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Preface

This report is a Master’s Thesis written under the Computer Graphics and Visualization research group
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was to provide improvements to rendering techniques for sports visualisations, although the method
presented is applicable more broadly. The project presents a new method of storing lighting data
for animated characters in real-time applications, such as 3D games. Our method attempts to provide
better performance and fewer trade-offs than existing real-time methods by pre-computing lighting data
and storing it in commonly used data structures, combined with various encoding and compression
techniques.
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1
Introduction

Simulating accurate lighting is one of the most important parts of 3D rendering. This includes both direct
illumination, where a light source is in direct line of sight of a surface, as well as indirect illumination,
which is where light bounces off of one surface onto another. While direct illumination can be computed
quite easily in real-time, indirect illumination essentially turns every part of the scene into a light source,
and this cannot be simulated accurately in real-time. Because relying only on direct illumination would
leave objects in shadow fully darkened, real-time light rendering techniques add an ambient light com-
ponent that brightens all objects in the scene by the same amount, simulating primitive indirect lighting.
However, indirect lighting should be blocked by nearby geometry as there are fewer directions for the
light to reach the surface from, which the ambient component does not account for. This makes it diffi-
cult to identify the layout of a scene as this blocked lighting typically provides important cues for people
to see depth and proximity between objects, as well as revealing the presence of geometry not directly
visible in the image by allowing it to still block some ambient lighting. A few different methods exist to
approximate this effect, the most common of which is called ambient occlusion.

Ambient occlusion works by darkening surfaces when there is geometry nearby that should block
part of this lighting. While some of the darkening can be calculated ahead of time for static geometry
such as walls, this cannot be done as easily for dynamic parts of the scene. As many scenes rely on
characters that move around in and interact with the environment, this leaves important cues without
an effective pre-computed method. Real-time methods exist to solve this problem, but for these to run
efficiently many shortcuts are typically taken that may affect the final image. One example of such a
shortcut is to use screenspace information, where only geometry that is directly visible is incorporated
into the occlusion computation. This causes issues not only for characters that are just outside the
boundaries of the screen but also when parts of the character are hidden behind another object. Ex-
amples of these scenarios are a character that is walking in or out of frame or an arm of the character
hidden behind their torso. As such, screenspace methods can have several downsides.

We will research whether it is possible to rely on pre-computed compact data structures to encode
ambient occlusion for animated characters. For this we will develop a method that aims to circumvent
the issues present in screenspacemethods by pre-calculating the occlusion each character casts on the
environment around it at each stage in their animation cycles. This information will then be stored in a
spherical encoding format that lets us specify the occlusion for each point in space around the character
while keeping the memory usage independent of the size or complexity of the character model. To store
this information we will make use of compression methods that can be efficiently queried at runtime.
We will present two different methods that rely on different encoding methods, one based on polynomial
curve fitting and one based on cosine basis functions using Blurhash[2]. The goal is to produce images
that provide sufficient lighting cues to tell whether a character is in close proximity to static geometry in
the scene by resembling the appearance of true indirect illumination. As our result is an approximation
of realistic lighting, there will naturally be trade-offs between different aspects of the result. For example,
one part of the image may be a bit darker than it should be, but brightening this will affect other parts
of the image as well. Artists may prefer to manually tweak the result to adjust which of these trade-offs
look more appealing for a specific scene, character, or context, for which we will provide parameters
that can be adjusted either at runtime or pre-computation time. These parameters can also be tweaked
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to achieve a particular art style for the image instead of a realistic result. Our method should minimize
the effect on runtime performance and runtime memory usage, ideally performing similarly to or better
than screenspace methods.

Possible use cases for the proposed technique include real-time rendering applications, such as
games and mixed reality applications. Since the data is stored per animation, an ideal scenario is one
where many similar characters are present in the scene, such as in a sports visualisation, where all
players on the field share mostly the same animations and therefore lighting data.



2
Prior work

2.1. Ambient Occlusion
Ambient occlusion is the darkening caused by geometry blocking environmental illumination, which can
help give cues about proximity and shape of objects in the scene, such as shown in Figure 2.1. The
blocking of indirect illumination is difficult to compute correctly in real-time, hence faster methods are
used to approximate it. One of the earliest implementations of real-time ambient occlusion was simply
called Screen-Space Ambient Occlusion[14], which uses the depth map to compare nearby pixels. The
idea behind this method forms the basis for most screenspace occlusion methods still in use today. As
the method operates only on what is visible on screen, occlusion will often appear too bright around the
edges of the screen. As there is no information on geometry outside of the camera view, the assumption
is made that there is no geometry to block ambient lighting present there. Similarly, geometry that is
behind other geometry from the perspective of the camera cannot be accounted for, leading to further
artifacts of areas appearing brighter than they should.

(a) Ambient occlusion disabled (b) Ambient occlusion enabled

Figure 2.1: Basic scene showing the effects of ambient occlusion

The formulation used to compute ambient occlusion, similar to the one presented by Bavoil et al. [1],
is presented in Equation 2.1.

ao(P ) = 1− 1

2π

∫
N⃗ · D⃗ · V (D⃗) ·W (D⃗)dD⃗ (2.1)

Where:

• N⃗ Normal vector at point P
• D⃗ Vector from P to point of intersection with an occluding point
• V visibility function, returning 1 if an occluding point is found, otherwise 0
• W falloff function that reduces the occluding effect if an occluding point is farther away

3



2.1. Ambient Occlusion 4

Other screenspace methods exist that improve upon this idea. A newer method called AlchemyAO
[13] uses an improved formulation over the earlier methods to reduce occlusion present on flat surfaces.
As this method more closely resembles reference implementations of pre-calculated ambient occlusion,
we will use this method as a reference for screenspace methods in general later on.

Real-time ambient occlusion can be done without relying on the depth buffer, which avoids the
drawbacks of screenspace methods. This can be done by storing pre-computed ambient occlusion
data at the vertices of a mesh or in a volume around it. Several such implementations exist but they
have various limitations. One method for storing occlusion in a 3D grid is presented by Malmer et
al. [12]. They use a similar concept to our method, although it does not support animation and has
a lower shadow resolution. Using a full voxel grid also requires a larger amount of memory than our
method.

To handle character animation Kontkanen et al. [9] uses a technique of per-vertex coefficients for
self-occlusion of the character. While storing the occlusion per-vertex can work well for some cases,
it becomes more expensive with increasing vertex counts in modern meshes and would require addi-
tional techniques to remain space efficient. One such technique is presented by Kirk et al. [8] which
involves using clustering to group together vertices and reduce the cost of storing data for each ver-
tex individually. Our technique works independently of the amount of detail in the mesh which avoids
this problem entirely. It is also difficult to use per-vertex methods to cast occlusion on the surrounding
environment since it would require finding the closest vertices to a point in space at runtime. As such
these methods are more applicable to a character casting occlusion on itself than a character casting
occlusion on the environment as our method does.

