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A B S T R A C T

Spatial data acquisition and processing is rapidly developing, making point clouds
available and easily accessible for many applications and to many end-users. Nowa-
days, point clouds are the main surveying product and have more added value than
the derived products, as they keep details and they are not interpolated. Raw point
clouds do not contain information that relates the points to the semantic meaning
of the real word objects that are represented. Moreover, through different proce-
dures (classification and segmentation techniques) important semantic information
could be derived, creating an intelligent environment and structure, a Smart Point
Cloud (SPC).
In this research, a SPC framework will be created combining different techniques
and methods in order to detect the pipes in an industrial environment. Close-range
photogrammetry will be used to generate a point cloud, for which panoramic im-
ages are the main source data. The features and the attributes from both data
(panoramic images and point cloud) will be combined to obtain characteristics in
order to select, analyze and identify the pipes, as one object. The characteristics of
Three Dimensional (3D) point clouds and Two Dimensional (2D) digital panoramic
images are thought to be complementary, so the interpretation of the world objects
combined with point clouds and images seems a promising approach. However,
the most challenging part is to relate the geometric features between the 3D point
cloud and 2D image data, while a precondition for this lies in the extraction of the
corresponding features.
Our approach aims to make use of the advantages from the analysis of point clouds
and image processing to represent the characteristics in 3D with increased accuracy.
For the image processing part, 2D image boundaries extraction is applied by using
boundary detection algorithm. Then, a methodology is proposed for corresponding
2D image pixels with the 3D point cloud. Getting the boundaries in 3D, is estimated,
if close to them a cylinder could fit by testing first, the accuracy of a circle-fit. By
using the parameters of the best fit circle, the cylinder could be reconstructed. The
points that are part of a cylinder are stored in database as one pipe with parame-
ters: the center of the cylinder, the radius, the direction and the length. Some spatial
criteria are tested to combine the segments that are part of the same pipe. The fi-
nal product is to detect the pipes, as one object that will be stored and visualized
from points. Our thesis work has a global vision, through point cloud processing
(segmentation, structuration, registration) to attach knowledge onto points.
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1 I N T R O D U C T I O N

The extremely and rapid way that technology is developing these days, introduced
a growing number of capturing devices for creating point clouds. Light Detection
And Ranging (LiDAR), Terrestrial Laser Scanner (TLS) are some of these and also,
passive sensors such as thermal, RGB cameras are used for point cloud generation
making it a popular method for gaining spatial data. There are different systems
like LiDAR and Photogrammetric systems that create point clouds, the mechanisms
and software that are used, are not comparable. On the one hand, the LiDAR sys-
tems measure ranges or distances from the object while the accuracy depends on
the item and the distance from the target point [Carter et al., 2012]. On the other
hand, the Photogrammetric systems that are based on Structure From Motion SFM

Photogrammetry, provide an automatic process to find and match a limited num-
ber of common features between images. Then, these common features are used
to establish both interior and exterior orientation parameters. After this iterative
procedure, a dense coloured point cloud is extracted to represent the object. For
this reason, the acquisition of imagery with the right characteristics is critical, while
the accuracy is dependent on the size of overlapping areas of the photos and the
resolution of the images [Schenk, 2005].
In this research, the main application is about detecting the pipelines, as an object
from the point cloud in an industrial environment. The initial step, in order to
reach the objective of this research, is to acquire the point cloud from image based
technique. In this case panoramic images. Then, this point cloud will be used as an
authentic source, following a smart point cloud framework for pipelines detection,
in an industrial environment. The advantage of using panoramic images, instead of
the classical photogrammetric images, is that it consists of greater and a more com-
plete information of the environment due to 360

◦field of view, computing a general
representation of the whole environment [Peleg et al., 2001]. A single panoramic
image will never be enough. You want to replace a large number of separate images
by fewer panoramic images. As a result, a couple of panoramas can substitute many
photogrammetric models. In addition, cameras are simple, fast and easy to acquire
photos, making them a very useful and powerful tool for documentation and sur-
vey [Fangi, 2007]. However, the depth of the points cannot be acquired from one
Panoramic image. Multiple overlapping panoramas must be acquired in order to
construct the 3D point cloud. In this research, a potential way will be demonstrated
for creating the 3D point cloud by panoramic images [Lee and Tsai, 2015].

The acquisition of the data is increasing while the sensor technology is develop-
ing so fast, creates an urgent need for decision making in real time systems. The
point cloud is the intermediate step for the final derivatives like mapping and 3D

modeling. It becomes an obstacle in structure limitations (e.g. mesh creation) [Poux
et al., 2016]. The modeling step is a semi-automatic and time-consuming procedure
that creates structural problems which many times lead to the loss of important
information. In this research, point clouds will be the authentic source of data.
The original point cloud itself does not contain any grouping, decomposition or
any other information that relates the points to the semantic meanings of the real
world object that is represented. Moreover, through different procedures, like clas-
sification and segmentation techniques, important semantic information could be
derived, creating an intelligent environment and structure: a SPC [Poux et al., 2016].
The direct use of the point cloud allows for easier and more complete information

1
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extraction. However, the fact that point cloud can derive from different sources and
that they do not contain semantics lead us to follow the SPC framework, [Poux et al.,
2016].

3D points of a given point clouds contain geometric and appearance information.
The need for the standardization of the real world by creating a semantically rich
storage model, lead to the need of creating an automatic procedure for object recog-
nition and building schema models. This schema could semantically represent the
elements by detailed geometrical point cloud data [Krijnen and Beetz, 2017]. Ac-
cording to the figure 1.1, a global approach with a combination of different sources
of knowledge is possible in order to structure this model schema. The combination
of these three aspects: the domain, the geometric and the device expertise is the
main objective for a SPC framework. The device’s expertise depends on the sensor
which is used for the data acquisition or the combination of sensors that may be
used for the application. From this information, important point attributes are de-
rived like the position, the density, the color, the intersection and the accuracy of the
point. At this stage, after the point cloud acquisition, a filtering procedure should
be followed for noise reduction and minimizing the outliers [Poux et al., 2016]. Con-
cerning the geometric expertise, it refers to the geometric characteristics of a group
of points. There are several tasks that are common at this point cloud procedure
(segmentation, classification, feature detection). Through these common techniques,
essential knowledge could be attached to the current points. The method that will
be followed depends on the type of the application and the output product. The
combination of spatial and semantic knowledge into a schema for object recognition
is the meaning of the domain knowledge and demands a specific schema related to
the real world. Thus, the structure of the domain expertise is represented in schema
of database which stores the point attributes and the segmented features in order
to combine them through queries [van Oosterom et al., 2015]. The structure and the
organization of the data will help to inject semantics into the data, which will be
stored in the DataBase Management System (DBMS), retaining the attributes from
the other procedures, as it is shown in Figure 1.2 [Poux et al., 2016].

Figure 1.1: SPC-Constitution [Poux et al., 2016].

While the SPC approach can be extended to all types of point cloud, it is illustrated
on a colored point cloud, generated from imaged based photogrammetric technique.
Color is an attribute which is mostly related with the image based techniques. The
color is attached to points and it has essential value that definitely contributes in
the processing for better results. Color segmentation and classification are methods
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that take into account the color and could provide semantic characteristics to our
point cloud. While feature detection and segmentation that focus on techniques
both from a geometrical and algorithmic point of view will increase automation,
performance and completeness of our methods regarding the context and domain
adaptation (transferring knowledge from the source to target) [Poux et al., 2016].
Pipes are a common type of object in industrial environments. It is hard to auto-
matically match pipes’ features across multiple views because they often have very
homogeneous surfaces. The geometry of the pipelines should be kept as simple as
possible (cylinders).
Initially, the colored point cloud that is created from the panoramic images is used
as input data. It is essential to combine the point cloud with raster and vector data
and every 3D point should be connected through a pixel with the source image. The
features and the attributes from both data (panoramic images and point cloud) will
be combined to get characteristics from both sources in order to select, analyze, ma-
nipulate and identify the pipes. First, the edge detection on the panoramic images
will be done to identify the boundaries of the pipes. Then, a connection between the
points with the pixels of the images is computed. By having this knowledge, a seg-
mentation procedure to identify the pipelines from the point cloud will be easier to
apply. The main objective of this research is to combine these two methods and cre-
ate a smart framework that has a general and standard use through specific schema,
in order to apply semantics and store data for visualization and identify pipes, as
one real world object. As a final product, the user could define the start and the
end of the pipe, and also, some useful geometrical characteristics of the pipelines,
like the center, the direction, the radius and the length, that will be helpful for the
recognition of each specific pipe.

1.1 objectives and research questions

The goal of this thesis is the direct use of the point cloud following the Smart Point
Cloud framework for the detection of pipelines in an industrial environment. The
point cloud that will be generated from panoramic images, is used as input data.
The main research question that this thesis is focused on:

What is the Smart Point Cloud way to provide a framework for object detection (pipelines),
using panoramic images to create enriched point cloud?

To achieve the main question, some sub-questions are also relevant:

1. What are the differences between point clouds that are created using terrestrial
(close range) photogrammetry and laser scanners?

2. To what extent do the number of panoramic images affect the generated point
cloud in terms of density and accuracy?

3. What is the optimal way for object detection, using feature detection and seg-
mentation techniques on images, as applicable to point clouds?

4. What is the best way to combine domain-geometric-device knowledge for
pipelines detection?

5. Which are the possibilities of representing the point cloud in Virtual Reality
(VR)/ Augmented Reality (AR)?
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1.2 research scope
• There are several software products for generating point cloud through im-

ages. Some of these software will be tested using panoramic images and the
result will be evaluated. Moreover, a further analysis will be followed com-
paring, if the number of the images and in what extend affects the final point
cloud density.

• Two methods will be combined for object detection. The one is based on 2D

image detection techniques and the other one on point cloud segmentation
and shape detection. Both techniques will be combined and tested, providing
an efficient environment for point cloud interaction.

• A general framework for smart data structure will be addressed combining
domain, geometric and device expertise in an efficient DBMS structure.

• The reconstruction of the object after the detection to eliminate the modelling
step is out of the scope of this research. This way, the time processing and the
difficulties that derive from the modelling could be avoided. The main idea is
to group the points that are part of the object and to store them as one object.

Figure 1.2: Workflow for smart point cloud structure, [Poux et al., 2016].

1.3 scientific relevance
It is of high importance to understand the huge speed of data acquisition and the
necessity of making decisions in real time while considering different and difficult
situations society tackles every day. It is in real high demand to create applications
that will solve global problems providing a general framework making it applica-
ble to a wide field. It is also important also to mention the use of the point cloud
as an authentic source and not as an intermediate step. It is proposed to combine
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point cloud properties with human knowledge to extract information providing
user-centered data. This research is lying on a framework that will provide an
object recognition combining different 2D and 3D methods. A lot of research has
already been done directly using the point cloud for segmentation and object detec-
tion.
Our aspiration is to provide a smart framework that could combine all the initial
data and the advantages for quick and better results. Panoramas have the advan-
tage, due to 360

◦field of view, of a complete boundary object detection that would
be useful for the pipe detection. Eventually, this knowledge directly attached to
the 3D points, makes the whole procedure easier. Hence, a general framework is
proposed at Figure 1.2 for a smart point cloud creation. Another key challenge is
the data structure, in which a specific DBMS is created that will contain device, geo-
metric and domain expertise in a way that semantic queries are implemented [Poux
et al., 2016]. In addition, one of the goals of this research is to provide a low cost
image based technique for point cloud creation, which will be quick and accurate.

1.4 thesis outline
The thesis document is organized as followed:

• Chapter 2 provides the theory and the fundamental ideas in order to introduce
the relevant topics of the proposed methodology that this research is based on.

• In Chapter 3, several approaches are mentioned, describing all the research
that has been done related to the topic of the thesis.

• Chapter 4 describes the prototype system design that is proposed including
all the steps that are implemented in order to get the final result.

• Then, Chapter 5 continues with the implementation and experiments. This
Chapter describes the different approaches that are tested following with their
results in detail. Finally, for the validation of our method, the results are
compared with a general object detection method that is applied directly to
the point cloud.

• Chapter 6 gives a summary of the most significant conclusions and future
work. The problems and the answers to the research question and subques-
tions are explained in detail.

In addition to the previously described chapters, this thesis document includes
the following Appendices:

• A gives an overview of the tables and the relation with the UML shcema that
the prototype is implemented and stored. The SQL code that is generated from
the implemented Python scripts is displayed for the creation and the storage
of the data.

• B provides the panoramas after the Hough line transform detection in a bigger
size for better visualization.

Figure 1.3 illustrates the chapters and their roles to the overall research approach.
It is a clear overview of how the whole thesis is structured, giving the hierarchical
steps that were followed in each chapter and their relation with the subquestions.
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Figure 1.3: Illustration of the chapters and their roles to the overall research approach.



2 T H E O R E T I C A L B A C KG R O U N D

The theoretical background chapter aims to provide the relevant theoretical knowl-
edge to the reader, in order to follow the rest of the subjects that will be described in
the thesis document. More specifically, Section 2.1, is all about point clouds, intro-
duces the need of interpreting the real world, definitions and the concept of the SPC

framework. In Section 2.2, the concepts that are used for 2D and 3D feature detec-
tion are theoretically explained. Section 2.3 introduces the theory of the close-range
photogrammetry and how the 3D information could be extracted from 2D images.
Finally, Section 2.4 is about the panoramas and their importance in general use.

2.1 point cloud & smart point cloud definition
Our main goal is to represent the real world in a scene. However, compared to
human vision and due to the limited field of view, it is impossible to describe
the real world in one scene. For different types of sensors (digital cameras, laser
scanners) the data results are usually in form of 2D imagery and 3D point cloud
data [Weinmann, 2016].

Figure 2.1: Relation between data scene, data representation and data application, in an ex-
ample using a tree, Weinmann [2016] .

In Figure 2.1, the example shows the relationship between the data source and
the final product. But first, the definition of the point and point cloud should be
clear for the reader at this section, in order to understand and follow the rest of the
methodology. The term point is used to specify a unique location in space. The
space could be in 2D, from images or in 3D, from scanned points or reconstructed
points. A point in general has no dimensions (length, area or volume) [Weinmann,
2016]. The term point cloud is used to describe a set of data points in a given space.
A point cloud, as a data structure, represents a collection of 3D points [Weinmann,
2016]. Our research is mainly based on 3D points that are acquired from 2D images,
representing the generated part of surfaces in a scene. This project concentrates on
3D point clouds, as a collection of 3D points which are characterized by spatial X,Y,Z
coordinates. Additional attributes are assigned, as it is depicted in Figure 2.2.

A new data structure, SPC structure, is followed by a new concept that combines
the attributes of the points with human knowledge. The main idea is to interact
with the raw data in a smart way, in order to extract the information that is re-
quired based on the user’s needs, into an intelligent environment. The challenges
which are addressed relating to this idea are many and mainly concern the three
fields that are analyzed, data acquisition, object detection and assign semantics. The

7
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user-center structure combines different approaches (device, geometric, domain) in
a more powerful and robust workflow, Figure 1.1. The device expertise includes the
data acquisition and data fusion process. The combination of the different sensors
could provide relevant information and a more complimentary scene of interest. At
this stage, some specific attributes are attached to points depending on the data
acquisition method. Techniques like filtering and noise reduction, could improve
the quality, in order to continue with feature extraction. The geometric expertise
has to do with the object detection and shape recognition when points have similar-
ities. This stage includes all the techniques that are based on automatic detection,
like segmentation and classification. The result is that the points are grouped and
could be analyzed easier compared to the unstructured data. The domain expertise
is basically the idea going from the feature to the labelled data. This introduces
the concept of data association for data mining. A database system is a common
and useful way to record the data and ontologies for further analysis. The point
cloud needs to be structured retaining spatial and relation information deducted
from the previous procedures. For the visualization part, it is vital to work with
a well organized structure (spatial clustering/ indexing), to be able to handle the
massive data and make queries for validation. This whole workflow describes an
intelligent environment creation, where the end-user will directly have access to
relevant information based on the proposed methodology process.

Figure 2.2: Nucleus of point cloud.

