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Abstract. To improve hydrological predictions, real-time
measurements derived from traditional physical sensors
are integrated within mathematic models. Recently, tradi-
tional sensors are being complemented with crowdsourced
data (social sensors). Although measurements from social
sensors can be low cost and more spatially distributed, other
factors like spatial variability of citizen involvement, de-
creasing involvement over time, variable observations accu-
racy and feasibility for model assimilation play an important
role in accurate flood predictions. Only a few studies have in-
vestigated the benefit of assimilating uncertain crowdsourced
data in hydrological and hydraulic models. In this study,
we investigate the usefulness of assimilating crowdsourced
observations from a heterogeneous network of static physi-
cal, static social and dynamic social sensors. We assess im-
provements in the model prediction performance for different
spatial–temporal scenarios of citizen involvement levels. To
that end, we simulate an extreme flood event that occurred
in the Bacchiglione catchment (Italy) in May 2013 using a
semi-distributed hydrological model with the station at Ponte
degli Angeli (Vicenza) as the prediction–validation point. A
conceptual hydrological model is implemented by the Alto
Adriatico Water Authority and it is used to estimate runoff
from the different sub-catchments, while a hydraulic model
is implemented to propagate the flow along the river reach. In

both models, a Kalman filter is implemented to assimilate the
crowdsourced observations. Synthetic crowdsourced obser-
vations are generated for either static social or dynamic so-
cial sensors because these measures were not available at the
time of the study. We consider two sets of experiments: (i) as-
suming random probability of receiving crowdsourced ob-
servations and (ii) using theoretical scenarios of citizen mo-
tivations, and consequent involvement levels, based on pop-
ulation distribution. The results demonstrate the usefulness
of integrating crowdsourced observations. First, the assimila-
tion of crowdsourced observations located at upstream points
of the Bacchiglione catchment ensure high model perfor-
mance for high lead-time values, whereas observations at
the outlet of the catchments provide good results for short
lead times. Second, biased and inaccurate crowdsourced ob-
servations can significantly affect model results. Third, the
theoretical scenario of citizens motivated by their feeling of
belonging to a “community of friends” has the best effect
in the model performance. However, flood prediction only
improved when such small communities are located in the
upstream portion of the Bacchiglione catchment. Finally, de-
creasing involvement over time leads to a reduction in model
performance and consequently inaccurate flood forecasts.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

A challenge for water management is the reduction of risk
related to extreme events such as floods. Flood management
needs timely provision of early-warning information, for ex-
ample, to operate control structures and to regulate water
levels. Reliable and accurate streamflow simulation and wa-
ter level prediction by means of hydrological and hydraulic
models are therefore of utmost importance. However, model
performance and related predictions are inherently uncertain
due to the lack of reliable and sufficient observational data,
lack of understanding of the natural hydrological and hy-
draulic processes, and the limitations and assumptions of the
modelling system (Merz et al., 2010, p. 514).

Various attempts have been made to improve the accuracy
of flood model predictions for operational early warning. In
particular, data assimilation techniques have been used ex-
tensively (Liu et al., 2012). Data assimilation is a common
method for updating model input, parameters, states or out-
puts. It is used to integrate real-time observations of hydro-
logical variables (WMO, 1992; Refsgaard, 1997) while ac-
counting for the uncertainties in both model and observed
data (McLaughlin, 1995; Robinson et al., 1998; McLaugh-
lin, 2002; Madsen and Skotner, 2005; Lahoz et al., 2010;
Liu et al., 2012). In operational early-warning systems, only
observed data derived by static physical (StPh) sensors are
used, as described in Liu et al. (2012). However, recent stud-
ies have demonstrated that water system models could im-
prove their performances with the assimilation of observa-
tions from multiple sources, such as in situ and remote sen-
sors, and other hydrologic variables such as soil moisture and
streamflow (Aubert et al., 2003; McCabe et al., 2008; Pan et
al., 2008; Lee et al., 2011; Montzka et al., 2012; Pipunic et
al., 2013; López López et al., 2016; Rasmussen et al., 2015).
Those studies have also shown that data assimilation appli-
cations require specific, frequent and high-quality measure-
ments.

In parallel, the availability of recent technological ad-
vances to the public has strengthened the idea of involv-
ing people in data collection. This idea is not limited to the
data collection of flood or real-time information, and vari-
ous terms have been used in scientific literature (Wehn and
Evers, 2015). In natural sciences this idea is known as “cit-
izen science” (Silvertown, 2009), in geography as “volun-
teer geographic information, VGI” (Goodchild, 2007) and
“crowdsourcing geospatial data” (Heipke, 2010), and in com-
puter science as “people-centric sensing” (Campbell et al.,
2006) and “participatory sensing” (Höller et al., 2014). Other
terms explicitly emphasize the involvement of the public,
for instance the “value of information and public participa-
tion” (Alfonso, 2010), “public computing” (Anderson, 2003)
and “community data collection” (Aanensen et al., 2009).

Crowdsourcing particularly refers to the involvement of a
large, often undefined and diverse group of people in data
collection and/or data analysis and can be mediated via infor-

mation technologies and online tools or platforms (Xintong
et al., 2014). In this study, we refer to crowdsourced (CS)
citizen-based observations as the involvement of citizens in
general (whether experts or not) in collecting water level ob-
servations at a particular location via a smartphone applica-
tion upon request of water authorities.

Several previous studies have attempted to use CS
citizens-based observations in water system models since
more spatially distributed coverage can be achieved (Al-
fonso, 2010; Fava et al., 2014; Smith et al., 2015; Fohringer
et al., 2015; Gaitan et al., 2016; Giuliani et al., 2016; de
Vos et al., 2017; Rosser et al., 2017; Schneider et al., 2017;
Starkey et al., 2017; Yu et al., 2016). In Fava et al. (2014), a
methodology for flood forecasting integrating VGI and wire-
less sensor networks is proposed. Smith et al. (2017) and
Fohringer et al. (2015) proposed frameworks for real-time
flood monitoring using information retrieved from social me-
dia. In both studies, the observation filtering process was one
of the main challenges. Rosser et al. (2017) proposed a data
fusion method to rapidly estimate flood inundation extent us-
ing observations from remote sensing, social media and high-
resolution terrain mapping. Yu et al. (2017) validated the
results of an urban hydro-inundation model (surface-water-
related flooding) with a crowdsourced dataset of flood inci-
dents. In a similar fashion, Starkey et al. (2017) demonstrated
the value of community-based observations for modelling
and understanding the catchment response. In particular, they
showed significant improvement in the spatial and tempo-
ral characterization of the catchment response by integrating
a local network of community-based observations together
with a traditional network rather than using traditional ob-
servations only. Recently, Herman Assumpção et al. (2017)
have provided a detailed review of studies in which citizen
observations are used for flood modelling applications.

However, none of the previous studies assessed the use-
fulness of CS observations in improving flood predictions,
nor have they taken into account the variable distribution, in-
termittency and, potentially, lower quality of citizen-based
data (Shanley et al., 2013; Buytaert et al., 2014; Lahoz and
Schneider, 2017). The first attempts are reported in Maz-
zoleni et al. (2015, 2017a, b) and Mazzoleni (2017). In those
studies, the authors investigated the effects on flood predic-
tion in assimilating real-time (synthetic) CS observations in
hydrological models. However, in the former studies the au-
thors did not investigate the effects of assimilating (synthetic)
CS observations in hydraulic models. Furthermore, the au-
thors did not consider (theoretical) scenarios of citizen in-
volvement, nor the simultaneous assimilation of CS observa-
tions from static and dynamic social sensors. For this reason,
the main objective of this study is to assess the usefulness
of assimilating CS observations in model-based predictions
of flood events. We analyse a flood event which occurred
in May 2013 in the Bacchiglione catchment (Italy). Static
physical, static social (StSc) and dynamic social (DySc) sen-
sors are considered in this study. Synthetic CS observations
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of water level are assimilated in a cascade of hydrological
and hydraulic models since real CS measurement are not yet
available for this particular study site. Two sets of experi-
ments of theoretical scenarios are analysed. Citizen involve-
ment level (CIL) is further defined as the probability of re-
ceiving a CS observation based on the citizen’s own interest
or intention in collecting water levels. We assume that CILs
mainly limit the intermittency or timely availability of obser-
vations. The achievement of the paper’s objective is a step
forward in understanding the effect of public involvement
on the possible improvement of hydrological and hydraulic
models, with methods that can be replicated in other fields.

2 Case study

2.1 The Bacchiglione catchment

The Bacchiglione catchment (north-eastern Italy, see Fig. 1)
is one of the case studies in which the WeSenseIt (WSI)
Citizen Observatory of Water project (http://wesenseit.com)
developed and tested innovative static and low-cost mobile
sensors (Ciravegna et al., 2013). The main goal of the WSI
project was to allow active citizens to support the work of
water authorities by providing CS observations. Innovative
static sensors were strategically integrated into the existing
monitoring networks for collecting physical and CS data.
Low-cost mobile sensors were developed such as a mobile
phone application, which uses a quick response (QR) code
for geographical referencing and allows to send, among oth-
ers, flood reports and water level (WL) observations. In addi-
tion, the WSI project set up a pilot platform in which CS ob-
servations collected with this application can be sent. How-
ever, this pilot is not yet operational and CS observations are
not yet available (see details of the testing of this pilot in
Sect. 2.3). In this research, only WL data are assimilated.

