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Nonlinear parabolic evolution equations in
critical spaces

As we have seen in the preceding sections, in the context of inhomogeneous
linear evolution equations, maximal regularity enables one to set up an iso-
morphism between the space of data (initial value and inhomogeneity) and
the solution space. In the present section we will show how this idea can be
used to study to non-linear evolution equations. Specifically, we consider a
class of quasi-linear evolution equations of the form{

u′(t) +A(u(t))u(t) = F (u(t)), t ∈ (0, T ),

u(0) = u0.

The setting is as follows. We are given a pair of Banach spaces (X0, X1)
along with a continuous embedding X1 ↪→ X0. The initial value u0 is taken
in a suitable interpolation space of X0 and X1, and for each v0 in some
neighbourhood Y of u0 the operator A(v0) is a linear operator in X0 with
domain D(A(v0)) = X1. As such, we interpret A(v0) as a bounded linear
operator in L (X1, X0). The mapping F is defined on an interpolation space
of X0 and X1, takes values in X0, and is assumed to satisfy suitable local
Lipschitz conditions; the precise assumptions will be formulated later. Our
aim is to present several local well-posedness results, and to discuss a blow-up
criterion which can be used to derive global well-posedness.

Before we start with this programme, we first explain the difference be-
tween semi-linear and quasi-linear evolution equations. In the quasi-linear
case, the typical situation is that

A : Y → L (X1, X0) and F : Z → X0

are Lipschitz continuous on bounded subsets of Y and Z, where Y and Z are
(subsets of) suitable interpolation spaces between X0 and X1. In the semi-
linear case one typically has that

A ∈ L (X1, X0) and F : Z → X0,
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where A is a fixed operator in L (X1, X0) and F is a locally Lipschitz contin-
uous mapping on bounded subsets of Z, where Z is as before. Clearly, every
semi-linear equation is quasi-linear, but the converse is not true. In principle
one can allow A and F to be also time-dependent, but in order to keep the
presentation within reasonable bound we will not consider this additional level
of generality.

When analysing evolution equations with maximal Lp-regularity methods,
one usually takes Y equal to (or a subset of) the real interpolation space
(X0, X1)1− 1

p ,p
, at least in the absence of weights. The reason for taking Y of

this form is that one has a continuous embedding (see Corollary L.4.6)

Lp(0, T ;X1) ∩W 1,p(0, T ;X0) ↪→ C([0, T ]; (X0, X1)1− 1
p ,p

). (18.1)

The space on the left-hand side is the usual space in which solutions lie when
maximal Lp-regularity techniques are applicable. For the space Z one can take
either take Y , or more generally (X0, X1)β,1 with β ∈ [1 − 1

p , 1), the latter
requiring polynomial growth restrictions on F . In practice, we often split F
into two parts F = FTr + Fc, where

FTr : Y → X0, Fc : Z → X0 (18.2)

with Y and Z as before. Here the subscript Tr stands for trace space and c
stands for critical. The word critical is also used in the title of the chapter.
In Section 18.2 we will give a definition of a criticality using only evolution
equation terminology. Surprisingly, this often coincides with criticality from a
PDE perspective.

The following simple example explains why the additional flexibility in
choosing Z may be expected to be useful.

Example 18.0.1. On Rd consider the equation{
∂tu− a(u)∆u = −u3,

u(0) = u0,
(18.3)

where a : R → [0,∞) is a given locally Lipschitz continuous function. If a is
non-constant, then (18.3) leads to a quasi-linear evolution equation, and if a is
constant it leads to a semi-linear evolution equation. In both cases, the spaces
X0 and X1 need to be chosen as function spaces relative to which the defini-
tions A(u)v := a(u)∆v and F (u) := −u3 admit meaningful interpretations. A
possible choice is to take

X0 := Lq(Rd), X1 := W 2,q(Rd).

With these choices, Y := (X0, X1)1− 1
p ,p

equals the Besov space B
2− 2

p
q,p (Rd)

(see Theorem 14.4.31). If we assume that 2 − 2
p −

d
q > 0, then we have the

continuous embedding (see Corollary 14.4.27)
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B
2− 2

p
q,p (Rd) ↪→ Cb(Rd).

The space Y then consists of bounded continuous functions, and consequently
for u ∈ Y we can interpret a(u) as a bounded continuous function. The op-
erator A(u) is then well defined as an element of L (X1, X0). On the other
hand, since F (u) = −u3 belongs to X0 if and only if u ∈ L3q(Rd), for u ∈ Y
we can interpret F (u) as an element of X0 as soon as we have a continuous
embedding

B
2− 2

p
q,p (Rd) ↪→ L3q(Rd).

This embedding holds under the (much weaker) condition 2 − 2
p −

d
q > −

d
3q ,

where even equality is allowed if p 6 3q (see (14.22), Proposition 14.6.13, and
Theorem 14.6.26). To optimally exploit this fact in situations where the more
stringent condition 2− 2

p −
d
q > 0 mentioned earlier is not needed, e.g., in the

semi-linear case arising when a ≡ 1, we may admit functions F defined on a
space Z that is larger than Y . Even more flexibility is created if we take time
integrability into account as by maximal Lp-regularity methods we actually
only need

W 1,p(0, T ;X0) ∩ Lp(0, T ;X1) ↪→ L3p(0, T ;L3q(Rd))

in order to define F (u). Conditions for this are given by Corollary L.4.7 which
in the current situation α = 0, h = 3 and thus θ = 1 − 2

3p lead to the

requirement H2θ,q ↪→ L3q, which holds if and only if d
q + 2

p 6 3, which is even
weaker than what we saw before. We will come back to this point in Examples
18.1.3 and 18.3.1.

In Section 18.1 we start with the study of local existence and uniqueness
for semi-linear equations, where the function F is defined on the trace space
Y = (X0, X1)1− 1

p
with p ∈ (1,∞). Here we can admit initial values u0 which

belong to the space Y . We present this setting separately, as it allows us to
introduce some important techniques in the simplest possible setting.

In Sections 18.2 we turn to the study of local well-posedness in the tech-
nically more demanding quasi-linear setting. At the same time, we improve
on the assumptions needed to make things work: it is possible to allow expo-
nents p ∈ [1,∞] and functions F of the form FTr + Fc as in (18.2), with FTr

defined on Y as before and Fc on a larger space Z. Furthermore, we work in
a weighted setting in time. This has at least three important advantages:

(i) it allows initial data u0 belonging to the space (X0, X1)1−α− 1
p
, where

α > 0 is a parameter associated with the weight;
(ii) global existence of solutions can be proved under milder blow-up criteria;

(iii) it allows the inclusion of the endpoint p =∞ (inclusion of the endpoint
p = 1 is possible for different reasons).

Blow-up criteria will be discussed in Section 18.2.d. After presenting an illus-
trating example in Section 18.3, the final Section 18.4 presents long term and
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even global well-posedness results for small initial data in the case F = Fc

(i.e., FTr = 0).

18.1 Semi-linear evolution equations with F = FTr

In this section we study local well-posedness of semi-linear evolution equations
of the form {

u′(t) +Au(t) = F (u(t)), t ∈ (0, T ),

u(0) = u0,
(18.4)

where T > 0 is fixed. Parabolic partial differential equations of evolution type
can often be cast into this form. Some examples will be encountered below.

Our standing assumptions are as follows. We let X0 and X1 be Banach
spaces, with X0 continuously embedded into X0, we fix p ∈ (1,∞), and make
the following assumptions:

(1) A : X1 → X0 is a bounded linear operator;
(2) F : (X0, X1)1− 1

p ,p
→ X0 is a locally Lipschitz function;

(3) u0 belongs to (X0, X1)1− 1
p ,p

.

For the sake of brevity, in what follows we will write

X1− 1
p ,p

:= (X0, X1)1− 1
p ,p

and refer to this space as the trace space associated with the problem (18.4).
The following definition extends the notion of Lp-solutions to the present

setting.

Definition 18.1.1. A function u ∈ Lp(0, T ;X1)∩W 1,p(0, T ;X0) is called an
Lp-solution to (18.4) if for all t ∈ [0, T ] we have

u(t)− u0 +

∫ t

0

Au(s) ds =

∫ t

0

F (u(s)) ds.

The assumptions imply that Au belongs to Lp(0, T ;X0), and therefore the
first integral is well defined as a Bochner integral in X0. To prove the Bochner
integrability of F (u) : s 7→ F (u(s)) in X0, we note that the assumptions and
(18.1) imply that u ∈ C([0, T ];X1− 1

p ,p
). Consequently, F (u) is well defined as

a function in C([0, T ];X0).
In order to get acquainted with the type of arguments involved, we begin

by proving a preliminary local existence and uniqueness result. Later on, in
Section 18.2, this result will be further improved in several ways, and contin-
uous dependence on the initial data and conditions for global well-posedness
will be discussed.
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Theorem 18.1.2 (Local well-posedness for semi-linear problems). Let
X1 ↪→ X0 as stated, let p ∈ (1,∞), and assume the conditions (1), (2), (3) to
be satisfied. Suppose that

(1) The operator A, viewed as a linear operator in X0 with domain D(A) = X1,
has maximal Lp-regularity on bounded time intervals;

(2) There exists an non-decreasing function ψ : (0,∞)→ (0,∞) such that for
all r > 0 and all x, y ∈ X1− 1

p ,p
satisfying

‖x‖X
1− 1

p
,p
6 r and ‖y‖X

1− 1
p
,p
6 r

one has

‖F (x)− F (y)‖X0
6 ψ(r)‖x− y‖X

1− 1
p
,p
. (18.5)

Then for all R > 0 there exists a T > 0 such that for all u0 ∈ X1− 1
p ,p

satisfying

‖u0‖X
1− 1

p
,p
6 R the problem (18.4) has a unique Lp-solution u. Moreover,

u ∈ Lp(0, T ;X1) ∩W 1,p(0, T ;X0).

The bound (18.5) is a quantified local Lipschitz assumption, where “local”
refers to bounded subsets of X1− 1

p ,p
. We note that by (18.1) the Lp-solution

u satisfies

u ∈ C([0, T ];X1− 1
p ,p

).

As a preparation for the proof, we first explain how the maximal Lp-
regularity of A will be used to prove the theorem. By maximal Lp-regularity,
for all f ∈ Lp(0, T ;X0) the problem{

u′ +Au = f on (0, T )

u(0) = u0

admits a unique Lp-solution. Moreover, there exists a constant Cp,A,T , inde-
pendent of f and u0, such that

‖u‖Lp(0,T ;X1)∩W 1,p(0,T ;X0) 6 Cp,A,T (‖f‖Lp(0,T ;X0) + ‖u0‖X
1− 1

p
,p

). (18.6)

This follows from Proposition 17.2.14 and a repetition of the argument in
(17.10) and (17.11). For the optimal choice of these constants, using (17.25)
one can check that Cp,A,T 6 Cp,A,T ′ whenever T 6 T ′ <∞.

Proof of Theorem 18.1.2. The theorem will be established by applying the
Banach fixed point theorem on a suitable bounded closed subset of the max-
imal regularity space
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MRp(0, T ) := Lp(0, T ;X1) ∩W 1,p(0, T ;X0).

The boundedness of the embedding MRp(0, T ) ↪→ C([0, T ]; (X0, X1)1− 1
p ,p

)

(see (18.1)) enables us to use the local Lipschitz assumption on F .
Let R > 0 and fix an u0 ∈ X1− 1

p ,p
satisfying ‖u0‖X

1− 1
p
,p
6 R. In order to

define a suitable subset of MRp(0, T ) on which the fixed point argument can be
performed, we introduce the reference solution zu0

as the unique Lp-solution
to {

z′(t) +Az(t) = 0, t > 0,

z(0) = u0.

Note that zu0
∈ MRp(0, T ) for every T < ∞. By (18.1) (and its proof) and

(18.6) (with f = 0) we have

sup
t∈[0,1]

‖zu0(t)‖X
1− 1

p
,p
6 Cp,T ‖zu0‖MRp(0,1)

6 Cp,TCp,A,T ‖u0‖X
1− 1

p
,p
6 Cp,TCp,A,TR =: MR.

Fix an arbitrary T ∈ (0, 1], and consider the closed ball

BT1 (u0) := {u ∈ MRp(0, T ) : u(0) = u0, ‖u− zu0
‖MRp(0,T ) 6 1}.

Let Φ : BT1 (u0)→ MRp(0, T ) be defined by Φ(v) := u, where u is the unique
Lp-solution to the problem {

u′ +Au = F (v),

u(0) = u0.

This unique solution exists by the discussion preceding the proof; note that
F (v) ∈ C([0, T ];X0) by the continuity of F and (18.1).

For later purpose we observe that for all v1, v2 ∈ BT1 (u0), Corollary L.4.6
(using v1(0)− v2(0) = 0 to get T -independent constants) implies that

‖v1 − v2‖C([0,T ];X
1− 1

p
,p

) 6 Cp‖v1 − v2‖MRp(0,T ) 6 2Cp. (18.7)

In particular, since T 6 1, upon taking v1 = v ∈ BT1 (u0) and v2 := zu0 ∈
BT1 (u0), we find that

‖v‖C([0,T ];X
1− 1

p
,p

) 6 ‖v − zu0
‖C([0,T ];X

1− 1
p
,p

) + ‖zu0
‖C([0,T ];X

1− 1
p
,p

)

6 2Cp +MR =: NR.
(18.8)

To be able to apply the Banach fixed point theorem to Φ, we need to check
that Φ maps the closed ball BT1 (u0) into itself and is uniformly contractive on
it. For both assertions it will be necessary to choose T ∈ (0, 1] small enough.
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First we check that Φ maps BT1 (u0) into itself. For all v ∈ BT1 (u0) one has

‖F (v(t))‖X0 6 ‖F (v(t))− F (zu0(t))‖X0 + ‖F (zu0(t))− F (0)‖X0 + ‖F (0)‖X0

6 ψ(NR)(‖v(t)− zu0(t)‖X
1− 1

p
,p

+ ‖zu0(t)‖X
1− 1

p
,p

) + ‖F (0)‖X0

6 ψ(NR)(2Cp +MR) + ‖F (0)‖X0
=: CR,F ,

where we used (18.5) and (18.8). Thus

‖F (v)‖Lp(0,T ;X0) 6 T
1/pCR,F .