Newer methods exist to compute real-time ambient occlusion using raytracing [5]. Raytraced meth-
ods come with a significant performance cost and typically require specific hardware to run at accept-
able performance levels, making it unsuitable for many environments. Similarly, voxel grids spanning
the entire scene [4] can be used for ambient occlusion. This also comes with a significant performance
cost, and would still need further adjustments to allow for animation.
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2.2. Spherical encoding
To encode different values for each direction, we will need to use a spherical encoding system. Sev-
eral different options exist for spherical encoding. Commonly used options for computer graphics are
spherical harmonics and cubemaps. Spherical harmonics use coefficients to encode the surface of a
sphere, where the number of coefficients grows the level of detail required. Spherical harmonics can
be used to encode ambient occlusion. Typically they are used for the effect of occlusion from static
objects on dynamic objects, such as from the walls of a scene onto a character model. Increasing the
level of detail impacts the performance as more coefficient terms are included that need to be evaluated
at runtime. This makes them unsuitable for higher resolution data, such as the occlusion caused by a
complex character model.

Cubemaps can be used to encode a sphere by storing pixel values for each direction. Whereas the
memory usage from cubemaps will increase as the resolution is increased, the time required to retrieve
specific directional values remains constant, which is not the case for spherical harmonics. As such,
when a high level of detail is required, cubemaps may be the preferred option.

Cubemaps are created by having a face for every side of a cube, as shown in Figure 2.2a. Each of
these faces is a regular 2D texture. In our method we will place these cubemaps around the character
as in Figure 2.2b. We will sometimes refer to the pixels in the textures of the cubemap as ”texels” to
differentiate them from the pixels rendered to the screen. When working with cubemaps, reading from
them is done by giving two coordinates indicating an angle in 3D space instead of referring to specific
faces and texel coordinates. Since in our implementation we will also make use of the distance from the
center of the cubemap, we will talk about cubemaps using a spherical coordinate system[20], consisting
of the radial distance and two angles. We will refer to the two angles as the direction, and the radial
distance as d or distance. Since the encoding method is spherical, we will also portray cubemaps as
spheroids since this is a more accurate way to visualise our method.

(a) Cubemap faces unfolded (b) Cubemap surrounding a character

Figure 2.2: Examples of how cubemaps may be used

2.3. Compression methods
For compression of the occlusion data there are several papers that deal with a similar issue. Ritschel et
al. [17] presents a technique of compressing depth maps by grouping together similar texures, typically
those computed from directions close together to speed up visibility queries. For our method, we will
have animation frames with relatively small differences between them, so it seems a similar technique
could be used to compress our data as well. However, we expect this would create large jumps when
switching between different grouped textures, making the animation no longer look smooth. Therefore
we do not believe this compression scheme is directly applicable to our method.

Other methods for compression more similar to our chosen method use basis functions to compress
data where high-frequency detail is not too important. Jansen et al. [7] uses such a technique to
compress opacity maps using Fourier transforms. Lokovic et al. [11] presents a technique to allow
partial shadows to be cast by transparent objects by encoding the depth dimension using a visibility
function. Our method will be based on a similar idea as these methods of encoding lighting data using
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function encoding techniques, although we opted to use more commonly available encoding methods
in combination with novel cubemap encoding methods.

As we will be encoding two dimensions of data at the same time in our method, we looked into
image compression algorithms that are geared towards high levels of compression rather than preserv-
ing image detail. In our implementation we decided to use Blurhash[2], an image encoding method
developed by Wolt. The main purpose is to create a very small representation of an image that can
be used as a placeholder until the real image has loaded in. Blurhash was chosen due to its relative
simplicity and extensive open-source implementations available, allowing us to rapidly incorporate it
into our method.

Blurhash works by using a discrete cosine transform with a compactly packed encoding. Since it
encodes images in just a few bytes and has parameters that can be tweaked to adjust the number of
output bytes, this is an easy way for us to encode 2D data to fit within a few bytes.

Figure 2.3 shows an example of the blurhash algorithm applied to an image.

(a) Original image (b) Computed blurhash (6x6 components)

Figure 2.3: Example of the blurhash result for a given image
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Method

3.1. Concept
The goal of our method is to store the ambient occlusion at each point in the near vicinity of our character.
This way, when world geometry is near our character we can quickly query the occlusion at that point
in space with ideally minimal runtime cost. We also want to ensure our method supports character
animation.

The easiest way to accomplish this is to construct a 3D grid around the character. This method is
already used in some early implementations of stored ambient occlusion [12]. The issue with a grid is
that the space requirement is n3 for a chosen grid size. To reduce memory usage, alternative methods
involve storing the occlusion per vertex in the model. However this means that increasing the vertex
count of the model also increases the space required to store the lighting data[8]. This method also
does not let us easily cast occlusion on nearby geometry.

Using cubemaps to store this information ensures that the occlusion remains independent from the
model geometry, while keeping the space required to store it n2 for a chosen cubemap resolution. The
simplest solution would be to store the occlusion computed for each direction from the character in the
texels of the cubemap, however, the occlusion changes depending on how close to the character a
point is, for which we use the radial distance. Lastly we must also encode how the occlusion changes
as we animate the model.

We will present two different methods to encode this information in the cubemaps. We will first go
over some common steps for both methods, including how the cubemaps are positioned and how we
compute the ambient occlusion. We will then go into more detail for both of our encoding methods and
how they store the information.

7



3.2. Generation 8

3.2. Generation
3.2.1. Cubemap positioning
The first step is to find the position and dimensions needed for our cubemap to fit nicely around our
model. Many character models will have different dimensions over different axes, for example a human
model will likely be more tall than wide so having a sphere would not as efficient as a spheroid adjusted
to the size of the model. We first determine the cubemap center point by finding the center of the
bounding box of the model. Assuming linear interpolation between keyframes, we need to iterate over
all the keyframes in the model’s animations. We take the minimum and maximum values encountered
for all vertices. To find the radius, we take the distance to the center we found for each of the vertices.
We find the maximum radius for each axis individually which lets us scale the bounding sphere to
account for models that are elongated. Figure 3.1a shows how one such cubemap might look for a
human character model. Note that the cubemap in this example extends well above the head of the
character model, for example due to the character raising its hands during the animation cycle.

Note that the cubemap is large enough to include all character geometry at every stage of the
animation.

Our cubemaps are made up of texels that each correspond to a particular ’direction’ originating from
the center point of our character mesh. For every direction, the number of which will depend on the
resolution of our cubemaps, we will calculate and store occlusion values. The red line in Figure 3.1b
shows for which points in space the occlusion values will be encoded in a particular texel.

(a) Cubemap surrounding character model (b) Sampling direction of a texel (c) Sampling rays for AO calculation

Figure 3.1: Diagrams of how cubemaps and character models are positioned.

3.2.2. Occlusion computation
For both of our methods we will have to calculate the occlusion at specific points in space relative to
the character. We will call a point for which we are computing the occlusion point P . To calculate the
occlusion we use uniform sphere sampling originating in P to search for character geometry inside
the area through raycasting. Figure 3.1c shows how the sample rays might be distributed, although in
practice this will be in three dimensions instead of two.
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We compute the occlusion by applying formula 3.1, where a value of 1.0 means the point is fully
occluded and a value of 0.0 means the point is in full brightness. When P is inside the mesh, we return
a value of 1.0 as it is occluded from all light.

ao(P ) =

S∑{
max(0, w ·N ·D · (1− len(D)/Dmax)

α if collision found
0 otherwise

(3.1)

Where:

• S Number of sample points
• N Normal vector at point P
• D Vector from P to point of collision
• Dmax Maximum sampling distance, refers to the size of the red circle in Figure 3.1c
• α Coefficient to control distance falloff
• w Coefficient to control strength of occlusion

The formula iterates over the number of sample points and casts a ray from point P into the scene
for each. The formula uses the vector to the collision point as well as the normal vector of the original
points to calculate the occlusion, the result of which will depend on the given coefficients. The final
value is clamped between 0 and 1, as using a large weight may otherwise give values with a negative
brightness. This formula is based on the occlusion formula used by Alchemy AO[13], although adapted
for our use case.