This research focuses on the upper part of the Bac-
chiglione catchment which flows into the Adriatic Sea in the
south of the Venetian Lagoon. The case study has an overall
extent of about 450 km2 with a river length of approximately
50 km. The three main tributaries are the Timonchio River
on the east side and Leogra and Orolo rivers on the west side.
The main urban areas are located close to the outlet section of
the case study area, the city of Vicenza. The Alto Adriatico
Water Authority (AAWA) is currently using an operational
semi-distributed hydrological and hydraulic model for early
warning (Ferri et al., 2012, Mazzoleni et al., 2017a). Fore-
casted and measured precipitation time series are available
for a flood event that occurred in May 2013. The forecasted
precipitation time series are provided by the COSMO-LAMI
model, a regional model that provides numerical prediction
over the national territory at 7 km resolution and 3-day time
interval. Currently, AAWA is performing quality control on
the forecasted data before using them in the Bacchiglione
flood early-warning system. The measured precipitations are

supplied and validated by Veneto Regional Agency of Envi-
ronmental Prevention and Protection (ARPAV). The event of
May 2013 is considered to be significant due to its high in-
tensity, which resulted in several traffic disruptions at various
locations upstream of Vicenza. In this study, we assess the
usefulness of assimilating CS WL (synthetic) observations in
the hydrological and hydraulic models to improve model per-
formance and consequently flood prediction.

2.2 Sensor classification

Although CS observations were neither operational nor avail-
able in the case study, we analysed the characteristics of each
sensor to generate the synthetic WL observations that we as-
similated for the flood event of 2013. We considered three
types of sensors to measure WL, static physical, static social
and dynamic social sensors. Currently, only StPh sensors are
used by AAWA to provide daily flood forecasts in the Bac-
chiglione catchment. This section of the paper aims to de-
scribe the characteristics of these sensors in terms of spatial
coverage and accuracies.

The StPh sensors are traditional physical sensors such as
water level ultrasonic sensors. StPh have a fixed location and
a regular measurement interval. Data from StPh sensors are
validated by ARPAV. Observational error depends on how
well the cross section where the StPh sensor is located is
documented and on random and bias errors due to sensor
characteristics. Despite the potential observational error, we
assume a high accuracy level as the observation is automat-
ically generated by the sensor and therefore not affected by
the variability of CS data.

StSc sensors have a higher spatial distribution than StPh
sensors along the river reach but are characterized by inter-
mittent CS observations. The StSc sensors are staff gauges
at safe, strategic and accessible locations along the river
reaches. Citizens can report observations using these static
sensors to estimate WL values. According to the data col-
lection tool, CS observations can come in a variety of for-
mats either quantitative or qualitative, which is often one of
the biggest challenges when involving citizens. Automatic
mechanisms for data processing can be implemented. For
example, whenever photos are collected, these can be auto-
matically analysed using image recognition methods as pro-
posed by van Overloop and Vierstra (2013) and Le Boursi-
caud et al. (2016). In this case, a reference gauge must be
available. The WSI mobile phone application will be used
to send quantitative measurements (water level) observed at
a specific staff gauge. Photos and videos are not supported
by the WSI application. The geographical referencing will
be provided by means of QR codes together with associated
date and time. The WSI mobile application is equipped with
a filter that automatically discards those water level measure-
ments that fall outside the range associated with the staff
gauge.

www.hydrol-earth-syst-sci.net/22/391/2018/ Hydrol. Earth Syst. Sci., 22, 391–416, 2018
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Figure 1. Spatial distribution of the sub–catchments, river reaches, and StPh and StSc sensors implemented in the catchment by AAWA. The
prediction point of Ponte degli Angeli (PA) corresponds to the StPh-3 sensor.

DySc sensors do not have fixed locations. Water level
observations at a particular location via a smartphone ap-
plication can be requested by water authorities according
to the accessibility of the location. A possible method for
measuring flow using DySc sensors is described in Lüthi et
al. (2014). The authors proposed an approach based on par-
ticle image velocimetry to estimate with acceptable accuracy
water level, surface velocity and runoff in open channels.
However, this approach requires a priori knowledge of the
channel geometry at the location of the measurement, which
is one of the main sources of uncertainty. For this reason, in
this paper it is assumed that DySc sensors have lower accu-
racy than StSc sensors. Another example of DySc sensors is
reported in Michelsen et al. (2016) where water level time
series are derived from the analysis of YouTube videos. It is
worth noting that the WSI mobile application does not allow
for automatic retrieval of flow information from photos and
video as proposed in Lüthi et al. (2014).

As reported in Table 1, WL observations have different
characteristics of temporal availability and accuracy based
on the adopted sensor and changes in the cross section. Re-
gardless of the type of social sensor, whether expert or am-
ateur, we acknowledge that the data accuracy and intermit-
tency of CS observations can be affected by various factors.
Source of errors in observations include but are not limited
to the following (Cortes Arevalo, 2016; Kerle and Hoffman,
2013; Le Coz et al., 2016): (i) the expertise level (training
and experience is required to read a gauge, take a picture and
use the mobile application), (ii) type and format of CS ob-
servation based on sensor classification and data collection
procedure (WL measurement and photo with reference to a
staff gauge vs. a photo with reference to a neighbouring ob-
ject), and (iii) the specific conditions at the reporting loca-
tion (accessibility, visibility and environmental conditions).
Intermittency (temporal availability) of the CS observations

is directly related to CIL, i.e. the probability of receiving a
CS observation. In addition, CS observations imply the fil-
tering and integration of a variety of formats and information
types, which are required to develop suitable tools for data
collection and processing (Kosmala et al., 2016).

2.3 Citizen involvement in the Bacchiglione catchment

Gharesifard and Wehn (2016) categorized participants into
“netizens”, citizen scientists and volunteers to accordingly
distinguish: (i) unawareness about their implicit involvement
and contribution to monitoring networks (netizens); (ii) ex-
plicit and intentional involvement in data provision (citizen
scientists) and (iii) the involvement of individuals or groups
that are systematically targeted and recruited to participate in
data provision with predefined goal(s) (volunteers).

In the framework of the WeSenseIt project, an exercise
was carried out with volunteers who were providing water
level observations via the smartphone application, from a
limited number of locations to test the pilot set up. How-
ever, due to the limited number of participants, duration and
testing goal of the exercise, no formal assessment of citizen
involvement could be undertaken. For this reason, we pro-
pose theoretical involvement scenarios to represent the hy-
pothetical situations according to which citizens are fully or
partially involved in the Bacchiglione catchment. In the nu-
merical simulations performed in this study, we did not make
a distinction between citizen expertise (expert or amateur)
and involvement type (citizen scientists or volunteers). We
do not refer to the engagement process (how to get citizens
involved) but rather to the involvement level (probability of
receiving a CS observation based on the citizen’s own inter-
est or intention in collecting water levels). In fact, motiva-
tions and involvement levels are the only variables that dif-
ferentiate the citizens, as described in the next sections.
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Table 1. General characteristics of the type of observations based on sensor classification.

Sensor
type

Type of
observation

Location Time of
availability

Observational error Example reference Assumed
accuracy
level

Static
physical
(StPh)

Water level
time series

Fixed,
generally
in key inlet
or outlets

Each model
time step

Missing data due to, for
example, unexpected
damage or lack of
maintenance;
Observational noise
due to flow conditions
and water level below
or above the optimum
range;
Missing or non-
representative rating
curve due to changes in
the cross section.

Irrigation Training and
Research Center, 1998,
p. 58

High

Static
social
(StSc)

Water level and
photo of the
river gauge

Fixed but
distributed at
strategic points
along the river
reach

Intermittent,
according to
CIL

Same as StPh;
Inaccurate reading of
the river gauge;
Inaccurate photo limit-
ing validation;
Unknown expertise
level of the citizen
reporting.

Le Boursicaud
et al. (2016), 95–99;
Le Coz et al. (2016),
p. 770

Medium

Dynamic
social
(DySc)

Photo and
water level
estimation by
means of
mobile applica-
tion

Variable Intermittent,
according to
CIL and acces-
sibility level to
the river reach

Same as StPh;
Same as StSc but in-
accurate estimation of
the flow using mobile
application;
Unknown (irregular)
cross section and river
bank conditions at the
reported location.

Le Boursicaud
et al. (2016), 95–99;
Le Coz et al. (2016),
p. 770

Low

3 Modelling tools

3.1 Semi-distributed hydrological model

In order to implement the semi-distributed model, the Bac-
chiglione catchment is divided into different sub-catchments
and the so-called inter-catchments which contribute stream-
flow to the main river channel up to the urbanized area
of Vicenza. In the schematic representation of the Bac-
chiglione catchment (see Fig. 1), the location of the StPh
and StSc sensors corresponds to the outlet section of the
three main sub-basins, Timonchio, Leogra and Orolo. The
remaining sub-basins are considered as inter-catchments.
The rainfall–runoff processes within each sub-catchment and
inter-catchment are represented by the conceptual hydrolog-
ical model developed by AAWA. In the case of the main
river channel, a hydraulic model is used to propagate the flow
down to the gauge station of PA in Vicenza. The river reach is
divided into several reaches according to the location of the

internal boundary conditions. We use hydrological outputs as
upstream (from sub-catchments) and internal boundary con-
ditions (from inter-catchments). Figure 1 shows that the out-
put of the hydrological model (red arrows) are boundary con-
ditions for the proposed hydraulic model.