Therefore, letting u = Φ(v) and using the maximal Lp-regularity estimate
(18.6) for the equation which u− zu0 satisfies, we find that

‖u− zu0
‖MRp(0,T ) 6 Cp,A,T ‖F (v)‖Lp(0,T ;X0) 6 Cp,A,1T

1/pCR,F .

Therefore, for 0 < T 6 (Cp,A,1CR,F )−p ∧ 1 we find that u ∈ BT1 (u0).
To check that Φ is a uniform contraction, let vi ∈ BT1 (u0) for i ∈ {1, 2}.

Using the maximal Lp-regularity estimate (18.6) for the equation which u1−u2

satisfies, and (18.5), we find that

‖Φ(v1)− Φ(v2)‖MRp(0,T ) 6 Cp,A,T ‖F (v1)− F (v2)‖Lp(0,T ;X0)

6 Cp,A,1T
1/pψ(NR)‖v1 − v2‖C([0,T ];X

1− 1
p
,p

)

6 Cp,A,1T
1/pψ(NR)Cp‖v1 − v2‖MRp(0,T ),

where in the last step we used (18.7). Therefore, combining both conditions
on T it follows that for T = 1

2 ((Cp,A,1ψ(NR)Cp)
−p ∧ (Cp,A,1CR,F )−p ∧ 1) the

mapping Φ is a uniform contraction on BT1 (u0) with

‖Φ(v1)− Φ(v2)‖MRp(0,T ) 6
1

2
‖v1 − v2‖MRp(0,T ).

By the Banach fixed point theorem, the restriction of Φ to BT1 (u0) has a
unique fixed point u ∈ BT1 (u0). From the definition of Φ, it is immediate that
u is an Lp-solution to (18.4).

It remains to prove the uniqueness. Uniqueness is clear on BT1 (u0), but
we still need to prove uniqueness in the larger set MRp(0, T ). Let u1, u2 ∈
MRp(0, T ) be Lp-solutions to (18.4). Then for every t ∈ [0, T ], by Corollary
L.4.6 (with t-independent constant), (18.6), and the remarks below it, and
(18.5),

‖u1(t)− u2(t)‖X
1− 1

p
,p
6 Cp‖u1 − u2‖MRp(0,t)

6 CpCp,A,T ‖F (u1)− F (u2)‖Lp(0,t;X0)

6 CpCp,A,Tψ(N)‖u1 − u2‖Lp(0,t;X
1− 1

p
,p

),



696 18 Nonlinear parabolic evolution equations in critical spaces

where N is such that ‖ui‖C([0,T ];X
1− 1

p
,p

) 6 N for i ∈ {1, 2}. Therefore, apply-

ing Gronwall’s inequality to ‖u1(t) − u2(t)‖pX
1− 1

p
,p

, we find that u1 ≡ u2 on

[0, T ]. �

Here is a simple example to which Theorem 18.1.2 can be applied. Further
examples will be given in Section 18.3.

Example 18.1.3. Let A ∈ L (X1, X0), where

X0 = Hs,q(Rd) and X1 = Hs+2,q(Rd)

with s ∈ (−2, 0] and q ∈ (1,∞). In the present situation, Theorem 14.4.31

shows that X1− 1
p ,p

= B
s+2− 2

p
q,p (Rd). In order to have a concrete equation in

mind note that one for instance could take A to be a second order differential
operator such as −∆, and we could consider the PDE{

∂tu−∆u = f(u),

u(0) = u0,

where f : R→ R is a given locally Lipschitz function satisfying f(0) = 0.
Suppose now that s+ 2− 2

p −
d
q > 0. Then, by the Sobolev embedding in

Corollary 14.4.27, we have a continuous embedding

X1− 1
p ,p

↪→ Cb(Rd). (18.9)

We claim that the so-called Nemitskii map

F (u)(x) = f(u(x)), x ∈ Rd,

is well defined and locally Lipschitz as a mapping from X1− 1
p ,p

into X0. To

prove this, fix N > 0 and elements u, v ∈ X1− 1
p ,p

satisfying ‖u‖X
1− 1

p
,p
6 N

and ‖v‖X
1− 1

p
,p
6 N . Then, we obtain that for some constant L depending on

f , N , and the embedding constant of (18.9),

‖F (u)− F (v)‖X0
6
(∫

Rd
|f(u(x))− f(v(x))|q dx

)1/q

6 L
(∫

Rd
|u(x)− v(x)|q dx

)1/q

6 LC‖u− v‖X
1− 1

p
,p
,

where in the last step we used (14.22) and Proposition 14.4.18. Taking v = 0
and using the assumption f(0) = 0, one also obtains

‖F (u)‖X0
6 LC‖u‖X

1− 1
p
,p
.

These two estimates prove the claim.
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The above estimates on F are not optimal and the condition on the exponents,
namely, s+2− 2

p−
d
q > 0 turns out to be far from sharp. We also notice that in

the example we can only treat rather smooth initial values u0 ∈ B
s+2− 2

p
q,p (Rd)

(in particular they need to be Hölder continuous). This turns out to be far
from sharp. Both these sharpness issues will be addressed in the next section.

18.2 Local well-posedness for quasi-linear evolution
equations

In the present section and the next, we will study local well-posedness for
quasi-linear evolution equations of the form introduced at the beginning of
Chapter 18, {

u′(t) +A(u(t))u(t) = F (u(t)), t ∈ (0, T ),

u(0) = u0.

We will make several changes to the simple setting considered in Section 18.1.
Besides the fact that the operator A now depends on the solution u, the
changes are as follows:

• The non-linearity is of the form

F = FTr + Fc,

where FTr plays a similar role as in Section 18.1, and Fc is the so-called
critical part of F . We assume that both FTr and Fc are defined on a suitable
subset of Xσ,p (see (18.10) below) with σ ∈ [0, 1− 1

p ], and that Fc satisfies
a suitable polynomial growth condition.

• Weights in time are added (see Corollaries 17.2.37 and 17.2.48). This will
enable us to reduce the smoothness conditions on the initial data. At the
same time, this makes it possible to formulate flexible conditions for global
existence.

• The full range p ∈ [1,∞] will be considered.

In Example 18.3.1 we will see that the new setting takes care of the issues
raised in the discussion after Example 18.1.3.

18.2.a Setting

Turning to the details, as before we make the standing assumption that we
have a continuous embedding of Banach spaces

X1 ↪→ X0.

Without loss of generality we will always assume that the constant in the
embedding is > 1.
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We further fix
p ∈ [1,∞]

and
α ∈ [0, 1

p′ ) ∪ {0},

where 1
p + 1

p′ = 1; we take α > 0 if p = ∞. The exponent α enters into the

weight wα(t) := tα that will be used later. In applications, the choice of α
determines which initial condition u0 can be allowed; larger values of α permit
initial conditions with less smoothness. The exponent

σ := 1− α− 1

p

has already been encountered in Corollary 17.2.37, and will occur frequently
in what follows.

For the sake of notational brevity, we will use the conventions that

(X0, X1)0,r := X0 for r ∈ [1,∞],

Xθ,r := X1
(X0,X1)θ,r

for θ ∈ (0, 1) and r ∈ [1,∞],

Xθ := Xθ,1 for θ ∈ (0, 1).

(18.10)

Note that Xθ,r = (X0, X1)θ,r if θ ∈ (0, 1) and r ∈ [1,∞), because in these
ranges X0 ∩X1 = X1 is dense in (X0, X1)θ,r by Corollary C.3.15. For θ = 0,
Xθ,r = (X0, X1)θ,r holds for all r ∈ [1,∞] by definition.

Remark 18.2.1. There is some flexibility with regard to the choice of the spaces
Xθ in (18.10). These spaces will appear only in the assumptions on the non-
linearity Fc through (18.11) below. The only requirement needed is that Xθ,1

continuously embeds into this space. In the above definition one could for
instance take Xθ to be Xθ,r, [X0, X1]θ, or D((ω + A(u0))θ) for ω ∈ R large
enough.

In addition to the above-stated assumptions on the spaces X0, X1 and the
parameters p, α, σ, we make the following structural assumptions on the
operator A and the non-linearity F .

Assumption 18.2.2. We fix an open set Oσ,p ⊆ Xσ,p and assume:

(1) the initial condition u0 belongs to Oσ,p;
(2) there exists a constant L > 0 such that the mapping A : Oσ,p → L (X1, X0)

satisfies

‖A(u)−A(v)‖L (X1,X0) 6 L‖u− v‖Xσ,p , u, v ∈ Oσ,p;

(3) the mapping F : X1 ∩ Oσ,p → X0 admits a decomposition F = FTr + Fc,
where
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(i) FTr : X1 ∩Oσ,p → X0 and there exists an LTr > 0 such that

‖FTr(u)− FTr(v)‖X0 6 LTr‖u− v‖Xσ,p , u, v ∈ X1 ∩Oσ,p;

(ii) Fc : X1 ∩ Oσ,p → X0 and there exist m > 1, βj ∈ (σ, 1), ρj > 0 for
j ∈ {1, . . . ,m}, and Lc > 0 such that

‖Fc(u)− Fc(v)‖X0 6 Lc

m∑
j=1

(1 + ‖u‖ρjXβj + ‖v‖ρjXβj )‖u− v‖Xβj

(18.11)

for all u, v ∈ X1 ∩Oσ,p, and where

βj 6
1 + ρjσ

1 + ρj
, j ∈ {1, . . . ,m}. (18.12)

Several clarifying comments are in order.
In typical applications, the set Oσ,p is a bounded subset of Xσ,p. In sit-

uations where A, FTr, and Fc are defined on all of Xσ,p (in case of A and
FTr) and X1 (in case of Fc), the constants L,LTr and Lc will increase with
Oσ,p. Thus, although some of the above Lipschitz estimates are formulated
as global Lipschitz conditions on Oσ,p, they should actually be thought of as
local Lipschitz conditions on Xσ,p.

The quasi-linear operator A is Lipschitz on the same space as FTr. In the
semi-linear case the operator A can be taken constant on Oσ,p.

The assumptions on the non-linearity FTr are very similar to the ones in
Theorem 18.1.2 in case α = 0 and p ∈ (1,∞), but for simplicity we chose
to let FTr be defined on the full space (X0, X1)1− 1

p ,p
in that result. Taking

larger values of α leads to more restrictive conditions on FTr. However, at the
same time it will lead to less conditions on the initial data. The mapping FTr

uniquely extends to a continuous mapping on Oσ,p.
A central role is played by the non-linear mapping Fc, where c stands

for “critical”. Let β = maxj∈{1,...,m} βj . By (18.11) and the density of X1

in Xβ we find that Fc uniquely extends to a locally Lipschitz function Fc :

Oσ,p ∩X1
Xβ → X0.

The restriction (18.12) should be seen as a balance between the polynomial
growth rate ρj of the local Lipschitz constant and the regularity exponent βj .
The larger ρj is, the smaller βj needs to be. The case of equality plays a
special role:

Definition 18.2.3 (Criticality). Let Assumption 18.2.2 hold. The space
Xσ,p and the parameter σ are called critical if equality holds in (18.12)
for some j ∈ {1, . . . ,m}. In case of strict inequality in (18.12) for all
j ∈ {1, . . . ,m}, the space Xσ,p and the parameter σ are called sub-critical.
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In applications to concrete non-linear PDEs, the parameters βj and ρj are
determined by spatial Sobolev embedding and the growth order of the poly-
nomial non-linearity. Often, one can choose a minimal σ for which at least
one of the inequalities becomes an equality. After σ has been determined, one
can choose α and p such that σ = 1− α − 1

p holds. Here, p is usually chosen

large (and thus α ∈ [0, 1/p′) ∪ {0} is close to 1− σ), as this leads to the best
time regularity results. Quite often, the critical space (for the initial values)
Xσ,p has some scaling behaviour which fits well to the scaling behaviour of
solutions to the corresponding PDE. If p = ∞, the unweighted case α = 0
cannot be considered due to a technical reason: in the proofs below we need
α+ 1

p > 0.
In the case p = 1, which is allowed in our setting, the other assumptions

enforce α = 0 and σ = 0. In particular, there is not much flexibility for
the function FTr and it needs to be locally Lipschitz on X0. On the other
hand, (18.11) is still quite flexible: for instance if m = 1 one can allow Fc :
X1/(1+ρ) → X0 where growth of power ρ is allowed for the Lipschitz constant.

Remark 18.2.4 (Time-dependent and inhomogeneous settings). It is possible
to extend the above setting to time-dependent mappings A : [0, T ] × Oσ,p →
L (X1, X0) and F : [0, T ] × X1 ∩ Oσ,p → X0. This does not lead to any
major changes as long as the mapping properties of A and F and estimates
are uniform in t ∈ [0, T ] (or the constants in the estimates satisfy a suitable
integrability condition). Usually, A is assumed to be continuous in time, so
that maximal regularity of A(0, u0) can be used in local well-posedness results
in a similar way as we did in Theorem 17.2.51. Continuity in time can be
avoided by introducing a suitable notion of maximal regularity for the case of
time-dependent A.

One can also allow a further inhomogeneity by allowing non-linearities of
the form F = FTr + Fc + f , where f : (0, T ) → X0 satisfies appropriate
integrability assumptions.

We will now proceed to the main theorems on local well-posedness for the
quasi-linear problem {

u′ +A(u)u = F (u), on (0, T ),

u(0) = v0,
(18.13)

where v0 ∈ Oσ,p can be taken as the given u0 or close to u0 in Xσ,p-norm.
Allowing v0 to be taken from a neighbourhood of u0 will be important as we
will also give prove continuous dependence on the initial data. Moreover, it
will be used to obtain criteria for global well-posedness.

Define

MRp
α(0, T ) :=

{
Lpwα(0, T ;X1) ∩W 1,p

wα (0, T ;X0) if p <∞;
Cwα,0((0, T ];X1) ∩ C1

wα,0((0, T ];X0) if p =∞,
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where we recall that the Banach space Cwα,0((0, T ];X1) was defined before
Corollary 17.2.48, and is a closed subspace of L∞wα(0, T ;X1). Similar assertions
hold for its C1-variant.

