
 
 

Delft University of Technology

Effect of transverse anisotropy on inelastic tunneling spectroscopy of atomic-scale
magnetic chains

Hageman, J.; Blaauboer, M.

DOI
10.1103/PhysRevB.95.134418
Publication date
2017
Document Version
Final published version
Published in
Physical Review B (Condensed Matter and Materials Physics)

Citation (APA)
Hageman, J., & Blaauboer, M. (2017). Effect of transverse anisotropy on inelastic tunneling spectroscopy of
atomic-scale magnetic chains. Physical Review B (Condensed Matter and Materials Physics), 95(13),
Article 134418. https://doi.org/10.1103/PhysRevB.95.134418

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1103/PhysRevB.95.134418
https://doi.org/10.1103/PhysRevB.95.134418


PHYSICAL REVIEW B 95, 134418 (2017)

Effect of transverse anisotropy on inelastic tunneling spectroscopy of atomic-scale magnetic chains

J. Hageman* and M. Blaauboer†

Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1. 2628 CJ Delft, Netherlands
(Received 25 February 2016; revised manuscript received 12 October 2016; published 12 April 2017)

We theoretically investigate the effect of transverse magnetic anisotropy on spin-flip assisted tunneling through
atomic-spin chains. Using a phenomenological approach and first-order perturbation theory, we analytically
calculate the inelastic tunneling current, differential conductance, and atomic-spin transition rates. We predict
the appearance of additional steps in the differential conductance and a pronounced increase in the spin-flip
transition rate which at low voltages scales quadratically with the ratio of the transverse anisotropy energy and
the sum of the longitudinal anisotropy energy and the exchange energy. Our results provide intuitive qualitative
insight into the role played by transverse anisotropy in inelastic tunneling spectroscopy of atomic chains and can
be observed under realistic experimental conditions.

DOI: 10.1103/PhysRevB.95.134418

I. INTRODUCTION

The development of small electronic storage devices has
been going on for years and the possibility to store information
in magnetic nanostructures is an active topic of research. A
recent experiment has shown that information can in principle
be stored in just a few antiferromagnetically aligned Fe atoms
by using exchange coupling between atomic spins [1]. This
experiment involved imaging and manipulation of individual
atomic spins by spin-polarized scanning tunneling microscopy
(STM), a technique which over the last decade has developed
into a powerful tool for studying spin dynamics of engineered
atomic structures. In a series of seminal STM experiments,
inelastic tunneling spectroscopy (IETS) has been used to
investigate spin excitation spectra of individual magnetic
atoms [2], to probe the exchange interaction between spins
in chains of Mn atoms and the orientation and strength of
their magnetic anisotropy [3,4], and to study the effect of
this anisotropy on Kondo screening of magnetic atoms [5].
A few years later, experimental studies of tunneling-induced
spin dynamics in atomically assembled magnetic structures
were performed: Loth et al. measured the voltage-induced
switching rate between the two Néel ground states of an
antiferromagnetically coupled chain of Fe atoms [1] and
recently spin waves (magnons) have been imaged in chains of
ferromagnetically aligned atoms, including the demonstration
of switching between the two oppositely aligned ground states
and local tuning of spin-state mixing by exchange coupling
[6–8].

The tunnel-current-induced spin dynamics of single mag-
netic atoms and engineered atomic chains in these experiments
can be well described by a spin Heisenberg Hamiltonian
(see Sec. II A), which contains the magnetic anisotropy and
exchange coupling between neighboring atomic spins as phe-
nomenological parameters. This model has been successfully
used to analyze, among others, the I (V ) characteristics of an
electron interacting via exchange coupling with a magnetic
atom [3–5,9], to explain step heights in inelastic conductance
measurements of adsorbed Fe atoms [10,11], to provide
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a theoretical description based on rate equations of spin
dynamics in one-dimensional chains of magnetic atoms [12],
to analyze magnetic switching in terms of the underlying
quantum processes in ferrromagnetic chains [13], and to
calculate the electron-induced switching rate between Néel
states in antiferromagnetic chains of Fe atoms [14–16].

In this paper, we investigate the effect of single-spin
transverse magnetic anisotropy on spin-flip assisted tunneling
and spin transition rates in chains of magnetic atoms. Under-
standing the role played by magnetic anisotropy in tunneling
spectroscopy is of great importance both fundamentally and
for being able to engineer magnetic properties of atomic
chains and clusters on surfaces, as well as those of molecular
magnets [17,18]. Compared with the longitudinal (easy-axis)
magnetic anisotropy, the qualitative effect of transverse mag-
netic anisotropy on tunneling spectroscopy of magnetic chains
has so far received little attention. In experiments involving
antiferromagnetically coupled atoms, transverse anisotropy
has often been small (i.e., too small to be observable) to neg-
ligible because the easy-axis anisotropy energy is much larger
than the transverse exchange energy [1,3–5]. However, such a
uniaxial model does not always apply. Transverse anisotropy,
together with the parity of the atomic spin, influences the
degeneracy of the energy spectrum [4,19,20]. Recent studies
have demonstrated that the presence of nonzero transverse
anisotropy modifies the switching frequency of few-atom
magnets when atoms are directly adsorbed on the substrate
[7]. It has also been predicted that finite values of transverse
anisotropy lead to the appearance of peaks in the differential
conductance when using spin-polarized STM [21], and a
recent experiment has demonstrated that the strength of the
magnetocrystalline anisotropy can be controllably enhanced
or reduced by manipulating its local strain environment
[22]. In addition, ferromagnetically coupled atomic chains
(nanomagnets) usually exhibit non-negligible values of trans-
verse anisotropy [6–8]. From an engineering point of view,
transverse anisotropy could be used to tune dynamic properties
such as spin switching in antiferromagnetic chains since it
breaks the degeneracy of the Néel ground states and transforms
them into Néel-type states that contain a larger number of
different spin configurations [23]. Recent experiments have
investigated the three-dimensional distribution of the magnetic
anisotropy of single Fe atoms and demonstrated the electronic
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tunability of the relative magnitude of longitudinal and
transverse anisotropy [24]. This provides further evidence for
the potential importance of tunability of magnetic anisotropy
for enhancing or weakening spin tunneling phenomena in
magnetic adatoms and molecular magnets [18,25]. Given all
this, it is interesting and important to obtain direct and intuitive
qualitative insight into the effect of transverse anisotropy on
inelastic tunneling transport and STM-induced spin transition
rates in chains of magnetic atoms. The aim of this paper is
to provide a first step in this direction on a phenomenological
level.