Our proposed methodology first, focuses on data acquisition methods which ac-
cording to our framework, is an important part to attach the needed attributes to the
points. Figure 2.2 For Point cloud acquisition, there are two methods that are gener-
ally used and they are categorized between active and passive techniques. Passive
techniques, for point cloud generation rely on radiometric information represented
in the form of 2D images and the accuracy depends on the resolution and quality
of the image. This technique is based on information arising from simple intensity
measurements per pixel. In contrast to the passive techniques, active techniques use
a scanning device, which emits a signal and records the respective angle between
the scanner and the object. This thesis project will use the passive techniques in
order to generate the 3D point cloud [Weinmann, 2016]. Photogrammetry, as a pas-
sive technique, characterized by massive manual data processing, necessary high
technical skills and long processing time. Over the past 10 years, improvements in
hardware and software have bettered image-based tools and algorithms to the point.
Nowadays, image-based techniques and laser scanners can deliver comparable ge-
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ometrical 3D results. Figure 2.3 depicts the fast improvement of passive techniques,
which seem promising for the future.

Figure 2.3: How the improvements depict in popularity and final result in 3D reconstruction
[Remondino, 2018].

2.2 feature detection
In this Section, the primitive detection methods are mentioned. These are usually
used as components for feature extraction in 2D and 3D space. These concepts pro-
vide knowledge from the 2D data to 3D points. After these procedures points do not
only have (x,y,z) value, but a meaning in 3D environment as well. The main feature
detection techniques that are part of our methodology, are explained in this Section.
These techniques are associated with the geometric expertise which is mentioned in
Section 2.1.

2.2.1 Edge detection on images

There are different filters that are applied to 2D images for detecting edges. Edges
are the differences and the changes between the pixels’ intensities which are the
boundaries of the objects. The purpose of edge detection in general is to signif-
icantly reduce the amount of data in an image, while preserving the structural
properties to be used for further image processing. The edge detection is the first
step for identifying an object on an image. There are three main operators in image
processing, the Gradient (Robert, Sobel, Prewitt), Laplacian and Canny operator
[Shrivakshan, 2012].
The Canny edge detection algorithm has better performance compared to the other
filters with regards to the following criteria:

1. Detection: The probability of detecting real edge points should be maximized
while the probability of detecting non-edge points should be minimized.

2. Localization: The detected edges should be as close as possible to the real
edges.

3. Number of responses: One real edge should not result in more than one de-
tected edge.

The algorithm is implemented in the following steps:

1. Smoothing: Blurring of the image to remove noise.

2. Finding gradients: The edges are marked where the gradients of the image
has large magnitudes.

3. Non-maximum suppression: Only local maxima should be marked as edges.

4. Setting thresholds: Potential edges are determined by thresholding.
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5. Hysteresis: Final edges are determined by suppressing all edges that are not
connected to a strong edge.

Each step is described with formulas, in Section 4.2.4. The performance relies on
the changing parameters which are the smoothing Gaussian filter and the threshold
values. The user can change these parameters making this algorithm applicable to
different environments. The main advantage is that it performs well, even when
the images are noisy. Nevertherless, the calculation of the gradient can cause angle
suppression and the whole procedure is time consuming, making people avoid it
[Shrivakshan, 2012]. The implementation of this method is briefly explained in
Chapter 4, Section 4.2.4 and the results are analyzed in Chapter 5.

2.2.2 Hough Line Transform 2D & 3D

The Hough transform is a technique for feature extraction used in image process-
ing. This technique collects imperfect instances of objects within a certain class of
shapes by a voting procedure in cells. This voting scheme is carried out in a pa-
rameter space, where the candidate objects are obtained as local maximas in the
accumulator space. The Hough transform was developed for the identification of
lines in the image, but later works extended the Hough transform to identify posi-
tions of different shapes, for example circles. In this thesis, Hough transform is used
to detect lines in 2D images and lines in 3D cloud points, obtained by image-based
technique using panoramic images. The Hough line transform is a technique that
is used in our methodology on 2D panoramic images and directly to 3D points. The
concept of this technique is explained here, as this method is used in our framework
for feature line extraction, explained in Chapter 4, prototype design.
The Hough Line Transform is a voting technique in parameter space. The main idea
is to record all possible lines where each edge point lies and to search for lines that
get many votes. At the beginning, the hough space bins are initialized to zero. Then,
for each pixel (p) find all the Hough space bins that represent primitives containing
p. In the end, find all the bins with the most support. Connection between image
(x,y) or space (x,y,z) and Hough (m,b) spaces means that a line corresponds to a
point in Hough space, Figure 2.4. For example, to go from image space to Hough
space for a given set of points (x,y) it should find all (m,b) that y=mx+b. It was later
extended to also work on 3D point clouds. The idea of the Hough Transform in 3D is
to discretize the space, giving all the possible direction of lines and to let each point
determine to which line it belongs. The direction of the line with the most points
means that a line could fit. The theory is the same as it is a voting method but when
a third dimension is added the algorithm becomes more complicated because the
model parameters that are required are more. Anything that can be parameterized
(in a small number of dimensions) could be detected using Hough Transform. The
implementation of this technique is presented in Chapter 4, Section 4.2.4.

Figure 2.4: Connection between image(x,y) and Hough(m,b) space.
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2.2.3 Random Sample Consensus

RANSAC method is another broad technique for feature extraction in 2D and 3D envi-
ronment. In this thesis, RANSAC technique is applied directly to 3D point cloud for
cylinder extraction to compare its performance with the results from our method.
RANSAC technique provides solutions by randomly using the minimum number of
points that are required to estimate a specific model. As pointed out by Fischler
and Bolles [1981], unlike conventional sampling techniques that use as much data
as possible to obtain an initial solution, RANSAC uses the smallest subset from the
data that is sufficient to estimate the model’s parameters. The input data must not
contain outliers and all the data that are part of the solution must agree with the
model. The RANSAC algorithm is sufficiently large to estimate the model param-
eters and which contains no outliers. Then, all inliers will agree with this model.
This is done by randomly drawing data subsets, estimating corresponding models
and assessing how many data elements agree with each model. The maximal set
that is obtained is used as input for a least squares model estimate. Optionally, a
minimal threshold on the size of the largest consensus set can be used to decrease
the probability of accepting an erroneous model. Thus, to use the RANSAC algorithm
requires:

1. A parametric model given the minimal number of data.

2. A method for least squares parameter estimation.

3. A threshold that checks if a given data element agrees with the model.

This technique is technically explained in Chapter 4, Subsection 4.2.9. Its results
and the comparison with our results are provided in Chapter 5, Subsection 5.4.6.

2.3 close-range photogrammetry & structure from
motion technique

Photogrammetry is the science of using 2D images to generate accurate measure-
ments in 3D. To do that, the 3D information that is missing when the image is
captured needs to be recovered [Schenk, 2005].
In our project, close-range photogrammetry is used. The type of the method that
is used depends on the application and the accuracy that is required for the final
product. Figure 2.5 shows the relationship between the accuracy and the result of
the product for different methods.

By definition, Close-range Photogrammetry (CRP) is simply photogrammetric
data collection and processing where the subject is less than 300 meters away. Sev-
eral factors have made this a powerful tool suitable for many applications. The
strongest of these is the recent advent of 3D photogrammetry, often referred to as
“multi-ray photogrammetry”: a technique that takes overlapping, stereo-paired pho-
tographs and turns them into 3D point clouds [Schenk, 2005].
Photogrammetry is a 3D measurement technique which uses central projection imag-
ing as its fundamental mathematical model. The shape and position of an object
are determined by reconstructing bundles of rays in which, for each camera, each
image point P’, together with the corresponding perspective centre O’, defines the
spatial direction of the ray to the corresponding object point P, Figure 2.6. Provid-
ing the image geometry within the camera and the location of the image system
in object space are known then, every image ray can be defined in 3D object space.
This is called internal orientation which defines the relative position of the images.

From the intersection of at least two corresponding, named homologous, in sepa-
rated image rays, an object point can be located in three dimensions. In stereopho-
togrammetry two images are used to achieve this but in multi-image photogramme-
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Figure 2.5: Relationship between object size and accuracy for different measurement meth-
ods [Remondino, 2018].

Figure 2.6: Principles of photogrammetry.

try, the number of images that you can use is unlimited. The more images the better
and more accurate the result. There are four main operations in photogrammetry:

• Internal orientation (camera calibration)

• Relative orientation

• External orientation

• Absolute orientation

The operations of internal orientation and relative orientation can be done in a fully
automatic way (eg. SFM). Internal orientation is the process by which, a three di-
mensional coordinate system is associated to an image. It implies the estimation
of the distortion parameters. For the internal orientation, the camera parameters
are needed. This involves the calibration parameters which are: the focal length,
the coordinates of the principal point, the coordinates of the judicial marks and the
radial distortion.
To continue with the relative orientation, a successful interior orientation is first
required. Relative orientation is the determination of the relative position and ori-
entation between cameras.
The absolute orientation requires a successful interior and relative orientation. Ex-
ternal orientation corresponds to the correct position and orientation of a camera
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with respect to a ’world’ coordinate system. Absolute orientation corresponds to
the correct position, orientation and scale of a three dimensional model with regard
to a real coordinate system. Both operations require control data. The absolute
orientation involves the relation between the model and the actual 3D environment,
known as georeference.

Today, the available technology increases the automatic procedure of the pho-
togrammetry software that is available. The SFM technique implementation is based
on automatically solving the image orientation and 3D structure of the scene us-
ing connected images. In Figure 2.7, the structure of SFM algorithm is explained.
First, the set of feature points are identified across the images in order to estimate
the related position of the images based on scale, orientation and affine transfor-
mations [McCann, 2015]. Next, after the correspondence between the features, the
internal (focal length, distortion) and the external (rotation, translation) parameters
are estimated. Before starting to estimate the 3D location of each feature, it is impor-
tant to mention that a first pair of images with lot of matches and a large baseline
is suggested, for better reconstruction (step 3 in Figure 2.7). Then, starting from
this pair of images a bundle adjustment is computed and next, all the images are
used until, each feature point is triangulated providing a robust position estimation
[Golparvar-Fard et al., 2011].

Figure 2.7: Structure from motion (SFM) steps -[Golparvar-Fard et al., 2011].

2.4 importance of panoramas

Panoramas are images that provide a large amount of data comparison to con-
ventional images with more restricted fields of view [Huang et al., 2008]. As the
computers become faster, more applications and studies using panoramas became
widely accessible. Some aspects that demonstrate the importance of the panoramas
are:

Immersion. The large field of view, providing a more complete and continuous
is the importance of the panoramic images which possibly enhanced by 3D stereo
viewing.

Realism. A photo realistic quality of a ’virtual word’ can be achieved by a dense
set of panoramas. With VR systems, stereo visualization can also be implemented
with free navigation in virtual panoramic world. A panorama is possible implemen-
tation of a VR system. To contrast this with other VR systems, it is called image-based
VR [Huang et al., 2008].
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Figure 2.8: Stitching panoramas.

Simplification. Stereo 3D reconstruction can be based on 360
◦panoramic images

comparing the complicated process of merging multiple depth images.

Localization. Equipment with panoramic vision can recognize location by com-
paring an incoming panorama with memoring maps. This strategy improves ro-
bustness because of the further information, provided by a larger field of view.

Compression. A panorama composed from image sequence of a video camera.

A panoramic image is a wide field of view image with a full view of 360
◦. Panora-

mas can be created on an extended planar image surface, on a cylinder, or on a
sphere. Traditional panoramic images have a single viewpoint, also called the ’cen-
ter of projection’. Panoramic images can be captured by simple digital cameras
using fish-eye lens or simple stitching methods for generating panorama images.

A fish-eye lens are wide-angle lens that produces distortion intended to create
panoramic image. Fish-eye lenses achieve extremely wide angles of view. Instead
of producing images with straight lines of perspective (rectilinear images), fish-
eye lenses use a special mapping (like sphere) which gives images a characteristic
convex non-rectilinear appearance, Figure 2.9. The major drawbacks of these images
is that have low resolution close to center, severe distortions, inefficient usage of
images, These drawbacks makes this type of panoramas not suitable applications
where high accuracy and resolution is required.

Figure 2.9: Spherical image using fisheye len [Luhmann, 2004]

High resolution and image accuracy is of major importance for the photogram-
metric use of digital panorama cameras. Both objectives can be reached if the com-
plete imaging geometry is modeled and calibrated appropriately [Luhmann, 2004].
The simplest way of generating a digital panorama is by ’stitching’ together a set of
overlapping digital images [Huang et al., 2008]. Today, stitching is a very common
technique for commercial and professional panoramas 2.8. Image stitching is the
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process of combining multiple photographic images with overlapping fields of view
to produce a high resolution panorama. In the methodology, we are working with
digital panorama camera. The panoramas are recorded with fish-eye lens and the
camera is mounted on a rotating panoramic head and rotates around the projection
center.





3 R E L AT E D W O R K

The related work chapter aims to provide the available methods currently done in
the three different parts (device, geometric and domain) related to our methodol-
ogy. Therefore, the Chapter is organized as followed: Section 3.1 provides a short
overview of existing point cloud data acquisition methods using spherical images.
Then, Section 3.2 focuses on all the applications that have used the SPC framework.
Sections 3.2.1 and 3.2.2 are concentrated more at our prototype and provides all
the different techniques that are implementing about pipe detection direct on point
clouds. Also, this Chapter provides an overview about point cloud management,
indexing, Sections 3.2.3 and 3.2.4 and the possibilities representing the point cloud
in VR, Section 3.2.5.

3.1 image based techniques for point cloud gen-
eration

Generally, a lot of research has been done and many applications have been cre-
ated, using image based techniques for dense matching, documentation and survey
reasons. Image based techniques are low-cost, quick, with a wide variety of field
applications, especially referring to cultural heritage. Due to the urgency of a de-
tailed documentation and representation, it is becoming a popular method. The
utility of the panoramas for enhancing the quality of the documentation is not yet
broadly applied. Moreover, there are some researches that have been done which
use panoramic images. There are two methods that are used for 3D reconstruction:
the Spherical Photogrammetry [Fangi, 2012] and Structure from Motion method,
which is now a wide spread technique able to acquire low-cost feature detection
and modeling representation [Snavely et al., 2006].
Multi-Image Spherical Photogrammetry (MISP) approach uses the spherical photos
for a quick geometric method, data acquisition for documentation and reconstruc-
tion, [Fangi, 2012]. There are many advantages that lead to using this technique
such as, the speed, the low-cost and the completeness of the documentation [Fangi,
2011]. This technique is also, named emergency photogrammetry, as it is mentioned
in d’Annibale et al. [2011]. Because due to all of these advantages can be regarded
as one of the best methods to deal effectively, quickly and inexpensively the emer-
gence of the protection and preservation of our architectural heritage. The main
disadvantage of using panoramas is the lack of stereoscopic. It is difficult to iden-
tify many points in a pair of panoramas, but an attempt to tackle this problem has
been carried out in d’Annibale et al. [2010]. First, by creating the point cloud by
open source online services and then, to project back the oriented panoramas to
allow edit and to correct the model to the best coincidence, following the principles
of photogrammetry.
Three-dimensional dense matching construction using SFM is one of the most spread
image based methods. The SFM implementation is based on automatically solving
the image orientation and 3D structure of the scene using connected images. The ne-
cessity of using multiple photos and the need of optimizing the results in accuracy
has made large progress [Snavely et al., 2006]. Wu [2013] introduced a new strategy
to improve the speed and the accuracy by re-triangulating the feature matches. An
interesting approach has also been proposed by [Cefalu et al., 2017], using hierarchi-
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cal SFM in combination with global image orientation techniques. Using panoramic
images is possible to improve SFM results with a priori acquisition of high resolu-
tion and geometry of panoramic images [d’Annibale, 2011]. A first approach using
720
◦panoramas to create 3D-point cloud is presented in [Lee and Tsai, 2015]. Within

a panorama, the panoramic images cover the zenith and nadir is usually called a
720
◦panorama. The result is based on Visual SFM and CMVS toolkit for a close

range photogrammetry at a cultural heritage site at Kinmen.
An integration of the two methods seems to have been attempted in [d’Annibalea
and Malinverni, 2013]. Their proposed framework involves the combination of dif-
ferent techniques for high accuracy in documentation and provision of new solu-
tions for VR navigation, Figure 3.1. Furthermore, d’Annibale [2011] proposed to
combine the advantages from the two methods and to compare the orientation re-
sults deriving from the two mentioned technologies. The objective of this research
is to speed up the 3D reconstruction.

