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We investigate theoretically the dynamics of a Josephson junction in the framework of the resistively shunted
junction model. We consider a junction that hosts two supercurrent contributions: a 2π and a 4π periodic in
phase, with intensities I2π and I4π , respectively. We study the size of the Shapiro steps as a function of the ratio
of the intensity of the mentioned contributions, i.e., I4π/I2π . We provide detailed explanations where to expect
clear signatures of the presence of the 4π -periodic contribution as a function of the external parameters: the
intensity ac bias Iac and frequency ωac. On the one hand, in the low ac-intensity regime (where Iac is much smaller
than the critical current Ic), we find that the nonlinear dynamics of the junction allows the observation of only
even Shapiro steps even in the unfavorable situation where I4π/I2π � 1. On the other hand, in the opposite limit
(Iac � Ic), even and odd Shapiro steps are present. Nevertheless, even in this regime, we find signatures of the
4π supercurrent in the beating pattern of the even step sizes as a function of Iac.

DOI: 10.1103/PhysRevB.95.195430

I. INTRODUCTION

A topological superconductor forms a new state of quan-
tum matter and possesses a pairing gap in the bulk and
gapless surface states which in some cases form nontrivial
Majorana bound states [1–3]. The Majorana bound states
can be interpreted as fermionic particles equivalent to their
own antiparticles, and have potential applications in fault-
tolerant topological quantum computation [4–7]. Additionally
to p-wave superconductors like Sr2RuO4 or d + id super-
conductors on hexagonal lattices [8,9], new platforms to
host Majorana bound states based on proximitizing ordinary
singlet-spin superconductor to a material with a strong
spin-orbit interaction were proposed [10–13]. In addition to
spectroscopic signatures of the Majorana bound states [14–16],
recent experiments on Josephson junctions (JJs) based on
Rashba wires or topological insulators, which could show
topologically nontrivial modes, have attracted a lot of attention
[17–20].

Josephson junctions containing a topologically protected
Andreev level exhibit 4π periodicity in respect to the su-
perconducting phase difference ϕ [10–13,21–23]. Hence, the
measurement of topological properties of the JJ involves a
probing of the periodicity of the electronic properties of the
junction. This can be achieved by means of the ac Josephson
effect [10]. For example, when the JJ is biased by dc and
ac currents I0 + Iac sin(ωact), the average voltage develops
plateaus at integer multiples of h̄ωac/2e, i.e., V = nh̄ωac/2e, n

being an integer number [24]. These plateaus are known as
Shapiro steps and are the result of a synchronization process
between the external driving frequency ωac and the frequency
of the junction ω0. Their experimental measurement allows to
establish a direct correspondence between the periodicity of

the electronic properties of the junction and an observable
because when the supercurrent is 4π periodic, only even
multiples of h̄ωac/2e (even Shapiro steps) appear. The ac-
curacy and universality of this relation has made the Shapiro
steps the basis of the international voltage standard with an
accuracy of one part per billion. Alternatively, one can measure
the voltage emission spectrum [20]. In this case, the 4π

periodicity manifests itself as a resonance line separated by the
fractional frequency ω0/2 of the junction. Nevertheless, these
proposals need to be performed carefully, due to several side
effects. For example, relaxation processes may break parity
conservation yielding a 2π -periodic supercurrent [10,25,26].
Furthermore, finite-size effects, and the coexistence of the
4π -periodic Andreev state together with ordinary Andreev
levels with a 2π periodicity, could obscure completely the
measurement of the 4π -periodic signal. Proposals based on
dynamical transitions allow to overcome these difficulties
[27–36]. Further proposals overcome some of these problems
by studying the skewness of the 4π -periodic supercurrent
profile [37,38] or the phase-dependent thermal conductance
with minimum at ϕ = π independent of the barrier strength in
the heat transport setup [39].

During the last years, some experiments were performed
in JJs where the presence of the 4π -periodic Andreev level
may be responsible for the observations. In Refs. [17–19],
even Shapiro steps stand alone at low values of the applied
external ac frequency ωac and ac intensity Iac. Then, increasing
ωac and/or Iac, odd Shapiro steps also appear. A similar
phenomenon was observed in Ref. [20], where the voltage
emission spectrum was measured as a function of an external
dc current bias I0. For low I0, a signal with the fractional
frequency ω0/2 appears, while for increasing I0, one observes
a clear transition towards the integer frequency ω0. The overall
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response will be studied on a phenomenological level by the
resistively shunted junction (RSJ) model [20,31] carrying two
superconducting contributions I2π sin(ϕ) and I4π sin(ϕ/2).
From now on, we will call it 2 supercurrents RSJ (2S-RSJ)
model. We will explain the regime of parameters that gives rise
to the 4π → 2π transition which can be seen in experiments.

Furthermore, we explain how to extend our analysis of
the 2S-RSJ model to the presence of an additional 8π -
periodic supercurrent. Such a contribution can originate from
parafermions in interacting topological junctions [40–42].
Similar to the 4π case, it is very difficult to measure directly
the 8π periodicity. In turn, we believe that it could be possible
to see the effects of the 8π -periodic term in the Shapiro
experiment or by measuring the voltage emission spectrum.

