroscale solutions (FE 2 method), while u β and u σ indicate the intrinsic averages of the temperature in each 

phase (single-scale approach). 

Fig. 8. Comparison between the FE 2 and single-scale simulation results for the conduction problem characterized by a significant conductivity difference in the two phases. 

Quantities U β and U σ refer to the macroscale solutions (FE 2 method), while u β and u σ indicate the intrinsic averages of the temperature in each phase (single-scale approach). 

10 
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Table 2 

Parameters of the FE 2 multi-scale and single-scale simulations for Fig. 4 . 

quantity symbol unit phase β phase σ

Multi-scale macro volume fraction ϵ - 0.67 0.33 

volumetric heat capacity c J/ ( m 

3 K ) 3 .51 × 10 6 3 .51 × 10 6 

volume-averaged heat source a R W /m 

3 0.0 2 .99 × 10 7 

micro conductivity k W/(mK) 1.0 4 .0 × 10 2 

Single-scale volumetric heat capacity c J/ ( m 

3 K ) 3 .51 × 10 6 3 .51 × 10 6 

volumetric heat source r W /m 

3 0.0 9 .0 × 10 7 

conductivity k W/(mK) 1.0 4 .0 × 10 2 

a This quantity is calculated according to Eq. (9) or (15) . 

Table 3 

Parameters of the FE 2 multi-scale and single-scale simulations for Fig. 7 . 

quantity symbol unit phase β phase σ

multi-scale macro volume fraction ϵ - 0.67 0.33 

volumetric heat capacity c J/ ( m 

3 K ) 1 .76 × 10 7 1 .76 × 10 7 

volume-averaged heat source R W /m 

3 0.0 2 .99 × 10 7 

micro conductivity a k W/(mK) 400 + k 0 T 1 + k 1 T 

single-scale volumetric heat capacity c J/ ( m 

3 K ) 1 .76 × 10 7 1 .76 × 10 7 

volumetric heat source r W /m 

3 0.0 9 .0 × 10 7 

conductivity a k W/(mK) 400 + k 0 T 1 + k 1 T 

a Coefficients k 0 = k 1 = 0 for the linear conduction case while k 0 = 4 and k 1 = 0 .01 for the nonlinear conduction case; T is the value of temperature measured in degrees 

Celsius and ranges from 0 to 400. 
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he vertical edges: 

 | y= 0 = 0 , h | y= 0 .5 m 

= 0 and 

| x= 0 = 0 

◦C , u | x= 1 m 

= 300 

◦C for t ∈ ( 0 , t end ] , 

here t end = 288 s. The initial condition u 0 = 0 
◦ C is enforced in

he whole domain. As these boundary conditions ensure a uni- 

orm macroscale temperature field along the y direction, we only 

onsider one row of 40 bilinear quadrilateral elements for the 

acroscale mesh ( Fig. 6 b). For the RVE we use one unit cell,

he same as in Fig. 3 c. Considering the insulated top and bot- 

om boundaries, we also simulate one layer of unit cells for the 

ingle-scale simulation (i.e., 140 side-by-side unit cells as shown 

n Fig. 6 c). Each unit cell has the same mesh as the RVE. 

To have distinct temperature difference between the two 

hases, a heat source in the σ phase is also contained to maintain 

he local thermal non-equilibrium condition [3,12] . This scenario is 

nalogous to the real transport problem with reaction sources in 

he biofilm phase in chemical engineering applications [5,6] where 

 local mass non-equilibrium condition arises. As the FE 2 method 

s advantageous in addressing general constitutive relations, here 

e not only simulate the linear conduction problem with con- 

tant conductivities but also a nonlinear conduction problem with 

emperature-dependent conductivities. The corresponding parame- 

ers are listed in Table 3 . 

As shown in Fig. 7 , the FE 2 simulation results can capture 

he temperature distribution and evolution in the two phases and 

gree well with the results of the single-scale simulation for both 

he linear and nonlinear conduction cases. In Fig. 7 a and c for the

inear conduction case, the temperature of the slab continuously 

ncreases because of the heat generated in the σ phase but re- 

ains constant at the left- and right-hand boundaries as specified. 

wo typical time instants are selected to show the evolution of the 

emperature profile. At 72s, the temperature increase due to the 

eat generation is uniform in the middle (from 0.1 to 0.9m) of the 

lab; close to the two vertical edges of the slab, high temperature 

radients develop due to the boundary condition of fixed tempera- 

ures. At 144s, a temperature peak is observed near the right-hand 

ertical edge because the heat accumulated from the heat source 

annot be fluxed out timely. In the FE 2 simulation, the boundary 

onditions of fixed temperatures at the two vertical edges ( Fig. 6 a) 

re only applied to the β phase at the macroscale; for the σ phase, 
11 
he leftmost and rightmost boundaries are also insulated and its 

emperature U σ is determined by the interaction with the β phase 

s well as the internal heat generation. This setting enables the 

E 2 method to capture the phenomenon that the temperatures of 

he σ phase at the two vertical edges are higher than those of the 

phase. 