Definition 18.2.5. Let Assumption 18.2.2 hold. A function u ∈ MRp
α(0, T )

is called a Lpwα -solution to (18.13) on (0, T ) if u takes values in Oσ,p,
A(u)u, F (u) ∈ L1(0, T ;X0), and for all t ∈ [0, T ] we have

u(t)− v0 +

∫ t

0

A(u(s))u(s) ds =

∫ t

0

F (u(s)) ds.

Later on in Lemma 18.2.8, we will see that the integrability assumptions on
A(u)u and F (u) are actually redundant, and that one even has A(u)u, F (u) ∈
Lpwα(0, T ;X0).

18.2.b Main local well-posedness result

The main result of this section is the following local well-posedness for quasi-
linear equations.

Theorem 18.2.6 (Local well-posedness for quasi-linear problems).
Let Assumption 18.2.2 hold. If, for some u0 ∈ Oσ,p, the operator A(u0) has
maximal Lp-regularity (maximal C-regularity if p = ∞) on finite time inter-
vals, then there exist T > 0 and ε > 0 such that for all

v0 ∈ BXσ,p(u0, ε) ⊆ Oσ,p

the problem (18.13) has a unique Lpwα-solution uv0 ∈ MRp
α(0, T ). Moreover,

there exists a constant C > 0 such that for all v0, v1 ∈ BXσ,p(u0, ε) we have

‖uv0 − uv1‖MRpα(0,T ) 6 C‖v0 − v1‖Xσ,p . (18.14)

From Corollary L.4.6 we additionally see that

uv0 ∈ C([0, T ];X1−α− 1
p ,p

) ∩ C((0, T ];X1− 1
p ,p

). (18.15)

This shows that for α > 0, the solution u instantaneously (that is, for
t ∈ (0, T ]) regularises from X1−α− 1

p ,p
to X1− 1

p ,p
. By similar arguments, an

analogous continuous dependence as in (18.14) holds in C([0, T ];X1−α− 1
p ,p

)

and in the weighted space Cwα((0, T ];X1− 1
p ,p

).

The parameters T , ε, and C in Theorem 18.2.6 depend on the choice
of u0 in general. The parameters T and ε need to be small enough for the
conclusions of the theorem to hold. This has several reasons. First of all, ε
must be small because we need BXσ,p(u0, ε) to be contained in Oσ,p. More
importantly, the proof uses the maximal regularity of A(u0) to obtain local
well-posedness of (18.13) with initial value v0, via a perturbation argument
involving the smallness of ‖u0 − v0‖Xσ,p .
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The time T must be small for two reasons. First of all, we need to assure
that u maps [0, T ] to Oσ,p. Secondly, in the proof of the theorem we also
need T to be small in order to be able to use fixed point arguments. This
is hardly surprising: already in the familiar setting of ordinary differential
equations, blow-up can occur in the presence of locally Lipschitz continuous
non-linearities F . Theorem 18.2.15 will provide conditions under which one
can extend the time interval of existence and uniqueness to the full interval
[0,∞). For a special class of semi-linear equations, Theorem 18.2.17 will give
large-time well-posedness for small initial data.

18.2.c Proof of the main result

The proof Theorem 18.2.6 uses a fixed point argument similar to the one of
Theorem 18.1.2. However, the proof is technically more demanding due to the
quasi-linear structure of the problem, the presence of the additional term Fc,
the use of weights, and the admission of the full range p ∈ [1,∞]; some new
ideas are needed to deal with these difficulties.

We will use the following abbreviations to keep the formulas at a reasonable
length. For k ∈ {0, 1} and j ∈ {1, . . . ,m} we let, with notation introduced
earlier,

Ek :=

{
Lpwα(0, T ;Xk) if p <∞
Cwα,0((0, T ];Xk) if p =∞

Yj :=

{
L

(ρj+1)p
wα/(ρj+1)

(0, T ;Xβ∗j
) if p <∞

Cwα/(ρj+1),0((0, T ];Xβ∗j
) if p =∞,

where β∗j :=
1+ρjσ
1+ρj

. Assumption 18.2.2 implies that βj 6 β∗j .

Lemma 18.2.7. Let Assumption 18.2.2 hold. Then for all T > 0 we have
continuous embeddings

MRp
α(0, T ) ↪→ C([0, T ];Xσ,p),

MRp
α(0, T ) ↪→ Yj , j ∈ {1, . . . ,m},

and there exists a constant M1,T > 0 such that for all u ∈ MRp
α(0, T ) and

j ∈ {1, . . . ,m} we have

‖u‖C([0,T ];Xσ,p) + ‖u‖Yj 6M1,T ‖u‖MRpα(0,T ). (18.16)

These constants may be chosen so that supT>1M1,T < ∞. For functions
u ∈ MRp

α(0, T ) satisfying u(0) = 0, the constants M1,T can be replaced by a
constant M1 independent of T > 0.

Proof. For p ∈ [1,∞), the embeddings and estimates follow from Corollar-
ies L.4.6 and L.4.7, where for p = 1 we additionally use Remark L.4.2 and
Proposition L.4.5.
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For p =∞, the same can be done if Yj is replaced by Cwα/(ρj+1)
((0, T ];Xβ∗j

).

To get the embedding into its closed subspace Yj , recall u ∈ MR∞α (0, T ) =
Cwα,0((0, T ];X1) ∩ C1

wα,0((0, T ];X0). Then, for all j ∈ {1, . . . ,m}, by (L.19),

‖u(t)‖Xβ∗
j
6 (1− σ)−1‖u(t)‖λXσ,∞‖u(t)‖1−λX1

,

where λ =
1−β∗j
α =

ρj
1+ρj

. Hence

tα/(ρj+1)‖u(t)‖Xβ∗
j
6 (1− σ)−1‖u‖λC([0,T ];Xσ,∞)(t

α‖u(t)‖X1)1−λ,

and the latter tends to zero as t ↓ 0 since u ∈ E1. This shows that u ∈ Yj . �

Lemma 18.2.8. Let Assumption 18.2.2 hold. Let u, v, z ∈ MRp
α(0, T ) be

given, and assume that u and v take values in Oσ,p. Then we have A(u)z ∈ E0,
Fc(u) ∈ E0, and FTr(u) ∈ C([0, T ];X0). Moreover,

‖A(u)z −A(v)z‖E0
6 L‖u− v‖C([0,T ];Xσ,p)‖z‖E1

and

‖FTr(u)− FTr(v)‖C([0,T ];X0) 6 LTr‖u− v‖C([0,T ];Xσ,p),

‖Fc(u)− Fc(v)‖E0
6

m∑
j=1

C
ρj
βj ,X

Lc

[
T δj + ‖u‖ρjYj + ‖v‖ρjYj

]
‖u− v‖Yj ,

(18.17)

where δj =
αρj

1+ρj
+

ρj
(1+ρj)p

.

This lemma asserts in particular that the integrability assumptions on A(u)u
and F (u) in Definition 18.2.5 are automatically satisfied for functions u ∈
MRp

α(0, T ).

Proof. First consider the case p <∞. By Assumption 18.2.2(2),

‖A(u(t))z(t)−A(v(t))z(t)‖X0 6 L‖u(t)− v(t)‖Xσ,p‖z(t)‖X1 . (18.18)

This gives the required estimate for A. Taking v ≡ u0 ∈ Xσ,p fixed, one also
sees that the function t 7→ A(u(t))z(t) belongs to E0.

By Assumption 18.2.2(3),

‖FTr(u(t))− FTr(v(t))‖X0 6 LTr‖u(t)− v(t)‖Xσ,p .

This implies the estimate for FTr in (18.17); the assumptions on FTr and the
continuity of u : [0, T ] → Xσ,p (see Lemma 18.2.7) imply that t 7→ FTr(u(t))
belongs to C([0, T ];X0).

Next, we have u, v ∈ Yj by Lemma 18.2.7. Moreover, for all j ∈ {1, . . . ,m},
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j

+ ‖v‖ρjXβ∗
j

)‖u− v‖Xβ∗
j

∥∥∥
Lpwα (0,T )

(i)

6
∥∥∥(1 + ‖u‖ρjXβ∗

j

+ ‖v‖ρjXβ∗
j

)‖
L

(ρj+1)p/ρj
wαρj/(ρj+1)

(0,T )
‖u− v‖

L
(ρj+1)p
wα/(ρj+1)

(0,T ;Xβ∗
j

)

(ii)

6
[
T δj + ‖u‖ρjYj + ‖v‖ρjYj

]
‖u− v‖Yj

where in (i) we applied Hölder’s inequality with 1
(1+ρj)

+
ρj

(1+ρj)
= 1 and

in (ii) the definition of Yj and the triangle inequality. The estimate for Fc

in (18.17) now follows from Assumption 18.2.2 and the inequality ‖x‖Xβj 6
Cβj ,X‖x‖Xβ∗

j
(see Proposition L.1.1(2)), where we used that the embedding

constant in X1 ↪→ X0 is > 1, and thus Cβj ,X > 1.
The estimate for FTr immediately extends to p = ∞. The estimates for

A and Fc also extend to p = ∞ if we replace E0 = Cwα,0((0, T ];X0) by
L∞wα(0, T ;X0). In order to obtain the estimates in the E0-norm, it remains
to prove that t 7→ A(u(t))z(t) and t 7→ Fc(u(t)) are continuous on (0, T ] and
tα‖A(u(t))z(t)‖X0 and tα‖Fc(u(t))‖X0 are bounded and tend to zero as t ↓ 0.

To prove continuity for A, we observe that for s, t ∈ (0, T ]

‖A(u(t))z(t)−A(u(s))z(s)‖X0

6 ‖(A(u(t))−A(u(s))z(t)‖X0
+ ‖A(u(s))(z(t)− z(s))‖X0

6 L‖u(t)− u(s)‖Xσ,∞‖z(t)‖X1
+ ‖A(u(s))‖L (X1,X0)‖(z(t)− z(s))‖X1

6
L

tα
‖u(t)− u(s)‖Xσ,∞‖z‖E1

+ ‖A(u(s))‖L (X1,X0)‖(z(t)− z(s))‖X1
.

The latter tends to zero if t→ s, and the desired continuity follows. To prove
the bound and convergence of tα‖A(u(t))z(t)‖X0

, we observe that by (18.18),
applied with v ≡ x ∈ X1 ∩Oσ,p,

‖A(u(t))z(t)‖X0 6 ‖A(x)z(t)‖X0 + ‖A(u(t))z(t)−A(x)z(t)‖X0

6 ‖A(x)‖L (X1,X0)‖z(t)‖X1 + L‖u− x‖C([0,T ];Xσ,p)‖z(t)‖X1 .

Since z ∈ Cwα,0((0, T ];X1), this implies the desired boundedness and conver-
gence.

To prove continuity for Fc, note that by Assumption 18.2.2, for s, t ∈ (0, T ]
we have

‖Fc(u(t))− Fc(u(s))‖X0
6 Lc

m∑
j=1

(1 + ‖u(t)‖ρjXβj+ ‖u(s)‖ρjXβj )‖u(t)− u(s)‖Xβj.

The latter tends to zero as t → s. Indeed, since u ∈ Yj , u : (0, T ] → Xβ∗j
↪→

Xβj is continuous for each j ∈ {1, . . . ,m}. To prove the bound and the con-
vergence for Fc, note that as already mentioned, we have

‖Fc(u)− Fc(v)‖Cwα ((0,T ];X0) 6 Lc

m∑
j=1

C
ρj
βj ,X

(T δj + ‖u‖ρjYj + ‖v‖ρjYj )‖u− v‖Yj .
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From the definitions of δj and Yj it follows that T δj , ‖u‖Yj , ‖v‖Yj → 0 as
T ↓ 0. In particular, the estimate implies that tα‖Fc(u(t))− Fc(v(t))‖X0

→ 0
as t ↓ 0. For v ≡ x with x ∈ X1 ∩ Oσ,p it is clear that tα‖Fc(v)‖X0

→ 0 as
t ↓ 0. Therefore, tα‖F (u(t))‖X0 → 0 as t ↓ 0, and hence F (u) ∈ E0. �

For each v0 ∈ Xσ,p and T > 0, we define the reference solution zv0 ∈
MRp

α(0, T ) as the Lpwα -solution to the following linear problem (see Corol-
laries 17.2.37 and 17.2.48):{

u′ +A(u0)u = 0, on R+,

u(0) = v0.

Clearly, the mapping v0 7→ zv0 is linear.
Let ε, r, T > 0 be fixed for the moment; these parameters will be chosen

small enough shortly. For v0 ∈ BXσ,p(u0, ε) ⊆ Oσ,p consider the following
subset of MRp

α(0, T ):

BTr (v0) = {v ∈ MRp
α(0, T ) : v(0) = v0, ‖v − zu0‖MRpα(0,T ) 6 r}. (18.19)

Note that BTr (v0) is a closed subset of MRp
α(0, T ) by the continuity of the

trace at zero (see Lemma 18.2.7).
To prove local well-posedness for (18.13), we will apply the Banach fixed

point theorem to the mapping Φv0 : BTr (v0)→ BTr (v0) defined by Φv0(v) = u,
where u is the Lpwα -solution to{

u′ +A(u0)u = (A(u0)−A(v))v + F (v), on (0, T ),

u(0) = v0.
(18.20)

Below we will first ensure that BTr (v0) ⊆ Oσ,p for ε, r > 0 small enough, so
that A(v) and F (v) are well-defined. Then from its definition, it is clear that
Φv0 maps BTr (v0) to MRp

α(0, T ). Below we will check that for ε, r, T > 0 small
enough, Φv0 is well defined as a mapping from BTr (v0) to itself by using the
maximal regularity assumption on A(u0) and the mapping properties of A
and F . Note that a function u is an Lpwα -solution to (18.13) if and only if u
is an Lpwα -solution (Cwα -solution if p = ∞) to (18.20) with u = v. Before we
turn to the fixed point argument we need several preparatory lemmas.