The outline of the paper is as follows. In Sec. II, we present
the 2S-RSJ model, with 2π - and 4π -periodic dependence
on the phase. Then, in Sec. III, we provide a qualitative
explanation of the 2S-RSJ model dynamics by introducing the
modified washboard potential (WP). In particular, the time-
dependent WP allows for a very intuitive understanding of the
Shapiro step formation as well as reasons for the discrimination
between the odd and the even steps. We summarize our
knowledge on the nonstationary topological Josephson effect
in form of a “phase diagram.” Finally, in Sec. IV, we consider
two limits of the 2S-RSJ model, the low Iac � Ic and the high
Iac � Ic intensity limits, where Ic is the critical current of the
JJ. We solve the 2S-RSJ model analytically in these limits of
interest. In the low-intensity limit (Iac � Ic), we establish the
relation between the emission spectrum experiment and the
Shapiro experiment in terms of the dc voltage. In addition, we
study the step width as a function of ωac. In the high-intensity
limit (Iac � Ic), we explain the beating pattern appearing in
the even Shapiro step widths as a function of Iac.

II. 2S-RSJ MODEL

The RSJ model was introduced in Refs. [43–45]. Under
this approach, the JJ dynamics is reduced to the study of an
equation of motion, which can be interpreted as a parallel
circuit, including three arms: the Josephson junction, a
resistive and a capacitive arm. Here, we will restrict ourselves
to the study of the overdamped limit of the 2S-RSJ model,
neglecting the capacitive arm [see Fig. 1(a)] [31,33]. This
simple model contains the basic ingredients to describe the
phase dynamics phenomenologically. The equation of motion
describing the circuit is given by

Iext(t) = h̄

2eR

dϕ

dt
+ I (ϕ), (1)

with I (ϕ) = I2π sin(ϕ) + I4π sin(ϕ/2) and Iext(t) = I0 +
Iac sin(ωact). As we explained above, the 4π -periodic term
I4π sin(ϕ/2) is of special interest because it may originate from
the presence of topological superconductivity. Writing Eq. (1)
we made several assumptions: the supercurrent coefficients
I2π and I4π and the resistance R are constant, independently
of the applied bias Iext(t). This assumption sets a restriction on
the energy gap between adjacent Andreev levels, and from
Andreev levels to the continuum, and the applied current
bias Iext(t), since nonadiabatic transitions may take place.
Besides, the 2S-RSJ model neglects also other dynamical

FIG. 1. (a) Scheme of the RSJ circuit. (b) V as a function of I0,
with Iac = 0. The voltage becomes finite for I0 � Ic. The dependency

is V ∼ R

√
I 2

0 − I 2
c . (c), (d) We represent the voltage as a function of

I0, with Iac �= 0, and I4π = 0 (c), and I2π = 0 (d). Thus, the periodicity
of the supercurrent is reflected in the parity of the Shapiro steps. In
panel (c) [(d)], we show Shapiro steps at integer (even) multiples of
h̄ωac/2e.

processes such as quasiparticle poisoning [25,26] or dynamical
transitions that might change the phase periodicity and, thus,
the intensities I2π and I4π [27,29,31–33]. It is possible to omit
these effects when the quasiparticle poisoning time tqp ∼ μs
[46] is much larger than the largest time scale of the biased
junction, i.e., Max(τ k

R, 1/ωac) [32]. Here, τ k
R = 1/(eRIk), with

Ik = Ic|Jk(2eRIac/h̄ωac)|, is the transient time during which
the phase becomes periodic in time, after a quasiparticle
poisoning event is produced. Note that we have used the kth-
Bessel function Jk(x). Furthermore, we expressed the func-
tionality of the supercurrent simply as a sum of two sinusoidal
contributions, which differs from a microscopic derivation.

The solution of this differential equation provides the
induced voltage V (t) = h̄ϕ̇(t)/2e, where ϕ̇(t) is a periodic
function with period T4π , and frequency ω0 = 4π/T4π . Fur-
thermore, the average voltage and the frequency are propor-
tional to each other by means of ω0 = 2eV /h̄, where the
overline denotes the average over time.

The general features of the current-voltage dispersion can
be summarized as follows: Starting from the dc bias, i.e.,
Iac = 0, we observe that in order to generate a voltage, the
current bias I0 must exceed the critical value Ic ≡ max{I (ϕ)}
[see Fig. 1(b)]. In this situation, part of the driving current
goes through the dissipative arm of the circuit and therefore
a voltage is generated. The average voltage can be obtained
analytically either for I2π = 0 or I4π = 0, and is given by

V = R

√
I 2

0 − I 2
c . In the presence of an ac current, the voltage

develops Shapiro steps at integer multiples of h̄ωac/2e. In
Figs. 1(c) and 1(d) we show an example of the Shapiro
experiment only considering I2π and I4π , respectively. We can
see that in the case of a pure 4π - (2π -) periodic supercurrent,
the voltage contains only even (all) multiples of h̄ωac/2e.