3.2.3. Encoding methods
Our occlusion values will change depending on the direction, radial distance, and the time. Since the
direction consists of two components this gives us a 4D space which we want to encode into cubemaps.
Our cubemaps already take care of two of these by encoding the direction, however, this means that
for each texel in the cubemap we need to encode the distance and time dimensions.

Having the time dimension in discrete steps creates a very unconvincing result when in motion. It
looks like the occlusion is simply fading out in the old location and fading back in the new location,
rather than moving with the animation. Figure 3.2 shows the occlusion as a grey circle as the black
point moves across space. The ”fade-out-fade-in” effect in Figure 3.2a is what we want to avoid. As
such, when finding a suitable method to encode this the time dimension should ideally not be separated
into discrete steps.

(a) Discrete time steps (b) Continuous time

Figure 3.2: Comparison of how the occlusion follows a geometry point. As the black point moves from left to right, the grey
circle shows how the occlusion follows.
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Graphics cards allow us to use textures with up to four colour channels (red, green, blue and alpha),
with each channel allowing up to 32 bits, or four byes, of data. This gives us a total of 16 bytes for each
texel. This is still a very small amount of space, so we will have to come up with some simplifications
to make storing our occlusion data feasible.

Our first method involves using a few different cubemaps nested inside each other to encode the
radial distance information. This allows the full 16 bytes to be used to encode the time dimension.
Since our distance is now in discrete steps, each corresponding to one cubemap, we will call this
method ”discrete radial distance”. Our second method encodes both the distance and time dimension
at once, therefore not creating discrete steps in the distance dimension. As such we will call this method
”continuous radial distance”.

In the next sections we will go over the steps to encode and render the result using both of these
methods.

3.3. Discrete radial distance
3.3.1. Discrete radial distance - Ambient Occlusion computation
The discrete method relies on nesting a few different cubemaps with different scales, and computing the
occlusion at each discrete distance separately. This means that for each direction around our character
we will take multiple occlusion samples spaced out going from the outermost cubemaps to the center of
the character. Figure 3.3a shows how these nested cubes might be laid out. The number of cubemaps
used can be adjusted depending on the requirements of a specific character or scene. As we refer to
the distance to the character as the radial distance d, the number of cubemaps used in the discrete
method we will call the d-resolution, or Sd for the number of samples taken over the d domain. Figure
3.3 shows d-resolution of 5, in actual scenes we typically used a slightly higher value of 8 as this gave
a good balance between space efficiency and rendering quality. The number of cubemaps needed for
good looking results will vary between characters, for example, a mesh with a lot of straight edges will
produce more noticeable artifacts due to the spherical encoding of the cubemaps, so using a higher
resolution may be needed in such a case. Meshes with more natural curves, such as humans or other
living characters, may be able to get away with a lower number as it is much harder to notice when the
occlusion does not match exactly.

(a) Layout of nested cubemaps (b) Example occlusion points

Figure 3.3: Diagrams of how nested cubemaps are positioned around a character
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It often happens that we might not need a lot of resolution close to the center of the mesh, especially
if this would end up largely on the inside of the mesh. We want to avoid having the inner cubemaps
go to waste. To avoid this, there are a few parameters we can tweak to adjust the spacing of these
cubemaps to work better for specific models or uses cases. We can use an inner scaling to place
the cubemaps closer together, and further from the center of the mesh. Figure 3.4b shows how the
inner scaling moves the sample points away from the center mesh compared to the reference scaling
in Figure 3.4a.

We can also scale the cubemaps themselves, called the outer scaling, this increases or reduces the
space around the borders of the object. To avoid having geometry touching the border of the cubemaps,
typically this value will be slightly above 1.0 to give a margin around the edges. Figure 3.4c shows the
effect of lowering the outer scaling while keeping the inner scaling the same as Figure 3.4b, as shown,
the feet of the model end up outside the bounding area, which means no occlusion would be rendered
for these parts of the model.

(a) Reference scaling used previously (b) Adjustment to inner scaling (c) Adjustment to outer scaling

Figure 3.4: Example of how the cubemaps positioning and sample points change as we adjust the scaling parameters

Lastly, we need to account for the animation of the character. As the character moves around, we
will see the occlusion changing over time as geometry of the character moves closer or further from
our sample point. For this, we will use a number of sample points over the time domain, which we
will call St. In the next section we will go over how this and other parameters affect the storage and
compression of this data. To ensure we have sufficient resolution over the time domain to make our
occlusion look smooth, we need to use a relatively high number of samples for this. We typically use
a value of 255 for this so that we can store the indices in a byte without any loss of precision due to
rounding.

3.3.2. Discrete radial distance - Storage & Compression
We will first calculate the space needed to store this data without any further compression. Recall we
have our parameters Sd and St for the samples over the distance and time domains, as well as the
resolution of the cubemap which we will call Sx · Sy. Since our cubemaps have six faces, this gives
us Equation 3.2. If we assume all values are stored in bytes, using parameters that provide a decent
looking result requires 200 megabytes of space.
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N = 6 · Sd · St · Sx · Sy (3.2)
N = 6 · 8 · 255 · 128 · 128 (3.3)
N ≈ 200 megabytes (3.4)

As 200 megabytes of space for a single animation is quite a lot, we need to find a way to store
this data more efficiently. Recall we want to encode this within the only 16 bytes available per texel
when using one cubemap. A naïve solution would be to simply take 16 ”keyframes” across our time
domain and storing each of these individually. While this method produces an acceptable result when
the animation aligns with one of these keyframes, it does not look convincing in motion due to the fading
effect described in section 3.2.3. The solution that we have come up with for this problem is to use
polynomial curve fitting.

3.3.3. Discrete radial distance - Curve fitting
Before we can implement our curve fitting solution we first need to consider what a sample of our data
looks like. In Figure 3.5 you can see an example of occlusion data for two different directions of an
animation. Especially in Figure 3.5b there are some large discontinuities in the data, which makes it
difficult to encode in a single curve.

(a)

(b)

Figure 3.5: Examples of occlusion values over an animation cycle

As such our plan is to split the dataset into multiple different curves, each of them corresponding to
one of the sections in the chart. For the animations we looked at, we found that splitting the data into
four sections should produce a good result. This also works well with our target space of 16 bytes, as
it divides nicely to give us four available bytes per curve section. If we are splitting the dataset we will
also need to encode the starting position of each curve, leaving us with three bytes per curve. As we
previously chose a number of samples over the time domain of 255, we can easily encode the starting
point into a single byte without any loss of precision.

Since we are planning to encode the coefficients in very limited number of bits, we will not have
a large amount of precision available to work with. Repeated multiplication will lead to compounding
error values if the coefficient is encoded with limited accuracy. Higher degree polynomials lead to more
multiplications for some of the coefficients. As such it would be wise to limit the degree of the polynomial
to avoid having multiplications with one coefficient happening too many times in a row. We settled on
second degree polynomials, which require three coefficients, meaning we can fit exactly one coefficient
into each byte.
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The four curve segments will be separated at specific points in the graph, found by looking for the
biggest jumps or discontinuities in the graph. The algorithm for this works by going over every point
in the dataset and averaging a window of a few datapoints to either side to compute the difference
between them. We then find the four largest jumps in the data to use as the breakpoints for our curves.
To preserve efficient usage of our curves and ensure we have enough datapoints to perform curve
fitting on each section, we do not want sections of just a couple of datapoints. As such we require a
minimum spacing between breakpoints to ensure that each curve segment will be of some minimum
length.