Figure 3.1: Two different 3D techniques(MISP and SFM) into an Image-based Modeling solu-
tion.

There are model cameras with a wider field-of-view by using a non-linear map-
ping function. For example, to model omnidirectional cameras, Kannala and Brandt
[2006] parametrize the point by its spherical angle coordinates and apply a radially
symmetric function based on a polynomial of the angles. The distortion model must
also, be adjusted to suit this generic model. In the case of an omnidirectional cam-
era, it has been recommended to model the distortion as a function of the spherical
angle parameters [Castro, 2015].
Panoramic Spherical Photogrammetry (PSP) makes use of the spherical panoramas.
They are taken from the same point and stitched together on a sphere [Szeliski and
Shum, 1997] and then are mapped on a plane using the type of cartographic projec-
tion (Snyder projection). The main advantages of the spherical panorama concern
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the field of view. That can be 360
◦x180

◦and in high resolution. However, its the
weakest point is the orientation procedure that is difficult to perform, this is the
main goal that they are tangling with, in Fangi [2015].
Some projects had already been implemented using panoramic images for 3D point
cloud creation, using commercial photogrammetry software. In Kwiatek and Tokar-
czyk [2015] and Kwiatek and Tokarczyk [2014] the panoramas are taken through
an panoramic video. They extract the panoramas from the immersive video and
they use them for dense point cloud creation. The result seems promising and the
comparison with the point cloud which is generated from laser scanner is analyzed.
The most common applications that are using photogrammetry with panoramas as
input images, for survey documentation, are those that are related with monuments
and buildings. This makes sense as the color and the details are very valuable for
survey documentation, like in Pisa et al. [2010].

Figure 3.2: Smart Point Cloud workflow to assign Archaeological semantic injection [Poux
et al., 2017b]

3.2 smart point cloud

The framework for this research application follows the structure of a SPC. The first
contribution is developed from a PhD research by [Poux et al., 2017b]. The objective
of this research is to examine the problems and the challenges that the new frame-
work will face, providing a review of the applications and the approaches that are
related to every expertise that the framework is based on the first implementation
according to this framework is structured by [Poux et al., 2017b]. First, it tries to ex-
tract information from the point cloud after the geometric processing of a Tesserae
(segmentation, feature extraction) and then, to classify the segmented points accord-
ing to their characteristics, in order to assign semantics for gaining Archaeological
knowledge. The structure of the smart point cloud framework is presented in Fig-
ure 3.2, where the relations between the three domains are clearly depicted. The
project remains the same but its focus now turned to the connection between the
domain knowledge and the classification structure. By doing this, a semantically
rich point cloud data structure is provided by a real time Web application [Poux
et al., 2017c]. Another important contribution is made by [Rusu et al., 2008], where
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this article provides a structure about creating a 3D house plan where a kitchen is
turned into a real world representation.
The number of applications and the field of this structure could become too wide
so, the related work is focused on our research application. The objective of our re-
search application is to apply the SPC framework for object detection, in our case the
main object are the pipes. Segmentation through different approaches is provided,
using point cloud, as raw data in combination with image-featuring extraction from
the panoramic images. Then, an intelligent environment where the user could iden-
tify pipes, as one object in an industrial environment is described. The main sections
that the application is focused on are described below.

3.2.1 Feature detection on point cloud

The automation point cloud segmentation is one of the most important processes.
Acquiring the geometry from the actual point cloud, many automation algorithms
already exist, RANSAC [Fischler and Bolles, 1981], HT [Hough, 1962] and Region
Growing, are highly used for shape extraction. Particularly, many implementations
have been done in order to extract cylinders into industrial areas combining or us-
ing these methods. An interesting implementation is presented by [Chaperon and
Goulette, 2001] using RANSAC and the Gaussian image for cylinder extraction, Fig-
ure 3.3. Another algorithm for pipelines extraction is presented by [Rabbani and
Van Den Heuvel, 2005], where HT for automatic pipelines detection is presented
using the Gaussian sphere as well. The Gaussian sphere is introduced by [MPd,
1976]. This sphere provides the great circle from the intersection of the sphere and
the plane, passing through the origin of the cylinder, the normal of this plane is the
axis of the cylinder. Rabbani et al. [2006] developed a region growing algorithm for
pipeline segmentation in an industrial area. This algorithm is based on the smooth-
ness constrain, computing the normals and the connectivity using the K-nearest or
fixed distance algorithm. A highly relevant work is provided by [Su et al., 2016],

Figure 3.3: The results using a random sampling method and the Gaussian image, [Chap-
eron and Goulette, 2001]

using octree-structure for segmentation the point cloud data in industrial applica-
tions. In this framework, the point cloud is voxelized based on octree and then, a
segmentation for industrial primitives (pipes, vessels) is computed based on orienta-
tion, curvature and connectivity criteria. There are many cylinder fitting algorithms
that use the point cloud data without outliers. Nurunnabi et al. [2017] concentrates
on incomplete 3D point cloud data with the presence of outliers. A robust cylin-
der fitting algorithm is proposed in this article using robust statistical approaches
(robust PCA and robust regression) and an existing circle fitting method, Figure
3.4. These articles tackle with the problems of automatic detection and shape fitting
which are essential methods and procedures in industrial design and engineering
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requirements.
Indeed, much research has been done about cylinder fitting in 3D data. As it is

Figure 3.4: Cylinder fitting using (a) laser scanned incomplete point cloud data, (b), (c)
a cylindrical segment of the cylindrical data (d) cylindrical data with outliers,
[Nurunnabi et al., 2017].

mentioned above, two algorithms are mainly working directly to raw data without
pre-processing so, every part is well defined by an approximate shape. RANSAC and
HT are two algorithms, well known voting techniques that are used for shape detec-
tion and fitting in raw 2D & 3D data [Schnabel et al., 2007]. These two algorithms
due to their complexity especially in 3D environment, discourage people to use
them [Nurunnabi et al., 2017]. The main differences between these two techniques
are that the HT determines the point of the parameter subspace of the model and in-
creases the votes in the Hough space for this model. On the other hand, RANSAC, for
the given model a minimal number of the points are randomly selected from which
the model can be computed. According to research between these two techniques
and to the articles for cylinder detection, table 3.1 presents the most important ad-
vantages and disadvantages of each method. It further demonstrates how they are
each suitable depending on the type of application. In the case, of cylinder extrac-
tion, considering the fact that cylinder needs five degrees of freedom, it makes HT

technique impractical. This is due to the fact that this method has difficulties fit-
ting objects with more than three parameters. Alternatively, RANSAC technique can
perform well with more parameters, assuming there is a small number of cylinders
in the scene. Thus, the presence of different cylinders with different radius along
the same orientation can cause difficulties in the final detection. In Section 5.4.6,
RANSAC method is applied direct to the point cloud to compare the results with our
prototype results.

Table 3.1: Pros and cons of each method.

Method Pro’s Con’s
HT Robustness to noise Time consuming

Detect multiple instances Space complexity
Impractical with more than 3 parameters model

RANSAC Simple Time consuming
Robust to outliers Not applicable to complex dataset
Applicable to large number of parameters

3.2.2 Feature detection from imagery

HT and RANSAC techniques first, were implemented for shape recognition and fea-
ture extraction in 2D, images. An example of this procedure is proposed by [Pavlidis
and Liow, 1990], in which an integration of the two algorithms, the Region Growing
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and edge detection, is presented. Including images for better segmentation results
is interesting, because they provide a better source of information (clear edges, dis-
tinct boundaries of the object) [Rabbani, 2006]. A combination of these two methods
is used by Vetrivel et al. [2015], where an initial detection of buildings in the 3D point
cloud is combined with segmentation of the image space acquired from Unmanned
Aerial Vehicles (UAV). The image segmentation could be carried out by also using
other characteristics, like the color and the spatially connected pixels for feature
connectivity. Wang et al. [2014] combines the 2D edge extraction from images and
the 3D edge detection, in order to merge these methods and make use of their advan-
tages for 3D edge extraction. In our methodology, Hough line transform is applied
for line detection to the panoramas to extract the boundaries and then, to combine
this 2D information with the 3D points.

3.2.3 Domain Adaptation

The domain knowledge refers to the way of adapting knowledge to a group of
points according to spatial characteristics. Enabling semantic injection to point
cloud is the first part of creating an intelligent environment, a smart point cloud.
Poux et al. [2017a] is based on the work of Poux et al. [2017b] and proposes a data
model construction to link knowledge to segmented or classified points, Figure 3.6.
This model consists of three meta-models according to LOD, providing a structure
point cloud data that is able to manage and store the points in a database system
while assign semantics. LOD is the level of the information that is provided in dif-
ferent scale, Figure 3.5. Organizing point cloud data in LOD’s/importance levels is
an approach to manage large data sets in order to have a better manipulation and
structure and in the end to assign semantics [van Oosterom et al., 2017]. These LOD

for point clouds are proposed for handling massive multidimensional point cloud
datasets for data ingestion, data management, data analytics and visualization. The
proposed LOD model could be discrete (multi-scale) or continuous (vario-scale) [van
Oosterom et al., 2017].

Figure 3.5: Illustration of different LOD on point cloud [Cura et al., 2016]

An important contribution is made by [Rusu et al., 2008] who provides a struc-
ture about creating a 3D object map in indoors applying data mining to a kitchen.
In Weinmann et al. [2015], semantics are applied to a point cloud according to the
optimal neighbors, through classification and segmentation procedures. There are
some specific data models, like CityGML, IndoorGML, Building Information Mod-
eling (BIM) which use standard structure for representing the real world, by deriving
information from a direct source. For example, Xiong et al. [2013] makes an impor-
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tant contribution by automatically converting the raw 3D point data into BIM. The
algorithm automatically, identifies the indoor features (windows, ceilings, floors).

Figure 3.6: Smart Point Cloud workflow to assign semantics [Poux et al., 2017a]

Brilakis et al. [2010] also, introduces an automated generation of BIM models
based on video and laser scanner data. This provides a general approach whose
goal is automatic build modeling. Krijnen and Beetz [2017] suggest an extension to
the Industry Foundation Classes Industry Foundation Classes (IFC) model to inte-
grate point cloud dataset. It is explained how the semantic relationships have been
favored over compression using binary serialization to the raw source data. The
binary serialization is able to handle millions of points, while spatial and semantic
subsets can be extracted due to the hierarchical storage model and to the association
with the building elements. Another interesting article is Park et al. [2013], where
a conceptual framework is presented and tries to integrate the ontology and the AR

with the BIM. These articles are excellent examples explaining why metadata should
be linked with the 3D data. This is not an easy task especially when a general rule is
thought to be applied to all the models. Each application requires its own semantic
and geometric information. According to our application, the first attempt to define
a common schema of the pipelines has been done by Westdijk [2015], where a gen-
eral standard data model is defined in order to structure and manage the pipeline
network. Also, some international standards were mentioned in Westdijk [2015].

3.2.4 Data Base Structure & Indexing

Massive point cloud necessitate a suitable way to store, organize and manipulate the
points. Making a demand of creating a DBMS that could efficiently manage the data
model. van Oosterom et al. [2015] provides a general review with all the options
for point cloud management, comparing also, different data management solutions
(Oracle, PostgreSQL, Rapidlasso LAStools), providing improvements and optimal
ways for indexing point clouds. Furthermore, point cloud is mentioned as a third
type of spatial representation of data with vector and raster data, first and second
type, respectively. There are already existing Point Cloud Data Managements Sys-
tems (PCDBMS) techniques that allow to store and manage the data. Nevertheless,
there are still some limitations providing an efficient way to present and provide
them through semantic queries. In order to store the data and provide analysis to
ontologies, point cloud need to retain the information from the classification and
segmentation techniques. Cura et al. [2015] provides a complete and efficient point
cloud management system based on a database server, that works on groups of
points rather than on individual points using relational DBMS. This framework is
designed to solve all the needs of point cloud processing (loading, compressed stor-
age, filtering, easy data access and exporting, integrated processing). Zlatanova
[2006] elaborates on current possibilities of DBMS to maintain 3D data. Spatial data
types and spatial operations reflect only on 2D features, but are part of 3D space.
According to this paper, they are managing to store and visualize the 3D features.
For data visualization and for other types of spatial data processing, it is essential
to work with a structure that is able to handle billions of points and queries so,
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Figure 3.7: Example of a point cloud spatio-semantic query,[Poux et al., 2017a]

efficient indexing techniques and LOD structures are required. The indexation of
the 3D point cloud concerns the spatial subdivision through the space through dif-
ferent approaches. Octree structure is the 3D of the quad-tree that is proposed by
Yang and Huang [2014], providing interesting changes regarding point cloud reso-
lution, density and distribution. The paper Richter and Döllner [2010] presents a
structure to manage massive point cloud including database integration, interactive
rendering and visualization. The advantages of using point clouds are many, the
most important ones however are that they are LOD adaptive, give fast update and
extract information.

3.2.5 Virtual and Augmented reality

VR is the immersion that the 3D environment is fully artificially generated by the
computer. VR is usually made possible by wearing a VR helmet or google glasses
and the 3D model. VR can entirely teleport you somewhere else. It immerses the
user by stimulating their vision and hearing and by making them believe that they
are in another not existing environment.
AR overlays virtual objects of the real-world environment. Users see and interact
with the real world while digital content is added to it. Pokemon Go is an example
of augmented reality where millions of people all over the world have been rushing
with their smart phones in search for small virtual creatures.
Both VR and AR will soon become mainstream. The fact that point clouds offer a
3D environment trying to represent the real world, it leads to explore the usage
of 3D point cloud in VR and AR settings. The aim of this article Mancera-Taboada
et al. [2011] is to build a 3D model of San Martin’s Church, Segovia from point
clouds generated from terrestrial laser scanner. The mobel will be the basis for the
development of a platform of virtual and augmented reality, giving easier access
to disabled people. In Bruder et al. [2014] work, they try to combine VR visualiza-
tion and 3D point clouds. Such Point Cloud Virtual Environment (PCVE) represents
the external environment that is usually acquired by 3D scanners. They present
an application scenario, in which a mobile robot captures 3D scans of a terrestrial
environment and is automatically registered to a coherent PCVE. This virtual 3D

reconstruction is displayed in an immersive virtual environment.
Liu and Boehm [2014] introduces an interactive segmentation method for segment-
ing point cloud through an algorithm based on interaction to assign a background
and highlight wanted objects via user drawing. Stets et al. [2017] demonstrates an
application for visualizing and labeling point clouds in VR. In the application, it
is possible to label large sets of point clouds in a quick and prototype way. These
interactions provide a direct immersion in a coherent structure, bridging VR with 3D

data.
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This Chapter contains the proposed prototype for pipe detection, following the
SPC framework. Section 4.1 deals with the data acquisition and the quality of our
initial generated point cloud. The second part, Section 4.2 focuses more on spatial
techniques including the algorithms and the parameters that are used and how the
actual result is produced applying the SPC framework on different datasets. The
first Section is strongly related to the second, as it is the initial step for our SPC

framework.