When both contributions I2π and I4π are present the
nonlinear dynamics of the junction governs the low-bias
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FIG. 2. I -V curves for different values of Iac = 0 up to Ic, with
I4π/I2π = 0.5, ωac = 0.2(2eRIc/h̄). We observe the appearance of
odd steps, when Iac � I4π .

regime and gives rise to a very interesting situation: it is
possible to find only even Shapiro steps for a finite range
of Iac and even for I4π � I2π [31]. This phenomenon has
been observed experimentally [17–19], and as we will explain
below, we can relate it to the power spectrum of the voltage
[20]. As an example of this, we show in Fig. 2 I-V curves for
Iac = 0 up to Iac = Ic, and I4π/I2π = 0.5. For low values of
Iac we find only even steps, while increasing Iac � I4π , the
odd steps emerge. In the following sections, we will present
detailed qualitative and quantitative explanations about the
parameter regime where to expect only even Shapiro steps.

III. WASHBOARD POTENTIAL

We can picture the phase dynamics of the 2S-RSJ model as
a massless particle sliding on top of a potential, adapting its
velocity instantaneously to its slope. In order to see this, we
rewrite Eq. (1) as (h̄/2eR)ϕ̇ = −∂U (ϕ,t)/∂ϕ, where

U (ϕ,t) = −Iext(t)ϕ +
∫

dϕ I (ϕ) (2)

is the, so-called, washboard potential. Here, the external drive
term Iext(t)ϕ controls the slope, and on top of that, the su-
percurrent contribution modulates the WP profile sinusoidally
[see Fig. 3(a)]. We study the static and dynamical WP, where
Iac = 0 and Iac �= 0, respectively.

A. Static WP

In the absence of ac bias, the I-V curves exhibit a zero
voltage drop for I0 � Ic. This fact is reflected in the WP as
minima where the particle rests [see Fig. 3(a)]. Increasing
I0 above the critical value Ic, the local minima in the tilted
potential vanish, and then, the particle slides along the WP
passing intervals of flatter and steeper slopes. In this situation,
the motion of the particle alternates between slow and rapid

FIG. 3. (a) The washboard potential with Iac = 0 as a function of
ϕ for three different values of I0: top curve I0 = 0, I0 < Ic middle
curve, and I0 > Ic bottom curve. The dashed lines remark the slope
of the WP at the odd (F1) and even (F2) flattest regions. We highlight
the even and odd sectors in red and blue, respectively. (b) We show
the time evolution of ϕ̇(τ ) [31]. We mark in blue (red) the odd (even)
sectors according to Eqs. (3) and (4). Besides, we can extract from the
WP the maxima of ϕ̇(t): S1 ≈ I0 + Ic − √

2I4π , S2 = I0 + Ic, F1 =
I0 − Ic, and F2 ≈ I0 − Ic + √

2I4π , being the steepest and the flattest
slopes in each sector, and the equation (h̄/2eR)ϕ̇ = −∂U (ϕ,t)/∂ϕ

relates the slope and the velocity at each time. (c) We represent the
ratio T1/T2 as a function of I0 for different values of I4π/I2π from
zero to one.

sectors. We can see the WP profile in Fig. 3(a), and the resulting
time evolution of ϕ̇(t) in Fig. 3(b), characterized by narrow
peaks and flat regions.

The presence of the 4π -periodic contribution modifies the
WP introducing a relative phase between the sectors ϕodd =
[4(l − 1)π,4(l − 1/2)π ] and ϕeven = [4(l − 1/2)π,4lπ ], l be-
ing an integer number. From now on, ϕodd and ϕeven will be
called odd and even sectors, respectively. In the odd sectors,
the 4π term contributes with opposite phase to I0 yielding a
flatter slope on the WP. On the other hand, the 4π current
adds to the dc current I0 in the even sectors, and therefore the
slope of the flatter regions becomes more negative, whereas
in the odd sectors the 4π term is subtracted from I0. We can
observe the slope difference between both sectors in Fig. 3(a),
where the odd (even) sectors are highlighted in blue (red) [36].
The resulting ϕ̇(t) changes accordingly, and shows different
maxima depending on the sector parity: the odd sectors show
the steepest and flattest slopes S1 ≈ I0 + Ic − √

2I4π and
F1 = I0 − Ic, respectively, while the even sectors S2 = I0 + Ic

and F2 ≈ I0 − Ic + √
2I4π [see Fig. 3(b)]. Note that S1 and F2

are approximate for I4π/I2π � 1.
The observed changes of slope cause differences between

the time spent in each sector, which is given by

T1 = h̄

2eR

∫ 2π

0

dϕ

I0 − I2π sin(ϕ) − I4π sin(ϕ/2)
, (3)

T2 = h̄

2eR

∫ 4π

2π

dϕ

I0 − I2π sin(ϕ) − I4π sin(ϕ/2)
, (4)

195430-3
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where T1 (T2) is the time spent by the particle in the odd (even)
sector. Equations (3) and (4) differ on the integration range,
which introduces a relative sign in sin(ϕ/2). In the odd (even)
sector sin(ϕ/2) is always positive (negative), contributing to a
decrease (increase) of the denominator. Thus, by construction
T1 � T2. This is in accordance to the observed differences
between F1 and F2. Therefore, the ratio T1/T2 indicates
the impact of the 4π -supercurrent contribution on the phase
dynamics. For T1/T2 � 1 (T1/T2 ∼ 1), the particle spends
most of the time in the odd (both) sectors yielding an effective
4π (2π ) WP profile. In Fig. 3(c), we plot the ratio T1/T2 as
a function of I0, for different values of I4π . We observe that
for I0 ∼ Ic, the ratio T1/T2 � 1. Then, increasing I0 causes a
rapid decay of the ratio T1/T2 towards 1. Remarkably, we can
observe a range of I0 where T1/T2 � 1, even for very small
ratios I4π/I2π ∼ 0.05. This means that the junction exhibits
a 4π -periodic dynamics for a finite range of I0. Naturally,
the smaller the ratio I4π/I2π is, the smaller the range of I0

becomes. This nonadditive phenomenon reveals the highly
nonlinear dynamics of the 2S-RSJ model.

