
Football activity
recognition:
A deep learning approach to football activity
recognition based on Inertial Measurement
Units signals

Rafael Cuperman Coifman

Football activity
recognition:

A deep learning approach to football activity
recognition based on Inertial Measurement

Units signals
by

Rafael Cuperman Coifman
to obtain the degree of
Master of Science

in Applied Mathematics
track Computational Science and Engineering

at the Delft University of Technology,
to be defended publicly on June 30, 2021

Student number: 5065461
Thesis committee: Dr. Ir. M.B. van Gijzen, TU Delft

Dr. J. Söhl TU Delft
Prof. Dr. Ir. K.M.B. Jansen Daily Supervisor, TU Delft
M.Sc. M. Ciszewski TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
When looking for a topic for my master thesis, I came across this project. When I read its description
and saw that it consisted of researching ways to classify football activities, I know it was meant for me.
It was just perfect. As a biomedical engineer, I loved the idea of working around a topic that had to do
with the human body; as an electronics engineer, the usage of sensors placed on body parts drew my
attention; as a soontobe mathematician with special interest in artificial intelligence, researching on
machine (deep) learning was one of my main goals; and as a football (soccer) and sports enthusiast
and player, I would be applying my work in one of the things that I enjoy the most. Finding a master
thesis can be difficult, but this project was exactly what I was looking for. It was not an easy path, but
a very rewarding one.

This report contains the entire work that I accomplished during my Master’s Thesis to fulfill the grad
uation requirements of the MSc. Applied Mathematics program at the Delft Institute of Technology. In
this project, I investigated the usage of different architectures of deep learning models to perform Hu
man Activity Recognition (HAR) for specific football activities based on signals obtained by Inertial
Measurement Unit (IMU) sensors placed on different body parts of players. The objective was to de
velop a robust endtoend pipeline that was capable of robustly recognizing football activities in a fast
and accurate way.

Previous works demonstrated that deep learning approaches were promising in HAR, but they
mainly focused on daily human activities and not in specific football movements, where a combination
of periodic and explosive activities are present. Furthermore, the reviewed research papers specially
addressed the construction of a specific model architecture, without paying much attention to the on
line evaluation phase of a new recording. Through this thesis, I researched the endtoend process of
building a Football Activity Recognition pipeline. Several deep architectures were designed, tested and
compared. The built models achieved accuracies on the test dataset of up to 96.71%. When the input
signals were normalized with a calibration recording, those values increased to 98.2%. Additionally, a
robust evaluation process was proposed that allowed to obtain accurate and fast results over unseen
IMU recordings.

First of all, I would like express my deep gratitude to Professor Dr. Ir. Kaspar Jansen and to PhD
candidate Michał Ciszewski for their daily supervision and guidance. Their encouraging feedback, anal
ysis, immeasurable knowledge, and ideas made this project possible and, without any doubt, helped
me to accomplish the objectives. I would also like to thank Professors Dr. Ir. Martin van Gijzen and
Dr. Jakob Söhl, for giving me the opportunity to work in such an enriching project. Many thanks to the
CASP6 resarch group, with a special mention to PhD candidates Erik Wilmes and Bram Bastiaansen
for facilitating me the data that this project required.

If you know me, you know how important family is to me. This is why I cannot stress enough how
grateful I am with them. To my parents, brother and grandparents, this milestone is yours. Being far
from home is never easy, but your support and love are felt from kilometers away. Thank you for always
encouraging me to push myself and for believing in me no matter what. I am what I am because of you.

A life without friends is pointless. To Male, Alejo, Diego, and Mateo, I can only tell you that you are
and will always be a family to me. You made this experience one of the best of my life and I will always
be there for you. Last, but not least, to my friends in Colombia, the Netherlands, and around the world
for cheering me up with your encouragement and joy. You always made me believe in myself.

Rafael Cuperman Coifman
Delft, June 2021

i

Abstract
With the latest developments in commercial sensors during the last years, special interest has been
given to Human Activity Recognition (HAR) based on signals obtained by IMUs placed on different body
parts. This thesis studies the usage of Deep Learningbased models to recognize different football
activities in an accurate, robust, and fast manner. Several deep architectures were trained with data
captured with IMU sensors placed on football players’ bodies and their performances were compared. A
combination of convolutional layers followed by recurrent (bidirectional) LSTM layers showed to achieve
the best results with up to 96.71% of accuracy. When using normalized data via a calibration recording,
these accuracies increased up to 98.2%. Results showed that deep learning models performed better
in evaluation time and prediction accuracy than traditional machine learning algorithms.

An endtoend pipeline for football activity recognition was developed that can be extended to any
other HAR task. With it, not only the training was explored, but also a sliding window evaluation proce
dure was proposed that can be used to efficiently analyze unseen IMU recordings and recognize the
activities there present. This pipeline showed to be fast and robust especially with signals consistently
calibrated and can be used to recognize movements on a realtime basis. It can be concluded that
a combination of deep learning models and a sliding window evaluation procedure is suitable for fast
and accurate HAR tasks and can be used as input for research on injury prevention. By training and
evaluating the models with more data, ideally from uncontrolled experiments such as football matches,
we expect to further improve the generalization property of the classifiers.

ii

List of abbreviations
ANN Artificial Neural Network

bLSTM Bidirectional LSTM

CART Classification and Regression Tree

CNN Convolutional Neural Network

DA Discriminant Analysis

DT Decision Tree

FC Fully connected

FFT Fast Fourier Transform

GMM Gaussian Mixture Model

GRU Gated Recurrent Unit

HAR Human Activity Recognition

IMU Inertial Measurement Unit

kNN kNearest Neighbor

LSTM Long ShortTerm Memory

NB Naïve Bayes

RBF Radial Basis Function

RF Random Forest

RNN Recurrent Neural Network

SVM Support Vector Machine

iii

List of Figures

3.1 IMUs and pants . 11
3.2 Simple artificial neuron model . 14
3.3 Artificial Neural Network composed by several fully connected layers 14
3.4 Convolution operation on 1D data . 15
3.5 Convolutional Neural Network example. Convolutional and pooling layers one after the

other followed by dense layers . 16
3.6 Convolutional Neural Network applied to 1D signal data 16
3.7 Basic form of a Recurrent Neural Network . 17
3.8 Internal structure of an LSTM cell . 17
3.9 Adam optimization algorithm . 22

4.1 Location of IMUs in experiments . 23
4.2 Examples of activities from dataset from Wilmes, 2019 24
4.3 Examples of jumps . 25
4.4 Mean signals of dataset from Wilmes, 2019 . 25
4.5 Three different signals . 26
4.6 Two different signals (top) with their respective frequency spectrums (bottom) 27
4.7 Time needed for evaluation with traditional and deep approaches 28
4.8 Time needed for evaluation with traditional and deep approaches with respect to number

of samples . 29
4.9 Example of starts and ends of an activity . 31
4.10 Overall start and end of activity from signals of figure 4.9 31
4.11 Distribution of IQRs for explosive and periodic movements. Unnormalized signals (top)

and normalized signals (bottom) . 32
4.12 Confusion matrices for explosive vs periodic movements classifier based on IQR 33
4.13 Examples of detected activities isolated from the low activity regions 34
4.14 Boxplot of the duration in seconds of each activity after they were isolated from low

activity intervals. 35
4.15 Mean signals of each activity after process of activity detection 36

5.1 Full process of activity recognition with training and evaluation phases 38
5.2 Training phase diagram . 39
5.3 1DCNN weight sharing convolution logic . 42
5.4 1DCNN per sensor convolution logic . 42
5.5 1DCNN combined convolution logic . 43
5.6 2DCNN weight sharing logic . 43
5.7 2DCNN per sensor logic . 44
5.8 2DCNN all sensors logic . 44
5.9 2DCNN combined logic . 44
5.10 General model architectures . 46
5.11 CNNs and RNNs subnetworks . 47
5.12 Unbalanced and balanced datasets for the training process 50
5.13 Example of learning rate schedule for training . 51
5.14 Prediction accuracy and evaluation time for some deep learningbased models 54
5.15 Prediction accuracy and evaluation time for traditional models in comparison to a deep

learningbased model (DNN) . 55
5.16 Evaluation phase diagram . 56
5.17 Evaluation phase diagram . 57
5.18 Distributions of metrics of low and high activity periods 59

iv

List of Figures v

5.19 F1 scores for different standard deviation thresholds when classifying high and low ac
tivity windows . 60

5.20 Evaluation phase diagram . 61
5.21 Predictions are not aligned when using a step larger than 1 62
5.22 Interpolate postprocessing option . 63
5.23 Mode postprocessing option . 64
5.24 Initial approach to perform the mode postprocessing option 65
5.25 Improved approach to perform the mode postprocessing option 66
5.26 Best score postprocessing option. 67
5.27 Softmax activation function to obtain prediction confidences/scores 67
5.28 NonMax Suppression . 68
5.29 Sliding window evaluation procedure . 69
5.30 Final sliding window evaluation procedure with inclusion of “other high activity” class . . 70
5.31 Example of results using interpolate postprocessing . 71
5.32 Example of results using mode postprocessing . 72
5.33 Example of results using best score postprocessing . 73
5.34 Example of outlier removal process after best score postprocessing 74
5.35 Comparison of postprocessing options . 75
5.36 Example 1 of final results . 76
5.37 Example 2 of final results . 76
5.38 Example 3 of final results . 77
5.39 Summary of recognized activities of figure 5.37 . 77

6.1 Covariate shift . 83
6.2 Comparison of scales of measurements in Wilmes’ and Rozemarijn’s datasets. Sample

accelerometer signal . 84
6.3 Comparison of scales of measurements in Wilmes’ and Rozemarijn’s datasets. Sample

gyroscope signal . 84
6.4 Comparison of distributions in Wilmes’ and Rozemarijn’s datasets for selected signals . 85
6.5 Example of predictions made on part of Rozemarijn’s dataset with default values for

hyperparameters . 86
6.6 Example of predictions made on part of Rozemarijn’s dataset without imposing a value

for 𝑐ℎ . 87
6.7 Second example of predictions made on part of Rozemarijn’s dataset without imposing

a value for 𝑐ℎ . 87
6.8 Evaluation of complete recording from Rozemarijn’s dataset 88
6.9 Comparison of scales of measurements in Wilmes’ and new Wilmes’ datasets. Sample

accelerometer signal . 89
6.10 Comparison of scales of measurements in Wilmes’ and Rozemarijn’s datasets. Sample

gyroscope signal . 90
6.11 Comparison of distributions in Wilmes’ and new Wilmes’ datasets for selected signals . 90
6.12 Example of predictions made on part of new Wilmes’ dataset with default values for

hyperparameters. Using best score postprocessing . 91
6.13 Example of predictions made on part of new Wilmes’ dataset with default values for

hyperparameters. Using mode postprocessing . 91
6.14 Second example of predictions made on part of new Wilmes’ dataset with default values

for hyperparameters. Using best score postprocessing 92
6.15 Third example of predictions made on part of new Wilmes’ dataset. Using best score

postprocessing . 92
6.16 Example of predictions made on part of Rozemarijn’s dataset using a normalized model 98
6.17 Example of predictions made on part of Rozemarijn’s dataset using an unnormalized

model . 99

List of Tables

2.1 Traditional approaches for Human Activity Recognition 5
2.2 Deep kearning approaches for Human Activity Recognition 8

4.1 Timedomain manually selected features for the signals of figure 4.5 26

5.1 Mean prediction accuracies for the proposed models . 52
5.2 Standard deviation of the prediction accuracies for the proposed models 53
5.3 Twosided KS values for the metric distributions of high and low activity windows 58
5.4 Comparison of matrix sizes for both approaches when performing the mode postpro

cessing option . 65

6.1 Mean and standard deviation prediction accuracies for the models without shanks. 5 runs 94
6.2 Comparison of mean prediction accuracies between the models with and without shanks 95
6.3 Comparison of mean prediction accuracies between the original unnormalized models

and the normalized ones. 5 runs . 96
6.4 Comparison of standard deviation of the prediction accuracies between the original un

normalized models and the normalized ones. 5 runs . 97

vi

Contents

1 Introduction 1

2 Literature review 3
2.1 Traditional approaches to HAR . 4
2.2 Deep Learning approaches to HAR . 7

3 Conceptual framework 11
3.1 IMUs . 11
3.2 Traditional Machine Learning Algorithms . 12
3.3 Deep learning. 14

3.3.1 Convolutional Neural Networks . 15
3.3.2 Recurrent Neural Networks . 16
3.3.3 Additional Deep Learning Concepts . 18

4 Data overview and preparation 23
4.1 Data . 23
4.2 Feasibility analysis of a deep learning approach . 26
4.3 Activity detection . 30

5 Activity recognition 37
5.1 Activity recognition . 39

5.1.1 Window segmentation . 40
5.1.2 Proposed models . 40
5.1.3 Training . 49
5.1.4 Performance . 51
5.1.5 Evaluation times . 51

5.2 Low activity recognition . 56
5.3 Sliding window evaluation . 61

5.3.1 Prediction: activity recognition . 61
5.3.2 Postprocessing . 61
5.3.3 Outlier removal and “other high activity” recognition 68

5.4 Results . 71

6 Discussion 78
6.1 Evaluation on different datasets . 83

6.1.1 Rozemarijn’s dataset . 83
6.1.2 Wilmes’ new Dataset . 89

6.2 Additional experiments . 94
6.2.1 Exclusion of shank sensors . 94
6.2.2 Normalization of signals . 95

6.3 Conclusions and future work. .100

References 102

A Appendix A: Replication of results of Kaketsis, 2020 105

B Appendix B: Confusion matrices 111

vii

1
Introduction

The world of sports has seen a continuous and rapid increase in the usage of technology in both com
petition and training during the last decades. Specifically in football (soccer), innovations such as the
VAR (Video Assistant Referee) (introduced in 2018) and the Goal Line Technology (introduced in 2012)
have revolutionized the game more than any other rule since the inclusion of the offside (the basis of
the modern rule was introduced in 1925). The relevance of these two rules is that they brought tech
nology closer to the game and this required the usage of high precision cameras and sensors. Not only
technology has been used to modify or add certain rules into sports, but it has been used even more
during training and for ingame analysis. It is nowadays common to see players training and even play
ing competitive matches wearing vests with GPS trackers below their shirts. These vests can track the
players during the whole training or match and give information about their location, distance traveled,
speed, power, intensity, heart rate, intensity, load, among others. These values can be processed to
give the players, trainers and journalists a very detailed analysis of each player’s performance. During
the last one or two decades, the scientific community has showed important advancements in Human
Activity Recognition (HAR) and, since technology and sports have developed a mutual beneficial rela
tionship, there is a higher demand for systems capable of recognizing specific football activities.

If a coach, team or player has information about which activities the player does during a match or
training, it is possible to perform a much more detailed analysis of the player’s performance. A more
complete assessment of the player’s movements and loads gives the teams the possibility of a better
training planning, a personalized followup to each player, and even a potential way to prevent, treat
and understand injuries. Nowadays, this activity classification is done mainly with the aid of cameras.
Either via human annotation or through artificial vision techniques it is possible to obtain such informa
tion. However, to do this, it is required to have a large amount of highquality cameras equipped with
artificial vision technologies or an army of human labellers. This is very expensive and can only be
afforded by elite teams. Additionally, the usage of cameras brings another issue: during a match or a
training a player can be behind another player, so the camera cannot recognize the player in question.
These problems call for the usage of a lowcost activity recognition system that can be afforded by
smaller teams. Wearable sensors are continuously being developed to be smaller and cheaper, so its
usage is a clear solution to this problem. They can be incorporated into the player’s sportswear and
provide reliable, realtime measurements of different body parts.

This project studies the usage of deep learningbased models for football (soccer) activity recogni
tion based on acceleration and velocity signals obtained from Inertial Measurement Unit sensors (IMU).
This is done in contrast to traditional machine learning approaches, in which a non neural network
based model such as kNN, decision tree or support vector machine is used to recognize an activity.
Traditional methods require a manual process of feature extraction, while the deep models take this
part into account by themselves. Furthermore, with this work it is intended to use the raw signals from
the IMUs, and evaluate how robust are the deep models with respect to signals acquired on different
players. This is why little or no preprocessing will be made to the sensor outputs, trying to recreate
reallife scenarios. Different deep architectures will be proposed for the models and their performance

1

2

and evaluation time will be examined. Furthermore, a complete training and evaluation pipeline will
be designed, in which also the preparation of the training dataset and the strategy for the evaluation
phase via a sliding window approach will be taken into account.

The overall objective of this thesis is to design, implement and evaluate a complete pipeline for the
training and evaluation of deep learning models for football activity classification based on raw IMU
sensor’s signals. The model should recognize accurately a selection of football activities in a quick
and efficient way, so it can be potentially used in reallife scenarios. The recognized activities could
then be used to study themovements of the players in order to do injury prevention and player followup.

The way this document is structured is as follows. An extensive literature review of the state of the
art of Human Activity Recognition methodologies based on sensors is presented in chapter 2. In it, both
traditional machine learning and deep learning approaches are shown with their comparison of results,
best practices and challenges. A review of important conceptual elements is given in chapter 3. Chapter
4 presents the dataset that was used for training and validating the models. In that chapter, an initial
feasibility analysis of a deep learning approach is performed, followed by the proposed activity detection
algorithm, which is needed for the training phase. Chapter 5 is the main chapter of this thesis, in which
the training of several deep learning models is thoroughly explained and discussed. Furthermore, the
proposed evaluation pipeline is also presented, with which the activities present in a given recording can
be effectively recognized. In chapter 6, the results are discussed, the proposed pipeline is evaluated
on different datasets and additional experiments are performed. Finally, the conclusive remarks with
future research recommendations are given.

2
Literature review

Identifying and recognizing human activities using signals obtained from Inertial Measurement Sen
sors is an area of machine learning and signal processing that has been studied by several authors
recently. Recognition of daily activities, such as walking, climbing stairs, and sitting is especially pop
ular amongst researchers due to the availability of publicdomain datasets composed of these type of
movements, and the possibility to easily compare the results with previous works (Slim et al., 2019). On
the other hand, studies on recognition of sportspecific activities (such as football, tennis, ping pong or
golf) are less frequent, since building these types of datasets is difficult because of the costs involved in
resources and time. . However, since the nature of the signals is in many cases the same, it is possible
to build upon the work of authors that have studied Human Daily Activity Recognition to build accurate
and efficient methods designed for an application in a specific sport. In this case, football (soccer).

In this chapter, a review of different scientific researches about Human Activity Recognition based
on wearable inertial sensor signals is presented. A big distinction can be made among the methods
used to build such systems: methods based on traditional machine learning algorithms; and methods
based on deep learning approaches. By traditional machine learning methods, we refer to approaches
where a manual feature extraction process of the signals is needed prior to the classification of the
activities, which is normally done with algorithms such as Support Vector Machines, Decision Trees or
kNearest Neighbors, among others.

3

2.1. Traditional approaches to HAR 4

2.1. Traditional approaches to HAR
As explained before, this section will focus on what we consider traditional approaches to Human Activ
ity Recognition. We define these approaches asmethods in which the input features to the classification
algorithms are manually defined and extracted. Such features are usually taken from the time domain
(mean, variance, etc.) and/or from the frequency domain (coefficients of the Fourier Transform, energy,
etc.). After these metrics are extracted, they are used as input features for traditional machine learning
algorithms, like Support Vector Machines, Decision Trees, kNearest Neighbors, among others. It is
important to note that these approaches require the input from the authors, in the sense that they define
which features are extracted. Even though, as it can be seen in table 2.1, there is a common choice of
certain metrics, each paper uses different number and types of features. This results in a highly sub
jective process in which the authors define, because of experience or simply gut, which features should
be used as input. This does not mean, however, that the results of these approaches are bad. A big
advantage of traditional machine learning algorithms is that, since the features are manually defined
and extracted, it is easier to understand the inputs that the algorithm uses and it is possible to address
the influence of one input on the prediction and try to explain it.

Several research papers have been written in which Human Activity Recognition is made with these
approaches. A summary of some reviewed articles is presented in table 2.1. In all of them, a manually
selected set of features is extracted from the signals, usually containing a combination of time and fre
quency domain metrics. In the vast majority of cases, since most of those metrics are scaledependent
and sensible to noise, the researchers tend to preprocess the data by filtering and normalizing the sig
nals.