Choose ε0 > 0 such that BXσ,p(u0, ε0) ⊆ Oσ,p. Fix T1 > 0 such that

‖zu0
− u0‖C([0,T1];Xσ,p) < ε0/3. (18.21)

By Corollaries 17.2.37 and 17.2.48, there is a constant CT1
such that for every

v0 ∈ Xσ,p we have

‖zv0‖MRpα(0,T1) 6 CT1
‖v0‖Xσ,p . (18.22)

The constant CT1 will depend on T1 in general, but this will not create prob-
lems since T1 is fixed.
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In order to show that A(v) and F (v) in (18.20) are well defined, we need
to check that v(t) ∈ Oσ,p for all t ∈ (0, T ) when ε ∈ (0, ε0), r ∈ (0, 1], and
T ∈ (0, T1] are small enough. This is taken care of in the next lemma.

Lemma 18.2.9. Let Assumption 18.2.2 hold, and let ε0 > 0 be chosen as
before (18.21). For small enough r ∈ (0, 1] and ε ∈ (0, ε0) the following holds:
For all v0 ∈ BXσ,p(u0, ε), all T ∈ (0, T1], and all v ∈ BTr (v0), one has ‖v −
u0‖C([0,T ];Xσ,p) < ε0, and thus v(t) ∈ Oσ,p for all t ∈ [0, T ].

Proof. For notational convenience we write ‖ · ‖∞,T = ‖ · ‖C([0,T ];Xσ,p). For all

v ∈ BTr (v0),

‖v−zv0‖∞,T 6M1‖v − zv0‖MRpα(0,T ) (by (18.16))

6M1‖v − zu0‖MRpα(0,T ) +M1‖zu0 − zv0‖MRpα(0,T1)

6M1r +M1CT1‖u0 − v0‖Xσ,p (by (18.22)).

Therefore, by (18.16), (18.21), and (18.22)

‖v − u0‖∞,T 6 ‖v − zv0‖∞,T + ‖zv0 − zu0
‖∞,T1

+ ‖zu0
− u0‖∞,T1

6M1r + CT1
(M1 +M1,T1

)‖u0 − v0‖Xσ,p + ‖zu0
− u0‖∞,T1

6M1r + CT1
(M1 +M1,T1

)ε+ ε0/3.

(18.23)

This implies the required result for all r, ε > 0 small enough. �

In the next lemma we collect some estimates for A, FTr, and Fc, which will
be used to ensure that Φv0 maps BTr (v0) to itself.

Lemma 18.2.10 (Smallness). Let Assumption 18.2.2 hold. Fix T ∈ (0, T1]
and let ε ∈ (0, ε0) and r ∈ (0, 1] be as in Lemma 18.2.9. Then for all v0 ∈
BXσ,p(u0, ε) and v ∈ BTr (v0) we have

‖(A(v)−A(u0))v‖E0

6
(
M1r +M2,T1ε+ ‖zu0 − u0‖C([0,T ];Xσ,p)

)
(r + ‖zu0‖E1),

‖FTr(v)‖E0
6 Tα+ 1

p
(
LTrε0 + ‖FTr(u0)‖X0

)
,

‖Fc(v)‖E0 6 Cε,r,T (u0)r + Cε,T (u0),

where Cε,r,T (u0) and Cε,T (u0) are independent of v0 and v, Cε,r,T (u0) and
Cε,T (u0) are non-decreasing in each of the variables ε, r, and T , and satisfy
Cε,r,T (u0), Cε,T (u0)→ 0 as ε, r, T ↓ 0.

Proof. We use the short-hand notation ‖ · ‖∞,T := ‖ · ‖C([0,T ];Xσ,p).
As in (18.23), one sees that

‖v − u0‖∞,T 6M1r + CT1
(M1 +M1,T1

)ε+ ‖zu0
− u0‖∞,T .
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Therefore, by Lemma 18.2.8,

‖(A(v)−A(u0))v‖E0

6 L‖v − u0‖∞,T ‖v‖E1

6
(
M1r + CT1(M1 +M1,T1)ε+ ‖zu0 − u0‖∞,T

)
‖v‖E1 .

6
(
M1r + CT1(M1 +M1,T1)ε+ ‖zu0 − u0‖∞,T

)
(r + ‖zu0‖E1).

For FTr we have pointwise estimate

‖FTr(v)‖X0
6 ‖FTr(v)− FTr(u0)‖X0

+ ‖FTr(u0)‖X0

6 LTr‖v − u0‖Xσ,p + ‖FTr(u0)‖X0

6 LTrε0 + ‖FTr(u0)‖X0
,

where in the last step we used Lemma 18.2.9. Taking Lpwα -norms, we obtain

‖FTr(v)‖E0 6 T
α+ 1

p (LTrε0 + ‖FTr(u0)‖X0).

The estimate for Fc is more difficult to obtain. By the second estimate in
(18.17),

‖Fc(v)− Fc(zu0
)‖E0

6
m∑
j=1

C
ρj
βj ,X

Lc

(
T δj + ‖v‖ρjYj + ‖zu0

‖ρjYj
)
‖v − zu0

‖Yj .

It remains to estimate ‖v‖Yj and ‖v − zu0
‖Yj . By (18.16),

‖v − zu0‖Yj 6 ‖v − zv0‖Yj + ‖zv0 − zu0‖Yj
6M1‖v − zv0‖MRpα(0,T ) +M1,T1‖zv0 − zu0‖MRpα(0,T1)

6M1‖v − zu0‖MRpα(0,T ) + (M1 +M1,T1)‖zv0 − zu0‖MRpα(0,T1)

6M1r + (M1 +M1,T1)CT1‖v0 − u0‖Xσ,p
6M1r + (M1 +M1,T1)CT1ε,

applying (18.22) in the penultimate estimate. Similarly,

‖v‖Yj 6 ‖v − zu0
‖Yj + ‖zu0

‖Yj 6M1r + (M1 +M1,T1
)CT1

ε+ ‖zu0
‖Yj .

Combining things, we obtain the estimate

‖Fc(v)‖E0

6 ‖Fc(v)− Fc(zu0)‖E0 + ‖Fc(zu0)‖E0

6
m∑
j=1

C
ρj
βj ,X

Lc

(
T δj + 2(M1r + C̃T1ε+ kj,T (u0))ρj

)
(M1r + C̃T1ε) + kc,T (u0),

where have set C̃T1
= (M1 + M1,T1

)CT1
, kj,T (u0) = ‖zu0

‖Yj , and kc,T (u0) =
‖Fc(zu0

)‖E0
. Note that kj,T (u0) → 0 and kc,T (u0) → 0 as T ↓ 0 since zu0

∈
MRp

α(0, T ) ⊆ Yj and since Fc(zu0
) ∈ E0 by Lemma 18.2.8.
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The estimate ‖Fc(v)‖E0
6 Cε,r,T (u0)r + Cε,T (u0) in the statement of the

lemma now follows, with constants

Cε,r,T (u0) =
m∑
j=1

C
ρj
βj ,X

Lc

(
T δj + 2(M1r + C̃T1

ε+ kj,T (u0))ρj
)
M1

Cε,T (u0) = C̃T1
εM−1

1 Cε,1,T (u0) + kc,T (u0),

where we used that r ∈ (0, 1]. �

Remark 18.2.11. In the last part of the proof one does not have kj,T (u0)→ 0
and kc,T (u0)→ 0 as T ↓ 0 if one were to use maximal L∞wα -regularity or data
u0 in (X0, X1)σ,∞ rather than in the closed subspace Xσ,∞. This is one of
the reasons for working with maximal Cwα -regularity and data in Xσ,∞. It is
also clear from the above proof that α = 0 leads to difficulties if p = ∞. For

example, the estimate for FTr(v) in Lemma 18.2.10 contains a factor Tα+ 1
p

which does not vanish in the limit T ↓ 0 if α = 0 and p =∞.

The final lemma contains Lipschitz variations of the above estimates, which
will be used to show that Φv0 is a uniform contraction.

Lemma 18.2.12 (Lipschitz estimates). Let Assumption 18.2.2 hold. Fix
T ∈ (0, T1] and let ε ∈ (0, ε0) and r ∈ (0, 1] be as in Lemma 18.2.9. Then for
all v1,0, v2,0 ∈ BXσ,p(u0, ε), and all v1 ∈ BTr (v1,0) and v2 ∈ BTr (v2,0),

‖(A(v1)−A(v2))v1‖E0 + ‖(A(u0)−A(v2))(v1 − v2)‖E0

+ ‖FTr(v1)− FTr(v2)‖E0 + ‖Fc(v1)− Fc(v2)‖E0

can be estimated from above by

Lε,r,T (u0)(‖v1 − v2‖MRpα(0,T ) + ‖v1,0 − v2,0‖Xσ,p),

where Lε,r,T (u0) is a constant independent of v1,0, v2,0, v1, v2, non-decreasing
in each of the variables ε, r, T , and satisfying Lε,r,T (u0)→ 0 as ε, r, T ↓ 0.

Proof. We use the short-hand notation ‖ · ‖∞,T := ‖ · ‖C([0,T ];Xσ,p).

First we provide an estimate for ‖v‖∞,T and ‖v − u0‖∞,T for v ∈ BTr (v0)
and v0 ∈ BXσ,p(u0, ε). By (18.22) and (18.16),

‖v‖∞,T 6 ‖zv0‖∞,T + ‖v − zv0‖∞,T
6M1,T1CT1‖v0‖Xσ,p +M1‖v − zv0‖MRpα(0,T )

6 (M1,T1 +M1)CT1‖v0‖Xσ,p +M1‖v‖MRpα(0,T ).

(18.24)

Similarly, setting kT (u0) := ‖zu0 − u0‖∞,T ,
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‖v − u0‖∞,T
6 ‖v − zv0‖∞,T + ‖zv0 − zu0

‖∞,T + kT (u0)

6M1‖v − zv0‖MRpα(0,T ) +M1,T1
‖zv0 − zu0

‖MRpα(0,T1) + kT (u0)

6M1‖v − zu0
‖MRpα(0,T ) + (M1 +M1,T1

)‖zv0 − zu0
‖MRpα(0,T1) + kT (u0)

6M1r + (M1 +M1,T1
)CT1

ε+ kT (u0).

(18.25)

To estimate the first A-term, by Lemma 18.2.8 we obtain

‖(A(v1)−A(v2))v1‖E0
6 L‖v1 − v2‖∞,T ‖v1‖E1

6 L‖v1 − v2‖∞,T (r + ‖zu0
‖E1

).

Therefore, the required estimate follows from (18.24) with v0 = 0.
For the second A-term, we again use Lemma 18.2.8 and obtain

‖(A(u0)−A(v2))(v1 − v2)‖E0
6 L‖u0 − v2‖∞,T ‖v1 − v2‖E1

.

Therefore, the required estimate follows from (18.25).
For the FTr-term, we use Lemma 18.2.8 to obtain

‖FTr(v1)− FTr(v2)‖E0
6 Tα+ 1

pLTr‖v1 − v2‖∞,T .

Therefore, the estimate follows from (18.24) again.
The Fc-term is more difficult to estimate. In the same way as in (18.24)

and (18.25) one shows that

‖v‖Yj 6 (M1,T1 +M1)CT1‖v0‖Xσ,p +M1‖v‖MRpα(0,T ) (18.26)

and

‖v‖Yj 6M1r + (M1 +M1,T1
)CT1

ε+ ‖zu0
‖Yj . (18.27)

By the second estimate in (18.17),

‖Fc(v1)− Fc(v2)‖E0 6
m∑
j=1

C
ρj
βj ,X

Lc

(
T δj + ‖v1‖

ρj
Yj

+ ‖v2‖
ρj
Yj

)
‖v1 − v2‖Yj .

Using (18.26), we find

‖v1 − v2‖Yj 6 (M1,T1
+M1)CT1

‖v1,0 − v2,0‖Xσ,p +M1‖v1 − v2‖MRpα(0,T ).

The required estimate for Fc now follows by applying (18.27) to estimate
‖v1‖

ρj
Yj

and ‖v2‖
ρj
Yj

. �
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After these preparations we are ready to turn to the proof of Theorem 18.2.6.
It will be useful to recall the maximal regularity estimate which follows from
Corollaries 17.2.37 and 17.2.48: for all f ∈ E0 and v0 ∈ Xσ,p there exists a
unique Lpwα -solution (Cwα -solution if p =∞) to the problem{

u′ +A(u0)u = f on (0, T ),

u(0) = v0,

and there exists a constant CT > 0, independent of f and v0, such that

‖u‖MRpα(0,T ) 6 CT ‖f‖E0
+ CT ‖v0‖Xσ,p . (18.28)

This constant CT also depends on A(u0) and p, but we can choose it in such
a way that CT 6 CT1

whenever T < T1; this follows from a weighted version
of (17.25).

Proof of Theorem 18.2.6. Fix ε ∈ (0, ε0) and r ∈ (0, 1] be as in Lemma
18.2.9, and let T ∈ (0, T1]. Let BTr (v0) be as in (18.19). Let Φv0 : BTr (v0) →
MRp

α(0, T ) be defined by Φv0(v) := u, where u is the Lpwα -solution (Cwα -
solution if p =∞) to the problem{

u′ +A(u0)u = (A(u0)−A(v))v + F (v),

u(0) = v0.
(18.29)

Then v takes values in Oσ,p by Lemma 18.2.9, and we have (A(v)−A(u0))v ∈
E0 and F (v) ∈ E0 by Lemma 18.2.10. Below Theorem 18.2.6 we have already
observed that local existence and uniqueness follow if we can show that Φv0
has a unique fixed point.

Since u− zu0
satisfies (18.29) with v0 replaced by v0−u0, by the maximal

regularity estimate (18.28) applied on (0, T1) (see (18.21) for the definition of
T1) we have

‖u− zu0
‖MRpα(0,T ) 6 CA,T1

(
‖u0 − v0‖Xσ,p + ‖(A(u0)−A(v))v + F (v)‖E0

)
6 CA,T1

ε+ C̃ε,r,T r + C̃ε,T ,

applying Lemma 18.2.10 in the last step, and where C̃ε,r,T and C̃ε,T are con-

stants such that C̃ε,r,T → 0 as ε, r, T ↓ 0. Therefore, for r, ε, T > 0 small
enough we obtain ‖u− zu0‖MRpα(0,T ) 6 r, and thus u ∈ BTr (v0).