Using a perturbative approach and including the strength
of the transverse anisotropy up to first order, we analytically
calculate the inelastic current I (V ), differential conductance
dI/dV , and corresponding IETS spectra d2I/dV 2 for atomic
chains with nearest-neighbor Ising exchange coupling. We also
perform numerical simulations of spin transition rates of an
antiferromagnetically coupled atomic-spin chain. We find that
finite transverse anisotropy introduces (1) additional steps in
the differential conductance dI/dV and corresponding sharp
peaks in d2I/dV 2 and (2) a substantial increase of the spin
transition rate between atomic levels. We show that both are
due to transverse anisotropy-induced coupling between addi-
tional atomic-spin levels and provide a qualitative explanation
of the position and heights of the conductance steps and the
dependence of the spin transition rates on the strength of the
transverse anisotropy. Our perturbative approach is valid for
single-spin transverse anisotropy strengths corresponding to
typical experimental values.

The outline of the paper is as follows. In Sec. II A, we
discuss the phenomenological spin Hamiltonian and its energy
spectrum and eigenfunctions with the transverse anisotropy
energy included up to first-order perturbation theory. We then
derive analytical expressions for the inelastic tunneling current
I (V ), differential conductance dI/dV , and IETS spectra
d2I/dV 2 of an N -atomic-spin chain (Sec. II B), and for the
tunneling-induced transition rates (Sec. II C). Application of
these results to chains of antiferromagnetically coupled atoms
is presented and analyzed in Secs. III and IV. Section V
contains conclusions and a discussion of open questions.

II. THEORY

A. Hamiltonian

In this section we first briefly discuss the spin Hamiltonian
used to describe the atomic chain and then derive its eigenval-
ues and eigenfunctions up to first order in the strength of the
transverse magnetic anisotropy.

The eigenenergies and spin eigenstates of a chain of N

magnetic atoms can be described by a phenomenological
Heisenberg spin Hamiltonian, consisting of a single-spin part
and nearest-neighbor exchange interaction [3,6,9,12,17]:

H =
N∑

i=1

Ĥi,S +
N−1∑
i=1

J Ŝi · Ŝi+1 (1)

with

Ĥi,S = DŜ2
i,z + E

(
Ŝ2

i,x − Ŝ2
i,y

) − g∗μBB · Ŝi . (2)

Here, D represents the single-spin longitudinal magnetocrys-
talline anisotropy, E the transverse magnetic anisotropy, g∗
the Landé g factor, μB the Bohr magnetron, and B the external
magnetic field. J denotes the exchange energy between
neighboring atoms, which can be directionally dependent with
different energies Jx, Jy , and Jz for the three spin directions.
In principle, D, E, and J depend on the substrate and can
vary from atom to atom. However, since experimentally the
atom-to-atom variations are found to be small (see, e.g.,
Refs. [1,6]), these coefficients can to a good approximation be
assumed to be uniform along the chain. Ŝi,x, Ŝi,y , and Ŝi,z are,
respectively, the x, y, and z components of the spin operator of
the atom at site i along the chain. Assuming B = Bẑ,E = 0
and exchange coupling between the z components of the spin
only (Ising coupling, see also the end of this section), the
eigenvalues Em1,...,mN

of the Hamiltonian (1) are given by

Em1,...,mN
= D

N∑
i=1

m2
i + J

N−1∑
i=1

mimi+1 − EZ

N∑
i=1

mi, (3)

with corresponding eigenstates |m1, . . . mN 〉(0). Here, mi

denotes the quantum number labeling the angular momentum
in the z direction of the ith atom and EZ ≡ g∗μBB represents
the Zeeman energy. When adding the single-spin transverse
anisotropy E(Ŝ2

i,x − Ŝ2
i,y) as a perturbation, the corresponding

eigenfunctions ψm1,...,mN
up to first order in E are given by

ψm1,...,mN
= |m1, . . . ,mN 〉(0) + |m1, . . . ,mN 〉(1), (4)

with

|m1, . . . ,mN 〉(1)

= 1

2
E

N∑
i=1

(
Ami−1,mi ,mi+1 |m1, . . . ,mi +2, . . . ,mN 〉(0)

−Ami−1,mi−2,mi+1 |m1 . . . mi − 2, . . . ,mN 〉(0)
)

(5)

and

Ami−1,mi ,mi+1

≡ [36 − 12(mi + 1)2 + mi(mi + 1)2(mi + 2) + 36]
1
2 /

[−4D(mi + 1) − 2J (mi−1 + mi+1) + 2EZ]. (6)

Here, Amj−1,mj ,mj+1 = 0 for j < 1 or mj−1,mj ,mj+1 /∈
[−2, . . . ,2], Am0,m1,m2 ≡ A0,m1,m2 , and AmN−1,mN ,mN+1 ≡
AmN−1,mN ,0. Since the first-order correction of the
eigenenergies (3) is zero, Eqs. (3) and (4) thus represent the
eigenvalues and eigenfunctions of the Hamiltonian (1) (for
B = Bẑ and Ising coupling) up to first order in E.