4.1 image based methodology & data acquisition

The procedure of point cloud acquisition has to firstly be defined in order to pro-
ceed to the main application. This is the first part of our main SPC framework, which
includes the domain expertise. According to the type of the acquisition procedure,
the attributes of the points are defined. The main reason that image-based tech-
nique is used, is because some valuable attributes from the points that are created
from the images, try to be related with the pixels. This is the main idea, testing
whether this technique could enhance the object recognition and to assign from the
beginning some knowledge to the points.
Figure 4.2 displays a flowchart in which the steps for point cloud acquisition are
described. The point cloud creation is based on panoramas, which is not a com-
mon way for image-based techniques. It is important to focus at this stage, as it
will define our final result/product. Before testing the existing software, stitching
the panoramas and project them to equirectangular projection is required. The
panoramas are recorded with fish-eye lens and the camera is mounted on a rotating
panoramic head and rotates around the projection center. Furthermore, high reso-
lution of panoramas is needed, as it is mentioned in d’Annibale [2011], for better
accuracy. According to the Figure 4.2, after the image procedure some software are
going to be tested, like Agisoft Photoscan, Context Capture, Pix4d, as in Nikolov
and Madsen [2016]. These software are not open sources, producing some limi-
tations for the data generation (licence expires, no data extraction, limitations on
input data, unknown algorithms/settings). Micmac is the only open source service
for 3D reconstruction, using the SFM algorithm. Many applications have used it, like
in Shults et al. [2017] and Agarwal et al. [2011]. Generating dense 3D reconstructions
using the Multi View Stereo algorithms appears that the majority of the available
packages are based on the Bundler package, a SFM system for unordered image col-
lections developed by [Snavely et al., 2006].
There are many software/packages that can create dense point cloud from images.
However, not so many that could use panoramic images, as spherical images. The
fact that the panoramas are used for point cloud generation and not the initial im-
ages, is because it is tested how the whole procedure could be faster or minimize
the time and the amount of images. Another advantage is that one panorama offers
360
◦field of view that could be used for object and boundaries extraction. From one

panorama you can observe and full detect the objects more easily than from one
plain image that covers part of the object. This advantage is one of the main reasons
that our concept is based and it will be investigated, Figure 4.1.
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Figure 4.1: Object detection.

The comparison between the point cloud from the available software and the
point cloud from laser scanner could be done comparing the density between the
one for the image-based technique and the one from the laser scanner. It is known
that the density of the laser scanner varies from the characteristics of the laser scan-
ner that the company offers and that scanner has its own characteristics. The density
of the point cloud generated from the images differs. There are many parameters
that can influence the final point cloud. The evaluation of the result depends on
many factors that are analyzed in Section 4.1.1. A theoretical comparison will take
place at this chapter and more statistical values will be available in Chapter 5, in-
cluding an example, comparing the two methods.

Figure 4.2: Image Based Methodology.

4.1.1 Imaging Vs Ranging

There is a lot of research that have already been done comparing the two meth-
ods. Each method has its own advantages and disadvantages. The method that is
more suitable always depends on the application and the accuracy that you want to
achieve. Also, the equipment and the budget play important role in order to find
the best combination to achieve the best result. Many times the combination of the
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two methods is the preferable choice.
Generally, laser scanning is used, if you need a high level of accuracy over a large
space. Photogrammetry is a better tool if you are documenting smaller spaces and
are looking for less accuracy but more visual photo realism. This is why photogram-
metry is mainly used for the creation of environments for games and movies. It is
also very common in archaeological community, for cultural heritage 3D documenta-
tion, because it allows more realistic textures for a lower price than laser scanning.
On the other hand, laser scanning is more applicable to industries because of its
level of accuracy over a large distance. Engineers are not really interested in tex-
tures but more into accuracy errors over distances. Laser scanner manufacturers
publish a number of accuracy specifications for their products, including angular
accuracy and beam divergence. In laser scanners, some of the factors that affect ac-
curacy are largely independent of distance like the range accuracy, while others are
mainly proportional to distance, like the size of the beam footprint and the angular
accuracy. The main factors that influence the accuracy of the final result are:

• The accuracy of the distance measurement derived from the laser beam.

• The divergence of the laser beam as it travels from the scanner to the surface.

• The accuracy of the angular measurements of the scanner.

• The accuracy of the registration of more than one scans and reference the 3D

data in the appropriate co-ordinate system.

The main factors that determine the accuracy of the final point cloud using digital
photogrammetry are:

• The area that covered by one pixel in the image, called pixel size. The size of
the pixel on the ground is determined by the focal length of the lens used and
the distance from the camera to the object. The pixel size and the lens of the
camera are the main factors that define the accuracy of the final result.

• The relationship between the distance between the cameras and the distance
from the cameras to the object.

• The accuracy of the georeference means the registration with the actual coor-
dinate system.

The question which technique is better than the other is a controversial one and
can not be answered in general. It will be a mix of many factors such as the type of
the object, the applicability, economical support, client requirements, etc. Table 4.1
is summarizes some of the advantages and disadvantages of each method. In many
cases, a combination of both techniques is usually recommended.

Table 4.1: Comparison of features: Imagery vs Ranging.

Point cloud from laser scanner Point cloud from images
No color information Good color information
High cost technique Low cost technique
Automation in data capture Lower automation in data capture
Light is not required Light is required
No easy for data capture Easy for data capture
Time consuming on field Less time consuming on field

By knowing the characteristics of the laser scanner that the company uses, the
density and the accuracy of the point cloud can be easily estimated on a specific
area when taking into account some initial constrains. In order to cover the ob-
ject that is required sufficiently, scanning the object more than one time is needed



28 prototype design

from different angles. This leads to definitely getting the final point cloud more
dense and noisy. The outliers of the point cloud can be caused by different sources.
Outliers are points that are not part of surfaces or do not belonging to local neigh-
bors. The main part where that noise could exist is close to boundaries. This occurs
because of boundaries occlusion. The laser beam has a shape of an ellipsoid and
when it hits on the boundary of an object it splits into two, creating random points
between the object that is front and behind. Other important sources of noise are
the reflectanse of the surface and the multipath reflection [Sotoodeh, 2006].

Figure 4.3: Outliers at the boundary of an occlusion between the edge and the back wall are
the result of the noise problem. [Sotoodeh, 2006].

In our case, image based technique is used for our application using panoramic
images for object detection. Throughout our methodology, it is investigated, if
the connection between image information with the point cloud could improve
the object detection results. Images offer a clear boundary detection and through
specific filter it could be easily extracted. The density and the accuracy of the point
cloud that is generated from laser scanner differ, especially when the angle of the
beam and the normal of the plane is changed. As a result, the accuracy close to
boundaries is not always the desirable. Combining a better boundary visualization
with a different type of images, panoramas and the fact that the whole object could
be clearly detected, leads to choose our method to be image-based.

4.1.2 The influence of the number of panoramas in point cloud generation

In this part of our research is investigated, how the number of the images affect the
final product. The number of the images will be decreased and the differences are
tested between the point cloud, estimates the density and the accuracy. In terms of
density, the density value will always be estimated depending on the number of the
nearest neighbors defining a certain radius. This is named the local point density
and for each point is computed, considering only the number of the points within
a sphere. This sphere is defined from the beginning by setting a radius to a default
number to include k-neighbours close to the point, Figure 4.4.

Figure 4.4: Neighbors of point at specific radius [Lari and Habib, 2012].
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The function to calculate the density (D) of each point is calculated from:

D = (n + 1)/πr2 (4.1)

Where the πr2 is the 2D density that is defined from the begging to search the
points that are within this area calculating the euclidean distance (d) in 3D.

Change detection will be done, taking into account the distances from the pre-
vious point cloud to the next one using more images, specifying also, a distance
threshold. The final result will be evaluated for the alignment of the images and
for the density. The density of the points changes according the decreasing of the
images is tested using less images. The results are displayed in Chapter 5 and the
differences in density are estimated using Cloudcompare software using the nearest
neighbors, according to the local density method that is explained above.

4.2 smart point cloud application framework
The proposed general framework from [Poux et al., 2016] is followed for this appli-
cation:
1. Acquisition of the raw point cloud data.
2. Filtering and Normals estimation.
3. Geometry recognition including segmentation techniques in 2D and 3D environ-
ment.
4. Smart point cloud structure.
5. Semantics integration.

Figure 4.5: SPC framework.

This structure still contains the three domains, as shown in Figure 5.20 (device,
geometric, domain). First, the concept of the main application and the capture ob-
ject should be defined. Then, the acquisition of the data defines the device expertise.
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In our case, the point cloud will be acquired from imaged based technique using the
panoramic images in an industrial environment. Using panoramic images for point
cloud generation could assign some extra attributes to the points: the RGB color,
the density, the normals and the registration with the images are some of them.
At this step, the raw point cloud should pass through filtering for noise reduction,
Subsection 4.2.2.

4.2.1 Acquisition of the raw point cloud data

The acquisition of the raw point cloud, as it is mentioned in the previous subsection,
is generated from panoramic images from three different datasets. The photos are
either from an online source or by a panoramic camera and had taken by coopera-
tion with Fugro company where one and a half hour was spend in total. For this
purpose a Nikon 5200 Dslr with a fish-eye lens mounted and a panoramic tripod
head, which allows 360

◦rotation of the camera (nodal point). The places that were
chosen in order to take the panoramas were carefully planed, in order to have a full
view of the room and to take more images than the required, to test the density
of the final result. It is really important to plan the data capture procedure. In
photogrammerty, photos (quality, light conditions) and the overlapping area are the
most important factors that someone should take into account for good quality of
the point cloud. Following an automatic procedure by the software, the dense point
cloud is generated. The fact that is generated from image based technique, the final
point cloud is attached with some attributes, like the RGB color and normals, which
are estimated by the software form Principal Component Analysis (PCA) algorithm
and are important for our further implementation. More details about the type of
data, the equipment and some statistics about the number of the images and the
time that is needed for the point cloud generation, is represented in the next Chap-
ter 5 implementation & results prototype, Section 5.2 about Data Acquisition
& Software.

4.2.2 Filtering and Normals estimation.

A downside of image-based methods is that they are prone to producing outliers
and noise in the point cloud due to matching ambiguities or image imperfections
(lens distortion, sensor noise etc). The resulting point clouds are often noisy, [Wolff
et al., 2016]. For that reason, a noise reduction algorithm is used in order to reduce
the noise of the raw point cloud and make the whole procedure easier and more
reliable by removing and the wrong points and . This section describes a density
based algorithm that deals with the noise reduction, regardless to the varying den-
sity of the point cloud.
It relies on the Local Outlier Factor (LOF) of each object, which depends on the local
density of its neighborhood. The neighborhood is defined by the distance to the
MinPts nearest neighbor. The MinPts is a predefined value, which corresponds to
the minimum number of points in calculation of density. The LOF algorithm is a
noise reduction method which computes the local density of a given point with re-
spect to its neighbors. It is considered as outlier samples that have a lower density
than their neighbors. It is obvious that the density around an outlier object is differ-
ent from the density around its neighbors. The general concept is that a local outlier
has the local density low comparing to the local densities of its Nearest Neighbors,
see figure 4.6.
The number of neighbors (MinPts) is one of the parameters that you have to choose
with the below characteristics:

• Greater than the minimum number of objects a cluster has to contain, so that
other objects can be local outliers relative to this cluster, and
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• Smaller than the maximum number of close objects that can potentially be
local outliers.

In practice, it is difficult to find such information, taking MinPts neighbors 10-20

appears to work well in general according to Sotoodeh [2006], considering a dense
point cloud.

Figure 4.6: Explanation of the LOF.

The local outlier factor is based on the local reachability density of a point,

lrdMinPts(o) = 1/

(
∑ maxdist(o, p)
|NMinPts(o)|

)

,where p ∈ MinPts(o).

The local reachability density is the inverse of the average max distance based on
the MinPts nearest neighbors of a point, Figure 4.6. The LOF is finally, defined as:

LOFMinPts(o) =
∑ lrdMinPts(p)

lrdMinPts(o)

|NMinPts(o)|
(4.2)

The estimation of the normals is computed using the PCA algorithm. PCA is a
method for analysing data distribution using the eigenvectors and eigenvalues of
covariance matrices. Since it is a time consuming method, it is only applied dur-
ing the geometry processing for the points that the normal is needed to estimate
the direction of the normal. The general algorithm is applied and the normals are
estimated based on the closest neighbors of the point. The idea is to form neighbor-
hoods based on distance. There are two general methods that are usually used. The
one is Fixed-Distance Neighbors (FDN) based on the number of the neighbors that
are predefined, Figure 4.7. The other method named, K-Nearst Neighbors (kNN)
is based on the distance for the existing neighbors 4.8. Apart from normal vector
estimation, it can also be useful for the removal of outliers, as it is mentioned before.

The idea is that the underlying surface, therefore a 2D plane should fit. Each
points is a vector of three variables (x,y,z). The local variation of the point is com-
puted using the co-variance matrices. These matrices shown how the neighbors of
the point distribute from the center. The smallest eigenvectors of theses matrices
indicate the normals vectors of the best fitting plane. Each eigenvector indicates the
direction and is associated with the smallest eigenvalue corresponds the direction
of the least variation. This is the normal of the plane.

4.2.3 Image(2D)-Points(3D) connection

Following the SPC framework for object detection the three main expertises are de-
fined. Each one with its own characteristics, the geometric expertise contains all
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Figure 4.7: Fixed-Distance Neighbors Figure 4.8: k-Nearest Neighbors.

the methods that are related with the geometry data processing (segmentation, clas-
sification). The main goal is to combine the information from both sources for
better results. The geometric knowledge is based on the geometry detection of the
pipelines through different methods (see Figure 4.9). The features and the attributes
from both the datasets (panoramic images and point cloud) will be combined to get
characteristics from both sources in order to select, analyze, manipulate and identify
the pipes, as one object.

Figure 4.9: Geometric Methodology.

The characteristics of 3D point clouds and 2D digital panoramic images are thought
to be complementary, so the combined interpretation of objects with point clouds
and image data is a promising approach for better object recognition. However, the
most challenging part is the geometric referencing of the point cloud to the image
data. These methods will result in an efficient, fast and accurate way to extract the
pipes.
Our first step and contribution is to form the relation between the 3D points and the
pixels of each image. In order to achieve this, two types of transformations must
be implemented. First, the local coordinates of the system where the point cloud
is referred to, are converted to spherical coordinates (φ, θ) and then, the spherical
coordinates are projected back to image coordinates (pixels), see Figure 4.10. In gen-
eral, the coordinates of a 3D point P=(Px,Py,Pz) (either in world or local coordinates)
are given by spherical coordinates.

φ = arctan(
Px

Py
) (4.3)
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with φ ∈ [0,2π], and either

θ = arctan(
Py√

P2
x + P2

y

) (4.4)

with φ ∈ [0,2π]. D is simply the distance from P to the origin of the coordinate
system. For a spherical capturing surface, D is constant and (θ, φ) defines a 2D

coordinate system for this non-Euclidean surface.
It is considered as discrete coordinates u,v defined by

u = w× 0.5 + f × tan−1(
X
Y
) (4.5)

and

v = h× 0.5 + f × tan−1(
Y√

X2 + Y2
) (4.6)

Where:

f =
w

2× π
(4.7)

and w, h width and height of the image in pixels.

These formulas could also be used in the opposite way in order to connect the
pixels that are part of edges to the 3D points. The above formulas are used in order to
project each 3D point to one panorama taking into account the affine transformation
matrix that is provided by the software and the position of the panorama that is
projected. This projection is preferable than the other way because by this way, it is
indicated that 3D point can always be projected on the panoramic image. A pixel in
the image is not guaranteed to be a point in 3D.

Figure 4.10: 3D Points-Pixels projection.

4.2.4 Image processing

Image processing is a really important procedure in order to detect the edges of
the panoramas and to connect them with the point cloud. For this application,
two forms of the image processing have been applied to get the boundaries. First,
the canny edge detection is applied to the panoramas and then, depending the
generated image, the Hough transform detection is applied to get the straight lines
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that are the possible boundaries of the pipes. The algorithm of the implementation
is analyzed here and the results and the problems are displayed in Chapter 5. The
algorithm and an example of each technique are displayed, in order to understand
how these techniques are working.
Canny edge detection is used, in order to find the edges on the images, as it is the
most accurate and promising method for edge detection Canny [1987]. The edge in
2D image could be the boundaries of the objects, the surface normal discontinues,
the reflectance of the material and the light discontinuities. To implement the Canny
edge detector a standard approach is proposed, in Figure 4.11, the result from each
step of the procedure is represented.

1. Gaussian convolution: The Gaussian filter is used for each image to smooth
image from the noise.

2. Image gradient: To compute the image gradient. There is the magnitude of
the gradient and the direction of the gradient.