3.1.1 Hydrological modelling

The hydrological model used in this study is a part of the
early-warning system implemented and used by AAWA. We
briefly relate to the model equation here, as a detailed de-
scription is available in Ferri et al. (2012) and Mazzoleni et
al. (2017a). Precipitation time series is the only input. The
water balance is applied to a generic control volume of ac-
tive soil, on the sub-basin scale, to mathematically represent
the processes related to runoff generation processes such as
surface, subsurface and deep flow.

SW,t+dt = SW,t +Pt −Rsur,t−Rsub,t−Lt −ET ,t , (1)

www.hydrol-earth-syst-sci.net/22/391/2018/ Hydrol. Earth Syst. Sci., 22, 391–416, 2018
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where SW,t is the water content at time t , P is the precip-
itation component, ET is the evapotranspiration, Rsur is the
surface runoff,Rsub is the subsurface runoff andL is the deep
percolation. Temperature is used for the estimation of the real
evapotranspiration, which is calculated using the formulation
of Hargreaves and Samani (1985). The routed contributions
of the surface flowQsur, subsurface flowQsub and deep flow
Qg are derived from Rsur, Rsub and L by means of the con-
ceptual framework of the linear reservoir model.

Calibration of the hydrological model parameters, includ-
ing the parameters of the linear reservoir model forQsub and
Qg, is performed by AAWA, minimizing the error between
the observed and simulated WL values at Ponte degli An-
geli (PA) for a period between 2000 and 2010 (Ferri et al.,
2012). In order to apply the data assimilation approach and
properly integrate crowdsourced WL observations within the
mathematical model, it is necessary to represent the previous
dynamic system in a state-space form:

xt =M(xt−1,ϑ, I t )+wt , (2)
zt =H (xt ,ϑ)+ vt , (3)

where xt and xt−1 are the model state vectors at time t and
t − 1, respectively; M is the model operator; I t is the vec-
tor of the model inputs; and H is the operator which maps
the model states into the model output zt . The terms wt
and vt indicate the system and measurements errors, respec-
tively, which are assumed to be normally distributed with
zero mean and covariance S and R. In the case of the hy-
drological model used in this study, the states are identified
as xS, xsur, xsub and xL, i.e. the states to SW and to the lin-
ear reservoir generating Qsur, Qsub and Qg. In Mazzoleni et
al. (2017a), sensitivity analysis is carried out by perturbing
the model states ±20 % around the true state at every time
step in order to find out to which model states the output is
more sensitive. The study shows that model output is most
sensitive to xsur. For this reason, we decide to update only
the model state xsur, which is related to the linear reservoir,
so the state-space form can be expressed as follows:

xt =8xt−1+0I t +wt , (4)
zt =Hxt + vt , (5)

where x is the vector of the model states (stored water vol-
ume, m3), 8 is the state-transition matrix, 0 is the input-
transition matrix and H is the output matrix. In this case,
the model output z is expressed as streamflow Q at the out-
let section of the sub-catchment or inter-catchment. The de-
tailed description of data assimilation in linear systems and
the ways the matrices 8, 0 and H are built can be found in,
for example, Szilagyi and Szollosi-Nagi (2010).

3.1.2 Hydraulic modelling

Flood propagation along the main river channel is repre-
sented using a Muskingum–Cunge (MC) model (Cunge,

1969; Ponce and Chaganti, 1994; Ponce and Lugo, 2001; To-
dini, 2007); it is based on the mass balance equation applied
over a prismatic section delimited by the upstream and down-
stream river sections. As described in Cunge (1969) and To-
dini (2007), a four-point time-centred scheme can be applied
to numerically solve the kinematic routing equation, and to
derive a first-order approximation of a kinematic wave model
and express the MC model as follows:

Q
j+1
t+1 = C1Q

j
t +C2Q

j+1
t +C3Q

j

t+1, (6)

where t and j are the temporal and spatial discretization and
Q is the streamflow; C1, C2 and C3 are the routing coef-
ficients, which are a function of the geometry of the cross
sections and wave celerity, calculated at each time step t fol-
lowing the approach proposed by Todini (2007) and reported
in detail by Mazzoleni (2017). It is worth noting that in this
formulation of the MC model, the only model parameter is
the Manning coefficient of the river channel considered in
the estimation of the wave celerity. In addition, MC model
is implemented, independently, along each of the six river
reaches represented in Fig. 1.

As in the case of a hydrological model, to apply the data
assimilation method, the state-space form of the hydraulic
model is used as well. The state and observation process
equations are similar to those described in Eqs. (4) and (5).
In the case of the hydraulic model, the model state vector
is defined as xt = (Q

1
t , Q

2
t ,. . .Qj

t ,. . . ,QN
t ), where Q is the

discharge along the river in cubic metres per second, while
the input matrix is I t = (Q

1
t ,Q

1
t+1)Q

1, being the discharge
at the upstream boundary condition. The state-transition 8

and input-transition 0 matrixes are calculated following the
approach derived by Georgakakos et al. (1990). In the obser-
vation process of the hydraulic model, z represents the flow
along the river channel, while H is output matrix equal to [0
0. . . 1]T in the case of flow measurements at the outlet section
of the river reach. In this study, due to the varying position
of social sensors, the matrix H changes accordingly at each
time step. The Manning equation is used to estimate the WL
in the river channel, knowing the value of flow at each spatial
discretization step, considered 1000 m in order to guarantee
the numerical stability of the MC model scheme.

3.2 Data assimilation

The Kalman filter (KF, Kalman, 1960) is a mathematical tool
widely used to integrate real-time noisy observations, in an
efficient computational (recursive) algorithm, within a dy-
namic linear system resulting in the best state estimate with
minimum variance of the model error. In Liu et al. (2012),
a detailed review of KF and other types of data assimilation
approaches is reported. The first step in the KF procedure is
the forecast of the model state vector, following Eq. (4), and
the covariance matrix is expressed as follows:

P−t =8P+t−18
T
+St , (7)

Hydrol. Earth Syst. Sci., 22, 391–416, 2018 www.hydrol-earth-syst-sci.net/22/391/2018/



M. Mazzoleni et al.: Influence of citizen engagement on the assimilation of crowdsourced observations 397

where the superscript “–” indicates the forecasted model er-
ror covariance matrix P and the superscript “+” indicates
the updated state value coming from the previous time step.
When an observation zo becomes available, the second (up-
date) step of the KF is executed, in which the forecasted
model states x and covariance P are updated as follows:

x+t = x−t +Kt

(
zo
t −Htz

o
t

)
, (8)

P+t = (I−KtHt )P−t , (9)

Kt = P−t HT
t

(
HtP−t HT

t +Rt
)−1

, (10)

where K is the Kalman gain matrix (the higher its values,
the more confidence KF gives to the observation zo and vice
versa). Due to the fact that along the river channel only WL
observations are provided, the Manning equation is used to
express the vector z0 as streamflow based on the river cross-
sectional geometry.

In this study, CS observations are considered. As already
mentioned, such observations can be irregular both in time
and in space. In order to consider the intermittent nature
in time within the KF, the approach proposed by Cipra and
Romera (1997) and Mazzoleni et al. (2015) is adopted. Ac-
cording to this approach, when no observation is available,
the model state vector x is estimated using Eq. (4), while the
model error covariance P is left unchanged:

P+t = P−t . (11)

It is worth noting that in the case of a hydraulic model, the
state variables at each reach are updated independently.

3.3 Synthetic observations

In operational practice,WL values are converted into stream-
flow values to be then assimilated within hydrological mod-
els. This is usually done using the available rating curves at
the sub-catchment outlets. However, WL data can usually be
directly assimilated in hydraulic models, but the problem is
that the MC model used in this study requires flow informa-
tion rather than WL. For this reason, the synthetic WL ob-
servation at a certain random location (DySc sensor) is con-
verted into streamflow by means of the Manning equation if
no rating curve information is available. In fact, it is quite
unlikely to have the information of the rating curve at a ran-
dom location provided by DySc sensors in real-world appli-
cations. When there are no data regarding the cross section,
assumptions should be made about a rectangular cross sec-
tion with a given width and depth. However, this approach
will introduce significant uncertainty in river flow estima-
tion. A possible solution is the use of mobile applications
able to automatically retrieve flow information from photos
and video as proposed in Lüthi et al. (2014), Overloop and
Vierstra (2015) and Le Boursicaud et al. (2015). We believe
that these types of mobile applications will become increas-
ingly available (at reasonably low costs) to citizens in order
to easily measure river flow.