Figure 1 shows the energy spectrum (3) for a chain con-
sisting of four Fe atoms (spin s = 2) with antiferromagnetic
coupling. The ground state of the chain consists of the two
degenerate Néel states |2,−2,2,−2〉(0) and |−2,2,−2,2〉(0)

with eigenenergy 16D − 12J .
We end this section with a brief discussion of the assump-

tion of Ising coupling in the Hamiltonian (1). This assumption
is in general a good approximation for the description of
atomic chains in which the longitudinal anisotropy is at least
of the same order of magnitude as the exchange coupling,
|D/J | � 1, such as those studied in Refs. [1,8]. When
including the transverse anisotropy term in the Hamiltonian,
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FIG. 1. The energy spectrum E ≡ Em1,...,mN
[Eq. (3)] of an

antiferromagnetically coupled chain consisting of four Fe atoms
(s = 2). Each cross represents an eigenstate, plotted in ascending
order of energy. The circles mark the five eigenstates that contribute
to the current and spin transition rates in Figs. 3–9. Parameters used
are D = −1.3 meV, J = 1.7 meV, and B = 1 T.

which contains the off-diagonal spin operators Ŝx and Ŝy ,
the question arises as to whether these non-Ising magnetic
exchange terms pose additional requirements on the validity
of the Ising approximation. We expect this approximation to
be valid for atomic chains with predominantly longitudinal
exchange coupling |Jx,y/Jz| � 1 (where the eigenstates are
to a good approximation the eigenstates of the Ising model),
and transverse anisotropy strengths |Jx,y/E| � 1 (so that E is
the dominant energy scale in the off-diagonal terms).

B. Current

A powerful technique to probe the spin dynamics of single
magnetic atoms or small atomic chains deposited on a surface
(typically a thin insulating layer on top of a metallic surface)
is inelastic tunneling spectroscopy (IETS). In IETS, the spin
of an electron tunneling from the tip of an STM interacts via
exchange with the spin of an atom. When the energy provided
by the bias voltage matches the energy of an atomic-spin
transition, the latter can occur and a new conduction channel
opens [26]. For a chain consisting of N magnetic atoms with
spin s = 2 (such as Fe or Mn) and the STM tip located above
atom j the inelastic current I (V ) in an IETS experiment is
given by

I (V ) = GS

N∏
i=1

⎛
⎜⎜⎝

2∑
mi ,m

′
i
=−2

α=x,y,z;s=±

⎞
⎟⎟⎠ PM (V )

× |〈m1, . . . ,mN |S(j )
α |m′

1, . . . ,m
′
N 〉|2 FM,M ′,s(V ) (7)

with

FM,M ′,s(V ) ≡ eV − s�M ′,M

1 − e−sβ(eV −s�M′,M ) . (8)

Equation (7) is the N -atom generalization of the expression
for the current given in Ref. [9]. Here, |m1, . . . ,mN 〉 and

|m′
1, . . . ,m

′
N 〉 denote the eigenstates of the Hamiltonian (1),

M represents the set of quantum numbers (m1, . . . ,mN ) corre-
sponding to the eigenstate |m1, . . . ,mN 〉(0) of the Hamiltonian
(1) for B = Bẑ, E = 0, and Ising coupling, and �M ′,M ≡
EM ′ − EM with EM given by Eq. (3). PM (V ) is the occupation
of eigenstate ψm1,...,mN

(see also the Appendix), β ≡ (kBT )−1,
and S

(j )
α with α = x,y,z is the local spin operator acting on

atom j . The conductance quantum GS ∼ 2e2

h
ρT ρST

2
S with

ρT ,ρS the density of states at the Fermi energy of the STM
tip and surface electrodes and T 2

S the tunneling probability
between the local atomic spin and the transport electrons
[12]. Equation (7) has been derived (for a single atomic
spin) starting from a microscopic tunneling Hamiltonian that
describes the exchange interaction between the spin of the
tunneling electron and the atomic spin assuming short-range
exchange interaction [9] (alternative approaches that have
been used to study spin-flip assisted transport in chains of
magnetic atoms include nonequilibrium Green’s functions [27]
and generalized Anderson models [28]). The STM tip then
only couples to the atom at site j and the matrix element
|〈m1, . . . ,mN |S(j )

α |m′
1, . . . ,m

′
N 〉|2 describes the exchange spin

interaction between the spin of the tunneling electron and this
atomic spin: the generalization for coupling to several atoms
is |〈m1, . . . ,mN | 
Sα|m′

1, . . . ,m
′
N 〉|2 with 
Sα = ∑

j η(j )S(j )
α and

η(j ) the tunnel probability through atom j (see Ref. [9]).
The function FM ′,M,s(V ) on the right-hand side of Eq. (7)
is the temperature-dependent activation energy for opening a
new conduction channel: at energies where the applied bias
voltage eV matches the energy that is required for an atomic-
spin transition �M ′,M a steplike increase in the differential
conductance dI/dV occurs. At these same voltages, the
second derivative of the current d2I/dV 2 exhibits a peak
(of approximately Gaussian shape). The area under these
peaks corresponds to the relative transition intensity and is
equal to the corresponding step height of the differential
conductance [24]. Analyzing d2I/dV 2 data, commonly called
IETS spectra, thus probes the transition probability between
atomic-spin levels [6,8].

We now calculate the inelastic current (7) for a nonmagnetic
STM tip by calculating the spin exchange matrix element
for the eigenstates (4), i.e., using |m1, . . . ,mN 〉 = ψm1,...,mN

,
and the occupation probabilities PM (V ) for each eigenstate
|m1, . . . ,mN 〉(0). These populations PM (V ) are obtained by
solving the master equation [12]

dPM (V )

dt
=

∑
M ′

PM ′ (V )WM ′,M (V ) − PM (V )
∑
M ′

WM,M ′ (V ),

(9)

with WM,M ′ (V ) the transition rate from atomic-spin state
|m1, . . . ,mN 〉(0) to |m′

1, . . . ,m
′
N 〉(0). For small tunneling cur-

rent, i.e., small tip (electrode)-atom coupling, the atomic
chain is approximately in equilibrium and PM (V ) can be
approximated by the equilibrium population [12], which is
given by the stationary solution of the master equation (9) (see
the derivation in the Appendix). Substitution of this solution
and Eq. (4) into Eq. (7) yields the current I (V ):

I (V ) = GS [I (0)(V ) + I (1)(V )]. (10)
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Here,

I (0)(V ) =
N∏

i=1

2∑
mi=−2
s=±

PM (V )

{
(mj )2 F0,0,s(V ) + Cmj

2
F1,0,s(V )

+ Cmj −1

2
F−1,0,s(V )

}
, (11)