Although the the majority of reviewed literature focuses on the recognition of daily human activi
ties, only Kaketsis, 2020 and Schuldhaus et al., 2015 focused their work on the recognition of football
activities, such as passes, shots, jumps, running, etc. Both used timedependent manually selected
features, such as mean, standard deviation (variance), skewness and kurtosis, but the former also in
cluded additional metrics like median, minimum, maximum, and frequencydomain measures like the
sum of the real parts of the coefficients of the Fourier Transform and the maximum of the real parts of
the coefficients of the Fourier Transform.

Kaketsis, 2020 evaluated the performance of several classifiers (Naive Bayes, kNearest Neigh
bor, Support Vector Machines, Discriminant Analysis and Decision Trees) to classify between 4 or 7
football activities. He also evaluated the influence of including or not frequencydomain features and
the extraction of features from raw signals or from the euclidean norm of the signals from X, Y and Z
axis of each sensor. He obtained the best accuracy of 92% in his dataset using the SVM approach. In
appendix A, a deeper analysis of his results is presented.

On the other hand, Schuldhaus et al., 2015 developed a system capable of distinguishing between
pass and shot. They first used a peak detection algorithm to detect possible passes or shoots and
trained Support Vector Machines, Decision Trees and Naive Bayes classifiers to do the classification.
They got the best results (88.6% accuracy on his dataset) when using linear SVM.

In table 2.1, it can be seen that a large variety of machine learning algorithms were used by different
authors. It is not possible to conclude which algorithm is better from the table, since not all the papers
used the same dataset, so the accuracies presented are not comparable among them. Some methods
present high accuracies, while others achieve low or not very high performances. Apart from that, a
huge variety of preprocessing techniques were used depending on the authors, the type of sensors,
the activities to be recognized, the type of data and the machine learning algorithms used. Filtering
the raw signals is the most common practice ((Liu, 2020), (Adaskevicius, 2014), (Blank et al., 2015),
(Schuldhaus et al., 2015), (Kautz et al., 2017)). Other common preprocessing techniques are stroke
detection when working with sports such as tennis ((Liu, 2020), (Connaghan et al., 2011)), table tennis
(Blank et al., 2015) or volleyball (Kautz et al., 2017); usage of norms (or a variant of norms) of signals
((Kaketsis, 2020), (Adaskevicius, 2014), (Blank et al., 2015), (Schuldhaus et al., 2015), (Kautz et al.,
2017)); and normalization or standardization of the signals to a certain range ((Liu, 2020), (Blank et al.,
2015), (Kautz et al., 2017))

2.1. Traditional approaches to HAR 5

Table 2.1: Traditional approaches for Human Activity Recognition reviewed. The accuracies presented are the reported accura
cies on the respective test dataset. Note that since each paper uses a different dataset, the accuracies must not be compared
among them

Reference Type of activi
ties

Features Classification
algorithm

Accuracy

Kaketsis, 2020 Football

Mean, median, standard
deviation, skewness, kurtosis,
minimum, maximum, sum of
real part of coefficients of
Fourier Transform, maximum
of real part of coefficients of
Fourier Transform

Naive Bayes 89,0%
KNearest Neighbor 86,0%
SVM 92,0%
Discriminant Analy
sis

86,0%

Decision Trees 76,0%
Liu, 2020 Tennis Mean, coviariance, skewness,

kurtosis, minimum, maximum,
magnitudes of Fast Fourier
Transform, spectral energy

SVM 79,0%

Adaskevicius,
2014 Daily activities Mean, standard deviation,

maximum, minimum, fre
quency domain entropy,
dominant frequency, average
resultant acceleration

KNearest Neighbor 78,9%

Blank et al.,
2015 Table tennis

Mean, standard deviation,
skewness, kurtosis, minimum,
maximum, energy, median,
IQR, XY correlation, XZ
correlation, YZ correlation

Naive Bayes 87,1%
Random Forest 95,7%
Linear SVM 95,6%
RBF SVM 96,7%
KNearest Neighbor 94,7%
CART 89,0%

Connaghan et
al., 2011 Tennis Not specified Not specified 90,0%

Mannini and
Sabatini, 2010 Daily activities Correlation coefficients, DC

component

Naive Bayes 97,4%
GMM 92,2%
Logistic Regression 94,0%
Parzen 92,7%
SVM 97,8%
Nearest Means 98,5%
KNearest Neighbor 98,3%
C4.5 93,0%

Schuldhaus
et al., 2015 Football Mean, variance, skewness,

kurtosis

Linear SVM 88,6%
CART 86,1%
Naive Bayes 87,1%

Wang and Liu,
2020 Daily activities

Standard deviation, kurtosis,
skewness, root mean square,
mean absolute deviation,
maximum peaks of spectrum
coefficients, Fast Fourier
Transform

Decision Trees 86,3%
Random Forest 90,8%

2.1. Traditional approaches to HAR 6

Table 2.1 continued from previous page
Reference Type of activi

ties
Features Classification

algorithm
Accuracy

De Vries et al.,
2011 Daily activities 10th percentile, 25th per

centile, 75th percentile, 90th
percentile, absolute deviation,
coefficient of variability, lag1
autocorrelation

ANN 76,8%

Kautz et al.,
2017 Volleyball

Median, mean, standard
deviation, skewness, kurtosis,
dominant frequency,
amplitude of spectrum,
maximum, minimum, position
of maximum, position of
minimum, energy, XY
correlation, XZ correlation,
YZ correlation

RBF SVM 54,6%
KNearest Neighbor 64,4%
Naive Bayes 37,2%
CART 58,7%
Random Forest 67,1%
Vote classifier
based on the previ
ous 5 classifiers

67,2%

Ignatov, 2018 Daily activities 40 statistical features Random Forest 79,9%
26 statistical features Random Forest 79,9%

Ha et al., 2015 Daily activities Mean, standard deviation and
derivatives

KNearest Neighbor 83,9%
91,4%

Zebin et al.,
2017 Daily activities

Mean, root mean square,
autocorrelation coefficients,
position of peaks, spectral
peaks, amplitude

Decision Trees 87,9%
91,8%

Linear Discriminant
Analysis

80,2%

Quadratic Discrimi
nant Analysis

72,3%

Linear SVM 91,8%
Quadratic SVM 93,5%
Cubic SVM 93,0%
KNearest Neighbor 87,0%
Ensemble 94,6%

2.2. Deep Learning approaches to HAR 7

2.2. Deep Learning approaches to HAR
The extremely fastpaced development in technology in the last decades has allowed the introduction
of more complex machine learning architectures and algorithms. One of the most impressive break
throughs in this sense was the implementation of bigger systems based on artificial neural networks
and the introduction of variants of such networks, such as Convolutional Neural Networks and Recur
rent Neural Networks. Nowadays we refer to these approaches as Deep Learning approaches, and
are widely used in a vast amount of applications, such as artificial vision, natural language processing,
signal processing, speech recognition, bioinformatics, and fraud detection, among others (Alom et al.,
2018).

One of the most powerful and interesting capabilities of the deep learning approaches is their ability
of feature extraction without a direct human input. Traditionally, machine learning algorithms such as
Support Vector Machines or Random Forests require manually selected features extracted from the
data as inputs. This process is not only heavily manual and subjective, but is also extremely time
consuming (Wang & Liu, 2020). This is one of the reasons why recent researchers in areas such as
Human Activity Recognition have abandoned those traditional approaches in favor of deep learning
architectures. Xia et al., 2020 explain this by saying that “researchers have turned to deep learning
methods that could automatically extract appropriate features from raw sensor data during the training
phase and present the lowlevel original temporal features with highlevel abstract sequences”. This,
however, does not mean that the researchers do not have to make decisions and use their domain
knowledge. Even if CNNs and RNNs have the capacity to automatically extract features from the raw
data, several decisions have to been made by the scientists in terms of architecture, such as number
of layers, number of neurons, configuration, type and size of convolution, type of RNN block, learning
rate, optimization algorithm, loss function, among others.

Moreover, recent works have shown that the usage of deep learning approaches for Human Activity
Recognition is not only beneficial in terms of feature extraction, but also because those approaches
perform better. Put on Jiao et al., 2018 words, “It has been demonstrated that CNNbased models
sufficiently show their dramatical superiority over the support vector machine (SVM) on behalf of the
traditional methods”. Slim et al., 2019 do an extensive review of different approaches for Human Ac
tivity Recognition, and conclude that, on average, traditional machine learning algorithms obtain an
accuracy of 83.3%, while systems based on deep learning achieve a much better 94.9%. They also
express that there are more studies around traditional machine learning algorithms in comparison to
deep learning ones, which shows that the usage of the latter in Human Activity Recognition tasks is
recent and promising but not yet fully explored. This can be also seen in table 2.2 by checking that the
references there presented tend to be from more recent years than the ones in table 2.1.

No relevant scientific article related to the usage of deep learning approaches with sensor data for
football activity recognition was found. However, a large amount of works where these types of algo
rithms were used for Human Daily Activity Recognition were reviewed. Since the nature of the signals
and the ultimate goal of those studies are very similar to the objective of this thesis, their methodology
and results were considered. A summary of those reviewed articles is presented in table 2.2. The
metrics and results in the table are not meant to be compared among them, since not all of those paper
worked with the same dataset. Those numbers are shown for illustrative purposes of the high poten
tial of these approaches. It is clear from the table that the usage of Convolutional Neural Networks is
very popular, because “CNNbased models are able to extract and leverage latent feature represen
tations in time series with high tolerance of time translation; thus, results outperform methods based
on handcrafted features” (Jiao et al., 2018). Many different deep architectures were reviewed: from
CNN composed of consecutive convolutional layers to more complex and modern possibilities, such
as inception CNN and residual CNN. However, “ (...) CNN lacks the capability to capture temporal
dependency in timeseries sensory data. RNN is designed to model time series data, and it is suitable
for discovering relationships in temporal dimension” (Lv et al., 2019). This is the reason why the us
age of Recurrent Neural Networks was also evaluated by other authors, mainly using LSTM units. A
very interesting approach is the combination of CNNs and RNNs to build a larger and, according to
the authors of such papers, better performing network. Examples of such architectures are the ones
proposed by Ordóñez and Roggen, 2016, Xu et al., 2019, Xia et al., 2020, and Lv et al., 2019, where

2.2. Deep Learning approaches to HAR 8

usually a RNN (mainly composed of LSTM units) extracts temporal relations of the signals following a
feature extraction process made by a CNN.

An additional very important takeaway from the reviewed literature related to deep learning ap
proaches for HAR is the general lack of preprocessing phase of the sensor signals prior to their input
into the deep networks. In the traditional approaches shown in section 2.1, it was explained that these
works usually preprocessed the signals from the sensors with techniques like filtering, taking norms and
standardization or normalization. When working with deep learning architectures not only the features
are not manually selected, but the raw signals from the sensors can be directly used for the classifica
tion of the activities, avoiding the additional computation effort of preprocessing the signals. Although
some authors used simple preprocessing techniques such as normalization or standardization, many
of the reviewed articles worked directly with raw signals, understanding that the feature extraction pro
cess done by the convolutional and/or recurrent layers is robust enough to work without any signal
preprocessing step.

Table 2.2: Deep learning approaches for Human Activity Recognition reviewed. The accuracies presented are the reported
accuracies on the respective test dataset. Note that since each paper uses a different dataset, the accuracies must not be
compared among them

Reference Type of activi
ties

Features Main type of layer Accuracy

Kautz et al.,
2017 Volleyball Raw data CNN 83,2%

Ordóñez and
Roggen, 2016 Daily activities Raw data CNN 0,883 (F1

score)
CNN+LSTM 0,915 (F1

score)
Yang et al.,
2015 Daily activities Raw data CNN 82,5%

87%
Ignatov, 2018 Daily activities Raw data + statistical features CNN 90,4%

94,4%
Ha and Choi,
2016 Daily activities Raw data CNN 91,33%

91,94%
Ha et al., 2015 Daily activities Raw data CNN 97,4%

98,3%
Zheng et al.,
2014 Daily activities Standardized raw data CNN 90,3%

93,4%
Hsu et al.,
2019 Multiple sports Spectrograms of standardized

filtered data
CNN 99,9%

Jiao et al.,
2018 Golf Standardized raw data

CNN 95,1
97,7%

Inception CNN 96,0%
Residual CNN 95,7%

Hammerla
et al., 2016 Daily activities Raw data

DNN 0,888 (F1
score)

CNN 0,894 (F1
score)

LSTM 0,912 (F1
score)

2.2. Deep Learning approaches to HAR 9

Table 2.2 continued from previous page
Reference Type of activi

ties
Features Main type of layer Accuracy

bLSTM 0,927 (F1
score)

Xu et al., 2019 Daily activities Normalized raw data Inception CNN +
GRU

0,946 (F1
score)

Xia et al., 2020 Daily activities Raw data LSTM + CNN 0,926 (F1
score)

Edel and
Köppe, 2016 Daily activities Normalized raw data bLSTM 0.780,83

(F1 score)
Chen et al.,
2016 Daily activities Standardized raw data LSTM 92,1%

Zhao et al.,
2018 Daily activities Standardized raw data

LSTM 0,882 (F1
score)

bLSTM 0,892 (F1
score)

Residual LSTM 0,902 (F1
score)

Residual bLSTM 0,905 (F1
score)

Pienaar and
Malekian,
2019

Daily activities Raw data LSTM 94,0%

Zebin et al.,
2018 Daily activities Raw data LSTM 92,0%

Murad and
Pyun, 2017 Daily activities Raw data

LSTM 96,7%
97,8%

bLSTM 92,5%
Cascaded LSTM 92,6%

94,1%
Hernández
et al., 2019 Daily activities Raw data bLSTM 92,7%

Lv et al., 2019 Daily activities Raw data CNN + LSTM Around
85%

Wang and Liu,
2020 Daily activities Filtered raw data LSTM 91,7%

2.2. Deep Learning approaches to HAR 10

Conclusion
During the last years, many authors have studied the problem of Human Activity Recognition using
different techniques. Initially, a traditional approach to machine learning was used, in which algorithms
such as Decision Trees, Support Vector Machines and KNearest Neighbors were used to classify the
activities after a process of manual selection of features extracted from the signals. Those manually
selected features were usually taken from the time and frequency domain, being common the choice
of metrics such as mean, standard deviation, maximum, minimum, kurtosis, and coefficients of the
Fast Fourier Transform. However, “the traditional feature engineering methods are becoming more
and more incapable” (Xu et al., 2019). With the availability of better and faster computing capabilities
and algorithms, the research in this area has shifted towards a Deep Learning approach, where deep
architectures such as Neural Networks, Convolutional Networks and LSTMs are now in charge of the
classification. Not only these algorithms perform, in the majority of cases, better than the previous
attempts, but a huge advantage of them is their ability to automatically extract relevant features. This
capability is of enormous importance, not only because it achieves better results in terms of classifica
tion accuracy, but also because it avoids the need of slow and subjective manual selection of features
from the signals allowing the use of raw signals. Put on Xu et al., 2019 words, “deep learning makes it
more convenient to extract and classify complex data in the face of a large number of different sensor
sources”. It is important to note that, at the present moment, a very low quantity of works related to
Football Activity Recognition were found. The majority of reviewed papers focused on Daily Human Ac
tivity Recognition and some specific applications on strokebased sports, like tennis, golf or volleyball.
The implementation of methods applied to HAR for footballrelated activity has not been thoroughly
discussed in the literature and is the focus of this thesis.

3
Conceptual framework

3.1. IMUs
IMUs (Intertial Measurment Units) are small, often wireless electronic devices embedded with a variety
of sensors of different types. For Human Activity Recognition tasks, they are often placed on different
body parts (specially limbs) of a person to capture the movements that he or she is doing. These de
vices usually contain triaxial sensors such as accelerometers, gyroscopes and magnetometers, so that
it is possible to capture information about the changes in acceleration, velocity and magnetic field that
occur when the person wearing the IMUs performs an activity. In the specific case of this thesis, IMUs
are placed on 5 body parts of football players (right shank, left shank, right thigh, left thigh, an pelvis),
and the measurements of the accelerometers and gyroscopes are used to recognize the activities the
players do.

When explaining the dataset used for a part of the work, the type of IMU and sensors used to acquire
the signals will be detailed. Nevertheless, in all the cases, unless stated the contrary, the locations of
the IMUs will be the same as the ones mentioned above. The inclusion of IMUs in sport applications is
very beneficial when building Human Activity Recognition applications, since they are very small and
can be comfortably integrated in sport equipment without disturbing the execution of the movements.
For illustrative purposes of their small size, figure 3.1 shows one of the versions of the the IMUs used
for this thesis and the pants where they were integrated.

Figure 3.1: IMUs and pants

11

3.2. Traditional Machine Learning Algorithms 12

3.2. Traditional Machine Learning Algorithms
In this thesis, traditional machine learning techniques are referred to those machine learning algo
rithms that are not based on neural networks. Since both approaches are compared in this project, a
summarized conceptual description of common traditional machine learning techniques is presented
below. In this case, all of the algorithms here presented correspond to supervised learning algorithms
for classification tasks, which means algorithms that are trained to classify input data into one of several
predefined classes or categories.

Among the most common traditional machine learning algorithms, are the following:

• KNearest Neighbors (kNN)
The kNN algorithm assumes that similar things occur next to each other. When this method sees
a new, unseen sample, it is assigned to the most common class of the closest K samples of the
training data to that new sample. The definition of closeness must be defined, but a typical choice
is by the euclidean distance. The user must also define the value for K.

• Naive Bayes
Naive Bayes is a classifier based on the probability distributions of each class. It assumes that
the features of the input data are statistically independent and assigns a class to a new, unseen
sample based on the probability of it being part of one class or another according to the Bayes’
Theorem. This prediction, then , depends on the probabilistic distributions of the training data
points. The feature independence assumption is very strong and is not always satisfied, which is
why this method is called naive

• Discriminant Analysis (DA)
Discriminant Analysis methods assume that the observations that are part of each one of the
classes to be recognized are sampled from a normal distribution. DA estimates the parameters
of a normal distribution for each class based on the training samples. By doing this, it is possible
to define the boundaries between the distributions of these classes and, then, use those limits
to perform classifications. When working with DA methods, it is possible to differentiate Linear
Discriminant Analysis (LDA) from Quadratic Discriminant Analysis (QDA). The major difference
between them is that the former assumes that the covariancematrices of all the classes are equal,
resulting in a linear decision boundary. The latter, on the other hand, does not do this assumption,
leading to quadratic decision boundaries.

• Decision tree
A decision tree classifier is built by repeatedly splitting the input space based on values of its
features. At each step, this algorithm finds the best variable that can be used to split the data in
two and performs such split based on the value over that variable that maximizes the separation
of classes. This procedure is repeated in a greedy matter, so that at the end of the process the
feature space is divided in several areas that correspond to different classes. Decision trees can
easily overfit to the training data so, to avoid this problem, usually the tree is pruned to a certain
level to reduce the number of splits.

• Random forest
Random forest are a type of ensemble classifiers in the sense that they are built by combining
several simpler classifiers. In this case, those simple classifiers are decision trees. To build a
random forest, a number of independent decision trees are trained using different subsets of the
training data (this is called bagging), so that ideally no two decision trees are equal. Then, the
predictions of all of those decision trees are taken into account (via averaging or majority voting)
to obtain the final prediction of the random forest. This type of algorithm is very popular and
tends to give very good results, because by combining the predictions of many simple classifiers,
individual errors made by them are cancelled and corrected.

• Support Vector Machine (SVM)
Support vector machines are built under the premise that they find the hyperplane that maximizes
the separation margin between two classes. Because of this, SVMs are mainly used for binary
problems (where only two classes are meant to be distinguished). In theory, SVM are linear

3.2. Traditional Machine Learning Algorithms 13

classifiers in the sense that they build linear hyperplanes, but they can be also used for nonlinear
problems by projecting the data points to another space where they are easier to separate linearly.
This is called the kernel trick in SVMs, which uses the socalled kernel functions to do these
projections. Common kernel choices are the linear (𝑘(𝑥, 𝑥′) = ⟨𝑥, 𝑥′⟩), polynomial (𝑘(𝑥, 𝑥′) =
⟨𝑥, 𝑥′⟩𝑑), gaussian or RBF (𝑘(𝑥, 𝑥′) = exp (−|𝑥−𝑥

′|2
2𝜎2)), and sigmoid ((𝑘(𝑥, 𝑥′) = tanh(𝜅⟨𝑥, 𝑥′⟩ +

𝜗)) kernels. Although SVMs are originally designed to perform binary classification, there are a
number of approaches that can be used when working with multiclass classification problems:

– One vs One (OvO): The OvO approach creates a binary classifier for each pair of classes.
This means that if there are 𝑁 classes, the OvO SVM method creates 𝑁(𝑁−1)

2 binary models.