We perform curve fitting on each of these individual segments. Our model function reflects a degree
two polynomial, with constraints set to limit the coeffient domain to [−4, 4] to ensure a minimum amount
of precision during the encoding. Encoding curves further away from the origin often leads to larger
coefficients being found, which would mean less accurate results for curve sections later on in the
animation. To avoid loss of accuracy from this effect we move the datapoints so that they start at the
origin no matter the actual location of the segment.

If we use this method to compute curves for the datapoints shown in Figure 3.5 we get Figure 3.6.
One issue that’s present in chart 3.6b is that the very start of the graph should actually be part of the
segment at the end, as our animation is cyclic. The method used for these curves does not allow a
segment to ”wrap around” leading to the first curve not being fit very effectively. To solve this, our
implementation finds not three but the four largest discontinuities in the graph, thus the last segment
wraps around and produces a fit slightly better than shown in Figure 3.6.

The chosen charts represent the most complex sections of this particular animation. As every
animation has different looking curves, some animations may require encoding in a larger number of
sections, which we did not include within the scope of our implementation. In chapter 5 we go over how
our algorithm performs with some other animations.

(a)

(b)

Figure 3.6: Examples of curves fit to occlusion values over an animation cycle

3.3.4. Discrete radial distance - Encoding
Since we want to encode our curves within a texel of our cubemap, we need to fit them into a space of
16 bytes. We have four curves, each of which has three coefficients and a starting offset. We can easily
encode the offset into a byte as the number of time samples we are using is 255. For our coefficients
we simply store these as a value indicating their position in the domain of [−4, 4]. This means that we
have an accuracy of 8/255 ≈ 0.0314 for our coefficients.
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3.3.5. Discrete radial distance - Rendering
To render our ambient occlusion in the scene we pass our generated cubemaps to a shader, along
with the radius parameters for each axis of our spheroid. We also include the position and rotation
of the corresponding model and a time value t relating to the current point in our animation cycle.
To sample our cubemap we first need a direction vector, which we find by subtracting the character
position from the sampling point. The magnitude of this vector represents our radial distance. We use
tri-linear interpolation to smoothen the result. To interpolate between two cubemaps, we multiply our
magnitude by the number of cubemaps and round the value to find the two adjacent cubemaps. If
we are outside the range of the outermost cubemap we leave the occlusion at zero. For both of the
cubemaps we then sample with the direction vector, and perform some bitwise operations to extract
the encoded coefficients. We apply the functions to our t value to get the occlusion required, and
interpolate between the two cubemaps we sampled. Lastly we multiply the result by our strength value
which lets us increase the effect of occlusion at runtime.

3.4. Continuous radial distance
3.4.1. Continuous radial distance - Encoding
To further reduce the space required to store the result we will look into another method of compress-
ing the occlusion information. Ideally, we want to reduce the number of cubemaps needed, which is
difficult to do in the discrete method without causing more noticeable artefacts on the boundaries of the
cubemaps, leading to a loss in visual quality. Therefore we will be encoding the distance dimension
not as discrete steps but as a continuous function. Since we no longer store them as one cubemap per
discrete distance step, We can use a much larger distance resolution.

For each direction, we want to store a 2D field of values that correspond to the time and distance
dimensions. Figure 3.7 shows an example of such an input field. Now we want to find a method to
effectively encode this field in as little space as possible. As the discontinuities still exist within this
encoding method, we first considered using a method similar to before where the field is split into
sections that are each encoded individually. Finding suitable points to split the field is difficult, as the
jumps will not be at the same time value for every distance value, making a simple grid separation
infeasible.

Figure 3.7: Example of the input data we want to encode
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Due to the complexity of this problem we decided to look towards existing methods to encode
2D fields. Since we can treat our dataset effectively as an image, we can make use of the large
number of options available to encode images. Image encoding algorithms are typically focused on
preserving detail rather than achieving a particular output size. For our use case, we are looking for a
consistent encoding size regardless of the input data. Small details are also not generally noticeable
when rendering occlusion, so for our use case a highly lossy image compression algorithm would be
ideal. Most lossy image compression algorithms work using basis functions, however methods such
as JPEG compression split the image into blocks at fixed points rather than adjusting to the underlying
data[6], so this may create additional artifacts. JPEG encoded images are also still too large for our
use case. A method that is specifically designed to create highly compacted image representations
using basis functions is Blurhash[2], which uses a discrete cosine transform combined with a compact
encoding of the parameters.

Unfortunately this method alone is not sufficient to create a satisfactory result as the method can
create some dark areas where they should not be, resulting in noticeable artifacts during rendering.
Figure 3.8 shows an example of how such an error might appear. Many of the basis functions used
will have a period smaller than the size of the image, combined with the limited number of available
basis functions this means that encoding one bright spot in one area of the image may have unintended
effects on the other side.

(a) Input for Blurhash algorithm (b) Resulting encoded image with true colours (c) Result image with exaggerated colours to
highlight the error

Figure 3.8: Example of error patterns in blurhash method.

Fortunately, there are predictable error patterns for our case that we can correct. For our inputs to
the algorithm we will often find dark areas on the side of the image that corresponds to a low distance to
the model, and less dark areas far away from the model. To improve the result further we compute the
difference between the intended results, and the result acquired from evaluating the blurhash encoded
image. We then average all the errors over the distance axis of the residual data, and fit a four degree
polynomial to this residual. After subtracting this polynomial we do the same with the time axis. The
end result is that we want to store our blurhash encoding, as well as two polynomials to correct for the
approximation.

To fit these polymials we first calculate the residuals by subtracting the computed blurhash results
from the input. During this step we can choose to apply weights to the data to influence what sort of
errors are mitigated the most. Since it is much more noticable for our method to have areas that show
up as too dark rather than too bright, we give error values that are too bright a weight of only 60%
compared to dark areas. As it is quite subjective where the balance is between having fewer excess
dark spots compared to excess bright spots, this value is a parameter that can be tweaked by artists
based on the desired output.

The number of bytes required by the blurhash encoding depends on the chosen parameters, which
are the number of basis functions along each axis. For a typical encoding using three to four on each
axis is sufficient. We decided to go for a slightly higher amount to allow for more resolution in our result.
We need 8 bytes of data to store two polynomials, and using blurhash parameters of 5x5 results in a
54 byte encoding. This adds up to 62 bytes, which fits nicely within four cubemaps with a little bit of
space left.
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3.4.2. Continuous radial distance - Rendering
The rendering for using the blurhash encoding method is fairly straightforward, as we just extract the
blurhash encoding from our cubemaps and use it to compute the value for our given time and distance
position. We also compute the polynomial results and subtract these from the blurhash value. In some
cases, the errors produced by the blurhash algorithm may lead to artifacts that are more noticeable
depending on the position or time during the animation at which they occur. As such, artists may want
to tweak how much weight is given to the blurhash component compared to the two polynomial com-
ponents to allow the method to look appealing for a larger range of character models and animations.
While coefficient values of 1.0 represents the minimal error compared to the input, sometimes a larger
overall error may still produce a result that looks better. Larger coefficients slightly reduce excess
darkness at the cost of removing more of the occlusion, while smaller coefficients bring us closer to the
unaltered blurhash output. Similar to the discrete method, our occlusion may be multiplied by a strength
parameter to increase the darkening. The blurhash decoding method also includes a parameter that
can be used to adjust the contrast of the result. Similarly to the strength parameter this can be adjusted
at runtime to change the final appearance.