The arguments exposed above also apply to the case of nonlin- 

ar conduction as shown in Fig. 7 b and d, with minor differences. 

ccording to Table 3 , the conductivities in the nonlinear case are 

lways higher than those in the linear case, and thus the tempera- 

ure differences between the two phases are smaller and the tem- 

erature gradients near the two vertical edges are lower ( Fig. 7 a 

s b and Fig. 7 c vs d). At each time instant, the weighted averages

f U β and U σ according to Eq. (39) in the middle of the slab how-

ver remain unchanged for the linear and nonlinear cases because 

hey are determined by the heat generation and can be manually 

alculated and checked. 

It is remarked that, for nonlinear conduction problems, the 

rinciple of scale separation needs to be checked more carefully. 

ccording to Quintard et al. [46] and Hager and Whitaker [47] , 

he length scale of the variation of macroscale field variables has 

o be much larger than the characteristic length scale of the RVE 

or proper evaluation of the nonlinear constitutive relation at the 

acroscale. Similarly, Geers et al. [37] emphasized that “large spa- 

ial gradients at the macro-scale cannot be resolved” by the first- 

rder homogenization due to the restriction of the scale separation 

rinciple. 

.1.3. Significant conductivity difference 

We further consider another scenario that does not include a 

eat source but features a significant difference in the conductivity 

etween the two phases, also resulting in a temperature difference. 

he same problem setting as in Fig. 6 is used here but a different

et of parameters is taken and listed in Table 4 . This situation is 

epresentative of the heat transfer into a composite material com- 

osed of a highly conductive matrix but poorly conductive inclu- 

ions. A certain amount of time is necessary before both phases 

ttain the same temperature [15] . 

Fig. 8 shows the simulation results of the FE 2 method and the 

ingle-scale approach. The fixed temperature at the right-hand side 

s higher than the initial null temperature of the whole slab, lead- 
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Table 4 

Parameters of the FE 2 multi-scale and single-scale simulations for Fig. 8 . 

quantity symbol unit phase β phase σ

multi-scale macro volume fraction ϵ - 0.67 0.33 

volumetric heat capacity c J/ ( m 

3 K ) 1 .76 × 10 7 1 .76 × 10 7 

volume-averaged heat source R W /m 

3 0.0 0.0 

micro conductivity k W/(mK) 4 .0 × 10 3 1 .0 × 10 −1 

single-scale volumetric heat capacity c J/ ( m 

3 K ) 1 .76 × 10 7 1 .76 × 10 7 

volumetric heat source r W /m 

3 0.0 0.0 

conductivity k W/(mK) 4 .0 × 10 3 1 .0 × 10 −1 

Fig. 9. Comparison between the FE 2 method and local thermal non-equilibrium model (LTNM) at two dimensionless time instants τ . Quantities U β and U σ refer to the 

macroscale solutions (FE 2 method), while 〈 u〉 βm and 〈 u〉 σm are the intrinsic averages of the temperature of the two phases obtained from the LTNM as reported in Fig. 24 of 

Quintard and Whitaker [1] . 
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ng to heat influx at the right-hand side as time passes. Since the 

atrix ( β phase) is much more conductive than the inclusion ( σ
hase), the matrix’s temperature is always higher than the temper- 

ture of the inclusion, to the extent that an evident temperature 

ifference is observed. At two time instants, the FE 2 simulation re- 

ults agree with those by the single-scale simulation, validating the 

E 2 multi-scale framework for the two-equation model. 