I (1)(V ) = 1

8
E2

N∏
i=1

2∑
mi=−2
s=±

PM (V )
{
8
(
A2

mj
+ A2

mj −2

)
F0,0,s(V )

+Cmj
B2

mj ,2 F1,0,s(V ) + Cmj −1 B2
mj ,0 F−1,0,s(V )

+A2
mj −2[Cmj −3 F−3,−2,s(V ) + Cmj −2 F−1,−2,s(V )]

+A2
mj

[Cmj +1 F1,2,s(V ) + Cmj +2 F3,2,s(V )]
}
, (12)

with

A2
mj +n ≡ A2

mj−1,mj +n,mj+1
, (13)

B2
mj ,n

≡ A2
mj−2,mj−1,mj

+ A2
mj−2,mj−1,mj −1+n

+A2
mj−2,mj−1−2,mj

+ A2
mj−2,mj−1−2,mj −1+n

+A2
mj−1,mj −1+n,mj+1

+ A2
mj−1,mj −3+n,mj+1

+A2
mj ,mj+1,mj+2

+ A2
mj −1+n,mj+1,mj+2

+A2
mj ,mj+1−2,mj+2

+ A2
mj −1+n,mj+1−2,mj+2

, (14)

Cmj
≡ 6 − mj (mj + 1), (15)

Fn1,n2,s ≡ eV − s�n2,n1

1 − e−sβ(eV −s�n2 ,n1 ) , (16)

�n2,n1 ≡ Em1,...,mj +n2,...,mN
− Em1,...,mj +n1,...,mN

= (n2 − n1) [(2mj + n1 + n2)D

+ (mj−1 + mj+1)J − EZ]. (17)

I (0)(V ) is the (zeroth-order) tunneling current in the absence
of transverse anisotropy (for E = 0) and I (1)(V ) the additional
contribution to this current for nonzero E (up to first order in
perturbation theory). PM (V ) denotes the equilibrium popula-
tion of state ψm1,...,mN

(see also the Appendix). The coefficient
Amj−1,mj ,mj+1 is given by Eq. (6). Figure 2 schematically
illustrates the eigenstates corresponding to the coefficients
Amj +n and Bmj ,n [(13) and (14)] for mj = m1 = 2.

C. Transition rates

In this section, we derive expressions for the transition
rates Wm1,...,m

′
N

≡ Wm1,...,mN ,m′
1,...,m

′
N

between eigenstates
|m1, . . . ,mN 〉 and |m′

1, . . . ,m
′
N 〉 of the atomic spin

chain up to first order in the transverse anisotropy
energy E. These rates are also used to calculate the
equilibrium occupation PM (V ) of the energy levels (see
the Appendix). When an electron tunnels from the STM
tip to the surface, or vice versa, and interacts with the
atomic-spin chain six types of spin transitions can occur [12],
denoted by the rates WS→T

m1,...,mN
(V ),WS→S

m1,...,m
′
N
,WS→T

m1,...,m
′
N

(V ),

FIG. 2. Schematic illustration of the eigenstates contributing to
the IETS current (10) for a four-atom chain in the ground state. (a) The
unperturbed ground state |2,−2,2,−2〉(0). (b) The four unperturbed
eigenstates contributing to the new ground state after including the
transverse anisotropy energy to first order in perturbation theory. In
each of these eigenstates mi differs by −2 (for i = 1,3) or +2 (for
i = 2,4) from the unperturbed ground state in (a) [see also Eq. (4)].
(c) The unperturbed eigenstates contributing to the IETS current if the
STM tip is coupled to the first atom. In these eigenstates m1 differs
by +1 (upper row), −1 (middle row), or 0 (lower row) compared to
the states in (b).

WT →S
m1,...,mN

(V ),WT →T
m1,...,m

′
N
,WT →S

m1,...,m
′
N

(V ). Because of symmetry,

WS→S
m1,...,m

′
N

= WT →T
m1,...,m

′
N

, and the pairs of rates WS→T
m1,...,mN

(V ),

WT →S
m1,...,mN

(V ), and WS→T
m1,...,m

′
N

(V ), WT →S
m1,...,m

′
N

(V ) are
identical upon reversal of the bias voltage, i.e.,
WS→T

m1,...,mN
(V ) = WT →S

m1,...,mN
(−V ) and WS→T

m1,...,m
′
N

(V ) =
WT →S

m1,...,m
′
N

(−V ). Below we first discuss the physical

process described by the rates WS→T
m1,...,mN

(V ), WS→S
m1,...,m

′
N

,

and WS→T
m1,...,m

′
N

(V ) [which also applies to, respectively,

WT →S
m1,...,mN

(V ), WT →T
m1,...,m

′
N

, and WT →S
m1,...,m

′
N

(V ) for reversed bias
voltage] and then calculate these rates up to first order in E.

(1) Elastic tunneling. WS→T
m1,...,mN

(V ) denotes the rate for
an electron tunneling from surface (S) to tip (T ) without
interacting with the atomic spin, i.e., without inducing a spin
transition. This rate contributes to the elastic tunneling current.

(2) Substrate-induced relaxation. WS→S
m1,...,m

′
N

corresponds to
the simultaneous creation of an electron-hole pair in the surface
electrode and a flip of the atomic spin from state |m1, . . . ,mN 〉
to state |m′

1, . . . ,m
′
N 〉. This rate thus does not contribute to the

current but does contribute to the equilibrium population PM

at voltages that are sufficiently high for the atomic spin chain
to be in an excited state. At low bias voltages, (WS→S

m1,...,m
′
N

)−1 is
a measure for T1, the atomic-spin relaxation time [12].

