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SUMMARY

Slope stability applications are vital assets for a country. These slope stability systems
include dikes, dams, levees, embankments and enable applications such as open-pit
mining. The failure of these systems pose huge impacts on society and the economy
and hence the accurate stability assessment of these systems are of primary concern.
Existing methods such as limit equilibrium methods, numerical methods (e.g. the fi-
nite element method, FEM), empirical methods and probabilistic methods all provide
an approximate estimate of the factor of safety (FoS), and are often observed to have
inaccuracies when failures occur. This lack of ability to make accurate predictions is
due to many reasons, such as missing physical processes incorporated into the meth-
ods, inaccurate boundary and initial conditions, constitutive model selection, uncer-
tainty in model parameters and limited mechanism understanding. This thesis suggests
using data assimilation to combine monitoring data with a finite element model to im-
prove the predictive capabilities of the FEM model. These days, geotechnical systems
are equipped with measurement devices to monitor their response to external changes.
These measurements can be in the form of surface displacements, porewater pressures,
strains, etc. These measurements can be obtained from in-situ devices (such as incli-
nometers, strain gauges, etc.) or can be measured remotely (with Light Detection and
Ranging (LIDAR), Interferometric Synthetic Aperture Radar (InSAR), etc.). These mea-
surements can be assimilated into the popular ensemble-based well-established data
assimilation methods, e.g., the ensemble Kalman filter (EnKF), ensemble smoother (ES)
and ensemble smoother with multiple data assimilation (ESMDA) to improve the pre-
dictability of FEM models.

In the first stage, an FEM model of slope stability has been integrated with EnKE
Based upon the slope deformation measurements, this approach estimates the key ma-
terial parameters (strength and stiffness parameters), the state (displacement), and the
FoS of a slope. The effect of two different constitutive models (Mohr-Coulomb (MC)
and Hardening Soil (HS) model) on the FoS was studied via a synthetic twin experiment.
The HS model was able to estimate the FoS with a narrow posterior distribution, starting
from a wide prior distribution of material parameters, including those not encompass-
ing the actual parameters, demonstrating the advantage of using advanced constitutive
models when combining with data assimilation.

In the second stage, the constitutive model which produced relatively more accurate
results (the HS model) was selected from the first stage has been tested with three data
assimilation schemes, i.e., EnNKE ES and ESMDA. Each of these schemes was integrated
with the FEM to assimilate measurements of deformation of the slope and the crest of
the slope stability system. The accuracy of these schemes was evaluated by comparing
their FoS to the synthetic true FoS and evaluating their computation time in a synthetic
twin experiment. The results of the synthetic twin experiment show that EnKF estimated
an FoS that was close to the true FoS with a small standard deviation. ESMDA, when

ix
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using four iterative assimilation steps, was also able to estimate an FoS close to the truth,
yet had a higher standard deviation compared to EnKE The ES and ESMDA (with two
iterative assimilation steps) were not able to reconstruct the true FoS as well as the other
schemes, most likely due to the mostly linear updates of these schemes. The theoretical
computation time required by the ES was the smallest, followed by ESMDA with two
iterative assimilation steps, ESMDA with four assimilation steps, and finally the EnKE

In the third stage, a data assimilation scheme was implemented on a case study of
an open pit mine in Cottbus, Germany. The LIDAR measurements of the vertical dis-
placements were assimilated into a FEM model of slope stability. Model parameters,
displacement ensemble and FoS are estimated from this analysis. The posterior estima-
tion of FoS is compared with slope failure observed in the field. The data assimilation
results provide better results than only using FEM models when comparing the ground
truth of slope failure. However, it was clear that not all physical processes were included
in the model, resulting in a considerable mismatch of the modeled and observed defor-
mations, although a considerable improvement was observed. This initial observation
led to the choice of a data assimilation method, which is able to update the parame-
ters to generally improve the results, as opposed to those which incrementally improved
parameters.

Furthermore, as the data assimilation approach developed involved multiple FEM
analyses, it is computationally expensive and therefore developing a real-time assess-
ment system is likely to be impractical. Therefore, an effort was made to reduce the re-
quired computational resources by developing a surrogate model. The surrogate model
was trained and tested based on the output of the FEM model ensemble. Specifically, it
used the displacements at different locations as input and the FoS as output. The out-
put of the surrogate model in the validation stage was compared with the observed FoS
from the case study. It was found that the prediction made by the surrogate model was
not reliable. This is probably due to the mismatch between the training/testing dataset
(from FEM) and the validation dataset (i.e., the measurements from LIDAR). This mis-
match was identified to be due to the identified missing physical processes in the model,
and the fact that the on-ground measurements had a different nature than training and
testing data. It is further suggested that a surrogate model can only be used provided the
training testing and validation datasets are compatible - and as the FoS is rarely identifi-
able in reality leads to challenges using surrogate models to predict slope failure.
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De stabiliteit van hellingen is essentieel voor de veiligheid van een land, vooral wan-
neer het die van dijken en dammen betreft. Hellingsstabiliteit maakt ook dagmijnbouw
mogelijk. Het falen van deze systemen heeft enorme gevolgen voor de samenleving en
de economie en daarom is de nauwkeurige stabiliteitsbeoordeling van deze systemen
van het allergrootste belang. Bestaande methoden zoals de limit-equilibrium metho-
den, andere numerieke methoden (e.g., eindige elementenmethoden, FEM), empirische
methoden en probabilistische methoden geven een benadering van de veiligheidsfac-
tor (FoS). Het onvermogen van deze modellen om nauwkeurige voorspellingen van de
FoS te maken, is te wijten aan vele oorzaken, zoals ontbrekende fysische processen in
de modellen, onnauwkeurige grens- en beginvoorwaarden van de modellen, constitu-
tieve modelselectie, onzekerheid in modelparameters en beperkt begrip van mechanis-
men. Dit proefschrift stelt het gebruik van data-assimilatie voor om monitoringgegevens
te combineren met een eindige-elementenmodel om de voorspellende mogelijkheden
van het FEM-model te verbeteren. Tegenwoordig zijn geotechnische systemen uitge-
rust met meetapparatuur om hun reactie op externe veranderingen te monitoren. Deze
metingen kunnen de vorm hebben van oppervlakteverplaatsingen, poriénwaterdruk-
ken, spanningen, enz. Deze metingen kunnen worden verkregen met in-situ apparaten
(zoals hellingsmeters, rekstrookjes, enz.) of kunnen op afstand worden gemeten (met
Light Detection and Ranging (LIDAR), interferometrische synthetische apertuurradar
(InSAR), enz.). Deze metingen kunnen worden geassimileerd om de voorspelbaarheid
van FEM-modellen te verbeteren metpopulaire en gevestigde data-assimilatiemethoden
die gebruik maken van een ensemble aan modelrealisaties, bijvoorbeeld het ensemble
Kalman-filter (EnKF), de ensemble smoother (ES) en de ensemble smoother met meer-
voudige data-assimilatie (ESMDA).

In de eerste fase van het onderzoek in dit proefschrift is een eindige-elementenmodel
van hellingsstabiliteit geintegreerd met EnKE Op basis van metingen van de vervorming
van de helling schat deze aanpak de belangrijkste materiaalparameters (sterkte- en stijf-
heidsparameters), de toestand (verplaatsing) en de FoS van een helling. Het effect van
twee verschillende constitutieve modellen (resp. het Mohr-Coulomb (MC) en het Har-
dening Soil (HS) model) op de FoS werd bestudeerd via een synthetisch tweelingexpe-
riment. Het HS-model was in staat de FoS te schatten met een smalle a posteriori ver-
deling, uitgaande van een brede a-priori verdeling van materiaalparameters, inclusief
a-priori verdelingen die niet de werkelijke parameters omvatten. Dit toont het voordeel
aan van het gebruik van geaavanceerde constitutieve modellen bij het gebruik van data-
assimilatiemethoden voor de berekening van de FoS.

In de tweede fase van het onderzoek werd het constitutieve model dat relatief nauw-
keurigere resultaten geeft (het HS model), geselecteerd in de eerste fase, getest met drie
verschillende data-assimilatieschema’s, namelijk EnKE ES en ESMDA. Elk van deze schema’s
was geintegreerd met de FEM om metingen van de vervorming van de helling en de top

Xi



Xii SAMENVATTING

van het hellingstabiliteitssysteem te assimileren. De nauwkeurigheid van deze schema’s
werd geévalueerd in een synthetisch tweelingexperiment door hun FoS te vergelijken
met de synthetische echte FoS en met hun rekentijd. De resultaten van dit experiment
lieten zien dat EnKF een FoS schatte die dicht bij de werkelijke FoS ligt, met een kleine
standaardafwijking. ESMDA was, bij gebruik van vier iteratieve assimilatiestappen, ook
in staat een FoS te schatten die dicht bij de waarheid lag, maar had toch een hogere
standaardafwijking vergeleken met EnKE De ES en ESMDA (met twee iteratieve assimi-
latiestappen) waren niet in staat de echte FoS zo goed te reconstrueren als de andere
schema’s, hoogstwaarschijnlijk vanwege de veelal lineaire updates van de ES en ESMDA
met twee assimilatiestappen. De theoretische rekentijd die de ES nodig heeft, is het
kleinst, gevolgd door ESMDA met twee iteratieve assimilatiestappen, ESMDA met vier
assimilatiestappen, en tenslotte de EnKE

In de derde fase van het onderzoek werd een data-assimilatieschema geimplemen-
teerd op een case study van een dagbouwmijn in Cottbus, Duitsland. De LIDAR-metingen
van de verticale verplaatsingen werden geassimileerd in een FEM-model van de hellings-
stabiliteit. Modelparameters, verplaatsingsensemble en FoS worden op basis van deze
analyse geschat. De a posteriori schatting van FoS wordt vergeleken met hellingfalen
waargenomen in het veld. De data-assimilatieresultaten leveren betere resultaten op
dan wanneer enkel FEM-modellen gebruikt zouden worden bij het vergelijken van de
grondwaarheid van hellingfalen. Het was echter duidelijk dat niet alle fysieke processen
in het model waren opgenomen, wat resulteerde in een aanzienlijke discrepantie tus-
sen de gemodelleerde en waargenomen vervormingen, al werd er wel een aanzienlijke
verbetering geconstateerd ten opzichte van het model zonder data-assimilatie. Deze
constatering leidde tot de keuze van een data-assimilatieschema dat modelparameters
schatte die over het geheel tot betere resultaten leidden, dan een schema dat incremen-
teel betere modelparameters gaf.

Omdat de ontwikkelde data-assimilatiebenadering meerdere FEM-analyses omvat,
is deze rekentechnisch duur en daarom is het waarschijnlijk onpraktisch om een real-
time beoordelingssysteem te ontwikkelen. In de laatste fase van dit onderzoek werd
daarom een poging gedaan om de benodigde computertijd te verminderen door een
surrogaatmodel van de geomechanica te ontwikkelen. Het surrogaatmodel werd ge-
traind en getest op basis van de output van het FEM-modelensemble en gebruikte de
verplaatsingen op verschillende locaties als input en de FoS als output. De output van
het surrogaatmodel in de validatiefase werd vergeleken met de waargenomen FoS uit de
casestudy. Hieruit bleek dat de voorspelling van het surrogaatmodel niet betrouwbaar is.
Dit komt waarschijnlijk door de discrepantie tussen de trainings-/testdataset (van FEM)
en de validatiedataset (d.w.z. de metingen van LIDAR). De mismatch die werd waarge-
nomen werd toegewezen aan de geidentificeerde ontbrekende fysieke processen in het
model en het feit dat de echte metingen een ander karakter hadden dan de trainings-
en testgegevens. Op basis van deze resultaten wordt gesuggereerd dat een surrogaatmo-
del alleen kan worden gebruikt op voorwaarde dat de trainingstest- en validatiedatasets
compatibel zijn met de metingen die gebruikt worden in de schatting -en gezien het feit
dat de FoS zelden wordt waargenomen bemoeilijkt dit het gebruik van surrogaatmodel-
len om de hellingsstabiliteit te beoordelen.
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2 1. INTRODUCTION

1.1. BACKGROUND

Slope stability applications include flood defence systems (dikes, dams, levees, embank-
ments), transport infrastructures (embankments) and open-pit mining. These geotech-
nical systems are very important assets for a country. To give a impression of the extent of
some of the slope stability systems, 14000 km of rural dikes contribute to the slope sta-
bility system which saves 40% of the Netherlands from inundation (Hicks et al., 2019).
The failure of these systems can cause significant loss of human lives and detrimental
effects on the economy. Examples of slope failures include the failure of peat dike in
Wilnis, Netherlands (Van Baars, 2005), the failure of Bingham Canyon open-pit copper
mine (Pankow et al., 2014) and the famous 67m high slope failure in Virginia (Berg et al.,
2020). Due to the significant importance of these structures, a huge amount of govern-
ment spending is being used to ensure the stability of these systems i.e. one billion euros
per year are spent to upgrade and maintain the Netherlands Dutch dike network.

A variety of slope stability analysis methods are used to determine the safety of slope
stability systems. These methods vary from simple analytical methods to advanced meth-
ods. A simple analytical method consists of the limit equilibrium method (LEM). LEM
compute the factor of safety (FoS) of the system by dividing the stabilising forces to
destabilising forces. Based on the different assumptions on the slip surface, several LEM
approaches have been developed, such as Bishop (1955), Janbu (1954), Spencer (1967)
and Sarma (1979) methods. Advanced methods such as the finite element method (FEM)
are currently popular. In this method, there is no need to make a prior assumption of the
slip surface. In FEM, the slope domain is discretised into finite elements. A suitable con-
stitutive model is considered to define the behaviour of the slope material. The FoS is
calculated either by increasing the gravity loading or by reducing the strength parame-
ters of the soil mass. In addition, the Monte Carlo Method (MCM) has been integrated
with FEM to better capture the uncertainty in the material properties of the slope stabil-
ity system (Gao et al., 2019; Jiang et al., 2022; Peng et al., 2017; Phoon, 2008; Xiao et al.,
2017; Y.-J. Yang et al.,, 2021; Z. Yang & Ching, 2020; J. Zhang et al., 2011; Z. Zhang & Ji,
2022). This allows an estimation of the probability density function of the FoS (and can
be extended to the reliability-based design of geotechnical systems).

In addition to integrating FEM with MCM, there has been significant developments
in FEM and constitutive models. These include the ability of the FEM for multi-physics
modelling (thermo-hydro-mechanical coupling) and developments in constitutive mod-
elling (non-linearity in elasticity, elasto-plasticity, hardening softening mechanism) (Lade,
2005). With the inclusion of these realistic soil features in the constitutive models, the
prediction capabilities have improved significantly, but when compared with the field
measurements model-measurement misfit is still often observed.

To obtain field measurements, geotechnical systems (including slope stability sys-
tems) can be equipped with in-situ and remote measurement devices (e.g., Light De-
tection and Ranging (LIDAR), Interferometric Synthetic Aperture Radar (InSAR)) which
measure the response. The measured response of the can be in the form of a pore wa-
ter pressure measurement, strain measurement or surface displacement measurement.
For example, piezometer devices are used to measure the in-situ soil pore pressures and
strain gauges measure the in-situ deformations of slope systems.

These measurements have been used in two ways for the evaluation of the model
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performance. One way is to simply compare the measurements with the model pre-
dictions. The second way is to calibrate the model parameters based on these mea-
surements. Following the former approach, several studies compare the displacement
measurements produced by different constitutive models with field measurements for
a range of geomechanical problems (e.g. Brinkgreve et al., 2006; Hsiung & Dao, 2014;
Sekhavatian & Choobbasti, 2018).Brinkgreve et al. (2006) demonstrate the functioning
of three constitutive models for a tunnel system. The authors compared field settlement
and heave with FEM results which used the Mohr-Coulomb (MC) model, the hardening
soil (HS) model and the hardening soil with small-strain stiffness (HSS) model. The au-
thors conclude that the HSS model simulates the most realistic settlement and heave for
this case. Hsiung and Dao (2014) studied the performance of the MC, HS and HSS mod-
els (Plaxis, 2015) for an excavation case. The authors compared the wall deflection and
ground settlement with field data and concluded that the displacement produced by the
HSS model was closest to the field measurements. Sekhavatian and Choobbasti (2018)
compared movement prediction by FEM with field measurements in an underground
excavation case. The authors compared the results produced by a number of different
material models with field measurements as an indication of model performance. How-
ever, this information was not used to refine or estimate the model parameters.

In the latter approach, the authors used inverse analyses, Bayesian estimation or data
assimilation to estimate the model parameters based on the measurements (e.g. Gens et
al., 1996; Ledesma et al., 1996; Lee & Kim, 1999; Liu et al., 2018; Vardon et al., 2016; Wang
et al.,, 2013; Zhou et al., 2007). Ledesma et al. (1996) and Gens et al. (1996) utilised a
maximum-likelihood method to estimate Young’s modulus for a tunnel excavation sim-
ulation in FEM. Lee and Kim (1999) utilised an extended Bayesian method in a simula-
tion of a tunnel system for an inverse analysis of four parameters: elastic modulus, initial
horizontal stress at rest, cohesion and friction angle. Zhou et al. (2007) proposed and im-
plemented an extended Bayesian approach on an embankment and an excavation case.
The author estimated Young’s modulus for both the cases. Wang et al. (2013) conducted
a probabilistic inverse analysis for a slope-failure case in Taiwan, which included soil
anchors. They estimated the strength parameters and anchor force in order to better
understand the slope failure mechanism. Vardon et al. (2016) and Liu et al. (2018) used
an ensemble Kalman filter (EnKF) approach on a slope-stability problem. The authors
combined the random finite element method (RFEM) with the EnKF to estimate the hy-
draulic conductivity based on pore water pressure measurements in a steady-state and
transient state seepage problem in a synthetic case. The improved estimation of hy-
draulic conductivity led to improved pore water pressure estimation, thereby improving
the prediction of slope stability. Another example of inverse analysis is provided by Kim
and Finno (2020), who optimise model parameters of a hypo-plastic clay model in the
case of an excavation using the measurements of lateral movements at an early stage of
excavation with a gradient approach based on the Gauss-Newton method.

1.2. CURRENT LIMITATIONS

Ensemble-based methods for data assimilation are well established, e.g., the ensemble
Kalman filter (EnKF), ensemble smoother (ES) and ensemble smoother with multiple
data assimilation (ESMDA) and have been successfully used in different fields. For ex-
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ample, the EnKF has been used in numerical weather prediction (e.g., Houtekamer &
Mitchell, 2005; Szunyogh et al., 2005), oceanography (e.g., Bertino et al., 2003; Keppenne
& Rienecker, 2003), hydrology (e.g., Chen & Zhang, 2006; Reichle et al., 2002), geotech-
nical engineering (e.g., Liu et al., 2018; Mavritsakis, 2017; Mohsan et al., 2021, 2023; Var-
don et al.,, 2016), and petroleum reservoir history matching (e.g. Aanonsen et al., 2009;
Evensen, 2009; Glegola et al., 2012; Neevdal et al., 2002; Oliver & Chen, 2011). The EnKF
is currently one of the most popular data assimilation methods. ES (Van Leeuwen &
Evensen, 1996) is an alternative ensemble-based formulation and is implemented in
the fields of petroleum reservoir engineering (e.g., Skjervheim & Evensen, 2011) and
oceanography (e.g., Van Leeuwen, 1999; Van Leeuwen & Evensen, 1996). ESMDA (Emer-
ick & Reynolds, 2013) has been implemented in the field of petroleum engineering (e.g.,
Emerick, 2016; Emerick & Reynolds, 2013; Maucec et al., 2016) but has also been applied
in other fields (e.g., Evensen, 2018; Evensen et al., 2021; Evensen & Eikrem, 2018).