Then, when evaluating a new observation, all the 𝑁(𝑁−1)
2 binary classifiers are applied and

the most frequently predicted class is assigned.
– One vs Rest (OvR) or One vs All (OvA): The OvA creates 𝑁 binary classifiers for a problem
with𝑁 classes. Each one of those classifiers is built to distinguish between one of the classes
and one of the 𝑁−1 others. When evaluating a new observation, all the 𝑁 binary classifiers
are applied and the class with the largest prediction confidence is assigned.

– Error Correcting Output Codes (ECOC): When building ECOC models, an mbit represen
tation of each one of the 𝑁 classes is defined in advance. Then, a binary classifier is trained
for each one of the bits, so 𝑚 binary classifiers are built. When evaluating a new observa
tion, the 𝑚 models are applied, resulting in the predicted mbit representation of the new
data point. Then, that representation is compared with the mbit representations of all the 𝑁
classes and the one with smallest distance is chosen.

3.3. Deep learning 14

3.3. Deep learning
Unlike traditional machine learning algorithms, deep learning refers to the use of models built based
on stacked layers of artificial neural networks. By using multiple layers, it is possible to train the model
to progressively extract and learn complex features from the inputs. This has a huge advantage over
traditional machine learning algorithms, since deep models perform internally both feature extraction
and classification/regression/clustering. Deep learning models can be used for both supervised and
unsupervised learning tasks, but in this thesis the former type is used. Artificial neural networks, as
their name suggest, are designed to mimic the structure and function of neurons of the human brain.
They are composed by single units of artificial neurons that specialize in learning specific structures or
patterns of the input data. In its simplest form, an artificial neuron looks like the one in figure 3.2. This
means that a neuron is internally computing the equation

𝑦 = 𝜎(𝑤𝑇𝑥)
where 𝜎 is called the activation function and is used to introduce nonlinearities. Among the most

common activation functions are the ReLU, Sigmoid and Tanh, among others. If we include a bias 𝑏
in the inputs of the neuron, its internal operation can be written as 𝑦 = 𝜎(𝑤𝑇𝑥 + 𝑏). When an artificial
neuron is trained, it learns the values for the weights 𝑤.

Figure 3.2: Simple artificial neuron model. Taken from (Sharma, 2020)

Several artificial neurons can be used together. When this is done and all the neurons between
one layer and another are connected, it is called a dense or fullyconnected layer. The combination
of several fully connected layers one after the other is the basic configuration of a neural network, as
exemplified in figure 3.3. Even though each one of the individual signals compute a rather simple oper
ation on its inputs, the combination of neurons along several layers allows the network to learn complex
functions.

Figure 3.3: Artificial Neural Network composed by several fully connected layers. Taken from (Navlani, 2019)

There are many different types of neural networks based on variations of the basic structure of
artificial neurons. In particular, this thesis focuses on two of those types: Convolutional Neural Networks
and Recurrent Neural Networks (specifically LSTMs).

3.3. Deep learning 15

3.3.1. Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a type of deep learning models that were originally de
signed to tackle artificial vision and image processing problems. Studies on vision and perception of
shapes showed that the neurons responsible for those tasks have receptive fields. This means that
each cell responds to a certain specific pattern. The combination of these simple patterns generates
more complex ones that are furthermore combined, so that the brain can finally interpret and understand
the image. Convolutional neural networks try to replicate this behavior and have showed impressive
results in a huge variety of machine learning applications. Although they were originally designed for
recognizing shapes an figures in images, as explained, they can also be used on other types of data,
such as time series. Instead of recognizing shapes and figures in images, CNNs can also be used to
extract patterns from signals.

The general idea of CNNs is based on two types of operations:

• Convolutions
In a convolutional layer, the input data is convolved with a certain number of kernels or filters.
A filter 𝑘 is traversed through all the points of the input image (or signal) and on each location
the convolution between the filter and the overlapping area of the data is calculated (figure 3.4).
These convolutions made by the chosen filter across all the input data result in a new convolved
image (or signal) called a feature map. Many filters are chosen, each one of them with different
weights, so that the convolution operation translates the data into a set of feature maps (one
per filter). Since every kernel generates its own feature map, each one of them specializes in
recognizing and extracting a specific pattern in the input data. Then, all of the feature maps are
concatenated to form the output convolved image (or signal) of the convolutional layer. Training
a CNN means allowing the model to learn the weights for each filter.

Figure 3.4: Convolution operation on 1D data. Taken from (Kuo & Huang, 2018)

• Pooling
It is a common practice to include pooling layers after convolutional ones. Pooling layers introduce
the concept of receptive fields into CNNs, because they condense information of neighboring
points of the convolved data into a single value. Many types of pooling layers can be used, but
one of the most common is the max pooling layer. This operation defines a small block (also
called a filter) and runs it on top of the input data of the layer. At each point, the maximum of the
values contained on the overlapping area of the data and the filter is extracted and the output
image (or signal) is built with those maximum values. Pooling layers have the additional property
that they reduce the size of the feature maps, which translates into fewer weights to be learned
by the model. The outputs of these layers are smaller features maps, but each element of those
maps has information about their neighbors from the previous layer.

CNNs are often combined with additional layers, such as fully connected, as it can be seen in figure
3.5. Note that it shows a CNN operating on images, since it is easier to visualize. However, this thesis
applies CNNs on onedimensional data (signals), like in figure 3.6.

3.3. Deep learning 16

Figure 3.5: Convolutional Neural Network example. Convolutional and pooling layers one after the other followed by dense
layers. Taken from (LeCun et al., 1998)

Figure 3.6: Convolutional Neural Network applied to 1D signal data. Taken from (Lang et al., 2019)

3.3.2. Recurrent Neural Networks
Recurrent Neural Networks (RNN) are a type of deep learning models that are especially designed to
work with data that have an underlying temporal sequence. Because of that, they are typically used
for natural language processing and signal understanding. With this type of data it is important to take
into account past information, since the information is treated as a sequence and what has happened
in the past has influence on what will happen in the future. Based on this idea, RNNs have the ability
to “remember” prior inputs when generating the output. Take for example a machine that translates
text from one language to another. A translation mechanism that just translates word by work will give
poor results. A sentence has an underlying temporal structure based on words: the order in which they
appear affects the meaning of the sentence, thus it is important to know which words came before a
given word. Similar to sentences, time series and signal measurements also carry critical information
on the temporal sequence of their values, so a neural network that can remember past information is
valuable in these cases. In other words, RNNs produce outputs not only based on the current input
vectors, but also on what are called the hidden state vectors that carry information about prior data.
Figure 3.7 shows the basic form of a RNN.

As mentioned, RNNs are used for data that comes in sequence, since they are able to relate pre
vious information to the present. This, although is theoretically possible with the architecture shown
in figure 3.7, has a major drawback when implemented due to a problem called “vanishing gradients”.
Basic RNNs are unable to remember longterm dependencies, because the gradients that are used to
train the model tend to disappear as the input sequence grows in length. When training deep learning

3.3. Deep learning 17

Figure 3.7: Basic form of a Recurrent Neural Network. The figure on the left shows the recurrent property with which an internal
state vector of step 𝑡 is used at step 𝑡 + 1. For illustrative reasons, the figure on the left is often presented as the equivalent
unrolled version on the right. Taken from (Olah, 2015)

models, small gradients are undesirable as the training takes longer and as a result becomes less ef
fective. The RNN cells as presented in figure 3.7 can only remember information that happened in the
near past.

When working with sequence data such as signals porduced by a set of sensors, it is important
to have a model able to handle longterm dependencies. This is the reason why more complex RNN
cells were developed. Long Short Term Memory (LSTM) cells are one of the most common RNN net
works that are used to overcome that problem. They are built upon the basic RNN cells in which prior
information is captured in hidden cells and used to generate outputs of the present time based on past
information of the data. The internal functioning of a LSTM cell is depicted in figure 3.8 where 𝑥𝑡 rep
resents the input at time 𝑡, ℎ𝑡 is called the hidden state at time 𝑡 and 𝑐𝑡 is the cell state at time 𝑡.

Figure 3.8: Internal structure of an LSTM cell. Taken from (Arbel, 2018)

In order to understand how LSTMs work, it is easier to analyze them by parts. One of the most
important properties of LSTMs is their capacity to easily propagate information from one cell to another.
This is implemented by the cell state 𝑐, which, as can be seen in the top horizontal line of figure 3.8,
can run through the cell with only minor linear modifications. The cell state is the heart of the LSTM
and is what carries past information of the input sequence. LSTMs can add or remove information
from the cell state by using structures called gates (which are themselves regular feedforward neural
networks). There are three of them:

• Forget gate
This gate is responsible for deciding what information must be forgotten (removed) from the cell

3.3. Deep learning 18

state. To do so, it concatenates the hidden state at time 𝑡 − 1 (ℎ𝑡−1) and the current input 𝑥𝑡 and
calculates a value between 0 (forget) and 1 (keep) for each element of the cell state 𝑐𝑡−1. Its
mathematical implementation is given by

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓),

where 𝜎 is a sigmoid activation function,𝑊𝑓 are the forget weights that are learned during training
and 𝑏𝑓 the bias term.

By elementwise multiplying the values of 𝑓𝑡 with the ones of 𝑐𝑡−1, certain elements of 𝑐𝑡−1 are
set to 0 (or close to 0) while others are kept.

• Input gate
This gate is responsible for deciding what new information will be stored in the cell state and
where. It is composed of two parts. The first part calculates candidate values �̃�𝑡 to be included
in the cell state 𝑐𝑡:

�̃�𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐),
Where 𝑊𝑐 are the candidate weights that are learned during training and 𝑏𝑐 the bias term. The
second part decides which parts of the cell state will be updated with the candidate values by
calculating the values of 𝑖𝑡 as:

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖),
where𝑊𝑖 are the input weights that are learned during training and 𝑏𝑖 the bias term.

The values of 𝑖𝑡 and �̃�𝑡 are then elementwise multiplied, and that result is added to the 𝑐𝑡−1 vector
that was previously multiplied with 𝑓𝑡. This completes the update of 𝑐𝑡−1 into 𝑐𝑡 determined by the
forget and input gates. In other words, the cell state is calculated as

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 ,
where ∗ represents elementwise multiplication.

• Output gate
This gate is responsible for deciding which elements of the cell state will be given as the output
of the LSTM unit. To do so, it first calculates the values 𝑜𝑡 as

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜),

where𝑊𝑜 are the output weights that are learned during training and 𝑏𝑜 the bias term.

Meanwhile, the values of the cell state are passed through a tanh function. Finally, those values
are elementwise multiplied with 𝑜𝑡, so that only the desired parts of the cell state are output as
the new hidden state values ℎ𝑡:

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑐𝑡).

3.3.3. Additional Deep Learning Concepts
Some additional deep learning concepts were used in this thesis and deserve a special mention and
understanding.

Dropout Layer
A dropout layer is a special type of layer often used in deep architectures to reduce overfitting. This
layer ignores randomly selected units (neurons) of the previous layer. At each training step, each unit
of the layer is momentarily eliminated (with all the connections between them and other neurons) with a
probability of 𝑝. While this might sound counter intuitive (at the end the goal is to train the model to find
the best values of all the connections in the network), turning off a small parentage of neurons at each
training phase helps considerably to reduce overfitting. This is because, if there are many connections

3.3. Deep learning 19

to be learned, networks tend to rely on certain specific neurons on connections more than on others (a
neuron can be coadapted with a previous one, so it corrects its output). By turning off a random subset
of neurons during the training phase, the model cannot depend on any particular neuron to obtain a
correct classification, thus reducing codependency between units.

Loss function
When building an artificial neural network, apart from choosing the architecture and parameters of each
one of the layers, it is also needed to choose a loss function. This loss function is of major importance,
because it is used to train the model via an optimization algorithm. It ultimately defines how close are
the model’s outputs from the desired values. The difference between those two values is quantified by
the loss function to obtain a loss (or error) of the predictions. These errors are backpropagated through
the network and used by the optimization algorithm to update the weights of the model so that a smaller
loss is (ideally) obtained.

Depending on the task that the model is required to do, different loss functions can be selected.
For the particular interest of this thesis, since HAR corresponds to a multiclass classification problem
and the classes were onehot encoded, the categorical crossentropy loss function was chosen. It is
defined as:

𝐽(𝑦, �̂�) = −
𝑁

∑
𝑖=1
𝑦𝑖 log 𝑓(�̂�)𝑖 = −

𝑁

∑
𝑖=1
𝑦𝑖 log(

𝑒�̂�𝑖
∑𝑁𝑗=1 𝑒�̂�𝑗

)

Where 𝑦𝑖 are the ground truth and �̂�𝑖 are the predicted scores for each class 𝑖 in the 𝑁 possible
classes. The function 𝑓 refers to the softmax activation function that is applied to the predicted scores
at the final layer of the model. Since the ground truths are onehot encoded, there is only one nonzero
element of the target vector 𝑦. Then, the loss function can be rewritten as

𝐽(𝑦, �̂�) = − log(𝑒�̂�𝑖
∑𝑁𝑗=1 𝑒�̂�𝑗

)

When training an artificial neural network, as it will be explained below, the gradients of the loss
function with respect to the weights/parameters are needed. For the categorical crossentropy loss
function used in this thesis, the calculation of its partial derivative with respect to an output �̂�𝑙 is as
follows:

𝜕𝐽
𝜕�̂�𝑙

= 𝜕
𝜕�̂�𝑙

(− log(𝑒�̂�𝑖
∑𝑁𝑗=1 𝑒�̂�𝑗

))

= − 𝜕
𝜕�̂�𝑙

�̂�𝑖 +
𝜕
𝜕�̂�𝑙

log
𝑁

∑
𝑗=1
𝑒�̂�𝑗

The first term of the derivative is

𝜕
𝜕�̂�𝑙

�̂�𝑖 = {
1 if 𝑖 = 𝑙
0 otherwise

= 1(𝑖 = 𝑙)

For the second part,

𝜕
𝜕�̂�𝑙

log
𝑁

∑
𝑗=1
𝑒�̂�𝑗 = 1

∑𝑁𝑗=1 𝑒�̂�𝑗
𝜕
𝜕�̂�𝑙

𝑁

∑
𝑗=1
𝑒�̂�𝑗

= 𝑒�̂�𝑙
∑𝑁𝑗=1 𝑒�̂�𝑗

3.3. Deep learning 20

Then,

𝜕𝐽
𝜕�̂�𝑙

= −1(𝑖 = 𝑙) + 𝑒�̂�𝑙
∑𝑁𝑗=1 𝑒�̂�𝑗

= −1(𝑖 = 𝑙) + 𝑓(�̂�)𝑙

Having this expression of the partial derivative of the loss function with respect to each one of the
outputs �̂�𝑖 of the network, it is then possible to obtain the partial derivative of the loss function with
respect to any particular weight/parameter 𝑤 by using the chain rule of differentiation:

𝜕𝐽
𝜕𝑤 =

𝑁

∑
𝑖=1

𝜕𝐽
𝜕�̂�𝑖

𝜕�̂�𝑖
𝜕𝑤

The terms 𝜕�̂�𝑖
𝜕𝑤 will change depending on the types of layers and their activation functions. The

weights from the initial layers will also require that term to be expanded using the chain rule. This way
the error quantified by the loss function will be able to backpropagate through the layers until it finds
the corresponding weight/parameter. However, since a neuron is ultimately computing a function of the
form 𝑦 = 𝜎(𝑤𝑇𝑥 + 𝑏), those inner derivatives can be easily computed as

𝜕𝑦
𝜕𝑤 = 𝜎′(𝑤𝑇𝑥 + 𝑏)𝑥

Note that those internal derivatives, then, depend on the activation function 𝜎 used by each neuron and
by their inputs 𝑥 (which can be themselves outputs from previous neurons).

ADAM optimization algorithm
As explained, training an artificial neural network ultimately means repeatedly finding values for the
weights of the network so that the loss function is minimized. Since a model has a large amount of
weights to be optimized, it is required to know howmuch each one of themmust be tweaked and in what
direction (increase it or decrease it). To do this, artificial neural networks rely on the backpropagation
algorithm, which uses the partial derivatives of the loss function with respect to each one of the weights.
In other words, the gradient of the loss function is needed. With these partial derivatives, the weights
𝑤 are updated as follows:

𝑤 ∶= 𝑤 − 𝛼 𝜕𝐽𝜕𝑤
Where 𝛼 is called the learning rate. This update equation is called the gradient descent algorithm
and, even if it is very simple, can be used to effectively train neural networks. In gradient descent, the
weight is updated in the opposite direction of the partial derivative of the loss function with respect to
the respective weight (the gradient points to the direction of greatest increase, so we take the opposite
direction). The amount of this update is determined by the step function 𝛼.

Gradient descent can be successfully used to train neural networks, but it can converge slowly. To
improve the training speed of neural networks (which is of huge importance in deep learning), additional
algorithms have been proposed that imply improvements on the basic functionality of the gradient de
scent. One of the most widely used algorithms for this purpose is called the ADAM (Adaptative Moment
Estimation) optimization algorithm. Instead of using fixed steps, it combines two elements to converge
faster: momentum and adaptative learning rates.

• Momentum
Gradient descent can be understood as taking steps of a certain length in direction opposite of
the steepest path. However, the loss function can be very complex and have ridges, several local
minima, and saddle points. To address this, it is possible to understand instead the optimization

3.3. Deep learning 21

algorithm as a ball rolling down the loss function. This ball will have some inertia and will be able
to take larger steps when the ball follows a somehow regular path. This additionally dampens
the learning and makes it less oscillating. In other words, we would like an optimization algorithm
that moves fast and accelerates if we move in the same direction, but slows down if we have
to turn to another direction. Parameters whose gradients change directions should be slowly
updated, but those who point in the same (or similar) directions should be modified with larger
steps. Momentum is referred to the capacity of the algorithm to accelerate the learning step by
using an exponentially weighted average of the past gradients:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)
𝜕𝐽
𝜕𝑤𝑡

Where 𝛽1 is a hyperparameter between 0 and 1.

The momentum term at time 𝑡, as it can be seen, takes a weighted sum of the previous momen
tum term 𝑡 − 1 and the gradient at time 𝑡. This is called an exponentially weighted average.

Then, a gradient descent step includes the momentum term 𝑚𝑡 by doing

𝑤𝑡+1 = 𝑤𝑡 − 𝛼𝑚𝑡

• Adaptative Learning Rates

The adaptative learning rate property is extracted from another optimization algorithm called RM
Sprop. Similarly to momentum, RMSprop starts with an exponentially weighted average, but in
this case of the squared gradients. This is also called the second moment:

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) [
𝜕𝐽
𝜕𝑤𝑡

]
2

Where 𝛽2 is a hyperparameter between 0 and 1.

By taking the square of the gradients, we always add up instead of potentially cancelling out posi
tive and negative values. Note that this is calculated for each parameter to be optimized, so each
parameter has its own second momentum and it depends exclusively on itself and the history of
its gradients.

The second part consists on determining the learning rate for the step to be taken. Again, we
move in the direction opposite of the gradient, but the step size is determined by the second
moment previously calculated. A predefined learning rate 𝛼 is divided by the square root of that
second moment, so 𝛼 is modified for each one of the parameters independently. A parameter
with a large exponential average (because in that parameter’s direction the function has steeper
slopes) will then be updated with small steps, while a parameter with small second momentum
will have a larger learning rate. This is why it is said that RMSprop uses a different learning rate
for every weight 𝑤𝑖. Those learning rates are continuously being modified based on the gradients
that have been previously computed for each weight. Mathematically, it is defined as:

𝑤𝑡+1 = 𝑤𝑡 − 𝛼
1

√𝑣𝑡 + 𝜀
𝜕𝐽
𝜕𝑤𝑡

Where 𝜀 is a very small value that is added to avoid division by zero.

The ADAM optimization algorithm combines these ideas from momentum and RMSprop. An ADAM
step starts by getting the gradients of the loss function with respect to the weights:

𝑔𝑡 =
𝜕𝐽
𝜕𝑤𝑡

3.3. Deep learning 22

It then calculates the first and second moments of the gradients determined by parameters 𝛽1 and
𝛽2 respectively:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2𝑡
Since these two moments are initialized as zeros, they tend to be biased towards zero, especially

during the initial steps. To avoid that, those moments are biascorrected:

�̂�𝑡 =
𝑚𝑡

1 − 𝛽𝑡1

̂𝑣𝑡 =
𝑣𝑡

1 − 𝛽𝑡2
Where 𝑡 is the time step or iteration number.