(3) Spin-flip assisted inelastic tunneling. WS→T
m1,...,m

′
N

(V )
describes the transfer of an electron from surface to tip
combined with a transition of the spin chain from spin state
|m1, . . . ,mN 〉 to state |m′

1, . . . ,m
′
N 〉. This process thus both

contributes to the atomic-spin dynamics and to the inelastic
tunneling current. For an unpolarized STM tip the three
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rates can be calculated to lowest order in the electrode-chain
coupling using Fermi’s golden rule. This results in

WS → T
m1,...,mN

(V ) = 4π

h̄
W1

eV

1 − e−βeV

×
∣∣∣∣∣
∑
α=0

〈m1, . . . ,mN |S(j )
α |m1, . . . ,mN 〉

∣∣∣∣∣
2

= 4π

h̄
W1

eV

1 − e−βeV
, (18)

WS → S
m1,...,m

′
N

= 4π

h̄
W2

�M,M ′

1 − e−β�M,M′

×
∣∣∣∣∣
∑

α=x,y

〈m1, . . . ,mN |S(j )
α |m′

1, . . . ,m
′
N 〉

∣∣∣∣∣
2

,

(19)

WS → T
m1,...,m

′
N

(V ) = 4π

h̄
W3

eV + �M,M ′

1 − e−β(eV +�M,M′ )

×
∣∣∣∣∣

∑
α=x,y,z

〈m1, . . . ,mN |S(j )
α |m′

1, . . . ,m
′
N 〉

∣∣∣∣∣
2

,

(20)

with W1 ≡ ρSρT T 2
0 , W2 ≡ ρ2

ST
2
J , and W3 ≡ ρSρT T 2

J . T0 and
TJ correspond to the direct (spin-independent) tunnel cou-
pling and the tunneling-induced exchange coupling, respec-
tively [12,29]. Calculating the total spin transition rates
WS → S

m1,...,mN
≡ ∏N

i=1 (
∑2

m′
i=−2) WS → S

m1,...,m
′
N

and WS → T
m1,...,mN

(V ) ≡∏N
i=1 (

∑2
m′

i=−2) WS → T
m1,...,m

′
N

(V ) for the eigenstates ψm1,...,mN

[Eq. (4)] we obtain, up to first order in E and for the STM
tip coupled to atom j ,

WS → S
m1,...,mN

= 2π

h̄
W2

{
Cmj

F1,0,+(0) + Cmj −1F−1,0,+(0)

+ E2

4

(
Cmj

B2
mj ,2 F1,0,+(0) + Cmj −1B

2
mj ,0 F−1,0,+(0)

+A2
mj −2 [Cmj −3F−3,−2,+(0) + Cmj −2F−1,−2,+(0)]

+A2
mj

[Cmj +1F1,2,+(0) + Cmj +2F3,2,+(0)]
)}

, (21)

WS → T
m1,...,mN

(V )

= 2π

h̄
W3

{
2m2

jF0,0,+(V ) + Cmj
F1,0,+(V )

+Cmj −1F−1,0,+(V ) + E2

4

(
8
(
A2

mj
+ A2

mj −2

)
F0,0,+(V )

+Cmj
B2

mj ,2 F1,0,+(V ) + Cmj −1B
2
mj ,0 F−1,0,+(V )

+A2
mj −2 [Cmj −3F−3,−2,+(V ) + Cmj −2F−1,−2,+(V )]

+A2
mj

[Cmj +1F1,2,+(V ) + Cmj +2F3,2,+(V )]
)}

. (22)

Here A2
mj +n, B2

mj ,n
, Cmj

, and Fn1,n2,s are given by Eqs. (13)–
(16).

III. I(V ), d I/dV , AND d2 I/dV 2

We now calculate the inelastic tunneling current [Eq. (10)],
the corresponding differential conductance, and the IETS
spectra for the ground state of a chain consisting of N atoms
with antiferromagnetic coupling and analyze the effect of the
transverse anisotropy energy E. For the (Néel-type) ground
state ψ−2,2,...,−2,2 [Eq. (4) with mi = −2 for i odd and mi = 2
for i even] and the STM tip located above the first atom we
obtain

INéel(V ) = GS

(
I

(0)
Néel(V ) + I

(1)
Néel(V )

)
(23)

with

I
(0)
Néel(V ) = 2

∑
s=±

[2 F0,0,s(V ) + F1,0,s(V )], (24)

I
(1)
Néel(V ) = 1

4
E2

∑
s=±

{
4A2

0,−2,2F0,0,s(V ) + 2B2
−2,2F1,0,s(V )

+ 3 A2
0,−2,2[F1,2,s(V ) + F3,2,s(V )]

}
. (25)

The tunneling currents (24) and (25) depend on three energy
gaps, corresponding to transitions between atomic-spin levels
with different values of m1:

�1 ≡ �0,1 = 3D − 2J + Ez (m1 =−2→m1 =−1),

�2 ≡ �2,1 = −D + 2J − Ez (m1 =0 → m1 = −1), (26)

�3 ≡ �2,3 = −D − 2J + Ez (m1 = 0 → m1 = 1).

For the other Néel-type ground state ψ2,−2,...,2,−2 the expres-
sions (23)–(26) are equivalent with only the signs of mi, i =
1, . . . ,N , and the sign of Ez reversed. Since Ez � D,|J | the
energy gaps (26) are practically the same in both cases. In the
derivation of Eq. (23) we have taken PM = 1 for the ground
state and zero otherwise since at low temperatures and voltages
(kBT ,eV � |�1|) the equilibrium population of the excited
states is negligible (see also Fig. 9 and discussion thereof in the
text). The assumption that PM (V ) is given by the equilibrium
population may not be valid anymore at higher voltages when
nonequilibrium effects start to play a role [30]. Experimentally,
P|−2,2,...,−2,2〉(0) = 1 corresponds to using, e.g., a half-metal tip.
Inspection of Eq. (23) using the requirement I (1)(V ) � I (0)(V )
shows that our perturbative approach is valid for values of
transverse anisotropy E2 � J 2,(D − J )2.