The use of these popular well-established ensemble-based data assimilation schemes
is limited in geotechnical engineering. There is a need to investigate the capabilities of
these data assimilation schemes in the geotechnical engineering field for parameter and
FoS estimation. Furthermore, the majority of the reported literature in the geotechnical
engineering field shows the estimation of a single parameter (either the stiffness or the
strength parameter) by using an inverse analysis or data assimilation scheme. The sensi-
tivity of parameters is different at different levels of loading, e.g., the stiffness parameters
are more sensitive in the early stage of loading (i.e., the elastic stage) and strength pa-
rameters are generally more sensitive in the ultimate state of loading, i.e., in the plastic
stage. There is a need to further investigate techniques which estimate multiple model
parameters simultaneously, considering their sensitivity at specific stress states.

1.3. MOTIVATION

It is important to predict the FoS of slope stability accurately to help stakeholders pro-
tect their assets. Current models (such as FEM) provide an approximate prediction of
FoS. This can be due to the uncertainty in the constitutive model parameters, approxi-
mations in the initial and boundary conditions and missing physics in the FEM model.
On the other hand, many of the geotechnical systems are equipped with in-situ or re-
mote measurement devices such as LIDAR, InSAR, and strain gauges. These devices can
measure the system response accurately, e.g., LIDAR is claimed to measure the surface
(vertical and horizontal) movement to millimetre scale accuracy. These measurements
can be used to improve the predictive capabilities of the FEM model by improving its
parameters. An additional limitation of FEM is that it requires huge computational costs
to run a probabilistic analysis. To address this, Chapter 4 of this thesis also tests a way to
build a surrogate model which directly translates measurements to the FoS.

1.4. RESEARCH OBJECTIVES

The research questions of this dissertation revolve around the following lines:

Research question 1: How can the measurements be used in numerical models for
slope stability? What are the effects of the different constitutive models in measure-
ment assimilation?
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With the advancement in monitoring devices, an increasing amount of slope systems
are being monitored. Different slope response has been measured by using in-situ and
remote devices. For example, piezometer devices are used to measure the in-situ soil
pore pressures and strain gauges measure the in-situ deformations of slope systems. Re-
mote sensing devices such as LIDAR, and InSAR claim to measure the accurate response
of slope systems in the form of vertical and horizontal deformation. These measure-
ments are useful for understanding the real-time slope behaviour but can not provide
future predictions. On the other hand, FEM models are considered to be one of the most
advanced slope stability prediction models which provide approximate predictions of
slope stability. Their predictions are known to have errors due to their approximations
in the constitutive equations, poorly known model parameters and other reasons. Cur-
rently, the majority of the studies for slope stability prediction utilise a manual calibra-
tion approach or inverse analysis (for quasi-static) to estimate mostly the single parame-
ters (e.g. Gens et al., 1996; Ledesma et al., 1996; Lee & Kim, 1999; Wang et al., 2013; Zhou
etal., 2007). There might be a benefit to investigate the use of popular data assimilation
schemes such as EnKF in the slope stability system. In order to do this, it is proposed to
use EnKF as the data assimilation scheme to estimate the strength and stiffness param-
eters based on measurements of horizontal displacements on the face of a slope. These
estimated parameters can then be used to estimate the FoS. To investigate the effect
of different constitutive models, two different models are used in the FEM: the Mohr-
Coulomb (MC) model and the Hardening Soil (HS) model. The EnKF framework allows
the investigation of the effect using the different constitutive behaviour on its ability to
estimate the model parameter and FoS estimation.

Research question 2: What kind of data assimilation schemes can be used in the slope
stability analysis to estimate the parameters and FoS?

There are three popular well-established data assimilation methods, namely, the ensem-
ble Kalman filter (EnKF), ensemble smoother (ES) and ensemble smoother with mul-
tiple data assimilation (ESMDA). These schemes have been successfully used in dif-
ferent fields. Several researchers have compared the performance of these ensemble-
based methods in different fields (e.g., Emerick, 2016; Evensen et al., 2022; Skjervheim &
Evensen, 2011; Van Leeuwen & Evensen, 1996). They studied the performance of these
data assimilation schemes based on both computational efficiency and the ability to es-
timate the physical state of a system that agrees with the measured (or synthetically gen-
erated) data thereof. The study of these data assimilation schemes is limited in the field
of geotechnical engineering. In this thesis, three different data assimilation schemes
have been implemented in a fully coupled hydro-mechanical slope stability model to
study their performance, i.e., the EnKE ES and ESMDA. The slope stability model in this
study uses the HS model to simulate the (non-linear) material behaviour. The data as-
similation schemes estimate the strength and stiffness parameters for the slope stability
system. These estimated parameters have been used in the computation of the factor
of safety of the slope stability system. The efficiency of these data assimilation schemes
has been evaluated by comparing the results of FoS with the synthetic truth of FoS and
by assessing their computation time.
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Research question 3: How can we validate the data assimilation schemes and the use
of surrogate models in a case study?

In the answering of research question 1 and 2, the data assimilation schemes are veri-
fied based on synthetic data. There is a need to validate these schemes for a real case
study, with synthetic data that has all of the characteristics of real data. To do that, a
case study has been selected, where a slope at an open pit mine in Cottbus, Germany,
has been monitored. LIDAR measurements of the vertical displacements are assimi-
lated into FEM model with missing physics. ES is implemented as the data assimilation
scheme. The resulting framework aims to estimate the model parameters, displacement
ensemble and factor of safety (FoS). The posterior estimation of FoS is compared with
slope failure observed in the field and it provides a better estimation than when only
using FEM (prior estimate). A surrogate model is then trained and tested with the prior
and posterior FEM ensemble of displacements as input, and the FoS as output. The sur-
rogate model is validated with the LIDAR measurements and the results are compared
with ES results and the ground truth displacements.

1.5. SLOPE STABILITY FOR THE COTTBUS OPEN-PUT MINE

This thesis is the part of Integrated Mining Impact Monitoring (ZMON) project (https:
//li2monproject.eu/about-news/). This project is funded via the EU HORIZON 2020 pro-
gramme, via the Research Fund for Coal and Steel (RFCS). The other project partners in-
volve AIRBUS, LASERDATA, LEAG, DMT GmbH, IMG PAN, TU BAE EFTAS GmbH, POL-
SKA GRUPA GORNICZA, and FH MAIN. The main objectives of 2ZMON are:

* Development of innovative monitoring tools for advanced monitoring of ground
and slope deformation using geotechnical and geodetic tools such as laser tech-
nology, Sentinel, TerraSAR-X PSI, airborne and ground-based radar.

¢ Identification of physical processes and its numerical modelling for the ground
subsidence and slope stability. Furthermore, numerical modelling is integrated
with the deformation measurements. (This objective is addressed in the present
thesis.)

* Development of the integrated web system which is used to quantify the risk as-
sessments for the coal mining community.

1.6. OUTLINE OF THE THESIS

This thesis consists of the following chapters:

In Chapter 2, a specific data assimilation scheme (EnKF) is implemented on the fully
coupled hydro-mechanical model of a slope stability system. In this chapter, two differ-
ent constitutive models are used in the FEM model:the MC (Plaxis, 2015) and HS (Schanz
et al,, 1999) models. Data assimilation estimates the strength and stiffness parameters
based on the measurements of slope displacements. Finally, an assessment of the FoS is
made by using the improved model parameters with both constitutive models.

In Chapter 3, three different data assimilation schemes have been implemented in
an FEM model of slope stability. These schemes are EnKE ES (Van Leeuwen & Evensen,
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1996) and ESMDA (Emerick & Reynolds, 2013). The strength and stiffness parameters of
the HS model are estimated based on measurements of crest-slope displacements. First,
an assumed synthetic truth is created by assuming the true parameter values. Then, the
accuracy of each of the data assimilation schemes is evaluated based on its ability to
estimate the synthetic truth of the FoS and on its computational time.

In Chapter 4, the above framework of data assimilation (ES) and the Gaussian process
regression (GP) surrogate model is implemented in a case study of the Cottbus open
pit mine. The LIDAR measurements of vertical displacement on the slope is used in a
data assimilation experiment to estimate the strength and stiffness parameters of the
HS model and ultimately to estimate the FoS. GP is also trained and tested, both on the
prior and on the posterior estimates. GP is validated using the Cottbus measurements
and its resulting slope deformation estimates at failure are compared with the ground
truth estimates thereof.

Chapter 5 concludes the thesis with the conclusions and future recommendations.
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ON THE USE OF DIFFERENT
CONSTITUTIVE MODELS IN DATA
ASSIMILATION FOR SLOPE
STABILITY

A recursive ensemble Kalman filter (EnKF) is used as the data assimilation scheme to esti-
mate strength and stiffness parameters simultaneously for a fully coupled hydro-mechanical
slope stability analysis. Two different constitutive models are used in the hydro-mechanical
model: the Mohr-Coulomb (MC) model and the Hardening Soil (HS) model. The data as-
similation framework allows the investigation of the effect of constitutive behaviour on its
ability to estimate the factor of safety using measurements of horizontal nodal displace-
ment at the sloping face. In a synthetic study, close-to-failure and far-from-failure cases
of prior property estimations illustrate the effect of initial material property distribution
with different material models. The results show that both models provide a reliable fac-
tor of safety when the distribution of prior parameters is selected close-to-failure. However,
the HS model results in the improved estimation of factor of safety for the far-from-failure
case while this is not the case for the MC model. In addition, for the same level of accuracy
the computational effort required for the HS model is comparatively less than for the MC
model.

2.1. INTRODUCTION

Slope stability assessment is very important for the construction and risk assessment of
infrastructure. There are a variety of methods to assess slope stability, e.g. limit equilib-
rium methods, numerical methods, empirical methods and probabilistic methods. With
the development of numerical methods, such as the finite element method (FEM), it has

This chapter is based on Mohsan et al. (2021) and Mohsan et al. (2023).
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become possible to analyse and predict the behaviour of geometrically complex slopes
under hydro-mechanical non-steady-state conditions. The applicability of this type of
analysis significantly depends upon the constitutive (stress-strain) behaviour of the ma-
terial and the mathematical representation of the behaviour used in FEM.

In the past few decades, there have been significant developments in constitutive
models. For example, the evaluation of non-linearity in elasticity, elasto-plasticity and
hardening/softening are now regularly seen in more advanced constitutive models. Com-
mercial software packages (e.g. PLAXIS) offer the possibility to include different con-
stitutive models, for example, a formulation representing linear-elastic perfectly plastic
behaviour based on Mohr-Coulomb assumptions, or a hardening soil model, which is
a more advanced non-linear elasto-plastic soil model that includes hardening (Plaxis,
2015).

While numerical models have been shown to capture the hydro-mechanical pro-
cesses occurring in soils, the representation of slope behaviour by numerical models
often differs from what is observed in reality. This can be due to a poor representation of
the physical processes (either in the governing equations or in the constitutive model),
poorly known model parameters, a complex geometry, complex initial and boundary
conditions, or a combination of these. To investigate or overcome these limitations, one
can make use of measured behaviour of the slope. Measurements can be used in two
ways: one way is to compare the numerical model output with the measurements and
choose the best model formulation, and an alternative way is to assimilate the measure-
ments in a mathematically consistent way to find the most likely state and parameters
given the measurements and the uncertainty in both model and measurements.

Chapter 1 (Section 1.1) summarizes the performance evaluation of different consti-
tutive model results based on the field measurements. Various researchers compare the
displacement results from numerical models with field results for a range of geotechnical
problems (e.g. Brinkgreve et al., 2006; Hsiung & Dao, 2014; Sekhavatian & Choobbasti,
2018). In anumber of studies, the model parameters were estimated based on field mea-
surements by using inverse analysis or data assimilation schemes (e.g. Gens et al., 1996;
Ledesma et al., 1996; Lee & Kim, 1999; Liu et al., 2018; Vardon et al., 2016; Wang et al.,
2013; Zhou et al., 2007). The results of these studies have been discussed in Chapter 1
(Section 1.1).

The majority of the studies mentioned above (and discussed in Chapter 1) utilised
a data assimilation approach to estimate either stiffness or strength parameters. The
sole estimation of stiffness parameters does not give any information about the ultimate
limit state of the system (factor of safety). On the other hand, the sole estimation of
the strength parameters does not give sufficient insight into the pre-failure behaviour of
the material and reduces the ability of the data to be used to estimate the strength pa-
rameters. The objective of the present study is to explore the use of data assimilation
to improve estimates of slope stability by assimilating the slope deformation measure-
ments. To this end, simultaneous estimation of the stiffness and strength parameters are
conducted for two different constitutive models that incorporate material non-linearity.
The evaluation of the slope-stability estimates will eventually support the development
of a data assimilation framework for robust assessment of slope-failure risks.

In this chapter, the effect of constitutive models on the calculation of the factor of
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safety is addressed by assimilating the measurements into the FEM simulation of a slope
stability problem, under unsteady hydraulic conditions. A comparison of close-to-failure
and far-from-failure prior parameter estimation cases helps to investigate the effect of
material non-linearity in two different constitutive models. A recursive EnKF is imple-
mented for two different constitutive models (HS and MC). The performance of the re-
sulting data assimilation systems is evaluated by their ability to estimate the horizontal
displacement within the model domain and to predict the Factor of Safety (FoS) of the
slope. In Section 2.2, details of the forward model and the data assimilation method
are presented. Section 2.3 presents an evaluation method and a synthetic example to
evaluate the system’s performance, with the results presented in Section 2.4. Section 2.5
presents the discussion followed by conclusions. An investigation of the system’s sensi-
tivity to various inputs is given in Appendix A.1.

2.2. METHODOLOGY

The method is made up of a forward model which simulates the physics of the problem,
and a data assimilation method that combines this forward model with measurements
to estimate constitutive model parameters and the corresponding state variables. A fully
coupled hydro-mechanical FEM simulation is used as the forward model. In order to
investigate the effect of constitutive models on the estimated state and the estimated
FoS, two types of constitutive models are used, i.e., the MC and the HS models. A re-
cursive EnKF is used as the data assimilation method to estimate the constitutive model
parameters (e.g. friction angle, cohesion, stiffness) based on measurements (i.e. surface
displacements). The workflow in this study is controlled via Python, making use of the
PLAXIS Python interface to control the PLAXIS analyses. The FEM equations are solved
by PLAXIS and the data assimilation part is implemented and solved in Python.

2.2.1. FORWARD MODEL

FULLY COUPLED HYDRO-MECHANICAL SLOPE STABILITY MODEL

In soils under unsteady flow, both the mechanical and hydraulic behaviour must be con-
sidered. For the mechanical behaviour, equilibrium is considered, i.e.:

V-o'+Vp+pb=0 2.1

where V is the gradient operator, V- is the divergence, ¢’ is the effective stress tensor, p
is the pore pressure, p is the density and b are the body accelerations (e.g. from gravity).
The constitutive behaviour can be expressed as:

o'=D'e 2.2)

where D’ is the effective constitutive matrix and € is the strain tensor.

By substituting Eq. 3.2 into Eq. 3.1 and recognising that € = 0.5((Vu) + (Vu)T) (where
u is the displacement) yields the mechanical governing equation. The displacement is
resolved into its x- and y-components and termed as horizontal displacements (u) and
vertical displacements (uy), respectively.
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For the hydraulic behaviour, the governing equation is the conservation of mass
which can be expressed as:

opn) o

where p; is the fluid density, n is the porosity, v is the velocity vector and Q is a source
term. The derivative of the fluid density with time is calculated using the compressibility
of the fluid (0p;/0t = p;/K,, - 0p/0t, where K,,, is 2183 MPa) and the change of porosity
is evaluated from the change of the volumetric strain €,,4;.

The velocity of water is incorporated via Darcy’s Law:

v:—kv(i+z

P18

(2.4)

where k is the hydraulic conductivity matrix, g is the gravitational constant, and z is the
elevation.

Both the governing equations have primary variables of displacement and fluid pressure,
and are therefore a coupled system of equations. In this work, the governing equations
are solved using FEM by using the software PLAXIS (Plaxis, 2015).

CONSTITUTIVE MODELS

Stress-strain (constitutive) relationships of real soils are usually non-linear. The stiffness
and shear strength of soil typically depends upon the stress level, the strain level and the
stress history. A variety of constitutive models exists to simulate soil behaviour. In this
study, two types of constitutive models are used i.e. the Mohr-Coulomb (MC) model and
the Hardening Soil model (HS). The MC model is commonly used in geotechnical anal-
yses as it is simple and represents stress-dependent failure conditions reasonably well,
but misses some realistic soil features, i.e. non-linear elasticity, stress-dependent stiff-
ness, hardening/softening and plasticity before failure. On the other hand, the HS model
takes into account these realistic features but is not as frequently used in geotechnical
practice, partly due to the requirement of additional parameters.

Mohr-Coulomb model: The MC model s a simple and well known linear-elastic perfectly-
plastic model, which is used widely to represent soils. The linear elastic part of the Mohr-
coulomb model is based on Hooke’s law, and is therefore not stress or strain dependent,
and the onset of plasticity is based on the Mohr-Coulomb failure criterion, i.e. a stress-
dependent shear strength. Plastic deformations occur without any change in stress level,
i.e. they are perfectly plastic. A representation of the model is shown in Fig. 2.1.

A total of five model parameters are required to implement the Mohr-Coulomb model.
This includes the two elastic parameters, the Young’s modulus (E), Poisson’s ratio (v),
and three strength parameters, cohesion (c), friction angle (¢) and dilatancy angle ().
Hardening Soil model: The HS model is a nonlinear elasto-plastic soil model. The
stress-strain relationship in a drained triaxial compression test is represented by the hy-
perbolic function (Fig. 2.2). The model shows a decreasing stiffness (stress-dependent
stiffness) and irreversible plastic strains simultaneously when subjected to deviatoric
loading. Three different stress-dependent stiffness parameters are considered to model
soil behaviour. The stress-strain path due to primary loading is curved, which is mod-
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Figure 2.1: Representation of Mohr-Coulomb model

elled using Es, the stress-dependent stiffness due to the primary loading.

B et ccos(p) —aszsin(¢p) "
%0 Fs0 ccos() — Pref sin(¢p)

(2.5)

where Esrgf is the reference stiffness modulus corresponding to the reference stress pye .

The actual stiffness depends upon the minor principal stress (o3). The amount of stress
dependency is given by the power m.

The non-linear elastic part is modelled based upon the stress-dependent unloading
reloading stiffness modulus:

ccos(p) —ogsin(p) "

ccos(¢p) — prefsin(¢h)

Eur=E

(2.6)

where is Elr;f is the reference re/-unloading stiffness at reference pressure pr.¢. The
E,,, parameter is used to simulate the non-linear unloading reloading stress-strain path.
The elastic components are calculated according to the Hookean elastic relationship for

drained triaxial stress path:
q
€l = . (2.7)
.
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Figure 2.2: Representation of Hardening soil model

The HS model is a double-hardening plasticity model as it allows two types of hard-
ening: shear hardening and cap hardening. The shear-hardening part controls the hy-
perbolic behaviour in deviatoric stress paths, and the cap-hardening part deals with irre-
versible compaction in primary compression. Due to the onset of loading, the material
starts yielding as soon as the shear strength is mobilised. As aresult, increased deviatoric
plastic strain is generated as the loading increases, which apparently leads to a reduction
of the stiffness. This is represented by the shear hardening yield function. At the end of
shear strength mobilisation, when the Mohr-Coulomb failure criterion is reached, failure
occurs. The flow rule for shear hardening is non-associated.