Next, fix vj,0 ∈ BXσ,p(u0, ε) and vj ∈ BTr (vj,0) for j ∈ {1, 2}. Then u =
Φv1,0(v1)− Φv2,0(v2) solves the problem{
u′ +A(u0)u = (A(u0)−A(v1))v1 − (A(u0)−A(v2))v2 + F (v1)− F (v2),

u(0) = v1,0 − v2,0.

Therefore, by the maximal regularity estimate (18.28),
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‖u‖MRpα(0,T ) 6 CA,T1
(RA +RF ) + CA,T1

‖v1,0 − v2,0‖Xσ,p ,

where

RA : = ‖(A(u0)−A(v1))v1 − (A(u0)−A(v2))v2‖E0

6 ‖(A(v1)−A(v2))v1‖E0
+ ‖(A(u0)−A(v2))(v1 − v2)‖E0

and

RF : = ‖F (v1)− F (v2)‖E0

6 ‖FTr(v1)− FTr(v2)‖E0
+ ‖Fc(v1)− Fc(v2)‖E0

.

From Lemma 18.2.12 we deduce that

‖u‖MRpα(0,T ) 6 CA,T1
Lε,r,T (u0)‖v1 − v2‖MRpα(0,T )

+ CA,T1
(Lε,r,T (u0) + 1)‖v1,0 − v2,0‖Xσ,p .

Choosing ε > 0, r > 0, and T > 0 so small that CA,T1
Lε,r,T (u0) 6 1/2, we

obtain

‖Φv1,0(v1)− Φv2,0(v2)‖MRpα(0,T ) 6
1

2
‖v1 − v2‖MRpα(0,T )

+ (CA,T1 + 1)‖v1,0 − v2,0‖Xσ,p .
(18.30)

The estimate (18.30) allows us to finish the proof of local well-posedness.
By (18.30), Φv0 : BTr (v0)→ BTr (v0) is a uniform contraction, and thus it has
a unique fixed point uv0 ∈ BTr (v0). This is the required solution to (18.13).
Moreover, (18.30) implies that for all v1,0, v2,0 ∈ BXσ,p(u0, ε),

‖uv1,0 − uv2,0‖MRpα(0,T ) 6
1

2
‖uv1,0 − uv2,0‖MRpα(0,T )

+ (CA,T1
+ 1)‖v1,0 − v2,0‖Xσ,p

which implies

‖uv1,0 − uv2,0‖MRpα(0,T ) 6 2(CA,T1 + 1)‖v1,0 − v2,0‖Xσ,p .

This gives (18.14).
It remains to prove uniqueness. Uniqueness does hold if we only consider

solutions in BTr (v0). In order to derive uniqueness for the larger set MRp
α(0, T ),

we will replace ε and T by suitable smaller values ε̃ and T̃ . The above estimates

then show that Φv0 : BT̃r (v0)→ BT̃r (v0) and (18.30) holds with T replaced by

T̃ .
Let ε̃ := min

{
ε, r

8(CA,T1+1)

}
and set

T̃ := inf
{
t ∈ [0, T ] : ‖uu0

− zu0
‖MRpα(0,t) >

r

2

}
,
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where inf ∅ := T . Then, for all v0 ∈ BXσ,p(u0, ε̃),

‖uv0 − uu0
‖MRpα(0,T ) 6 2(CA,T1

+ 1)‖v0 − u0‖Xσ,p 6
r

4
.

In particular,

‖uv0 − zu0
‖MRpα(0,T̃ ) 6 ‖uv0 − uu0

‖MRpα(0,T̃ ) + ‖uu0
− zu0

‖MRpα(0,T̃ ) 6
3r

4
.

We claim that for every v0 ∈ BXσ,p(u0, ε̃), the element uv0 ∈ MRp
α(0, T̃ )

is the unique Lpwα -solution to (18.13). To show this, we will prove the slightly
stronger result (which will play a key role in the construction of the maximal
solution in Section 18.2.d) that, for an τ > 0, if v ∈ MRp

α(0, τ) is an Lpwα -

solution to (18.13), then v ≡ uv0 on [0, T̃ ∧ τ ]. This will give the theorem for

T̃ instead of T .
Let

τv := inf{t ∈ [0, T̃ ∧ τ ] : ‖v − zu0‖MRpα(0,t) > r},

setting inf ∅ := T̃ ∧ τ . Then v|[0,τv ] belongs to Bτvr (v0), and since τv 6 T it
follows that v|[0,τv ] = uv0 |[0,τv ] by uniqueness of the fixed point in Bτvr (v0).
Thus we obtain

‖v − zu0‖MRpα(0,τv) = ‖uv0 − zu0‖MRpα(0,τv) 6 ‖uv0 − zu0‖MRpα(0,T̃ ) < r,

and therefore τv = T̃ ∧ τ . This gives the claimed result. �

18.2.d Maximal solutions

Having established local well-posedness in Theorem 18.2.6, we will now extend
the time interval on which the solution exists to a maximal time interval
[0, Tmax(v0)).

Definition 18.2.13. Let Assumption 18.2.2 hold and assume that v0 ∈ Oσ,p.
A pair (v, Tmax(v0)) is called a maximal Lpwα -solution to (18.13) if Tmax(v0) ∈
(0,∞] and v : [0, Tmax(v0))→ X0 are such that

• for all T ∈ (0, Tmax(v0)), v|(0,T ) belongs to MRp
α(0, T ) and is an Lpwα-

solution to (18.13) on (0, T );
• whenever u ∈ MRp

α(0, T ) is a unique Lpwα-solution to (18.13) for some
T > 0, one has T 6 Tmax(v0) and u ≡ v on (0, T ).

Note that maximal Lpwα -solutions are unique. An even stronger uniqueness
assertion will be derived in Remark 18.2.16 under further restrictions. We will
now show that the solution to (18.13) provided by Theorem 18.2.6 can be
extended to a maximal Lpwα -solution.
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Theorem 18.2.14 (Maximal solutions). Let Assumption 18.2.2 hold, let
u0 ∈ Oσ,p, and suppose that A(u0) has maximal Lp-regularity (C-regularity
if p = ∞) on finite time intervals. Let ε > 0 be as in Theorem 18.2.6, and
let v0 ∈ Oσ,p be such that ‖u0 − v0‖Xσ,p < ε. Then there exists a maximal
Lpwα-solution (u, Tmax(v0)) to (18.13).

Proof. Let us say that an Lpwα -solution v to (18.13) on (0, T ) has the unique-
ness property if for any τ > 0 and any Lpwα -solution u to (18.13) on (0, τ), we
have v ≡ u on [0, T ∧ τ ]. Let Tmax(v0) be the supremum of all T > 0 such
that there exists an Lpwα -solution to (18.13) on (0, T ) with the uniqueness
property. Then Tmax(v0) > 0 by Theorem 18.2.6. Note that the uniqueness
property was established as part of the uniqueness proof. It follows that there
exists a maximal Lpwα -solution u : [0, Tmax(v0))→ X0 to (18.13). �

Theorem 18.2.15 (Global well-posedness for quasi-linear equations).
Let Assumption 18.2.2 hold, and suppose that for all u0 ∈ Oσ,p the operator
A(u0) has maximal Lp-regularity (C-regularity if p = ∞) on finite time in-
tervals. Let v0 ∈ Oσ,p and let v : [0, Tmax(v0)) → X0 be the maximal solution
provided by Theorem 18.2.14. If Tmax(v0) <∞, then either

• limt↑Tmax(v0) v(t) does not exist in Xσ,p, or
• v∗ := limt↑Tmax(v0) v(t) exist in Xσ,p, but v∗ /∈ Oσ,p.

The final assertion in the theorem is called a blow-up criterion. Blow-up cri-
teria can be used to prove global well-posedness. In typical applications, as-
suming Tmax(v0) < ∞, energy estimates can be used to show that v∗ :=
limt↑Tmax(v0) v(t) exists in Oσ,p. This contradicts Theorem 18.2.15 and thus
leads to Tmax(v0) = ∞, i.e., global existence. Further blow-up criteria are
discussed in the Notes.

Proof. Assuming that T0 := Tmax(v0) < ∞ and that v∗ := limt↑T0
v(t) exists

in Xσ,p with v∗ ∈ Oσ,p, a contradiction will be derived.
The idea is to restart the problem at time T0 with initial value v∗ and apply

Theorem 18.2.6 to extend v to a larger time interval [0, T0 + δ]. However, it is
not self-evident that v ∈ MRp

α(0, T0 + δ). This problem will be overcome by
using a compactness argument.

From the continuity of v and the assumption that the limit v∗ at t = T0

exist, it follows that the set

K := {v(t) : t ∈ [0, T0)} ∪ {v∗}

is compact in Xσ,p. By Theorem 18.2.6, for all x ∈ K there exists an open ball
B(x, εx) ⊆ Oσ,p such that for initial values from B(x, εx) we can find an Lpwα -
solution in MRp

α(0, tx) for some tx > 0. Since K is compact, the open cover
{B(x, εx) : x ∈ K} has a finite sub-cover {B(xn, εxn) : n = 1, . . . N}. Let
δ := minn=1,...,N txn . Then for all x ∈ K there exists a unique Lpwα -solution
ux ∈ MRp

α(0, δ) to the problem
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u′ +A(u)u = F (u),

u(0) = x.
(18.31)

Now we are ready to define a suitable extension of v. Let x := v(T0− 1
2δ),

and let ux ∈ MRp
α(0, δ) be as above. Then t 7→ v(T0 − 1

2δ + t) belongs to
MRp

α(0, γ) for all γ ∈ (0, δ) and is an Lpwα -solution to (18.31). Therefore,
uniqueness gives that v(T0 − 1

2δ + t) = ux(t) for all t ∈ [0, δ/2). Now one can
check that the function vext : [0, T0 + δ/2]→ Xσ,p defined by

vext(t) =

{
v(t), t ∈ [0, T0);
ux(t− T0 + 1

2δ), t ∈ [T0 − 1
2δ, T0 + 1

2δ].

is well defined, belongs to MRp
α(0, T + 1

2δ), and is an Lpwα -solution to (18.13)
on (0, T0 + 1

2δ). This contradicts the maximality of T0. �

Under the conditions of Theorem 18.2.15, one can leave out the uniqueness
from the second bullet in Definition 18.2.13. This excludes the existence of an
(non-unique) Lpwα -solution u ∈ MRp

α(0, T ) which extends v.

Remark 18.2.16. Let Assumption 18.2.2 hold, and suppose that for all u0 ∈
Oσ,p the operator A(u0) has maximal Lp-regularity (C-regularity if p = ∞)
on finite time intervals. Let v0 ∈ Oσ,p and let v : [0, Tmax(v0)) → X0 be
the maximal solution provided by Theorem 18.2.14. Now suppose that u ∈
MRp

α(0, T ) is an Lpwα -solution to (18.13) for some T > 0. We claim that
T 6 Tmax(v0) and u ≡ v on (0, T ). To see this, first note that by the uniqueness
property of the proof of Theorem 18.2.14 one has u = v on [0, T ∧ Tmax(v0)).
Thus it remains to show T 6 Tmax(v0). Suppose that T > Tmax(v0). Since
u ∈ MRp

α(0, T ), it follows from Lemma 18.2.7 that

v∗ := lim
t↑Tmax(v0)

v(t) = lim
t↑Tmax(v0)

u(t) = u(Tmax(v0)) exists in Xσ,p,

and v∗ ∈ Oσ,p. This contradicts Theorem 18.2.15 and thus the claim follows.

As a consequence of Theorem 18.2.15 we obtain the following criteria for global
well-posedness for (18.13) in the semi-linear case.

Theorem 18.2.17 (Global well-posedness for semi-linear equations).
Let Assumption 18.2.2 hold for any bounded open set Oσ,p, and that A ∈
L (X1, X0) has maximal Lp-regularity (maximal C-regularity if p = ∞) on
finite time intervals. Then for every v0 ∈ Xσ,p there exists a maximal Lpwα-
solution (v, Tmax(v0)) to (18.13) with Tmax(v0) > 0. Moreover, if either one
of the following holds:

(1) p <∞, sup
t∈[0,Tmax(v0))

‖v(t)‖Xσ,p + ‖v‖Lpwα (0,Tmax(v0);X1) <∞;

(2) p =∞, sup
t∈[0,Tmax(v0))

‖v(t)‖Xσ,∞ + tα‖v(t)‖X1
<∞;
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(3) sup
t∈[0,Tmax(v0))

‖v(t)‖Xσ,p < ∞ and Assumption 18.2.2 holds in the sub-

critical case,

then Tmax(v0) =∞, and thus the Lpwα-solution v exists globally.

Proof. The existence of the maximal solution has already been observed in
Theorem 18.2.14.

We start with a preliminary observation. Fix ρ > 0 and T ∈ (0,∞),
and set β∗ := 1 − (α + 1

p )(1 − 1
ρ+1 ). We claim that for all β ∈ (σ, β∗] and

u ∈ L∞(0, T ;Xσ,p) ∩ Lpwα(0, T ;X1) we have

‖u‖Lhpwα/h (0,T ;(X0,X1)β,1) 6 CT ‖u‖
λ
L∞(0,T ;Xσ,p)‖u‖

1−λ
Lpwα (0,T ;X1)

, (18.32)

where h = ρ+ 1, λ ∈ (0, 1) is given by λ = 1−β
α+ 1

p

, and where CT also depends

on α, h, p and is non-decreasing in T . From the assumption on β it follows
that λ ∈ [1− 1

1+ρ , 1). Moreover, if β < β∗, one even has λ > 1− 1
ρ+1 . To prove

(18.32), note that by (C.6), Theorem L.3.1, and (L.2),

‖u(t)‖β,1 6 C‖u(t)‖((X0,X1)σ,p,X1)1−λ,1

6 C‖u(t)‖λσ,p‖u(t)‖1−λX1
,

with the understanding that ‖u(t)‖σ,p needs to be replaced by ‖u(t)‖X0 in the
case p = 1. Taking Lhpwα/h(0, T )-norms on both sides gives

‖u‖Lhpwα/h (0,T ;(X0,X1)β,1) 6 C‖u‖
λ
L∞(0,T ;Xσ,p)‖u‖

1−λ
L
hp(1−λ)
wα/(hp(1−λ)) (0,T ;X1)

6 CT ‖u‖λL∞(0,T ;Xσ,p)‖u‖
1−λ
Lpwα (0,T ;X1)

,

where we used h(1− λ) = (1 + ρ)(1− λ) 6 1.