Due to the lack of distributed CS observations at the time
the considered flood event occurred, synthetic WL observa-
tions are used (Mazzoleni et al., 2017a). In order to gener-
ate these synthetic observations, the observed time series of
precipitation during the considered flood event are used as
input for the hydrological models of the sub-catchments and
inter-catchments to generate synthetic discharges and then
propagate them with the hydraulic model down to the pre-
diction point of PA (corresponding to the sensor StPh-3 in
Fig. 1). In this way, the synthetic WL values at the outlet of
the sub-catchments or inter-catchments and at each spatial
discretization of the six reaches of the Bacchiglione River are
estimated, and assumed as observed variables in the assimi-
lation process. In meteorology, this kind of approach is often
called an “observing system simulation experiment” (OSSE),
as described for example by Arnold and Dey (1986), Errico
et al. (2013) and Errico and Privé (2014).

Regarding the observation error, as described in Weerts
and El Serafy (2006), Rakovec et al. (2012), and Maz-
zoleni (2017), the covariance matrix R is assumed to be as
follows:

Rt =
(
αt ·Q

synth
t

)2
, (12)

where α is a variable related to the accuracy level of the
measurement. The accuracy (i.e. degree to which the mea-
surement is correct overall) is subjected to random error and
bias or systematic errors (Bird et al., 2014). Moreover, for
WL observations, accuracy levels vary temporally, spatially,
and for each physical or social sensor. Table 2 summarizes
the distribution of the coefficient α of the observational er-
ror of Eq. (12). The distribution of the coefficient α does not
pretend to be exhaustive in accounting for the different accu-
racies between observations coming from physical and social
sensors, but a first and simplified approximation that is a pos-
sible aspect for further research (see details in Sect. 2.2 and
Table 1).

Although there are many sources of uncertainty in the indi-
rect estimation of streamflow, for StPh sensors it is assumed
that the rating curve estimation is the main source of uncer-
tainty to properly estimate the streamflow given a certainWL
value. In fact, for the StPh sensors used in this study the in-
strument precision is about 0.01 m. As described in Weerts
and El Serafy (2006) and Rakovec et al. (2012), the coeffi-
cient α is assumed equal to 0.1, constantly in time and space.

However, due to the unpredictable accuracy of the CS ob-
servations coming from the StSc and DySc sensors, the coef-
ficient α is assumed to be random stochastic, variable in time
and space within a minimum (αmin) and maximum (αmax)

value, and based on the type of sensor and citizen accuracy.
Table 2 summarizes the values for the accuracy levels that
are used in this study and are assumed under the following
considerations:

– For both StSc and DySc, sensor α values are higher than
those of StPh sensors due to the additional sources of
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Table 2. Assumptions behind the observational errors (based on Weerts and El Serafy, 2006, Rakovec et al., 2012, and Mazzoleni et al.,
2017a) according to the sensor types used in this study.

Sensor type Assumed Coefficient α Temporal and spatial variability
accuracy level

Static Physical (StPh) High α = 0.1 Fixed location Constant in time
Static Social (StSc) Medium α = U(0.1,0.3) Fixed location Intermittent arrival
Dynamic Social (DySc) Low α = U(0.2,0.5) Variable location Intermittent arrival

uncertainty introduced with the CS WL estimation and
the consequent conversion to discharge. Moreover, the
coefficient α for both StSc and DySc sensors is consid-
ered to be a random stochastic variable uniformly dis-
tributed in time and space (see Table 2).

– For CS observations derived from StSc sensors, αmin
and αmax are assumed to be equal to 0.1 and 0.3, re-
spectively (Mazzoleni et al., 2017a). Accurate α val-
ues mainly account for the uncertainty introduced in the
streamflow estimation from WL by means of the avail-
able rating curve derived during the installation of the
sensor–staff gauge. The minimum value of α equal to
0.1 assumes a low observational error similar to that of
StPh sensors. The maximum value of α, equal to 0.3, as-
sumes high observational errors consistent with values
used in previous studies (Mazzoleni et al., 2015, 2017a).

– In the case of DySc sensors, the minimum and maxi-
mum values are set to 0.2 and 0.5, respectively, i.e. 2
and 5 times higher than the uncertainty coming from
the StPh sensors. The minimum α, equal to 0.2, as-
sumes that WL can be better estimated from StSc (i.e.
by citizens using a reference staff gauge) compared to
the DySc sensors. As described in Lüthi et al. (2014),
flow in open channels can be estimated using mobile
application only if the channel geometry in known. The
maximum α, equal to 0.5, is almost double that for StSc,
considering that the increasing uncertainty on the as-
sessment of the WL is due to the limited knowledge of
the cross-sectional geometry at any location.

Unfortunately, we do not have any real CS observations to
test the appropriateness of choosing these coefficients’ val-
ues. A statistical model of systematic error against series of
CS observations is proposed by Bird et al. (2014). Walker et
al. (2016) propose correlations for consistency of CS with
WL values and rainfall series from nearby hydrologically
similar catchments. In addition, to maintain accuracy levels
within assumed ranges, Kosmala et al. (2016) suggest devel-
oping methods and tools to boost data accuracy and account
for bias and to include iterative evaluation of CS observa-
tions, volunteer training and testing, expert validation, and
replication across volunteers.

4 Experimental setup

In this section, we report two sets of experiments that are
performed to test the benefits of assimilation of real-time CS
observations, from a network of heterogeneous static and dy-
namic social sensors, under different assumptions of CIL.

A 3-day rainfall forecast is used to assess the simulated
WL values along the Bacchiglione River and at the prediction
point of PA.
WL observations from StPh sensors are assimilated at

an hourly frequency, while CS observations from StSc and
DySc sensors are assimilated at different intermittent mo-
ments to account for the random temporal nature of such ob-
servations. The observed and forecasted WL values are com-
pared at the outlet section of PA.

The number of observations used in each experi-
ment varies based on CIL. Considering a 48 h flood event
and hourly model time step, an involvement equal to 1 corre-
sponds to 48 available observations, while with involvement
of 0.5 only 24 observations (randomly distributed in time and
space) are assimilated.

In addition, several model runs (100) are performed to ac-
count for random accuracy and involvement level in time and
space of the citizen providing CS observations. In each run, a
specific α value and arrival moment for each observation are
considered and the corresponding NSE value is estimated.
From the 100 samples of these NSE values, the correspond-
ing mean µ (NSE) and standard deviation σ (NSE) are cal-
culated.

The widely used measure in hydrology, the Nash–Sutcliffe
efficiency (NSE) index (Nash and Sutcliffe, 1970), is used to
compare simulated and observed quantities:

NSE= 1−

T∑
t=1

(
Wm

L,t −W
o
L,t

)2

T∑
t=1

(
Wm

L,t −W
o
L,i

)2
, (13)

where the superscripts m and o indicate the simulated and
observed values of WL, whileWL is the average observed
water level. An NSE of 1 represents a perfect model simu-
lation whereas an NSE smaller than zero indicates that the
model simulating streamflow is only as skilful as the mean
observed water level. NSE values between 0.0 and 1.0 are
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generally considered as acceptable levels of model perfor-
mance (Moriasi et al., 2007).

4.1 Experiment 1: Random citizen involvement levels

In the first experiment, CS observations are taken from
StSc (experiment 1.1) and DySc (experiment 1.2) sensors ac-
cording to random CILs. Such involvement, closely related to
the intermittent nature of theWL observations, can be consid-
ered as the probability of receiving an observation at a given
model time step. This means that in the case of CIL= 0.4
there is 40 % of probability of obtaining an observation at
a given model time step. In fact, in the case of CIL= 0, no
observation is assimilated and the semi-distributed model is
run without any update, whereas if CIL= 1, observations are
available at every time step and this situation is analogous to
the observation from StPh sensors, which are assumed to be
regular in time.

4.1.1 Experiment 1.1: Assimilation of data from static
social (StSc) sensors

Experiment 1.1 considers only the assimilation of WL obser-
vations from StSc sensors. The sensors StSc-1, -2 and -6 are
located in sub-catchments A, B and C, respectively, while
the other sensors are located along the river reaches of the
Bacchiglione catchment (see Fig. 1). In contrast to the obser-
vations from StPh sensors, those from StSc are not regular in
time since they are strictly related to the citizen involvement
level.

Observation error is defined as in Sect. 3.3 using Eq. (12).
The value of α for each StSc sensor is only a function of time
t since the location of the sensor is assigned and fixed. As-
similation of WL observations for different combinations of
sensor availability in the different sub-catchments and river
reaches is performed.

4.1.2 Experiment 1.2: Assimilation of data from
dynamic social (DySc) sensors

In experiment 1.2, the assimilation of WL observations com-
ing only from DySc sensors is considered. The two main
differences between StSc and DySc sensors are as follows:
(1) DySc sensor locations vary every time step along the river
reaches in contrast to StSc sensors whose locations are con-
sidered constant in time. In fact, in the case of DySc sen-
sors, the mobile sensor might provide observations in differ-
ent random places due to the fact that there is no need for
a static reference tool to measure the WL. (2) Uncertainty
in the observations provided by DySc sensors is higher than
for those from StSc sensors. This is because, for a person, it
might be difficult to estimate the WL in a river without any
reference device, as in the case of StSc sensors.