A cap yield surface is defined to compute the plastic volumetric strain that is mea-
sured in isotropic compression. This yield surface represents an ellipse in stress space
and it is centred around the origin of the stress space. The preconsolidation pressure
defines the current position of the cap. The cap parameters are evaluated from lateral

pressure for normal consolidation,K]'¢ and Eyg4:
! m
ccos(¢p) — o, sin(¢ph)
Eoea = (r,ig 3 : (2.8)
ccos(p) — prey sin(¢)

where E;Z{; is the reference odometer stiffness at reference pressure pyy.
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The input parameters of the HS model are the strength parameters: cohesion (c),
friction angle (¢) and dilatancy angle (). The stiffness parameters are the secant stiff-

ness at reference pressure in standard drained triaxial test (Esrgf ), the tangent stiffness at
reference pressure for primary odometer loading (E;ig), the loading unloading stiffness

at reference pressure (E,rﬁf ), the Poisson’s ratio for unloading reloading (v,;) and a pa-
rameter m which controls the stress-level dependency for all three stiffness parameters.

FORWARD MODELLING AND STABILITY ANALYSIS

FEM simulations are used as a forward model, taking into account changes in exter-
nal water loads. A hydro-mechanical FEM model computes the behaviour and state of
the slope. After a defined period of time, the hydro-mechanical analysis is followed by
the stability analysis, which results in an estimate of the FoS (the ratio of the original
strength to the reduced strength of the material at failure).Slope stability is evaluated us-
ing Finite Element Method (FEM) with a strength reduction technique, conducted under
drained conditions for relatively coarser material. The forward model calculates the re-
sults until the time when a stability analysis is required. After the stability analysis, the
forward analysis resumes using the conditions immediately prior to the stability anal-
ysis. The calculated stability, therefore, can change over time reflecting the changes in
hydro-mechanical conditions. In the stability analyses, the strength properties of the
soil (tan(¢) and c in both the constitutive models used here) are successively reduced
until failure.

2.2.2. DATA ASSIMILATION WITH THE RECURSIVE ENSEMBLE KALMAN FIL-

TER

Data assimilation has the objective to find the posterior distribution of a state and/or
parameter given the measurements of the state. A commonly used method for data as-
similation is the EnKF (Evensen, 1994) which is an ensemble-based formulation of the
Kalman filter (Kalman, 1960), originally developed for state estimation in oceanogra-
phy. The method uses an ensemble of model realisations to represent the error covari-
ances. Since then, the EnKF has been implemented in diverse fields including numerical
weather prediction (e.g. Houtekamer & Mitchell, 2005; Szunyogh et al., 2005), oceanog-
raphy (e.g. Bertino et al., 2003; Keppenne & Rienecker, 2003), hydrology (e.g. Chen &
Zhang, 2006; Reichle et al., 2002), geotechnical engineering (e.g. Liu et al., 2018; Mavrit-
sakis, 2017; Vardon et al., 2016), and petroleum reservoir history matching (e.g. Aanon-
sen et al., 2009; Evensen, 2009; Glegola et al., 2012; Naevdal et al., 2002; Oliver & Chen,
2011).

The EnKF is very effective in state estimation (e.g. Evensen, 1997; Hamill et al., 2000;
Houtekamer & Mitchell, 1998; Miller et al., 1999; Tamura et al., 2014) and joint parameter-
state estimation (e.g. Lorentzen et al., 2001; Neevdal et al., 2003; Neaevdal et al., 2002;
Skjervheim & Evensen, 2011). In the case of parameter estimation, it is common to
estimate the parameters first and then rerun the model with these updated estimates
of the parameters to find the solution of the model state. The EnKF has been success-
fully applied for parameter estimation in applications in a range of fields. In the field of
petroleum engineering, Naevdal et al. (2002) implemented the EnKF for history match-
ing with a two dimensional near-well reservoir model to estimate the permeability of the
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reservoir. The EnKF provided a better parameter estimation and consequently better
production forecasts. In the field of atmospheric modelling, Annan et al. (2005) imple-
mented the EnKF for estimation of parameters from radiation, convection and surface
parametrisation. The authors concluded that the EnKF can handle multivariate param-
eter estimation comfortably and demonstrated the method to be useful in determining
structural deficiencies in the model which can not be improved by tuning and can be
a useful tool to guide model development. Skjervheim and Evensen (2011) applied the
EnKF on a history matching problem to estimate the permeability parameter in a reser-
voir simulation model. It was concluded that the EnKF can be successfully used for his-
tory matching but is computationally more expensive than the Ensemble Smoother. A
possible disadvantage of the EnKF is the Gaussian approximation applied in the update
scheme. Furthermore, the repeated restarting of the forward model after each EnKF up-
date needs a significant amount of computational effort, this recursive implementation
of the EnKF ensures that the state is updated along with the parameters. Due to the good
state, parameter and combined state-parameter estimation, relative computational ef-
ficiency and the continuous and close to Gaussian distribution (or distributions which
could be transformed to Gaussian), the EnKF approach has been selected. Moreover, the
approach is consistent with earlier work by Vardon et al. (2016) and the present study
can be seen as an extension of that work. In the present study, the recursive EnKF is im-
plemented to estimate poorly known parameters in a hydro-mechanical slope-stability
forward model.

To formulate the principles of data assimilation, it is assumed that the model out-
put at the measurement location y is obtained by running the forward model with input
model parameters 8 and mapping the outcome to measurement space. This can be rep-
resented by the operator g in the following equation:

y=8(2), 2.9)

in which
z=(x 0) 2.10)

where y € RN7 is a vector of model output at measurement locations, z € RN is a

combined state-parameter vector, i.e., a vector of model state x € R™x and model param-
eters @ € RN and g is the model operator which maps the prior state-parameter vector
into measurement space. In this study, the model is considered to be perfect and model
uncertainty is implicitly taken into account within the parameter uncertainty. Here, N,
is the number of measurements, N, is the number of state points and Ny is the number
of parameters.

A forward model run provides a prediction of the model state evolution for a unique
set of values of the uncertain parameters. If the model has no errors, the model output
can be seen as a prediction (y) of the ‘truth’. The measurements are the window to this
actual state, and contain errors:

d=y+e, (2.11)

where d € RV” is a vector of the measurements with N,,, being the number of measure-
ments. The errors e € RV include measurement errors and representation errors. In this
study, measurement errors are assumed to be normally distributed with zero mean. The
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distribution of the state-parameter vector z is assumed to also be normally distributed
around a known mean.

Bayes’ theorem gives the joint probability (f) for z and y given the measurements d
as:

fz,yld) x f(dly)f(ylz) f(z). (2.12)

From Eq. 2.12, the posterior probability for z given d can be written as:

f(zld) x ff(dly)f(ylz)f(z)dy = f(d|g(2)) f(2). (2.13)

Making use of the assumption that the priors have a Gaussian distribution, Eq. 2.13
can be written as:

1

fzld) x exp{—EJ}. (2.14)

The cost function J is defined as follows:
J(2) = (z-2Y"C Lz~ 2) + (g(2) - d)C L (g(2) - @), (2.15)
where zf is the prior estimate of z, C,, € RNx*No)*(Nx+No) jg the error covariance of z,
and C44 € RNm*Nm ig the error covariance of measurements. It can be shown that for
normally distributed variables, the maximum likelihood estimate of f(z|d) is equivalent
to minimising the cost function J in Eq. 3.8. In case of an operator g(z) that can be
approximated with a linear operator G that relates the output to the parameters and

state via y = Gz, minimising the cost function gives the following solution, known as the
Kalman filter (Kalman, 1960):

2=z +K(d - g(2), (2.16)
C2, = 1-KG)Cy;, 2.17)

and
K=CG(GC,.G' —Cz,) ", (2.18)

where K is the Kalman gain, superscript “a” shows the analysis and superscript “f” rep-
resents the prior estimate.

In the EnKE an ensemble of forward model simulations is used to approximate the
error covariance C;,. The Kalman equation for each ensemble member i € N, can be
written as:

28 =2zl +K(d; - g(zh)), (2.19)

and
K®=C%,G(GC:,G' - Caq) 7, (2.20)

where C¢, is the combined state-parameter error covariance matrix. Here
d;=d+e€; (2.21)

represents the perturbed measurements for each ith member, with €; having the same
distribution as the measurement errors e in Eq. 3.7, following the approach of (Burgers
etal., 1998).
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Consider the matrix Z{ € R®™N>*Ne)*Ne containing N, realisations of z at time ¢:
Zl=(2f,2b,..... 25, (2.22)

. . =t
The ensemble mean is then stored in each column of Z, € RWx+Ne)xNe.

Z. =71y, (2.23)

where Iy, € RNe*Ne js a matrix with each element equal to Nle The ensemble perturba-
tion matrix Z, € RWN«*No)*Ne js now defined as follows:

=f
7, =7 -7Z,. (2.24)

L€ RWx+Ng)x(Nx+Ng) can be

The combined state-parameter error covariance matrix C¢
written as follows:

co, = L2 (2.25)

where CZ, consists of the state and parameter error covariances as well as the cross-
covariances between state and parameters.

At assimilation time step ¢, the available measurements are stored in vector d;. For
each ensemble member i, this measurement vector is perturbed with €; as in Eq. 3.10.
The vectors d; ; are then stored in matrix D, € RVm*Ne;

Df: (dl,l’)dz,tr---dee,l’)- (2-26)

With these matrices, the analysis equation at time ¢ becomes:

73 =78 + C¢,GT(GCE,G" +Cya) (D, - GZD), (2.27)
where G € RNe* (Nx+No) s the linear measurement operator which relates the state-parameter
matrix to measurement space.

2.2.3. IMPLEMENTATION OF THE DATA ASSIMILATION FOR THE SLOPE-STABILITY
PROBLEM
In this study, the EnKF described in Section 2.2.2 is implemented with the forward model
of Section 2.2.1. The resulting model for the hydro-mechanical behaviour of given slope
geometry is then used to estimate the state (x), parameters (f) and eventually the FoS.
The state in the case of this setup, could be displacements of the sloping surface, or ob-
served strain. Parameters would represent the material properties in the hydro-mechanical
model simulation and could be for example the parameters of stiffness and strength,
E/ Esrgf , ¢ and ¢'. The selection of state and parameters to estimate this particular study
will be discussed in Section 2.3. The setup of the numerical approach is illustrated in
Fig. 2.3.
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At t =0, the numerical approach starts with a set of prior ensemble members which
represent our prior assumption of the state (x) and parameters (8). In our case, these
model parameters (#) are sampled from a normal distribution with a prior mean and
standard deviation for each of the parameters in 6:

£(6) =N(@6",Cgp) (2.28)

Based on the prior assumptions on parameters, the forward model is run from ¢ = 0 to
t = tassim- The synthetic measurements at ¢ = f,4;,, are assimilated to estimate model
parameters (0) and state variable (£), defined as the expected value of the posterior dis-
tribution. In the synthetic experiment, the modelled field measurements are sampled
from the vector z by means of the operator G which maps the state-parameter space to
the measurement space. As G in this case combines the forward model operator with an
interpolation of the model variables to the location of the measurements at the slope,
the interpolation in G has the form of [I|0] which has "1" only at specified locations.
Caa € RN»*Nm in Eq. 2.27 is in this case a matrix with all the diagonal elements equal
to the variance of the measurement device. After each EnKF update, the forward model
is rerun from ¢ = 0 to next assimilation step to keep the model state consistent with the
parameter estimates of the previous step. The measurements at the next assimilation
step are assimilated to update the model state and parameter estimates. In this way, the
data is assimilated for all the time steps. The resulting posterior ensemble of state- and
parameter estimates is then used for the calculation of the FoS.

2.3. SYNTHETIC TWIN EXPERIMENT

A synthetic twin experiment is a common approach to evaluate the performance of data
assimilation methods. In this experiment, synthetic measurements are generated from
a synthetic “truth” data-set, which mimics the observed reality. The data assimilation
should reconstruct this “truth” within the assumed accuracy of the measurements. The
“truth” is the output from a specific simulation of the forward model with a certain ini-
tial state and specified model parameters, typically different from the mean of the prior
distribution of the state and parameter estimates of the ensemble used in the data assim-
ilation. By sampling measurements of the “true” state from the output of the simulation
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and after adding realistic noise, synthetic measurements are obtained. The concept of a
synthetic twin experiment is illustrated in Fig. 2.4. An idealised slope has been consid-

z
g
\ 4
9(z) +e
v
dsynt.
f f a
¥ o v oM
zf g Zg z;‘
2 —= 5y —> EnKF > »FoS
f f a
ZNe #Ne .

Figure 2.4: Setup of the data assimilation and forward model in a synthetic twin experiment, where z’ is the
state-parameter vector used to create synthetic observations; e is normally distributed measurement noise;
dsyn¢p is the vector containing synthetic measurements; For all other symbols, please see Fig. 2.3.

ered to illustrate and test the approach. The geometry of the slope is shown in Fig. 2.5.
The initial stress state of the slope system is calculated by using gravity loading and the
initial pore-water pressure distribution is calculated assuming steady-state groundwater
flow considering the water level CD. Above the line CD, the degree of saturation is de-
termined by the soil water retention curve. This hydraulic behaviour of the unsaturated
soil is modelled by the model of Van Genuchten (1980). Following the initial stress state,
the slope experiences a water level fluctuation of the line CD, which is included via a
variable hydraulic boundary condition. The water level fluctuation has been simulated
by applying D,, = 12— (sint +sin3t), where ¢ is the time in days and Dw is the water
level in meters from the bottom of the slope (see Fig. 2.6). The change of hydraulic load-
ing are the only cause of deformations and are obtained from the fully coupled hydro-
mechanical analysis. Synthetic measurements are obtained by sampling the model out-
put of horizontal displacements (u,) at the sloping face (along the line ACB) and adding
realistic noise to mimic geodetic measurements. For this study, synthetic measurements
are sampled at the peaks and troughs of D, and at regular intervals of 200 days (see red
arrows in Fig. 2.6). These synthetic measurements are assimilated after 200, 400, 600,
800, 1000, 1200, 1400, 1600, 1800 and 2000 days.

Both the MC and HS models are used in separate analyses to test their influence on
the results. The stiffness and (effective) strength parameters are decided to be estimated
simultaneously, as plasticity (although no full plastic mechanism) can occur prior to fail-
ure. This allows both the serviceability limit state and ultimate limit state (slope reliabil-
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ity) to be investigated. To decide which parameters to estimate in the data assimilation,
an average sensitivity score (AvSS) is calculated to study the effect of model parame-

ters (E/ Esrgf , ¢’ and ¢) on the horizontal nodal displacements at the slope. First, the

sensitivity score (SS) for each parameter i is calculated by:

_ 100|F(0i,max) - F(Hi,min”
Z}Z:l |F(6j,mux - F(Qj,min”

(2.29)

i

where 6; is a certain parameter (E/ E;gf , ¢ or ¢'). The SS gives the parameter’s sensitiv-
ity, F(8i,max) is the model output (in our case horizontal nodal displacement at sloping
face) when 0; = 0; max, F(0;i min) is the model output when 0; = 0; i, and n is the total
number of parameters varied to study the sensitivity. While studying the sensitivity of a
specific parameters the other parameters are kept constant. The AvSS is calculated by
averaging the SS for all time steps. The parameter variation and AvSS can be seen in
Table 2.1. It can be concluded from Table 2.1 that in the case of the MC model E and ¢’
and, in the case of HS model Eggf and ¢’ are the parameters which have the highest sen-
sitivity. Hence, these parameters are selected to be estimated in this study. This means

T
that@=(E ¢')" in the MC case and 6 = (Esrgf <p’) in the HS case. As the Eggf is var-

ied/updated, E(:ZZ and E,r;;f are also varied with a specified relationship, i.e. E;zQ:Eggf

and E,rfrf :SEsrgf . The state variable (x) for both cases is horizontal nodal displacements
(uy).

Table 2.1: Parameter variation and average sensitivity score (AvSS) for MC and HS

Parameter variations AVSS (%)
E/EY! (kPa) ¢ C) ¢’ (kPa) MC  HS
GE/E;gf‘n“.n =10000, HE/E;gf,max =40000 27 10 45.44  37.62
30000 O.p,min = 20, 8, max = 35 10 42.77 48.53
30000 27 Ocmin=5,0c,max =15 | 11.78  13.84

The input model parameters for the synthetic measurements are shown in Table 2.2,
which result in an initial factor of safety of 1.50 for both models representing the syn-
thetic “truth”. To evaluate the two constitutive models, two separate numerical experi-
ments are selected for each model: a close-to-failure and a far-from-failure prior param-
eter estimation. The synthetic measurements in both experiments are identical, but the
prior ensemble of the synthetic close-to-failure case has a mean factor of safety of close
to 1.0 while the prior ensemble of the synthetic far-from-failure case has a mean factor
of safety of close to 2.0. The input model parameters for prior parameter estimation are
shown in Table 2.3. The model parameters to be estimated, i.e., the stiffness (E or E;gf )
and the strength (¢') parameters, are sampled from their prior distributions to form the
prior model ensemble.

A fully coupled hydro-mechanical analysis is conducted from ¢ = 0 — 200 days for
each ensemble member. The horizontal nodal displacement vector (uy) is stored in a
forecast matrix (see Eq. 2.22) for each ensemble member. Then, available synthetic mea-
surements of horizontal nodal displacement at ¢ = 200 days are assimilated by using the
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recursive EnKE The output of the EnKF provides a new estimation of the E/ E;gf and ¢’

for each ensemble member as well as the model state. The model parameters (E/ Esrgf
and ¢') are then used in the fully coupled hydro-mechanical analysis from the initial
stage (¢ = 0) until the time of the next available measurements (¢ = 400 days). These
measurements are then assimilated to update the estimates of model parameters. This
process is repeated until all data has been assimilated.
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Figure 2.5: Geometry of the slope (dimensions in m) and black circles represents the measurement points
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Figure 2.6: Fluctuation of the water (D) level in CD. The red arrows represent the assimilation points

The data is assimilated for the first 2000 days after which the forward model provides
an estimate of horizontal displacement and FoS for the period from 2000 days to 3600
days. The setup uses fifty ensemble members for the comparison of the two constitutive
models. The ensemble size, the number of measurements and simulated measurement
error are based on sensitivity analyses (Appendices A.1.1 to A.1.3).
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Table 2.2: “Truth” model parameters for MC and HS

Parameters Truth model parameters Unit
MC HS

Effective friction angle (¢) 25 25 °
Effective cohesion (¢’) 10 10 kPa
Dilatancy angle () 0 0 °
Young’s modulus (E) 20000 - kPa
B - 20000 kPa
E - B! kPa
E{fj - gL kPa
Poisson’s ratio (v) 0.3 - -
Poisson’s ratio for unloading/reloading (v,,) - 0.2 -
Power (m) - 0.5 -
Unsaturated unit weight (y;) 19 19 kN/m3
Saturated unit weight (ys) 20 20 kN/m?3
Hydraulic conductivity (ky = k) 1.0 1.0 m/day
VGM parameter (g,) 3.83 3.83 m™!
VGM parameter (g;) 1.3774 1.3774 -
VGM parameter (g;) 1.25 1.25 -
Saturated volumetric water content (6) 0.403 0.403 -
Residual volumetric water content (6;) 0.025 0.025 -

*Note: VGM stands for Van Genuchten model and the properties are taken from
Wosten et al. (1999).