All the previous comparisons are against the single-scale di- 

ect numerical simulations, and next we present the comparison 

etween the FE 2 results and the predictions by a two-phase lo- 

al thermal non-equilibrium model (LTNM). In particular, we con- 

ider the example shown in Fig. 24 of Quintard and Whitaker [1] . 

he key parameters are adapted and reported below (readers 

re referred to Table II of the reference for further details): the 

acroscale length is L = 10 m while the RVE edge length is l β =

 m ; the volume fraction of the matrix phase β is 0.62; the conduc- 

ivity ratio of the two phases is k β/k σ = 100 where k β = 1 W /( mK ).

he temperature U β is specified to be T ref at the left-hand bound- 

ry and null at the right-hand boundary. The difference from the 

TNM lies in the boundary condition for the temperature U σ at the 

eft- and right-hand boundaries: the FE 2 method does not fix U σ at 

he boundaries as the LTNM did; instead, it uses insulated bound- 

ries. This choice is consistent with the actual geometry that the 

nclusions ( σ phase) only have interfacial boundaries with the ma- 

rix ( β phase) and the temperature U σ is driven by the interaction 

ith the matrix (see Section 5.1.2 and Fig. 7 ). 

The comparison is shown in Fig. 9 at two scaled time instants. 

he results from these two approaches are quite close, except for 

he data point denoting temperature U σ at the leftmost bound- 

ry because of the different boundary settings. The agreement can 

e explained by the same heat transfer coefficient value (0.25) 

xtracted from the tangent matrices for interfacial heat trans- 

er by the FE 2 method as the one reported in Quintard and 

hitaker [1] (see Eq. (56) and the following section 5.2 for more 

iscussions). This comparison further validates the FE 2 method in 
m

12 
erms of the microscale problem simulation and calculation of the 

omogenized quantities and their tangent matrices. 

In spite of the good agreement with the LTNM, the scale differ- 

nce ( l β/ L = 0 . 1) in this example is too small to be suitable for the

E 2 method: the RVE size and the macroscale element size are al- 

ost in the same magnitude, which basically does not satisfy the 

rinciple of scale separation. The single-scale direct numerical sim- 

lation is pragmatically more appropriate in such case. The small 

cale difference (or relatively too large RVE) may also explain the 

iscrepancy between the single-scale simulation results of the σ
hase and predictions by the multi-scale approaches [1] , which is 

ot shown here as the comparison is not well justified. 

.2. Insights from microscale RVE simulations 

In the previous simulations of linear conduction problems, we 

bserve that in the tangent vector T β ( Eq. (54b) ), the third com- 

onent that shows dependence of the interfacial heat flow on U β
s always the additive inverse of the sixth component that shows 

ependence on U σ: T 
(3 ) 

β
+ T 

(6 ) 

β
= 0. This relation is also observed, 

s expected, in T σ. The other components are relatively negligible, 

mplying almost no temperature gradient dependence of the inter- 

acial heat flow. Moreover, the components of T β themselves are 

ndependent of the macroscale temperatures U β and U σ. These ob- 

ervations suggest that the volumetric interfacial heat flow Q β as 

efined in Eq. (12) linearly depends on the temperature difference 

etween the two phases according to the relationship 

 β = T h 

(
U σ −U β

)
, (56) 

here T h is usually referred to as the interfacial heat transfer co- 

fficient [1,3,4] . The linear dependence in Eq. (56) can also be de- 

uced from the results reported in Fig. 4 : the ratio between Q β and

 β −U σ yields, at each time step, the same coefficient T h values. 

lthough the linear relation (56) has been widely used in the ho- 

ogenized transport equations in the two-equation model [1,4,9] , 
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Fig. 10. Effect of unit cell size: (a) interfacial heat transfer coefficient T h decreases quadratically with the unit cell edge length l uc ; (b) increase of the interfacial heat transfer 

with time at three different unit cell sizes. The values of l β , k β , and R σ can be found in Section 5.1.1 . 
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Fig. 11. Effect of RVE size: the interfacial heat transfer coefficient T h in Eq. (56) re- 

mains constant for different RVE sizes l rve . 
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he estimation of the heat transfer coefficient value is however still 

hallenging [8] either in experimental measurements [4] or by an- 

lytical approaches [1] . Our numerical results suggest that the heat 

ransfer coefficient is indeed constant for a linear two-phase sys- 

em. The microscale RVE simulation thus numerically validates the 

idely-used linear relation and, more importantly, offers a conve- 

ient way to calculate the heat transfer coefficient. 