We can roughly estimate T1 and T2 considering that the
particle spends most of the time in the flattest regions and,
thus, T1 ∝ 1/F1 = 1/(I0 − Ic) and T2 ∝ 1/F2 ≈ 1/(I0 − Ic +√

2I4π ). Note that in the limit of I0 � Ic, T1 becomes much
larger than T2. In turn, I0 − Ic � I4π leads to T1 ∼ T2. These
considerations on a dc-driven junction explain experimental
results on the anomalous emission at ω0/2 of topological
Josephson junctions [20], as will be detailed later.

B. Dynamical WP

We now introduce the effects of the ac-current bias
Iac sin(ωact), assuming the adiabatic approximation, i.e.,
h̄ωac/2eRIc � 1 [36]. It enhances or reduces the effect of I0

depending on their relative sign. At the time periods when I0 +
Iac sin(ωact) < Ic, the current bias recovers the minima, where
the particle stops. In order to represent together in a single
plot the dynamical WP at different times, we show in Fig. 4
a renormalized WP given by Ũ (ϕ,t) = [I0/|Iext(t)|]U (ϕ,t), so
that U and Ũ coincide for Iac = 0. Thus, we separate visually
the average tilting from the ac-bias slope, while we keep the
local sign of the slope unchanged at any time. The regions with
positive slope (marked red) are impenetrable for the particle
at the given moment of time. The periodic appearance of the
red intervals realizes a turnstile mechanism, which allows the
phase to propagate an integer multiple m of green intervals
between the minima per cycle. This manifests itself in the
relation ω0 = nωac, where the particle slides through m green
intervals of total length 2πn until it stops. Shapiro step arises
if the resonance (with fixed n and m) holds for a finite range
of I0. This means that the different tilting I0 of the WP is
compensated by the stopping periods. Thus, the particle’s
average speed (〈ϕ̇〉) remains constant.

Interestingly, we can find a situation where only the 4π

contribution becomes visible. When the ac current is set such
that it fulfills |F2| � Iac sin(ωact) � |F1|, the WP recovers
temporarily the minima in the odd sectors only, being separated
by a phase difference of 4π and not 2π (see bottom curve in
Fig. 4). Thus, the periodicity of the junction is effectively that
of a pure 4π -periodic one. Hence, we expect to observe only

FIG. 4. The renormalized washboard potential Ũ (ϕ,t) as a
function of ϕ for two different values of the external bias I0 − Ic <

Iac < I0 − Ic + √
2I4π (bottom curve) and I0 − Ic + √

2I4π < Iac

(top curve). We highlight in green the sectors where ∂Ũ/∂ϕ < 0
and in red ∂Ũ/∂ϕ > 0.

even Shapiro steps since 2πn = 4πm. On the other hand, for
the period of time where |F2| � Iac sin(ωact), the particle is
temporarily stopped at each sector, yielding any multiple of
Shapiro step (see top curve in Fig. 4).

FIG. 5. Phase diagram of the voltage as a function of I0 and
Iac. We differentiate between “no motion regime” (red area), where
V = 0. The “linear regime” (yellow area), where there is no Shapiro
steps but V �= 0. Finally, the “Shapiro steps regime” (green and blue
areas). Remarkably, following the WP considerations we expect to
observe only even steps in the blue area, i.e., for I0 − Ic + √

2I4π �
Iac � I0 − Ic.
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We summarize these qualitative results in Fig. 5, where we
estimate the parameter regime of the Shapiro steps as a function
of Iac and I0. We differentiate between three regimes: “no
motion regime” (red area), limited by I0 + Iac < Ic. Here, the
WP exhibits always minima where the particle rests, yielding
a zero average voltage V = 0. The “linear regime” (yellow
area) extends over I0 − Ic > Iac, where the WP cannot stop the
particle at any time, yielding a finite voltage without develop-
ing steps. Finally, the “Shapiro steps regime” (green and blue
areas) is the region limited by I0 − Ic < Iac and I0 + Iac > Ic.
Following the arguments presented above, we distinguish an
inner blue region I0 − Ic + √

2I4π � Iac � I0 − Ic where we
expect to observe the even steps only. Increasing further Iac, we
expect to observe a crossover where odd steps appear together
with even steps, with a dominating even steps contribution.
Then, for Iac > I0 − Ic + √

2I4π we expect to have even and
odd Shapiro steps, without any clear dominance.