Table 2.3: Initial estimation of model parameters for MC and HS

Parameters Close-to-failure case Far-from- failure case Distribution  Unit
Effective friction angle(([)’) ©=20,0 =3 (both) p=35,0=2 (both) Normal °

Young’s modulus(E) ©=25000,0 =5000 (MC) | u=25000,0 =5000 (MC) Normal kPa
E;gf 1 =25000,0 =5000 (HS) | p=25000,0 =5000 (HS) Normal kPa

2.4. RESULTS OF THE DATA ASSIMILATION

2.4.1. DISPLACEMENT ESTIMATES

In this section, the posterior horizontal nodal displacement (u,) estimates based on the
prior and estimated parameters are presented. Fig. 2.7 shows the prior and posterior
ensemble of horizontal nodal displacement at point A (see Fig. 2.5) for the four different
cases. This data is one of the measurements used for the data assimilation. The blue lines
represent the ensemble prediction of horizontal nodal displacement at point A based on
the prior ensemble of parameters (see Table 2.3), with the heavy blue line representing
the mean. The red lines show the ensemble prediction based on the estimated parame-
ters at 2000 days. The green stars are the synthetic measurements at point A for different
time steps. The time period is divided into an assimilation and a prediction window. The
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Figure 2.7: Ensemble prediction of the horizontal displacement based on (i) the prior ensemble of parame-
ters (blue lines) and (ii) estimated parameters at 2000 days, after all data have been assimilated (red lines).
Green stars represent the measurements in assimilation window and the black dashed line represents the true
displacement at point A of the slope.

black dashed line represents the true displacement at point A.

The results of horizontal nodal displacement show a sinusoidal behavior, due the
variable hydraulic boundary conditions. Overall, the spread of the horizontal nodal dis-
placement of the prior ensemble (shown in blue lines) is larger than that of the estimated
ensemble parameters at 2000 days (shown in red lines) in all cases. By comparing the
results of close-to-failure case for the MC and the HS models, it can be seen that dis-
placement of the HS model analysis (Fig. 2.7c) is larger than the displacement from the
MC model analysis (Fig. 2.7a). This is due to the stress-dependent stiffness in the prior
HS ensemble. Due to an increase in loading, the stiffness reduces and shear strength
starts mobilizing results in the larger displacements. On the other hand, this is not the
case in the MC ensemble which has single stress-independent stiffness parameter and
perfect plasticity develops at failure. The spread in the prior distribution of the ensemble
displacement is also larger for the HS model than for the MC model.
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In the far-from-failure case, the analysis shows that the model produces a smaller
displacement than in the close-to-failure case (see Figs. 2.7a and 2.7b or Figs. 2.7c and
2.7d). This is because the strength properties are higher in far-from-failure, and therefore
plastic deformation is very limited.

2.4.2. MATERIAL PARAMETER ESTIMATES
In this section, the estimation of poorly known parameters are presented at different
time steps. Fig. 2.8 shows the true stiffness (E/ E;gf ) parameters, the initial distribution

of stiffness (E/ E;gf ) parameters and the estimated stiffness (E/ Esrgf ) parameters after
1000 days and 2000 days for the close-to-failure case. The mean posterior estimate of
the stiffness (E/ E;gf ) approaches the true stiffness and its posterior variance reduces
with each assimilation step. At 1000 days, the estimated stiffness (E) mean and standard
deviation for MC case is yg = 20663 and o = 1642. In case of the HS model, the mean
and standard deviation of stiffness (Eref ) at 1000 days is My ref = 19874 and o e = 1363.

At 2000 days, the estimated mean stiffness and standard dev1at10ns for the MC and the
HS model simulations are ug = 20565 and o = 655 and uEref =19572 and o ref =1053,

respectively. Fig. 2.9 shows that effective strength parameter (¢') for both models im-
proves substantially during the first 1000 days, and changes less after that. The response
of both models is similar for close-to-failure case.

Figs. 2.10 and 2.11 show the parameter estimation for far-from-failure case. Fig. 2.10
shows that the mean of the stiffness parameters (E/ E;gf ) also approaches towards the
true stiffness and shows the similar trend as of close-to-failure case for both the MC and
the HS model. Fig. 2.11 shows the initial and estimated effective strength parameter
(¢p") at 1000 days and 2000 days. The effective strength parameter (¢p') does not improve
in the case of MC model. However, the effective strength parameter (¢') significantly
improves in estimates of the HS model and the posterior ensemble mean approaches
the true solution. The effectiveness of the data assimilation is likely related to the de-
pendence of the stiffness Esrgf to the effective strength parameter (¢') as well as the de-
pendence of horizontal nodal displacement to stiffness and strength parameters at all
stages in the HS model, whereas there is no dependence between these parameters in
the MC model. In HS model, as the ¢’ is varied/updated the curvature of the stress-
strain curve changes which affects the stiffness response of material. In the MC model
far-from-failure case, only very limited plasticity occurs in the ensemble members, lead-
ing to a negligible (or zero) cross-correlation between the effective strength parameter
(¢") and horizontal nodal displacement (u,) in the covariance matrix (see Eq. 2.25).

2.4.3. FACTOR OF SAFETY

The ultimate objective of this study is to improve the estimate of the FoS making use of
available measurements of slope deformation. Figs. 2.12 and 2.13 show the FoS distri-
butions for the two models at 2000 days with the prior parameters and the parameters
estimated using data until 1000 and 2000 days. In the close-to-failure case (see Fig. 2.12),
the FoS estimated from the model simulation with the prior parameters has a distribu-
tion with mean (up,s)= 1.26 and standard deviation (0 r5)= 0.327. With parameters es-
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timated at 1000 days and 2000 days, only very limited differences are observed between
the factors of safety as calculated using the two constitutive models. Both models show
a substantial effect of the data assimilation on the FoS estimate, giving a better approx-
imation of the true FoS, and resulting in a posterior FoS estimate with a small variance.
Often slopes are required to be assessed against a target reliability, and a narrower dis-
itribution of FoS suggests a higher reliability. This will likely have a positive effect on the
assessment of this FoS against a target reliability. In the far-from-failure case, similar be-
haviour of the FoS estimation is observed as in the case of the estimation of the strength
parameter (¢') in Section 2.4.2, i.e., the MC model results are substantially unaffected by
the data assimilation, remain far from the truth and have a broader distribution of the
posterior estimate of the FoS. As a consequence, in the far-from-failure case, the slope
reliability of the MC model does not appear to be realistic, despite of the assimilation of
measurements of displacement.

To demonstrate the behaviour of the models during the prediction window, the fac-
tor of safety is plotted at 3000 days in Fig. 2.14 for the close-to-failure case for both ma-
terial models. It can be seen that the posterior estimate of the factor of safety remains
stable throughout the prediction window. This is not surprising, considering the stable
behaviour of the simulations during this time (Fig. 2.7) and the fact that there are no
temporal material behaviour or geometry changes in the model.
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—-= FOS with initial parameters (u=1.211, 0=0.327)

—— FOS_MC_ improved parameters at 1000 days (u=1.492, 0=0.027)
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Figure 2.12: Probability distribution of factor of safety at 2000 days based on the prior and estimated parame-
ters at 1000 and 2000 days (close-to-failure).

2.5. DISCUSSION

The above analyses reveal a number of key points regarding the use of data assimilation
in geotechnical analyses. For most realistic slopes (FoS < =3), the results suggest that
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there is scope with relatively limited stress perturbations to improve reliability estima-
tions using displacement measurements.

With the MC model, the most commonly used geotechnical material model, hori-
zontal displacement has no dependence on the strength parameters in the elastic region,
this means that these parameters have dependence only if sufficient plasticity is occur-
ring, i.e., in the close-to-failure case. A good estimate of the prior ensemble is needed for
this material model, given that there needs to be a dependence on the displacement and
the strength properties, in the representation of the model error covariance of the as-
similation scheme (Eq. 2.25). In contrast, the HS model has a dependence of the elasto-
plastic behaviour on the strength parameters (Egs. 2.5, 2.6, 2.8), which means that even
with a prior estimation that is less accurate, the data assimilation will be effective. More-
over, there is dependence of ¢’ on the curvature of stress-strain curve in HS model which
helps to adjust the material behavior in the data assimilation update scheme. This result
stresses the importance of choosing a constitutive model for data assimilation which is
able to characterise the typical interplay between strength (as represented by the friction
angle parameter) and stiffness.

It can also seen that the number of measurements and number of ensemble mem-
bers is able to be lower for the HS model (Appendices A.1.1 and A.1.3). This may be
counter-intuitive, given that it is more complex and resembles more realistic geotechni-
cal behaviour, however this is likely due to the stronger correlation between the strength
and stiffness parameters in the HS model. Both of these effects will have the impact of
reducing computational effort of the analyses, which will be significant in more complex
analyses.

The notion that, especially in the case of the HS model, the assimilation of mea-
surements of displacement leads to more realistic estimates of the strength and stiffness
parameters and the associated nodal displacement in the slope, already after a small
number of assimilation steps, suggests that the use of data assimilation techniques for
slope-reliability estimates are promising. It should be noted though, that this study de-
scribes a synthetic case only, and assumed values of measurement errors have optimistic
values. A more realistic configuration with more realistic model properties will require
further study. Specifically, the spatial variability of materials within the slope has not
been taken into account, and it is thought that this will have an impact, in particular
on the required number of measurement points. Moreover, the temporal sampling of
the measurements in this study has been regular and beneficial for the reconstruction
of the temporal variations of the deformation. Additional research would be required to
investigate the performance of the data assimilation setup under different measurement
conditions.

Key limitations of this approach (EnKF) include (i) the Gaussian approximation in the
update scheme, which means that the EnKF is difficult to implement on non-Gaussian
problems; (ii) the recursive nature of the recursive EnKE which results in restarting real-
izations after each parameter update step, which can be computationally expensive. It is
noted that specific computation implementation characteristics, especially when using
software that was not designed for this approach, can have a significant impact on com-
putational performance.
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2.6. CONCLUSION

The influence of two different constitutive models on factor of safety is studied by using
data assimilation with the recursive ensemble Kalman filter in a slope stability model.
In a synthetic twin experiment that mimics a slope geometry and assimilates synthetic
measurements of slope deformation into a hydro-mechanical model, the use of the Mohr-
Coulomb and the Hardening Soil models is tested. The HS model is seen to estimate the
factor of safety with a narrow posterior distribution, starting from a wide prior distri-
bution of material parameters, including those not encompassing the actual parame-
ters. For this calculation, the HS model requires less computational effort than the MC
model for similar or even more accurate estimates of horizontal displacement. The re-
sults suggest that constitutive models which include a smooth transition between elastic
and plastic zones are more effective in data assimilation schemes than those in which the
relation between stiffness and strength parameters is absent. When choosing a consti-
tutive model that captures these relations, the results of this study suggest that the use
of data assimilation techniques for slope-reliability estimates offers the opportunity to
improve slope-reliability estimates with relatively limited stress perturbations.
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ON THE USE OF DIFFERENT DATA
ASSIMILATION SCHEMES IN A FULLY
COUPLED HYDRO-MECHANICAL
SLOPE STABILITY ANALYSIS

Different data assimilation schemes such as the ensemble Kalman filter (EnKF), ensem-
ble smoother (ES) and ensemble smoother with multiple data assimilation (ESMDA) are
implemented in a hydro-mechanical slope stability analysis. For a synthetic case, these
schemes assimilate displacements at the crest and the slope to estimate strength and stiff-
ness parameters. These estimated parameters are then used to estimate the system'’s state
and factor of safety (FoS). The results show that EnKF provides an FoS estimation with a
mean close to the truth and with the smallest standard deviation, with the ESMDA using
the largest amount of assimilation steps also providing a mean close to the truth but with
less confidence. The ES and ESMDA with fewer assimilation steps underestimate the FoS
approximation and have low confidence. Assimilating measurements over a longer period
provides a more accurate parameter, state and FoS estimation. ES has the best computa-
tional performance, with ESMDA performing worse, with its performance dependent on
the number of assimilation steps. The computational performance of the EnKF is better
than the ESMDA but around 50% worse than the ES. Non-linearity of the underlying prob-
lem is a key cause of the multi-step assimilation processes having a better performance.

3.1. INTRODUCTION

Data assimilation provides an estimate of the state and parameters based on numeri-
cal models and measurements, considering uncertainties in both (Evensen et al., 2022).

This chapter is based on Mohsan et al. (2023) and Mohsan et al. (2024).
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Ensemble-based methods use multiple (statistically equivalent) models (so-called real-
isations) in order to calculate a prior distribution of a given variable. This distribution
can be combined with measurements to update the state or parameters and as such
calculate a posterior distribution or so-called analysis. Such a process can be computa-
tionally expensive, and therefore computational performance is important. Ensemble-
based methods for data assimilation are well established, e.g., the ensemble Kalman fil-
ter (EnKF), ensemble smoother (ES) and ensemble smoother with multiple data assimi-
lation (ESMDA).

The EnKF (Evensen, 1994) is an ensemble-based method based on the Kalman filter
(Kalman, 1960), which assimilates measurements sequentially in time. The EnKF has
been widely implemented in different fields and is currently one of the most popular
data assimilation methods. This method has been used in numerical weather prediction
(e.g., Houtekamer & Mitchell, 2005; Szunyogh et al., 2005), oceanography (e.g., Bertino
et al.,, 2003; Keppenne & Rienecker, 2003), hydrology (e.g., Chen & Zhang, 2006; Reichle
et al., 2002), geotechnical engineering (e.g., Liu et al., 2018; Mavritsakis, 2017; Mohsan
et al., 2021, 2023; Vardon et al., 2016), and petroleum reservoir history matching (e.g.
Aanonsen et al., 2009; Evensen, 2009; Glegola et al., 2012; Neevdal et al., 2002; Oliver
& Chen, 2011). The EnKF has a sequential scheme, where states or parameters are up-
dated every time measurements are available, which has the disadvantage of potentially
leading to inconsistencies in previous steps. Another possible disadvantage of the EnKF
is the Gaussian approximation of error covariances in the update scheme. Because of
this, the EnKF may not give optimal results for problems with non-Gaussian parame-
ter distributions. Furthermore, when applying EnKF for parameter estimation, repeated
restarting after each update step can lead to a significant use of computation time.

ES (Van Leeuwen & Evensen, 1996) is an alternative ensemble-based formulation,
which assimilates all measurements simultaneously and outputs a global update. ES
has been implemented in the fields of petroleum reservoir engineering (e.g., Skjervheim
& Evensen, 2011) and oceanography (e.g., Van Leeuwen, 1999; Van Leeuwen & Evensen,
1996). In ES, the recursion in time is not needed, making this scheme generally com-
putationally more efficient in comparison with the EnKF (Skjervheim & Evensen, 2011).
However, for non-linear dynamic models, particularly models with strongly nonlinear
dynamics, the EnKF has shown better results than ES, because the recursive nature of
EnKEF steers the ensemble such that the resulting estimate gets close to the true solution.
In addition to that, the EnKF deals the weakly non-linear model better than ES. With ES,
on the other hand, a single global correction is made by assimilating all data to update
all ensemble members. Given that a limited number of ensemble members are used
and hence the limited part of the solution space sampled, ES may not be able to find a
reasonable data match.

ESMDA (Emerick & Reynolds, 2013) is an improved form of ensemble methods such
as ES, which assimilates measurements in an iterative procedure and has been imple-
mented in the field of petroleum engineering (e.g., Emerick, 2016; Emerick & Reynolds,
2013; Maucec et al., 2016) but has also been applied in other fields (e.g., Evensen, 2018;
Evensen et al., 2021; Evensen & Eikrem, 2018).

Several publications have compared the performance of these ensemble based meth-
ods in different fields (e.g., Emerick, 2016; Evensen et al., 2022; Skjervheim & Evensen,
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2011; Van Leeuwen & Evensen, 1996). The performance has been studied based on both
computational effort and the ability to steer the analyses towards the measured (or syn-
thetically generated) data. Van Leeuwen and Evensen (1996) tested both the EnKF and
ES on ocean circulation models. They concluded that the EnKF gives better results than
ES in an ocean circular model. The better accuracy of the EnKF can be explained by the
manner in which it deals with nonlinear behaviour of the system. The sequential nature
of this scheme as implemented here brings the numerical model state closer to the data
at each assimilation point. In contrast, ES takes all measurements over a time period into
consideration at once, which makes it more difficult to find a close match of the model
state and the data over the entire time period.

Skjervheim and Evensen (2011) implemented the sequential EnKF and ES for the
reservoir models. They concluded that these two methodologies output similar results,
but ES took approximately 10% of the computational time of that of the EnKE Emerick
(2016) implemented the EnKE ES and ESMDA in a reservoir engineering problem. It was
concluded that ES did not provide a reasonable data match and that ESMDA provided a
better data match than EnKF with a comparable computational cost. It seems, therefore,
that the performance of the schemes depends on the problem at hand.

Geotechnical structures (such as slope structures) are now increasingly equipped
with measurement devices to monitor their response to external changes. These mea-
surements can be surface displacements, porewater pressures, strains, etc. These mea-
surements can be obtained from in-situ devices (such as inclinometers, strain gauges,
etc.) or can be measured remotely (with Light Detection and Ranging (LIDAR), Interfer-
ometric Synthetic Aperture Radar (InSAR), etc.). In Chapter 2, it was shown that such
measurements can be used in one specific data assimilation scheme to estimate uncer-
tain material model parameters in an FEM model of slope stability. An uncertainty in
model parameters exists because of many reasons, such as errors caused by the equip-
ment or procedure, transformation errors (Ching & Phoon, 2015; Van der Krogt et al.,
2019; Wang et al., 2017), the inherent spatial variability (Phoon & Kulhawy, 1999a, 1999b)
or a combination of these. To ensure safety of the system, the proximity to failure (e.g.,
FoS) is important to know, however it cannot be directly measured. Therefore, related
measurements must be used in a system to predict or evaluate the FoS.

Vardon et al. (2016) and Liu et al. (2018) implemented an ensemble Kalman filter
(EnKF) in a slope stability problem. They integrated the EnKF with the random finite el-
ement method (RFEM) for the estimation of hydraulic conductivity based on measure-
ments of pore water pressure. They implemented data assimilation for slopes in steady
state and transient conditions. The authors concluded that the improved estimation of
hydraulic conductivity led to improved pore water pressure estimation, and ultimately
provided an improved factor of safety estimation. In Chapter 2, the EnKF was used on a
fully coupled hydro-mechanical slope stability system to study the performance of two
constitutive models: the Mohr-Coulomb (MC) model and the hardening soil (HS) model.
It was concluded that the HS model can more generally be used to get reliable results
(FoS estimation) while assimilating the horizontal slope deformations into the model.

In this chapter, three different data assimilation methodologies have been imple-
mented in a fully coupled hydro-mechanical slope stability model to study the perfor-
mance of these schemes, i.e. the EnKE ES and ESMDA. The slope stability model uses
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the HS model to simulate the (non-linear) material behaviour. In Section 3.2, details of
the overall methodology for stability analysis, including the forward model and the data
assimilation schemes are presented. Section 3.3 presents a synthetic example to evaluate
the performance of the data assimilation schemes, with the results presented in Section
3.4. These results are followed by a discussion in Section 3.5 and conclusions in Section
3.6.