Finally, it does the parameter update by combining both biascorrected moments with their respec
tive properties (momentum for �̂� and adaptative learning rate for �̂�):

𝑤𝑡+1 = 𝑤𝑡 − 𝛼
�̂�𝑡

√ ̂𝑣𝑡 + 𝜀
The full ADAM algorithm is presented in figure 3.9. In that figure (which was taken from the original

paper), the loss function is represented by 𝑓 and the weights/parameters by 𝜃. The commonly chosen
values for the hyperparameters are 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜀 = 10−8. The learning rate is still denoted
by 𝛼 and it should be manually selected.

Figure 3.9: Adam optimization algorithm. Taken from (Kingma & Ba, 2014)

4
Data overview and preparation

4.1. Data
In every machine learning application, one of the most important elements is the data used as input
information for the models. This project used datasets designed and acquired by different authors that
worked on similar problems before. In particular, a dataset taken from the work made by Wilmes, 2019
was used for the training phase and for an initial evaluation. A brief explanation of this dataset will be
given below.

Wilmes, 2019’s data
This dataset was mainly used to train the models and do some evaluation of the results because the
activities were already clearly extracted and labeled.

The experiments conducted byWilmes, 2019 included 11male soccer players with 5 IMUs (Ivensense
MPU9150) attached to their bodies in the following locations: pelvis, right thigh, left thigh, right shank
and left shank, as it can be seen in figure 4.1. Each one of the IMUs had a triaxial accelerometer, gyro
scope and magnetometer. The range for the accelerometers was set to ±16𝑔 and for the gyroscopes
to ±2000∘/𝑠 (the magnetometers’ range was not specified). The sample frequency of the signals was
set to 500 Hz. Each one of the participants executed a number of footballrelated activities, including
passes, shots, jumps, sprints, among others. The experiments were designed in orer to simulate an
actual football match in order to have reliable and real movements.

Figure 4.1: Location of IMUs in experiments (Wilmes, 2019)

The usage of those 5 IMUs allowed the measurement of the triaxial accelerations and velocities of
the 5 respective body parts related to each one of the activities performed by the subjects. This resulted

23

4.1. Data 24

in several signals representing the movements, each one of them with their manually annotated cate
gory (activity). It is important to note that in each experiment, before and after the subject performed
one of the activities, they had a period of walking or standing. This resulted in recordings where, before
and after the desired activity, some measurements of standing or walking were recorded. These inter
vals had to be excluded from the analysis. This procedure, called activity detection, will be explained
in more detail in section 4.3. More information about the experimental protocol and synchronization of
the signals can be found in the original document (Wilmes, 2019).

Examples of signals for four different activities are presented in figure 4.2. Since this figure is just for
illustrative reasons, only the accelerometer signals are shown and not the gyroscope or magnetometer.
Each color of in the plots represents a different axis (X, Y or Z).

Figure 4.2: Examples of activities from dataset from Wilmes, 2019. Only accelerometer data is presented. From left to right,
from top to bottom: jump, pass, run and shot.

Previously, it was explained that the recordings contained some miliseconds before and after the
actual activities where pre and post activities such as walking or standing happened. However, these
intervals were not standardized so each recording had different lengths of pre and post activities and,
as can be seen in figure 4.3, the actual activities did not always happen at the same moment. This
situation resulted in the impossibility to obtain a clear pattern of the average recording of each of the
activities: the recordings for each activity were not centered, so the signals cancelled themselves. This
can be seen in figure 4.4, where the mean signals do not show a clear structure representing the typ
ical pattern of the activities (compare these mean signals with the single instances of figure 4.2, for
example).

Because of this reason, since this dataset was used to train the models, it was first needed to elim
inate the pre and post activities from the recordings, so that the desired activities were isolated. This
procedure is explained in detail in section 4.3.

4.1. Data 25

Figure 4.3: 3 examples of jumps from dataset by Wilmes, 2019. Because of the pre and post activites, the actual jumps happen
at different moments in each recording. Only accelerometer data is shown

Figure 4.4: Mean signals from dataset by Wilmes, 2019 for selected activities. From left to right, from top to bottom: jump, pass,
run and shot.

4.2. Feasibility analysis of a deep learning approach 26

4.2. Feasibility analysis of a deep learning approach
As it was seen in the literature review, either a traditional approach to machine learning or a deep
learning architecture can be used to recognize the football activities in the datasets. In chapter 2 it
was concluded that traditional approaches not only tend to perform worse, but they also heavily rely
on the manual selection of features of the signals, which is not ideal (in terms of performance, time
and information retrieval). In order to better explain this limitation of traditional methods, the following
synthetic examples were prepared.

The problem with timerelated manually extracted features is that they do not capture patterns and
the specific structures present in the signals. They are, in general terms, a mere summary of how the
signal is as a whole. Take for example the three signals shown in figure 4.5. They are three simple
signals with clearly different structure and patterns, so after a feature extraction process, we would
expect to have different features, so that each signal could be distinguished from the others.

Figure 4.5: Three different signals: signal A (top), signal B (middle), signal C (bottom)

A common set of timedomain manually extracted features is composed of the mean, standard de
viation, minimum, maximum, skewness, and kurtosis of the signal. In table 4.1 those metrics for the
signals of figure 4.5 are presented. As it can be seen, all the features have exactly the same values for
the three signals, which means that it would be completely impossible to distinguish between the three
signals using only the selected timedomain features. A big part of the information of the signals is not
captured with this way.

Table 4.1: Timedomain manually selected features for the signals of figure 4.5

Feature Signal A (top) Signal B (middle) Signal C (bottom)
Mean 8,01 8,01 8,01
Standard deviation 9,68 9,68 9,68
Minimum 48,49 48,49 48,49
Maximum 10,86 10,86 10,86
Skewness 1,67 1,67 1,67
Kurtosis 4,12 4,12 4,12

Timedomain features are not the only type of metrics used to describe the signals when working
with traditional machine learning algorithms. The Fourier Transform of the signals allows the extrac
tion of frequencydomain features, which enrich the previously described timedomain ones. However,
these frequencydomain features can also fail to capture important patterns of the signals. In figure 4.6
two signals are presented on the top and their frequency spectrum (via de FFT) on the bottom. It can

4.2. Feasibility analysis of a deep learning approach 27

be observed that the spectrums of both signals are the same, but the two signals are clearly different.

Figure 4.6: Two different signals (top) with their respective frequency spectrums (bottom)

The previous two examples are simple scenarios used to exemplify a big disadvantage of manually
selected features: a big amount of information of the signals can be lost in this process. On the other
side, note that the time and frequency domain features used in these examples were manually chosen
to be those. Another person could decide to use a different set of features that could help to distinguish
better the signals. This is another problem of the usage of manually selected features: they are inher
ently dependent on the person building the system.

If those features are not descriptive enough, then how is it possible that several authors achieved
good results in HAR when using manually selected features (see chapter 2)? The previous exam
ples used extremecase signals to exemplify the problem of information loss when using time and
frequencydomain manually selected features. In real HAR applications the signals are much more
complex that the ones used in the examples, there are several channels and signals, and a large com
bination of time and frequencydomain features are extracted from each one one the signals. This
process results in a large amount of time and frequencydomain features that represent all the sensors
capturing the movement. This high number of metrics fed into a traditional machine learning algorithm
allows HAR with acceptable or good results.

The need to use a large amount of manually selected features to describe the signals has another
problem: the time required to compute each one of the features. Wang and Liu, 2020 identified this
situation and concluded that “the traditional classification model spends much time on extracting fea
ture vectors, leading to potential failure in the data preprocessing stage”. In order to check this claim
and have an initial estimate of how fast is a deep learning approach to HAR with respect to traditional
methods, the following experiment was conducted.

Using the exact same data that Kaketsis, 2020 used in his work, several HAR models based on
traditional methods and on deep learning architectures were built. For the traditional methods, the
features were manually selected to be the ones that Kaketsis, 2020 used: mean, median, standard
deviation, skewness, kurtosis, maximum, minimum, sum of real coefficients of FFT, and maximum of
real coefficients of FFT. For the deep learning approaches, the raw signals were used.

The following algorithms were built using the traditional approach:

• KNearest Neighbors.

• Naïve Bayes.

• LDA.

• QDA.

4.2. Feasibility analysis of a deep learning approach 28

• Decision Tree.

• Random Forest.

• Linear SVM.

• RBF SVM.

The following deep learning architectures were used:

• LSTM(8) + LSTM(8).

• LSTM(32) + LSTM(32) + FC(16).

• CNN1D(64,3) + MaxPool + LSTM(32) + LSTM(32) + FC(16).

Where LSTM(n) means a LSTM layer with n units, FC(n) a fully connected layer with n units and
CNN1D(k,n) a 1DCNN layer with n filters of size k.

This experiment was not focused on achieving a good classification accuracy, but on having an
initial estimate of how fast a deep learning approach is with respect to traditional approaches for the
prediction phase (not the training phase, since the training only has to be done once). Because of that,
no hyperparameter tuning was made for any model. All the models were trained with the same set of
samples. The plots on figure 4.7 show the seconds needed to classify the same 280 samples using
each model.

Figure 4.7: Comparison of time needed to evaluate 280 samples with traditional and deep approaches. In each plot, RNN (left
bar) refers to the Deep Learning approach. Three deep architectures were tried: LSTM(8) + LSTM(8) (top left), LSTM(32) +
LSTM(32) + FC(16) (top right), and CNN1D(64,3) + MaxPool + LSTM(32) + LSTM(32) + FC(16) (bottom).

It is clear that the evaluation time when using deep learning approaches is much smaller than the
one needed with traditional methods. In fact, since all the traditional machine learning methods require
approximately the same amount of time, it can be concluded that the manual feature extraction process
is the part that takes the longest. On the other hand, it can be seen that the three deep architectures
took approximately the same time to perform the predictions, even if they were increasingly more com
plex among them.

A second part of the previous experiment wanted to evaluate how the number of sensors affects
the evaluation time of the same models. It was expected to see that “the number of time and fre
quency domain features (predicting variables) obtained from the accelerometer and gyroscope affects

4.2. Feasibility analysis of a deep learning approach 29

the performance of the classifier differently” (Zebin et al., 2017). To address this question, the same
traditional models and the third deep architecture were trained with three different types of data: only
accelerometer signals, accelerometer + gyroscope signals, and accelerometer + gyroscope + magne
tometer signals. In all the cases, the same 280 samples were used, but the usage of more sensors
meant that more features were needed to extract for the classification. The results of this part of the
expreriment can be seen in figure 4.8. It is interesting to note that the evaluation time for each of the
three cases is nearly the same in the deep learning approach, while with the traditional approaches it
increases when more signals are used.

Figure 4.8: Comparison of time needed to evaluate 280 samples with respect to number of signals. In each plot, RNN (left bar)
refers to the Deep Learning approach. The same deep architecture was used for the three plots: CNN1D(64,3) + MaxPool +
LSTM(32) + LSTM(32) + FC(16). Results using only accelerometer signals (top left), accelerometer + gyroscope signals (top
right), accelerometer + gyroscope + magnetometer (bottom)

A number of conclusions were drawn from the previous experiments:
• The usage of timedomain manually selected features can result in a loss of information of the
signal.

• The usage of frequencydomain manually selected features can result in a loss of information of
the signal.

• When using manually selected features, in order to preserve the most amount of information of
the signals, it is needed to combine time and frequencydomain features and several signals and
sensors.

• Deep Learning approaches are significantly faster in evaluation time than traditional methods for
HAR.

• The computation of manually selected time and frequencydomain features is the process that
takes the most time in evaluation time when using traditional approaches for HAR. Deep learning
approaches does not rely on this process.

• Evaluation time of deep learning approaches does not depend much on architecture (see figure
4.7).

• Evaluation time of deep learning approaches stays nearly constant with respect to number of
signals (see figure 4.8).

• Evaluation time of traditional methods is highly sensible to the number of signals. It increases
proportionally. (see figure 4.8).

4.3. Activity detection 30

4.3. Activity detection
When the dataset that was used to train the models was described in section 4.1, it was shown in figure
4.2 that the recordings included some measurements of low activity (walking and standing) before and
after the actual activity to be recognized. This meant that those activities were not isolated from sur
rounding noise and, in order to build a more reliable model, it was a good idea to clean the signals so
that only the desired activities were present. This follows the logic that the deep model would learn to
extract features by itself. If a lot of irrelevant information would be present in the training phase, it could
be possible that the model would learn features from the low activity patterns and not from the actual
activities, as it is expected. Therefore, to make sure that the model learns to recognize accurately
the football movements, an activity detection procedure was developed. This procedure prepared the
recordings for the training phase by isolating the important activities from the mentioned low activity
intervals. This algorithm is presented in this section.

A low activity measurement is characterized, as it names suggests, by signals with low magnitude
and variance, which lies in contrast to the behavior of the signal during a high activity movement. This
is specially true when we focus on the acceleration values. When a football player makes a movement
after being still or relaxed, the lower limbs accelerate quickly. In figure 4.3, for example, it is not hard
to identify when each one of the jumps start and end only by looking at the acceleration patterns of
the body parts. This is the reason why only the accelerometer signals (and not gyroscope and magne
tometer) were used for the activity detection phase.

On the other hand, this big change in acceleration between a low activity interval and a high activity
one can happen in any of the measured body parts. A standing player can start to run with the right
leg while another player can move the left leg first. This is also true with the axes (X, Y and Z): when
jumping the movement is primarily vertical, but when passing we expect the longitudinal component
to be more present. In other words, the transition between a low and a high activity interval can and
should be detected with any of the body parts and in any axis. This is the reason why the norm of X,
Y and Z axis of each sensor location is used. Each sensor is treated independently and, at the end of
the process, they are combined for the final result.

Since there are five sensor locations (pelvis, left thigh, left shank, right thigh, and right thigh), and
for each one of them the norm of the X, Y and Z components of their acceleration is taken, we obtain
5 different signals. In order to identify when a high activity happens, a baseline value for each signal
is obtained: the mean value. When the player is still or walking, the norm of the signal signal is mainly
smaller its mean. However, when the player performs a more intense activity, the norm of the signal
presents large peaks larger than its mean value. So, the beginning of a high activity measurement can
be found by identifying the moment when the norm of the signal exceeds the mean value. To avoid
small meaningless peaks, the algorithm looks for the moment where the norm of the signal and the
following 50 timesteps exceed the the mean value. Similarly, the end of the high activity interval is
identified by looking at the moment where the norm of the signal and the previous 50 timesteps are
larger than the mean value. This procedure is shown in figure 4.9. The five norm signals are shown
one on top of the other with their respective starts and ends of activity.

The previous process is done with each one of the five norm signals. This results in five “starts”
and five “ends” of the activity. The final step combines these values into a single start and end of the
activity. To do so, the minimum along the five “starts” is taken as the overall start and the maximum
among the five “ends” is taken as the overall end of the activity. Figure 4.10 shows the result of this part.

In summary, the algorithm proceeds as follows:

1. Take only the accelerometer data from the 5 locations: pelvis, left thigh, left shank, right thigh,
and right shank.

2. Take the euclidean norm of X, Y and Z axis of each sensor location. This results in 5 norm signals.

3. For each one of the 5 signals:

3.1. Calculate the mean value.

4.3. Activity detection 31

Figure 4.9: Example of starts and ends of activity for the five norm signals. The detected activity for each sensor location is
shown in white background.

Figure 4.10: Overall start and end of activity from signals of figure 4.9. All the original accelerometer signals are shown. The
desired activity is correctly detected.

3.2. Start of activity: find the first timestep where the signal and the following 50 timesteps are
larger than the mean value. Take that timestep as the start of the activity.

3.3. End of activity: find the last timestep where the signal and the previous 50 timesteps are
larger than the mean value. Take that timestep as the end of the activity.

4. Find the overall start and end of the activity.

4.1. Overall start of activity: take the minimum among the starts of activity from the previous step.
Subtract 250 timesteps (if possible).

4.2. Overall end of activity: take the maximum among the ends of activity from the previous step.
Add 250 timesteps (if possible).

Note that 250 timesteps (0.5 ms) are taken as margins before and after the overall start and end of
the activity. This is done to preserve some context, which is also important.

When this algorithm was implemented and tested, it was found that it worked very good for some
activities (see figure 4.10). However, for some other high intensity activities, it was not working as
expected. Upon researching the reason of this behavior, it was found that the algorithm was working
good with certain type of activities, while with another specific recordings it was having problems. Ad
ditionally, it was observed that, for the second group, the results were much better if the threshold was
set as 1.5 times the mean of the norm of the signal instead of using simply the mean. Interestingly,
after a more detailed investigation of both groups of movements, it was identified that activities such as

4.3. Activity detection 32

jogs, runs and sprints required the mean of the norm signal as threshold, while activities such as jumps,
passes and shots performed better when 1.5 times the mean was used. By understanding the nature
of these two groups of movements, the former group was renamed as periodic activities, in which the
activity is repeatedly performed in a periodic manner; and the latter as explosive activities, in which the
activity is performed only once without a repetitive pattern.

Knowing that periodic activities required the mean as the threshold, but explosive activities per
formed better when using 1.5 times the mean, the next step was to find a way to automatically detect
to which group a movement belonged, so that the correct threshold could be used and the activity
could be correctly isolated. Once again, by understanding that explosive activities tend to be quicker
and without repetitive patterns, the Interquartile Range (IQR) was proposed as the metric to use to
discriminate between both groups of movements. The IQR is calculated as the difference between the
75th and 25th percentiles and it measures the statistical dispersion of a signal or set of values. To
classify an activity as periodic or explosive, the euclidean norm of all the accelerometer signals of the
recording was taken, then this resulting signal was normalized between 0 and 1, and finally the IQR
was calculated. If this value exceeded a certain threshold, the recording was considered as a periodic
movement or, otherwise, as an explosive movement. In figure 4.11, the distribution of the IQR values
for periodic and explosive activities can be seen. The plot on the top uses unnormalized signals and
the bottom one shows the IQR distribution after normalization of the values. Both plots show that the
IQR is a good metric to distinguish between both types of activities.

Figure 4.11: Distribution of IQRs for explosive and periodic movements. Unnormalized signals (top) and normalized signals
(bottom)

The best threshold for the IQR to make this distinction can be set to 10 for unnormalized signals
and 0.12 for normalized ones. These values were selected and the confusion matrices of these classi
fiers were built (see figure 4.12). Both options had great performance, being the one with normalized
signals just better. In terms of performance metrics, the classifier with unnormalized data achieved a
classification accuracy of 98.85% and a F1 score of 99.17%. Using normalized data, the values were
slightly better: 99.42% and 99.58% respectively.

In conclusion, the full algorithm proposed to detect and isolate a high activity interval from a record
ing is as follows:

4.3. Activity detection 33

Figure 4.12: Confusion matrices for explosive vs periodic movements classifier based on IQR. Unnormalized signals with thresh
old 10 (left) and normalized signals with threshold 0.12 (right)

1. Take only the accelerometer data from the 5 locations: pelvis, left thigh, left shank, right thigh,
and right shank.

2. Take the euclidean norm of all the accelerometer signals. This results in one norm signal.

2.1. Calculate the IQR of the signal.
2.2. If the IQR is less than or equal to 0.12, consider the recording as an explosive movement.

Otherwise, consider it as a periodic movement.

3. Take the euclidean norm of X, Y and Z axis of each sensor location. This results in 5 norm signals.

4. For each one of the 5 signals:

4.1. Calculate the mean value.
4.2. Set the threshold to be the mean if the recording was classified as a periodic activity. If the

recording was classified as an explosive activity, set the threshold as 1.5 times the mean
4.3. Start of activity: find the first timestep where the signal and the following 50 timesteps are

larger than the previously defined threshold. Take that timestep as the start of the activity.
4.4. End of activity: find the last timestep where the signal and the previous 50 timesteps are

larger than the previously defined threshold. Take that timestep as the end of the activity.

5. Find the overall start and end of the activity.

5.1. Overall start of activity: take the minimum among the starts of activity from the previous step.
Subtract 250 timesteps (if possible).

5.2. Overall end of activity: take the maximum among the ends of activity from the previous step.
Add 250 timesteps (if possible).

The previously described algorithm successfully detected high activities from low activity intervals,
isolating the relevant regions of high intensity for a potentially more effective training of the model.
Some results of detected activities are shown in figure 4.13.

After this process was successfully done, it was possible to investigate the distribution of the lengths
of each one of the activities, since they were isolated from the pre and post low activity intervals. Fig
ure 4.14 presents these distributions in the form of boxplots. As expected, explosive activities, such as
jumps, passes and shoots are shorter and have smaller spread among their duration. Periodic actions
like runs and jogs happen usually for longer periods and they can be executed for a more variable
length of time.