Gradient equation:

∇ f = [
∂ f
∂x

,
∂ f
∂
] (4.8)

Gradient direction:

θ = tan−1(
∂ f
∂x

/
∂ f
∂
) (4.9)

The edge strength is given by the gradient magnitude:

‖∇ f ‖ =
√
(

∂ f
∂x

)2 + (
∂ f
∂y

)2 (4.10)

3. Setting Canny thresholds: To apply the Canny method two thresholds should
be defined (low and the high). Both thresholds are represented in percentage
of the norms of the gradient.

4. Non-maximum suppression: For every point in the image the gradient direc-
tion is used to compare the value of the gradient norm with the norm of its
neighbors, if it is above the high threshold, the pixel is considered a candidate
edge pixel. However, if the value is lower than the high threshold, it will be
considered in the subsequent hysteresis step.

5. Hysteresis implementation: The Hysteresis implementation uses the low and
the high Canny Thresholds. The procedure starts by using the initial collection
of edge points that are obtained after the high threshold and after the non-
maximum suppression. After that, a recursive algorithm is used to get the
new edge using the low threshold. A point where the norm of the gradient
is between the lower and the higher thresholds is actually an edge pixel and
then, the neighbor pixels are recursively explored.

The results really depend on the thresholds that are defined and also, on the
initial quality of the images. It will be difficult to detect the clear boundaries of the
objects, if the image is blur or has some poor light conditions.
After the canny edge detection the implementation continues, applying the Hough
line transform to the panoramas. This technique is for the detection lines from
the panoramas, supposing that the boundaries from the pipes are represented as
straight lines on panoramas. The steps of the algorithm are described below:
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(a) Initial photo (b) Gaussian filter

(c) Compute Gradient (d) Final Edges

Figure 4.11: Different steps for Canny edge detection.

1. Built a parameter space, for line slope m and intercept c.

2. Create an accumulator array A(m,c).

3. Set A(m, c) = 0∀(m, c)

4. Get the image edges using Canny edge detector

5. For each pixel on the image apply the equation (xi, yj) ∀ (mk, cl)

apply the equation that represents a line.

cl = −ximk + yj

Then, increment:

A(mk, cl) = A(mk, cl) + 1

6. Find the local maxima in A(m,c) that indicates a line in parameter space.

The information on the images is contained mainly on the edges, as the contrast is
usually much better. For that reason the image processing will help us identify the
boundaries. Moreover, in industrial environments the curved objects are universally
present, and for these objects just edge-localized information is not enough for
automatic detection and fitting, hence this becomes a major limitation. In Chapter
5, three approaches are tested in order to connect the 2D information from images
(pixels) with the 3D actual points using the test data. For the SPC framework a
combination of the second (2D with 3D connection) and the third approach (Direct
connection pixels with 3D edges) is combined in order to get the boundaries of
the pipes, applying both canny detection and HT to the panoramas. More details
about the implementation of the approaches are described in Chapter 5, Section 5.3,
Projections on test data.
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Figure 4.12: Example using HT.

4.2.5 Geometry recognition

The geometric methodology that is followed for the point cloud object detection is
represented in Figure 4.9. After the image processing, the connection between the
boundaries of the panoramas with the boundaries in point cloud is achieved. The
final goal is to segment the initial point cloud to points that are part of a pipe. By
this way, the segmented points will get knowledge and meaning, connected with
the real environment. Segmentation is the process of dividing the given point cloud
or image into a number of disjoint subsets, each of which is spatially coherent. To
continue with the geometric methodology, image edge detection must already be
applied to detect the points-lines that are boundaries of the cylinders. Outlines the
borders of different regions, is followed by grouping the points close to detected
boundaries. In that way, it is easier to detect, if these points are part of cylinder
following our methodology, Figure 4.9. In many cases, the edges do not form
closed boundary curves and it can be difficult to make correct grouping decisions
resulting in over or under-segmentation. In our case, the pipes have no actual edges
in 3D but in 2D, you can easily extract the boundaries. HT is widely used for line
detection on images [Wang et al., 2014]. It is considered that the boundaries of the
pipes are straight lines. Images provide a complementary source of information,
as they capture the object boundaries where point clouds are noisy. Following
the methodology which is described in subsection 4.2.3, points that are part of the
boundaries will be merged with the raw point cloud. From each line-segment in
points, a line fit is done using the HT in 3D.
The implementation of the algorithm HT in 3D follows the same theory as in 2D. Due
to the additional dimension, the number of the parameters are larger in 3D space
than in 2D, making the same procedure more difficult for the same output [Watson,
2017]. In [Dalitz et al., 2017], the 3D Hough line transform is applied to point clouds.
The main objective is to fit lines close to the 3D points-boundaries. The idea of the
Hough transform in 3D is to discretize the space giving all the possible direction
of lines. Each point determines to which line it belongs and the direction with the
most points, means that a line could fit. For the discretization of the line direction,
the method that is used, is based on tessellation of Platonic solids. The solid with
the highest number of vertices is the icosahedron, Figure 4.13. The theory is the
same as in 2D, described in the previous section.

After getting the number and the parameters of each line, it is investigated, if a
cylinder could fit close to these lines. Initially, the points that are close to the line
will be gathered, with close distance line-point in 3D smaller than 0.05m (4.14).
The line in 3D is specified with the vector and a point that lies on the line. The
parameter function of the line:

x = a +
⇀
b t (4.11)
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Figure 4.13: Icosahedron after 0, 1, 2 tessellation steps [Dalitz et al., 2017].

where a = (x, y, z) and b
−→

= (b1, b2, b3)
The squared distance between a point on the line with direction t and a point
(x0, y0, z0 is computed:

d2 = ((x− x0) + b1t)2 + ((y− y0) + b2t)2 + ((z− y0) + b3t)2 (4.12)

In order to get the minimum distance set:

d(d2)/dt = 0 (4.13)

Figure 4.14: Smaller distance line-point in 3D.

After getting the points that are close to the line, it is examined, if a 2D circle
will fit. The plane that the points are projected on is defined as the perpendicular
plane to the line. Lalonde et al. [2006] worked in a similar way and developed two
algorithms based on 2D projection and 3D fitting for tree trunk segmentation. They
showed that results from the PCA based on 2D projection technique work with better
results than the results from 3D fitting.
A circle that fits as close as possible to the set of points is represented in 3D space
by this parametric equation:

P(t) = rcos(t)u + rsin(t)(n× u) + c, 0 ≤ t ≤ 2π (4.14)

with radius r , center C and normal unit vector n . Vector u is any unit vector
perpendicular to n . If we specify orientation of the circle in space by zenith angle
φ and azimuth θ:

n =

cos(φ) sin(θ)
sin(φ) sin(θ)

cos(θ)

 , u =

− sin(φ)
cos(φ)

0

 . (4.15)

The circle fitting method can be broken down into the following steps:
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• Project the mean-centered points onto the fitting plane in new 2D coordinates.

• Using the method of least-squares fit a circle in the 2D coordinates and get
circle center and radius.

• Transform the circle center back to 3D coordinates. The fitting circle is specified
by its center, radius and normal vector.

Projecting points onto the fitting 2D plane the Rodrigues rotation (3D rotation) for-
mula is used. The axis of rotation k is the cross product between the direction of
the plane and the directions of the new X-Y new coordinates.

k = n× (0, 0, 1)T (4.16)

Prot = P cos(θ) + (k× P) sin(θ) + k〈k, P〉(1− cos(θ)) (4.17)

To fit a circle to the cluster of points might sound like an easy task, but in 3D

space it gets a bit more complicated. The fact that the projected plane has already
be known make the procedure easier. First, we project the 3D points onto the plane
and get new planar coordinations for them. Finally, we could use the method of
least-squares to fit a 2D circle into the planar points and then project the 2D fitting
circle back to the 3D coordinates.
To fit a circle to set of n points the equation in 2D for a circle with radius r and center
(xc,yc) will be like this:

(x− xc)
2 + (y− yc)

2 = r2

(2xc)x + (2yc)y + (r2 − x2
c − y2

c ) = x2 + y2

c0x + c1y + c2 = x2 + y2

So, the parameters must minimize the function, applying least square adjustment.
Circle fitting is performed in the projected 2D space. If the root mean square error
(RMSE) of the circle fitting is less than one, the segment is likely to be a cylinder.
Knowing the parameters of the circle, its possible to construct the cylinder surface.
The center of the circle and the direction could give us the line that passes from
the center of the cylinder and with the radius, the surface could be reconstructed.
Then, with these characteristics the points that are close to the line and with distance
similar to radius are part of the cylinder.

Figure 4.15: Geometry of cylinder.

The segmented points after some criteria for the connectivity and orientation [Su
et al., 2016], could be detected and connected, as one object. Merging the segments
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in one object is really important, as it offers many advantages in visualization and
also, allows useful information to be associated with the merged segments. Specif-
ically, for the spatial connectivity, each segment will be tested whether they have
the same axis orientation and if they are close enough or have common points, in
order to be considered as part of the same pipe. Then, if these criteria are full-filled,
these parts will be merged and stored in a database, as one object. The structure
of the data should combine and implement an efficient store of the data retaining
the device, the analytic and the domain attributes. The smart linking of the data
conclude to semantics injection.

4.2.6 Fit second polynomial to segmented points

Since, the main object of our interest is the cylinder, the segmented points could
be represented as a second polynomial surface. Except from the 2D circle fit on the
projected 2D points, the second polynomial fit is tested, if it could be fitted to the
segmented points. The points in each segment are fitted to a quadratic equation:

f (x, y) = ax2 + bxy + cy2 + d (4.18)

So, the four parameters must minimize the function, applying least square adjust-
ment. Given the fitted polynomial, the principal curvatures k1 and k2 of the surface
f(x,y) can be computed from the polynomial coefficients as follows:

k1 = (a + c) +
√
(c− a)2 + b2 (4.19)

k2 = (a + c)−
√
(c− a)2 + b2 (4.20)

If the segmented points are part of a cylinder, one of the principal curvatures
are zero. According to the article [Su et al., 2016], because the data are noisy and
the point cloud is not a perfect cylinder, the principal curvature cannot be zero. In
that case, it is defined that a segment could be cylindrical, if k1 > 5, k2 < 1. These
threshold values are defined from [Su et al., 2016], where they were chosen using
a histogram based analysis on a subset that manually labeled the cylindrical and
planar segments. The principal curvature of a cylinder is related with the radius,
where:

r =
1
k

(4.21)

This is an alternative way to investigate, whether the points are part of a cylinder.
The results of this method are displayed in the next Chapter, Section 5.4.5. The
comparison of these methods to conclude which is the best option for cylinder
fitting and the analysis is explained in the next Chapter.

4.2.7 Smart point cloud structure

The SPC UML model (see Figure 4.16) is formed by the main components needed for
the data structure. It starts with the primitive geometry of a point which is defined
by three coordinates (x,y,z). Each point has specific attributes that derive from:
the device knowledge (density, color), the geometric knowledge (normals) and the
domain knowledge [Poux et al., 2017a]. At each stage, the attributes are stored
in a database using relational model for fast extraction and manipulate the points
individually or as segments. A large number of points with similar attributes are the
point segments which in the end are characterized as pipes. The UML model shows
the relationship between the components, with the purpose of a fast integration and
efficient and easy way to apply semantics [Rabbani, 2006].
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Figure 4.16: UML for data structure.

4.2.8 Semantics integration

In general, the goal is to obtain spatial and semantic information from the avail-
able data (images, point cloud) of an industrial environment in order to identify
the pipes. Retrieving this semantic information is essential for further analysis and
interpretation. This step gives a meaning to the collected data, giving the opportu-
nity to also, interpret them in AR or VR environment. The AR and VR could append
virtual information to the real world and be utilized as a useful tool for field work
inspection Park et al. [2013]. All this information must be retained and structured
to achieve interoperability. If standardization has international recognition, more
and more people will use them and as a result, the semantic interoperability will
be achieved [Westdijk, 2015]. According to the UML three tables are creating. One
with the points and their attributes, second the segments where the cylinder is de-
tected and final, the pipe with the parameters and the segments that are part of
it.

4.2.9 RANSAC implementation algorithm direct to point cloud

After the implementation of our methodology, the cylinders are detected from a
sample of our point cloud, which are generated from panoramic images. Compared
our method with the generic methods (RANSAC, HT) that are directly applied to the
point cloud, their performance is analyzing, applying the RANSAC algorithm.
The RANSAC approach will be applied where the shapes are detected via a random
sample consensus. The basic RANSAC approach repeats the following steps:
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1. Randomly select samples from the input points.

2. Fit a cylinder shape model to the selected samples.

A cylinder is specified by an axis and a point lying on the axis C. A vector
specifies the direction of the axis W and the radius of the cylinder. Any point
X may be written uniquely as:

X = C + y0U + y1V + y2W = C + RY

Where R is the rotation matrix of U, V, W and Y a column vector (y0, y1, y2).

3. Count the number of inliers to the shape. Inliers are the points that are part
of the cylinder’s shape under a user-specified error tolerance.

These steps are repeated for a prescribed number of iterations and the shape with
the highest number of inliers, is detected.
The error between a point and a shape is defined by its distance and normal devia-
tion to the shape. A random subset corresponds to the minimal number of points
required to uniquely define the cylinder. According to the parameter model, the
minimum number of points that are required for cylinder detection.
For very large point sets the basic RANSAC method is not practical. The main idea
behind the efficient RANSAC method consists in testing a shape against subsets of the
input data. Shape candidate is constructed until the probability to miss the largest
candidate is lower than a user-specified parameter. The largest shape is extracted
until no more shapes could cover the minimum number of points. The documenta-
tion that is followed, it is provided by CGAL Documentation. In our test, the same
part of point cloud generated from panoramas that is used in our methodology, is
also used for the RANSAC implementation.

https://doc.cgal.org/latest/Point_set_shape_detection_3/index.html#Point_set_shape_detection_3Parameters




5 I M P L E M E N TAT I O N & R E S U LT S
P R OTOT Y P E

This chapter describes the implementation details of the SPC framework that is de-
scribed in Chapter 4. It is more specific about what has been implemented and
which techniques and parameters have been tested and used. Section 5.1 introduces
the tools and the libraries that are used and Section 5.2 focuses on the different data
and the software that are tested. Then, the results of the implementation, Section 5.4
will be presented according to the theory in Chapter 4, prototype design. Finally,
a comparison of the results applying RANSAC algorithm is provided in Section 5.4.6.

5.1 tools & libraries
The programming language Python and database management system PostgreSQL
were used for the implementation. Libraries and packages that were needed in
order to implement the algorithms that were introduced in the methodology, are
listed below:

• NumPy: Package for scientific computing with Python.

• Psycopg: Package for connection Python with database system PostgreSQL.

• Matplotlib: Package for plots and visualization the results.

• Scikit: Python library for geometry implementation.

• Pillow: Library for image processing

• Opencv: It is an Open Source Computer Vision Library, which was designed
for computational efficiency and with a strong focus on real-time applications.

Furthermore, software CloudCompare is used mainly, for visualizing the point
cloud and for processing. Software Autopano is used for stitching the panoramas
provided by Fugro.

5.2 data acquisition & software
At the beginning of the implementation, some test images were used in order to
test the existing software. Since the images that should have been provided from
the company, were not available from the beginning, some test data were initially
used for testing the software and start the implementation for point cloud acqui-
sition. Eight panoramic images were downloaded from: https://support.pix4d.

com/hc/en-us/articles/360000235126-Example-projectslabel7

from the Church of Santiago”, located in Betanzos (La Coruña, Spain) taken by an
NCTech iSTAR spherical camera. These images are more detailed with texture and
more information. In addition, other panoramic images are used for the point cloud
generation, provided by the company Fugro, using camera Nikon 5200 Dslr. These
photos (10 panoramas) represent an empty room in a building and were provided
until the images with the pipes (23 panoramas) were available. Moreover, it was a
nice opportunity to test the point cloud that is generated from panoramic images,
representing totally different environments. Furthermore, these data were used for
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https://www.python.org/
https://www.postgresql.org/
http://www.numpy.org/
https://www.python.org/
http://initd.org/psycopg/
https://www.python.org/
https://www.postgresql.org/
https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html
http://scikit-learn.org/stable/documentation.html
https://www.python.org/
http://pillow.readthedocs.io/en/3.1.x/handbook/tutorial.html
https://opencv.org/
http://www.danielgm.net/cc/
http://www.kolor.com/autopano/
https://www.fugro.com/
https://support.pix4d.com/hc/en-us/articles/360000235126-Example-projectslabel7
https://support.pix4d.com/hc/en-us/articles/360000235126-Example-projectslabel7
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the first steps of our implementation, Section 5.3. It is a nice example to illustrate
that our methodology can be implemented for different datasets and prove that
edges are extracted from 2D panoramic images and linked with the boundaries of
objects which are represented in 3D.
For each panorama represents the empty room, eight photos are taken seven hori-
zontal and one vertical, using camera Nikon 5200 Dslr with a fish-eye lens mounted
and a panoramic tripod head, which allows 360

◦rotation of the camera (nodal point).
The stitching of the separate photos is done on a specific program named, Autopano
to produce one equirectangular panorama, Figure 5.1.