3.2. METHODOLOGY

The data assimilation framework considered in this study consists of a forward model
that simulates the geomechanical behaviour of a slope and a specified data assimila-
tion scheme that assimilates measurements of surface deformation into this forward
model to estimate the geomechanical parameters. The forward model is a fully cou-
pled hydro-mechanical slope stability model with a changing external water level, sim-
ulated using the commerical code PLAXIS (Plaxis, 2015). Unsteady flow generates a sim-
ulation from which synthetic deformation measurements can be sampled that reflect a
changing stress state in the slope. We will explore to what extent different data assimi-
lation schemes can relate these measurements to model parameters, and consequently
the FoS. A constitutive model called the hardening soil (HS) model (Plaxis, 2015) is used
to define the material behaviour, following previous work (Mohsan et al., 2021) which
demonstrated the benefits of the model over more commonly used models such as the
Mohr-Coulomb model. The forward model is integrated with a specific data assimilation
scheme (the EnKE ES or ESMDA) to investigate the performance of the data assimilation
scheme with synthetic twin experiments. The synthetic measurements for these experi-
ments are sampled from a realisation of the forward model referred to as the ‘truth’ The
performance of the data assimilation schemes is evaluated based on the comparison
between the synthetic (‘true’) and estimated model parameters, the model-data misfit
(deformation), the distribution of the estimated FoS and the computation time. The FoS
estimation is the target metric, but the other metrics give important insight into the per-
formance of the scheme and therefore its further applicability.

3.2.1. FORWARD MODEL
The forward model consists of a coupled system of mechanical and hydraulic equations.
For the mechanical behaviour, equilibrium is considered, i.e.:

V-0o'+Vp+pb=0, (3.1

where V is the gradient operator, V- is the divergence, ¢’ is the effective stress tensor, p
is the pore pressure, p is the density and b are the body accelerations (e.g., from gravity).
The constitutive behaviour can be expressed as:

o'=De (3.2)

where D’ is the effective constitutive matrix and € is the strain tensor. Substitution of
Eq. 3.2 into Eq. 3.1, recognising that € = 0.5((Vu) + (Vu)T), where u is the displace-
ment, yields the mechanical governing equation. The HS model, used as the constitu-
tive model in this study, is a non-linear elastoplastic model, which includes several re-
alistic soil features such as non-linear elasticity, stress-dependent stiffness, irreversible
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non-linear plastic strain and hardening/softening mechanisms. For more details of the
HS model, see Schanz et al. (1999). The HS model uses the following parameters: cohe-
sion (¢"), friction angle (¢'), dilatancy angle (), the secant stiffness at reference pressure
in a standard drained triaxial test (Esrgf ), the tangent stiffness at reference pressure for
primary odometer loading (E;ig), the loading-unloading stiffness at reference pressure

(E lrf;f ), the Poisson’s ratio for unloading reloading (v,;) and a parameter m which con-
trols the stress-level dependency for the stiffness parameters.
To model the hydraulic behaviour, the conservation of mass is considered which can

be expressed as:

0(€yor) _ _ _
o V-v-Q, (3.3)

where €,,; is the volumetric strain (which can be determined from the displacement),
v is the velocity vector and Q is a source term. The velocity of water is incorporated via
Darcy’s Law:

v:—kV(L +z), (3.4)
P18

where k is the hydraulic conductivity matrix, g is the gravitational constant, and z is the
elevation.

Both mechanical and hydraulic equations have primary variables of displacement and
fluid pressure, and are therefore a coupled system of equations.

The equations are discretised in space and time using standard FEM procedures,
and compute the behaviour of the slope due to the gravity and hydraulic loading. The
horizontal slope deformations are extracted from this hydro-mechanical analysis. The
model calculates the results until the time when a stability analysis is required and a
number of measurements are available. Then a stability analysis is carried out (using
the strength reduction method, where tan(¢’) and ¢’ are successively reduced until fail-
ure), which results in an estimate of the factor of safety (FoS) which is the ratio of the
original strength to the reduced strength of the material at failure.

3.2.2. DATA ASSIMILATION SCHEMES

EnKE ES and ESMDA are all ensemble-based data assimilation schemes used to estimate
the parameters of the system. In all cases, an initial set of realisations (i.e., an ensemble)
is generated by randomly selecting parameters from a prior distribution that is based on
what is known about the system. Then the model parameters are estimated based on
available measurements.

The EnKF assimilates the measurements sequentially in time. In the scheme as ap-
plied, the ensemble is run from the start to a time when the measurements (d;) are avail-
able (see Fig. 3.1a for a schematic of the process). These measurements are assimilated
into the model which results in the posterior distribution. To make the model state con-
sistent with the posterior parameters, the posterior model parameters are used to rerun
the model from the start of the simulation to the next time when the new measurements
(dy) are available. This new set of measurements is then assimilated into the numerical
model to again update parameter estimates and so on. Thus, after each EnKF update
step, the forward model restarts from the beginning of the analysis.
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ES is an alternative ensemble-based data assimilation scheme. ES does not assimi-
late the data sequentially in time, but performs a single estimation assimilating all avail-
able measurements (d; — d,;) in the space-time domain. In this scheme, the model pre-
diction is first computed for all ensemble members at all time steps. Then all available
measurements are assimilated to find the global parameter update. Finally, the model
is re-run with the updated parameters to find the final output of the data assimilation
framework (see Fig. 3.1b for the illustration). Both the EnKF and the ES use the same
equations for the posterior, but in the case of the ES it is applied once for all measure-
ments, whereas for the EnKF it is applied every time when measurements are available.

Emerick and Reynolds (2012) proposed ESMDA as an improvement of ES. In ESMDA,
the same data is assimilated iteratively. To account for the fact that the scheme assim-
ilates the same data multiple times, it uses an inflation factor for the error covariance
matrix of measurements. This means that instead of making a single linear, potentially
large update, multiple smaller linear updates are performed. These iterations can partly
resolve reported problems with non-linearity and generally lead to more accurate recon-
struction of the ‘truth’ than ES.

FORMULATION OF THE DATA ASSIMILATION SCHEMES

In order to formulate the data assimilation principles, suppose we have the model pre-
diction y which is obtained by running the perfect forward model with pre-defined in-
put model parameters. In order to map this model output to the measurement space for
comparison with the measurements, we use the measurement operator g, i.e.

y = g(m(z)), (3.5)

in which
z=(x 0) (3.6)

Here y € RV is the model forecast mapped to the measurement locations with N, is
the number of measurements, m is model operator which relate input parameters to
output, g is the measurement operator which maps the output to measurement space.
Furthermore, in Eq. 3.6, z € RNx*+No s a control or state vector consisting of the state
(x € RNx) and (@ € R™0) represents the parameters with N, the number of state points
and Ny the number of model parameters.

For a unique given set of parameters, we consider a single simulation of the model
and assume this to be the ‘truth’ (y). The synthetic measurements are created from the
‘truth’ and perturbed with randomly selected measurement errors and hence can be rep-
resented as:

d=y+e, (3.7

where d € RV» is the measurement vector and e € RV is the measurement error vector.
Measurement errors are assumed to include instrument errors and representation errors
and are normally distributed with zero mean and variance defined by the inaccuracies
inherent to the measurement device and the representation error (for a discussion on
representation error see Janji¢ et al. (2018)).
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Figure 3.1: Illustration of the data assimilation schemes. (a) EnKF (b) ES (c) ESMDA ((a) and (b) after Evensen

(2009)).
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By using Bayes’ theorem and following the derivation steps from Sec. 2.2.2, the cost
function J can be achieved as:

J(2) = (z-2"'Cl(z- 2N + (g(a) - C L (g(2) - @), (3.8)

In Eq. 3.8, 2 is the prior estimate of z, C,, € RNx*No)x(Nx+No) jg the error covariance of
z!, and Caq € RNm*Nm ig the error covariance of measurements. The Kalman filter for-
mulation can be derived by assuming the linear operator and minimization of the cost
function (Eq. 3.8). For further details, see Evensen et al. (2022). Below, the main fea-
tures of the different assimilation schemes are presented, the algorithms are presented
in more detail in the Appendix.

EnKF: In the case of EnKE multiple realisations of the forward model are being per-
formed. The Kalman equation for each of the ensemble member i € N, can be written
as:

28 =20+ C2,GT (GCL, G ~ Caa) ! (d; - G(2D)), (3.9)

where z? represents the analysis estimate and z' represents the prior estimate and C¢, is
termed as the model covariance matrix. Here

d;,=d+e¢€; (3.10)

represents the perturbed measurements for each ith member, with €; having the same
distribution as the measurement errors e in Eq. 3.7, following the approach of Burgers
etal. (1998).

In the implementation of the EnKF in this study, the update equation (Eq. 3.9) is applied
whenever the measurements are available. At each update step, elements of Eq. 3.9 con-
sist of the available information at that specific assimilation step in which z?, zg € RNx+No
represent the analysis and forecast vector, respectively, at that specific data assimilation
time for i’ ensemble member, C, € R™x*No)*(N++No) g the error covariance of z! at
that specific data assimilation time and C4q € RV»*Nm is the error covariance of mea-
surements for that specific data assimilation time.

Ensemble smoother (ES): The ES equations are essentially the same equations as those
of the EnKE Just like the equations for the EnKE Eq. 3.9, they are found by equating the
cost function gradient equal to zero to find its minimum and defining the covariances
around its mean (Evensen, 2018).

In the case of ES, all measurements are assimilated in a single step to find a global up-
date which means the measurement vector(d;) in Eq. 3.9 consists of all information at
all data assimilation steps. This implies that z%, zg e RN++No)*t 'the analysis and forecast
vectors, consist of the state-parameter vector for all time steps until the end of data as-
similation window for a specific, i ", ensemble member, where C, € RNx+No)* £ (Nx+Ng)*t
is the spatio-temporal error covariance of zf, and Cgq € RNm*Nm)*!
ance of measurements for all data assimilation steps.

ESMDA: ESDMA can also be derived from Bayes theory and has the same theoretical
basis as ES. However, rather than computing the analysis in a single iteration, it is ob-
tained in a number of steps, where the posterior (f(z|d)) is made up of a combination of

is the error covari-
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tempered likelihood functions (HN"‘“‘a fdig(zj-1)) J)and prior (f(2)). This implies:

Nmda 1
fzld) = f(2) [] f(dlgzj-1)%. (3.11)
j=1
where,
mda 1
> a—— (3.12)

i=1

In these equations, @ is the tempering parameter for the j* h recursive step to inflate the
measurement error to damp the model update. With this formulation, the cost function
can be written as:

J(zij+1) = (Zi,j+1—Z£,j)TC;z1 (Zi,j+1—Zg,j)+(g(zi,j+1)—di—\/ @je) a;Chl(g(zijn)—di- V@6,

(3.13)
where J(z; j+1) is the cost function for ensemble i and j + 1 recursive update step. Mini-
mization of cost function corresponds to maximization of the each recursion, that is:

2%, =2 +ColG (GCG" - a;jCaa) ' (i + \/aje - g (2} ). (3.14)

In each step, the measurement error matrix is inflated with a; and measurements are
perturbed with ,/@je. The error covariance matrix is updated for each of the recursive
update steps with a new value of a j. The a; parameters should satisfy the Eq. 3.12 condi-
tion assimilate the observations in multiple steps, i.e., with multiple smaller corrections,
and at the same time to ensure the measurements do not obtain too much weight. As the
same data is assimilated in Np,q, iterations, a practical difficulty of the implementation
of ESMDA is that N4, and its coefficients need to be selected prior to the data assim-
ilation. (Emerick & Reynolds, 2013) suggests choosing a values in decreasing order to
ensure that the initial updates are smaller.

3.3. SYNTHETIC EXAMPLE

An idealised 2D slope geometry is considered to test and illustrate the performance of
the data assimilation schemes described in Section 3.2.2. The geometry of the slope
with mechanical and hydraulic boundary conditions are shown in Fig. 3.2. The black
circles on the crest and slope represent the measurement locations. The slope undergoes
gravity and hydraulic loading (variable hydraulic boundary conditions). To setup the
initial stress state of the slope system, gravity loading with steady-state groundwater flow
calculations are performed by considering the water level at line CE in Fig. 3.2. In this
study, the Van Genuchten (1980) model is used to simulate the behaviour of unsaturated
soil with the properties mentioned in Table 3.1. After the initial stress state, the slope
is subjected to the generally-rising fluctuation (D,,) of the water level. The fluctuation
of (D) is shown on the top-right of the Fig. 3.2. The changes in hydraulic boundaries
associated with this water level fluctuation cause vertical and lateral slope deformations
and changes in the factor of safety that are computed with the forward model.

A so-called truth is defined by selecting a unique simulation of the forward model
by specifying ‘true’ parameters (Table 3.1) and the initial state. True model evolution
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in the form of horizontal displacements at point G (see Fig. 3.2) and the resulting FoS
can be seen in Fig 3.3. The displacements are seen to increase as the water level rises,
in conjunction with the effective stress decrease. The FoS is seen to first decrease, most
likely due to the reduction in effective stress and the consequential reduction in shear
strength due to the friction component, and then increase, most likely due to the reduc-
tion in buoyant weight of the material. Both the reduction in shear strength and buoyant
weight are due to the increase in the water level, with the details of the geometry and
material parameters governing which impact is dominant. The horizontal deformations
on the crest-slope are sampled from this forward simulation during a time interval of
150-200 days (with the sample times indicated in the top right sub-figure of Fig. 3.2 by
red-stars). Considering the millimetre scale accuracy of measurements devices (such as
INSAR, and laser scanners), we have added realistic measurement noise (with zero mean
and 1077 m variance) to the data, and then these synthetic measurements are assimi-
lated into an FEM model with the same initial conditions and water level fluctuations as
the truth simulation, but with different parameter distributions for strength and stiffness
as shown in Table 3.2. EnKE ES and ESMDA are tested in this setup to estimate the two
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Figure 3.2: Geometry of the slope (dimensions in m) and black circles represent the measurement points. On
the top right, water level fluctuation is shown. The model forecast at the red stars are computed to perform the
data assimilation.

most sensitive parameters, the friction angle (¢) and secant stiffness at reference pres-
sure (Eggf ) parameters, and then finally the FoS estimation. For each of the schemes, the
ensemble has 50 members. The performance of the data assimilation schemes is evalu-
ated by comparing their ability to reconstruct the truth within the assumed accuracy of
the measurements and by comparing computational performance. *Note: VGM stands
for Van Genuchten model
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Figure 3.3: Evolution of horizontal displacement (m) at point G on the slope and FoS evolution based on the
true model parameters (see in Table 3.1) and water level fluctuation (see in Fig 3.2)

Table 3.1: ‘Truth’ model parameters for EnKE ES, ESMDA

Parameters values Unit
Effective friction angle (¢p') 25 °
Effective cohesion (c') 5 kPa
Dilatancy angle () 0 °
B! 20000  kPa
E(:i; B kpa
E)f 2.5E] kpa
Poisson’s ratio for unloading/reloading (v;) 0.2 -
Stress-level dependency (m) 0.5 -
Unsaturated unit weight (y4) 17 kN/m3
Saturated unit weight (y) 18.5 kN/m3
Hydraulic conductivity (ky = k) 0.12 m/day
VGM parameter (g,) 3.83 m~!
VGM parameter (g,) 1.3774 -
VGM parameter (g;) 1.25 -
Saturated volumetric water content (6) 1.0 -
Residual volumetric water content (8,) 0.062 -

H
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Table 3.2: Initial estimation of model parameters

Parameters Parameter values Distribution  Unit
Effective friction angle (¢') ©w=30,0=3 Normal °
B! {1=25000,0 =2500 | Normal  kPa

The setup of the experiments is shown in Table 3.3. In the first experiment, EnKF is
implemented as the data assimilation scheme, and the measurements are assimilated
sequentially in time. For this setup, estimates of parameter values, displacement and
FoS are available at each assimilation step. There are two variants of the test case, with
a shorter and longer availability of measurements. For a shorter period (indicated by -
s), measurements are assimilated until 1053 days and for a longer period (indicated by
-1) measurements are assimilated until 1575 days. In the second test case, two indepen-
dent experiments are performed with ES: ES-s and ES-1, with the same data availability
as for the EnKF test cases. Then, ESMDA is applied in three different cases (named as
ESMDA(x2e), ESMDA(x4e) and ESMDA (x4d)) to see the effect of choosing the number
of update steps and the effect of a values. For ESMDA(x2e), there are two iterations by
taking equal a values, while in ESMDA (x4e), there are four iterations with equal a values.
For ESMDA (x4d), the measurements are assimilated in four iterations using decreasing
a values. Furthermore, each of these experiments (ESMDA(x2e), ESMDA(x4e) and ES-
MDA (x4d)) are subdivided into two in the same way as for EnKF and ES with shorter and
longer measurement availabilities.

Table 3.3: Experimental plan for different data assimilation schemes

Test case name Data assimilation scheme a values
EnKF-s, EnKF-1 EnKF [-]
ES-s, ES-1 ES (-]
ESMDA (x2e)-s, ESMDA (x2e)-1 | ESMDA(x2e) [2,2]
ESMDA (x4e)-s, ESMDA(x4e)-1 | ESMDA (x4e) (4,4,4,4]
ESMDA (x4d)-s, ESMDA(x4d)-1 | ESMDA (x4d) [9.3,7.0,4.0,2.0]

3.4. RESULTS
The data assimilation performance is evaluated with the estimation of the selected pa-

rameters (E;gf and ¢'), displacement, FoS estimation and by the computation time.
While FoS estimation is the primary target, the parameter and displacement estimation
are prerequisites for the FoS to be reliably predicted.

3.4.1. PARAMETER ESTIMATION

Fig. 3.4 presents the parameter estimation (Esrgf and ¢') after assimilating the measure-
ment for the shorter period. The true parameters, prior parameter distribution, and the
posterior estimate using EnKF-s, ES-s, ESMDA (x2e)-s, ESMDA (x4e)-s and ESMDA (x4d)-
s are presented for both parameters. By construction, the distribution of the true pa-
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rameters and the prior parameter distribution are the same for all test cases. After the
assimilation of measurements, the posterior parameter mean (u) and standard deviation
(o) are computed from the ensemble, and the resulting normal distributions with these
statistical moments are shown in Fig. 3.4 . The mean (u) obtained from the posterior

distribution of Esrgf is closer to the true value of Esrgf than the prior mean for all the data

assimilation schemes. But in most cases, the width of the posterior distribution of Esrgf
has not changed significantly by assimilating the measurements for this (shorter) time
period. The limited amount of information from the measurements has thus resulted in
a shift of the distribution relative to the prior, but has not narrowed the ensemble spread.
In the estimation of ¢, a significant change from the prior to the posterior distribution
can be seen in all cases. In the cases of EnKF-s, ESMDA (x4e)-s and ESMDA (x4d)-s: the
posterior mean moves towards the true value and the standard deviations are smaller
than that of the prior distribution. The parameter estimates of the ES-s and ES(x2e)-s
move in the direction of the mean, but overshoot significantly the true ¢, with the stan-
dard deviation only reducing slightly.

To study the effect of measurement assimilation for a longer period, Fig. 3.5 presents
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Figure 3.4: Estimation of parameters (Eggf and ([)’ ) by EnKF-s, ES-s, ESMDA(x2e)-s, ESMDA (x4e)-s, and
ESMDA (x4d)-s.

the parameter estimation results after using the measurements available until 1575 days.

The posterior improves substantially for the estimation of E;gf for all the data assim-
ilation schemes as compared to the results in Fig. 3.4, most notably for ES; the mean
estimates of Eggf are closer to the true value and their standard deviation is reduced, al-
though the distribution is still relatively broad. This gives the impression that when data
are assimilated over a longer period, a more accurate estimate is achieved. On the other
hand, the estimate of ¢’ changes very little compared to the results of the shorter period
of assimilation as presented in Fig. 3.4. This suggests that the estimates of ¢’ in the ear-
lier assimilation steps are as close to the truth as they can possibly get by assimilation of
measurements of deformation.
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Figure 3.5: Estimation of parameters (Esrgf and (p' ) by EnKF-l, ES-1, ESMDA(x2e)-1, ESMDA(x4e)-1, and
ESMDA (x4d)-1.