Figure 3 shows the current I (V ) [Eq. (10), including all
spin states and equilibrium populations PM for each state
|m1, . . . ,mN 〉(0)] for typical experimental values [6–8] of the
transverse anisotropy strength E. As expected, the current
increases linearly with V . It shows a kink (change of slope) at
eV ≈ ±|�1| ≈ ±7.5 meV, which corresponds to the energy
gap between the ground state |2,−2, . . . ,2,−2〉(0) and the first
excited state |1,−2, . . . ,2,−2〉(0) for E = 0 of the atomic-spin
chain (the same argument applies for the other ground state
|−2,2, . . . ,−2,2〉(0)). The increase in slope is to a very good
approximation given by the coefficients of the corresponding
activation energy terms F1,0,s(V ) in Eqs. (24) and (25). The
finite transverse anisotropy energy E introduces additional
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FIG. 3. Inelastic tunneling current I [Eq. (10)] normalized to the
zero-bias conductance GS for an antiferromagnetic chain consisting
of four atoms in the ground state ψ2,−2,2,−2 with the STM tip coupled
to the first atom. Parameters used are D = −1.3 meV, E = 0.3 meV,
J = 1.7 meV, and T = 1 K.

kinks in the voltage region −|�1| < eV < |�1|. This can
be seen more clearly in Fig. 4, which shows the differential
conductance dI/dV for the same chain for several values
of the transverse anisotropy energy E. The large stepwise
increase in dI/dV at eV ≈ ±|�1| ≈ ±7.5 meV in the figure
corresponds to the kinks at these energies in Fig. 3. In
addition, however, also steps in dI/dV occur at voltages eV ≈
±|�2| and eV ≈ ±|�3|. These correspond to transitions
between higher-lying excited states: the step in dI/dV at
eV ≈ |�3| ≈ 2.3 meV corresponds to the excitation from
spin state |0,−2, . . . ,2,−2〉(0) to state |−1,−2, . . . ,2,−2〉(0).
Then, around eV ≈ 4.9 meV, a second step occurs, cor-
responding to the excitation from state |1,−2, . . . ,2,−2〉(0)

to |0,−2, . . . ,2,−2〉(0). At this energy, the excited state
|1,−2, . . . ,2,−2〉(0) has become somewhat populated allowing
for this transition to occur [31]. At slightly higher voltage,

FIG. 4. dI/dV normalized to the zero-bias conductance GS for
the chain in Fig. 3. Curves are shifted for clarity.

however, a steplike decrease occurs, corresponding to decay
from state |0,−2, . . . ,2,−2〉(0) to state |1,−2, . . . ,2,−2〉(0).
Here, the spin chain thus undergoes a transition from a
higher-lying to a lower-lying state and an electron tunnels from
drain (the STM tip) to source (the surface), thereby lowering
the rate of increase of I (V ). Decays in differential conductance
have been experimentally observed in STM measurements of
magnetic atoms (see, e.g., Refs. [5,32]) and were explained
in terms of the nonequilibrium occupation of different spin
levels, i.e., competition between depletion of one spin level in
favor of another multiplied by the intensity (determined by the
matrix elements) of the corresponding transitions.

Figure 5 provides a more detailed illustration of the
competition between these two processes. This figure shows
each of the five terms m1 ∈ [2, . . . ,−2] that contribute to
dI/dV in Fig. 4 separately [the current (10) is the sum of
these five terms weighed by the equilibrium population PM

for each state]. When inspecting the figure, we see that in the
panels corresponding to m1 = 1 and m1 = 0 a sharp increase
of dI/dV occurs at, resp., energies eV ≈ |�2| ≈ 4.9 meV and
eV ≈ |�3| ≈ 2.3 meV. Here, the chain undergoes a transition
to the next higher-lying state (from m1 = 1 to 0 and from
m1 = 0 to −1, respectively). In the same two panels the
differential conductance subsequently decreases at voltages
eV ≈ |�1| ≈ 7.5 meV and eV ≈ |�2| ≈ 4.9 meV, when the
spin chain decays to the next lower-lying state. Similar analysis
applies for the steps in the other panels.

Note that the position at which steps in dI/dV occur
does not depend on the strength of the transverse anisotropy
since the energy gaps �1 − �3 in Eq. (26) are independent
of E (up to first order in E). The onset of these in-gap
steps is affected when D is not constant along the chain,
but varies from atom to atom (as, e.g., in the experiment
described in Ref. [8]). Within the parameter range of D, J ,
and E that we consider (described in Sec. V), atom-to-atom
variations in D lead to small variations in the onset and the
heights of the steps and thus do not change the qualitative
behavior. The latter step heights at eV = �n1,n2 scale with E2

and are to a good approximation given by the (sum of the)
prefactors Fn1,n2,s in Eq. (23); for example, the step height at
eV ≈ ±|�3| is given by (3/4)E2A2

0,−2,2 ≈ E2/(D − J )2 (for
small Zeeman energy). This step height is a direct measure
for the spin excitation transition intensity. Finally, in the limit
|eV | 
 |�1|, the differential conductance saturates at

dINéel

dV

|eV |
|�1|→ 6eGS

(
1 + E2

12

(
5A2

0,−2,2 + 2B2
−2,2

))

≈ 6eGS

[
1 + E2

8

(
5

(D − J )2
+ 3

J 2

)]
. (27)

The second line in Eq. (27) is valid when the Zeeman energy
is small, |Ez| � |J |,|D − J |. Figure 6 shows the IETS spec-
tra d2I/dV 2 corresponding to the differential conductance
dI/dV in Fig. 4. The additional peaks and valleys induced by
the finite transverse anisotropy strength in the voltage region
between −7.5 and 7.5 meV can clearly be seen.

Finally, from an experimental point of view, Eqs. (26) can
be used to extract the values of D and J from dI/dV data.
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FIG. 5. dI/dV (normalized to the zero-bias conductance) of the five separate states |m1,−2,2,−2〉 with m1 ∈ [2, . . . ,−2] in the sums of
Eqs. (11) and (12) for an antiferromagnetic chain in the ground state ψ2,−2,2,−2 with the STM tip coupled to the first atom. Parameters used are
the same as in Fig. 3.

The height of measured in-gap steps can subsequently be used
to obtain the strength of transverse anisotropy E.