Figure 5.1: Stitchnig the panoramas

The projection obtained by a sphere and un-wrapped on a flat rectangular plane
surface is known as equirectangular projection of the sphere. It is the direct map-
ping of the sphere latitude and longitude on the horizontal and vertical coordinate
system respectively. It is called as non-projection or rectangular projection as no
scaling or transformation is applied. The resulting frame obtained by equirectan-
gular projection appears to be distorted. The objects at the center are spatially
compressed and are stretched towards the top and bottom. As seen in the Figure
5.2, top and bottom regions represent zenith and nadir respectively. Equirectangu-
lar frame covers 360

◦horizontally and 180
◦vertically.

The algorithms that are working with close-range photogrammetry are based on fea-
ture detection so, the whole dense point cloud generation needs more time while
rendering the photos from the empty room compared to the time that is needed
for the images that depict the church. It is important to mention that the software
needs ’help’ with the empty room. This means that some markers were put for the
orientation of the images. The panoramic images from the different datasets are
presented in Figure 5.2 and 5.3.

Figure 5.2: Panoramic image church

http://www.kolor.com/autopano/
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Figure 5.3: Panoramic image from an empty room

The images that were used at the final implementation to detect the pipes, were
taken in a room with pipes at Fugro. More details about the type of the images are
provided in section 5.4. These data are used in the end to create the SPC framework.

5.2.1 Software comparison and statistics

Existing software, as it is mentioned in Chapter 4, prototype design, were tested
and examined, whether they work with panoramic images. At Table 5.1, the charac-
teristics of each software are displayed. The type of the images, the output data and
some limitations that must be taken into account before using them. The entering of
data that the available software need, vary depending on the software. Others need
the pre-calibration of the camera and others have the parameters of the calibration
in database depending the model of the camera that is imported. That makes the
whole process of testing and comparing the available software more difficult.
In recent years, efforts have been made to generate models from spherical panora-
mas automatically. These processes were applied in Agisoft Photoscan and Pix4d.
From January 2013, Agisoft Photoscan enabled spherical panoramas to be imported.
From April 2014, this program enabled point clouds with spherical images to be
generated automatically. Agisoft Photoscan uses SFM, as the algorithm to determine
the orientation of the cameras and to position object points. Photos are treated
as spherical panoramas and no calibration parameters of spherical cameras can be
imported or edited. Pix4d also, supports the Equirectangular format of spherical
cameras for processing. Images of this format are automatically detected as spheri-
cal images. Other software have some other limitations: working with fisheye lens
or with common image frames.

Table 5.1: Software comparison.

Software License Image Type Results Constrains
Agisoft Photoscan 30 days trial Spherical Point cloud/mesh
Context Capture 20 days trial Fisheye lens mesh
Pix4d 15 days trial Spherical Point cloud/mesh No more than 55 MB
Micmac Open source Fisheye lens Point cloud/mesh No interface/ command
nFrames/Sure 20 days trial Fisheye lens Point cloud Pre-alignment info

The goal of this thesis is to generate the point cloud using panoramic images.
Due to their 360

◦field of view and the fact that they could replace many pair of im-
ages, it is investigated, if they could minimize time and storage. Working with one
image instead of many images has many advantages. To begin with, the connection
between points and pixels could be done at once and could enhance the image pro-
cessing making the whole procedure easier and more valuable. These software are
generating the point cloud from the common features (pixels) between the images.
It was really surprising the fact that the software do not provide this information.

http://www.agisoft.com/
https://pix4d.com/
http://www.agisoft.com/
http://www.agisoft.com/
https://pix4d.com/
http://www.agisoft.com/
https://www.bentley.com/en/products/brands/contextcapture
https://pix4d.com/
https://micmac.ensg.eu/index.php/Accueil
https://www.nframes.com/
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Actually, the first step for point cloud generation is to find the relative position be-
tween the images, providing tie points. Only for these points, the software provide
the correlation between the pixel of the image and the 3D point that is generated.
Based on these tie points the software is able to continue creating the dense point
cloud.
The panoramas are created from 7 separate images (6 horizontal and 1 vertical). Au-
topano is a suitable software for stitching the panoramas as the generated panora-
mas are corrected from distortion.
The software that are tested for generating dense point cloud are displayed in Table
5.1. General information is provided about the time, the generated points, the pro-
cedure and the functionality of the software. As it has been mentioned before, from
the tested software only two of them provide the functionality to use panoramas
as spherical images for point cloud generation, Table 5.2 displays some characteris-
tics about these software. In Figure 5.4, an example using Agisoft Photoscan with
spherical test images is presented 5.2.

Figure 5.4: Point cloud generated from panoramic images using Agisoft Photoscan.

Table 5.2: Software details.

Software Images Tie points Dense cloud Time
Agisoft Photoscan 8 7 616 2 4551 773 3 hours
Pix4d 8 10 859 1 098 077 3 hours

Both software/packages are using the panoramas as spherical images, with the
center of the image, as an ideal sphere. The point clouds that are generated from the
two software, are compared in CloudCompare. The results are displayed in Figure
5.5. A diagram with statistics is provided taking into account the approximate
distances between the closest points. In the diagram, it is shown that the differences
between the two point clouds are less than 3cm. This is not such a big difference
taking into account that the registration error is close to 1cm.

5.2.2 Comparing point clouds to Image-Based with Laser scanner technique

Both techniques have their own advantages and disadvantages. Depending on the
application and the accuracy that you want, you can choose the method that is more
applicable. For our implementation the point cloud is generated from 23 panoramic
images (with pipes) using camera Nikon 5200 Dslr. The software generates a total of

http://www.kolor.com/autopano/
http://www.kolor.com/autopano/
http://www.agisoft.com/
http://www.agisoft.com/
http://www.agisoft.com/
https://pix4d.com/
http://www.danielgm.net/cc/
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Figure 5.5: Compare point cloud from the
two software.

Figure 5.6: Approximate distances between
two different point clouds.

40 011 485 points and the density is depicted in Figure 5.9c. In order to compare the
two methods in a more quantitative aspect, an example will be tested to estimate in
average, the density of each method. From our point cloud a part 1.5m× 1.5m of a
wall is taken and then, the density is computed, Figure 5.7 with radius 0.02cm. The
amount of points that are part of this wall are 141 505.

Figure 5.7: Estimated density using part of the wall.

The laser scanner that Fugro uses is Zoller + Frohlich imager 5010C the character-
istics are displayed in Table 5.3.

Taking this example of a wall, the density of the wall segment from our generating
point cloud (141 505 points) is compared to the one that will theoretically be created
with the laser scanner. It is supposed that the laser scanner will be located close to a
wall about 2m-3m distance and then, taking into account that there are no obstacles
and knowing the characteristics of the laser scanner, it is possible to compute the
number of the points. The angular step is 0.004 deg, so for the distance 2m of

https://www.fugro.com/
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Table 5.3: Laser scanner characteristics.

Laser scanner Z&F Imager 5010C
Beam divergence < 0.3 mrad
Range 187.3m
Min distance 0.3m
Resolution range 0.1mm
Data acquisition rate 1.016 million pixel/sec
Linearity error <= 1mm
Vertical field of view 320

◦

Horizontal field of view 320
◦

Vertical resolution 0.004
◦

Horizontal resolution 0.002
◦

Vertical accuracy 0.0007
◦rms

Horizontal accuracy 0.0007
◦rms

the wall the step is 0.0007m. In a area of 1.5× 1.5 the total points are 306 122 448

points. This number is far bigger than the point cloud that is generated from the
images. This is only an example to see the differences between the two methods.
Generally, the amount of the points that could be captured from a laser scanner,
depends on many parameters: distance, inclination, obstacles etc. Because this is
only an example and not an actual implementation, it is not possible to estimate the
differences in accuracy between these two techniques.

5.2.3 The impact of the Panorama Numbers

The next aspect that was tested is the optimal number of images that are necessary
for a point cloud similar to the one that is acquired from the laser scanner. In the
test, three versions of the network were used. The first one uses all the (23) panora-
mas, the second one, half of the panoramas (10) and the last one, a quarter of the
panoramas (5). Table 5.4 demonstrates that, as the number of the panoramas grows,
the number of the points increases.

Table 5.4: Agisoft Photoscan details while decreasing the number of the panoramas.

Images Quality Dense cloud Time
23 High 40 011 520 6:30 hours
10 High 25 619 925 3:30 hours
5 High 6 133 907 1:00 hours

It is important to notice the number of points that are measured by the software.
Within almost 6 and a half hours, the program generated 40 011 520 points in high
quality from 23 images (with pipes), but only 3 hours were needed for generating 25

619 925 points from 10 panoramas. The Figure 5.8 shows the location of the panora-
mas, after the alignment of the images that is needed before continuing with the
dense point cloud generation. The blue spheres show the position of the images.
When the sphere is dark blue, it means that the software is taking into account
the image in order to create the point cloud. If the image has light blue color, it
means that it is unable and the software is not taking into account this image for
the generation of the point cloud. The accuracy of the different point clouds that are
generating from the different number of the panoramas, it is evaluated comparing
the point clouds. Because the alignment of the position of the panoramas do not

http://www.agisoft.com/
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changed also, the differences between the points are less than 1cm. The comparison
has been done in CloudCompare.

(a) Position of 5 panoramas

(b) Position of 13 panoramas

(c) Position of 23 panoramas

Figure 5.8: The alignment of the panoramas using different number.

The density of each point cloud is computed to show the differences while the
number of the panoramas is decreased, 5.9.

The density is estimated by counting the number of neighbors N (inside a sphere
of radius R) for each point. In our case the number for the density will be estimated
in a radius of 0.05m. When comparing the results that are presented in Figure 5.9,
it is noticeable that in general the part with the highest density of the whole point
cloud is the floor. This is because the floor is a flat surface and could easily be
reconstructed. It is important to mention that according to the Figure 5.9c which
is the one using the 23 panoramas, the highest number of neighbors is 1008 in a
radius of 0.05m. In contrast to the point cloud that is generated by 10 panoramas,
the highest value reaches 751 neighbors. Furthermore, according to the diagram

http://www.danielgm.net/cc/
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(a) PC density using 5 panoramas

(b) PC density using 10 panoramas

(c) PC density using 23 panoramas

Figure 5.9: The density of the point cloud according to the different number of the panora-
mas, estimated with a sphere of 0.05 radius.
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which is placed at the right of each figure, the average value of the neighbors that
are in 0.05m radius, is almost the same, which is close to 330 neighbors.

5.3 projections on test data
Following our geometric methodology, in Figure 4.9 the main goal is to find an
efficient way to combine different methods for object detection. The methodology
can be applied to different set of datasets. In our case, the pipes are the main
object. Every object has its own characteristics and could be described by its own
boundaries. Boundaries are important information and could definitely be useful
for object detection. Images offer better boundary detection and through image
processing, the edges can be extracted. The correlation between the 2D boundaries
with the 3D points is valuable information. In this section, different approaches are
implemented to ultimately find the most efficient way to achieve the connection
between the panoramas and the point could that has been generated from them.
Agisoft Photoscan software provides a Python script that allows the user to execute
all the procedure, providing access to the internal parameters. The projection of the
3D points back to the panoramas, taking into account the internal and the orientation
parameters, it is possible for each image. As a result, each 3D point is projected,
getting the pixel that is related to the specific panoramic image. Because of the
360
◦field of view, it is difficult to have points out of the image field. Moreover, this

does not mean that every 3D point in the whole point cloud could be projected to
one panorama (occlusion). After research, through these different kind of software
and also, contacting with the developers, we could not find a software that could
provide information about the relation between the 3D point and the image that is
strongly related to. Through the Python script the projection error is estimated from
each 3D point to the related image. This way, an estimation about the relation with
the image is provided. The following approaches are computed to test whether the
edges of the images could be related with the actual edges in the 3D point cloud.

5.3.1 First approach-Projection from 2D to 3D

First, image processing to the initial panoramas is applied to find the edges on the
panoramic images. Canny edge detection is used in order to find the edges on the
images, as it is the most accurate and promising method for edge detection Canny
[1987]. In Chapter 4, the theory of the algorithm is briefly explained. The detected
edges are stored with their positions and their orientations, Figure 5.10 depicts the
canny edge results. Different thresholds are tested to reduce the noise in the final
image. Lighting conditions and the reflectance of the material could cause problems
at the final result.

Figure 5.10: Canny edge detection.

http://www.agisoft.com/
https://www.python.org/
https://www.python.org/
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In the first implementation, the boundaries (pixels) were used from each panorama
in order, to project them, as 3D points and to check from this way, if we could get
the 3D edges, Figure 5.11. This projection could be done using the python script that
integrated to Agisoft Photoscan, using the internal parameters of each panorama.
The result is not as it is expected. The result is even worse, if the edges are com-
bined from the projection from different panoramas, Figure 5.12. The edges from
the images are not necessarily responding to the actual 3D points and as a result,
the projected edges do not have the real depth. It’s worth mentioning that some
pixel-boundaries of the panoramas are not connected with the real point cloud be-
cause the software could not reconstruct them.
Many details have been detected from the image edge detection which as points do
not exist, as a result a lot of noise is produced, Figure 5.12.

Figure 5.11: First approach: Edges in white
color direct projected in 3D space.

Figure 5.12: First approach: Edges pro-
jected direct to 3D space
from more than one image.

5.3.2 Second approach-Projection from 3D to 2D

Taking into account some constraints, the existing 3D points were projected back
to pixels for each image, explained in Chapter 4 , Section 4.2.3. This introduced
some problems that were followed with some possible solutions. Due to image
occlusion, it is not possible that all 3D points are part of one image. Of course, some
points would not be generated from one image, so this led us to remove, the points
that have a projected error from each image. Thus, a maximum distance between
the points and the image position is specified. Another important constraint is to
define the closest distance from the position of the 3D point to the 3D edges, which
are projected from the first approach to the point cloud. Define a distance threshold,
the edges could be related with the closest points. This results to the points being
related to the edges from each image. Each constraint speeds the whole procedure
and gets the desirable output, Figure 5.13.

5.3.3 Third approach-Direct projection through the point cloud generation

Another idea was to detect the straight lines on the panoramas and project them to
the initial photos. Hough line transform is used for the line detection on images,

http://www.agisoft.com/
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Figure 5.13: Connection existing 3D points with the pixels which are edges on images.

Figure 5.14: Second approach: 3D

points that corresponds
to pixels which are part
of the edge in image

Figure 5.15: Second approach: Differences
between pixels that are edges
on images, direct projected in
3D with the actual 3D points.

Figure 5.16.

The software for the point cloud generation took these images as input. After
applying the HT the lines detected are colored red. If the lines in the panoramas
exist in the same position in more than three panoramas, it is expected to color the
point cloud red at this part. The result in Figure 5.17, seems promising, as some
lines are depicted as red points through the whole point cloud. This way, some of
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Figure 5.16: Hough line 2D transform.

the boundaries are clearly defined directly to the point cloud, Figure 5.17 and 5.18.
The fact that the lines are colored in red, create some doubts for the final result
because the algorithms are using the features for the image orientation.

Figure 5.17: Point cloud with edges in red color. Figure 5.18: Door with edge de-
tection.