Analysis on the effect of biased CS observations from
DySc sensors is carried out within this experiment. In fact,
due to the Bacchiglione catchment complexity and the low

Table 3. Minimum and maximum values γmin and γmax in 4 differ-
ent cases of observation bias used in experiment 1.2 and 2.

γmin γmax

Bias 1 ( γ1) 0 0
Bias 2 ( γ2) −0.3 0.3
Bias 3 ( γ3) −0.3 0
Bias 4 ( γ4) 0 0.3

quantity of available data, the semi-distributed model used
in this study may not properly represent internal states away
from the calibration point. Consequently, synthetic CS obser-
vations may not fully mimic real CS observations, as under-
lined in Viero (2017). This means that real CS observations
may be likely biased with respect to the synthetic CS obser-
vations generated in this study. For this reason, in the case
of CS observations derived using DySc sensors, a systematic
error is also accounted for by means of different values of
observation bias:

W
synth
L,t =W

true
L,t + γt =W

true
L,t +W

true
L,t ·U (γmin,γmax) , (14)

where γ is a random stochastic variable function of time,
having minimum and maximum values γmin and γmax. In
the case of no bias γmin = γmax = 0, if WL is underestimated
γ < 0 and ifWL is overestimated then γmax > 0. Bias in CS ob-
servations from StSc sensors is not considered in this study.

The coefficients γ are subjectively assumed. In fact, we
do not want to argue that a particular value (e.g. 0.3 as in this
experiment) should be considered as the default value to es-
timate bias in real-life crowdsourced observations. Such bias
has to be defined based on field experiments with volunteers
proving water level observations during real flood conditions.
The main point of this analysis is to assess the model sensitiv-
ity for different subjective values of γ . The value of γ should
be also defined based on field experiments with volunteers.

4.2 Experiment 2: Theoretical scenarios of citizen
involvement levels

In this experiment, all the StPh, StSc and DySc sensors are
considered. One main problem in citizen science is under-
standing the motivations that drive citizens to be involved
in such activities (Gharesifard and Wehn, 2016). For this
reason, a theoretical assumption about citizen involvement
based on their motivations, varying in time and space, is in-
troduced. In the previous experiments, involvement is con-
sidered to be random varying from 0 to 1. In this experiment,
involvement level is assumed to be a function of the spatial
distribution of the population within the Bacchiglione catch-
ment.

As stated by Gharesifard and Wehn (2016), we acknowl-
edge that stronger motivations or intentions are not only
driven by a combination of more positive and favourable at-
titudes. The motivations also rely on stronger positive social
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Table 4. Estimate of the active population that potentially can provide CS observations of WL with StSc sensors.

Sensor Municipality Active area Density Population Active citizens
(m2) (inhab km−2) (inhab) (inhab)

StSc–1 Schio 206 828 597 124 51
StSc–2 Schio 71 293 597 43 18
StSc–3 Malo 100 734 491 50 21
StSc–4 Villaverla 359 744 400 144 59
StSc–5 Caldogno 67 311 720 49 20
StSc–6 Costabissara 421 778 563 238 98
StSc–7 Vicenza 86 544 1400 122 50
StSc–8 Vicenza 241 451 1400 339 139
StSc–9 Vicenza 415 513 1400 583 239
StSc–10 Vicenza 500 000 1400 700 287

pressure and greater perceived control or self-sufficiency re-
garding the means to provide CS observations. In this pa-
per, the distinction between favourable attitudes are treated
from a theoretical point of view since during the WSI project,
no consistent analysis of motivational structures was under-
taken for the Bacchiglione case study. Based on Batson et
al. (2002), we assume the three main motivations for citi-
zens involvement in collecting data: (1) for their own per-
sonal purposes (usefulness of the collected data for personal
interest or direct flood risk management impact), (2) belong-
ing to a community of peers with shared interests and (3) al-
truism (benefiting society at large). In order to assess citizen
involvement, we propose a three-step procedure consisting
of (1) estimation of the active-citizen area; (2) estimation of
the number of active citizens and (3) estimation of the citizen
involvement curve.

Step 1 involves the estimation of the “active-citizen area”.
A hypothetical 500 m buffer around each sub-river reach of
1000 m (spatial discretization of the MC model) is used to
identify the area in which the active population might pro-
vide CS observations using DySc sensors (see Fig. 2). It is
assumed that the citizens located further than 500 m from the
river are not contributing to the collection of CS observa-
tions. In the case of the StSc sensor, we assume the active
area to be a circle with a 500 m radius with the sensor at the
centre. Different extents of the buffer will lead to different
coverages of the active area, with significant effects on the
simulated number of hypothetically involved citizens. How-
ever, analysing the implications of different buffer extents on
the number of active citizens and subsequent flood predic-
tions is out of the scope of this research. Land cover maps
are used to identify the main urban area from which citizens
might provide CS observations of WL within the buffer pre-
viously estimated (see Fig. 2).

Step 2 involves the estimation of the number of active cit-
izens. The population density for the different municipali-
ties along the different river reaches is used to estimate the
number of citizens within the 500 m buffer of each sub-river
reach in which the urban areas are located. In the case of

agricultural areas, an involvement value equal to zero is con-
sidered. In addition, not all citizens would be able to provide
CS observations because only a certain proportion of them
use mobile phones. According to Statistica (2016), the mo-
bile phone market penetration in Italy in 2013, the year of
the flood event analysed in this study, was about 41 %, which
means that about 41 % of the population was potentially able
to submit data. In view of the lack of a better source, we as-
sume that this proportion is also valid for the regional scope.
Therefore, to estimate the potential number of active citizens
that could submit data close to the river reach, we first es-
timate the total population enclosed in a cell of 1 km long
by 1 km wide (a buffer of 500 m from each side of the river)
and then estimate 41 % of this. Table 4 summarizes the re-
sults for the case of the StSc sensors and Table 5 those for
the DySc sensors. In Table 5, the active citizens are divided
by the number of sub-reaches (3 for reach 6). For reach 6 (at
kilometers 3, 4, and 5), the main urban areas are contained
in more than one sub-reach. Naturally, for a better estimation
of these values, a more exhaustive social–economic analysis
should be performed.

Step 3 involves the estimation of the theoretical citizen in-
volvement curve. It is now necessary to estimate the level of
citizen involvement based on the hypothetical number of ac-
tive citizens and their motivation for sharing data. For this
reason, three different involvement curves, each representing
a scenario and corresponding number of active citizens, pro-
viding the maximum citizen involvement level (MCIL), are
proposed. These scenarios are based on Batson et al. (2002),
whose aggregated categories of citizen’s motivations are still
in agreement with more comprehensive and detailed analy-
ses such those recently reported in Geoghegan et al. (2016)
and Gharesifard and Wehn (2016).

In scenario 1, we assume that citizens collect data mainly
for their own personal use. In this case, the MCIL is low for
a low number of citizens, while it grows following a logistic
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Figure 2. Representation of the different Bacchiglione river reaches, land use (Corine Land Cover, 2006), location of the StSc and StSc
sensors and the 500 m buffer.

function, Eq. (15), for increasing numbers of people.

MCIL=
K ·Po · e

r·Pop

K +Po ·
(
er·Pop − 1

) +w, (15)

where Pop is the population; r is the growth rate (we assumed
two different values of r , 0.04 and 0.08); K is the carrying
capacity, i.e. the maximum value of MCIL, assumed to be
equal to 1; w is a coefficient related to the additional CS ob-
servations received from enthusiastic individuals (third citi-

zen scenario explained below); and Po is the minimum value
of MCIL assumed equal to 0.01.

In scenario 2, citizens might decide to collect and share CS
observations driven by a feeling of belonging to a community
of peers with shared interests and vision. In this case, it is as-
sumed that a maximum value of MCIL is achieved for small
population values while for increasing population this value
is decreasing. This scenario follows an inverse logistic func-
tion as shown in the graphical representation of scenario 2 in
Fig. 3.
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Table 5. Estimate of the active population that potentially can provide CS observations of WL with DySc sensors.

Reach Municipality Active area Density Population Active citizens
(m2) (inhab km−2) (inhab) (inhab)

1 (km 6–7–8) Marano Vicentino 608 985 800 487 200

2 (km 2) Schio 39 536 597 24 10

3 (km 8) Villaverla 359 744 400 144 59
3 (km 11) Caldogno 232 474.1 720 167 69

4 (km 2) Dueville 30 692 701 22 9
4 (km 3) Caldogno 191 988 720 138 57
4 (km 5) Caldogno 292 519.8 720 211 86

5 (km 1) Costabissara 351 921 562 198 81
5 (km 2) Costabissara 119 898 562 67 28
5 (km 3–4–5) Vicenza 212 453 1400 100 41

6 (km 1–2) Vicenza 129 816 1400 90 37
6 (km 3–4–5) Vicenza 1 156 964 1400 539 221

Table 6. Involvement curves based on different citizen motivations.

Involvement Citizen motivation Growth rate Additional CS observations
scenario (Factor r in Eq. 15) (Factor w in Eq. 15)∗

1 Own purposes (1) 0.035 0
2 Shared or community interests (2) 0.060 0
3 Societal benefits (3) 0.035 0.10

∗ Increment applies when CS observations are also driven by societal benefits (third citizen motivation).