3.4.3. Interpolation
As the resolution of our cubemaps is relatively low, using this method on its own may give a pixelated
appearance to the environment. Therefore we want to find a way to interpolate between texels of our
cubemap. Our encoding method does not allow for us to easily interpolate between coefficient values,
since two similar functions may not necessarily have similar coefficients. Therefore we have to compute
the values for a few different points and interpolate between those afterwards. Figure 3.9 shows the
effect of enabling this interpolation on the rendering result.

(a) Interpolation disabled (b) Interpolation enabled

Figure 3.9: Cubemap pixel interpolation



4
Implementation

This chapter will cover how we implemented our method by going more in depth about some of the
technical choices we made. We will go over both the rendering and pre-computation stages for both
the discrete and continuous methods. Our implementation is written in C++ using OpenGL.

4.1. Pre-computation
Since pre-computation can take a relatively long time, we want to make sure our implementation can
handle unexpected crashes or interruptions without having to re-compute everything from scratch. To
achieve this we perform the fitting for one cube face at a time, then write the results to the disk before
moving on to the next one. Pre-computation works by writing all the data for each face to a large
data array, then performing one of the two fitting methods depending or whether it is the discrete or
continuous methods.

In both methods we use raycasting using uniformly distributed sampling points around a sphere and
Formula 3.1 to compute the occlusion at each point in space.

17
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4.1.1. Discrete radial distance
Recall our discrete method works by splitting the radial distance into a number of distinct cubemaps.
This means we can easily compute the results for one distance step and then save the results, and
we only have to worry about a single dimension when encoding our data into the cubemap. We first
need to find the discontinuities in our dataset so that we can split it according to these and perform
curve fitting per segment. Algorithm 1 shows how these breakpoints are determined by computing
differences between the points immediately left and right of every point in time, using a window of a
few points to account for noise. We then select the largest differences while keeping a minimum space
between selected indices.

Algorithm 1 Pseudocode for finding discontinuities in our dataset
w ← 5 ▷ Window size, using a value of 5 in our implementation
s← 32 ▷ Minimum spacing between discontinuities
V ←input occlusion values
D ← (0, ...0) ▷ Differences array, same size as input array
for i← 0 to len(V ) do

l← 0
r ← 0
for k ← 0 to w do

l← l + Vi−k ▷ For values below 0, loop around to end of array
r ← r + Vi+k ▷ For values above len(V ), loop around to start of array

end for
Di ← (i, |l − r|) ▷ Tuple consisting of index and difference

end for
D ← D sorted by difference
B ← ∅
while len(B)< 4 do

(i, x)← head of D ▷ Every iteration, remove first (index, difference) tuple from list
a← true ▷ Check if point is too close to any previously found ones
for b in B do

if dist(i, b) < m then ▷ Dist function takes into account length of array
a← false

end if
end for
if a then

B ← B + i ▷ Add to set of breakpoints
end if

end while

After determining breakpoints we can perform the curve fitting on each section individually. For
this we use SciPy [19], which we can call from our C++ code using pybind11 [16]. SciPy includes
a curve_fit function [18] which can be used to fit a polynomial curve to given data. While there are
numerous implementations and methods available to fit polynomial curves, the advantage of the SciPy
implementation is that we can specify bounds on the computed coefficient values. If we do not limit the
range of coefficients, we will not be able to encode them in a byte with sufficient accuracy to produce
good looking rendering results.

The curve fitting method returns an array of coefficients which we can then store. The bounds we
set for our coefficients are [-4, 4], which allow them to be encoded into one byte by adding four to map
our range to be between zero and eight. We then multiply the result by 255

8 to get a byte value, which
is stored in our cubemap and passed to our shader.

Rendering
To render our results a GLSL shader receives the position of the character model, as well as the cube-
maps. We do not want to interpolate between values when reading out the cubemaps, as two adjacent
directions may be similar but have very different coefficients. We do want to interpolate the resulting
values to avoid seeing resolution artefacts for smaller cubemap sizes, as shown in Figure 3.9. To solve
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this we manually sample adjacent pixels and interpolate between them after calculating the occlusion
values.

Sampling adjacent pixels in a cubemap is not trivial to do, since the sampling input is an angle
rather than pixel coordinates. Therefore we need a method to convert our angles to pixel coordinates.
To do this, we pass in an additional small cubemap with coordinate pixel values encoded in it instead
of colour data. Our reference cubemap has the internal format of GL_RGBA32F. The red and green
colour channels simply range from zero in the top-left corner to one in the bottom-right corner. The
blue channel is a value ranging from zero to five indicating the current face of the cubemap. Sampling
from this reference cubemap in our shader using the direction gives us the face and pixel coordinates
we need to sample our actual data, and allows us to easily sample adjacent pixels without needing to
consider the angles as we would if we were sampling using a direction only. As interpolation does not
happen across the boundaries of faces of the cubemap, seams may be around the edges of each of
the faces. Although this effect is generally difficult to notice, it could be resolved by repeating the data
on the edges of the cubemap over multiple faces. We did not include this in our implementation as it
did not seem necessary.

The actual encoded data is not passed in as a cubemap but a 2D texture with 6 layers. The blue
channel of our reference cubemap indicates which layer we are on, while the red and green channels
indicate which pixel. We can now sample from the four closest pixels and interpolate between them
using the float values acquired from the reference cubemap.

4.1.2. Continuous radial distance
For our continuous method we need to encode two dimensions of data, which we do using the blurhash
algorithm[2]. A C implementation for the algorithm is available [3], which we can use as a basis for our
implementation in C++. The blurhash method encodes red, green and blue colour channels, whereas
we only have a single channel of occlusion which we need to encode. In order to put our implementation
together quickly we decided to work around this limitation of the algorithm rather than changing the
implementation to circumvent this issue. Fortunately these colour channels are encoded independently,
meaning we can re-purpose the three colour channels to better fit our needs. Therefore, we split the
time domain into three parts that are encoded independently. This also gives us an advantage when
rendering the result, as our shader only needs to consider one third of the basis functions to get the
occlusion value at one point. One downside of this is there may be some small discontinuities at the
points where the dataset is split. The blurhash algorithm usually encodes the result in an ASCII string
using a list of available characters for base83 encoding. In our case we do not need an ASCII string
so we instead store the base83 values directly. This does mean one of the bits of each byte remains
unused, this could be further optimised to use less space in memory. We chose not to do this as it
would not be enough to remove an entire cubemap, meaning that optimising the memory usage using
this would add a significant amount of complexity to our implementation.

As discussed, our blurhash method also includes two polynomials fit over the residuals over both
the time and distance domain. We compute the output values acquired by decoding the blurhash
coefficients back to occlusion values, identical to what would happen on the GPU when computing an
occlusion value from a given blurhash input. We can then take the difference between the input values
and the output values and once again use SciPy to fit a curve to this data. We first compute a curve
against the distance axis, then add the values of this axis to the output occlusion values. We then fit a
second curve to the error on the time axis. Both of these polynomials use 4 coefficients.