Then, as the edges are defined according to our methodology described in Chap-
ter 4, Figure 4.9, the next step is to fit the lines to the points that are boundaries.
To achieve this, it is tried to fit Hough 3D line transform to the points that are red
in the point cloud. As mentioned before, this method is used for the 2D direction
to detect lines through raster images. Now, our scope is to apply this method in
3D environment. Due to the additional dimension, the number of the parameters
are larger in 3D space than in 2D, making the same procedure more difficult for the
same output [Watson, 2017]. The algorithm has been already explained in Chapter
4, Section Image processing. In article [Dalitz et al., 2017], Hough 3D line transform
is applied on point clouds. Some parameters are predefined in order to execute the
algorithm:

• The xy step width (dx): Which defines the hough space cell in the xy plane.

• The maximum number of lines: The maximum number of lines that will re-
turn.

• The minimum vote count. The lines with less than the minimum votes are not
returned.
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• The returned information is: The detected lines are returned with the number
of the points, the anchor point and the line direction. Figure 5.19 shows the
result for our test data.

Figure 5.19: Fit lines to points applying 3D Hough line transform (Data: Empty room)

In the end, the parameters of the lines are defined in the 3D environment. These
parameters are the normal vector (the direction of the line) and the one point part
of the line (the mid point of the points that are part of the line). These parameters,
are possible to use in order to detect, if a cylinder exists close to them. In Section
5.4, the data for our main application are tested, combining the 2D boundaries with
3D points part of pipe boundaries, for the connection points-pixels, following the
methodology that is described in Chapter 4, Section 4.2.3

5.4 smart point cloud framework for pipe de-
tection

In this Section, the SPC framework is applied for pipe detection using the panora-
mas for point cloud acquisition. In Figure 5.20, the different expertises are clearly
defined, while each one has its own characteristics and techniques that are applied
to the point cloud for the pipe detection. Every part of the methodology is fully con-
nected to the other, making the whole methodology strongly related and based to
the data base system. Following this framework, the results from each expertise are
stored in such a way that provide, an intelligent environment for analyzing the data.
The techniques take full advantage from the given data 2D and 3D to combine the
features in order to detect the pipes. The whole procedure of the implementation
of this framework is provided in this Section.

The actual data which are the panoramic images with the pipes, the whole proce-
dure is applied from the beginning, combining the second and the third approach.
For the final point cloud 23 panoramas are used. The result is presented in Figure
5.23 and some statistics about the procedure are shown in Table 5.5
The processing procedure includes two main stages:

1. The first part is the camera alignment. At this stage, the software tries to find
common points on the photographs and matches them in order to find the
position of the camera and defines the camera calibration parameters. As a
result, it creates a sparse point cloud.
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Figure 5.20: SPC framework.

2. The next part is about generating the dense point cloud based on the camera
positions and pictures.

Table 5.5: Information about software stages on same source data (with pipes).

Stage Images Type of image Quality Result Time
Alignment 322 Fish eye Low quality No result
Alignment 46 Spherical High 47 841 tie points 1:40 hours
Alignment 23 Spherical High Not enough memory —
Dense point cloud 23 Spherical Medium 11 543 997 1 hour
Dense point cloud 23 Spherical High 40 011 520 6:30 hour

According to the manual of the software Agisoft Photoscan , the number of pho-
tos that can be processed, depends on the available RAM and reconstruction param-
eters. Assuming that a single photo resolution is 10 MPix, 4 GB RAM is sufficient
to make a model based on 30 to 50 photos. 16 GB RAM will allow to process up
to 300-400 photographs. In our case, the available RAM is 16 GB RAM but, the
resolution of one panorama is 16882 × 8441. This means that the resolution of one
image is almost 10 times higher than the single one. Therefore to what concerns
processing, the computer should be really powerful.
The point cloud that is used for the main application is the one that is created from
23 panoramic images with high quality and the result is a dense point cloud with 40

011 520 points, Figure 5.21. The problem is that the point cloud is always generated
from images that are more noisy than the ones that are generated form the laser
scanner. In Section 4.2.2, in Chapter 4 a method in order to reduce the noise of the
point cloud is presented and is applied to our point cloud.

Filtering the point cloud is an important procedure because it removes the out-
liers and the noise, that will probably create problems in the implementation and
influence the final result. After filtering the point cloud the points reduced to 32

415 567 points. The difference is observed when looking at the two Figures 5.21 and
5.22.

http://www.agisoft.com/
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Figure 5.21: The raw point cloud.

Figure 5.22: Filtered point cloud from noise and outliers.

5.4.1 Extract the boundaries in point cloud from panoramas

The combination of the two methods that are analyzed in Section 5.3.2 and 5.3.3
contributes to a better estimation of the boundaries of the cylinders in 3D. After
applying the Canny detection and the Hough line detection to the panoramas did
not provide a result with clear points of the boundaries from the cylinders. As it
can be observed in Figure 5.23 and in Figure 5.24, only the points that are part of
the boundaries are represented.

Figure 5.23: Point cloud with red boundaries from images

In photogrammetry, in order to get the actual 3D point cloud from the panoramas,
it is required to see the same part of one real object at least in three images. Our
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Figure 5.24: The points that are part of the boundaries from images

concept, works really well when the edges of the object are clear and can be detected
in all the images. In Figure B.3, there is an example of the boundaries of the door
where the 3D point boundaries are clearly visualized in our final point cloud.

Figure 5.25: Example: Boundaries of the door.

The problem is that the cylinders have no edges and can be projected with differ-
ent boundaries, always depending on the angle the photo is captured. Hence, it is
difficult to have the boundaries of the same pipe in different three images, in order
to depict with the same color in the 3D point cloud. Then, the second approach is
used to enhance the final result. In the second approach, as described in the previ-
ous Section, the lines from the HT detection from some panoramas are re-projected
from 2D in 3D. This approach contributes in providing more points that are lines in
the point cloud, in order to acquire more points-boundaries that are part of cylin-
ders. Figures in 5.26, 5.27, 5.28 are 3 different example panoramas with cylinders,
demonstrates the projection of the boundaries to the point cloud. In Appendix B,
panoramas are provided in bigger size, for better visualization of the Hough Line
Transform results.

Projecting the points which are part of the lines in 3D environment has results in
the final output. In the first example, Figure 5.26 more points are projected in the
same line segment or are extended at the same direction of the existing points-line
segment. In the third example, the result is more confusing, since the 3D points that
are projected on the panorama are not part of the big cylinder. By projecting them
back to the point cloud as boundaries probably confuses us, because in the end a
line is not able to fit to scattered points.
While having the points that are part of lines, the 3D Hough line transform is again
applied now in 3D environment, as it is described in Chapter 4, prototype design,
in Section 4.2.5.
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(a) HT detection in panorama

(b) Projection in 3D the pixels that are boundaries

Figure 5.26: First example to enhance the boundaries in 3D.

(a) HT detection in panorama

(b) Projection in 3D the pixels that are boundaries

Figure 5.27: Second example to enhance the boundaries in 3D.

For the final implementation, the methodology for the pipe detection is applied in a
segmented part of the whole point cloud, Figure 5.8. The points that are boundaries
of the pipes, projected on the 3D environment are also, shown in red at the same
Figure. Then, the 3D HT is applied to get the parameters lines. Three lines are
detected and the points that are close to these lines are tested, if they are part of the
cylinder.
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(a) HT detection in panorama.

(b) Projection in 3D the pixels that are boundaries.

Figure 5.28: Third example to enhance the boundaries in 3D.

Figure 5.29: Segmented part of the point cloud for the pipe detection.

5.4.2 Fit Circle and Pipe detection

In order to test, if on the projected 2D segments, a circle could fit, the methodology
is described in Chapter 4, Section 4.2.5. To do this, the perpendicular plane cut, the
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Figure 5.30: 3D HT to fit lines to segmented points.

parallel line on the mid point. Then, the points that are close to the parallel line
and close to the perpendicular plane are projected on the perpendicular plane. If
the points are part of a circle, then they are probably a part of a pipe too. From
the 2D circle that fits on the projected points, it is able to extract the parameters in
order to construct the cylinder. To specify which points are part of the cylinder, first
the distance from point to line center is computed, if the distance is close to the
radius then the point is part of the cylinder. The points that fulfill these conditions
means that are part of the cylinder and are defined as segmented points. Table 5.8,
provides the characteristics and the parameters of each cylinder. Three cylinders
are detected as it is expected, Figure 5.39. In order to understand about which
cylinder we are referred to, the cylinders are mentioned according their position
at the segment: Right up cylinder is represented with green, the right down with
blue and the left with red color. From the parameters that are displayed in Table 5.8,
estimations of the accuracy of the results can be extracted. From the vector direction
of the cylinders, it is shown that the cylinders are parallel to each other which is
correct. Furthermore, the two segments of the cylinders are part of the same pipe.
This is also proven in the connecting components that are analyzed below. It could
be also guessed when observing the table that the direction and the radius have
similar values.

Table 5.6: Cylinder parameters.

Cylinder Center Direction Radius RMS Real Radius (m)

Right up (17.9321, -0.9212, 10.089) (-0.1314, -0.9647, -0.2281) 0.18 0.015 0.11

Right down (17.5603 ,-3.64438 ,9.52677) (0.12682, 0.9685, 0.2141) 0.165 0.039 0.11

Left (18.3937 ,-1.47341 ,10.0645) (0.0967, 0.9728, 0.2101) 0.152 0.03 0.13

According to our methodology, Chapter 4, each segment is defined and connected
to the other segments fulfilled some criteria. If they fulfill the criteria then, they are
considered as part of the same cylinder. It is an iterative procedure while in the
end the whole pipe is identified. When this procedure is tested on the segmented
part of the point cloud, three cylinders are detected. In Figure 5.31, the 2D circles
are plotted applying least square adjustment, best fit of the circle. From the plots, it
is obvious that the points that are close to the lines are not perfect curves and there
is still a lot of noise. Then, the circle is plotted back to the 3D environment, Figure
5.40. Finally, with these parameters the surface of the fitting cylinder could be
generated for visualization reasons. Finally, the cylinder is fitted to the segmented
points, Figure 5.37. In our case, based on some criteria, it is examined whether
the segments are part of the same cylinder. First, it is checked, if the direction of
the line is the same with another line direction. Then, if the two segments have
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also points in common, that means that they are part of one cylinder. Finally, the
Root Mean Square Error (RMSE) is computed. It is estimated how good enough the
points are fit to the detected cylinders. If the RMSE is less than 1, it seems that the
segment is likely to be a cylinder. For the validation of our technique, the radius of
the cylinders were measured. Also, some characteristic parts were measured (door
width) to be able to compute the scale of our point cloud and then, to estimate the
accuracy of our results.

(a) Right up part of the pipe

(b) Right down part of the pipe

(c) Left pipe

Figure 5.31: Fit 2D circle to projected points.
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Figure 5.32: Right up part of the circle in 3D Figure 5.33: Right up part of the pipe
points fit on cylinder.

Figure 5.34: Right dowm part of the circle
in 3D

Figure 5.35: Right down part of the pipe
points fit on cylinder.

Figure 5.36: Left part of the circle in 3D Figure 5.37: Left part of the pipe points fit
on cylinder.

5.4.3 Store in Database

The final segments of the points are stored in a database. In A the SQL statements
for the creation of the tables and the storage of data are displayed, following the
UML schema that is defined is Chapter 4, Section 4.2.7.
The storage of the point cloud is done with PostgreSQL using PostGis extension.

https://www.postgresql.org/
https://postgis.net/
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Figure 5.38: Points part of
the three cylin-
ders.

Figure 5.39: Visualization of the
three cylinders on the
point cloud

Three tables are created according the UML schema (points, segments, pipes). Specif-
ically, the structure of the database storage is such that storing billions of points as
individual records in a table is not an efficient use of resources. Instead, the seg-
ments are going to be stored as groups of PcPoint. Each pipe should hopefully
contain points that are part of the same geometry. Instead of a table of billions
of points, single MultiPoint records is a collection of point data that can be repre-
sented in the database, as a much smaller collection of points records. The geometry
of the pipes is stored with the following characteristics: the Id of the pipe which is
a serial number, the centre of the pipe which is stored with geometry PointZ, the
direction of the pipes like a vector, the radius which is float and finally, the segment
of points that are part of the pipe, stored as MultiPointZ.

5.4.4 From the point cloud to virtual and augmented reality

Interaction is one of the main factors of mixed reality. A graphic application based
on Unity could be developed. This application displays the point cloud including
also, the geometric information related to geometry and semantics. These elements
are responsible for the selection of scene points-objects by mouse-clicking, which
will provide interactivity, displaying the information that is related to the points.

https://unity3d.com
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It is possible to add tags which store additional attributes related to the points of
interest, that will allow the user to add aspects to the point selected on the screen
which is related to one pipe. In the end, when one point is clicked the whole pipe
that the point is related to is colored.

5.4.5 Fit second polynomial curve

Since the main object of interest is the cylinder, which can be represented by second
polynomial order, the points in each segment are fitted to a quadratic equation.
According to our methodology in Section 4.2.6, the parameters of the polynomial
could be estimated and for the fitted polynomial the principal curvatures of the
surface can be computed. In Table 5.8, the principal curvatures and the radius, are
estimated following the formulas in Section 4.2.6. The segment could be cylindrical,
if k1 > 5, k2 < 1. Furthermore, the visualization of the estimated polynomial is
represented, in Figure 5.40 ,5.41 and 5.42 for three segments. It can be observed
form the Figures that the fitted polynomial surface does not look like a cylinder
and only two cylinders out of the three segments are detected as cylinders. It is
another way to implement our methodology and to estimate and investigate, if the
segment is part of a cylinder. To compare the two methods, this method is faster
than the previous because you can directly fit the second polynomia and avoid the
projection in 2D and rotation techniques. Moreover, the parameters of the cylinders
are not estimated directly, only the radius could be defined. The radius values that
are estimated from 2D circle fit are close with the radius values that are estimated
form second polynomial fit, close to 1-2cm difference.

Table 5.7: Polynomial coefficients.

Segment k1 k2 R Cylinder
Right up -0.6423 -2.3285 – No
Right down 10.4652 -3.0463 0.0955 Yes
Left 6.6012 -1.7080 0.1514 Yes

5.4.6 Compare with RANSAC results

When comparing our methodology by applying the RANSAC algorithm for pipe
detection directly to the point cloud, it is vital to have a concrete idea about our
methodology’s performance. RANSAC algorithm is a broad technique that is general
used for shape detection in 2D and 3D. The results are compared and analyzed. In
Chapter 4, Section 4.2.9 RANSAC algorithm is explained using the cylinder model
parameters. Our method is based on an algorithm that is provided from Oesau
et al. [2018] using CGAL Library, [Hemmer, 2018]. There are five parameters that
should be pre-defined and which effect the output.

• Epsilon and Normal threshold: Parameter epsilon defines the maximum
tolerance Euclidean distance between a point and a shape. This is important
value that leads to over or under segmentation, default value is 0.01. The
error between a point and the shape is defined by its Euclidean distance and
normal deviation. The normal deviation is computed between the normal at
the point and the normal of the shape at the closest projected point on the
shape. Default value is 0.95.

• Minimum points: The minimum points that are part of the shape that is de-
tected. Default value is 500.

https://www.cgal.org/
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Figure 5.40: 2nd polynomial fit to right up
segment.

Figure 5.41: 2nd polynomial fit to the right
down segment.

Figure 5.42: 2nd polynomial fit to the left
segment.

• k-NN: The number of the nearest neighbors that should be taken into account
for the normal estimation. Default value is 20.

• Radius: The radius threshold that determines the minimum radius where the
cylinders are detected. Default value is 0.5.

After applying this algorithm to the same data, Figure 5.30, with the default
values of the parameters that are analyzed above the output is that more cylinders
are detected, close to 13-15 shapes. According to the results of our methodology, a
prediction of the radius is provided to what concerns a decrease in the number of
the detected shapes to 6. This happens due to the noisy point cloud, because the
points do not have a proper geometry cylinder shape. In Figure 5.43 the detected
cylinders are visualized. A good idea could be to apply the RANSAC algorithm only
to the segments close to the boundaries. This way, the results could be improved.
The implementation is carried out at the command prompt environment and the
output are the shapes with the cylinder characteristics: center, radius, direction,
points. Also, an output .ply file is provided which visualizes the point that is part
of cylinders with different color. Table 5.8 shows the parameters of the cylinders
that are detected from RANSAC algorithm. Six cylinders are detected with their
characteristics. As it is observed only the second and the fifth cylinder are close to
our results.
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Figure 5.43: Visualization of the cylinders that are detected from RANSAC algorithm.