IV. TRANSITION RATES

In this section, we analyze the transition rates WS→S
m1,...,mN

and WS→T
m1,...,mN

(V ) [Eqs. (21) and (22)] for the ground state
ψ−2,2,...,−2,2 of an antiferromagnetic N -atomic-spin chain. By
evaluating the matrix element in Eqs. (21) and (22) this results
in, for the STM tip coupled to the first atom,

WS → S
Néel = 8π

h̄
W2

{
F1,0,+(0) + E2

8

(
2B2

−2,2 F1,0,+(0)

+ 3A2
0,−2,2[F1,2,+(0) + F3,2,+(0)]

)}
(28)

and

WS → T
Néel (V ) = 8π

h̄
W3

{
2 F0,0,+(V ) + F1,0,+(V )

+ E2

8

(
4A2

0,−2,2F0,0,+(V ) + 2B2
−2,2 F1,0,+(V )

+ 3A2
0,−2,2[F1,2,+(V ) + F3,2,+(V )]

)}
, (29)

with �1, �2, and �3 given by Eqs. (26). Figure 7 shows
WS→T

Néel (V ) for the STM tip coupled to either the first or

FIG. 6. d2I/dV 2 spectra corresponding to the differential con-
ductance dI/dV shown in Fig. 4 for E = 0.3 meV.

the second atom along the chain. As expected, when the
tip interacts with the first atom, WS→T

Néel (V ) exhibits a clearly
visible kink (change of slope) at the same voltage eV = |�1| ∼
7.5 meV as the inelastic current in Fig. 3, which corresponds to
the energy gap between the ground state and the first excited
state of the chain (for the tip coupled to the second atom
this gap is larger, given by 3D − 4J − EZ ≈ 10.5 meV).
In addition, the finite transverse anisotropy energy also here
induces additional kinks at eV = |�2| and eV = |�3|. The
positions of these kinks can be seen more clearly in the graph
of the derivative dWS→T

Néel /dV in Fig. 8. The onset of WS→T
Néel at

V = 0 meV is due to thermally activated elastic tunneling.
Figure 7 also shows that finite transverse anisotropy energy

increases the spin transition rates WS→T
Néel (V ) for any value of

the voltage V . From Eq. (29) and the tip coupled to the first
atom we find that this relative increase scales as E2/(D −
J )2 for energies eV � |�1| and as E2

8 ( 5
(D−J )2 + 3

J 2 ) for
energies eV � |�1|. For the voltage-independent relaxation
rate WS→S

Néel (not shown in Fig. 7), we obtain from Eq. (28) for

FIG. 7. The spin transition rate W ≡ WS→T
Néel (V ) [Eq. (22)] for an

antiferromagnetic atomic chain in the ground state with the STM tip
coupled to the first atom and E = 0.3 meV or E = 0.6 meV (blue
dotted-dashed line and red solid line, respectively) and with the tip
coupled to the second atom and E = 0.3 meV or E = 0.6 meV (blue
dashed line and red dotted line, respectively). Other parameters used
are D = −1.3 meV, J = 1.7 meV, B = 1 T, and W3 = 1.1 × 10−5

(the latter value is taken from the experiment in Ref. [6]).
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FIG. 8. First derivative of the transition rates WS→T
Néel (V ) in Fig. 7.

|Ez| � |D − J |,|J |

WS→S
Néel ≈ 8π

h̄
W2|�1|

(
1 + 9

16

E2

J 2

)
.

Since T1 ∼ 1/WS→S
Néel at low-bias voltages, the presence of

finite transverse anisotropy energy thus leads to a decrease
of the spin relaxation time which scales as E2/J 2.

V. SUMMARY AND CONCLUSIONS

We have presented a perturbative theory for the effect
of single-spin transverse magnetic anisotropy on tunneling-
induced spin transitions in atomic chains with Ising exchange
coupling. We qualitatively predict the dependence of the
inelastic tunneling current I and the transition rates between
atomic-spin levels on the transverse anisotropy energy E and
show that the presence of finite values of E leads to additional
steps in the differential conductance dI/dV and to higher spin
transition rates. For an antiferromagnetically coupled chain in
the Néel ground state, both the heights of the additional steps
and the increase in spin transition rates at low-bias voltage
scale as E2/(D − J )2, while the latter crosses over to E2/J 2

scaling for higher voltages eV � |�1|.
Our model is relevant for materials in which the easy-axis

exchange interaction dominates over the transverse exchange
interaction (justifying the use of the Ising Hamiltonian),
measurements at low current with a nonmagnetic STM tip and
for values of transverse anisotropy E2/J 2,E2/(D − J )2 � 1.
The latter requirement is in agreement with typical values of
E, D, and J measured in chains of, for example, Fe or Mn
atoms [1–8], where D varies between −2.1 and −1.3 meV,
J is in the range 1.15–1.6 meV, and E is 0.3–0.31 meV.
We therefore expect our results to be applicable for antifer-
romagnetically coupled chains consisting of these and similar
magnetic atoms with little-to-none local distortion between
atoms and deposited on a flat symmetric substrate, so that spin-
orbit interaction (and thereby induced Dzyaloshinskii-Moriya
interaction) is weak and can be neglected.

Our model could be used to extract the values of D and J

from the onset of the in-gap steps in measurements of dI/dV

since these threshold voltages are directly related to energy
gaps between spin levels [see Eq. (26)]. The height of these
in-gap steps can subsequently be used to extract the value of
E. In fact, in-gap features in dI/dV may actually be present in
Fig. 2(c) of Ref. [8]. Using the parameters from this experiment
(D = −2.1 meV, J = 1.15 meV, E = 0.31 meV, and B = 2 T)
in our model there would be additional steps in dI/dV at
bias voltages V = 1.6 and 4 mV with heights on the order
of 0.01–0.02 μS. Looking at the two uppermost curves in
Fig. 2(c) in Ref. [8], a small steplike feature does seem to
be present at each of these voltages. These possible hints at
in-gap dI/dV features of course need to be checked; whether
they exist could, e.g., be verified by data for larger values
of transverse anisotropy strength, which we believe would be
very interesting to investigate.