(1): Suppose, for a contradiction, that Tmax(v0) < ∞. Let Oσ,p ⊆ Xσ,p

be a bounded open set such that v([0, Tmax(v0))) ⊆ Oσ,p. Taking β = β∗j
and h = ρj + 1 in (18.32), we obtain u ∈ Yj for every j, and thus Fc(v) ∈
Lpwα(0, Tmax(v0);X0) by Lemma 18.2.8. Since FTr : Oσ,p → X0 has linear
growth, it is straightforward to check that

FTr(v) ∈ L∞(0, Tmax(v0);X0) ⊆ Lpwα(0, Tmax(v0);X0).

Therefore, maximal Lp-regularity of A implies that v ∈ MRp
α(0, Tmax(v0)). In

particular, limt↑Tmax(v0) v(t) exists in Xσ,p (see Lemma 18.2.7). This contra-
dicts Theorem 18.2.14. It follows that Tmax(v0) =∞.

(2): This can be proved similarly, this time using maximal C-regularity.

(3): Suppose, for a contradiction, that Tmax(v0) < ∞. Let Oσ,p be as in
the proof of (1), and let T ∈ (0, Tmax(v0)). As before, it suffices to prove
v ∈ MRp(0, Tmax(v0)).
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By maximal regularity (see Corollaries 17.2.37 and 17.2.48) we can esti-
mate

‖v‖MRp(0,T ) 6 C(‖v0‖Xσ,p + ‖Fc(v)‖Lpwα (0,T ;X0) + ‖FTr(v)‖Lpwα (0,T ;X0)),

(18.33)

where the constant C depends on Tmax(v0), but not on T . As before,
‖FTr(v)‖Lpwα (0,T ;X0) can be estimated above by K(1 + ‖v‖L∞(0,Tmax(v0);Xσ,p)).
The Fc-term is more complicated to handle; this is where the subcriticality
enters. Set

Y j :=

{
L

(ρj+1)p
wα/(ρj+1)

(0, T ;Xβj ) if p <∞;

Cwα/(ρj+1),0((0, T ];Xβj ) if p =∞.

Fix x ∈ Oσ,p∩X1. Repeating the proof of the second estimate in (18.17) with
β∗j replaced by βj , we obtain

‖Fc(v)‖Lpwα (0,T ;X0) 6 ‖Fc(v)− Fc(x)‖Lpwα (0,T ;X0) + ‖Fc(x)‖Lpwα (0,T ;X0)

6 Lc

m∑
j=1

(
T δj + ‖v‖ρj

Ỹj
+ ‖x‖ρj

Ỹj

)
‖v − x‖ρj

Ỹj

6 Lc

m∑
j=1

Cj,x + ‖v‖ρj+1

Ỹj
,

where in the last step we used Young’s inequality in the form aρb 6 aρ+1 +
bρ+1, and the constant Cj,x depends on Tmax(v0) but not on T . Let

M := sup
t∈[0,Tmax(v0))

‖v(t)‖Xσ,p .

By (18.32) with h = ρj + 1, β = βj , and λj =
1−βj
α+ 1

p

, we find that

‖v‖ρj+1

Ỹj
6 Cρj+1

T Mλj(ρj+1)‖v‖(1−λj)(ρj+1)

Lpwα (0,T ;X1)

6 Cρj+1
T Cj,εM

(λj(ρj+1))/(1−βj) + ε‖v‖Lpwα (0,T ;X1),

where we used βj = (1 − λj)(ρj + 1) ∈ (0, 1) by subcriticality, and we used
Young’s inequality in the form abβj 6 ε−βj/(1−βj)a1/(1−βj) + εb for arbitrary
ε > 0. Taking

∑m
j=1 this results in the estimate

‖Fc(v)‖Lpwα (0,T ;X0) 6 CM,ε + Lcmε‖v‖Lpwα (0,T ;X1).

Combining this estimate with (18.33), we obtain

(1− CεLcm)‖v‖MRp(0,T ) 6 C(‖v0‖Xσ,p + ‖FTr(v)‖Lpwα (0,T ;X0)).

Setting ε = (2CLcm)−1 and letting T tend to Tmax(v0), it follows that v ∈
MRp(0, Tmax(v0)). �
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18.3 Examples and comparison

In order to understand the assumptions on the non-linearity Fc in Assump-
tion 18.2.2, we will now discuss in detail a standard situation, and make a
comparison with Example 18.1.3 which involved only the non-linearity FTr.

Example 18.3.1 (Critical spaces and non-linearities). Let

X0 := Hs,q(Rd), X1 := Hs+2,q(Rd)

with s ∈ (−2, 0] and q ∈ (1,∞). Since s + 2 > 0, powers of functions in X1

are well defined. Notice that X1 features two more derivatives than X0; this
is the typical situation encountered in applications to PDEs with a leading
term of second order. Note that (see Theorem 5.6.9)

[X0, X1]β = Hs+2β,q(Rd)

and
Xσ,p = Bs+2σ

q,p (Rd),

where p ∈ (1,∞) (extensions to the end-points are possible, but not considered
here for simplicity) and σ ∈ (0, 1/p′] are arbitrary but fixed for the moment.

Suppose now that f ∈ C1(R) satisfies

f(0) = 0 and |f ′(t)| 6 `|t|ρ, t ∈ R, (18.34)

for a suitable exponent ρ > 0 and constant ` > 0. Let Fc : X1 → X0 be given
by

(Fc(u))(x) := f(u(x)), x ∈ Rd.

Then Fc is well-defined and Lipschitz on bounded subsets of Xβ under suitable
conditions. Indeed, for all u, v ∈ X1,

‖Fc(u)−Fc(v)‖X0

= ‖f(u)− f(v)‖Hs,q
6 C‖f(u)− f(v)‖r (Sobolev embedding)

6 C`‖(|u|ρ + |v|ρ)(u− v)‖r (mean value theorem)

6 C`(‖u‖ρ(ρ+1)r + ‖v‖ρ(ρ+1)r)‖u− v‖(ρ+1)r (Hölder inequality)

6 C`(‖u‖ρXβ + ‖v‖ρXβ )‖u− v‖Xβ (Sobolev embedding),

provided we impose some further restrictions in order to justify the application
of the Sobolev embeddings. Specifically, the first Sobolev embedding can be
applied if −dr = s− d

q and 1 < r 6 q, which leads to the condition

s > − d
q′
. (18.35)
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The second Sobolev embedding can be applied if

s+ 2β − d

q
= − d

(ρ+ 1)r
, and q 6 (ρ+ 1)r,

which after substitution of the identity −dr = s− d
q leads to the condition

s+ 2β − d

q
=

1

ρ+ 1

(
s− d

q

)
and q 6

dq(ρ+ 1)

d− qs
.

Thus we arrive at the conditions

β =
ρ

2(ρ+ 1)

(d
q
− s
)

and s > −dρ
q
. (18.36)

Sobolev embeddings can also be applied in sub-optimal cases, but here we wish
to demonstrate certain optimality and scaling behaviour which is present only
if all Sobolev embeddings are sharp.

Combining (18.36) with the (sub)criticality condition (18.12), we obtain

ρ
(d
q
− s
)
6 2 + 2ρσ,

and criticality holds if

σ =
1

2

(d
q
− s
)
− 1

ρ
.

Since σ ∈ (0, 1/p′] we arrive the following condition on (q, s) to obtain a
critical setting:

0 <
1

2

(d
q
− s
)
− 1

ρ
6

1

p′
. (18.37)

If (18.37) holds for some p, then it also holds for all larger values of p,
and one can take the limit p → ∞. Thus (18.35), (18.36), (18.37), and the
assumption s ∈ (−2, 0] imply

max
{
− 2 +

d

q
− 2

ρ
,−2,− d

q′

}
< s <

d

q
− 2

ρ
, and − dρ

q
6 s 6 0. (18.38)

In the converse direction, if (18.38) holds, then (18.37) holds for large enough
p, so the existence of a triple (p, q, s) satisfying the aforementioned conditions
is equivalent to (18.38).

Elementary computations show that we can find pairs (s, q) satisfying these
conditions holds if and only if

ρ >
2

d
and

2

ρ(ρ+ 1)
<
d

q
. (18.39)

In this case, the corresponding critical space for the initial data is given by



18.3 Examples and comparison 719

Xσ,p = Bs+2σ
q,p (Rd) = B

d
q−

2
ρ

q,p (Rd). (18.40)

An interesting feature of (18.40) is that the parameter s does not appear in
the critical space Xσ,p and the smoothness parameter is independent of p.

Remark 18.3.2. The homogeneous variant of B
d
q−

2
ρ

q,p (Rd) scales as ‖u(λ·)‖ h
λ

2
ρ ‖u‖. It follows from this that if u is a solution to a PDE with leading

second order differential operator in the space variables, with non-linearity
f(u) = k|u|ρ+1 (or similar scaling behaviour), and with initial data u0, then

(t, x) 7→ λ
2
ρu(λ2t, λx) is a solution to the same equation with initial data

λ
2
ρu0(λ·). This shows that the scaling of the space we encountered in (18.40)

is the correct one (up to being a inhomogeneous Besov space).
Specialising to the case d

q −
2
ρ = 0 and taking p large enough, we also see

that one can consider initial data from Lq(Rd), as this spaces embeds into
B0
q,p(Rd). This space has the same scaling behaviour as just discussed.

In (18.40) the limiting case where q = 1
2dρ(ρ+ 1) shows that we can ‘almost’

treat initial data from the space B
−2/(ρ+1)
q,p (Rd). The less important so-called

microscopical tuning parameter p in (18.40) needs to be so large that (18.37)
holds.

Unlike in Example 18.1.3, it now becomes possible to take the special
structure of f into account. The space of initial data which we could consider

in the example was B
s+2− 2

p
q,p (Rd) with s ∈ (−2, 0] and s+2− 2

p −
d
q > 0. Under

these restrictions, the smoothness parameter satisfies s+2− 2
p >

d
q , which leads

to a much smaller class of initial data than considered in (18.40). Introducing
weights in the set-up of Example 18.1.3, does not change anything.

Remark 18.3.3. When Rd is replaced by a bounded domain, the condition
(18.34) on f in Example 18.3.1 can be weakened to

|f ′(t)| 6 `(1 + |t|ρ), t ∈ R.

Indeed, the step where Hölder’s inequality is used can then be replaced by

‖(1 + |u|ρ + |v|ρ)(u− v)‖r 6 C`(1 + ‖u‖ρ(ρ+1)r + ‖v‖ρ(ρ+1)r)‖u− v‖(ρ+1)r.

Similarly, one can check that f(0) is allowed to be non-zero.

We finish this section with an example illustrating how Theorems 18.2.6 and
18.2.15 can be applied to obtain local and global well-posedness for certain
concrete PDEs.

Example 18.3.4 (Local well-posedness for the Allen-Cahn equation). On Rd
with d > 2 (the case d = 1 can be included by making subcritical choices) we
consider the so-called Allen-Cahn equation
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∂tu−∆u = −u3 + u,

u(0) = u0.
(18.41)

This equation fits into the setting discussed in Example 18.3.1 with X0 =
Hs,q(Rd) and X1 = Hs+2,q(Rd) for suitable (q, s). Indeed, taking ρ = 2, one
checks that (18.39) holds if 1 < q < 3d. Let s ∈ (−2, 0] be such that (18.38)
holds with ρ = 2, and set σ := 1

2 (dq − s)−
1
2 . Choose p ∈ (1,∞) so large that

(18.37) holds. Then, by Example 18.3.1, F (u) = −u3 satisfies the Assumption
18.2.2. We choose to include the linear part of −u3 + u into the operator A.
Another possibility would be to put it into F as well, and consider ρ1 = 2 and
ρ2 > 0 arbitrary small.

From Example G.5.6 it follows that for s = 0 the operator Au = −∆u−u
on X0, with domain X1, is sectorial of angle zero. Moreover, by Theorems
17.4.1 and 17.2.26, A has maximal Lp-regularity on finite time intervals for
all p ∈ (1,∞). Since the Bessel potentials (1 − ∆)t/2 commute with ∆, the
maximal Lp-regularity extends to the full range s ∈ R.

From now on we view (18.41) as an abstract problem of the form (18.13).
In particular, we say that (18.41) admits a (maximal) (p, q, s, σ)-solution if
(18.13) has a (maximal) Lpwα -solution. Applying Theorems 18.2.6 and 18.2.14,

it follows that for every u0 ∈ Oσ,p = Xσ,p = B
d
q−1
q,p (Rd) (see (18.40)), the prob-

lem (18.41) admits a maximal (p, q, s, σ)-solution (u, Tmax(u0)). Moreover,

u ∈W 1,p
wα (0, T ;Hs,q(Rd)) ∩ Lpwα(0, T ;Hs+2,q(Rd))

∩ C([0, T ];B
d
q−1
q,p (Rd)) ∩ C([τ, T ];B

s+2− 2
p

q,p (Rd))
(18.42)

for all 0 < τ < T < Tmax(u0), where we used the instantaneous regularisation
stated in (18.15).

Global well-posedness can often be obtained via Theorem 18.2.17, but to
apply it to the rough initial data considered in the above example requires
first performing a (weighted) bootstrap argument to obtain enough regular-
ity in space and time. After that, suitable energy estimate can be applied.
Bootstrapping regularity will not be discussed here (a concise discussion of
this technique is included in the Notes). Instead, we will only prove global
well-posedness for sufficiently smooth initial data. This is done in the next
example. In particular, all initial data u0 ∈ Lq(Rd) for q ∈ (d, 2d) are covered
if d ∈ {2, 3, 4, 5, 6}.