3.4.2. DISPLACEMENT ENSEMBLE ESTIMATION

This section presents the displacement evolution based on the true, prior and estimated
parameters. The displacement evaluation is studied in the form of horizontal displace-
ment of a point G (see Fig. 3.2) on the slope, which is towards the top of the slope, to
capture the largest displacements. Fig. 3.6 and Fig. 3.7 illustrate the displacements com-
puted using estimated parameters by assimilating the measurements for shorter and
longer periods, respectively. The black line represents the true model evolution based
on true model parameters, and the synthetic measurements are represented by black
stars. The prior horizontal displacement ensemble (in green) is computed using the
prior parameter distribution and as a direct result of initially poorly selected parame-
ter values, it has lower horizontal displacements than the truth. It should be noted that
with another initial selection this could be different. Detailed results in the form of the
ensemble mean and spread only from EnKF and ES are presented to keep the figures
readable - and these represent the best and worst performing methods in Section 3.4.1.
For the other experiments (ESMDA (x2e), ESMDA (x4e) and ESMDA (x4d)), only the mean
of the displacement ensemble is plotted.

It can be seen from Fig. 3.6 that the mean obtained with EnKF-s, ESMDA (x4e)-s and
ESMDA(x4d)-s experiments are very close to the true value. This is because a significant
update of the parameters (especially ¢') is obtained by assimilating the measurements
for a shorter period. In the case of ES-s (and ES(x2e)-s), ¢' overshoots the true value
and the posterior of the ES-s (and ESMDA(x2e)-s) estimation has a wider spread than
that of the EnKF-s estimation (see Fig. 3.4). The posterior distributions of E;gf are sim-
ilar for all the assimilation methods and cannot be the main cause of the differences.
Due to the difference in ¢’ estimation, the displacement ensembles produced by the ES-
s (and ESMDA(x2e)-s) estimated parameters have a wider spread and compare not as
favourably to the true displacement as the other posterior distributions. Furthermore,
ES-s and ESMDA (x2e)-s show a larger displacement magnitude than the truth and EnKF-
s because they underestimate the strength (¢') as compared to the EnKF-s estimation.
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Fig. 3.7 presents the displacement ensemble with estimated parameters after assim-
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Figure 3.6: Data assimilation estimate of the horizontal displacement at point G on the slope based on
true, prior and estimated parameters with EnKF-s, ES-s, ESMDA (x2e)-s, ESMDA (x4e)-s and ESMDA (x4d)-s.
The EnKF-s, ESMDA (x4e)-s and ESMDA (x4d)-s means are overlapping. Furthermore, the mean of ES-s and
ESMDA(x2e)-s are also overlapping.

ilating measurements for a longer period. It can be seen that for the ES-1 (ESMDA (x2e)-1)
case the posterior ensemble spread of the displacements is slightly reduced as compared
to its posterior as illustrated in Fig. 3.6. As measurements are assimilated for a longer
period, the ensemble means of ES-1 and ESMDA (x2e)-1 move towards the true model
evolution. The reason for this can be that further data assimilation resulted in a notable
. ref . . . ’ s .
improvement of E; )" and a furthermore minor improvement in ¢". This improvement is
not easily observed for the EnKF-1, ESMDA (x4e)-1 and ESMDA (x4d)-1 ensemble predic-
tion of deformation, which have already experienced relatively large updates in the first
few assimilation steps.

3.4.3. FACTOR OF SAFETY ESTIMATION

Obtaining an accurate estimate of the FoS is the ultimate goal of this study. As the true
distribution of the FoS is not defined, a narrow distribution, i.e., a precise estimate, of the
FoS is not necessarily the best result. The FoS estimation is computed by using true pa-
rameters, prior parameters and estimated posterior parameters by EnKE ES, ESMDA,
ESMDA(x2e), ESMDA (x4e) and ESMDA(x4d). Again, the estimated parameters from
shorter and longer assimilation periods are used, with the FoS evaluated in both cases at
the end time, after 1575 days.

Fig. 3.8 shows the FoS at the end of the simulation time, based on the estimated pa-
rameters obtained by assimilating the measurement for the shorter period. It can be
seen from Fig. 3.8 that the FoS with prior parameters results in a distribution with mean
(K fos = 1.48) and standard deviation (0 fo5 = 0.11). The true FoS falls within this dis-
tribution, yet is significantly lower than the mean FoS calculated using the prior distri-
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Figure 3.7: Data assimilation estimate of the horizontal displacement at point G on the slope based on
true, prior and estimated parameters with EnKF-1, ES-1, ESMDA(x2e)-1, ESMDA (x4e)-1 and ESMDA (x4d)-1.
The EnKF-1, ESMDA(x4e)-1 and ESMDA(x4d)-1 means are overlapping. Furthermore, the mean of ES-1 and
ESMDA (x2e)-1 are also overlapping.

bution. The true FoS and prior FoS are computed with true and prior parameters by
using the strength reduction method. The FoS estimation is considered to be best if it is
close to true FoS (accurate). The FoS obtained with EnKF-s is both more accurate and
has a smaller standard deviation than ESMDA (x4e)-s, ESMDA (x4d)-s, ESMDA (x2e)-s and
ES-s. ES-s and ESMDA(x2e)-s give approximations that are less accurate than the other
methodologies. This FoS estimation can be explained by the estimation of parameters,
especially ¢, as the FoS is calculated by the strength reduction method in which ¢’ has
a significant contribution.

Fig 3.9 illustrates FoS at the end of the simulation time, based on the estimated pa-
rameters obtained by assimilating the measurement for the longer period. The result is
very similar to the one presented in Fig. 3.8. This is because the FoS depends mostly on
the shear strength parameters and has only a slight dependence on stiffness parameters.
There is not a significant improvement in the estimation of ¢’ by assimilating measure-
ments after a shorter period.

3.4.4. COMPUTATION TIME

For a practical application of the workflow presented in this study, the computation time
of the data assimilation is important, i.e., the computation time of both the forward anal-
yses and the data assimilation steps. So, we divide the framework into two parts i.e. (i)
forward model runs (ii) data assimilation steps. In this research, the forward model (FEM
analysis) is more computationally expensive than the data assimilation part. EnKF is a
sequential data assimilation method in which measurements are assimilated whenever
they are available and the forward model is re-run with the resulting estimated param-
eters. In ES, the forward model is run only two times: once with prior parameters and
once more with estimated parameters. In ESMDA, the forward model is run for N4,
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Figure 3.8: Probability distribution of the FoS at the end time (after 1575 days) based on true parameters, prior
parameters and estimated parameters with EnKF-s, ES-s, ESMDA (x2e)-s, ESMDA (x4e)-s and ESMDA (x4d)-s.

times during the assimilation and lastly with the estimated parameters. Table 3.4 shows
that the EnKF needs more forward runs (N, + 1 = 10) than ESMDA(x4) (N;44 +1 = 5)
and ES (=2). The forward runs in EnKF have variable simulation times (they run until
the next measurement is available), but this has a limited impact as the initial solution
of the equations takes the majority of the simulation time. On top of that, the number
of data assimilation steps is also higher for the EnKE followed by ESMDA(x4) and ES.
Based on this, the EnKF is theoretically the most computationally expensive followed by
ESMDA (x4d and e) and then ES.

Table 3.4: Breakdown of computation time for different schemes for one ensemble member (N;,= data assim-
ilation steps, Ny, q,=multiple data assimilation )

Methodology | forward model runs | data assimilation steps
EnKF Ngg+1 Nga

ES 2 1

ESMDA Npga+1 Noda

A complicating factor is that the FEM software used in this study delivers output at
intermediate steps but is not able to do so at predefined data assimilation steps, with-
out re-initialising a calculation, i.e., resolving a linear system of equations. (Note, this is
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Figure 3.9: Probability distribution of the FoS at the end time (after 1575 days) based on true parameters, prior
parameters and estimated parameters with EnKF-1, ES-1, ESMDA (x2e)-1, ESMDA (x4e)-1 and ESMDA (x4d)-1

not the same as restarting the whole analysis, as a staged construction approach is avail-
able where results from a previous step can be used in a subsequent one). Therefore, the
smoothers are more computationally expensive in practice that in theory. In Fig. 3.10,
the total simulation time for each of the methods considered, normalised to the ES sim-
ulation time. The results show that in our implementation EnKF is 1.43 times more com-
putationally expensive than ES. The other methods take = 1.6 times (ESMDA (x2e)), = 2.9
times (ESMDA(x4e)) and = 2.6 times (ESMDA (x4d)) more simulation time than ES.

3.5. DISCUSSION

There are four important points that can be discussed based on this study and its future
directions. Firstly, the data assimilation methods (especially EnKE ESMDA (x4e) and ES-
MDA(x4d)) give promising results for reliable parameter estimation, displacement es-
timation and FoS estimation. The EnKF provides better estimates of parameters, state
and FoS than the other schemes. This can be due to the reason that the EnKF deals
relatively well with weakly non-linear models and/or its recursive nature of sequential
assimilation. In the EnKF as implemented in this study, we are sequentially updating
the parameters at each assimilation step and re-rerun the model with estimated param-
eters. Sequential parameter estimation in a realistic case, i.e., in a case of an imperfect
model where model and observations may not be fully consistent, may however cause
inconsistency between the analysis and the observations in the intermediate steps of
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Figure 3.10: Computation performance for different data assimilation methods in the present setup of data
assimilation.

the model, where the early data may match the prediction less well than at the end of
the simulation. In the case where a model is not perfect, for example because it does not
include all processes (e.g., creep), this imperfect match would probably not hamper the
forecast of the model into the immediate future. Building on this observation, poorly
matching initial data may eventually be used to detect and analyse model error. The ES
and ESMDA (x2e) are shown to perform less well than the EnKF and ESMDA (x4e). For
the longer assimilation window, ES estimated the model parameters better than for the
shorter assimilation window, with the added advantage of using the least computation
time compared to the other schemes investigated here. This can be due to the reason
that the ES is not designed to perform with a non-linear model. The other methods
such as ESMDA (x4e) and ESMDA (x4d) give good results, using all of the measurements
at the same time. The resulting evolution of deformation can be considered more physi-
cally representative and consistent with the slope having the same material (behaviour)
throughout. The results suggest that in comparison to ES, the MDA steps in ESMDA pro-
vide corrections for the linear approximation of ES when applied to a non-linear model.
The ESMDA performance can be enhanced by choosing more iterations (MDA steps) as
we have seen in our experiments by comparing ESMDA (x2e) and ESMDA (x4e). It can be
seen further that the choice of a values (in ESMDA) does not make a significant differ-
ence in our study perhaps due to the nature of the perfect model experiment (synthetic
twin). Furthermore, better approximations of parameter, state and FoS can be achieved
by assimilating the measurements for a longer period compared to a shorter period.

Secondly, it is difficult to assimilate the measurements in an imperfect model. By
doing so, one may get unrealistic estimates of parameters. Such unrealistic parameter
estimates will not be able to provide improved estimations of the state of the system.
Therefore, it is advised to consider the important physical processes in the numerical
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model simulations (or consider the representation errors in the model) so that the nu-
merical model prediction qualitatively matches that of the measurement trend before
the assimilation. This may also affect the choice of assimilation method. The smoothers
attempt to match the data throughout the simulation time, whereas the EnKF assimilates
the data sequentially and therefore allows the simulation -especially when the model is
imperfect- to progressively drift away from the measurements at early times as the sim-
ulation continues. This implies that to use smoothers there is a higher requirement for
the model to well represent all processes, or to explicitly account for model error in the
data asimilation formulation. Naturally, a better representation of all processes will lead
to a higher confidence in the model forecast, especially at longer terms.

Thirdly, having a forward model software which can calculate solutions at prescribed
timesteps and extract results at specified intermediate steps can improve the computa-
tion performance of smoothers. It could be further investigated how interpolation would
allow the performance to be improved while resulting in effective assimilation.

Fourthly, this study is limited to a homogeneous slope. One may test these data as-
similation methodologies by considering the spatial variability in the slope domain, fre-
quency of measurements, and the period with available measurements.

3.6. CONCLUSION

In this chapter, different data assimilation schemes namely EnKE ES, and ESMDA are
implemented to estimate selective constitutive model parameters (i.e., Eggf and ¢) ina
slope stability system. These estimated parameters are then used to estimate the state
and FoS of the system. The results of a synthetic twin experiment show that the EnKF es-
timates an FoS that is close to the true FoS with a small standard deviation. ES provides
a physically consistent displacement state estimation at relatively low computational
costs. It provides reasonably realistic parameter values, especially for longer assimila-
tion periods (see in Fig. 3.5). However, the displacement and FoS estimates of ES are less
accurate than those of the other schemes, regardless of the length of the period (Figs. 3.6
and 3.7. ESMDA, a smoother with four iterative assimilation steps, also estimates an FoS
close to the truth with a distribution that has a higher standard deviation. ES and ESMDA
(with two iterative assimilations) are not able to reconstruct the true FoS very well but
they provide a physical consistent estimate. The theoretical computation time required
by the ES is the smallest, followed by ESMDA with two iterative assimilation steps, ES-
MDA with four assimilation steps, and the EnKE Due to some forward model limitations
in the commercial software used (i.e., PLAXIS cannot output the results at specific data
assimilation steps without additional computations to resolve the system of equations),
ESMDA needs relatively more computation time than the EnKF and ES.
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A CASE STUDY OF THE COTTBUS
OPEN PIT MINE: USE OF DATA
ASSIMILATION AND SURROGATE
MODELLING FOR SLOPE STABILITY
ANALYSIS

An ensemble smoother (ES) is implemented as a data assimilation scheme for slope sta-
bility assessment for an open pit mine in Cottbus, Germany. The LIDAR measurements of
the vertical displacements are assimilated into a finite element method (FEM) model with
missing physics. The aim of the assimilation is to estimate the model parameters, dis-
placement ensemble and the factor of safety (FoS). The posterior estimation of the FoS is
compared with slope failure observed in the field, and ES provides a better estimation than
when only using the FEM model (prior estimate). Two surrogate models (named surrogate
model-1 and II) are then trained and tested with the prior and posterior FEM ensemble of
displacements and the FoS, respectively. Both surrogate models are attempted to be val-
idated with the LIDAR measurements and compared with the ground truth of the slope
deformation (at failure). The results show that the ES provides a better estimation of the
FoS when compared with the field observations, and that the surrogate models perform
worse than the data assimilation.
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4.1. INTRODUCTION

Cottbus Ostsee (situated in eastern Germany) is an artificial lake that is under develop-
ment at the location of a decommissioned open pit mine. The decommissioned open
pit is the outcome of past lignite mining. This lake is one of the largest artificial lakes in
Germany with a surface area of 19 km? (see the aerial photo in Fig. 4.1 for an overview of
the site). The average depth of the lake is proposed to be 2.5-3 m with a maximum depth
of 30 m when it is completely filled.
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Figure 4.1: Site overview of the case study. Cottbus Ostsee plan view with the selected slope (section A-A) for
modelling.

The pit is being slowly flooded with river water to create the lake, with water level
measurements taken in 20-day intervals from mid-2016 to mid-2020. The displacement
of the slopes surrounding the lake has been continuously monitored between mid-2018
to mid-2019 by partners within the i2MON project (https://i2monproject.eu), using dif-
ferent remote sensing devices such as LIDAR, InSAR and terrestrial laser scanning (TLS).
In this study, the measurements (at locations from 1 to 12 in Fig. 4.2) of vertical displace-
ments are used.

An initial site investigation and slope stability analysis have informed the design. The
flooding of the lake (and other possible mechanisms, i.e. meteorological cycle) provides
an effective stress change in the system, which leads to a mechanical response, and it
is hypothesized that this response can be used to carry out data assimilation (integrat-
ing the monitoring observations with the FEM) to calculate the stability of the slopes
better. However, the detailed FEM models used to simulate the full physics can be com-
putationally expensive and, therefore, may not be able to provide real-time predictions.
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Figure 4.2: Slope geometry of the case study at section A-A (in Fig. 4.1) with measurement locations (1 to 12).
The initial and final water levels are also mentioned for the duration of our study.

Thus, this study has been divided into two parts. In the first part, the measurements are
utilised in an FEM analysis by using a popular ensemble data assimilation, i.e., the en-
semble smoother. ES has been selected as the data assimilation scheme because it offers
a physically consistent estimate (using all the data at once) with minimal computational
time. In this scheme, the measurements for all time steps have been assimilated in a
single step. Through an in-house investigation, it has been seen that the recursive pa-
rameter estimation approaches (such as the EnKF) may lead to an unrealistic parameter
estimation so ES has been preferred over the other ensemble-based schemes, despite
the better performance seen in Chapter 3 where it was shown that the scheme had the
ability to reproduce the measured results. This is further discussed in Section 4.4.1. The
details of this method have been presented in Chapter 3. In the second part of this study,
two surrogate models have also been developed based on the synthetic data (prior and
posterior). These two surrogate models have been validated with the actual measure-
ments. Then a comparison has been made between with the ground truth to evaluate
the efficacy of both of these techniques (data assimilation and surrogate model).

Due to the high computational cost of physics-based methods (e.g., FEM) in the
geotechnical engineering field, many researchers built surrogate models through the use
of machine-learning techniques (e.g. Ada & San, 2018; Al-Bittar et al., 2018; Chakraborty
& Goswami, 2017; Jamalinia, Tehrani, et al., 2021a; Kang et al., 2015; Mentani et al., 2023;
Qi & Tang, 2018; Soubra et al., 2019; Toe et al., 2018; Van den Eijnden et al., 2022; Wang
etal., 2023; Wei et al., 2021). Surrogate models relate the model parameters (input) to the
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FoS of the slope stability system (output). A range of surrogate modeling techniques are
available (e.g., decision tree model, random forest, support vector machine, Gaussian
process (GP) regression model, artificial neural network) for geotechnical applications
to relate the model parameters with the FoS. Given the relatively good performance of
the GP (e.g., Mahmoodzadeh, Mohammadi, Daraei, Ali, et al., 2020; Mahmoodzadeh,
Mohammadi, Daraei, Faraj, et al., 2020; Mahmoodzadeh et al., 2021; Van den Eijnden
et al., 2022) with limited data, this technique has been used in this research.

GP is a non-parametric machine learning technique which relates the inputs to a tar-
getvariable and assumes that the target variable follows the Gaussian probability density
function. It provides the mean and variance of the predicted target variable. GP can be
represented as:

F ) ~GP(u(x), k(x1, x2)) (4.1)

where f(x) is the target function, GP denotes the Gaussian process, p(x) is the mean of
the function and k(x;, x») is the covariance function (the kernel). The kernel defines the
correlation between two points (x1, x2).

Assuming a training set D = (x;, f;),i = 1: N in which f; = f(x;) and a test set X, to
predict the f, the GP can be written as:

(;)NN((:)( KK, )) (4.2)

where p and p. are the vectors consisting of the mean of the training and testing data
respectively, K is part of the covariance matrix which represents the covariance of the
training data, K, represents the covariance of the training and testing data and K.
represents the covariance of the testing data. GP aims to optimize the kernel hyper-
parameter to improve the accuracy of model prediction. There are many types of kernels
that exist and the Radial Basis Function (RBF) is the most commonly used:

Ix—x’lz)
— |, (4.3)

! 2
k(x,x)=0 exp( YE
where 0 and ‘I’ are the hyper-parameters which control the amplitude and smoothness
of the kernel, respectively.