The relation T 
(3 ) 

β
+ T 

(6 ) 

β
= 0 observed in the linear examples how- 

ver breaks down in the nonlinear conduction case and the linear 

elation (56) does not hold. The heat transfer coefficient defined 

n the linear case actually depends on the specific conductivities 

f both phases. In nonlinear conduction problems, the temperature 

ependent conductivity naturally leads to temperature dependent 

oefficients T 
(3 ) 

β
and T 

(6 ) 

β
. Compared to the numerical approach by 

uintard and Whitaker [1] , the proposed FE 2 framework has the 

ntrinsic advantage of addressing nonlinear conduction problems 

ecause the interfacial heat transfer as well as its dependence on 

acroscale field variables are numerically calculated from the mi- 

roscale problem, avoiding the postulation of relation (56) and the 

ide range of values reported for the heat transfer coefficient [8] . 

In conventional FE 2 frameworks for the one-equation model, 

he effective conductivity of the whole RVE is generally not af- 

ected by the microscopic length scale, given that material proper- 

ies of each phase are fixed. An analogous situation arises in com- 

utational solid mechanics: the homogenized stiffness (deforma- 

ion gradient dependence of the homogenized stress) does not de- 

end on the unit cell size. This microscopic length scale indepen- 

ence is also true for the tangent matrices ( S β and S σ) characteriz-

ng the temperature gradient dependence of the homogenized flux, 

rovided that volume fraction and conductivity of each phase are 

xed. However, this conclusion does not apply to the coefficient T h 
f the interfacial heat transfer. Figure 10 a shows that the coeffi- 

ient T h depends on the edge length of the unit cell l uc that char-

cterizes the microscopic length scale. As l uc increases, the coeffi- 

ient T h decreases in a non-linear fashion which can be described 

ith good approximation by the quadratic expression 

T h l 
2 
β

k β
= 

a (
l uc /l β

)2 (57) 

etween T h and l uc . The quadratic relation was also reported in 

able 1 of Quintard and Whitaker [1] . Our simulation results can 

e fit by Eq. (57) with the same coefficient ( a = 25 .8) reported by

uintard and Whitaker [1] if the same parameters (volume fraction 

nd conductivity of each phase) are used in our simulations. These 

esults further indicate that our numerical framework can properly 

ccount for linear conduction effects in a two-phase medium. 
13 
Fig. 10 b shows the effect of the microscopic length scale on 

he evolution of the interfacial heat transfer in the example of 

ection 5.1.1 . The smaller the unit cell, the faster the interfacial 

eat transfer increases with time in the transient stage and the 

arlier it begins to level off. The microscopic length scale how- 

ver does not affect the magnitude of the normalized interfacial 

eat transfer in the plateau stage, which is determined by the vol- 

me fraction. Since a smaller unit cell corresponds to a greater 

alue of the coefficient T h ( Eq. (57) ), the temperature difference 

ill be smaller according to Eq. (56) , in view of the same interfa- 

ial heat transfer in the plateau stage. Eventually, with increasingly 

maller unit cells, the temperature difference will be as small as 

o the extent that the local equilibrium assumption holds [19] . The 

icroscale FE simulation can thus provide quantitative guidelines 

or the determination of the microscopic length scale at which the 

ne-equation model can be used with confidence (i.e., by accepting 

 controllable error) in place of the two-equation model. 

The unit cell size is not to be confused with the RVE size. The 

nit cell size characterizes the microscopic length scale and thus is 

etermined by the material, while the RVE is associated with the 

E 2 method and its size is determined so that the RVE is as large 

s to be representative but also as small as to satisfy the rule of 

cale separation. The difference between a larger unit cell and a 

arger RVE can be seen in Figs. 10 a and 11 . Unlike unit cells, larger

VEs however do not affect the results for the two-phase medium 

sed in this study: as shown in Fig. 11 , the interfacial heat transfer

oefficient T h remains unchanged with the RVE size l rve . Our nu- 

erical results also indicate that the tangent matrices S β and S σ of 

he homogenized flux (effective conductivities) do not change with 
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he RVE size. Therefore, a single unit cell can be safely used as the 

VE in our studies. 

. Conclusion 

For transient heat conduction in a two-phase medium, this 

tudy presents an FE 2 two-scale framework that can properly ad- 

ress the local thermal non-equilibrium condition thanks to the 

se of a two-equation model. The approach has been demonstrated 

n simple academic problems with the intention of showing its po- 

ential in addressing general problems. The FE 2 method does not 

xplicitly require the definition of constitutive relations or the em- 

loyment of other conditions, such as the interfacial heat trans- 

er condition (56) , at the macroscale. The microscale problem en- 

bles the use of general constitutive relations (e.g., temperature 

ependent conductivity) leading to the solution of general non- 

inear transport problems. The heat transfer coefficient, express- 

ng the macroscale temperature dependence of the interfacial heat 

ransfer in the linear case, is found to depend on the microscopic 

ength scale, which is a unique and new feature of the proposed 

E 2 method. 