As discussed our chosen blurhash parameters add up to 54 bytes, plus 8 bytes for the polynomials.
The number of bytes needed to encode, as well as the processing time required to decode the image
on the GPU, both increase as the number of basis functions goes up. We settled on using five basis
functions on both axes. These 54 bytes also include the number of basis functions, however, these are
shared between all directions and therefore do not have to be included. Overall this means there is
room to encode more information using this method which will be left as a potential future improvement.

Rendering
Typically the blurhash decoding step works by first iterating over all the basis functions, and then iter-
ating over every possible pixel in the image to compute their colour values. Since each instance of
the shader is responsible for rendering a single pixel only, we do not need the second iteration of the
algorithm in our shader implementation which substantially reduces the runtime of the decoding algo-
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rithm. Unfortunately we do still have to iterate over all the basis functions, but the number of these is
generally small depending on the chosen parameters. As the blurhash algorithm is not designed to run
on the GPU, there may be room for optimisations in the implementation. Similar to the previous method
we can sample multiple adjacent pixels of our cubemaps to interpolate between them for a smoother
rendering result.

4.2. Reference implementation
We wanted to have a fully raytraced ambient occlusion method to compare against for reference. This
method takes the current camera angle to render a single ambient occlusion frame to a texture which
can then be used in rendering. As it runs fully on the CPU it’s not suitable for real-time rendering, but
can be used to get single frames as reference material.

The rendering works by casting a ray from the camera for every pixel on the screen, finding the
collision point in the scene and casting sampling rays from the collision point. Initially the sampling
method we used generated a given number of random samples in a semi-sphere around the model,
based on the normal vector at the impact point. However, the computation method for the cubemap
based ambient occlusion uses full sphere sampling, meaning that our reference implementation had
a different calculation method for occlusion than our actual implementation. To make the results more
comparable this was later replaced by sampling from uniformly distributed points, based on the vertices
of an icosphere.

The ambient occlusion is then calculated through Formula 3.1.



5
Results & discussion

To evaluate the results of our methods, we will look at the performance when rendering various models.
We use a human model with a walking animation found online [10], a godzilla model with a basic
walking animation [15] also found online, and a cube with an animation of rotating 360 degrees. We
will evaluate our method in terms of the accuracy with which it reproduces the computed reference
occlusion, as well as the appearance of the final rendered result and the performance. We will also be
comparing our results to a screenspace method based on AlchemyAO [13].

21
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5.1. Runtime performance
We measured the runtime performance by looking at the framerate achieved when rendering a scene
using each of the methods. The system used for these performance evaluations has an AMD 5600X
six-core CPU and an Nvidia 3060ti GPU. As the performance results for all the methods are largely
independent of the complexity of the scene and the model, we chose to use only the human model in
the scene shown in the rendering results later on.

Figure 5.1 shows the average framerate over a couple of minutes for each of the methods. Alche-
myAO requires using post-processing, such as Gaussian blur, to reduce the noise in the result. In
our implementation this reduces the framerate from quite close to the blurhash method to quite a bit
worse. The discrete method is significantly more efficient as it works with only four functions instead of
the 25 basis functions used in the blurhash method. It may be possible to further improve the perfor-
mance of the blurhash method by using GPU-specific optimisations, since our implementation mostly
re-implements the algorithm as it was designed to work on a CPU environment. Both the blurhash
and alchemy methods have parameters that can be altered to change the runtime. For blurhash, re-
ducing the number of basis functions will improve performance at the cost of less accurate occlusion.
For AlchemyAO, reducing the sampling rate will increase performance but create a noisier and less
consistent result. Overall we can see our discrete method provides considerably lower runtime cost
than the screenspace method. The blurhash method is quite similar in performance to the screenspace
AlchemyAO method, and tweaking their parameters could allow for either of the methods to perform
better.

Figure 5.1: Runtime performance for each of the methods
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5.2. Pre-computation performance
As the cubemaps can easily be pre-computed and stored, the performance of the pre-computation is not
as important as runtime performance. However, artists may want to tweak pre-computation parameters
and iterate over various options quickly, as such we will cover this part briefly as well.

Figure 5.2 shows the time it took to compute each of the results we evaluated, with orange high-
lighting the portion of the runtime dedicated to computing the input occlusion values using raytracing.
The variance in runtime between different models within the same method is caused by the increased
model complexity increasing the raytracing runtime, whereas the variance between the two methods is
caused by the time taken to perform the data fitting. Due to an inefficient implementation using Python,
the performance of the discrete method is quite poor. The blurhash method is considerably faster al-
though the runtime is also limited by the raytracing performance. Fortunately there is a lot of room for
improvement in the pre-computation, as we did not put much focus on trying to optimise this part of
the method. For example, multi-threading or raytracing using the GPU could be used to speed up that
portion significantly.

Figure 5.2: Pre-comptation time for each of the methods

5.3. Memory usage
Each individual cubemap is made up of 6 faces with a variable resolution, for which we used 128x128
pixels in all of our results. As discussed before, each texel in our cubemaps uses 16 bytes. This results
in a total memory usage of 1.5 MiB per cubemap. Our discrete method uses eight cubemaps for a total
of 12 MiB, while our blurhash method uses four cubemaps for a total of 6 MiB. The blurhash method
does not make full use of all of this space due to the encoding method used.

A voxel grid to store the occlusion would result in as much as 32 MiB if we assume the same
resolution of 128 on every axis and the same number of bytes per unit to encode the time domain. The
screenspace method does not use any additional memory except for a buffer to store the occlusion
result, which is necessary to compute the Gaussian blur used to denoise the result. This buffer is a
small constant amount of memory, whereas the memory used by our method scales with the number
of animations present.

Overall our method uses 38% to 19% of the memory a grid based method would, with some room
for further improvement possible for the blurhash method.
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5.4. Encoding
To evaluate our encoding method we will compare the original ambient occlusion to the resulting values
from our encoding methods. For this we consider some values over the distance and time domains
at a few arbitrary directions from our model. Since each such direction is stored as a simple texture
comparing these is straightforward. We will compare the results from our discrete method to the results
from the continuous method.

For ambient occlusion, incorrectly showing an area as too bright tends to be much less noticeable
than incorrectly showing an area as too dark. Because these different sorts of errors show up very
differently in a render, we decided to compute the errors for them separately.
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5.4.1. Individual directions
Looking at a particular direction, a single cubemap ’pixel’, we can generate a chart to show the time
and proximity domain for it. Figure 5.3a shows an example of such a graph, where the brightness of
each pixel in the graph is the brightness of the point in space corresponding to it. A dark pixel means
a lot of occlusion, whereas a light pixel means very little occlusion.

To evaluate the results of each of our algorithms we will show side-by-side graphs of the computed
lightness value next to a difference graph. The difference graph shows in red when a point is too dark,
and in blue when a point is too bright. Generally the errors shown in red are more noticeable in the
scene than errors shown in blue. Examples of how this looks for having no occlusion at all, or no light
at all, can be seen in 5.3b and 5.3c respectively.