In this chapter, first the case study and available data are detailed. Then the method-
ology is detailed showing first the use of a detailed FEM model to make a prior predic-
tion of behaviour, then the development of a surrogate model based on the results of
the FEM model (prior and posterior). Following that, the site monitoring data is used to
both carry-out data assimilation and validate the surrogate model. The ability to predict
the slope Factor of Safety (FoS) is then validated for both methods. A discussion and
concluding remarks finish the chapter.

4.2. AVAILABLE DATA

A two-dimensional slope stability system is considered to test the performance of the
data assimilation scheme and surrogate model. The geometry of the slope is shown in
Fig. 4.2 with a maximum slope height of around 40m. On the slope side, the pit is flooded
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with river water to create the lake. Water level measurements were taken in 20-day in-
tervals from mid-2016 to mid-2020. Due to flooding, the effective stress of the slope is
changed and hence the slope mass deforms. For the flooding, the water level rise be-
tween mid-2018 to mid-2019 is considered and shown in Fig. 4.3. The water level before
mid-2018 is assumed as the initial water level (Fig. 4.2). This is because measurements
of vertical displacements are available between mid-2018 to mid-2019 and hence can be
assimilated consistently with the water level.

— water level /

39.71 « data assimilation

39.6 A
39.5 1
39.4 A1

39.3 4

Failure

39.2 A1

Water level height (m)

39.1 A

39.0 A1

0 50 100 150 200 250 300 350 400
Days since start of observation

Figure 4.3: Water level rise in the lake. The red stars are dates when the data assimilation is performed.

The slope response in the form of vertical deformation at the crest and slope is mea-
sured with LIDAR, with the vertical deformation measurements shown in Fig. 4.4, with
the deformation being the incremental deformation after time zero (20th March 2018).
The vertical deformation is due to the water level rise and other meteorological pro-
cesses. It can be seen from Fig. 4.4 that the slope shows settlement and heave at different
times. It can be presumed further from these measurements that settlement and heave
might be due to the typical seasonal meteorological processes. Since these weather re-
lated soil processes are not explicitly represented in the FEM model, the estimation will
not capture the effects of these processes. In this chapter, these processes will be referred
to as "missing physics" or "missing physical processes". Unfortunately, detailed mete-
orological data was not available and hence it was decided to attempt to see whether
data assimilation could cope with the missing physical processes in the FEM model. To
incorporate the missing physics in data assimilation, it can be formulated as follows:

y=8&)+q, (4.4)
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where y is a vector of model output at measurement locations, z is a combined state-
parameter vector, g is the model operator which maps the prior state-parameter vector
into measurement space. ¢ is the model error which represents the unresolved pro-
cesses or missing physics in the forward model. For our forward model, the meteorolog-
ical processes, time-dependent soil behaviour (creep and viscosity) and consolidation
processes are missing physics that have not been considered.
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_2 B
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Time (d)

Figure 4.4: Measurements of the vertical displacement at locations 1 to 12

To determine the slope failure, deformed profiles of the slope at different times have
been investigated (as shown in Fig. 4.5). The figure illustrates the progressive deforma-
tion and allow a determination of the slope failure point. From the animations, it can be
concluded that the slope is progressively deforming and local failure is observed when
the water level is raised to 39.7 m after 381 days. At this moment, the FoS is known to
be equal to one. Initially, the slope is stable (FoS > 1) and by raising the water level the
FoS reduces (FoS —> 1) and ultimately shows failure (FoS = 1) at a water level of 39.7 m.
The FoS = 1 value indicates slope failure and can be used as ground truth to validate the
results of the FEM model, data assimilation and surrogate model.

4.3. METHODOLOGY

The overall methodology is divided into three main parts, as show in Figs. 4.6 and 4.7: (i)
data assimilation workflow using the displacement measurements, (ii) surrogate model
development and (iii) surrogate model validation.

In the data assimilation workflow, initially, a set of thirty HS model prior parameters
(E;gf , ¢') form the basis for the randomly generated ensemble (Table 4.1). For each en-
semble member, hydro-mechanical and stability FEM analyses are conducted to com-
pute the prior estimates. This prior estimate includes the displacements (at the same
12 locations as measurements as in Fig. 4.2) and FoS for all timesteps from mid-2018 to
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Table 4.1: Model parameters from CPT

Parameters Values Units
Friction angle (¢) u=34.63,0=1.66 °
Cohesion (c) 0-5 kPa
Dilatancy angle () 0 °
Young’s modulus (E) 1=26366 , 0=5823 kPa
B! 0.6* E kPa
;z; ~ Esrgf kPa
Eyy ~ SEggf kPa
Poisson’s ratio for unloading/reloading (v ;) 0.2 -
Power (m) 0.5 -
Unsaturated unit weight (y4) 16.5-18.0 kN/m3
Saturated unit weight () 18.0-19.5 kN/m?3
Hydraulic conductivity (ky = k) 0.12 m/day

mid-2019. For the FEM analysis, variable hydraulic boundaries have been chosen ac-
cording to Fig. 4.3, with a steady state analysis forming the start point at day zero. Other
parameters of the HS model (as shown in Table 4.1) are fixed given the lower sensitivity
of the displacement for these parameters. Displacement measurements are assimilated
by using ES to estimate the parameters of the ensemble members. The FoS is not a mea-
surable parameter, unless it is 1 (i.e. the slope is failing), and therefore cannot be used in
the data assimilation. It is however, the key required output of the data assimilation pro-
cess. Based on the updated set of parameters for each ensemble member, FEM analysis
is again conducted to estimate the posterior. This posterior consists of the displacement
and the FoS for each ensemble member. The details of the FEM analysis including the
HS model and the ES have been presented in Sections 2.2.1 and 3.2.2, respectively.

In the surrogate model development step, the GP-based surrogate model is trained
and tested based on the prior and posterior estimates of the above data assimilation ex-
periment. This model trained on the prior estimates is referred to as surrogate model
I and the one trained on the posterior estimates as surrogate model II. These surro-
gate models relate the vertical displacements (at the 12 locations as measurements as
in Fig. 4.2) and the FoS for each realisation.

The third and final step includes validating the surrogate models against the original
measurements. In this step, LIDAR measurements of vertical displacements at twelve
locations are considered the input and their corresponding FoS the output of these sur-
rogate models.

The predicted FoS from the surrogate model is compared with the FoS computed by
ES to determine the efficiency of the surrogate model. The accuracy of the surrogate
model during the training, testing, and validation stage was studied with the squared
error indicator (R?)

" (FoS; - FoS;)*

R?=1-2=I= —, (4.5)
" (FoS;—FoS)?

where 7 is the total number of data points presented in the dataset, FoS; is the i*" value
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Figure 4.6: Framework of the methodology
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of the FoS computed by FEM, FoS; is the GP predicted value of FoS, FoS is the mean
of the FEM estimated Fo$ for the given dataset. An R? of 1 indicates that the model is
perfect and an R? of 0 indicates that it has no performance.

4.4. RESULTS AND DISCUSSION

In this section, the results of ES for parameter estimation, displacement ensemble esti-
mation and FoS estimation are first shown. Following that, the results for the surrogate
models are presented.

4.4.1. DATA ASSIMILATION RESULTS

The data assimilation results are evaluated based on the parameter estimation (Esrgf ,
¢"), the vertical displacement estimation, and finally the FoS estimation. The displace-
ments have field data that can be compared throughout time, which provides the ability
to check how the model performs throughout the simulation and is the data used for
the assimilation, therefore can provide a comparison as to whether the model is able to
simulate the field behaviour. The parameters can be assessed in order to assess whether
they are reasonable and whether the data assimilation is performing as expected and fi-
nally, the FoS has a single point in time whether the value is known (i.e., when the slope
collapses) and provides another opportunity to investigate the model outcome.

Fig. 4.8 shows the prior and posterior estimation of Eggf . It can be seen that the prior
ensemble has a wider distribution than the posterior ensemble. This is due to the rea-
son that the ES assimilates measurements and hence finds the updated estimation Eggf
with reduced variance. While some data points fall outside the resulting distribution,
the majority were also already outside the distribution, and it is therefore likely that the
sensitivity of the parameter to those points is low, i.e. the DA cannot improve them. This
is most likely a consequence of using ES, where a physically consistent set a parameters
considering all data is used. Fig. 4.9 shows the prior and posterior distribution of ¢’. It
can be seen that the posterior shows a lower mean of ¢’ than the prior due to assimila-
tion. Both of these results suggest that the ES algorithm gives updated parameters that
are more likely to reproduce the measurements.

The ensemble of displacement results at the measurement locations at the measure-
ment times are shown in in Fig. 4.10. The displacements at day zero are all zero and
therefore are not displayed. It can be noted from Fig. 4.10 that the measurements at the
different locations show different characteristics. At a few locations (locations 1, 2, 3,
4, 5, 6, 7, which are at the slope crest and the top of the slope) they lie away from the
prior ensemble, and the assimilation removes the realistations furthest away from the
measurements, but does not significantly move the mean towards the measurements.
For the remaining locations (locations 8, 9, 10, 11, 12, which are at the lower parts of the
slope), the measurements are generally within the prior realisations, and the assimila-
tion mean moves towards the measurements and reduces in spread.
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Figure 4.10: Displacement ensemble estimation at the slope locations
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Two different locations (location 5 shown in Fig. 4.10 (e) and location 12 shown in
Fig. 4.10 (1) ) are selected to further discuss the ensemble and measurement quality. At
location 5, it can be seen that the prior shows an increasing trend of displacement with
the given parameter set and increasing water level. On the other hand, the LIDAR mea-
surements show a cyclic trend, with potentially an underlying slight increase that is not
entirely conclusive. This suggests that there are physical processes missing from the nu-
merical model that do not lead to a cyclic behaviour. These cyclic fluctuations in the
measurements are hypothesised to be due to annual meteorological processes. Further-
more, while the first and mid-time points lie within the prior ensemble, the remaining
measurements are far from the prior - with the spread of the data larger than the spread
of the prior ensemble. On the other hand, the measurements show a similar cyclic trend
(with a lower magnitude) at location 12 but are overlaying the prior ensemble - albeit
with more scatter. At the other locations, measurements show a similar cyclic trend as
these two locations, with the data on the slope overlaying more the prior ensemble, and
those on the crest and the upper part of the slope being further away (as location 5).

The cyclic nature of the displacement data, which appears to be driven by processes
not included in numerical model, has driven the choice for a smoother, in this case ES.
ES utilises all data in the data assimilation scheme, with a global set of parameters esti-
mated. With the assimilation of measurements, the variance of the posterior displace-
ment ensemble has been reduced. This is due to the reason that the posterior parameter
ensemble has a lower variance and hence the displacement ensemble also does. At loca-
tion 5, the posterior displacement ensemble moves towards the measurements, and its
spread is significantly reduced. Here it can be noted that ES partially takes into account
the missing physics and provides the estimation which is between the measurements
and prior estimation. This does not mean that data assimilation implicitly adds the miss-
ing physics into the model, but that it modifies the parameters such that the impact of
the missing physics is included. This implies that care must be taken in utilising the as-
similated model, and also partially explains why laboratory or in situ measurements of
the parameters may differ from those which best estimate field performance. In addi-
tion, the cyclic nature of the data is not reproduced, as the numerical model does not
including forcing that can achieve this. At location 12, the displacement ensemble vari-
ance is reduced and is deemed to be acceptable as the posterior estimation lies between
the prior and measurements.

Fig. 4.11 shows the prior and posterior estimation of the FoS at the end of 380 days.
The slope failure observations suggest that the slope failed at 380 days. The prior FoS
has a distribution with a higher mean than the posterior, i.e. the stability calculated by
the posterior is lower, driven mostly by the posterior distribution of the friction angle.
This is consistent with what is observed from the real measurements. This means that
ES estimates the FoS better (close to realistic value) than only using the prior ensemble
parameters in FEM.

It can be concluded from the ES estimation that even with the missing physical pro-
cesses within the model, the data assimilation estimates the better factor of safety which
isin better agreement with field observations than prior estimation. It is shown that even
with the mismatch in observations and model output, the use of ES can significantly im-
prove the estimate of FoS. This is probably due to a number of reasons: (i) the use of an
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Figure 4.11: Estimation of FoS by using prior and posterior parameters (E;gf and ¢') at the time of failure (380
days)

advanced non-linear material model. Here the non-linear changes in model output (dis-
placements) compared to changes in input (water level) have an indication of how close
to failure the slope is. This follows the results seen in Chapter 2. (ii) The cyclic nature of
the missing physical process and use of a smoother in the data assimilation. This implies
that by using a global update of all parameters with all data concurrently, greater non-
structural differences (i.e. differences between the measured and simulated which are
not constant) can be used and a single set of (realistic) parameters can be found. This is
different from the recursive data assimilation techniques, where data is used each time
new data is available and parameters can be updated at each assimilation step. In those
cases, parameters are not constant throughout the analysis and can be strongly affected
by the latest data, which can mean FoS results also change strongly. (iii) the cyclic forc-
ing aspects do not either create the failure and the parts that are most impacted remain
in the elastic region. The meteorological forcing that is hypothesised to create the cyclic
response most strongly impacts the surface where shear stresses are not as significant as
on the slope.

Furthermore, it is important to realise that data assimilation is not able to add the
missing physics in the model but it estimates the parameters which produce the equiva-
lent model of approximately the same factor of safety. This further suggests that it is not
possible to estimate the trend of displacement response correctly (originally it has cyclic
fluctuation but posterior estimation does not have any cyclic fluctuation), but it can be
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used to estimate the better factor of safety (i.e., can produce the equivalent model with
the same factor of safety). It should be noted that this conclusion and the ability of the
technique to realistically determine a realistic FoS depends on details of the simulated
system. The slope modelled in this case is quite large, which means that effective stress
changes due to changes are likely to be small.

Despite that it is seen that the data assimilation aided in producing an improved es-
timate of the factor of safety, it is recommended where possible to take as many known
physical processes in the model. This will help to further improve the estimate of the sys-
tem’s state and factor of safety. Missing physics may significantly impact the data assimi-
lation results, and eliminates the possible use of alternative data assimilation techniques
which are seen to offer improved outcomes as illustrated in Chapter 3.

If processes are not included, there is a risk of bias in the outcome. For example, if
the meteorological mechanism is not properly taken into account, the predicted pore
water pressures are inaccurate which further leads to incorrect system response. This
can make prior bias which leads to error propagation resulting in skewing the data as-
similation results. There it is recommended to incorporate all known processes and use
the data assimilation scheme which can achieve the highest accuracy.

4.4.2. SURROGATE MODEL RESULTS

The surrogate model aims to relate the measurements (vertical displacements and water
level) to the FoS. Two surrogate models (surrogate model-I and surrogate model-II) have
been developed based on the prior and posterior estimation.

Surrogate model-1is trained and tested based on the dataset produced from the prior
parameters. The input data for the surrogate model consists of vertical displacements
(prior from all twelve monitored points shown in Fig. 4.10 for the full-time period ) and
the water level rise (Fig. 4.3) in the lake. The output attribute of the surrogate model is
FoS (prior FoS data in Fig. 4.11). The GP model is trained to relate the input attributes to
the output attribute. The prior dataset has been divided into two parts: 90% of the data
is used for training and 10% is used for the testing. The dataset is randomly divided into
training and testing sets based on above mentioned specified ratio. During the training
process, the hyperparameters of the GP model (0>= 3734266 and /=31.46) are optimised
by using gradient-based optimization to best describe the correlation between input and
output attributes.

Fig 4.12 shows the training results. The mean FoS from the numerical ensemble is
plotted against the surrogate model prediction. It can be seen that the accuracy for the
training data is R2=0.99 with the optimised hyperparameters. Subsequently, the model’s
accuracy has been computed for the testing dataset. This is crucial to know that the
model adequately learns patterns correctly and prevents overfitting. Fig. 4.13 shows
R?=0.98 which indicates that the GP model is performing well and is not overfitted in the
training phase. It can be further concluded that with synthetic data, the surrogate model
is performing well. Fig. 4.14 shows the validation results. The validation step has been
achieved by using the field measurements. The prediction made by the surrogate model
predicts FoS values between 5 and -22, clearly being unrealistic as negative FoS values
are impossible, and the maximum of these values is significantly higher than could re-
alistically be expected for a slope with reasonable parameters. This suggests that this
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surrogate model cannot be used with real data. This is likely due to the reason that the
field data is not well represented by the prior ensemble on which this surrogate model
is trained and tested, including the identified limitations in the model to reproduce the
weather related cyclic nature of the field data. It is a well-known and typical limitation
of machine-learning models that they show poor performance for extrapolation.

Surrogate model-II is trained and tested on the dataset produced from the posterior
estimation of the displacement (posterior from all twelve monitored points shown in
Fig. 4.10 for the full-time period ) and FoS (posterior FoS data in Fig. 4.11). This posterior
estimation already considered the Cottbus measurements through the data assimilation
process. This means that the surrogate model-II includes indirect information from the
actual data that were assimilated into the FEM model. Therefore, it was hypothesised
that the surrogate model-II would be able to give a better estimation of the FoS as com-
pared to surrogate model-I. Fig. 4.15 shows that the FoS estimation range shrinks con-
siderably and is better centred on the red line. Unfortunately, these results still show a
highly unrealistic range and impossible values. This is likely to be due to the persisting
considerable mismatch between some of the training and testing data and the validation
data (as shown in Fig. 4.10), and it might in particular be due to the large scatter in the
data.

The FoS predictions with the data assimilation methods used in this thesis is seen
to be better than GP models used in this thesis. In data assimilation, the physics-based
FEM model is consistently updated by adjusting its parameters continuously. This char-
acteristic of the data assimilation generally improves the FEM fidelity over time. Fur-
thermore, the physics-based nature of the numerical model has reasonable extrapolative
prediction capabilities. These can be the reasons that ES provides better results than GP.
Unlike ES, the GP model is trained and tested based on the synthetic dataset and de-
velops the specific patterns for that specific dataset. Later, when the GP model is used
with a validation dataset, with different (and realistic) data characteristics (cyclic fluctu-
ations) and in particular where the input data is out of the upper and lower bounds of
those predicted by the FEM model, it fails to make a reasonable estimation of FoS out-
put. Though the kernel in the GP model can estimate a weakly non-linear model, there is
the possibility that it struggles to capture the high non-linearity of the validation dataset.

The methodology used in this chapter, i.e., using an FEM model to train and test the
GP model, is a key cause of the challenge faced by the GP model. This was necessitated
by the lack of observability of FoS. FoS is only directly observable at a value of 1, i.e.
when a structure is failing. Therefore, a step in between the data and the prediction of
FoS is needed, and if this step does not reliably reproduce all data, this problem is likely
to reoccutr.

The overall limitation of the work in this chapter is that there are likely some key
physical processes not included in the numerical model. These processes are typically
ignored in stability analyses, with the exception of some novel works focusing on the
impacts of those processes (e.g. Jamalinia, Tehrani, et al., 2021a, 2021b; Jamalinia et al.,
2020, 2021). The data assimilation in a numerical model with missing physics can likely
lead to unrealistic parameter estimation, which means that the resulting model could
be used in this particular circumstances, but its application would not be general. If the
complete physical processes were better captured in the numerical model before per-
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forming the data assimilation, the resulting estimation of displacements would be more
realistic and the overall result would be improved. The inclusion of additional meteo-
rological observations and the appropriate physical processes into the numerical model
could address this shortcoming of the present data-assimilation framework and lessen
the risk of estimating unrealistic combinations of parameter values, at the cost of addi-
tional parameterisation and computational effort.