The simple numerical examples are limited to two-dimensional 

rdered porous media, and three-dimensional disordered porous 

icrostructures need to be considered for further validation of the 

E 2 approach. A two-dimensional setting does not allow both the 

atrix and inclusion domains to be path-connected in both the 

and y directions; with path-connected matrix, the inclusions are 

ften “isolated” from each other. This restriction leads to null effec- 

ive transport properties of the inclusion phase at the macroscale. 

 three-dimensional geometry can avoid this constraint and thus 

s highly anticipated. The present model derivation and finite ele- 

ent procedures are actually general regardless of the problem di- 

ension and RVE geometrical morphology; they are, in principle, 

eadily to be applied to three-dimensional porous microstructures 

ith some modifications of numerical implementation of the peri- 

dic boundary conditions in a three-dimensional setting. 

This study is also restricted to simple interfacial conditions 

temperature and flux continuities), and more general interfacial 

onstraints (e.g., Butler-Volmer relation) between the two phases 

n terms of field variables and fluxes should be further explored so 

hat the FE 2 approach can be applied to real-life problems such as 

he species transport in battery electrodes. 
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ppendix A. Microscale problem boundary conditions 

1. Periodic boundary conditions As shown in Fig. 1 b, we group 

the external boundaries into the master boundary Γlb = Γl ∪ Γb 

and slave boundary Γrt = Γr ∪ Γt . The enforcement of the pe- 

riodic boundary conditions requires a one-to-one correspon- 

dence between the master and slave boundaries ( Γl ↔ Γr ; Γb 

↔ Γt ) for each phase in terms of mesh nodes. The constraint 

in Eq. (24) is then applied to each pair of nodes, one node 
14 
on the master boundary and the other on the slave bound- 

ary, excluding the four corner nodes. The total number of node 

pairs is denoted by N pb . For each pair of nodes, we assign a La-

grange multiplier λl to the constraint between them, with the 

Lagrange constraint equation expressed as 

u 

l 
α
���Γlb 
− u 

l 
α
���Γrt 
− ∇ U α ·

(
x 

l 
Γlb 
− x 

l 
Γrt 

)
= 0 , (A.1) 

where l ranges from 1 to N pb , and α refers to either β or σ
depending on the phase to which the node pair l belongs. 

For the four corner nodes, the three Lagrange constraint equa- 

tions are 

u 

( 2 ) 
α − u 

( 1 ) 
α − ∇ U α ·

(
x 

( 2 ) − x 

( 1 ) 
)
= 0 , 

u 

( 3 ) 
α − u 

( 1 ) 
α − ∇ U α ·

(
x 

( 3 ) − x 

( 1 ) 
)
= 0 , 

u 

( 4 ) 
α − u 

( 1 ) 
α − ∇ U α ·

(
x 

( 4 ) − x 

( 1 ) 
)
= 0 , 

(A.2) 

where α takes the phase (either β or σ) containing the corner 

nodes. 

2. Interfacial boundary conditions 

If there are N if pairs of interface nodes, there exist N if Lagrange 

constraint equations 

u 

l 
β
− u 

l 
σ = 0 , (A.3) 

where l ranges from 1 to N if , u 

l 
β

denotes the nodal tempera- 

ture at the interface Γβσ, and u 

l 
σ is the temperature of the cor- 

responding node on Γσβ. 

3. Conservation of the stored heat between the macro- and micro- 

scales 

This condition is expressed by means of two Lagrange con- 

straint equations from Eq. (26) : ∫ 
V β

N d V u β −V β U β = 0 , 
∫ 

V σ
N d V u σ −V σ U σ = 0 . (A.4) 

n total, the number of Lagrange multipliers is 

 λ = N pb + N if + 5 , (A.5) 

.e., the sum of Lagrange multipliers from Eqs. (A.1) to (A.4) . 

ppendix B. Calculation of tangent matrices 

The tangent matrices of the macroscale fluxes and heat sources 

ith respect to the downscaled macroscale quantities ( Section 4.3 ) 

re derived as follows. At a converged state, the increment Δw in 

q. (51) is zero, and hence the residual vector 

 