Table 5.8: RANSAC Cylinder parameters.

Cylinder Center Direction Radius Color

1 (17.873, -1.7268, 9.9187) (-0.146, -0.975, -0.164) 0.065

2 (17.796, -1.814, 11.056) (0.1185, -0.952, -0.2799) 0.126

3 (17.950, -0.9357, 10.025) (-0.0970, -0.979, -0.176) 0.215

4 (17.724, -1.754, 9.904) (-0.159, 0.9820, -0.1016) 0.143

5 (17.692, -2.809, 9.696) (0.1207, 0.968, 0.215) 0.205

6 (18.293, -1.372, 10.277) (0.120, 0.9689, 0.2158) 0.3





6 C O N C L U S I O N S & F U T U R E W O R K

This final Chapter takes into consideration all the conducted research that has been
done and explained in the previous Chapters. The results and the problems that
are addressed during the whole procedure lead to some final remarks and discus-
sions. In Section 6.1 the main and the sub-questions will be briefly answered, in
Section 6.2 the contribution and final remarks of our method are discussed and
recommendations about the future work reviewed in 6.3.

6.1 research questions
This Section answers the research question and the sub-questions, which are pre-
sented in Section 1.1. In doing so, the sub-questions are being answered first. The
sub-questions are essential for the whole structure of the research and also, in the
end to answer the main research question. Finally, the main research question is
answered.
To begin with the sub-questions:

1. What are the differences between point clouds that are created using terres-
trial (close-range) photogrammetry and laser scanners?

The differences between these two methods are defined in many aspects, see
Section 4.1.1. Each one has each own advantages and disadvantages, de-
pending on the application and the accuracy of the result that is needed, the
methodology could be defined. Image-based techniques for point cloud gen-
eration provide a quick, low cost procedure that is generally used for visual
requirements because the images provide a colored point cloud and is used
more when the object is small and has more details. Instead, laser scanner
is used more for bigger environments, producing massive point clouds with
high accuracy but with difficulties in management. In many cases, a combi-
nation of both techniques is recommended. In our methodology, image based
technique for point cloud acquisition, is used. The 2D features and charac-
teristics that panoramas could offer are extracted in order to get the bound-
aries in 3D. Instead of applying the algorithms directly for object detection, a
SPC framework is created in which, different techniques are combined in an
efficient way to get the parameters of the object that are needed to be recon-
structed. The choice of using images as the only input data, is not only for the
data acquisition but also, contributes on the object detection.

2. To what extent do the number of panoramic images affect the generated point
cloud in terms of density and accuracy?

In Section 5.2.3, the examination whether the number of the panoramas are
affecting the final result is investigated. For this reason the number of panora-
mas is reduced and the whole procedure is executed again. After plotting the
results, it is determined that the alignment (position) of the images has not
changed. Therefore, in terms of accuracy, the results should be the same too,
due to the high resolution of the image. It is important to notice that the dif-
ferences between the point clouds are less than 1cm. In terms of density, the
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number of the panoramas will definitely affect the final result. The density of
the point cloud based on close-range photogrammetry is mainly determined
from the percentage of the overlapping between the panoramas, the quality
and the resolution of the image and the light conditions of the image. Keeping
the same quality, the same resolution and changing the number of the images,
changes the density. It is expected that the most dense part from the point
cloud is the floor as it is flat and can easily be reconstructed. Therefore, an
increase in the number of images is critical to increase the density of the point
cloud. In Chapter 4, Section 5.2.3 it is shown that with a radius of 0.05m, the
maximum density using 5 panoramas is 340 neighbors, using 10 panoramas
is 751 neighbors and with 23 panoramas the highest density is close to 1008

neighbors.

3. What is the optimal way for object detection, using feature detection and seg-
mentation techniques on images, as applicable to point clouds?

The images offer better boundaries visualization. It is easier to visualize and
detect boundaries on the 2D images instead, directly on the 3D point cloud.
This led to the use of the imgaes, in order to connect the 2D image information
with the 3D point cloud and to acquire semantic information. Furthermore,
the use of the panoramas for the point cloud acquisition is a challenge. Not
so many implementations have been done using spherical images for point
cloud generation. The actual choice for using the panoramas due the fact that
they provide 360

◦field of view, acquiring better results from the boundaries
of one object and not part of it. As it is already mentioned, the panoramas
are not only the input data for point cloud acquisition but also, part of our
methodology for object detection. Combining these two main factors makes
the whole procedure easier for the segmentation and object recognition. Ac-
cording to our methodology, knowledge is provided directly to 3D points after
the point cloud acquisition. This is because the image processing for bound-
ary detection was applied initially on the images, before these images were
used for the creation of the point cloud. The boundaries are detected with
red color. After the point cloud generation the red boundaries that were the
same in more than three images could be directly colored red in the 3D point
cloud. According to the proposed technique, the detection of the object and
the object fitting are achieved faster, because the needed information is found
and it can be assigned to the object providing promising results.

4. What is the best way to combine domain-geometric-device knowledge for
pipelines detection?

The SPC framework combines three different sources: device knowledge (point,
density, color, intensity etc), analytic knowledge (normal, shapes, segments
etc) and domain knowledge (definition, semantic attributes etc). According
to our methodology, the combination of these three domains are presented
in Figure 5.20. The result is to define the pipe, as one object. The device
knowledge from close-range photogrammetry includes the points, the color,
the normals and the density. The analytic knowledge is about the segmenta-
tion techniques that combines the 2D (pixels) with the 3D (points). Finally, the
domain knowledge contains the information about the actual type and charac-
teristics of the object with semantics. The UML model shows the relationship
between the points and the segments that are part of the pipe, the attributes
can directly be integrated within the database system. This method combines
different characteristics from different sources by using different techniques.
The method seems promising and could be applied to different datasets for
object recognition in 3D.
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5. What are the possibilities of representing the data in VR/ AR?

The main idea is an application that is based on the point cloud for mixed
reality (VR and AR. This application displays the enriched point cloud with
information related to stored geometry, attributes and semantics. At the same
time, by means of the mouse click, each point element is responsible for the
whole selection of the object (pipe) that this point belongs to. After the click,
the information of that pipe (geometry attributes) will be displayed. These in-
teractions provide a direct immersion in a coherent structure, bridging virtual
environment with point cloud applications.

Lastly, the main research question:

What is the Smart Point Cloud way to provide a framework for object detection (pipelines),
using panoramic images for point cloud creation?

The SPC framework provides an efficient way to analyze the data by using dif-
ferent techniques that are suitable in each case for acquiring the results. Since the
subject is always different, the methods and the techniques that are used vary, in
order to provide the desirable result. The important contribution is to associate the
domain knowledge with the information that you gain from the data acquisition
and the geometric analysis of the point cloud with an efficient storage, showing the
connectivity between the points and the real objects. The structure that is proposed
in our methodology for pipe detection, is a way to combine the 2D boundary in-
formation with the 3D points. This connection benefits the geometry analysis and
finally, the pipe segmentation. The fact that the panoramas are used for point cloud
acquisition and for the image processing is an important contribution as it is inves-
tigated, because it can efficiently improve the final segmentation by extracting the
2D features. The main idea is to store points instead of reconstructing the object that
is detected. This implementation is a concrete use case benefiting both internal re-
lationship, geometrical and domain knowledge. A future possible implementation
can be an intelligent environment, where the user will be able to interact with the
points and get the information that he wants.

6.2 contribution & discussions
In this thesis, the unstructured point clouds challenges are addressed. The SPC

framework addresses these challenges according to Poux et al. [2017b] and intro-
duces the idea of providing an intelligent environment where data from different
sources are combined. Applying different techniques to extract the information that
is needed according to the geometric methodology, is also discussed. The concept
is to eliminate the modelling step, as it is always time-consuming, error-prone and
most importantly leads to a loss of crucial information that could be directly ex-
ploited. The objective is to detect the object as a group of points that belongs to
an object with specific characteristics. Interpreting point clouds requires specific
knowledge and spatial skills in order to extract important information for the user.
This highlights the necessity to attach domain information through visual and se-
mantic variables. All the necessary information could be retrieved from the point
cloud and its attributes, without the need of additional tasks, as are needed for full
reconstruction, by making a more intelligent structure.
The major contribution to our field is that a SPC model is developed, bringing intel-
ligence to point clouds via connected 2D with 3D available information, linking the
available knowledge and procedures to acquire semantics in data. Our method is
implemented in Python and PostgreSQL database and allows combining semantic
and spatial concepts on points. The main goal is to increase interoperability and to

https://www.python.org/
https://www.postgresql.org/
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acquire enriched point cloud model to be adapted by many applications through
specific domain ontologies.

6.3 future work & recommendations
This section provides some recommendations for future work. The future work
has to do with areas that were not investigated due to time limitations. Possibil-
ities for improving some parts of the methodology in order to improve the final
performance, is discussed.

• Some of the limitations of the implementation that influence the results con-
cern image processing techniques. The lighting conditions, the reflectance and
the fact that the images are panoramas, bring some problems in the analysis.
Moreover, noise problems influence the expected result after applying the HT

technique. Regarding the lighting conditions, a better capture in combination
with the thresholds applying in HT could solve the problem. The straight lines
extraction from the panoramas is more difficult as the horizontal lines are pre-
sented, curved. In this case, some previous projection to rectilinear projection
that keeps the lines straight could improve the final result.

• Another factor that could enhance the final result is the procedure of the point
cloud acquisition. Using panoramas for point cloud acquisition is not really a
common technique. An investigation on how the point cloud could be more
accurate without so much noise, will enhance the performance of the object
detection and the point cloud processing in general.

• It is really important to plan the data capture procedure, as in photogram-
merty, photos (quality, light conditions) and their overlapping area are the
most important factors that someone should take into account for good qual-
ity of the point cloud reconstruction.

• Time limitations and difficulties in planning, make it impossible to acquire
the point cloud from laser scanner. So, in the end the analysis had been done
in a test example, Section 5.2.2. One of the possible future work is to acquire
the point cloud from the laser scanner to investigate, in which terms the point
cloud that is generated from laser scanner is more complete and accurate.
Furthermore, a general conclusion is that an integrated point cloud generated
by merging the process of the image-based and laser scanner point clouds will
improve the completeness and consistency of the results.

• Apply our methodology to the whole point cloud. While implementing the
geometric methodology to the whole point cloud for pipes detection, it would
be interesting to investigate the performance and to display the final results.

• Apply our SPC framework to a different dataset. Our framework is a general
framework that could be applied to different datasets for object recognition.
The device, geometric and domain expertise are the main parts and each of
them has its own attributes and characteristics depending on the object that
it is detected. In this thesis, some initial results are displayed in Section 5.3,
where test data were used in the beginning and some results were provided
about boundaries detection. The panoramas from an empty room are used for
point cloud generation and the connection between the edges from the panora-
mas to the point cloud. It seems that our idea performs well when the edges
are clear boundaries, Figure 5.17. A possible framework could be to apply our
SPC framework to detect the doors and windows in indoor environment.
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• Create points in order to provide a more complete object visualization. After
detecting the points as pipes, the information about each point to which pipe
is belonging is available. By this knowledge, incomplete parts of the cylinders
that were not able to be captured (due to occlusion) could be generated.

• Improve the automatic procedure. Due to time limitation the procedure of our
methodology is not fully automatic. For example, there are different parts of
the implementation that were performed separately. For instance, the Python
script that is integrated in Agisoft Photoscan and the different test data that
were provided, are some of the reasons that made the automation more diffi-
cult.

• In regard to the virtual reality representation of our point cloud. In Section
5.4.4, the whole concept, on how the point cloud could be visualized in virtual
reality, is described. This is a way to visualize our results and to interact with
the user. The idea is to make an interaction between the points and the user
and to provide semantic information about the pipes and interaction with the
industrial environment. For example, a click to a point can highlight all the
points that are part of the same pipe with a unique color can be assigned.
Moreover, the available information stored in the database could be displayed.
Finally, possible interaction of the user with the pipes could include apart
from the display of specific characteristics also, measurements from point to
point.

http://www.agisoft.com/




A S Q L S TAT E M E N T S & S TO R A G E

This chapter contains the SQL statements that were used for the implementation of
the prototype described in Chapter 4. The chapter is divided into two sections, the
SQL statements concerning the creation of the tables and the loading of the sample
data that were used for our methodology. The store in the database is based on the
UML that is described in Chapter 4, Section 4.2.7.

a.1 creating tables

According to the UML schema three tables are stored in Database. The SQL state-
ments are provided in Figure A.1. First, the table with the points and their attributes
including also, the connection with the pixel of the image, is created. The second
table is created for the segments and the final table is created for the pipes and the
parameters of each.

Figure A.1: SQL for the creation of the tables.
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a.2 loading data
The SQL statements are described to insert the data to each table. The connection
with the Database has been done in python, to insert the data in the tables is an
iterative procedure. In Figure A.2, and example of the SQL statements is displayed.

Figure A.2: SQL statement loading the data.



B H O U G H L I N E T R A N S F O R M I N
PA N O R A M A S

In this chapter, the panoramas that are presented in Chapter 4, Section 5.4.1 are
provided below, in bigger size, for better visualization of the Hough Line Transform
results.

Figure B.1: Hough Line Transform results in panorama (1)

Figure B.2: Hough Line Transform results in panorama (2)
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Figure B.3: Hough Line Transform results in panorama (3)



C R E F L E C T I O N

This section highlights the main contribution of our thesis and the relation with
some aspects, like our master field, courses and in general, with the wider social
world.

This thesis proposes a methodology for Smart Point Cloud SPC generation for
detecting the pipes, as world object. The relationship between the Master Geomat-
ics and the method applied within this thesis consists of boundary detection and
segmentation techniques applied to 2D (images) and 3D (point cloud) data. Another
part of the research consists the generation, manipulation and visualization of the
point cloud in 3D environment. These topics are in line with the courses Sensing
technologies, 3D modelling, Python programming and Geo Datasets Quality that
are part of the Geomatics master. This research could not have been fulfilled without
having knowledge with respect to these information, during the two years studying
at this master program.

The research and proposed methodology conducted in this document, is applica-
ble to the geomatics field. The methodology that is presented and the output can
be used as input for a broad range of Geomatics-related applications. The purpose
is to provide a SPC structure that is using the domain, geometric and device exper-
tise for object detection. Identifying links and relations between the segments is
essential for the connection with the surroundings to finally get a semantically rich
point cloud. In our case, image processing, for boundaries extraction in 2D, is used
to identify the pipes in 3D, as one world object. Providing a smart structure (2D

with 3D connection) and an efficient storage way. The goal is to provide a virtual 3D

environment that the user could interact with the point cloud and take the needed
information. The UML schema that shows the relationships between the points and
the attributes, standardize the whole procedure and make it applicable for many
applications that are using the object recognition.

The work presented within this thesis is mainly useful for applications in the
industrial environment but not limited to it. Point clouds have evolved to be a
very important source of spatial information for many applications. The usefulness
of point cloud data lies in the fact that point cloud acquisition techniques have
become highly accurate and quick, allowing for better processing and optimized
methods for processing techniques, in order to extract the needed information. The
main object in this thesis is the recognition of cylinders (pipes), one of the geometry
primitives that are applicable to industrial environment. Cylinders, as a geometrical
object could be needed in other applications, for example: to detect the trunks in
forests or in urban environment, to detect the traffic lights. Beyond the type of
the object, the main idea of our work is to adopt a global framework for point
cloud processing, involving many research fields to solve the problem of point cloud
enrichment. The SPC framework using panoramas for point cloud acquisition is also
applicable to other types of applications such as in 3D City modelling, 3D Indoor
modelling, Cultural Heritage Documentation etc. After working on this thesis, I
realized that the importance is to find solutions in order to be able to detect and
extract the needed information using the most efficient techniques for manipulating
and extracting the needed information from unstructured point cloud, skipping the
modelling part.
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