Finally, interesting questions for future research are to
study the effect of transverse anisotropy on nonequilibrium
spin dynamics in chains of magnetic atoms, on dynamic
spin phenomena such as the formation of, e.g., magnons,
spinons, and domain walls, and on switching of Néel states
in antiferromagnetically coupled chains.
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APPENDIX: EQUILIBRIUM POPULATIONS PM (V )

In this Appendix, we derive and analyze an analytic expres-
sion for the equilibrium population PM (V ) ≡ Pm1,...,mN

(V )
for E = 0 [here the label M = (m1, . . . ,mN ) refers to the
quantum state |m1, . . . ,mN 〉0)]. When calculating and plotting
the current I (V ) [Eq. (10)] up to lowest order in E, we
calculate and include PM (V ) up to lowest order in E. As
the resulting expressions for PM (V ) are rather lengthy, we do
not include them here, but instead show PM (V ) for E = 0,
in order to provide analytical insight into the dependence of
PM on the applied bias voltage V . We have verified that in
the voltage bias range considered in this paper (∼40 meV) the
effect of including nonzero transverse anisotropy in the master
equations (A1) below is small (<3%), so that the populations
PM (V ) are to a reasonable approximation given by the solution
(A4) for E = 0. PM (V ) is the steady-state solution of the
master equation [12,28]:

dPM (V )

dt
=

∑
M ′

PM ′ (V )WM ′,M (V )

−PM (V )
∑
M ′

WM,M ′ (V ) = 0, (A1)

with

WM,M ′ (V ) =
∑
η=S

η′=S,T

W
η→η′
M,M ′ (V )

= WS → T
M,M (V ) + WS → S

M,M ′ + WS → T
M,M ′ (V ). (A2)
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FIG. 9. Steady-state population PM (V ) as a function of the applied bias voltage of the five eigenstates with m1 ∈ [2, . . . ,−2] of a four-atom
antiferromagnetic chain in the ground state (see also Fig. 5). Parameters used are D = −1.3 meV, J = 1.7 meV, B = 1 T, and T = 1 K.

The master equation (A1) was derived in Ref. [28] and relies
on the assumptions that h̄/(kBT ), h̄/(En − En′) � 1/Wn,n′ ,
where h̄/(kBT ) is the correlation time of the electrons in the
leads, h̄/(En − En′) the period of coherent evolution, and Wn,n′

the scattering time. The three rates in Eq. (A2) WS → T
M,M (V ) (no

induced spin flip; spin-independent contribution to the elastic
current), WS → S

M,M ′ (spin flip, but no contribution to the current),
and WS → T

M,M ′ (V ) (spin-flip, contribution to the inelastic current)
are given by Eqs. (18)–(20) (see also the discussion of these
rates and their dependence on V at the beginning of Sec. II C).
We assume the tip-induced exchange couplings WT → T

m1,...,m
′
N

and

WT → S
m1,...,m

′
N

to be negligible for V > 0 as observed in experi-
ments on atomic-spin chains [6]; these rates could, however,
straightforwardly be included. Assuming the STM tip to be
only coupled to the atom at site j , taking E = 0, and writing
Pmj

(V ) ≡ Pm1,...,mj ,...,mN
(V ), Eq. (A1) can be written as

0 = Hmj
(V )Pmj +1(V ) + Kmj

(V )Pmj −1(V )

− Lmj
(V )Pmj

(V ). (A3)

The solution of Eq. (A3) is given by

P2(V ) = K2(V )K1(V )K0(V )K−1(V )

N (V )
Tj ,

P1(V ) = H1(V )K1(V )K0(V )K−1(V )

N (V )
Tj ,

P0(V ) = H1(V )H0(V )K0(V )K−1(V )

N (V )
Tj , (A4)

P−1(V ) = H1(V )H0(V )H−1(V )K−1(V )

N (V )
Tj ,

P−2(V ) = H1(V )H0(V )H−1(V )H−2(V )

N (V )
Tj ,

with

N (V ) ≡ H1H0H−1H−2 + H1H0H−1K−1

+H1H0K0K−1+H1K1K0K−1+K2K1K0K−1,

Hmj
(V ) = W2 Fmj ,−(0) + W3 Fmj ,−(V ),

Kmj
(V ) = W2 Gmj ,−(0) + W3 Gmj ,−(V ),

Lmj
(V ) = W2 [Fmj ,+(0) + Gmj ,+(0)]

+W3 [Fmj ,+(V ) + Gmj ,+(V )],

Fmj ,s(V ) ≡ Cmj

eV + s�mj ,F

1 − exp [−β(eV + s�mj ,F )]
,

Gmj ,s(V ) ≡ Cmj −1
eV − s�mj ,G

1 − exp [−β(eV − s�mj ,G)]
,

�mj ,F ≡ Em1,...,mj ,...,mN
− Em1,...,mj +1,...,mN

= −(2mj + 1)D − (mj−1 + mj+1)J + EZ,

�mj ,G ≡ Em1,...,mj −1,...,mN
− E|m1,...,mj ,...,mN

= −(2mj − 1)D − (mj−1 + mj+1)J + EZ

and Cmj
given by Eq. (15). It is straightforward

to verify that Eq. (A4) fulfills conservation of
population:

∑2
mj =−2 Pmj

(V ) ≡ Tmj
(V ), where Tmj

(V ) ≡
Tm1,...,mj ,...,mN

(V ) ∈ [0,1] denotes the total (time-independent)
spin population of site j for a given set of values mi at the
other sites i �= j , and

∑
j Tj (V ) = 1. Figure 9 shows the

equilibrium population PM (V ) [Eq. (A4)] for a chain of
four antiferromagnetically coupled atoms with population
initially in the ground state |2,−2,2,−2〉(0) and the STM tip
coupled to the first atom. We see that for this initial state and
Tm1 (V ) = 1, corresponding to low temperatures kBT � |�1|
initially all population is located in the ground state (for larger
kBT > |�1| more levels can become occupied, when different
Tj start to contribute). The ground-state population decreases
starting at eV = ±|�1| when the chain can make a transition
to the first excited state. However, the population decrease
is only slight: at all voltages considered, the equilibrium
population of the first excited state (or higher excited states)
is at least a factor 103 smaller than the probability of the chain
being in the ground state.
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