(a) Computed lightness for a particular direction (reference)

(b) Example of fully bright result (c) Example of fully occluded result

Figure 5.3: Graphs of lightness as encoded in a particular cubemap direction. Y-axis shows the time domain, X-axis shows the
proximity to the mesh. For each pair of graphs the left graph shows the computed result, and the right graph shows the error

compared to the reference.
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Figure 5.4 shows the results for an arbitrary direction. If we add the square of all the errors in such
a graph together we can get a single error value, as well as individual error values for the positive
and negative errors. These error values are shown in Table 5.1. For this sample we can see due to
the relatively simple input data that both the discrete and blurhash with curve encoding do a good job
representing the data. The basic blurhash encoding shows very noticeable discontinuities over the time
domain in the form of two clearly visible horizontal lines. By looking at the error graph we also see that
the right side of the graph shows an area in red for both discrete and basic blurhash encoding, which
shows up in the rendering as a dark ”ring” at a fixed distance from the mesh. The error curves used in
the second blurhash encoding method resolves this, showing almost no red areas in the error graph.
Looking at the error values in the table confirms that the negative error is significantly reduced in the
BlurhashCurve encoding method, while keeping the positive error relatively low as well.

(a) Input (reference) (b) Discrete encoding

(c) Basic blurhash encoding (d) Blurhash encoding with curves

Figure 5.4: Lightness values for sample A

Sample A Positive Negative Total
Discrete 0.98 0.96 1.94
Blurhash 0.87 2.43 3.3

BlurhashCurve 1.11 0.08 1.19

Table 5.1: Error values for sample A
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The sample out of the dataset showing the worst total error is represented by sample B, in Figure 5.5
and 5.2. In this case we see a large dark area in the input, indicating these sample points were inside
the mesh. It is not very important for our rendering results to correctly represent these dark areas,
as the inside of the mesh will not be visible anyway. For this reason the area showing up in bright
blue in the error graphs, indicating the result was much brighter than the input, is not a major issue.
Unfortunately the area around this dark spot is also affected, as the result near this area is much too
dark. This shows some limitations in our method as the used encoding methods allow for dark areas
”bleeding” over not only the space domain, but also over the time domain. In the rendering results this
may show up as dark areas in space where a part of the mesh will be later on in the animation cycle.

(a) Input (reference) (b) Discrete encoding

(c) Basic blurhash encoding (d) Blurhash encoding with curves

Figure 5.5: Lightness values for sample B (worst total error)

Sample B Positive Negative Total
Discrete 32.85 5.61 38.46
Blurhash 48.2 6.21 54.41

BlurhashCurve 44.14 4.61 48.75

Table 5.2: Error values for sample B
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Sample C, shown in Figure 5.6 and Table 5.3 shows a direction where the error is very close to
the median error of our entire dataset. Similar to sample A, we see how the BlurhashCurve encoding
method does well at removing excess dark areas from the data, at the cost of increasing the excess
brightness when compared to the basic Blurhash encoding.

(a) Input (reference) (b) Discrete encoding

(c) Basic blurhash encoding (d) Blurhash encoding with curves

Figure 5.6: Lightness values for sample C (approximately median error)

Sample C Positive Negative Total
Discrete 2.87 2.69 5.56
Blurhash 0.88 3.42 4.3

BlurhashCurve 1.7 0.46 2.16

Table 5.3: Error values for sample C
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To see how the method performs with different models, we have another scene where a large cube
does a simple animation of spinning around its axis. Figure 5.7 shows the time-proximity graphs for
a direction that starts near one of the corners of the box. Since the box spins in a circle, we see the
occlusion reduce to a minimum where the box is at a 45 degree angle from the chosen direction, and
reach a high point as each of the corners passes by. This animation results in fairly high frequency
input data, which is difficult to encode efficiently using our methods. We can see the discrete method
do especially poorly, producing a messy result that does not resemble the input data much. This is
due to the discrete method splitting the time domain into four parts along discontinuities, which are not
clearly visible in this animation. Each segment also contains too much data to be efficiently encoded,
likely we would need at least 5 or more segments for this animation to work well. The blurhash methods
do slightly better, showing much stronger resemblance to the input data as well as much lower total
error values.

(a) Input (reference) (b) Discrete encoding

(c) Basic blurhash encoding (d) Blurhash encoding with curves

Figure 5.7: Lightness values for box animation
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5.4.2. Overall results
In Figure 5.8 and 5.9 we have plotted how the errors are distributed over all the samples on the human
animation. The first chart shows only the excessive darkness, which is generally more noticeable. We
see both the blurhash methods have tighter spreads than the discrete method, although the method
without curves also has generally higher error values. The clearest result from these graphs is how
the amount of excessive darkness errors are significantly reduced when comparing the blurhash and
blurhash with curves methods. Despite significantly lowering this error, the amount of areas that are
too bright is only marginally worse.

(a) Input (reference) (b) Discrete encoding

(c) Basic blurhash encoding (d) Blurhash encoding with curves

Figure 5.8: Error distributions on human model, showing only negative errors (areas that are too dark)

(a) Input (reference) (b) Discrete encoding

(c) Basic blurhash encoding (d) Blurhash encoding with curves

Figure 5.9: Error distributions on human model, showing only positive errors (areas that are too bright)
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We also plotted the brightness error for the godzilla model in Figure 5.10. In this case we see
relatively small differences between themethods, although the discrete method seems to have a slightly
lower error than the other methods.

The error plots for the excessive darkness on godzilla or the box model have been left out as they
are mostly uniformly distributed.

(a) Input (reference) (b) Discrete encoding

(c) Basic blurhash encoding (d) Blurhash encoding with curves

Figure 5.10: Error distributions on godzilla model, showing only positive errors (areas that are too bright)
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5.5. Rendering
To compare the visual quality of our implementation we will look at a few sample scenes encoded using
our methods. However, since our blurhash and discrete method have a few different parameters, we
will first go over the choices we made with respect to the chosen parameters for our comparisons.

Figure 5.11 shows how altering the parameters used in the shader of our blurhash method affects
the produced image. While increasing both strength and contrast makes the occlusion more noticeable,
it also introduces additional artefacts. For example, 5.11d has more visible occlusion around the feet,
but makes some of the occlusion around the shoulder area harder to see. Increasing the strength such
as in 5.11c creates a large dark area on the wall that seems much darker than it should be. For our
comparisons we have chosen to keep the effect more subdued while avoiding artefacts, since we found
it is generally more distracting to have occlusion where there should not be any than to have occlusion
being slightly less visible than it should be.

The reference raytraced implementation evaluates the occlusion on a point on a surface, meaning
one half of the sampling sphere is always fully occluded as this falls behind the surface. This is different
from our pre-computed methods, since they evaluate the occlusion at a point in space that is not nec-
essarily close to a surface. As such our pre-computed method samples from half a sphere instead of a
full sphere, reducing the strength to 0.5 will bring the results more in line. Therefore all the comparisons
will use a strength of 0.5 and a contrast of 1.1.

(a) Strength 0.50, contrast 1.1 (b) Strength 0.75, contrast 1.1 (c) Strength 1.00, contrast 1.1

(d) Strength 0.50, contrast 2.0 (e) Strength 0.75, contrast 2.0 (f) Strength 1.00, contrast 2.0

Figure 5.11: Comparison of various blurhash rendering parameters
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We will now compare the rendering results across different methods, including our own methods
as well as a fully raytraced reference implementation and a screenspace method. The results here
are somewhat subjective as each method has different parameters than can be tweaked to get slightly
different results, and some of the artifacts created may be less noticeable than others. Note that the
raytraced and screenspace methods produce occlusion also for the walls in the scene, whereas our
cubemap method produces occlusion only cast by the model itself. We will only focus on the occlusion
cast by the model on the environment.