In figure 4.4, the mean signals for each one of the activities were presented. It was explained that,
since those activities did not happen at the same moment in the recordings and they were not centered,

4.3. Activity detection 34

Figure 4.13: Examples of detected activities isolated from the low activity regions

it was impossible to detect some clear pattern of the average behavior of each activity. Nevertheless,
after preprocessing the recordings with the activity detection algorithm previously described, the activ
ities were isolated and centered, so the mean activities were again extracted and shown in figure 4.15.
In these plots is now possible to identify certain patterns in the activities in contrast to what happened in
the plots of figure 4.4. These mean signals allowed to draw another important conclusion: the magne
tometers do not provide any valuable information in this case that could help to the final task of football
activity classification. The average signals obtained by the magnetometers are, in all the cases, very
flat for all the activities and are not going to be taken into account from now on. The signals from the
accelerometers and gyroscopes, on the other hand, exhibit detectable patterns and differences among
the activities and will be used for the training of the models and classification.

It is very important tomention that this process of activity detection was only applied to the recordings
for the training phase, so that the labels used for that phase were correct and not contaminated with
low activity measurements. For the evaluation phase, a sliding window approach was used, as will be
explained afterwards, so the activities did not have to be isolated in advance.

4.3. Activity detection 35

Figure 4.14: Boxplot of the duration in seconds of each activity after they were isolated from lowactivity intervals.

4.3. Activity detection 36

Figure 4.15: Mean signals of each activity after process of activity detection. Accelerometer data on the left, gyroscope on the
center and magnetometer on the right. Activities from top to bottom: jog, jog followed by 90 degree cut, submaximal run followed
by 90 degree cut, maximal run followed by 90 degree cut, standing jump, jump with a small runup, jump with a small runup,
short pass, long pass, shot, submaximal run, maximal run, jog with rapid stop, submaximal run with rapid stop, maximal run
with rapid stop, jog with 180 degree turn, submaximal run with 180 degree turn, maximal run with 180 degree turn, maximal
sprint

5
Activity recognition

In this chapter, the main part of this work is explained and presented: the design, building and training
of Deep Learning models to perform Human Football Activity Recognition. Sticking to the definitions
used in the literature, “recognition” here refers to the classification of a part of signal in the specific
activity the person who is being sensed is performing. This term must not be confused with what we
called “activity detection” in section 4.3, in which the part of the recording where a high intensity activity
is detected and isolated from low activity intervals. As it will be seen, the goal was not only to build a
model that could achieve an accurate recognition of the activity, but also to do this prediction quickly.
A model that can recognize an activity but takes several minutes (or hours) to do so, was not desired.
We were looking for a good balance between classification accuracy and time performance.

The most common football activities were used as the different classes to be recognized: pass,
shoot, jump, sprint and jog. An additional category called “low activity” was also considered so that
the previous five activities could be also distinguished from periods of low activity, such as walking or
standing. The deep learningbased models that will be presented in section 5.1 are responsible of the
recognition of those five high intensity activities, while the detection of low activity intervals was made
using a different technique that will be explained afterwards in section 5.2.

A full diagram summarizing the whole process is shown in figure 5.1. The left part of the figure is
where the training of the model happens and will be explained in section 5.1. In sections 5.2 and 5.3,
the evaluation phase will be detailed. Finally, in section 5.4, results of the complete pipeline will be
presented with their respective analysis.

37

38

Figure 5.1: Diagram showing the full process of activity recognition with training and evaluation phases

5.1. Activity recognition 39

5.1. Activity recognition
A large variety of deep learning models were designed, built, trained and tested to evaluate their capa
bility to recognize the five most common activities in a football match:

• Shot: a strong kick to the ball usually with direction to the opponent team’s net in an attempt to
score a goal.

• Pass: a softer kick to the ball with the purpose of giving the ball to a teammate.

• Jump: a movement in which the player pushes him or herself vertically off the surface with the
feet and legs. Common when attempting to head the ball.

• Sprint (or run): a fast and high intensity horizontal displacement in one direction.

• Jog: a horizontal displacement in one direction faster than a walk and slower than a sprint.

This thesis focused on the previous activities, because they are the most common during football
practice and the given datasets were already built and labeled with those movements. Building and
labeling new datasets was out of the scope of this work. However, the proposed methodology can be
easily used to extend the set of detected activities to capture additional movements that could happen
in a football match.

The methodology that was used to build the classifiers (models) is shown in figure 5.2. The first top
three blocks, that were already discussed, prepare the dataset for the training and testing phase by
following the process of activity detection (section 4.3). The isolated activities are then passed through
a process of window segmentation, followed by a split in the train and test datasets. These two datasets
are used to train the different models in a recursive manner: using the train subset a model is trained,
then it is evaluated using the unseen test split and the process is repeated (tuning) until a best model
is achieved in terms of performance. This best model is represented with the light yellow block in the
figure. A detailed explanation of each part of this diagram will be given in this section.

Figure 5.2: Training phase diagram

5.1. Activity recognition 40

5.1.1. Window segmentation
In order to build the models for activity recognition, an initial process of activity detection was made
(section 4.3), in which recordings that were going to be used to train the models were passed through
the algorithm previously described to extract and isolate the actual movements to be recognized. This
resulted in a more robust dataset in the sense that the recordings of the activities were clean of low
activity intervals. This process was crucial to have better models, since the presence of these intervals
in the training samples could confuse the model by making it learn features and patterns from the parts
with low activity and not from the actual activities that were meant to be recognized.

The process of activity detection resulted in a dataset with recordings of isolated activities that looked
like the parts with white background of image 4.13. As mentioned before, the magnetometer data was
not used, so each one of the samples of this dataset was composed of 30 signals (5 sensor locations
(pelvis, left thigh, left shank, right thigh, right shank) × 3 axis (X, Y, Z) × 2 modes (accelerometer,
gyroscope)). It is important to recall that, in order to explore the capabilities of deep networks to work
with raw data, the signals were not preprocessed in anymatter: no filtering, noise removal or smoothing.

Windows of certain length were extracted from the signals. To do so, a window was traversed
through the recordings, extracting at each time the respective interval. The length of the windows was
set to be of 1 second. This was defined after an analysis of the duration of the activities (figure 4.14)
showed that intervals of 1 second would allow us to capture explosive activities, such as shots, passes
and jumps. Although, in general, sprints and jogs last for much more than 1 second, they are periodic
movements, which means that the same dynamic is repeated several times, so a window of 1 second
would also allow us to extract their patterns correctly. Furthermore, in order to have a large amount
of training samples and capture temporal dependencies, an overlap of 75% in the windows was used,
meaning that every 250 miliseconds of a recording a new interval of 1 second was extracted.

This strategy of window segmentation is very flexible in the sense that if more windows are required
for the training, they can be obtained by using a larger overlap of the sliding windows. A larger overlap
will mean that more windows are extracted for each recording, so that the dataset is also expanded. It
is clear that the choice of using 1 secondlong intervals with 75% interval is somehow subjective (al
though it was previously explained the reasoning behind those numbers) and these two values could
also be used as hyperparameters to explore the difference in performance when windows with differ
ent sizes and overlaps are used. This, however, was not explored in this thesis and is left for future
experiments.

At the end of this process, a large number of 1 second windows were obtained. The set of these
windows is what was used as the datasets when building the models. When building a machine learn
ing model, it is very important to divide the dataset in two (sometimes three) subdatasets. This is
made to reduce the chances or overfitting, where the model performs very good on the samples that
are used to train, but poorly with new samples that were not used in the training phase. An overfitted
model simply memorizes the patterns of the first phase, but is incapable to generalize to new data. To
avoid this situation, the dataset with the windows was divided in two: a train dataset, composed of 70%
of the samples; and a test dataset, with the remaining 30%. The former was used to train the models
and the latter to evaluate them with unseen samples. A good model would give good classifications on
the train and test datasets, but it would also have similar performances on both splits.

5.1.2. Proposed models
In section 2.2, a thorough analysis of previous works on deep learning approaches for Human Activity
Recognition was made. It was seen that the usage of Convolutional Neural Networks, Recurrent Neural
Networks or a combination of both is a good idea for these tasks. The question to answer, however, is
which architecture outperforms the others in our particular application? There are endless possibilities
to combine RNN and CNN, both in their internal architectures and in the way they are stacked one
after (or in parallel to) the other. A widely known theorem in the Machine Learning world is the No Free
Lunch Theorem. It states that “for any two learning algorithms, there are just as many situations (ap
propriately weighted) in which algorithm one is superior to algorithm two as vice versa” (Wolpert, 2001).

5.1. Activity recognition 41

This basically means that a particular model or architecture is not going to be the best possible option
for all the tasks related a problem. In other words, the architecture that performs the best for Football
Activity Recognition is not necessarily going to be the best for Human Daily Activities Recognition or
Tennis Activity Recognition. Even more, the different types of sensors and their locations can influence
the performance of the model. Nevertheless, this thesis explores different types of deep models for
Football Activity Recognition by combining CNNs and RNNs in several ways and by varying the ways
the convolutions are made to extract relevant features from the signals. The final objective is to have
not only a good accuracy but also to be allow to do the recognition in short time. Because of the No Free
Lunch Theorem, it is impossible to conclude that the developed models will perform equally good when
recognizing activities of other nature or sport without doing the proper tests. However, the proposed
methodology can be used to explore different architectures when facing such situation, so that a good
and fast deep model can be built for another specific types of movements. Additionally, the exploration
of numerous deep configurations allows to draw significant conclusions that could be extrapolated to
more general HAR applications.

As explained before, HAR tasks could benefit from the usage of Convolutional Neural Networks
and Recurrent Neural Networks. The former would be responsible of extracting relevant patterns of
features from signals and the latter would use those features and give them temporal meaning by
understanding the signals as a time series. A combination of both types of layers would be, in theory,
very powerful. But, from the literature review and their understanding, it is known that CNNs could not
only extract relevant features, but also combine them in subsequent convolutional layers so that (some
sort of) temporal relationships could be detected in the signals. This opens the possibility to explore,
as many other authors did, the usage of architectures with only CNNs and not RNNs. In a similar way,
models that only use RNNs without CNNs can also be explored, giving the responsibility of feature
extraction to the RNNs. Wrapping up, this thesis explored architectures solely composed of CNNs,
solely composed of RNNs and built with a combination of both.

Convolutional layers
Since the recordings are composed of several signals from different body parts and types of sensor
(accelerometer and gyroscope), the first question that arose was about the size and type of convo
lutions to be made. Should the convolutions be made across all signals, just across each sensor, or
just across each signal? Should the convolutional kernels (or filters) be shared among all the signals
or should each sensor have independent convolutional kernels? Is only one of those options the best
possibility or should we combine more than one type of convolution?

To solve these questions, different variations of convolutional layers were tried to explore the in
fluence of the type of the convolutions in the model’s performance. It is important to note that, in this
thesis, even if all the convolutions are theoretically twodimensional, some of them are referred as
onedimensional and some others as twodimensional to distinguish among them. By onedimensional
convolution, we refer to convolutions in which the spatial dimension of the filter is 1, so that each signal
is processed alone and the filters do not process more than one signal at the same time. By two
dimensional convolutions, we refer to convolutions in which the spatial dimension of the filter is more
than 1, so that several signals are convolved at the same time. The following variations of convolutions
were built:

• 1DCNN weight sharing:
Onedimensional convolutions with the same filters for all the signals. In this type of convolution,
filters of size 1×𝑚 are used, where𝑚 is a hyperparameter that determines the timesteps used in
the convolution. The 1 implies that each signal is convolved alone. Additionally, weight sharing
means that the same filters are used for all the signals. Figure 5.3 explains this logic. Note that
each sensor is composed of three signals (X, Y and Z axis of the sensor). The convolutions are
made for each signal using the same set of 𝑘 filters (represented in red).

• 1DCNN per sensor:
Onedimensional convolutions with the same filters for all the signals of the same sensor, but
different filters for each sensor. In this type of convolution, filters of size 1 × 𝑚 are used, where
𝑚 is a hyperparameter that determines the timesteps used in the convolution. The 1 implies

5.1. Activity recognition 42

Figure 5.3: 1DCNN weight sharing convolution logic

that each signal is convolved alone. However, each sensor has its own set of 𝑘 filters, meaning
that the filters are not shared among the sensors. This type of convolution follows the idea that
since each sensor can present completely different patterns than another sensor, it deserves to
have their own filters. This way the features extracted per sensor are specifically optimized for it.
Figure 5.4 shows this logic. The convolutions are made for each sensor using, for each one of
them, a different set of 𝑘 filters (but the same set of filters are used for the three axis of the same
sensor). The different set of filters are represented with different colors in the figure. This clearly
results in a larger model than the 1DCNN weight sharing, since it has now 𝑘 ⋅𝑁𝑢𝑚𝑆𝑒𝑛𝑠𝑜𝑟𝑠 filters
to be learned instead of 𝑘 of them.

Figure 5.4: 1DCNN per sensor convolution logic

• 1DCC combined:
Combination of 1DCNN weight sharing and 1DCNN per sensor. Both types of convolutions are
performed and their results (feature maps) are concatenated one on top of the other. Figure
5.5 shows this logic. This variation tries to capture the best of the previous onedimensional
convolutions.

• 2DCNN weight sharing:
Twodimensional convolutions with the same filters for all the sensors. In this type of convolution,
filters of size 3 × 𝑚 are used, where 𝑚 is a hyperparameter that determines the timesteps used
in the convolution. The 3 means that the 3 axis of the same sensor are used together in the
convolution. In order to convolve each sensor by itself so that specific patters can be extracted
by combinations of the X, Y and Z signals of the same sensor, a spatial stride of 3 is used.
Additionally, weight sharing means that the same filters are used for all the sensors. Figure 5.6
explains this logic. As it can be seen, the convolutions are now made using the signals of the
three axis of the same sensor, instead of only one at a time. This results in a smaller feature map,
but in larger filters.

5.1. Activity recognition 43

Figure 5.5: 1DCNN combined convolution logic

Figure 5.6: 2DCNN weight sharing logic

• 2DCNN per sensor:
Twodimensional convolutions with different filters for each sensor. In this type of convolution,
filters of size 3 × 𝑚 are used, where 𝑚 is a hyperparameter that determines the timesteps used
in the convolution. The 3 means that the 3 axis of the same sensor are used together in the
convolution. In order to convolve each sensor by itself so that specific patters can be extracted
by combinations of the X, Y and Z signals of the same sensor, a spatial stride of 3 is used.
Just like 1DCNN per sensor, this type of convolution follows the idea that since each sensor can
present completely different patterns than another sensor, it deserves to have their own filters.
This way the features extracted per each sensor are specifically optimized for it by combining
the information of its three axis in a convolution operation. Figure 5.7 explains this logic. The
convolutions are made for each sensor using, for each one of them, a different set of 𝑘 filters.
The different set of filters are represented with different colors in the figure. This clearly results
in a larger model than the 2DCNN weight sharing, since it has now 𝑘 ⋅ 𝑁𝑢𝑚𝑆𝑒𝑛𝑠𝑜𝑟𝑠 filters to be
learned instead of 𝑘 of them.

• 2DCNN all sensors:
Two dimensional convolutions made across all the sensors (thus also signals) at once. In this
type of convolution, filters of size 𝑁𝑢𝑚𝑆𝑒𝑛𝑠𝑜𝑟 × 𝑚 are used, where 𝑚 is a hyperparameter that
determines the timesteps used in the convolution. By performing convolutions that include all the
sensors in the operation, we would expect to extract features that capture information about the
relationships between all the sensors and signals. Figure 5.8 explains this logic. The filters used
for this type of convolution are larger, but the feature map is smaller: the spatial dimension has
now size 1.

• 2DCNN combined:

5.1. Activity recognition 44

Figure 5.7: 2DCNN per sensor logic

Figure 5.8: 2DCNN all sensors logic

Combination of 2DCNN weight sharing, 2DCNN per sensor, and 2DCNN all sensors. The three
types of convolutions are performed and the resulting feature maps are concatenated one on top
of the other. Figure 5.9 shows this logic. This variation tries to capture the best of the previous
twodimensional convolutions.

Figure 5.9: 2DCNN combined logic

Recurrent layers
With respect to the usage of Recurrent Neural Networks and their variations, Long Short Term Memory
cells (LSTMs) were used. This kind of RNN was chosen to overcome the shortterm memory problem
that occurs when regular RNNs are used. When working with not too short sequences, like the signals
obtained from the sensors, regular RNNs are unable to remember correctly important longterm de
pendencies, resulting in what is called shortterm memory. This is mathematically explained due to the
vanishing of gradients along the input sequence: as more recurrent units are used to capture the whole
sequence, the gradients of the loss function tend to disappear. And these very small gradients make
the training extremely slow and inefficient. The usage of the three different gates in a LSTM cell allows

5.1. Activity recognition 45

information to be “remembered” or “forgotten”, and this makes the gradients to vanish much less. As
a result of this, LSTMs, as their name suggest, have both long and shortterm memory, allowing the
retention of information from both long and short sequences. For this thesis, two different options of
LSTMs networks were tried:

• Unidirectional LSTM or simply LSTM, in which the information travels only in one direction.

• Bidirectional LSTM or bLSTM, in which the information travels in both directions: forward and
backward. This allows the model to understand temporal dependencies from things that hap
pened in the past and from things that happen in the future.

General architectures
With these two types of neural networks (CNNs and RNNs) and the previously described variations of
them, the several models were built, based on only CNNs, only RNNs or a combination of both.

For the models that were only based on CNNs, their general structure was as shown in figure 5.10a.
In this architecture, the input signals go twice through a combination of a convolutional layer followed
by a max pooling layer. Afterwards, a third convolutional layer is used to obtain a tensor of 2 dimen
sions, which is then flattened into a onedimensional vector. That vector is passed through one fully
connected layer and finally an output fully connected layer with a softmax activation function is applied
to obtain the probability scores for each one of the 5 classes (activities). The first two convolutions
(written with an asterisk) vary depending on which type of the previously explained convolutional vari
ations is chosen (figures 5.3 through 5.9). Additionally, to reduce possible overfitting, dropout layers
(not shown in the diagram) are applied before each fully connected layer.

For the models that were only based on RNNs, their general structure was as shown in figure 5.10b.
In this architecture, the input signals go twice through a RNNbased layer. The first RNN layer returns
the whole sequence, so that its output has the same amount of timesteps as the signal. The second
RNN layer only returns the value for the final processed timestep, meaning that its output is already
a flattened onedimensional vector. Then, that vector is passed through two fully connected layers
and finally an output fully connected layer with a softmax activation function is applied to obtain the
probability scores for each one of the 5 classes. The RNN layers there depicted with an asterisk vary
depending on which type of the previously explained RNN units is chosen (LSTM or bLSTM). Addition
ally, to reduce possible overfitting, dropout layers (not shown in the diagram) are applied before each
fully connected layer.

For the models that combined both CNNs and RNNs, their general structure was as shown in figure
5.10c. In this architecture, the input signals go first through a CNN subnetwork (figure 5.11a) that imple
ments the convolutional part that does feature extraction. The output of this convolutional subnetwork
is a threedimensional tensor. However, the recurrent units need the input to be twodimensional. This
is done with the help of an additional convolutional layer followed by a layer (reshape) that simply rear
ranges the order or the dimensions to have it ready for the recurrent part. At that moment, the tensor
is twodimensional and is ready to go through the RNN subnetwork (figure 5.11b) which is again com
posed by two layers of LSTMs or bLSTMs that are responsible of extracting temporal dependencies
of the extracted features. The output of the RNNsubnetwork is a one dimensional vector that goes
through one fully connected layer and finally an output fully connected layer with a softmax activation
function to obtain the probability scores of each one of the 5 classes. Additionally, to reduce possible
overfitting, dropout layers (not shown in the diagram) are applied before each fully connected layer.