Example 18.3.5 (Global well-posedness for the Allen-Cahn equation). Consider
again the problem (18.41) in dimension d > 2. In order to obtain that u
takes values in H1,q(Rd), the smallest value of s which we can allow (without
bootstrapping) is s = −1. Let q ∈ (d2 , 2d) and p ∈ (2,∞) are such that
d
q + 2

p 6 2 (see (18.37)), and set ρ := 2, σ := d
2q , and α := 1 − 1

p − σ. These
choices form a special case of Example 18.3.4, and in particular they lead to
a critical setting.
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Let u0 ∈ B
d
q−1
q,p (Rd); note that this space contains Lq(Rd) if q > d. By

the result of Example 18.3.4, the problem (18.41) admits a (unique) maximal
(p, q, s, σ)-solution, and for all 0 < τ < T < Tmax(u0) we have

u ∈ Lp(τ, T ;H1,q(Rd)) ∩ C([τ, T ];B
1− 2

p
q,p (Rd)).

We will show global existence, i.e., Tmax(u0) =∞, under the more restrictive
conditions

max{d, 2d− 6} < q < 2d and 2 < p 6
2q

2d− q
. (18.43)

For d = 2 we can take q ∈ (2, 4) and p ∈ (2, 2q/(4 − q)]. For d = 3 we can
take q ∈ (3, 6) and p ∈ (2, 2q/(6−q)]. We do not claim this is optimal, and we
expect that by further bootstrapping some of these conditions can be omitted.

Step 1 – Assuming that Tmax(u0) < ∞, we will derive a contradiction
with Theorem 18.2.17(1). For the latter it suffices to use Step 2 below. How-
ever, we prefer to show the techniques to check Theorem 18.2.17(1) since
this can be useful for other situations. This boils down to showing that
u ∈ Lpwα(0, T ;H1,q(Rd)) and

sup
t∈[0,Tmax(v0))

‖u(t)‖
B
d
q
−1

q,p (Rd)
<∞.

By (18.42), both assertions are clear on [0, τ ] for any τ < Tmax(v0). Thus it
suffices to show that, for some τ > 0,

u ∈ Lp(τ, Tmax(u0);H1,q(Rd)) and sup
t∈[τ,Tmax(u0))

‖u(t)‖
B
d
q
−1

q,p (Rd)
<∞.

(18.44)

Step 2 – We show the second part of (18.44). Since d
q − 1 < 0, by the easy

embeddings of (14.23) and Proposition 14.4.18, it is enough to show that

sup
t∈[τ,Tmax(u0))

‖u(t)‖Lq(Rd) <∞.

The idea will be to apply the chain rule of Lemma 18.3.6 below. For this we
need that u3 ∈ L1(τ, T ;Lq) for 0 < τ < T < Tmax(u0). To see this, note that
by Sobolev embedding with θ − d

q = − d
3q and interpolation,

‖u3‖Lq = ‖u‖3L3q 6 C‖u‖3Hθ,q 6 C
′‖u‖3(1−θ)

Lq ‖u‖3θH1,q .

As observed before, the Lq-norm of u is uniformly bounded on [τ, T ]. Thus for
the integrability of ‖u3‖Lq in time it remains to note that u ∈ Lp(τ, T ;H1,q) ↪→
L3θ(τ, T ;H1,q) since p > 2 > 2d

q = 3θ.
Applying the chain rule to the identity
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u(t)− u(τ) =

∫ t

τ

∆u(r)dr +

∫ t

τ

−u3(r) + u(r) dr, t ∈ [τ, T ],

we see that

‖u(t)‖q
Lq(Rd)

= ‖u(τ)‖q
Lq(Rd)

− q(q − 1)

∫ t

τ

∫
Rd
|u|q−2|∇u|2 dx dr

+ q

∫ t

τ

∫
Rd
|u|q−2(−u4 + u2) dx dr

6 ‖u(τ)‖q
Lq(Rd)

+ q

∫ t

τ

‖u(r)‖q
Lq(Rd)

dr.

(18.45)

Therefore, by Gronwall’s lemma applied to t 7→ ‖u(t)‖q
Lq(Rd)

,

‖u(t)‖q
Lq(Rd)

6 ‖u(τ)‖q
Lq(Rd)

eq(t−τ).

Since we assumed Tmax(u0) <∞, this implies the desired bound

N := sup
t∈[τ,Tmax(u0))

‖u(t)‖q
Lq(Rd)

6 ‖u(τ)‖q
Lq(Rd)

eqTmax(u0) <∞. (18.46)

As a consequence of (18.45), we also find that∫ Tmax(u0)

τ

∫
Rd
|u|q−2|∇u|2 dx dr 6 Cq,Tmax(u0)‖u(τ)‖q

Lq(Rd)
, (18.47)

where Cq,Tmax(u0) = (1+qTmax(u0))
q(q+1) eq(Tmax(u0)).

Step 3 – By (18.42) we have u(τ) ∈ B
1− 2

p
q,p = (X0, X1)1− 1

p ,p
. Therefore,

if we can show that −u3 + u belongs to Lp(τ, Tmax(u0);H−1,q(Rd)), the first
part of (18.44) follows from maximal Lp-regularity applied on the interval
(τ, Tmax(u0)) with inhomogeneity u− u3.

It is clear from Step 2 that u has the required regularity, so it remains to
consider the term u3. By Sobolev embedding,

‖u3‖Lp(τ,Tmax(u0);H−1,q(Rd)) 6 C‖u3‖
Lp(τ,Tmax(u0);L

qd
q+d (Rd))

= C‖u‖3L3p(τ,Tmax(u0);Lq0 (Rd)),

where q0 = 3qd
q+d . To prove that the latter is finite, note that by Sobolev

embedding with θ− d
2 = − dq

2q0
(then θ ∈ (0, 1] by (18.43) and 2q0/q > 2 since

q < 2d),

‖u‖q/2
Lq0 (Rd)

= ‖|u|q/2‖L2q0/q

6 C0‖|u|q/2‖Hθ,2
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6 C1‖|u|q/2‖1−θL2(Rd)
‖|u|q/2‖θW 1,2(Rd)

6 C2

[
‖|u|q/2‖L2(Rd) + ‖|u|q/2‖1−θ

L2(Rd)
‖∇|u|q/2‖θL2(Rd)

]
= C2

[
‖u‖q/2

Lq(Rd)
+ ‖u‖q(1−θ)/2

Lq(Rd)

qθ

2θ

(∫
Rd
|u|q−2|∇u|2 dx

)θ/2]
.

6 C2

[
N1/2 +N (1−θ)/2 q

θ

2θ

(∫
Rd
|u|q−2|∇u|2 dx

)θ/2]
,

where we used (18.46). Therefore, u ∈ L3p(τ, Tmax(u0);Lq0(Rd)) follows if we
can check that ∫ Tmax(u0)

τ

(∫
Rd
|u|q−2|∇u|2 dx

)3pθ/q

dt <∞.

The latter follows from (18.47) since our choice of θ satisfies θ 6 q
3p , which

follows from (18.43).

The following chain rule was used in Example 18.3.5.

Lemma 18.3.6 (Chain rule in the weak setting). Let q ∈ [2,∞) and
p ∈ (1,∞). Suppose that u ∈ C([τ, T ];Lq(Rd)) ∩ Lp(τ, T ;H1,q(Rd)), G ∈
Lp
′
(τ, T ;Lq(Rd;Rd)), and g ∈ L1(τ, T ;Lq(Rd)) are such that for all t ∈ [τ, T ]

u(t) = u(τ) +

∫ t

τ

∇ ·G(s) ds+

∫ t

τ

g(s) ds, (18.48)

where the equality is meant in the space H−1,q(Rd). Then

‖u(t)‖q
Lq(Rd)

= ‖u(τ)‖q
Lq(Rd)

−q(q − 1)

∫ t

τ

〈G(s), |u(s)|q−2∇u(s)〉 ds

+ q

∫ t

τ

〈g(s), |u(s)|q−2u(s)〉 ds,
(18.49)

where the duality pairing is in (Lq, Lq
′
) in both cases.

In view of the Mihlin multiplier theorem (see Theorem 5.5.10),

‖∇·G‖H−1,q(Rd) =
∥∥∥F−1[ξ 7→ 2πiξ

(1 + |ξ|2)1/2
·Ĝ(ξ)]

∥∥∥
Lq(Rd)

6 Cp,d‖G‖Lq(Rd;Rd),

and therefore the integral of ∇ ·G exists as a Bochner integral in H−1,q(Rd).

Proof. Without loss of generality we may assume that τ = 0. First we es-
tablish some boundedness properties which also show the well-definedness
of the integrals appearing in (18.49). For all v ∈ L∞(0, T ;Lq(Rd)) and
w ∈ Lp(0, T ;Lq(Rd)), by Hölder’s inequality in the space variables with
1
q + q−2

q + 1
q = 1, and subsequently in the time variable with 1

p + 1
p′ = 1,
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0

∫
Rd
|G| |v|q−2|w| dx ds

6
∫ T

0

‖G‖Lq(Rd;Rd)‖v‖
q−2
Lq(Rd)

‖w‖Lq(Rd) ds

6 ‖v‖q−2
L∞(0,T ;Lq(Rd))

‖G‖Lp′ (0,T ;Lq(Rd;Rd))‖w‖Lp(0,T ;Lq(Rd)).

(18.50)

In a similar way one proves that∫ T

0

∫
Rd
|g| |v|q−1 dx ds 6 ‖g‖L1(0,T ;Lq(Rd))‖v‖

q−1
L∞(0,T ;Lq(Rd))

.

Let ϕ ∈ C∞c (Rd) be such that
∫
Rd ϕ dx = 1, and let ϕn := ndϕ(n·). By

Theorem 2.3.8, for all f ∈ L1
loc(Rd) we have

ϕn ∗ f → f and |ϕn ∗ f | 6Mf almost everywhere, (18.51)

where M denotes the Hardy–Littlewood maximal operator.
Taking convolutions in (18.48), we obtain

un(t)− un(0) =

∫ t

0

∇ ·Gn(s) ds+

∫ t

0

gn(s) ds,

where un = ϕn ∗ u, ∇Gn = ∇ · (ϕn ∗ G) = ϕn ∗ (∇ · G), and gn = ϕn ∗ g.
Fix x ∈ Rd and let R > 0 be so large that |u(s, x)| 6 R for all s ∈ [0, T ]. Let
ζ ∈ C2

c (R) be such that ζ(y) = |y|q for |y| 6 R. Note that ζ ′(y) = |y|q−2y
and ζ ′′(y) = |y|q−2 for |y| 6 R. Applying the chain rule for weak derivatives
in time to the function t 7→ ζ(u(t, x)), we obtain

|un(t, x)|q = |un(0, x)|q + q

∫ t

0

|un(s, x)|q−2un(s, x)∇ ·Gn(s, x) ds

+ q

∫ t

0

q|un(s, x)|q−2un(s, x)gn(s, x) ds.

Integrating over Rd and using Fubini’s theorem and integrating by parts, we
obtain

‖un(t)‖q
Lq(Rd)

= ‖un(0)‖q
Lq(Rd)

− q(q − 1)

∫ t

0

〈Gn(s), |un(s)|q−2∇un(s)〉 ds

+

∫ t

0

q〈gn(s), |un(s)|q−2un(s)〉 ds.

From the observation (18.51) we deduce that un → u in Lq(Rd) pointwise in
[0, T ], un → u in Lp(0, T ;H1,q(Rd)), Gn → G in Lp

′
(0, T ;Lq(Rd)), and gn → g

in L1(0, T ;Lq(Rd)). Thus it remains to let n → ∞ in the above identity and
use the boundedness/continuity properties from the beginning of the proof
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to obtain convergence. Indeed, after extracting almost everywhere convergent
subsequences and relabelling, convergence follows by dominated convergence.
For instance, for the first term,∫ T

0

∫
Rd
|un|q−2Gn · ∇un dx ds→

∫ T

0

∫
Rd
|u|q−2G · ∇u dx ds

follows since |un|q−2Gn · ∇un is dominated by |Mu|q−2MGM |∇u|, which is
an integrable function by (18.50) and the boundedness of M on Lq(Rd). �

18.4 Long-time existence for small initial data and
F = Fc

Short-time existence and uniqueness has been proved in Theorems 18.1.2 and
18.2.6 In this section we prove that, under suitable conditions, for initial val-
ues with small norm in Xσ,p one can obtain well-posedness on arbitrary long
time intervals [0, T ]. This result is typical for the semi-linear setting. The as-
sumptions on F will be similar to the ones of Section 18.2. However, we will
assume that F = Fc, F (0) = 0, and replace (18.11) by the slightly more re-
strictive condition (18.52) below. Moreover, we assume A ∈ L (X1, X0), and
thus we only consider the semi-linear setting.

Theorem 18.4.1 (Semi-linear equations with small initial data). Let
p ∈ [1,∞] and α ∈ [0, 1

p′ ) ∪ {0}, where we take α > 0 if p = ∞. Let σ =

1−α− 1
p ∈ [0, 1/p′]∩ [0, 1). Let X0 and X1 be Banach spaces such that X1 ↪→

X0 with embedding constant CX > 1. Let Oσ,p ⊆ Xσ,p be an open set and
suppose that 0 ∈ Oσ,p. Let A ∈ L (X1, X0) and suppose that A has maximal
Lp-regularity (C-regularity if p = ∞) on finite time intervals. Suppose that
Fc : X1 ∩Oσ,p → X0 is such that Fc(0) = 0 and

‖Fc(u)− Fc(v)‖X0
6 Lc

m∑
j=1

(‖u‖ρjXβj + ‖v‖ρjXβj )‖u− v‖Xβj (18.52)

for all u, v ∈ X1 ∩ Oσ,p, where βj ∈ (σ, 1), ρj > 0 are such that βj 6
1+ρjσ
1+ρj

for j ∈ {1, . . . ,m}. Then for every T ∈ (0,∞) there exist ε > 0 such that for
each ‖v0‖Xσ,p 6 ε, the problem{

u′ +Au = F (u), on (0, T ),

u(0) = v0,
(18.53)

has a unique Lpwα-solution uv0 ∈ MRp
α(0, T ). Moreover, there is a C > 0 such

that for all ‖v0‖Xσ,p , ‖v1‖Xσ,p 6 ε,

‖uv0 − uv1‖MRpα(0,T ) 6 C‖v0 − v1‖Xσ,p . (18.54)

If additionally, A has maximal Lp-regularity (C-regularity if p = ∞) on R+

and 0 ∈ %(A), then the above holds with (0, T ) replaced by R+.
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Proof. In the proof we use the notation Ej = Lpwα(0, T ;Xj). Let u0 = 0 and
set T1 = T . Without loss of generality we may assume T > 1 and r 6 1. Let
Φv0 : BTr (v0) → MRp

α(0, T ) be defined by Φv0(v) := u, where u is the unique
Lpwα -solution to {

u′ +Au = F (v),

u(0) = v0.