Higher Shapiro steps are placed at larger values of I0.
Therefore, following the previous reasoning, in order to
generate the higher steps, we need to make the relation
I0 − Ic − Iac negative. Considering a constant Ic, this can be
achieved by increasing further Iac, as it is shown in Fig. 2.
Thus, we will find only even steps if in addition the ac intensity
fulfills Iac � I0 − Ic + √

2I4π .
We now understand the underlying reason for the observa-

tion of even Shapiro steps in terms of the WP. Note, however,
that in all our arguments presented so far, we have assumed
an adiabatic evolution of the WP, i.e., h̄ωac/2eRIc � 1. In
order to better understand the role played by ωac, we perform
a perturbative approach to the equation of motion in the next
section. We show below that the effect of increasing the value
of ωac has a similar effect as increasing I0 [31]. This can be
understood in the following way: since the Shapiro steps occur
at ω0 = nωac, where n ∈ N, in order to fulfill ω0 = nωac, we
will need to increase ω0 by increasing I0. Nevertheless, this
reasoning is vague and deserves a quantitative study.

C. Extension of the 2S-RSJ model: Searching for parafermions

In the presence of an additional 8π -periodic su-
percurrent I8π sin(ϕ/4), the WP acquires four differ-
ent flattest and steepest slopes, i.e., F1,F2,F3,F4 and
S1,S2,S3,S4, respectively. These slopes correspond to the sec-
tors ϕ1 = [8(l − 1)π,8(l − 1/4)π ], ϕ2 = [8(l − 1/4)π,8(l −
1/2)π ], ϕ3 = [8(l − 1/2)π,8(l − 3/4)π ], and ϕ4 = [8(l −
3/4)π,8lπ ], l being an integer number. Assuming that
I2π � I4π � I8π , we find that F1 > F3 > F2 > F4, which
is naturally related to the way the superconducting phases
sin(ϕ), sin(ϕ/2), sin(ϕ/4) add up. Following an analogous
reasoning as previously, we find a window of Iac, in which only
Shapiro steps that are multiples of 4 arise. This window occurs
for I0 − Ic + 4

5I8π � Iac � I0 − Ic, which is estimated for
small I8π . Increasing further Iac, we move into a regime where
only even steps are observed. Finally, for higher values of Iac

we arrive to the situation where even and odd steps are present.

IV. ASYMPTOTIC LIMITS OF THE 2S-RSJ MODEL

We study two asymptotic limits of the 2S-RSJ model that
have experimental relevance. First, the low-intensity limit

Iac � Ic is the limit where we can expect to observe only even
Shapiro steps even for I4π/I2π � 1. Second, the high-intensity
limit Iac � Ic, where both steps are present. Before entering
into the study of the asymptotic limits, it is convenient to
rewrite Eq. (1) using dimensionless units. We first divide Eq.
(1) by the critical current Ic. Then, we make the change of
variable

t̃ = (2eRIc/h̄)t,

and substitute currents and frequencies as follows:

Ĩi = Ii

Ic
, ω̃ac = h̄ωac

2eRIc
.

Then, Eq. (1) yields

Ĩ0 + Ĩac sin(ω̃ac t̃) = dϕ

dt̃
+ Ĩ2π sin(ϕ) + Ĩ4π sin(ϕ/2). (5)

In this notation, the critical current is normalized to 1, namely,

Ĩc = 1 = max{Ĩ2π sin(ϕ) + Ĩ4π sin(ϕ/2)}. (6)

Derived quantities such as the voltage or the frequency of

the junction are given by Ṽ = V /IcR and ω̃0 = h̄ω0/2eRIc,
respectively. Thus, the Josephson relation is Ṽ = ω̃0, showing
that the voltage and the frequency of the junction are equal.

In order to keep the notation as simple as possible, from now
on we skip the tildes, implying the dimensionless variables,
and restore dimensionality in the conclusions. In these new
units, we will study the low- (Iac � 1) and the high-intensity
limits (Iac � 1).

A. Low-intensity limit: Iac � 1

In this limit we treat the ac driving as a perturbation, thus,
we expand ϕ(t) in powers of Iac [47,48], that is,

ϕ = ϕ0 + Iac ϕ1 + I 2
ac ϕ2 + · · · .

The zeroth-order contribution ϕ0 corresponds to the dc-driven
solution of the 2S-RSJ equation and the ϕn is the nth-order
correction. In this limit the width of the Shapiro steps is
proportional to Iac. In order to determine their width, we
perform a trick [47,48] which consists of splitting I0, which is
a constant parameter, into

I0 = Iv + Iac β1 + I 2
ac β2 + · · · .

Here, Iv is given by the value of I0 at the beginning of the
step. The rest of the terms (βn) leave constant the voltage. In
this way, the zeroth-order contribution determines the voltage
〈ϕ̇〉 = 〈ϕ̇0〉, yielding 〈ϕ̇n〉 = 0, for n �= 0. Therefore, we need
to determine βn that cancels the nth-order contribution of the
voltage, i.e., 〈ϕ̇n〉 = 0. As we will see below, this gives the step
width: the range of I0 in which the voltage remains constant.