Figure 5.12 shows the results at the start of the animation cycle. Overall the results produced by
the discrete and blurhash methods seem relatively close to those of the raytraced scene. The blurhash
result is a little bit more subtle than the discrete one due to the chosen parameters. In this particular
example, the blurhash and blurhash with curves method are indistinguishable. The reason for this is
that the curves method mostly deals with removing artifacts that show up at higher time values, as
described in section 3.4.1.

(a) None (b) Raytraced (c) AlchemyAO (screenspace)

(d) Discrete (e) Blurhash (f) Blurhash with curves

Figure 5.12: Comparison of various occlusion methods at start of animation cycle using model of a human
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When looking at a point further in the animation cycle Figure 5.13 the differences become more
apparent. The blurhash method now shows a large dark halo around the model, which we could also
see clearly in Figure 5.6, corresponding to the red areas around 50 and 95 time points. The result is
significantly improved when adding in the curves, as the halo is now largely gone. The discrete method
seems to be missing some occlusion around the feet, as the back foot has hardly any darkening around
it at this point in time. In this case, the blurhash with curves result seems to be the best out of our
methods, although it shows some excessive darkening in some areas.

(a) None (b) Raytraced (c) AlchemyAO (screenspace)

(d) Discrete (e) Blurhash (f) Blurhash with curves

Figure 5.13: Comparison of various occlusion methods 66% into the animation cycle using model of a human
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We will now zoom in on the area behind the model to look more closely at the differences between
the methods, visible in Figure 5.14. When looking at the raytraced method, we can see an area behind
the torso is a little bit darker due to the arm being closer to the wall than the rest of the torso. Figure 5.14b
shows a circled area of the raytraced method where this is particularly visible, with tweaked contrast
settings. When we compare all the methods used, we see that the screenspace method produces no
visible darkening in this area compared to the rest of the torso. This makes sense as the arm is not
visible on the screen here, thus this information is not used in rendering the occlusion. While subtle,
all three of our own methods do show a noticeable darker area here, especially visible in the discrete
method. This result shows one of the advantages of our methods over screenspace methods.

(a) Zoom area highlighted (b) Tweaked contrast on the raytraced method

(c) None (d) Raytraced (e) AlchemyAO (screenspace)

(f) Discrete (g) Blurhash (h) Blurhash with curves

Figure 5.14: Comparison of various occlusion methods zoomed in on the arm of the model
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Figure 5.15 shows how the rendering performs using a box model, floating a few centimetres off the
ground. The screenspace method shows less darkening around the back of the cube compared to the
other methods, further highlighting the limitations of the screenspace solution. This comparison shows
very clearly the downsides of the discrete method, as we see a clear circular area at the base of the
box, as well as some banding around the corner caused by boundaries between the different nested
cubemaps. Generally, the discrete method seems to work best for ’messy’ models where it may not
be easy for a person to tell whether the result is correct. In a case such as this where people have
a stronger idea of what a correct result should look like, the downsides are more apparent. We also
see the regular blurhash method producing halo effects once again, making the blurhash with curves
method a clear front-runner in this scene.

(a) None (b) Raytraced (c) AlchemyAO (screenspace)

(d) Discrete (e) Blurhash (f) Blurhash with curves

Figure 5.15: Comparison of various occlusion methods at start of animation cycle of the box model
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Figure 5.16 shows the same scene with the box further ahead in the animation cycle, which involves
it doing a full 360 degree rotation. The result here shows even more clearly the problems with the
discrete method, as we now see a patchy pattern showing up. Likely, this is due to the fact that there
are more than four points along which it makes sense to split the dataset, as shown in 5.7, and as such
it will pick slightly different ones for adjacent points leading to this patchy appearance. This could be
solved by adding further weights to the discontinuity selection method to prefer picking curves similar to
adjacent points, or by increasing the number of curves used to encode such animation cycles. Luckily
most real-world animation cycles involve less high-frequency movement. We can also see a stronger
contrast between the area directly below the cube and just beside it in our raytracedmethod, while all our
methods show more of a smooth transition. The lack of a clear line is due to the compression methods
used not allowing strong contrast between adjacent points to remain. The screenspace method does
a bit better showing a clearer distinction, although it also uses blurring to remove noise making the
boundary less distinct. Once again it seems like the blurhash with curves method comes out on top.

(a) None (b) Raytraced (c) AlchemyAO (screenspace)

(d) Discrete (e) Blurhash (f) Blurhash with curves

Figure 5.16: Comparison of various occlusion methods 20% into the animation cycle of the box model
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Figure 5.17 and 5.18 show comparisons for another model, this time we use godzilla to show how
models with dimensions very different from a human are still encoded well. Mostly the results are
similar to the human model, with the discrete and blurhash with curves methods both producing decent
results.

(a) None (b) Raytraced (c) AlchemyAO (screenspace)

(d) Discrete (e) Blurhash (f) Blurhash with curves

Figure 5.17: Comparison of various occlusion methods at start of animation cycle using a godzilla model

(a) None (b) Raytraced (c) AlchemyAO (screenspace)

(d) Discrete (e) Blurhash (f) Blurhash with curves

Figure 5.18: Comparison of various occlusion methods 32% into the animation cycle using a godzilla model
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Future work

For our implementation, we focused on relatively short looping animations, so there may be limitations
when this method is used for more complex scenarios. Blending between different animations may
also provide additional complications.

The blurhash [2] algorithm is not ideal for use on the GPU, as it does not benefit from hardware
encoding. A future improvement on this would be to find an encoding scheme that does. The blurhash
method is designed for a specific use case of providing temporary low-fidelity representations of images,
and as such was created with very different design considerations than what we are using it for in our
method. A similar method designed with the goal of occlusion in mind may produce better results.
There’s also room to improve the space efficiency of the encoding, as the encoding scheme is chosen
to allow for encoding in text rather than binary form.

Furthermore there are some issues with the way the blurhash encoding is currently handled which
creates small jumps over the time domain. Improving this should be fairly straightforward.

There are issues with the darkness from inside of the mesh bleeding out both over the time and
space domains, causing excess darkening to occur. The encoding schemes should giveminimal weight
to the areas in the meshes as these are not supposed to be visible during rendering. Currently, they are
given the same weight as visible areas. This limitation in the implementation is responsible for several
undesired artifacts.

The pre-computation performance of the algorithms is quite poor and there is a lot of room for
improvement in this area.
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7
Conclusion

The method presented gives satisfactory results at low runtime cost, while keeping memory require-
ments quite low as well. Our method overcomes some of the limitations of screenspace methods of
missing hidden and off-screen geometry. A major drawback of our method is the long pre-computation
stage, largely because optimising this was not a main focus of our research.

We found that the accuracy of the results of our method depends on the type of animation that is
used, where especially our discrete method does not do well for high-frequency animations.

There are a lot of parameters in the method that may be tweaked depending on the use case to
strike a balance between better rendering performance or lower memory requirements. Unfortunately
there are a few artifacts present in the results that may need to be further reduced before this method
could be reliably used in a production environment.

Overall we believe our method proves that it is possible to base ambient occlusion on pre-computed
methods stored in simple data structures, and that this may offer better rendering results and better
performance than relying purely on screenspace methods.
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