Figure 3. Representation of the theoretical MCIL scenarios based
on the number of active citizens.

In scenario 3, enthusiastic individuals might provide ad-
ditional information driven by moral norms and the wish to
create knowledge about the hydrological status of the river,
benefiting society at large. This is potentially a much smaller
subset of the population. The added value of this information

is accounted for in Eq. (15) by means of a coefficient w. Ta-
ble 6 summarizes the different involvement curves based on
the previous scenarios and different values of the coefficients
r and w.

In the next phase of analysis, a number of model runs (100)
are carried out, considering the random values of citizen in-
volvement from 0 to the MCIL according to the given in-
volvement scenarios and the population. For example, con-
sidering scenario 1 and 150 inhabitants enclosed in a given
river sub-reach, several model runs are performed for in-
volvement values varying from 0 to 0.65 based on Fig. 3.
In case different CS observations are coming in at the same
time from different sensors, only the most accurate observa-
tion, i.e. that having the lower value of the coefficient α in
Eq. (12), is assimilated in the hydrological and/or hydraulic
model. Another approach could be to assimilate all measure-
ments instead of only the most accurate ones. In this case,
each observation is used within the assimilation scheme with
the account of its error: less weight would be given to the
more uncertain observations.

Finally, this experiment also investigated the effect of the
spatial variability of smartphone market penetration and de-
crease in citizen involvement levels over time. For this rea-
son, a higher (double) percentage of active citizens in Vi-
cenza is assumed (smartphone market penetration of 80 %),
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Figure 4. The µ (NSE) values obtained by assimilating CS observations from a combination of StSc sensors located in different sub-
catchments and river reaches with 1 h lead time in the case of different CIL values.

while random values of the coefficient r are considered to
represent lower involvement levels over time.

5 Results

5.1 Experiment 1

5.1.1 Experiment 1.1

In experiment 1.1, the effect of different CILs on the as-
similation of CS observations from StSc sensors is anal-
ysed. Figure 4 aims to represent the µ (NSE) values obtained
when assimilating CS observations from StSc sensors lo-
cated in different sub-catchments (hydrological model) and
river reaches (hydraulic model) for a 1 h lead time. For ex-
ample, in Fig. 4a, the NSE values obtained by assimilating
CS observations from sub-catchments A and river reach 3
are shown for different involvement values.

Figure 4 shows that NSE values are less affected by the
assimilation of CS observations located in the sub-catchment

A than in the other reaches. In fact, from Fig. 4a, b and c, it is
clear that NSE values change only for different involvement
values of StSc sensors along reaches 3, 4 and 6, while con-
stant NSE values are achieved for varying involvement val-
ues of the StSc (sub-catchment A). As previously shown, for
a low lead-time value, NSE is higher in the case of StSc sen-
sors located in reach 6 rather than in the other river reaches,
3 and 4.

In the case of assimilation in sub-catchment B, Fig. 4d,
e and f, higher NSE values are achieved if compared to
those for the sub-catchment A (first row of the same fig-
ure). In particular, NSE values are mainly influenced by
different involvement levels of CS observations from sub-
catchment B than from river reach 3. However, moving from
upstream (reach 3) to downstream (reach 6), a switch in the
model behaviour can be observed, with an increasing in-
fluence of involvement in StSc sensors located in the river
reach close to the PA station, as previously demonstrated (see
contour map of sub-catchment B and reach 6 in Fig. 4).
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Figure 5. The µ(NSE) values obtained by assimilating CS observations from a combination of StSc sensors located in different sub-
catchments and river reaches with 4 h lead time in the case of different CIL values.

Similar results are shown for StSc sensors located in sub-
catchment C and different river reaches (Fig. 4g, h and i).
However, involvement levels in upstream river reaches affect
the NSE values more than the involvement of StSc sensors in
sub-catchment C. The same behaviour is manifested consid-
ering StSc sensors located from the upstream river reach to
downstream. The third row of Fig. 4 can be considered as an
average situation between the first (sub-catchment A) and the
second (sub-catchment B) row of the same figure.

Figure 5 is analogous to Fig. 4, but with a lead time of 4 h.
Overall, as expected, the NSE values are lower for a lead time
of 4 h, if compared to that of 1 h. Model results are dominated
by the assimilation in the sub-catchments A, B and C if com-
pared to the involvement in reaches 4 and 6. This is due to
the fact that assimilation from the hydrological model allows
good model predictions to be achieved in the case of high
lead values. An intermediate situation is achieved for reach 3.
It can be seen that assimilation of CS observations in this up-
stream river reach allows higher NSE values to be obtained
in the case of high lead times due to the longer travel time

than those of StSc sensors located closer to PA (e.g. reach 6).
Citizen involvement in reach 3 affects the NSE values more
than the involvement levels in sub-catchment A and C. More-
over, as in the case of Fig. 4 for 1 h lead time, involvement
in sub-catchment B has a higher impact on NSE values than
involvement in reach 3. A more detailed analysis of the effect
of sensor location and lead time is provided in Mazzoleni et
al. (2017a).

5.1.2 Experiment 1.2

In experiment 1.2, the effect of CIL in assimilating CS ob-
servations only from DySc sensors is analysed. In this case,
the DySc sensors are assumed to be located only along river
reaches 3, 4 and 6, so only the hydraulic model is used in
this experiment. Also, in this experiment, 100 runs are car-
ried out to account for the random accuracy and location of
the CS observations.

In Fig. 6, DySc sensors are assumed to be present every
1000 m, while CIL changes in each model run. This means
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Figure 6. Effect of different levels of involvement, in terms of µ (NSE) and σ (NSE), on the assimilation of CS observations from DySc
sensors for different CIL values.

that CS observations that are available at one time step at
one specific location may not be available at the same lo-
cation for the next time steps. It can be observed that in
most of the cases µ (NSE) values converge asymptotically to
some threshold, as the involvement level increases. Among
the three river reaches, 3 and 4 are the ones providing higher
NSE values for low involvement levels. This can be related to
the high number of DySc sensors located in reach 3 (13 sen-
sors) and 4 (8 sensors). Although reach 6 is performs better
in the case of high involvement levels, high σ (NSE) values
are obtained for this reach, showing a significant sensitivity
of model performance in the case of different CILs in the
hydraulic model. Assimilating CS observations from DySc
sensors at different reaches induces an overall improvement
of µ (NSE) and reduction in σ (NSE). The lowest σ (NSE)
values are obtained including DySc sensors from reaches 3
and 4. However, this reduction in the σ (NSE) values does
not correspond to a higher improvement in µ (NSE). In fact,
the highest µ (NSE) values are achieved by joining sensors
from reach 4 and 6, i.e. the closest river reaches to the PA
station. Similar results in terms of µ (NSE) and σ (NSE) are
obtained by joining reaches 3 and 6. It is worth noting that
in Fig. 6, no bias in the observations from DySc sensors is
considered.

Figure 7 presents theµ (NSE) values obtained considering
random locations of DySc sensors along the river reaches 3,
4 and 6 in four different cases of CS observation bias for
1 h lead time. As reach 6 has five different sub-reaches of
1000 m, CS observations from only five sensors can be as-
similated. However, in Fig. 7 a total number of 13 DySc sen-
sors is considered. In these experiments, location of DySc
sensors are randomly generated. It might happen that two
sensors are located, say, at distances of 2600 and 2900 m
from the upstream boundary condition. Because of the small
spatial discretization of the hydraulic model (1000 m), it is
assumed that the difference between the hydrographs esti-

mated between the two different model discretization is neg-
ligible. For this reason, the two CS observations from the
DySc sensors at 2600 and 2900 m are simultaneously assim-
ilated at the third sub-reach. In this way, it is possible to
assimilate CS observations from a number of DySc sensors
higher than the number of model spatial discretization points.

As it can be observed, different γ values (bias assump-
tions) affect the model performance in different ways. Under-
estimation of the CS observations (γ3) induces a reduction
in the µ (NSE) values due to the underestimated forecasted
precipitation. For the same reason, overestimation of CS ob-
servations (γ4) causes an increase in model performance, es-
pecially for a low number of DySc sensors and involvement
levels. In the case of γ2 the behaviour in between γ3 and γ4
can be observed.

5.2 Experiment 2

Experiment 2 focuses on the assimilation of CS observations
from a distributed network of heterogeneous StPh, StSc and
DySc sensors. In particular, the involvement level is calcu-
lated in a more realistic way, accounting for the population
living in the range of 500 m from the river. Based on Fig. 3,
different MCIL values are calculated for the three scenar-
ios in collecting and sharing WL observations. It is worth
noting that bias 2 is considered in the CS observations from
DySc sensors.

Figure 8 shows µ (NSE) values in the case of different
involvement scenarios and MCIL according to the differ-
ent types of sensors. A random value of involvement level
between 0 and MCIL is considered for a given river sub-
reach and model run. In particular, in Fig. 8, smaller values of
MCIL such as MCIL1, MCIL2, MCIL3, MCIL4 and MCIL5
are estimated as 0.2 MCIL, 0.4 MCIL, 0.6 MCIL, 0.8 MCIL
and MCIL, respectively. Note that scenario 2 is the one pro-
viding the best model improvements, followed by scenario 3.
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Figure 7. The µ (NSE) values obtained considering random location of dynamic social (DySc) sensors along river reaches 3, 4 and 6 in four
different cases of CS observation bias for 1 h lead time and citizen involvement level (CIL) values.