1. Zeroth-order contribution in Iac: Power spectrum

Using the above definitions, we obtain the zeroth-order
differential equation

Iv = ϕ̇0 + I2π sin(ϕ0) + I4π sin(ϕ0/2). (7)

Its exact analytical solution is cumbersome and does not
provide any further insight with respect to the numerical
solution. For this reason, we have adapted the solution of a 2π
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FIG. 6. Low-intensity limit Iac � 1: Fourier transform (color
scale) ϕ̇0(ω) = | ∫ dt eiωt ϕ̇0(t)| as a function of ω and the voltage
V = ω0. The intensity of the resonances follow Eq. (9). The first two
resonance lines with higher slope correspond to the frequencies ω =
ω0/2 (fractional frequency) and ω = ω0. The rest of the resonance
lines correspond to higher harmonics.

junction [47] taking into account the presence of two periods
T1 and T2 given in Eqs. (3) and (4), and adjusting the intensity
of the function. See further details in the Appendix. Doing so
we obtain

ϕ̇0(t) ≈ ω0

[
1 +

∞∑
n=1

zn[2 cos(nω0T1/4) cos(nω0t/2)

+ (I2π − 1) sin(nω0T1/4) sin(nω0t/2)]]. (8)

Besides, the amplitudes of the harmonics decrease in geo-
metric progression with z = √

Iv − ω0. This approximation
shows the numerical solution coming out from Eq. (7) (see
Appendix), especially for I4π/I2π � 0.5.

The Fourier transform of Eq. (8) is proportional to the
emission spectrum of the voltage, and has been measured
in Ref. [20]. Performing the Fourier transform of Eq. (8),
ϕ̇0(ω) = | ∫ dt eiωt ϕ̇0(t)| we obtain

ϕ̇0(ω) ≈ δ(ω − nω0/2)znω0

[
4 cos2

(
nT1

T1 + T2
π

)

+ (I2π − 1)2 sin2

(
nT1

T1 + T2
π

)]1/2

, (9)

where the delta function δ(ω − nω0/2) makes ϕ̇0(ω) finite for
ω = nω0/2, with n = 1 (n = 2) giving the fractional (integer)
frequency ω0/2 (ω0). Here, we have made use of the relation
ω0 = 4π/(T1 + T2).

In Fig. 6, we represent ϕ̇0(ω) as a function of ω and
V = ω0. We will focus on the two top resonance lines, which
correspond from top to bottom to the frequencies ω0/2 (n = 1,
i.e., ω = ω0/2) and ω0 (n = 2, i.e., ω = ω0), respectively.
We can observe that the fractional contribution with n = 1

[ϕ̇0(ω0/2)] dominates over the 2π contribution with n = 2
[ϕ̇0(ω0)] for low values of ω0. Increasing further ω0, this
tendency is reversed and the 2π contribution dominates. As we
explained above, this can be understood in terms of the ratio
T1/T2, which decreases as a function of I0, as it was shown in
Fig. 3(c) (note that ω0 is tuned by I0).

For simplicity, we analyze the limit where I2π � I4π , which
yields in our dimensionless units I2π ∼ 1 making the second
term in Eq. (9) negligible. In this scenario, the coefficient
cos[nπT1/(T1 + T2)] rules the periodicity of the voltage. In
the limit where T1 � T2, cos2[nπT1/(T1 + T2)] ≈ 1, and the
Fourier expansion contains only one frequency, i.e., ω0/2 and
its harmonics. Therefore, the junction behaves like a pure
4π -periodic junction. In the opposite limit where T1 ∼ T2,
the arguments T1/(T1 + T2) ≈ 1/2, thus, Eq. (9) only contains
even terms, and thus, the frequency ω0/2 is doubled to
ω0, yielding a 2π contribution. This 4π → 2π transition is
shown in Fig. 6 and is consistent with the emission spectrum
experiment performed in Ref. [20]. The value of ω0 at
which the integer contribution n = 2 overcomes the fractional
contribution n = 1 depends only on the ratio I4π/I2π . Thus, a
direct comparison with the experimental results provides the
value I4π [20].

2. First-order contribution in Iac: Shapiro steps width

The first-order contribution is obtained from the solution of
the linear differential equation

β1 + sin(ωact) = ϕ̇1 + ϕ1

(
I2π cos(ϕ0) + I4π

2
cos(ϕ0/2)

)
,

(10)

which can be solved using the integrating factor
exp{∫ dt[I2π cos(ϕ0) + I4π/2 cos(ϕ0/2)]}. At this point it is
particularly useful to realize that

I2π cos(ϕ0) + I4π

2
cos(ϕ0/2) = − ϕ̈0

ϕ̇0
. (11)

This relation simplifies greatly Eq. (10), yielding

ϕ1(t) = ϕ̇0(t)
∫ t

0
dt ′[β1 + sin(ωact

′)]
1

ϕ̇0(t ′)
. (12)

In order to extract the width of the first two Shapiro steps,
we need to find the value of β1 that makes 〈ϕ̇1〉 = 0, that is,
ϕ1(T )/T = 0, where T → ∞. This involves the cancellation
of the constant terms in the integrand of Eq. (12). The rest of the
terms are canceled by the factor 1/T . Thus, when ωac = nω0/2
we find the equality

β1f0 + fn exp[i(ωac − nω0/2)t] = 0, (13)

where fn are the Fourier coefficients of 1/ϕ̇0(t), namely,

1

ϕ̇0(t)
=

∞∑
n=−∞

fn exp(inω0t/2). (14)

The solution for n = 1 corresponds to the second step (ω0 =
2ωac), while for n = 2 to the first step (ω0 = ωac). The step
width is given by the equation

β1(nω0/2) = 2

∣∣∣∣fn

f0

∣∣∣∣. (15)
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FIG. 7. Low-intensity limit Iac � 1: first (dashed curve) and
second (solid curve) Shapiro steps width in units of Iac as a function
of ωac. The width of the Shapiro steps is calculated from Eq. (15).