For GB, it is well known that most of the surrogate models/machine learning mod-
els have good interpolation predictive capabilities. In the current study, the surrogate
model was tested against data produced in the same method as it was trained, with good
results. It was then validated for a dataset which was observed to have a different nature,
leading to an inability to produce accurate estimates of FoS. So, it can be concluded that
the surrogate models must be trained, tested and validated on data with similar char-
acteristics. However, when the output parameter cannot be directly observed, as is the
case with FoS, this leads to a key challenge.

GP training result

2.0 ® Training (R2=0.998)

FEM results

1.0 12 1.4 1.6 18 2.0
GP prediction

Figure 4.12: Surrogate model-I: Estimation of FoS by FEM and GP prediction in the training phase. The red line
is a one-to-one line.

4.5. CONCLUSION

In this chapter, a data assimilation scheme (ES) and two GP surrogate models (surrogate-
I and surrogate-II) are used to estimate the FoS of a slope stability system. A FEM model
with missing physics is used to produce the prior ensemble of vertical displacements at
the crest and slope and the associated FoS. In the data assimilation, the measurements
of LIDAR at a field site were assimilated into the FEM model to improve the estimates of
displacement, model parameters and the FoS. For the surrogate models, two GP mod-
els were trained and tested based on the prior and posterior ensemble of displacements
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Figure 4.13: Surrogate model-I: Estimation of FoS by FEM and GP prediction in the testing phase. The red line
is a one-to-one line.
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Figure 4.14: Surrogate model-I: Estimation of FoS by FEM and GP prediction in the validation phase. The red
line is a one-to-one line.
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GP model
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Figure 4.15: Surrogate model-II:Estimation of FoS by FEM and GP prediction in the validation phase. The red
line is a one-to-one line.

and FoS and then a validation process is attempted using field LIDAR measurements
to estimate the FoS. The estimation of FoS by data assimilation is compared with the
FoS estimation of the surrogate models. It is concluded that the data assimilation esti-
mates a FoS (and material parameters) that is consistent with the field observations of
the slope failure. On the other hand, the surrogate models do not provide reasonable
estimates, despite success in the testing phase. It is probably due to the reasons that the
GP model is trained and tested based on datasets which were produced differently and
therefore have different characteristics than the validation data. Furthermore, due to the
hard Gaussian assumption in the GP, it is prone to predict uncertain extreme values. Un-
like GB, ES is a well established data assimilation technique for dynamical models which
consistently estimates the model parameters of physics based numerical models. For
this reason, the use of ES is recommended over GP. It is further recommended to take
into account the missing physics in FEM to improve the estimation of the state and FoS
in data assimilation, and consider whether using an unobservable output (i.e. FoS) is
essential.
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5.1. CONCLUSION

The overall idea of this research was to find an improved estimation of slope stability sys-
tem by using monitoring data more systematically. It is imperative to predict an accurate
FoS of slope systems, allowing stakeholders to protect their assets and to undertake re-
medial measures in good time when needed.

When there are changes in loading, i.e. slope heightening, or changes in water load,
the displacement response can be measured. It was hypothesised that this displace-
ment, which can be measured using geodetic techniques, both in situ and with remote
sensing, can be related to and used to improve estimates of the factor of safety of a slope.
The factor of safety itself cannot be measured which gives challenges in terms of model
training and validation.

In this research, FEM models including hydro-mechanical (temporal) processes are
used to investigate the ability of ensemble methods for data assimilation to estimate
and improve estimations of the FoS. These ensemble-based techniques have been ap-
plied on a field study of an open pit mine remediation, where a newly constructed slope
was formed in order to form a boundary to a lake, and the lake was then filled. The slope
(partially) failed during filling. The performance of data assimilation with different con-
stitutive models and data assimilation schemes has been investigated.

Following a reasonably successful, yet computationally intensive, data assimilation
process, a Gaussian process-based surrogate model has been trained and tested, and
shown to achieve significantly faster estimations of the FoS. A validation process using
real data was also carried out, with limited success. Here, the conclusions are presented
for each of the research questions from Chapter 1.

Research question 1: How can the measurements be used in numerical models for
the stability of slope? What are the effects of the different constitutive models in mea-
surement assimilation?

A FEM model of slope stability has been integrated with an ensemble-based data assim-
ilation scheme, i.e. the Ensemble Kalman filter. This approach was used to estimate the
key material parameters, state (displacement) and factor of safety of a slope. The effect of
two different constitutive models on the factor of safety was studied, via a synthetic twin
experiment. The standard and simple Mohr-Coulomb (MC) model and the more sophis-
ticated, yet less commonly used, Hardening Soil (HS) model were tested. The approach
using the HS model was able to estimate the factor of safety with a narrow posterior
distribution, starting from a different prior distribution of material parameters, includ-
ing those not encompassing the actual parameters. The results suggest that constitutive
models which include a smooth transition between elastic and plastic zones, are more
effective in data assimilation schemes than those in which the relation between stiffness
and strength parameters is less well represented. When choosing a constitutive model
that captures these relations, the results of this study suggested that the use of data as-
similation techniques for slope-reliability estimates offers the opportunity to improve
slope-reliability estimates with relatively limited stress perturbations. Therefore, the re-
sults of Chapter 2 suggested that using the HS model is more generally applicable than
the MC model when considering data assimilation.
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Research question 2: What kind of data assimilation scheme can be used in the slope
stability analysis to estimate the parameter and FoS?

There are three well-established data assimilation methods, e.g., the ensemble Kalman
filter (EnKF), ensemble smoother (ES) and ensemble smoother with multiple data as-
similation (ESMDA), which have been successfully used in different fields. An approach
of using a commercial FEM software integrated with different data assimilation schemes
to estimate the parameter, state and FoS was developed. The performance of these data
schemes were tested by comparing the results of FoS with a synthetic truth of FoS and
the computation time. The results of a synthetic twin experiment showed that EnKF es-
timated an FoS that is close to the true FoS with a small standard deviation. ESMDA,
when using four iterative assimilation steps, was also able to estimate a FoS close to the
truth, yet had a higher standard deviation, whereas it performed much worse when only
using two iterative assimilation steps. ES provided a physically consistent estimate with
a low computational time. Though the estimate is seen to have a slight bias when com-
pared to the true factor of safety. The (theoretical) computation time required by the ES
is the smallest, followed by ESMDA with two iterative assimilation steps, ESMDA with
four assimilation steps, and EnKE Due to some limitations in the forward model i.e., the
commercial software which was not designed for data assimilation, ESMDA needed rel-
atively more computation time than the EnKF and ES, which offers an opportunity for
software designers to consider data assimilation requirements in their software design.

Research question 3: How can we validate the data assimilation scheme and surro-
gate model on a case study?

In the previous research questions, the data assimilation schemes were investigated and
verified based on synthetic measurements. ES was selected as the data assimilation
scheme due to its provision of a physically consistent estimate with a low computa-
tional time. This case study represented an open pit mine in Cottbus, Germany. The LI-
DAR measurements of the vertical displacements were assimilated into a finite element
method (FEM) model. Model parameters, displacement ensemble and factor of safety
(FoS) were estimated from this analysis. The posterior estimation of FoS were compared
with slope failure observed in the field. The data assimilation results provided better
results when comparing the ground truth of slope, however it was clear that not all phys-
ical processes were included in the model. As the data assimilation approach developed
involves multiple FEM analyses it is computationally expensive and therefore develop-
ing a real-time assessment system is likely to be impractical. To make the computations
faster, two GP surrogate models were used to estimate the FoS. These GP models were
trained and tested based on the prior and posterior ensemble of displacements and FoS
and then were attempted to be validated with the original case study measurements to
estimate the FoS. Due to the persisting mismatch between the model and the measured
data due to the identified missing physical processes, the on-ground measurements had
a different nature than the training and testing data. In fact, due to the extrapolative pre-
diction disabilities of machine learning models, the GP models could not estimate real-
istic values of FOS. Therefore, it was concluded that a model used to train a surrogate
model must not miss physical processes which impact the measured data. However,
data assimilation methods which utilise imperfect models were shown to be able to be
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used more successfully. It also highlighted the difficulty in using surrogate modelling to
reproduce an unobservable factor (i.e., the FoS) where an intermediate modelling step
is needed.

5.2. RECOMMENDATIONS FOR THE FUTURE STUDIES

To further build on the methodologies developed in this work, the following can be di-
rections for future research.

Spatial variability in slope domain with HS model parameters: In the current work,
the slope domain of the problem was considered homogeneous which simplifies the
problem. Further validation of the data assimilation scheme is needed by considering
the spatial variability in the HS model parameter. This aspect will pose computation
challenges as each parameter varies for each Gauss point in the model.

Automatic slope stability assessment: In this study, a single slope stability section was
tested for data assimilation, with analysis built and triggered manually. Remote devices,
such as InSAR, are able to provide measurements every 3-4 days. A platform can be
built which integrates InSAR estimates with an FEM model to estimate the parameters,
state and FoS for any given slope automatically when new data is available. Automated,
this approach would allow for a more comprehensive assessment of infrastructure and
identification of potential problems.

Surrogate model efficiency: In this study, two GP models were built based on limited
synthetic data and a preliminary investigation has been presented. There is a need to do
a more rigorous study regarding this topic. Furthermore, the training and testing should
have the same nature as the validation data.

Missing physics of numerical model and data assimilation: In Chapter 4, ES has been
implemented with a FEM model on a realistic case study. It was clear that certain pro-
cesses, specifically those related to meteorological variations, were not included, which
made reproducing all of the observed processes difficult. However, ES was reasonably
successful in producing estimates of material parameters and the FoS. Extending this
investigation to explore under what conditions data assimilation schemes can identify
missing physics in the model or when more detailed physics is needed will be invalu-
able. This investigation can also be extended to identify the missing physics represented
in our observations by using the data assimilation.

Leveraging data assimilation for application in industry: In this study, we demonstrate
that data assimilation can be valuable in enhancing predictive capabilities, taking into
account the findings and conclusions in this thesis. We recommend that stakeholders
incorporate data assimilation techniques in their practical projects to take advantage of
more extensive data collection that is now common. This approach will support real-
time design and execution in geotechnical projects.



APPENDIX RELATED TO CHAPTER 3

A.1. SENSITIVITY OF THE DISPLACEMENT ESTIMATES TO THE

DATA ASSIMILATION SETUP

A sensitivity analysis is conducted to study the influence of number of measurements,
measurement error and ensemble size on the numerical data assimilation setup to the
displacement estimates. In order to evaluate the final results, the normalised root mean
square error (NRMSE) is calculated for the horizontal nodal displacement in the entire
model domain. Considering that the root mean square error RM SE of horizontal nodal
displacement (in meters) is given by:

1 N
RMSE = Yyt —u)2. (A1)
Uy i=1
The NRMSE is given by:
RMSE
NRMSE = (A2)
RMSE;

where N, is the total number of unknown horizontal displacements in the slope, i.e., the
number of nodes in the model, uxf is the true horizontal nodal displacement at node i
and uy{ is the estimated horizontal nodal displacement at this node. The normalised
root mean square error (NRMSE) is the ratio between the RMSE and its value for the
prior RMSE estimate. The normalisation facilitates the comparison of the resulting de-
formations of different magnitudes. The lower the NRMSE, the closer the result is to the
true displacement. It should be kept in mind that the expected value of the difference
between uxl? — ux? should in the ideal case be equal to the measurement error. In this
section, the sensitivity analysis for the close-to-failure case is presented, i.e., the case
where the prior ensemble of parameters have been selected such, that the slope is in a
condition close to failure. Note that while studying the sensitivity of one factor of the
data assimilation setup, the other factors are kept constant.
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A.1.1. SENSITIVITY TO THE NUMBER OF MEASUREMENTS

In order to choose the required number of measurements in data assimilation scheme
for the model comparison, several cases with different number of measurements are
selected. Fig. A.1 shows the NRMSE for different number of measurements (m) for the
MC and the HS model. All measurement points are located on the sloping face starting
from point A towards C (see Fig. 2.5). A set of m = 2, 5, 10 and 20 measurements is
selected to study the sensitivity of the horizontal displacement estimate to the number
of measurements. Fig. 2.5 illustrates the location of the measurements for the number of
measurements m=10. The NRMSE for all nodal points in the mesh geometry is plotted
against the time, and is seen to generally decrease with time, meaning that after each
assimilation step, the resulting deformation estimate is closer to the truth.

It can be seen from Fig. A.1a that the NRMSE for the MC case converges more slowly
towards the expected value for the NRMSE when m = 2 and m = 5. Some fluctuations
in the NRMSE values are observed with this number of measurements. However, in the
case of m = 10 and m = 20, the solution quickly approaches the expected value of the
NRMSE, with the majority of the improvement occurring within the first data assimila-
tion steps. In case of the HS model, the NRMSE of the estimated horizontal displace-
ment does not fluctuate (see Fig. A.1b). The NRMSE reaches its expected value even
with a relatively low number of measurements (m = 2 or 5). It can be seen from Fig. A.1
that m>=10 appears to be an effective choice for the number of measurements for both
models. Because of this, a value of m = 10 was used in Section 2.4 of this study.
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Figure A.1: RMSE estimation of the horizontal nodal displacement for different number of measurements for
the (a) MC and (b) HS material models.
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A.1.2. SENSITIVITY TO THE MEASUREMENT ERROR

In order to study the effect of the measurement error, several experiments are performed
with different measurement error variance. Fig. A.2 shows the NRMSE of horizontal
nodal displacement resulting from different choices of the measurement error variance
€. In case of the MC model (see Fig. A.2a), it can be seen that the when the error variance
is 107° m2, the NRMSE fluctuates, but does not converges towards the expected value of
the NRMSE, which should be for each case equal to the value of € chosen for that case.
For error variance of 107% m?, the NRMSE still fluctuates. For error variances less than
107% m?, the solution is seen to quickly approach its expected value.

In case of the HS model (see Fig. A.2b), the NRMSE fluctuates when the error vari-
ance is 107° m?, but with a significantly lower level than for the MC model. When the
error variance is less than 1078 m?, a satisfactory solution is obtained. For both mod-
els, the horizontal displacement approximates the true horizontal displacement within
the assumed error margin when the error is less than 1077 m2. In a realistic case, mea-
surements of deformations at the slope would be available from geotechnical devices
(inclinometer, laser sensor, extensometer) or geodetic measurements (levelling, InSAR
or laser). With current geodetic/geotechnical measurement techniques (e.g. Abellan et
al,, 2009; Hou et al., 2005; Lovas et al., 2008) it is realistic to measure at an accuracy of =1
mm (equivalent to an error variance of 10”7 m?), therefore a value of 10~" m? measure-
ment error is assumed in Section 2.4 of this study.
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Figure A.2: RMSE estimation of the horizontal nodal displacement for different choices of the measurement
error variance for the (a) MC and (b) HS material models.
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A.1.3. ENSEMBLE SIZE

Several cases with different ensemble members (N;) are used to study the influence of
different ensemble sizes on the estimate of the horizontal nodal displacement in the
mesh of the synthetic slope. Fig. A.3 shows the NRMSE resulting from different ensemble
sizes. In case of the MC model (Fig. A.3a), the NRMSE reduces to around 10% of the
prior RMSE and then oscillates when the number of ensemble members is less than 50.
In case of the HS model (Fig. A.3b), the NRMSE converges towards the expected value
of the NRMSE with ensemble members, N, = 30. For this reason, an ensemble size of
N =50 is selected in Section 2.4 of this study.
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Figure A.3: RMSE estimation of the horizontal nodal displacement for different ensemble size for (a) MC and
(b) HS material models.
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The algorithms for the different data assimilation schemes are presented in this ap-
pendix.

Algorithm 1 Ensemble Kalman Filter (EnKF)
Input: ,u(;]
Output: Z2,,F

1: Initialisation

2
hi’o-(;;hi’“g’ Ug'UObS’Dw' Cthruthr G

2: Read input and define variables

3: Initialise required vector and matrices

4: e =N(d,09) > prior Eggf sampling

5 p°= N(u‘;hi,a‘;hi) > prior ¢’ sampling

6: while 7 < 1,5, do

7: Read water level time series Dw(t)

8:  whilei< N,do > loop over ensembles

9: Instructions to set up realisation i
10: x =hm(e'(i), pt(i), Dw, p) > HM analysis and extract x
11 f =sa(hm(e'(i), p(i), Dw, p) > FoS analysis
12: f=f > save f in vector f
13: Xft[:, il=x > save X in matrix

. Zh=x, e, ;fat)

15:  Cg,=cov(Z))

16:  di=d;+el 1=1,2,..N,

172 Z3=78+C¢,GT(GCE,G +Cyg) " (D, - GZ)

99
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Algorithm 2 Ensemble smoother (ES)

Input: (19, .,09, ., 11,0¢,0%,, DW,¢,Dyruep, G
Output: Z?
1: Initialisation
2: Read input and define variables
3: Initialise required vector and matrices
4 e®=N(u2,09) > prior Eggf sampling
5. p°= N(”Zhi’ac;;hi) > prior ¢’ sampling
6: 0° = (e, p")T > prior parameter matrix
7: while i < N, do > loop over ensembles
8: while ¢ < 1,55, do > loop over timesteps
9: Read water level time series Dw(t)
10: Setup for initial stress state
11: x =hm(e®(i), p° (i), Dw,c) > HM analysis and extract x
12 f =sa(hm(e®(i), p°(i), Dw, c)) > FoS analysis
13: Ag [ fl=x > save X in matrix
14: fo=f > save f in vector f
15: 28 = (xt,0°)T > develop Z! for all time steps
16: 2= (2,25, ... 20 T > stacking all forcast-parameter matrices
17: CZ, = cov(Z) > estimate the spatial-temporal covariance matrix
18: dl=d;+el,1=1,2,...N,
19: Dy = (d}, d%,. . dItV"’) > develop D, for all time steps
20: D= (Dy1,Dy,.....Dsassim) " > stacking all perturbed observations matrices
21: Cqq =~0'ibsl
22: Read G from file
23: 7228 =7+C¢,G'(GCS,G" +Cyq) ' (D-GZ) > extract estimated parameters from Z2
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Algorithm 3 Ensemble smoother with multiple data assimilation (ESMDA)

Input: (19,09, .. 112,03,0%, . DW,¢,Dirutn, G, @
Output: 72
1: Initialisation
2: Read input and define variables
3: Initialise required vector and matrices
4: e =N(,09) > prior Eggf sampling
5 p°= N(/"c;;hi’ U;hi) > prior ¢’ sampling
6: 0° = (e, p")T > prior parameter matrix
7: Select the a vector
8: while k < len(a) : do > loop over a
9 while i < N, do > loop over ensembles
10: while ¢ < t,55im do > loop over timesteps
11: Read water level time series Dw(t) > loop over timesteps
12: Setup for initial stress state
13: x =hm(e*@), pk(i), Duw,c) > HM analysis and extract x
14: f =sathm(e (i), p“(i), Dw, c)) > FoS analysis
15: AE[:, fl=x > save X in matrix
16: fo=f > save f in vector f
17: th = (Xf,Hk)T > develop th for all time steps
18: 7= (Z¢, Zg, ...... messim)T > stacking all forcast-parameter matrices
19:  C¢,=cov(Z) > estimate the spatial-temporal covariance matrix
200 di=d,+Vakel,1=12,..N,
2. D,=(d},d?,...,.dYN° > Develop D, for all time steps
22: D= (Dy,Dy,....Diassim) T > stacking all perturbed measurements matrices
23: Caa= U:ébsl

24: Read G from file
25:  Z3=7Z+C¢,G (GC,G" +a(k)Cyqq) '(D-GZ) > extract estimated parameters
from Z2
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