Specific architectures
In summary, the following models were built:

• 1D CNN weight sharing: model based on 1DCNN weight sharing type of convolution.
Architecture: Input + Conv(16, (1,5), 1, relu) + MaxPool(1,4) + Conv(32, (1,5), 1, relu) + Max
Pool(1,4) + Conv(64, (d,1), 1, relu) + Flatten + Dropout(0.2), FC(64, relu) + Dropout(0.5) +
FC(classes, softmax)

5.1. Activity recognition 46

(a) General architecture for models based on CNNs

(b) General architecture for models based on RNNs

(c) General architecture for models based on combination of CNNs followed by RNNs

Figure 5.10: General architectures of the different types of models built. Three types of models were evaluated: using only
CNN, only RNN, or a combination of both. The asterisks on the Conv layers mean the usage of all the variations of convolutions
previously explained. The asterisks on the RNN layers represent either LSTMs or bidirectional LSTMs. (FC = Fully Connected
Feed Forward Neural Network)

• 1D CNN per sensor: model based on 1DCNN per sensor type of convolution.
Architecture: Input + Conv_perSensor(16, (1,5), 1, relu) + MaxPool(1,4) + Conv_perSensor(32,
(1,5), 1, relu) + MaxPool (1,4) + Conv(64, (d,1), 1, relu) + Flatten + Dropout(0.2), FC(64, relu) +
Dropout(0.5) + FC(classes, softmax)

• 1D CNN combined: model based on 1DCNN combined type of convolution.
Architecture: Input + Concatenate{[Conv(16, (1,5), 1, relu) + MaxPool(1,4) + Conv(32, (1,5), 1,
relu) + MaxPool(1,4)], [Conv_perSensor(16, (1,5), 1, relu) + MaxPool(1,4) + Conv_perSensor(32,

5.1. Activity recognition 47

(a) General CNN subnetwork for the models that combine CNNs and RNNs

(b) General RNN subnetwork for the models that combine CNNs and
RNNs

Figure 5.11: General CNN and RNN subnetworks for the models that combine CNNs and RNNs. The asterisks on the Conv
layers mean the usage of all the variations of convolutions previously explained. The asterisks on the RNN layers represent
either LSTMs or bidirectional LSTMs. (FC = Fully Connected Feed Forward Neural Network)

(1,5), 1, relu) + MaxPool (1,4)]} + Conv(64, (d,1), 1, relu) + Flatten + Dropout(0.2), FC(64, relu) +
Dropout(0.5) + FC(classes, softmax)

• 2D CNN weight sharing: model based on 2DCNN weight sharing type of convolution.
Architecture: Input + Conv(16, (3,5), 3, relu) + MaxPool(1,4) + Conv(32, (1,5), 1, relu) + Max
Pool(1,4) + Conv(16, (d,1), 1, relu) + Flatten + Dropout(0.2) + FC(64, relu) + Dropout(0.5) +
FC(classes, softmax)

• 2D CNN per sensor: model based on 2DCNN per sensor type of convolution.
Architecture: Input + Conv_perSensor(16, (3,5), 3, relu) + MaxPool(1,4) + Conv_perSensor(32,
(1,5), 1, relu) + MaxPool(1,4) + Conv(32, (d,1), 1, relu) + Flatten + Dropout(0.2) + FC(64, relu) +
Dropout(0.5) + FC(classes, softmax)

• 2D CNN all sensors: model based on 2DCNN all sensors type of convolution.
Architecture: Input + Conv(32, (d,5), 1, relu) + MaxPool(1,4) + Conv(32, (1,5), 1, relu) + Max
Pool(1,4) + Flatten + Dropout(0.2) + FC(64, relu) + Dropout(0.5) + FC(classes, softmax)

• 2D CNN combined: model based on 2DCNN combined type of convolution.
Architecture: Input + Concatenate{[Conv(16, (3,5), 3, relu) + MaxPool(1,4) + Conv(32, (1,5), 1,
relu) + MaxPool(1,4)], [Conv_perSensor(16, (3,5), 3, relu) + MaxPool(1,4) + Conv_perSensor(32,
(1,5), 1, relu) + MaxPool(1,4)], [Conv(32, (d,5), 1, relu) + MaxPool(1,4) + Conv(32, (1,5), 1, relu)
+ MaxPool(1,4)]} + Conv(64, (d,1), 1, relu) + Flatten + Dropout(0.2) + FC(64, relu) + Dropout(0.5)
+ FC(classes, softmax)

• 1D CNN weight sharing + LSTM: model based on 1DCNN weight sharing type of convolution
followed by LSTM.
Architecture: Input + Conv(16, (1,5), 1, relu) + MaxPool(1,4) + Conv(32, (1,5), 1, relu) + Max
Pool(1,4) + Conv(128, (d,1), 1, relu) + LSTM(128) + LSTM(128) + Dropout(0.3) + FC(128, relu)
+ Dropout(0.5) + FC(classes, softmax)

• 1D CNN per sensor + LSTM: model based on 1DCNN per sensor type of convolution followed by
LSTM.
Architecture: Input + Conv_perSensor(16, (1,5), 1, relu) + MaxPool(1,4) + Conv_perSensor(32,
(1,5), 1, relu) +MaxPool(1,4) + Conv(128, (d,1), 1, relu) + LSTM(128) + LSTM(128) + Dropout(0.3)
+ FC(128, relu) + Dropout(0.5) + FC(classes, softmax)

5.1. Activity recognition 48

• 1D CNN combined + LSTM: model based on 1DCNN combined type of convolution followed by
LSTM.
Architecture: Input + Concatenate{[Conv(16, (1,5), 1, relu) + MaxPool(1,4) + Conv(32, (1,5), 1,
relu) + MaxPool(1,4)], [Conv_perSensor(16, (1,5), 1, relu) + MaxPool(1,4) + Conv_perSensor(32,
(1,5), 1, relu) +MaxPool(1,4)]} + Conv(128, (d,1), 1, relu) + LSTM(128) + LSTM(128) +Dropout(0.3)
+ FC(128, relu) + Dropout(0.5) + FC(classes, softmax)

• 2D CNN weight sharing + LSTM: model based on 2DCNN weight sharing type of convolution
followed by LSTM.
Architecture: Input + Conv(32, (3,5), 3, relu) + MaxPool(1,4) + Conv(64, (1,5), 1, relu) + Max
Pool(1,4) + Conv(128, (d,1), 1, relu) + LSTM(128) + LSTM(128) + Dropout(0.3) + FC(128, relu)
+ Dropout(0.5) + FC(classes, softmax)

• 2D CNN per sensor + LSTM: model based on 2DCNN per sensor type of convolution followed by
LSTM.
Architecture: Input + Conv_perSensor(32, (3,5), 3, relu) + MaxPool(1,4) + Conv_perSensor(64,
(1,5), 1, relu) +MaxPool(1,4) + Conv(128, (d,1), 1, relu) + LSTM(128) + LSTM(128) + Dropout(0.3)
+ FC(128, relu) + Dropout(0.5) + FC(classes, softmax)

• 2D CNN all sensors + LSTM: model based on 2DCNN all signals type of convolution followed by
LSTM.
Architecture: Input + Conv(32, (d,5), 1, relu) + MaxPool(1,4) + Conv(64, (1,5), 1, relu) + Max
Pool(1,4) + LSTM(128) + LSTM(128) + Dropout(0.3) + FC(128, relu) + Dropout(0.5) + FC(classes,
softmax)

• 2D CNN combined + LSTM: model based on 2DCNN combined type of convolution followed by
LSTM.
Architecture: Input + Concatenate{[Conv(32, (3,5), 3, relu) + MaxPool(1,4) + Conv(64, (1,5), 1,
relu) + MaxPool(1,4)], [Conv_perSensor(32, (3,5), 3, relu) + MaxPool(1,4) + Conv_perSensor(64,
(1,5), 1, relu) + MaxPool(1,4)], [Conv(32, (d,5), 1, relu) + MaxPool(1,4) + Conv(64, (1,5), 1, relu)
+ MaxPool(1,4)]} + Conv(128, (d,1), 1, relu) + LSTM(128) + LSTM(128) + Dropout(0.3) + FC(128,
relu) + Dropout(0.5) + FC(classes, softmax)

• 1D CNN weight sharing + bLSTM: model based on 1DCNN weight sharing type of convolution
followed by bidirectional LSTM.
Architecture: Input + Conv(16, (1,5), 1, relu) + MaxPool(1,4) + Conv(32, (1,5), 1, relu) + Max
Pool(1,4) + Conv(128, (d,1), 1, relu) + bLSTM(128) + bLSTM(128) + Dropout(0.3) + FC(128,
relu) + Dropout(0.5) + FC(classes, softmax)

• 1D CNN per sensor + bLSTM: model based on 1DCNN per sensor type of convolution followed
by bidirectional LSTM.
Architecture: Input + Conv_perSensor(16, (1,5), 1, relu) + MaxPool(1,4) + Conv_perSensor(32,
(1,5), 1, relu) +MaxPool(1,4) + Conv(128, (d,1), 1, relu) + bLSTM(128) + bLSTM(128) +Dropout(0.3)
+ FC(128, relu) + Dropout(0.5) + FC(classes, softmax)

• 1D CNN combined + bLSTM: model based on 1DCNN combined type of convolution followed by
bidirectional LSTM.
Architecture: Input + Concatenate{[Conv(16, (1,5), 1, relu) + MaxPool(1,4) + Conv(32, (1,5), 1,
relu) + MaxPool(1,4)], [Conv_perSensor(16, (1,5), 1, relu) + MaxPool(1,4) + Conv_perSensor(32,
(1,5), 1, relu) +MaxPool(1,4)]} + Conv(128, (d,1), 1, relu) + bLSTM(128) + bLSTM(128) +Dropout(0.3)
+ FC(128, relu) + Dropout(0.5) + FC(classes, softmax)

• 2D CNN weight sharing + bLSTM: model based on 2DCNN weight sharing type of convolution
followed by bidirectional LSTM.
Architecture: Input + Conv(32, (3,5), 3, relu) + MaxPool(1,4) + Conv(64, (1,5), 1, relu) + Max
Pool(1,4) + Conv(128, (d,1), 1, relu) + bLSTM(128) + bLSTM(128) + Dropout(0.3) + FC(128,
relu) + Dropout(0.5) + FC(classes, softmax)

5.1. Activity recognition 49

• 2D CNN per sensor + bLSTM: model based on 2DCNN per sensor type of convolution followed
by bidirectional LSTM.
Architecture: Input + Conv_perSensor(32, (3,5), 3, relu) + MaxPool(1,4) + Conv_perSensor(64,
(1,5), 1, relu) +MaxPool(1,4) + Conv(128, (d,1), 1, relu) + bLSTM(128) + bLSTM(128) +Dropout(0.3)
+ FC(128, relu) + Dropout(0.5) + FC(classes, softmax)

• 2D CNN all sensors + LSTM: model based on 2DCNN all signals type of convolution followed by
bidirectional LSTM.
Architecture: Input + Conv(32, (d,5), 1, relu) + MaxPool(1,4) + Conv(64, (1,5), 1, relu) + Max
Pool(1,4) + bLSTM(128) + bLSTM(128) +Dropout(0.3) + FC(128, relu) + Dropout(0.5) + FC(classes,
softmax)

• 2D CNN combined + bLSTM: model based on 2DCNN combined type of convolution followed by
bidirectional LSTM.
Architecture: Input + Concatenate{[Conv(32, (3,5), 3, relu) + MaxPool(1,4) + Conv(64, (1,5), 1,
relu) + MaxPool(1,4)], [Conv_perSensor(32, (3,5), 3, relu) + MaxPool(1,4) + Conv_perSensor(64,
(1,5), 1, relu) + MaxPool(1,4)], [Conv(32, (d,5), 1, relu) + MaxPool(1,4) + Conv(64, (1,5), 1, relu) +
MaxPool(1,4)]} + Conv(128, (d,1), 1, relu) + bLSTM(128) + bLSTM(128) + Dropout(0.3) + FC(128,
relu) + Dropout(0.5) + FC(classes, softmax)

• LSTM: model based on LSTM.
Architecture: Input + LSTM(128) + LSTM(128) + Dropout(0.2) + FC(64, relu) + Dropout(0.5) +
FC(64, relu) + Dropout(0.3) + FC(classes, softmax)

• bLSTM: model based on bidirectional LSTM.
Architecture: Input + bLSTM(128) + bLSTM(128) + Dropout(0.2) + FC(64, relu) + Dropout(0.5) +
FC(64, relu) + Dropout(0.3) + FC(classes, softmax)

The input data is given as a matrix of where the rows are the spatial dimensions (signal location)
and the columns have the temporal dimension (timesteps of the signals).

For the previous list, the following notation was used:
Conv(f, (m,n), s, act): Convolutional layer with 𝑓 filters of size (𝑚, 𝑛) with 𝑠 strides in the vertical (spatial
direction) followed with 𝑎𝑐𝑡 activation function.
Conv_perSensor(f, (m,n), s, act): Convolutional layer applied independently at each sensor (X, Y and
Z) with 𝑓 filters of size (𝑚, 𝑛) with 𝑠 strides in the vertical (spatial direction) followed with 𝑎𝑐𝑡 activation
function.
MaxPool(m,n): Max Pooling layer with filters of size (𝑚, 𝑛).
LSTM(n): LSTM layer of 𝑛 units.
bLSTM(n): Bidirectional LSTM layer of 𝑛 units.
FC(n, act): Fully connected feedforward layer of 𝑛 units followed with 𝑎𝑐𝑡 activation function.
𝑑: Number of spatial dimensions of the output tensor of the previous layer.
𝑐𝑙𝑎𝑠𝑠𝑒𝑠: Number of classes.

5.1.3. Training
The previous 23 network architectures were built, but each one of them was trained 4 times: using both
accelerometer and gyroscope data with and without standardization; and using only accelerometer data
with and without standardization. By standardization wemean setting the values of each signal to mean
0 and variance 1. This can be done with the formula:

𝑋standardized =
𝑋 − 𝜇𝑋
𝜎𝑋

Where 𝜇𝑋 is the mean of 𝑋 and 𝜎𝑋 is its standard deviation.

The reason to train the models with those 4 variations of the input data was because we wanted to
explore the effect of the inclusion of gyroscope data or if the accelerations were descriptive enough for
the predictions. Standardized data was used to explore the effect of modifying the internal scale of the

5.1. Activity recognition 50

signals.

Before the training process of the models, an additional procedure was performed: the dataset was
balanced. When building classification models it is a good practice to balance the dataset if it is heavily
unbalanced, because an unbalanced dataset could force the model to be biased towards the common
classes, without learning properly the not so common ones. As it can be seen in figure 5.12a, the
dataset used for training had a very unbalanced distribution of the classes, having significantly more
samples of sprints and jogs than of the other activities. There are several ways to balance a dataset if
it is not feasible to enlarge naturally the dataset: from resampling, to generating new artificial data with
techniques such as SMOTE (Chawla et al., 2002) and their variations (Fernández et al., 2018), or even
with generative neural networks. Due to the nature of the data and the complications related to verify
experimentally the validity of artificially generated samples, balancing of the dataset was made with
undersampling of the classes, so that they all had the same amount of samples as the least frequent
one. The result of this procedure is shown in figure 5.12b, where all the activities in the training dataset
had the same amount of samples.

(a) Unbalanced dataset for training (b) Balanced dataset for training

Figure 5.12: Unbalanced and balanced datasets for the training process

To train the models, the ADAM optimization algorithm (Kingma & Ba, 2014) was used. In all cases,
the chosen parameters where 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8. The learning rate (𝛼) was set to decay
during the learning phase using a learning rate scheduler. By doing this, the model was able to take
large steps towards the optimum during the initial phases of the training, and, as the model approached
this point, the steps taken were smaller. This resulted in a better and faster training scheme. The
learning rate schedulers for the models were defined as:

• For all the models without any LSTM or bLSTM component, the learning rate was initialized at
0.001. After every 10 epochs of training, it was reduced to its 75%.

• For all the models with only LSTM or bLSTM (no convolutional part), the learning rate was initial
ized at 0.0001. After every 10 epochs of training, it was reduced to its 50%.

• For all the models that combined a CNN part with a LSTM or bLSTM part, the learning rate was
initialized at 0.00005. After every 10 epochs of training, it was reduced to its 75%.

An example of a learning rate schedule can be seen in figure 5.13.

The training was made with batches of 32 samples for at most 200 epochs. Additionally, an early
stopping criteria was defined in order to reduce overfitting and unnecessary training: the validation loss
was monitored and if it did not improve (reduce) for 5 consecutive epochs, the training was halted.

As explained before, the dataset was divided in two: a train dataset, composed of 70% of the sam
ples; and a test dataset, with the remaining 30%. The former was used to train the models and the
latter to evaluate them with unseen samples. Each model was trained 5 times using different traintest
partitions, so that every case used a different subset of data for training and testing. The resulting 5

5.1. Activity recognition 51

Figure 5.13: Example of learning rate schedule for training

train and test accuracies of the trainings of each model were averaged to obtain their overall perfor
mance.

To take advantages of the capabilites of GPUs to train deep neural networks, the models were
trained in Google Colab. This online platform offers reliable access to GPU systems that helped to
accelerate the experiments and training processes.

5.1.4. Performance
To evaluate the performance of the models, since the datasets were previously balanced, the chosen
metric was the prediction accuracy. This is defined as the ratio of correctly classified data points out of
all the labelled samples. This number lies between 0 and 1 (100%), being 0 the worst case.

Accuracy = Number of correctly classified samples
Number of samples

The mean accuracies and standard deviations for the 5 trainings for each model can be seen in ta
bles 5.1 and 5.2 respectively. In those figures, a redtoblue color code was used as background color
of the accuracies on the test dataset, where red is worse and blue is better. No color code was given
for the train dataset for visualization clarity. Also, the differences between train and test accuracies
are also depicted, in order to have an idea of how overfitted each model was. The confusion matrices
for one of the trainings of each model (for the version with unstandardized data from accelerometers
and gyroscopes) are shown in appendix B. The models were correctly trained and effectively learned
to classify football activities obtaining, in general, high accuracies. By training each model 5 times with
different traintest splits, we obtain more reliable accuracy metrics which are not dependent on the luck
of choosing an “easy” pair of training and test subsets. Further detailed analysis of these results will
be discussed in chapter 6.

5.1.5. Evaluation times
The main goal of the built model was not only to have a high accuracy when recognizing football activ
ities, but it was also desired that those classifications could be made in short time, since the idea is to
have realtime (or near to realtime) classifications. In section 4.2, a initial and preliminary analysis of
the classification times for traditional and deep models was performed using the data and procedure
from Kaketsis, 2020. That first analysis suggested that deep learning approaches would be faster in
evaluation time than traditional models, mainly explained by the need of a manual process of feature
selection when using the latter type of classifiers.

In this section, the evaluation times for both deep and traditional models were computed again but
using the dataset used to train the models. By doing this, it was possible to draw more specific conclu

5.1. Activity recognition 52

Ta
bl
e
5.
1:

M
ea
n
pr
ed
ic
tio
n
ac
cu
ra
ci
es

fo
rt
he

pr
op
os
ed

m
od
el
s

5.1. Activity recognition 53

Ta
bl
e
5.
2:

St
an
da
rd
de
vi
at
io
n
of
th
e
pr
ed
ic
tio
n
ac
cu
ra
ci
es

fo
rt
he

pr
op
os
ed

m
od
el
s

5.1. Activity recognition 54

sions related to the research question.

As discussed in the previous paragraphs, several type of architectures were implemented and
trained to recognize football activities. In general, the majority of them showed good results in terms
of prediction accuracy. Nevertheless, it was also important to verify the time the models required to
perform a classification of an activity. Different types of architectures imply different types of computa
tions and layers, which are translated in more or less time needed to classify. Therefore, each model
is defined by both its prediction accuracy and evaluation time. Figure 5.14 shows these two metrics
for one run of a selection of models. The blue bars (with left vertical axis) represent the time needed
to classify 365 windows, while the accuracy for those predictions can be seen with the blue line (with
right vertical axis). The usage of LSTM and bLSTM cells allows the model to take into account tem
poral relationships of the extracted features by the CNN. This makes the model more accurate, as
more complex patterns can be detected, but, at the same time, makes the models slower in general.
Therefore, a choice has to be made to balance a higher prediction accuracy by using RNN cells with a
larger evaluation time. With this in mind, based on figure 5.14, a good choice of model could be model
2DCNN_perSensor_bLSTM, that achieves a large prediction accuracy with relative small evaluation
time.

Figure 5.14: Prediction accuracy and evaluation time for some deep learningbased models. These models were trained using
Accelerometers and Gyroscopes without standardization. Blue bars (left vertical axis) represent evaluation time and the red line
(right vertical axis) the prediction accuracy.