Involving the enthusiastic people (scenario 3) helps to im-
prove µ (NSE), especially for low involvement values. Sce-
nario 1 is the one that gives the lowest µ (NSE) values due
to the lowest growth rate of the involvement curve and con-
sequent lower involvement of citizens.

In scenarios 1 and 3, the steepest vertical gradient of the
contour plot can be observed, leading to the conclusion that
model results seem to be more sensitive to the change in
MCIL values in StSc sensors rather than DySc sensors. How-
ever, the gradient reduces with scenario 2.

In the previous analysis, NSE is used as the only per-
formance indicator without considering improvement in the
prediction of the peak and rising limb of the hydrograph,
which are extremely important in operational flood manage-
ment. For this reason, the relative error between the observed
streamflow peak and simulated peak (see Eq. 16) is included
to better assess the assimilation of crowdsourced observa-
tions from an operational point of view.

ERR =

(
WO

L,P−W
S
L,P

)
WO

L,P
, (16)

whereWO
L,P andWS

L,P are the observed and simulated stream-
flow (m3 s−1). The results reported in Fig. 8 show compara-
ble results to those achieved using NSE. Including CS obser-
vations from enthusiastic citizens seems not to lead to a more
accurate representation of the peak discharge. In fact, simi-
lar µ (NSE) values are achieved between scenarios 1 and 3.
However, error in peak prediction is lower in scenario 1 than
in scenario 2. It can be observed that ERR values are clearly
more sensitive to the different involvement values in StSc
sensors than DySc sensors (vertical gradient).

In the previous analysis, unrealistically high citizen in-
volvement (up to 80 %) is considered. For this reason, the
following analysis focuses more on the lower part of the
theoretical involvement curve, assuming more realistic CIL.
In particular, the maximum carrying capacity of the logis-
tic curve (K) is changed from 0.01 up to 1. In the case of
K equal to 1, the values of µ (NSE) related to the different
scenarios are estimated as mean average of the contour plot
shown in Fig. 8. The same analysis is performed for the vec-
tor of different values of K .

The results of this analysis show an expected reduction
in the model performances for low values of the parameter
K (which indicates the maximum possible level of involve-
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Figure 8. The µ (NSE) and µ (Err) values obtained in the case of different maximum citizen involvement level (MCIL) scenarios comparing
involvement level from StSc and DySc sensors.

Figure 9. µ (NSE) and σ (NSE) values obtained considering varying values of K for different involvement scenarios.

ment). It can be noted that if K is equal to 0.5, assimilation
of crowdsourced observations still provide significant model
improvement for all the different scenarios even though the
involvement is halved. As expected, σ (NSE) values tend to
increase for low involvement of citizens. From Fig. 9, it can
be seen that µ (NSE) values do not follow a linear trend as
expected. On the contrary, it tends to drop for values ofK be-
tween 0 and 0.2 (for example in scenario 3), while for higher
K values µ (NSE) does not grow significantly. In particular,

for K values higher than 0.5, scenario 2 provides the highest
µ (NSE) values. Besides, for K values lower than 0.5, sce-
nario 3 is the one leading to better model performances. This
is because the presence of enthusiastic individuals keeps high
involvement values even for low values of K . Regarding the
variability of NSE, i.e. σ (NSE), for values of K lower than
0.4, high σ (NSE) can be observed in scenario 1.

Additional analysis considering negative and positive
bias (bias 3 and 4 in Table 3) in the CS observations are
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Figure 10. Difference between µ (NSE) values obtained considering bias 2 with bias 3 (first row) and bias 2 with bias 4 (second row) for
different involvement levels for StSc and DySc sensors.

considered (see Fig. 10). As expected, it can be observed
that bias 4 provides higher NSE values than bias 2 since the
model without update underestimate observed streamflow or
water level. Moreover, results obtained using observations
with bias 3 have lower NSE than the results with bias 2.
However, in both bias 3 and 4, such changes in NSE are very
small, leading to the conclusion that assimilation of biased
WL observations during the May 2013 flood event in the Bac-
chiglione River do not reduce model performances.

5.2.1 Effect of spatial variability of smartphone market
penetration

The value of smartphone market penetration depends mainly
on the geographic area and on the characteristic of the popu-
lation. We assume that not everyone is prone to use smart-
phones to collect and share water level data due to their
age and habits. However, smartphone market penetration and
consequent percentage of active citizens may change spa-
tially. In the following simulations, a higher percentage of
smartphone users (80 %) is assumed in the urbanized area
of the municipality of Vicenza. From Fig. 11 it can be seen
that increasing the smartphone market penetration in Vicenza
does not affect model results in the case of scenario 2.

For this scenario, no involvement is assumed in highly
urbanized areas such as the municipality of Vicenza. The
higher number of smartphones in Vicenza partially affects
only scenarios 1 and 3. In these scenarios, an expected incre-

ment in the model performance (due to the higher involve-
ment in Vicenza), can be observed. However, small incre-
ments in the NSE values are reported in Fig. 11, with a max-
imum difference of 0.04 between normal and higher smart-
phone market penetration.

5.2.2 Effect of temporal variability of citizen
involvement

In the previous analyses, CIL is considered constant in time.
However, in practice, involvement may decrease if citizens
are not properly engaged in a water observatory (Geoghegan
et al., 2016; Gharesifard and Wehn, 2016), so for the assimi-
lation of CS observations it is also important to consider this
situation. A possible idea to represent the decrease in the in-
volvement level over time could be to assume varying values
of growth rate r of the logistics curve over time.

In Fig. 12, results of sensitivity analysis on model results
with respect to the varying values of the coefficient r of
Eq. (15) are presented. Only scenario 3 and three different
values of w are considered. The results demonstrate that de-
creasing involvement over time (low values of r) leads to a
reduction in the model performance and consequently inac-
curate flood forecasts. This is an expected result that demon-
strates again the importance of keeping citizens continuously
engaged. However, this reduction in model performance is
significant only for values of r lower than 0.3, leading to the
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Figure 11. Difference between µ (NSE) values obtained considering standard and higher active citizen percentage in the municipality of
Vicenza for different involvement levels from StSc and DySc.

Figure 12. The µ (NSE) and σ (NSE) values obtained considering varying values of the coefficient r for scenarios 1 and 3 with three
different values of w.

conclusion that model performances can still be high even if
involvement decreases over time.

6 Discussion

In flood risk management, CS observations of hydrological
variables can potentially contribute to the situational aware-
ness of citizens and to decision-making (Howe, 2008; Al-
fonso, 2010; Rotman et al., 2012; Gura, 2013; Bonney et al.,
2014; Buytaert et al., 2014, Wehn and Evers, 2016). Citi-
zen observatories enabled with information and communica-
tions technology become possible via, for example, mobile
and web-based easy-to-use sensors and low-cost monitoring
technologies (Jonoski et al., 2012; Ciravegna et al., 2013).
However, the fact that information and communications tech-
nology tools and citizen observatories initiatives are in place
does not automatically imply a higher level of citizen in-
volvement – due to the intermittency and timely availabil-

ity of CS observations (Degrossi et al., 2013; Wehn et al.,
2015). This section aims to summarize the main findings of
our study and to analyse the pros and cons of using CS ob-
servations for improving flood predictions. It is worth noting
that in this study we do not refer to how to get the citizens in-
volved, but rather to the probability of receiving a CS obser-
vation based on the citizen’s own interest in collecting water
level observations. Engagement and involvement levels are
related and represent a huge barrier for collecting CS obser-
vations (Gharesifard and Wehn, 2016; Starkey et al., 2017).

Overall, the results we have obtained are in accordance
with the recent studies on the use of (real) crowdsourced ob-
servations in the area of water resource management (Gai-
tan et al., 2016; Giuliani et al., 2016; de Vos et al., 2017;
Rosser et al., 2017; Schneider et al., 2017; Starkey et al.,
2017; Yu et al., 2017). In particular, any improvement of
model performance, with respect to the current practice for
flood forecasting in the catchment used by the Alto Adri-
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atico Water Authority with no model update, provides addi-
tional useful information for flood risk management. The re-
sults from experiment 1.1 (assimilation only from StSc) show
that model outputs depend on the particular sub-catchment
and river reach in which the observations are assimilated. In
fact, we also found that accuracy of the assimilation process
is highly dependent on different factors, including the total
number of observations, their spatial distribution and their
accuracy, as demonstrated by Schneider et al. (2017) and
Starkey et al. (2017) by using real CS observations. In ad-
dition, assimilation of CS observations into the hydrological
model tends to provide lower improvement than the assimila-
tion in the hydraulic model. However, assimilation in hydro-
logical models ensures better model prediction for high lead-
time values than the assimilation in the hydraulic model. This
is due to the high travel time needed to reach the prediction
point of PA (around 22 h from the outlet of sub-catchment B).
For operational flood management it is advisable to consider
model results in which observations at upstream locations of
the catchment are assimilated in both hydrological and hy-
draulic models. In experiment 1.2, assimilation of CS obser-
vations from DySc sensors produced an overall improvement
of model performances in terms of µ (NSE) increase and
σ (NSE) reduction. Higher values of µ (NSE) are achieved
by assimilating CS observations coming from multiple river
reaches, in particular for those reaches close to PA. Due to
the fact that the model without assimilation underestimates
the observed water level, overestimated biased CS observa-
tions tends to increase model performances. Comparable re-
sults were obtained in Rakovec et al. (2012) and Mazzoleni
et al. (2015, 2017a) in the case of assimilation of distributed
sensors in hydrological modelling.