 = 

[ 
f + A 

T λ
Au + CX 

] 
= 0 . (B.1) 

e then apply a small variation δ X to the macroscale quantities X 

nd compute the corresponding change in the microscale solution. 

ote that Eq. (B.1) should always hold to get the converged mi- 

roscale solution. Therefore, we have 

ˆ f = 0 = 

[ 
K A 

T 

A 0 

] [ 
δ u 

δ λ

] 
+

[ 
0 

C 

] 
δ X . (B.2) 

earranging Eq. (B.2) , we obtain [ 
K A 

T 

A 0 

] [ 
δ u 

δ λ

] 
= −

[ 
0 

C 

] 
δ X . (B.3) 

To solve Eq. (B.3) , we rewrite it as 

ˆ 
 δ w = ˆ C δ X (B.4) 

nd thus the variation δ w is expressed as 

w = ˆ K 

−1 ˆ C δ X , (B.5) 

here ˆ K 

−1 must be evaluated at the converged state of the mi- 

roscale iteration. The solution δ λ is extracted from δ w by means 

f the gather matrix δ : 

λ = δδ w . (B.6) 
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[

 

[

[

[

[

According to Eqs. (B.5) and (B.6) , the variations of the homoge- 

ized fluxes (52) can be formulated as 

H β = 
1 

V 

x m 

A 

T δ λβ, p = 
1 

V 

x m 

A 

T δβ, p 
ˆ K 

−1 ˆ C δ X , (B.7a) 

H σ = 
1 

V 

x m 

A 

T δ λσ, p = 
1 

V 

x m 

A 

T δσ, p ˆ K 

−1 ˆ C δ X , (B.7b) 

here δβ, p and δσ, p are the gather matrices used to retrieve λβ, p 
nd λσ, p , respectively, from λ. The variations of the macroscale 

eat sources (53) due to interfacial heat transfer are calculated as 

Q β = −
1 

V 

Γβσ∑ 

A 

T δ λβσ = −
1 

V 

Γβσ∑ 

A 

T δβσ
ˆ K 

−1 ˆ C δ X , (B.8a) 

Q σ = −
1 

V 

Γσβ∑ 

A 

T δ λβσ = −
1 

V 

Γσβ∑ 

A 

T δβσ
ˆ K 

−1 ˆ C δ X , (B.8b) 

here δβσ is the gather matrix used to retrieve λβσ from λ. The 

angent matrices for the macroscale heat fluxes are calculated as 

 β = 
δ H β

δ X 

= 
1 

V 

x m 

A 

T δβ, p 
ˆ K 

−1 ˆ C , (B.9a) 

 σ = 
δ H σ

δ X 

= 
1 

V 

x m 

A 

T δσ, p ˆ K 

−1 ˆ C , (B.9b) 

nd the tangent matrices for the macroscale heat sources due to 

nterfacial heat transfer are expressed as 

 β = 
δQ β

δ X 

= − 1 

V 

Γβσ∑ 

A 

T δβσ
ˆ K 

−1 ˆ C , (B.10a) 

 σ = 
δQ σ

δ X 

= − 1 

V 

Γσβ∑ 

A 

T δβσ
ˆ K 

−1 ˆ C . (B.10b) 

The above-derived tangent matrices are formulated with re- 

pect to the downscaled macroscale quantities X ( Eq. (17) ) as an 

nsemble of the macroscale nodal solutions. While in Eq. (45) the 

angent matrices with respect to U β and U σ are needed. To this 

nd, we express X in the matrix form as 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 
BU β

NU β

BU σ

NU σ

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(B.11) 

nd thus define 

β = 
∂X 
∂U β
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 
B 

N 

0 

0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
and Φσ = 

∂X 
∂U σ
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 
0 

0 

B 

N 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (B.12) 

he tangent matrices for macroscale fluxes and macroscale sources 

n Eq. (45) can therefore be computed as 

∂H β

∂U β
= S βΦβ, 

∂H β

∂U σ
= S βΦσ, 

∂H σ

∂U β
= S σΦβ, 

∂H σ

∂U σ
= S σΦσ, (B.13) 

nd 

∂Q β

∂U β
= T βΦβ, 

∂Q β

∂U σ
= T βΦσ, 

∂Q σ

∂U β
= T σΦβ, 

∂Q σ

∂U σ
= T σΦσ, (B.14) 

espectively. 
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