Similarly to what was done in section 4.2, various traditional models were trained using the same
data that the deep learningbased models used. In particular, the following classifiers were built: k
Nearest Neighbors, Naïve Bayes, Quadratic Discriminant Analysis, Decision Tree, Random Forest,
SVM with linear kernel version ECOC (Error Correcting Output Codes), SVM with gaussian kernel ver
sion ECOC, SVM with linear kernel version OnevsOne, SVM with gaussian kernel version Onevs
One, SVM with linear kernel version OnevsRest, and SVM with gaussian kernel version OnevsRest.
For all of them, the following manually selected features were extracted: mean, median, standard de
viation, maximum, minimum, skewness, kurtosis, sum of real coefficients of Fast Fourier Transform,
and maximum of real coefficients of Fast Fourier Transform. The evaluation times and accuracies of
these models in comparison to a particular deep learningbased model (2DCNN per sensor + bLSTM,
abbreviated as DNN on the graph) are presented in figure 5.15. For the traditional methods, these
times include the manual feature extraction process. As expected, and following the same conclusions
that were given in section 4.2, deep learningbased models are significantly faster in evaluation time
than traditional approaches for the current problem. For the performed experiments, traditional models
required around 4 to 9 times more time to perform the classification of the same windows than the deep
learningbased models. Additionally, the traditional models tend to have lower prediction accuracies
than the deep ones. In conclusion, these experiments support the hypothesis that, for Football Activity

5.1. Activity recognition 55

Recognition tasks with the selected sensor configurations, deep learningbased models make better
and faster activity recognitions than traditional machine learning models. Their ability to automatically
extract features and abstract temporal and spatial relationship among them, make neural network
based models better in general for the task in question.

Figure 5.15: Prediction accuracy and evaluation time for traditional models in comparison to a deep learningbased model (DNN).
Blue bars (left vertical axis) represent evaluation time and the red line (right vertical axis) the prediction accuracy.

5.2. Low activity recognition 56

5.2. Low activity recognition
The previous sections explained in detail how the main part of the Football Activity Recognition models
were built and trained, the input data, the window segmenting approach, the proposed models, their
training scheme, their results, and their evaluation times. The result of this process is a set of viable,
efficient and accurate deep learningbased models capable of distinguishing different football activities
among them. For this case, the five most common activities were used (shots, passes, runs, sprints and
jogs), however, the same process could be followed to train the models to recognize additional activi
ties, as long as we would have enough isolated and labeled training samples of those new movements.

Once the models were successfully trained, the next step consisted on using the model to actively
recognize and classify the activities present in a recording. This is called the evaluation phase and is
shown with the diagram of figure 5.16. The best model, which is represented with the light yellow block
in the figure is one of the models that were previously trained that perform well in terms of evaluation
time and accuracy. An unseen recording of a player performing a number of activities is used as the
input. This recording can be of a few seconds or even minutes with one or more than one activity mea
sured. An important restriction is that the signals must have the same sampling frequency than the
signals that were used to train the models, in this case 500 Hz. So, if the input recording is not sampled
at 500 Hz, it is needed to resample it so it complies with the required value. Additionally, the recording
must have the same number and type of signals (i.e. triaxial accelerometer and/or gyroscopes on the
same body parts) and the sensors must be ideally calibrated and oriented in the same way as the train
ing measurements. These requirements will make the signals to have a similar scale and distribution
as the data that was used to train the model on, so that the model will be better suited to handle this
new unseen data and classify it correctly, represented with the light blue block on the diagram.

Figure 5.16: Evaluation phase diagram

A sliding window approach is followed, which is explained in detail in section 5.3. This process
implies that a window of 1 second is swept through the recording and, for each position of the window,
a prediction of the activity there present is made. By doing this, several windows will have periods

5.2. Low activity recognition 57

where no relevant activity is made, either because the player is just standing or walking passively.
Therefore, the model also needs to be able to recognize these low activity periods and classify them
as such. There are, in general, two ways to do this:

1. Consider “low activity” as another activity, extract training samples and retrain the deep learning
based models to also recognize this category just like it recognizes shots, sprints, jogs, passes
and jumps.

2. Build a binary classifier on top of the already trained deep learningbased model that would be
responsible to recognize whether a window consists of a low activity period.

The second approach was chosen. The reasons of this choice are mainly two. Firstly, it is clear
that the structure and pattern of the signals during a low activity period are significantly different than
when any of the high activities are performed. Low activity periods are characterized by, as the name
suggests, intervals where the person does not move much, so the signals have very low amplitude and
especially small variations. These characteristics could be exploited to accurately differentiate a low
activity interval from a high one. In second place, the models that were previously built were capable
of recognizing high activities with a very small error rate (up to 34%). Adding an additional class to the
model such as “low activity” will, in the best case scenario, keep the accuracy as it is, but will probably
increase the error by some few percentage points. Because of this, it made more sense to build a
very accurate binary classification model responsible of discriminating windows with low activities to
windows with high activities. If a window would be classified by this binary classifier as a high activity
window, it would be passed then through the previously built accurate deep learningbased model to
classify the interval as a shot, pass, sprint, jog or jump. By doing this, the general model would be very
accurate by combining two highly discriminant classifiers. In figure 5.17, this process is summarized in
a diagram.

Figure 5.17: Evaluation phase diagram

To build this binary classifier, several values were calculated and evaluated for their discriminant
power between low and high activity periods. This classifier could also be built with a machine learning
or deep learning approach, but due to the clear difference in signals between high and low activities
(low activities have smaller amplitudes and variances), it was not needed. The following metrics were
evaluated for the euclidean norm of the accelerometer signals:

• Mean

• Standard deviation (std)

• Coefficient of variation (cv)

• Interquartile range (IQR)

• Range

All of these metrics were calculated for windows with high activities and low activities taking the
euclidean norm of the accelerometer signals. The distributions of the metrics for those two groups
were plotted (figure 5.18) and examined to identify which one of the measurements would have more

5.2. Low activity recognition 58

discriminatory power between both categories. Additionally, a twosample KolmogorovSmirnov (KS)
test was used to evaluate the similarity of these high and low activity distributions. The twosample KS
test is a statistical test used to check if two samples come from the same distribution. This test returns
a value (KS value). The larger the KS value, the more certain we are that both samples come from
different distributions. These KS values should be addressed with the help of pvalues to draw statis
tically consistent conclusions about both distributions, but in this case, they were just used to quantify
in some sense the similarity of both histograms. The resultant KS values for the selected metrics are
summarized in table 5.3.

Table 5.3: Twosided KS values for the metric distributions of high and low activity windows

Metric KS value
Mean 0.9185
Std 0.9302
CV 0.7997
IQR 0.9237
Range 0.9155

It is clear from the plots of the distributions that both categories (high and low activity windows)
have significantly different values for the evaluated metrics. Specifically, low activity windows tend to
have smaller values for each one of them in comparison to windows with high activities. Visually, the
standard deviation appears to be the metric in which both distributions can be more easily separated
by setting a threshold. In addition to that, the KS value for the standard deviation is also the largest,
suggesting that both visually and analytically, that metric is the best option among the other four to
discriminate the two categories.

The question now was about the threshold that should be used for the standard deviation so that
the separation between low and high activity was as clean as possible. To answer this question, a
number thresholds were used to classify a set of new unseen windows with high or low activities: if the
standard deviation of the euclidean norm of the accelerometer signals was larger than a given thresh
old, the window would be classified as a high activity, and as a low activity otherwise. The F1 score
was calculated for each one of the thresholds and the value where the F1 score was the largest was
taken as the optimal threshold. This experiment is depicted in figure 5.19 and shows that the usage of
a threshold of 8.5 gives the best F1 score of 96.67% (and accuracy of 96.56%), which is high enough
to consider this binary classifier as good performing.

The binary highorlow activity classifier was built, then, by defining a threshold of 8.5 on standard
deviation of the euclidean norm of the accelerometer signals. For a given window, the euclidean norm
of all the acceleration signals is calculated and the standard deviation of its values is obtained. If that
metric is smaller than 8.5, the window is classified as a low activity. Otherwise, it is identified as a high
activity, and it then goes through the previously built deep learningbased model to further classify the
movement in one of the 5 specific activities: pass, jog, jump, sprint or shot.

5.2. Low activity recognition 59

(a) Mean distributions

(b) Standard deviation distributions

(c) CV distributions

Figure 5.18: Distributions of metrics of low and high activity periods

5.2. Low activity recognition 60

(d) IQR distributions

(e) Range distributions

Figure 5.18: Distributions of metrics of low and high activity periods (cont)

Figure 5.19: F1 scores for different standard deviation thresholds when classifying high and low activity windows

5.3. Sliding window evaluation 61

5.3. Sliding window evaluation
5.3.1. Prediction: activity recognition
Unlike what was done in the training phase, this new recording does not need to go through the activity
detection process (section 4.3) to isolate the activities. If this input already complies with the correct
sampling frequency and scale, as explained above, the raw signal can be fed to the model to generate
the activity classifications. This can be done because a sliding windows approach is followed as shown
in figure 5.20. A window of the same length as the one used for the training phase (1 second = 500
timesteps) is traversed through the recording, extracting at each time a window of such length. Each
one of these windows is fed through the classifier, returning the recognized activity by the model for
that interval. By sliding the window through the signals, it is possible to obtain activity classifications
for each one of the timesteps of the recording. Furthermore, the overlap of these windows can also be
set as a hyperparameter to fine tune the whole process even more.

Figure 5.20: Evaluation phase diagram

The extracted window is first classified by the previously explained binary classifier as either a high
or low activity window (using only accelerometer data). If the classification returns “low activity”, the
window is understood as such. But if the binary classifier says that the window corresponds to a high
activity, then the window is passed through the deep learningbased model that further classifies the
interval as one of the activities: shot, sprint, jump, jog or pass. This means that, at the end of this
process, the window is classified as either shot, sprint, jump, jog, pass or low activity. This is what we
call a prediction. The sliding window then moves a certain amount of steps through the recording and
a new window is extracted and then classified following the same process.

5.3.2. Postprocessing
After this process is finished and all the windows of the recording are classified in one of the possible
activities, a subsequent phase of postprocessing is performed. This part is needed for two reasons.
First, the predictions must be aligned to the recording; and second, it is needed to clean the predic
tions of undesired artifacts and misclassifications. Both reasons will be explained in detail below. For
visualization purposes, on the following paragraphs, the images explaining the postprocessing phase
will show each recognized activity with a different color.

Since the evaluation of a recording is made with a sliding window approach, it is necessary to
choose the step that the sliding window takes when moving through the recording. Ideally the window
would move one timestep at a time, however this would result in a very large number of windows and

5.3. Sliding window evaluation 62

the evaluation would take a long and unnecessary time. Instead of that, since some overlap between
contiguous windows is desired to capture most of the information of the signal, a small step is taken
between windows. There is a compromise to be made between choosing a very small step (and having
more detailed predictions but with a large evaluation time) and a somehow larger step. We recommend
to use steps between 10ms and 100ms (they translate to windows of 99% and 90% overlap respec
tively). It is important to note that, even if the training of the model was made with windows with 75%
overlap, this value does not need to be the same as the overlap (step) chosen for the evaluation phase.
The length of the window (1 second in our case), on the other hand, must be exactly the same to fit the
model.

The sliding window approach with a certain step comes with the issue that there are less predictions
that timesteps of the recording, since the windows are not evaluated for each time point. See figure
5.21 where this is depicted. On that figure, each vertical colored line corresponds to a location of the
sliding window, therefore to a prediction. Each color represents a recognized activity. If we suppose
that the whole recording has length 𝑁, since the sliding window generates a prediction every certain
number of steps larger than 1, then the evaluation generates 𝑛 predictions. The issue, as it can be
seen in the figure, is that 𝑛 < 𝑁 (𝑛 ≤ 𝑁 if the step is 1), so there are less predictions than timesteps
and postprocessing is needed to associate an activity to each moment of the recording, hence aligning
the predictions.

Figure 5.21: Predictions are not aligned when using a step larger than 1

Three different options were designed, implemented and tested to solve the previous problem:

• Interpolation postprocessing.
It is defined as: All the timesteps between the end of window 𝑖 and window 𝑖 + 1 are assigned to
the prediction of window 𝑖 + 1.

Figure 5.22 explains this process in a graphical, simplified way with a toy example. Suppose that
the horizontal multicolored bar on the top of the image represents the recording. That recording
is traversed with a sliding window and, at each position of the window, a prediction of the activity
there present is made. Those windows are depicted in the figure as rectangles with thick borders
and are named 𝑊1,𝑊2,𝑊3, The prediction made by each window is represented by a color:
blue, red or green. Then, the top, horizontal bar shows the predictions made by the sliding win
dows using that color code. That bar is the output of the evaluation pipeline explained in figure
5.20.

The interpolation postprocessing option assigns the prediction of the window to the last timestep
of such window, as it can be seen with the small vertical colored bars in the middle of the figure.

5.3. Sliding window evaluation 63

Then, as it was mentioned, it assigns that prediction to all the timesteps between the end of that
window and the end of the previous one.

The bottom, horizontal bar in the figure shows the resulting predictions for the toy example after
this interpolation postprocessing.
By taking the last timestep of the window as its prediction, the resulting postprocessed recogni
tions will be slightly shifted towards the right. If this was done instead with the initial timestep of
the window, the final result would be shifted to the left.

This postprocessing option is very intuitive and fast and easy to compute, however it does not
“clean” undesired and isolated predictions, as it will be shown later.

Figure 5.22: Interpolate postprocessing option

• Mode postprocessing
It is defined as: All the timesteps of window 𝑖 are assigned to the prediction of window 𝑖. The final
prediction for each timestep is the mode of the predictions of all the windows that contained that
timestep.

Figure 5.23 explains this process in a graphical, simplified way with a toy example. Suppose that
the horizontal multicolored bar on the top of the image represents the recording. That recording
is traversed with a sliding window and, at each position of the window, a prediction of the activity
there present is made. Those windows are depicted in the figure as rectangles with thick borders
and are named 𝑊1,𝑊2,𝑊3, The prediction made by each window is represented by a color:
blue, red or green. Then, the top, horizontal bar shows the predictions made by the sliding win
dows using that color code. That bar is the output of the evaluation pipeline explained in figure
5.20.

The mode postprocessing option assigns the prediction of the window to all the timesteps con
tained in that window, as it can be seen with the small horizontal colored bars in the middle of the
figure. Then, as it was mentioned, for each timestep of the recording, the most common predic

5.3. Sliding window evaluation 64

tion (mode) is taken as the final prediction of the respective timestep.

The bottom, horizontal bar in the figure shows the resulting predictions for the toy example after
this mode postprocessing. Unlike the interpolation postprocessing option, the result does not get
shifted to the right or left.

Figure 5.23: Mode postprocessing option

This postprocessing option gives more importance to consecutive predictions of the same ac
tivity, so it has the additional property of “cleaning” the results of short undesired and isolated
predictions. Since the step of the sliding window is very small, and the recordings take several
seconds or minutes with a sampling rate of 500 Hz, it is needed to store several predictions and
then calculate the mode for each timestep. This can be memorywise very expensive.

Initially, the approach to perform this procedure was defined as the one presented in figure 5.24:
a large matrix was used to store all the predictions and then the mode for each column was taken.
This resulted in a very large (and sparse) matrix that translated into a slow postprocessing phase
that, for recordings of more than a couple minutes, overwhelmed the computer memory. It was
not scalable and not efficient.

Because of that, an improved way to perform this mode postprocessing was designed, as shown
in figure 5.25. With this approach, instead of building a large sparse matrix, a smaller matrix
was built that stored the number of predictions of each class for each timestep. Then, by taking
the argmax over each column, the final prediction of the respective timestep can be obtained.
This is equivalent as taking the mode of the predictions. By performing the mode postprocessing
option like this, not only the matrix that is used is much smaller in terms of amount of rows (the
number of possible activities is much smaller than the number of windows), but also the subse
quent operation (argmax or mode) over the matrix’s columns is much faster, since there are less
numbers per column. Additionally, the function to calculate the argmax of an array in Python
(numpy.argmax()) is much faster (more than 1000 times faster according to our experiments)
than the function to calculate the mode of an array (scipy.stats.mode()). This approach
makes the mode postprocessing option fast, scalable and memoryfriendly.

Table 5.4 shows the comparison in the size of the matrices needed to perform the mode post

5.3. Sliding window evaluation 65

Figure 5.24: Initial approach to perform the mode postprocessing option

processing option with the two previously described approaches. In that table, 𝑙 is the length of
the recording in seconds, 𝑓 is the sampling frequency in Hz, 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 is the number of possible
activities to detect, and 𝑠𝑡𝑒𝑝 is the step of the sliding window in seconds. Since the sliding window
step is much smaller than 1, then it is clear that the number of elements of the matrix using the
improved approach is much smaller than the one when using the initial approach:
Since 𝑠𝑡𝑒𝑝 ≪ 1, then

𝑙 ⋅ 𝑓 ⋅ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ≪ 𝑓 𝑙2
𝑠𝑡𝑒𝑝

For the initial approach, the matrix size will increase proportional to the square of the length of the
recording and inversely proportional to the step of the sliding window. On the other hand, for the
improved version, the matrix will increase proportional to just the length of the recording. In fact,
the improved version will have a matrix 𝑙

𝑠𝑡𝑒𝑝⋅𝑐𝑙𝑎𝑠𝑠𝑒𝑠 smaller than the matrix of the initial approach.
This is a huge difference knowing that 𝑙 ≫ 1 and 𝑠𝑡𝑒𝑝 ≪ 1.

For example, a 100 second long recording, using a sliding window step of 50 ms and 6 classes to
predict (shot, sprint, jump, jog, pass, and low activity) would require a matrix with approximately
100 million elements for the initial approach. For the improved approach, the matrix would have
300 thousand elements. This is a difference of more than 300x. For a 30 minute long recording
with the same 50 ms timestep the difference is now 6000x (the initial approach would have a
matrix with around 32 billion elements).

Table 5.4: Comparison of matrix sizes for both approaches when performing the mode postprocessing option. 𝑙 is the length of
the recording in seconds, 𝑓 is the sampling frequency in Hz, 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 is the number of possible activities to detect, and 𝑠𝑡𝑒𝑝 is
the step of the sliding window in seconds.

Mode postprocessing approach Matrix size Number of elements in matrix
Initial approach (figure 5.24) ≈ 𝑙

𝑠𝑡𝑒𝑝 × (𝑙 ⋅ 𝑓) ≈ 𝑓 𝑙2
𝑠𝑡𝑒𝑝

Improved approach (figure 5.25) ≈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 × (𝑙 ⋅ 𝑓) ≈ 𝑙 ⋅ 𝑓 ⋅ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

5.3. Sliding window evaluation 66

Figure 5.25: Improved approach to perform the mode postprocessing option

• Best score postprocessing
It is defined as: All the timesteps of window 𝑖 are assigned to the prediction of window 𝑖. The final
prediction for each timestep is the prediction that had the largest probability/confidence among
the predictions of all the windows that contained that timestep.

Figure 5.26 explains this process in a graphical, simplified way with a toy example. Suppose that
the horizontal multicolored bar on the top of the image represents the recording. That recording
is traversed with a sliding window and, at each position of the window, a prediction of the activity
there present is made. Those windows are depicted in the figure as rectangles with thick borders
and are named 𝑊1,𝑊2,𝑊3, The prediction made by each window is represented by a color:
blue, red or green. Then, the top, horizontal bar shows the predictions made by the sliding win
dows using that color code. That bar is the output of the evaluation pipeline explained in figure
5.20.

The best score postprocessing option assigns the prediction of the window to all the timesteps
contained in that window, as it can be seen with the small horizontal colored bars in the middle
of the figure. Each one of these predictions are composed of the recognized activity (red, blue
or green in the figure) and the confidence of the prediction (light to dark tone of the color). Then,
as it was mentioned, for each timestep of the recording, the prediction with largest confidence is
taken as the final prediction of the respective timestep.

The bottom, horizontal bar in the figure shows the resulting predictions for the toy example after
this best score postprocessing. Unlike the interpolation postprocessing option, the result does
not get shifted to the right or left.

The implementation of this postprocessing option was made in a similar way as the improved
mode postprocessing approach (see figure 5.25). Instead of registering the number of windows
that predicted a certain timestep as each one of the possible activities, the maximum confidence
for each activity among all the windows predicting that activity for the timestep was captured in

5.3. Sliding window evaluation 67

Figure 5.26: Best score postprocessing option. The darker the color, the larger the confidence of the prediction.

the matrix. Then, the argmax of those confidences are taken to obtain the final prediction. This
makes this postprocessing option fast, scalable and memoryfriendly as well.
This postprocessing option gives more importance to predictions with high confidences. If, for
instance, a prediction of a shot with 99% confidence is surrounded by several predictions of jogs
with 40% confidence, it would make more sense to trust the prediction of the timestep being a
shot, since the score is very high. This is what this postprocessing option achieves. It also has the
additional property of “cleaning” the results of short, isolated, low score predictions surrounded
by predictions with a larger confidence.