The aim of experiment 2 was to investigate the effects
of different, theoretical, levels of involvement in the assim-
ilation of CS observations coming from heterogeneous sen-
sors (StPh, StSc and DySc). Our findings demonstrate that
sharing CS observations driven by a feeling of belonging to
a community of peers (scenario 2 in the proposed theoreti-
cal social model) can help improve flood prediction if such
a small community is located upstream of a particular inter-
est point. The results achieved for scenario 1 point out that
a growing participation of citizens motivated by personal in-
terests, sharing hydrological observations in big cities, can
help improve model performance. In particular, the model
results can benefit from the additional observations provided
by enthusiastic citizens (scenario 3). Similar conclusions are
reported in Starkey et al. (2017), who demonstrate the impor-
tance of proper engagement for providing additional sources
of catchment information.

Finally, it is important to investigate the effect of varying
percentages of smartphone usage in space and the decrease in
citizen involvement over time. The percentage of active citi-
zens may change spatially in densely populated areas such as
the municipality of Vicenza. Increasing the smartphone mar-
ket penetration in Vicenza would not affect model results in

the case of scenario 2, because no involvement is assumed
in densely urbanized areas. A high percentage of active cit-
izens in Vicenza affects only scenarios 1 and 3. However,
because the number of active citizens in Vicenza is already
high for a smartphone usage of 41 %, the model improve-
ment is not significant for a higher percentage of active cit-
izens. This means that in the proposed theoretical involve-
ment model more active citizens (i.e. more mobile phones
available) will not significantly improve involvement and af-
fect the model performance. It is worth noting that a more
exhaustive social–economic analysis should be performed in
order to better define the smartphone market penetration and
consequent percentage of active citizens.

In this study, we assume intrinsic motivation, constant in
time, differentiated according to the level of involvement.
However, a main challenge in citizen science is to keep this
involvement high in the long term. In the case of flood events,
citizen involvement tends to disappear if no other event oc-
curs in a short time (Wehn et al., 2015). In fact, depending on
the memory of the community, the awareness of flood risk
decreases over time (Raaijmakers et al., 2008), and, there-
fore, the tendency to be engaged in data collection will also
reduce or even disappear. For this reason it is important to
keep citizens engaged using, for example, gamification ap-
proaches or periodic meetings or seminars with interested
participants. However, the main goal of this paper is not to
review or propose approaches to engage and keep citizen in-
volved over a long time. For this purpose, a comprehensive
and detailed analysis of citizen motivations and engagement
mechanisms is reported in Geoghegan et al. (2016), Ghare-
sifard and Wehn (2016) and Rutten et al. (2017) and these
aspects are being studied in detail in the H2020 GroundTruth
2.0 Project (www.gt20.eu). A possible solution for collect-
ing water level data over time could be the involvement of
the civil protection volunteers. This approach is currently be-
ing used in the Bacchiglione catchment by the Alto Adriatico
Water Authority which requests the water level data at par-
ticular locations and moments from the Civil Protection vol-
unteers to validate model results in near-real time.

This study demonstrates that a high-performance model
can still be achieved even for decreasing citizen involvement
over time. Moreover, crowdsourced observations of either
experts or citizens will not necessarily have the quality high
enough to support decision-making (Cortes Arevalo et al.,
2014). In addition, real-time observations require safe con-
ditions, good internet connections and trusted observers by
water authorities. Therefore, it is of utmost importance to
understand limitations and to develop quality control mech-
anisms for CS observations (Tulloch and Szabo, 2012; Van-
decasteele and Devillers, 2013; Bordogna et al., 2014; Bird
et al., 2014; Cortes Arevalo, 2016).
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7 Conclusions

This study assesses the usefulness of assimilating crowd-
sourced observations coming from a network of distributed
static physical, static social and dynamic social sensors, in-
stalled within the WeSenseIt Project in the Bacchiglione
catchment, with the aim of advancing the understanding of
the effect of public involvement on the improvements of
flood models. In the complex process of assimilating of CS
observations into water system models, many factors play
an important role for correct flood estimation: types of so-
cial sensors, citizen involvement, decrease in involvement
over time, types of hydrological and hydraulic models, spa-
tial variability of citizen involvement, etc. In this study, we
focus on the type of social sensor, the citizen involvement
level, and its variability in time and space. The assessment
is done for the prediction of the May 2013 flood event in
the Bacchiglione catchment, so general conclusions cannot
be derived based on only one case study. Since CS observa-
tions of water levels are not available at the time of this study,
we use synthetic observations with intermittent measurement
intervals and random accuracy in time and space. Two differ-
ent sets of experiments are carried out. In experiment 1, the
crowdsourced observations from StSc and DySc are assimi-
lated with the hydrological and hydraulic model considering
the random levels of citizen involvement. However, in exper-
iment 2, three hypothetical citizen involvement level scenar-
ios are introduced to provide a more realistic representation
of the availability of CS observations for the model. Scenar-
ios are based on the combination of population distribution
and three types of citizens’ motivations to collect data based
on Batson et al. (2002): (1) own personal purposes, (2) shared
or community interests and (3) societal benefits. We further
assume that CIL affects only observation intermittency, not
accuracy.

Overall, we demonstrate that the assimilation of CS obser-
vations provided by citizens improves model performance.
Experiment 1.1 shows that the assimilation of CS observa-
tions in the hydrological model tends to lead to a lower im-
provement than the assimilation in the hydraulic model, in
the case of low lead-time values. In the case of high lead-
time values, assimilation in the hydrological model allows
better model predictions to be achieved than with the assimi-
lation in the hydraulic model. In experiment 1.2, high values
of NSE are achieved for DySc sensors located close to the
boundary conditions, while moving these sensors to down-
stream locations reduces NSE values. These results are due to
the higher error of the boundary conditions if compared to the
model error of the hydraulic model itself. Systematic (bias)
and random errors in water level observations play an im-
portant role. Finally, experiment 2 demonstrates that crowd-
sourced observations provided by citizens driven by a feel-
ing of belonging to a community of peers (motivation 2) can
help to improve flood prediction if such small communities
are located in the upstream part of the catchment. However,

increasing participation of citizens motivated by their own
purposes, sharing hydrological observations in big cities, can
help improve model performance. In particular, the model
results can benefit from the additional observations provided
by enthusiastic citizens. In this study, the higher smartphone
market penetration in the urbanized area of Vicenza com-
pared to the upstream towns tends to not significantly affect
model results. High model performance can still be achieved
even for decreasing involvement over time.

A number of limitations of this study have to be addressed
as well. Firstly, in order to generalize the findings of this re-
search, the proposed methodology has to be applied in more
case studies and flood events. Secondly, real CS observations
should be used to properly assess the observational error and
accuracy level which vary according to the sensor type (static
or dynamic). Thirdly, no specific spatial sensor trajectory of
the citizens moving from one StSc sensor to another or us-
ing DySc sensors is considered, since this would require the
introduction of assumptions about citizen behaviour during a
flood event. This component would be extremely important
in the case of dynamic sensors but it could not be included
in this research due to the lack of information about citi-
zen involvement in monitoring river water level in the case
study. Finally, in real-life conditions, it may occur that active
citizens might not be available at the right time, i.e. during
a flood event. In our study, we do not distinguish between
observations provided during day-time or night-time (as ad-
dressed by Mazzoleni et al., 2015).

For future studies it is recommended to (a) introduce better
characterization of the CS observations accuracy level, (b)
propose an involvement model based on social analysis of
citizen motivations and engagement, (c) use agent-based
models to simulate and represent the interactions between
autonomous agents (citizens) based on their motivations,
and (d) test the proposed method using real CS observations
during other flood events.

Data availability. The DEM data were downloaded from the
SRTM database (http://srtm.csi.cgiar.org, USGS, 2004). The rain-
fall and river discharge data were provided by the Alto Adriatico
Water Authority. The CORINE Land Cover dataset of the European
Environment Agency was used.
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Appendix A: List of acronyms used in this study.

Acronyms Meaning
AAWA Alto Adriatico Water Authority
CIL Citizen involvement level
CS Crowdsourced
DySc Dynamic social
KF Kalman filter
MCIL Maximum citizen involvement level
PA Ponte degli Angeli
StPh Static physical
StSc Static social
WL Water level
WSI WeSenseIt

Appendix B: Response times for the sub-catchment and
the reaches of the Bacchiglione catchment.

Location Time (hours)

Sub-catchment A 1.5
Sub-catchment B 3.5
Sub-catchment C 6.0
Reach 1 2.2
Reach 2 2.0
Reach 3 7.2
Reach 4 9.5
Reach 5 3.4
Reach 6 5.2
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