Note that for r ∈ (0, 1] and ε > 0 small enough, v takes values in Oσ,p by
Lemma 18.2.9, and by Lemma 18.2.10 we have F (v) ∈ E0. Below Theorem
18.2.6, it has already been observed that local existence and uniqueness follow
if we can show that Φv0 has a unique fixed point.

By the maximal regularity estimate (18.28) we have u ∈ MRp
α(0, T ), u(0) =

v0, and

‖u‖MRpα(0,T ) 6 CA,T ‖v0‖Xσ,p + CA,T ‖F (v)‖E0

6 CA,T ε+ CA,TCLc

m∑
j=1

‖v‖ρj+1

MRpα(0,T )

6 CA,T ε+ CA,TCLc

m∑
j=1

rρj+1,

where the estimate for F (v) follows from Lemmas 18.2.7 and 18.2.8, the con-
stant C can be taken T -independent since T > 1, and we used (18.19) with
u0 = 0 and zu0

= 0. Note that the terms T δj can be avoided due to the more
restrictive condition (18.52). The above estimate shows that for r, ε > 0 small
enough, ‖u‖MRpα(0,T ) 6 r, and thus u ∈ BTr (v0).

Next, fix vj,0 ∈ BXσ,p(u0, ε) and vj ∈ BTr (vj,0) for j ∈ {1, 2}. Then u =
Φv1,0(v1)− Φv2,0(v2) solves the problem{

u′ +Au = F (v1)− F (v2),

u(0) = v1,0 − v2,0.

Therefore, by the maximal regularity estimate (18.28),

‖u‖MRpα(0,T ) 6 CA,T ‖F (v1)− F (v2)‖E0 + CA,T ‖v1,0 − v2,0‖Xσ,p ,

From Lemmas 18.2.7 and 18.2.8 we obtain that

‖F (v1)− F (v2)‖E0

6 CLc

m∑
j=1

[
‖v1‖

ρj
MRpα(0,T )

+ ‖v2‖
ρj
MRpα(0,T )

]
‖v1 − v2‖MRpα(0,T )

6 2CLc

m∑
j=1

rρj‖v1 − v2‖MRpα(0,T ).
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Therefore, by choosing r > 0 small enough,

‖Φv1,0(v1)− Φv2,0(v2)‖MRpα(0,T ) 6
1

2
‖v1 − v2‖MRpα(0,T )

+ CA,T ‖v1,0 − v2,0‖Xσ,p .
(18.55)

By (18.55), Φv0 : BTr (v0) → BTr (v0) is a strict contraction, and thus it has
a unique fixed point uv0 ∈ BTr (v0). This is the required solution to (18.53).
Moreover, (18.55) implies that for v1,0, v2,0 ∈ BXσ,p(u0, ε)

‖uv1,0 − uv2,0‖MRpα(0,T ) 6
1

2
‖uv1,0 − uv2,0‖MRpα(0,T )

+ CA,T ‖v1,0 − v2,0‖Xσ,p ,

and thus
‖uv1,0 − uv2,0‖MRpα(0,T ) 6 2CA,T ‖v1,0 − v2,0‖Xσ,p .

which gives (18.54).
In case A has maximal regularity on R+ and 0 ∈ %(A), then (18.28) holds

with (0, T ) replaced by R+. Moreover, one can check that Lemma 18.2.9 holds
with (0, T1) replaced by R+. Therefore, one can repeat the above argument
on the half line. �

18.5 Notes

The theory of abstract non-linear parabolic evolution equations has a long
history going back to the work of the Japanese school in the 1960s, with con-
tributions of Fujita, Kato, Tanabe, and others. Excellent monographs on the
subject are available, including Amann [1995], Friedman [1969], Henry [1981],
Lunardi [1995], Lions [1969], Pazy [1983], Prüss and Simonett [2016], Tanabe
[1979], Yagi [2010]. For the purpose of this chapter we chose to limit ourselves
to the maximal Lp-regularity approach to quasi-linear evolution equations,
mostly focussing on local well-posedness. Other approaches, including max-
imal Hölder regularity, the so-called Kato approach, and the theory mono-
tone operators, are treated in some of the references just mentioned. Maximal
regularity techniques have important applications to a number of topics not
covered in this volume, such as linearised stability, semi-flows, higher order
regularity, sharp conditions for global well-posedness, numerical analysis, and
applications to concrete PDEs. Maximal Lp-regularity for stochastic evolution
equations will be covered in Volume IV.

The maximal Lp-regularity approach to quasi-linear evolution equations
was initiated by the influential paper Clément and Li [1993/94], and further
investigated and extended in Prüss [2002] and Amann [2005]. The semi-linear
setting of Theorem 18.1.2 is a special case of the results in these works, and
is presented here as a warm-up to the later results.
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A local well-posedness result under the assumption of maximal C-regularity
was obtained by Clément and Simonett [2001]. The use of weights in time
seems essential in the latter (see Remark 18.2.11). Based on the weighted
maximal Lp-regularity result of Prüss and Simonett [2004], the Lp-setting was
extended to a weighted setting in time by Köhne, Prüss, and Wilke [2010].
The use of weights has several advantages:

• well-posedness in case of rough initial data
• instantaneous regularisation
• compactness properties of orbits

and has become standard in the theory of evolution equations. All of the above
works have found applications to concrete quasi- and semi-linear PDEs, many
of which are collected and mentioned in the influential monograph Prüss and
Simonett [2016]. Since the number of applications is too large to discuss here,
we will mainly focus on applications of the theory of critical spaces in these
notes.

For parabolic equations it is often possible to bootstrap regularity in time
and space. Sometimes one can even derive real analyticity via use the so-
called parameter trick of Angenent [1990b,a]; see also Prüss and Simonett
[2016, Section 5.2] for a presentation in the setting of abstract quasi-linear
evolution equations. Applications of maximal Lp-regularity techniques to the
study of linearised stability for non-linear parabolic evolution equation can
be found in Lunardi [1995], Prüss [2002], Prüss, Simonett, and Zacher [2009],
Matioc and Walker [2020], and references therein.

Critical spaces

In the present abstract evolution equations framework, the splitting F =
FTr +Fc was first introduced in LeCrone et al. [2014]. In this paper, local well-
posedness in the subcritical case was proved using maximal Lp-regularity for
1 < p <∞. Shortly afterwards, it was realised in Prüss and Wilke [2017] that
under additional conditions on A and (X0, X1), local well-posedness can even
be obtained in the critical case. Consequences for the Navier–Stokes equations
were discussed in Prüss and Wilke [2018]. Further results and applications to
concrete and abstract problems were given in Prüss, Simonett, and Wilke
[2018]. In particular, this paper discusses the relationship between scaling
invariance and criticality for several concrete PDEs. It is remarkable that an
abstract definition for criticality can be given which leads to new insights for
many concrete PDEs. In the same paper, by way of an example it is shown that
the sub-criticality condition (18.12) cannot be improved. The Lp-framework
was extended to maximal C-regularity in LeCrone and Simonett [2020].

Theorem 18.2.6 unifies and extends several of the results mentioned in
the preceding discussion. For simplicity, here we only considered the case
where A and F are time-independent, but this restriction can be avoided
easily (see Remark 18.2.4). The unification lies in the fact that one proof is
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presented which works for all p ∈ [1,∞] and all admissible weights, with p =∞
corresponding to maximal C-regularity. Moreover, we do not need geometric
conditions on X0 such as the UMD property, or further conditions on A(u0)
besides maximal Lp- or C-regularity. In part of the existing literature, the
spaces Xβj appearing in (18.11) are taken as the complex interpolation spaces
[X0, X1]βj . Taking the real interpolation spaces (X0, X1)βj ,1 leads to a less
restrictive condition on Fc and is easier to work with in the proofs.

The case p = 1 of Theorem 18.2.6 seems to be new. It is important to
observe that for p = 1 one is forced to take σ = α = 0, which in turn forces
the X0-valued trace part FTr to be defined on an open subset Oσ,p of the
same space X0. For non-linearities of the form F = FTr, this requirement rules
out many interesting examples of non-linearities. However, by allowing non-
linearities with a critical part, i.e., non-linearities of the form F = FTr + Fc,
many interesting examples can be covered even when p = 1, the point being
that it suffices to have Fc locally Lipschitz with respect to the norms of the
smaller spaces X1/(1+ρj) (with the ρj ’s as in Assumption 18.2.2). On the other
hand, according to Theorem 17.4.5, operators with maximal L1-regularity are
rare. An exception is the case where X0 itself is a real interpolation space in
which case the Da Prato–Grisvard theorem applies (see Corollary 17.3.20).

It should be observed that a more flexible condition on Fc could be used
in (18.11), namely

‖Fc(u)− Fc(v)‖X0 6 Lc

m∑
j=1

(1 + ‖u‖ρjXϕj + ‖v‖ρjXϕj )‖u− v‖Xβj , (18.56)

with ϕj ∈ (σ, 1), βj ∈ (σ, ϕj ], along with the subcriticality condition

ρj(ϕj − σ) + βj 6 1, j ∈ {1, . . . ,m}. (18.57)

The formulation (18.56) allows for different space regularity for u, v, and u−v
on the right-hand side (see Agresti and Veraar [2022a] and Prüss, Simonett,
and Wilke [2018]). However, in all known examples, it suffices to take ϕj = βj
(as we do in the main text) in order to obtain the sharpest results. Note that
by taking ϕj = βj , (18.57) reduces to the sub-criticality condition (18.12).

Global well-posedness and blow-up criteria

The existence of a maximal time interval in Theorem 18.2.14 is a standard re-
sult. Often it is only stated and proved under the more restrictive assumption
that A(v0) have maximal Lp- or C-regularity for all v0 ∈ Oσ,p. The present for-
mulation only uses maximal regularity of A(u0). In a slightly different set-up
it appears in Agresti and Veraar [2022a].

The global well-posedness result of Theorem 18.2.15 is also standard. The
statement and proof closely follow Prüss and Simonett [2016, Corollary 5.1.2].
The weight tα can be helpful in proving global well-posedness, as estimates in
the space Xσ,p are easier to obtain for smaller values of σ (i.e., for higher values
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of α). In the semi-linear case, the blow-up criteria can be further weakened as
was done in Theorem 18.2.17. In case of semi-linear functions F of quadratic
type, blow-up criteria appear in Prüss, Simonett, and Wilke [2018, Section
2.1]. Some of these were extended, for a more general class of semi-linearities
F , in to a stochastic setting in Agresti and Veraar [2022b, Theorem 4.11].
Simplifying this to the deterministic setting, one arrives at the following result:

Theorem 18.5.1 (Serrin-type blow-up criteria). Let p ∈ (1,∞), suppose
that Assumption 18.2.2 holds, and let A ∈ L (X1, X0) have maximal Lp-
regularity on finite time intervals. Let (u, Tmax(u0)) denote the maximal Lpwα-
solution to {

u′ +Au = F (u), on (0, T ),

u(0) = u0.

Suppose that for each j ∈ {1, . . . ,m} we have

ρj < 1 + αp or (α = 0 and ρj 6 1).

Then the following assertions hold:

• for all T < Tmax(u0) one has ‖u‖Lp(0,T ;X1−α) <∞;
• if Tmax(u0) <∞, then ‖u‖Lp(0,Tmax(u0);X1−α) =∞.

In the case of (sub-)quadratic semi-linearity F , one has ρj 6 1 and the above
condition always holds.

Applications

The theory of quasi-linear evolution equations in critical spaces as presented
in this chapter has been applied to models in several scientific areas which
include fluid dynamics, chemistry, neuroscience, free boundary problems, and
differential geometry. For details we refer to the founding papers and books
LeCrone, Prüss, and Wilke [2014], Prüss and Simonett [2016], Prüss and Wilke
[2018], Prüss, Simonett, and Wilke [2018], LeCrone and Simonett [2020], and
for further applications to the more recent papers Hieber and Prüss [2018],
Mazzone, Prüss, and Simonett [2019a,b], Simonett and Prüss [2019], Binz,
Hieber, Hussein, and Saal [2020], Giga, Gries, Hieber, Hussein, and Kashi-
wabara [2020], Hieber, Hussein, and Saal [2023], Hieber, Kress, and Stinner
[2021], Mazzone [2021], Prüss, Simonett, and Wilke [2021], Court and Ku-
nisch [2022], Simonett and Wilke [2022b]. This list is likely to expand in the
near future, as the splitting F = FTr + Fc of Theorem 18.2.6 has proved to
be very powerful in applications to concrete non-linear parabolic equations of
semi- and quasi-linear type. It leads to new insights for many PDEs to which
the original framework of Clément and Li [1993/94] was applicable. More-
over, some of the new blow-up criteria can make it possible to obtain global
well-posedness results.
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The examples considered in Section 18.3 are very basic, and local/global
well-posedness is well known for a broad class of initial values. The examples
are merely chosen to demonstrate the abstract theorems of Section 18.2 in a
simple setting. The method to check the blow criteria in Example 18.3.5 is
taken from Agresti and Veraar [2023a], where these techniques are used in
several examples.

An extension of the results of Section 18.2 to stochastic quasi-linear evo-
lution equations in critical spaces was recently obtained in Agresti and Ver-
aar [2022a,b], where completely new proofs where required. Applications to
stochastic PDE can be found in these works, as well as in Agresti and Ver-
aar [2021, 2022c, 2023b,a], Agresti [2022], Agresti, Hieber, Hussein, and Saal
[2022a,b].
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