Note that in pure 2π junctions, the first-order contribution only
contains solutions for the first step width. In turn, when both
contributions are present, the first-order contribution provides
the width of the first and the second steps. In Fig. 7 we show the
value of β1(nω0/2) (the step width) as a function of ωac. We can
observe that the second step dominates for low values of ωac,
and decreases at higher values. This behavior is rather similar
to the one observed in the power spectrum, where for I0 − Ic �√

2I4π , the fractional signal is more visible. Therefore, we can
establish the connection between the periodicity of the Shapiro
experiment and the radiated power spectrum observed in Refs.
[17–20] since we see from Eq. (15) that the Shapiro steps are
proportional to the Fourier transform of 1/ϕ̇0(t).

Higher Shapiro steps can be calculated by taking further
higher orders in ϕn and βn [48]. The resulting differential
equations are still linear, however, their solution becomes
cumbersome. Hence, it is difficult to gain further analytical
understanding of the higher Shapiro steps.

B. High-intensity limit: Iac � 1

In this limit, the zeroth-order contribution is obtained
neglecting the supercurrent contributions, thus,

I0 + Iac sin(ωact) = dϕ0(t)

dt
, (16)

where ϕ0(t) is the zeroth contribution, in units of Ic. Equation
(16) can be integrated exactly,

ϕ0(t) = I0t − Iac

ωac
cos(ωact) + φ0, (17)

where φ0 is a constant phase that needs to be determined (see
below). Since we have linearized the differential equation, the
average voltage at zeroth order is 〈ϕ̇0〉 = I0. In order to recover
the Shapiro steps we need to take into account the first-order
contribution, given by

dϕ1(t)

dt
= −I2π sin[ϕ0(t)] − I4π sin[ϕ0(t)/2]. (18)

ϕ̇1(t) can be explicitly written by plugging Eq. (17) into Eq.
(18), and taking the Jacobi-Anger expansion

ϕ̇1(t) = −1

2

∞∑
n=−∞

[
I2πJn

(
Iac

ωac

)
sin[(ω0 − nωac)t + φ0]

+ I4πJn

(
Iac

2ωac

)
sin[(ω0/2 − nωac)t + φ0/2]

]
, (19)
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FIG. 8. High-intensity limit Iac � 1: width of the first two steps
as a function of Iac/ωac. The oscillatory behavior is due to the Bessel
functions [see Eqs. (21) and (22)]. Interestingly, even Shapiro steps
exhibit a beating pattern produced by the coexistence of 2π and 4π

supercurrents.

where Jn(x) is the nth Bessel function. The time average of
Eq. (19) is finite for ω0 = nωac, namely,

〈ϕ̇1〉 = −1

2

[
I2πJn

(
Iac

ωac

)
sin(φ0)δ(ω0 − nωac)

+ I4πJn

(
Iac

2ωac

)
sin(φ0/2)δ(ω0/2 − nωac)

]
. (20)

Shapiro steps arise choosing the value of φ0 that compensates
the increment of I0, and thus 〈ϕ̇0〉 + 〈ϕ̇1〉 = nωac for different
values of I0. Therefore, the step widths will be given by the
extreme value of Eq. (19) in respect to φ0 for the interval φ0 =
[0,4π ]. Under these approximations, odd and even Shapiro
steps are given by


2n−1 = 1

2
I2π

∣∣∣∣J2n−1

(
Iac

ωac

)∣∣∣∣, (21)


2n = 1

2
Max

{
I2πJ2n

(
Iac

ωac

)
sin(φ0)

+ I4πJn

(
Iac

2ωac

)
sin(φ0/2)

}
, (22)

where 
n is the nth step width given in units of Ic. In Fig. 8,
we represent 
n for n = 1 and 2 as a function of Iac/ωac. It
is important to note that both terms I2π and I4π enter in the
same way in the step widths. Therefore, even steps can only
dominate for I4π/I2π � 1. Furthermore, we observe in Fig. 8
a genuine oscillatory pattern. Odd step widths show a typical
oscillatory pattern, i.e., they involve only one Bessel function
and, thus, they go to zero for given values of the argument
Iac/ωac. In turn, the even step widths are composed by the
sum of two different Bessel functions. Thus, the step widths
show two minima, and none of them reaches zero. Therefore,
although the even step widths are comparable with the odd
step widths, the beating pattern of the step widths can be used
to identify and estimate the intensity of the 4π component of
the supercurrent.

V. CONCLUSIONS

In this paper, we study the dynamics of a Josephson
junction carrying two superconducting contributions: a 2π

and a 4π periodic in phase difference, with intensity I2π and
I4π , respectively. We use the 2S-RSJ model to understand the
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relation between the dynamics of the junction and the width
of the Shapiro steps, and in particular we focus on the reasons
that make the even steps dominate over the odd steps for a fixed
ratio I4π/I2π � 1. This phenomenon [31] is important because
it has been observed in different experiments [17,18,20],
and could help to determine the presence of topological
superconductivity.

We provide a qualitative explanation of this phenomenon in
terms of the washboard potential, and obtain a phase diagram
of the widths of the Shapiro steps as a function of Iac and I0.
Remarkably, using some elementary reasonings we find the
range of ac bias, i.e., Iac, where the nonlinear dynamics of the
junction causes a regime in which the even steps dominate
over the odd steps. Increasing further Iac we expect to find a
crossover to a situation where odd steps are present although
even steps dominate. Then, at very high values of Iac, both
contributions become comparable.

Furthermore, we study analytically the Shapiro step width
as a function of ωac in two different limits of Iac: the low-
intensity limit Iac � Ic and the high-intensity limit Iac � Ic.
The low-intensity limit is precisely the limit where one can
find only even Shapiro steps even when I4π/I2π � 1. In this
limit, we find the link between two different experiments: the
Josephson emission spectrum [20] and the Shapiro experiment
[17–19]. In addition, we obtain analytical expressions for the
step widths in the high-intensity limit Iac � Ic. We show that
the maximum width of the even and odd Shapiro steps depends
linearly on the ratio of I4π/I2π . However, even in this regime
one can unravel the existence of the 4π -periodic contribution,
due to the beating pattern of even Shapiro steps as a function
of Iac.

ACKNOWLEDGMENTS

We acknowledge financial support from the DFG via Grant
No. SFB 1170 “ToCoTronics,” the Land of Bavaria (Institute
for Topological Insulators and the Elitenetzwerk Bayern), the
German Research Foundation DFG (Grant No. SPP 1666), the
European Research Council (advanced grant project 3-TOP),
the Helmholtz Association (VITI) and the Spain’s MINECO
through Grant No. MAT2014-58241-P. T.M.K. is financially
supported by the European Research Council Advanced Grant
No. 339306 (METIQUM) and by the Ministry of Education
and Science of the Russian Federation under Contract No.
14.B25.31.007. T.M.K., E.B., and L.W.M. gratefully thank
the Alexander von Humboldt foundation for a Research-prize.
R.S.D. acknowledges support from Grants-in-Aid for Young
Scientists B (Grant No. 26790008) and Grants-in-Aid for Sci-
entific Research A (Grant No. 16H02204). We acknowledge
enlightening discussions with Y. V. Nazarov, J. Picó, C. Brüne,
and H. Buhmann.

APPENDIX: ADAPTING THE 2π SOLUTION TO THE
MIXED SITUATION

The solution of Eq. (5) with I4π = 0 and I2π = 1 has been
solved previously in Ref. [47]:

T =
∫ 2π

0

dϕ

Iv − sin(ϕ)
= 2π√

I 2
v − 1

. (A1)

FIG. 9. Comparison between the numerical solution of Eq. (5)
ϕ̇0(τ ) (solid lines) and the approximate solution given by Eq. (8)
(dashed lines). We have used I4π/I2π = 0.5. We compare two
different values of Iv = 1.1 (left panel) and Iv = 2.1 (right panel).

The corresponding frequency ω0 = 2π/T is proportional to
the voltage. Besides, the stationary voltage is equal to the
frequency V = ω0 = √

I 2
v − 1. In this case, the time evolution

of ϕ̇0(t) can be solved exactly and is given by

ϕ̇0(t) = ω0

[
1 + 2

∞∑
n=1

(Iv − ω0)n cos(nω0t)

]
(A2)

for Iv > 1. In order to adapt this solution to the more general
case, where I4π �= 0, we need to take into account the two
periods T1 and T2, and also to include the different intensities
observed in the maxima F1, F2, S1, and S2 [see Fig. 3(a)]. To
this aim, we double the period of the system by substituting
ω0 by ω0/2, with ω0 = 4π/T4π , and then shift the cosine term
in two opposite directions ±T1/2. In this way, we tune from
a solution that exhibits equally time spaced peaks, where the
period T is given by Eq. (A1), to a function exhibiting peaks
separated by T1 and T2. In order to include two periods T1 and
T2 maintaining the same height one needs to renormalize the
Fourier coefficients and substitute (Iv − ω0) by its square root
of z = (Iv − ω0)1/2, yielding

ϕ̇0(t) ≈ ω0

[
1 +

∞∑
n=1

zn{cos[nω0(t + T1/2)/2]

+ sin[nω0(t − T1/2)/2]}
]
. (A3)

This equation gives rise to peaks exhibiting equal height, in
order to adjust to the numerical solution, we multiply the
second term in the sum by I2π , which in the pure 2π solution
was equal to 1, namely,

ϕ̇0(t) ≈ ω0

[
1 +

∞∑
n=1

zn[(I2π + 1) cos(nω0T1/4) cos(nω0t/2)

+ (I2π − 1) sin(nω0T1/4) sin(nω0t/2)]

]
. (A4)

We find that the equation becomes more similar to the
numerical results when we substitute the first coefficient by
2, that is, (I2π + 1) → 2, yielding the result given in Eq. (8).
In Fig. 9 we show how accurate the approximate solution is,
by comparing it against the numerical result.
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