In order to calculate such confidences or scores, the softmax activation function of the last layer
of the neural network model was used. Since the problem is a multiclass classification task, the
last layer of the model has a softmax function. This activation function at the output of the model
represents the probability distribution over the possible categories (see figure 5.27) . The softmax
activation function is defined as:

𝜎(𝑧𝑖) =
𝑒𝑧𝑖

∑𝐾𝑗=1 𝑒𝑧𝑗

Where 𝑖 is the 𝑖th activity among all the 𝐾 possible activities to detect, and 𝑧 is the output of the
last layer of the neural network.

Figure 5.27: Softmax activation function to obtain prediction confidences/scores

These outputs of the softmax activation function of the last layer were used to obtain the confi
dences/scores of the predictions of the window. Furthermore, the prediction of the window was

5.3. Sliding window evaluation 68

defined as the activity with the largest confidence. As for “low activity” windows (since the binary
classifier was built based on a strong threshold to differentiate between high and low activities)
their confidences were set to 𝑐𝑙 = 98%, so that they had very high score, but not enough to beat
high activity predictions with even larger scores. This confidence of 98% was also set as a hy
perparameter 𝑐𝑙, so it can be manually modified if it is desired.

This best score postprocessing logic is analogous to a common postprocessing technique widely
used on computer vision when working with object detection applications: the NonMax Suppres
sion (or NMS) algorithm, as seen in figure 5.28. This algorithm is used to obtain a single bounding
box for each detected object in the image. After an object detection algorithm is run on an image,
that algorithm returns a set of bounding boxes of the objects there present with their confidence
score. Then, the NMS algorithm works as following:

1. Select the bounding box A with the highest confidence score.
2. Compare bounding box A with all the other bounding boxes using a metric called Intersection

Over Union (IoU).
3. Remove all the bounding boxes that have IoU with bounding box A larger than a certain

threshold.
4. The next bounding box A is selected and the process is repeated until there are no more

proposed bounding boxes.
5. Final bounding boxes

This thesis is clearly not focused on computer vision or object detection, so the NMS algorithm will
not be further explained or explored. However, it is interesting to note that, for the task of human
activity recognition using the sliding window approach, the proposed best score postprocessing
variant fulfills a function equivalent to what the NMS algorithm does for object detection problems.
They are both used to obtain a final prediction with high confidence among other low confidence
predictions in the surrounding.

Figure 5.28: NonMax Suppression. Taken from (K, 2019)

Among the three proposed postprocessing options, it is recommended to use the best score variant,
since it gives more importance to predictions with high confidence, obtaining final predictions with an
overall better prediction confidence. Additionally, as explained, this type of postprocessing also cleans
the predictions from isolated and low confidence activities.

5.3.3. Outlier removal and “other high activity” recognition
After postprocessing, an outlier removal procedure is applied to the predictions. Even if the mode or
best score postprocessing option is used and the predictions are cleaned, as explained, there is still
a chance that short peaks of isolated activities survive. It is clear that isolated activities lasting less

5.3. Sliding window evaluation 69

than a couple of miliseconds do not happen in real life. That is why, if there is a detection of an activity
that lasts less than a certain number of miliseconds, that prediction is considered an outlier and has
to be cleaned out. To do so, a rule was implemented: if a prediction of an activity lasts less than 𝜏
miliseconds, the predicted activity of that interval is replaced with the next predicted activity that lasts
at least 𝜏 miliseconds. For this thesis, good results were obtained when using values of 𝜏 between 100
and 300 miliseconds.

The whole sliding evaluation process can be summarized with the diagram shown in figure 5.29,
where each position of the sliding window is classified, then the prediction is postprocessed and finally
the outliers are removed. The block called “Activity Classifier” in the diagram is the process of activity
classification, depicted previously in figure 5.20.

Figure 5.29: Sliding window evaluation procedure

The softmax activation function of the last layer was not only used to build the best score post
processing option. By knowing the confidence of each one of the recognized activities made by the
windows, it was also possible to visualize these scores during the evaluation phase by defining a color
gradient. Knowing that the sum of the outputs of the softmax always sum up to 1, to be selected among
the others, a predicted activity must have a confidence larger than 1 over the number of possible ac
tivities. The maximum confidence is clearly 1. Because of this, the color gradient was defined as
follows:

(Yellow,Black) → (1
𝑐𝑙𝑎𝑠𝑠𝑒𝑠 , 1)

This means that a prediction shown in yellow would have a very low confidence, but if it is shown
in black it would have a very large score, so we could rely more on it. At the end, what the max score
postprocessing does is remove lowconfidence (yellow) predictions.

Furthermore, this yellowblack color code of the predictions was not only used for visualization pur
poses, but also to allow the model to recognize an additional type of activity called “other high activity”.
The model was built and trained to recognize specifically 5 types of high activities: shot, sprint, jump,
jog and pass. However, football is a complex sport, in which players perform more activities than those
five. Turns, for instance. In order to allow the model to somehow recognize these additional high ac
tivities, the prediction confidence was used. A rule was set that defined this new “other high activity”
class as a prediction of any of the five predefined activities with a confidence lower than a threshold
ℎℎ. In other words, if a prediction made by the model has a confidence score of less than ℎℎ, the
window prediction would be considered as “other high activity” instead of the recognized activity by
the model. This logic was built before the postprocessing phase, so that “other high activities” would
also be postprocessed with the other activities just like any of them. Since the best score postprocess
ing gives more importance to predictions with large confidence, and these “other high activities” have,
by definition, low confidences, they would be always eliminated from the final predictions, making the
whole process pointless. In order to avoid this, after a prediction is transformed into an “other high

5.3. Sliding window evaluation 70

activity”, just like it is done with low activities, its confidence 𝑐ℎ is set to a large number smaller than
100% (between 95% and 98% gave good results in the experiments). The threshold ℎℎ is a hyper
paremeter that can be modified if desired. The larger that value is, the easier (or less demanding) it
is to recognize “other high activities”. For the results presented below, a value of 50% was used. If it
is not desired to have this additional class of “other high activity”, the threshold ℎℎ can be simply set to 0.

It is very important to understand, however, that the built deep learning based model is not trained
to recognize these “other high activities”, since it was optimized to recognize specifically shots, sprints,
jumps, jogs and passes. The inclusion of this part to translate low confidence predictions into “other
high activities” is not optimal, because the model will always try to understand each window as one of
the 5 mentioned activities. The model is not designed to recognize “other high activities”, so if additional
activities are meant to be robustly recognized, it is recommended to retrain the model to specifically
detect those new classes.

The addition of this part to recognize other high activities modifies slightly the pipeline of figure 5.29
into the one shown in figure 5.30, which is the final pipeline of the complete model in a summarized form.

Figure 5.30: Final sliding window evaluation procedure with inclusion of “other high activity” class

5.4. Results 71

5.4. Results
In this section, some results obtained with the previously explained activity recognition pipeline will be
presented. Unless stated otherwise, the figures in this section where the final predictions are shown,
will be composed of four graphs. The one on the top will be called the predictions and are the predictions
obtained by the model (outputs of figure 5.16) with the yellowblack confidence colorcode. The second
one will be called the postprocessed predictions and is the result of postprocessing the predictions.
The third graph will be called the final predictions and is the final predictions after the postprocessed
predictions are passed through the outlier removal process (outputs of figure 5.30). Finally, the bottom
graph is just for reference and contains only 3 of all the sensor signals of the original recording. The
horizontal axis (time) is shared among all the 4 graphs. For the top 3 graphs, the vertical axis corre
sponds to the predictions made by the model.

Initially, a comparison of the results of the three postprocessing options will be shown. It will be
possible to see the differences in the final predictions when each one of these three variants are used.
In figures 5.31, 5.32, and 5.33 an example of the results of the whole pipeline using interpolate, mode
and best score postprocessing is presented. The input recording consists of three consecutive activi
ties: sprint, pass and shot, in this case with low activity periods in between them.

Figure 5.31: Example of results using interpolate postprocessing

In the bottom plot of the three figures there are the measurements obtained by 3 of the sensors (left
shank axis X, Y, and Z in this case). The top plot is the same in the three cases, since it corresponds
to the predictions without any postprocessing. It can be seen that the model performs really well in
recognizing the activities present in the recording. There are some incorrect predictions, but they hap
pen mainly at the start and the end of the actual movements. This is, in fact, expected, due to the fact
that the sliding windows at those points cannot capture enough information of the real movement to
recognize it correctly. More interestingly, the incorrect predictions show low confidences: they appear
with a yellower tone than the correct predictions which appear during the activities are made. The

5.4. Results 72

Figure 5.32: Example of results using mode postprocessing

model is trained to recognize one activity at a time and not transitions between them, so it is natural
and expected that the model will give low score predictions (and sometimes even incorrect ones) for
those moments where an activity transitions to another, as it is seen.

As it was explained, the interpolate postprocessing option does not clean the predictions en any
matter. This is evidenced in the short peaks that appear in the second plot of figure 5.31. Any predic
tion made by the model will appear after this type of postprocessing. It possible to see this by looking
at the yellow predictions at the beginning of the recording in the top graph of the figure. Those are
isolated and lowconfidence predictions and they appear as short peaks in the second plot after the
interpolate postprocessing is made. Note that even some of the predictions have such low scores, that
they are transformed into “other high activities”. However, the outlier removal process eliminates those
short artifacts, as it can be seen in the third plot of the figure. The outlier removal process is crucial
when using the interpolate postprocessing option to remove undesired artifacts.

In the previous paragraph it was mentioned and evidenced that short, isolated predictions survive
the interpolate postprocessing scenario. The mode postprocessing option takes this into account and
removes most of them them without the need of the outlier removal phase. In figure 5.32 we see that
the most part of those short peaks do not appear after the predictions are postprocessed with the mode
option. This is why we say that the mode postprocessing option cleans the predictions of shortlived
predictions in between predictions of another class. The outlier removal process is still applied after
the postprocessing to further remove short predictions that persist, as it can be seen in the third plot of
the figure.

In the top plot of figures 5.31, 5.32, and 5.33 it is seen that there are indeed predictions with low
confidences (shown in yellow). The interpolate postprocessing option does not eliminate them (sec
ond plot of figure 5.31) and the mode postprocessing variant preserves them if they happen for some
timesteps consecutively (second plot of figure 5.32). However, if those shortlived lowconfidence pre

5.4. Results 73

Figure 5.33: Example of results using best score postprocessing

dictions happen between highconfidence predictions, they should be removed and more importance
should be given to predictions with a larger score. This is what the best score postprocessing does,
as seen in the second plot of figure 5.33), where the short, lowconfidence predictions are completely
substituted by ones with larger score. This means that those activities for which the model is most
confident in its prediction persist. This highly reduces the occurrence of wrongly detected activities,
that tend to have low scores. It is safe to say, then, that the best score postprocessing option, cleans
the predictions made by the model even more. Similar to what is done with the mode case, the outlier
removal is still used after the best score postprocessing to further clean out predictions that survive and
last just a few miliseconds. In many cases the outlier removal will not be necessary, but in other cases
it will be useful, as seen in the predictions of the sprint in figure 5.34. There is a very short prediction
of a jump that “survived” the postprocessing but is cleaned out for the final result. Interestingly, in this
example, the model even recognizes the end of a sprint as a jog (which makes sense, because the
player slows down before stopping). An additional advantage of using the best score postprocessing
option is that, by using it, we can give the confidence scores for the final predictions with the same
yellowblack color code. For figures 5.33 and 5.34, the final predictions are not only correct in terms
of the recognized activities, but they are drawn in black, showing additionally that the pipeline has an
overall large confidence on the results. For the interpolate and mode postprocessing examples, the
predictions are shown in blue, meaning that they do not include their confidence.

The postprocessing examples presented in figures 5.31, 5.32, and 5.33 are compared one below
the other in figure 5.35. There, the second, third and fourth plots (from top to bottom) show the results
of the predictions after being postprocessed by the interpolate, mode, and best score options respec
tively, but before outlier removal. In this figure, it is possible to see that the interpolate option does not
clean the predictions, but the mode and best score ones do so (the latter more extensively). The first
variant also generates predictions that are slightly shifted to the right, as explained in section 5.3.2. As
for the best score postprocessing, there are two things that are important to not: first, that the final pre
dictions are drawn with the yellowblack color code, which gives also information about the confidence

5.4. Results 74

Figure 5.34: Example of outlier removal process after best score postprocessing

of these final results; and second, that the predictions of high activities tend to be slightly wider. This
happens because of the choice of confidence score given to low activity windows. For this example,
as recommended, they were given 98% of confidence, meaning that high activities with large scores
take over. If a larger confidence 𝑐𝑙 is chosen for the low activities, those high activity predictions will be
narrower.

Some additional examples of predictions made by the whole pipeline of 5 consecutive activities are
shown in figures 5.36, 5.37, and 5.38. For these examples, the best score postprocessing was ap
plied. All of them show a very good performance of the model, both in terms of recognizing the correct
movement and in doing such recognition with a large confidence. As it can be seen, the model is not
perfect, and some “incorrect” classifications are made in some cases, specially at the beginning or end
of individual movements. These situations are due to the nature of the sport, since one activity can
look like another at its early or late phases: jogging before or after sprinting, for instance (see figure
5.38), or jumping after a shot is made due to the inertia of the movement. Because of this, we do not
consider those cases as erroneous classifications, but as even more accurate ones.

The proposed pipeline can also be used to obtain, in text format, the sequence and duration of
the activities performed in the recording. As an example of this, for the recording of figure 5.37, the
summarized text with the recognized activities, their duration and count, are depicted in figure 5.39.

5.4. Results 75

Figure 5.35: Comparison of postprocessing options

5.4. Results 76

Figure 5.36: Example 1 of final results. True labels: sprint, sprint, jump, shot, and pass with low activity periods in between.

Figure 5.37: Example 2 of final results. True labels: jump, jog, shot, pass, and jog with low activity periods in between.

5.4. Results 77

Figure 5.38: Example 3 of final results. True labels: sprint, pass, jog, jump, and sprint with low activity periods in between.

Figure 5.39: Summary of recognized activities of figure 5.37

6
Discussion

In chapters 4 and 5, a detailed explanation of the data used and the activity recognition pipeline was
given including procedure, design, and implementation with their respective analysis. This chapter will
focus on the most important, relevant and interesting elements to be considered. Furthermore, addi
tional experiments and tests will be presented, such as evaluation of the model on different datasets
and building variants of the models in terms of the data used. At the end, the final conclusions will be
presented with recommended next steps for future work.

One of the main goals of this thesis was to design, train and evaluate deep learningbased ap
proaches for football activity classifications. For this sport, some previous works were found where
traditional machine learning algorithms were used, but, as shown in chapter 2 and section 4.2, the
usage of deep learningbased approaches was very promising due to several reasons. Chapter 2
showed that deep learning approaches have been taking over traditional machine learning algorithms
when dealing with HAR applications, but the majority of the works have been made about daily human
activities and not specific sports. Additionally, havingWilmes, 2019 worked with the same dataset using
traditional approaches, it was possible to have an accurate comparison. Another important advantage
of the usage of deep learning models that was exploited is the capability of suchmodels to automatically
extract relevant features without the need of manual selection and extraction of time and/or frequency
domain metrics. This is one of the main characteristics of these models that allows them to capture
more relevant and robust information without the need of human interaction. This ability, along with
potential better performances and faster evaluation times, were the reasons why deep learningbased
models were chosen.

Data is one of the most important parts when dealing with a machine (deep) learning application.
It is said that “garbage in, garbage out”, which means that if the data that us used to train and test
the model is not enough and has bad quality, the model will never perform good. For this thesis,
the training of the model was done with data originally built by Wilmes, 2019 in a controlled and well
documented experimental protocol. The way this dataset was built allowed the extraction of several
samples (recordings) of single football activities, that were used to train and validate the model. One
of the most important research questions of this thesis was whether it is possible to build an effective
football activity classifier with raw signals: no filtering and no preprocessing of the signals. This is why
the values and nature of the signals were not modified before entering to the model.

A first analysis of the dataset showed that the activities were not completely isolated from surround
ing noise (low activity periods before and/or after the execution of the activity). It was feared that those
low activity periods could confuse the training of the model by making it focus its attention on those
irrelevant intervals. Because of this, it was proposed to build an activity detection algorithm, which was
in charge to further refine the the input dataset by removing undesired low activity periods from before
and after the actual movements. The usage of a threshold over the (scaled) mean of the norm of the
accelerometer signals was found to perform well for this task. However, this algorithm turned out to be
somehow dynamic in the sense that the aforementioned threshold had to be chosen as the mean of

78

79

the norm signal for some activities, and as 1.5 times that value for others. Interestingly, it was also evi
denced that the first of those two groups corresponded to sprints and jogs (periodic longterm activities)
and the second one to shots, passes and jumps (explosive, shortterm activities). In order to have a
automatic process without the need of human interaction, it was found that the interquartile range could
be used to distinguish those two groups: periodic activities tend to have a larger and more spread IQR
distribution. Without planning, an algorithm capable of differentiating periodic from explosive activities
with 99.58% accuracy was developed by setting a threshold on the IQR of the recordings. However,
since this was not the focus of the thesis, further experimentation and testing should be done to use
this approach as a standalone periodicvsexplosive activity classifier. This activity detection algorithm
effectively cleaned the recordings and isolated the required activities from pre and post low activity
periods (see figure 4.13). These recordings were the ones used to train the football activity recognition
models. It is very important to note that this procedure was only made for the training phase. For
the evaluation phase, since a sliding window approach was used, no activity detection algorithm was
needed.

After the activity detection algorithm cleaned the dataset, it was possible to see the distribution of
the duration of each type of activity. As expected, explosive activities such as passes, shots and jumps
lasted for just a couple of seconds, while periodic activities lasted much more time. A sliding window of
1 second was chosen. By choosing windows of this length, it was possible to capture a big part of the
explosive activities and, since periodic activities are repetitive, their pattern of movement could also be
extracted. The usage of different sizes of sliding windows was not explored and it is a hyperparameter
that could be further evaluated to verify how the model performance improves or worsens because
of it. Additionally, since the activities were already isolated and centered, it was possible to obtain
their average patterns, as shown in figure 4.15. In that figure, it is possible to appreciate the common
patterns of each type of movement (see for example the jumps, where two peaks of activities happen
before and after a short period of low movement, which represents the airtime of the jump). But more
importantly, these graphs were used to argument why the magnetometers were not further used: they
carried little or no information useful to distinguish between classes.

Having the isolated activities, it was possible to build the datasets to train and test the models. Al
though in football there is a high variety of movements, the five most common activities were chosen
as the classes to be recognized via the deep learning based model: passes, shots, jumps, sprints,
and jogs. The pipeline presented in this thesis can be, however, expanded to build and train models
with additional activities if needed, such as turns or slides. As explained, a sliding window approach
was used that extracted, for each recording, 1 secondlong windows with 75% of overlap among them.
This was made because of two reasons mainly: to have a consistent input size of the models, as they
require; and to expand of the original dataset, since now there were several more samples of each
one of the activities instead of only one instance per recording. Since recordings for sprints and jogs
lasted more in the original dataset, the sliding window methodology generated a highly unbalanced
dataset, as it was seen in figure 5.12a. Unbalanced datasets are usually a problem when dealing with
classification problems such as this one, because the model will eventually see more examples of the
most frequent class during the training phase and will not learn enough about the least frequent ones.
To overcome this issue, the dataset was balanced by undersampling the most frequent activities, so
that all the classes had the same amount of samples as the least frequent one (see figure 5.12b). This,
however, has the problem that a large amount of training examples are discarded, reducing the size
of the dataset, which is undesired. Other resampling techniques could have been used, such a over
sampling the minority, capturing more data on the field, or even synthesizing artificial samples of the
classes with techniques such as SMOTE (Synthetic Minority Oversampling Technique). At the end, the
more (with high quality) data there is for the model, the better.

Based on literature review, it was seen that the usage of Convolutional Neural Networks and Re
current Neural Networks was recommended. For this reason, several models were built that combined
CNNs and RNNs. For the CNNs, 7 different types of convolutional layers were evaluated. Convolu
tions along only one the signals, along the three axial signals of the same sensor, and along all the
signals were designed. Also, convolutions with weight sharing and with independent kernels for each
signal or sensor were proposed. Even combinations of these types of convolutions were built. The

80

logic behind these types of convolutional layers was given in section 5.1.2, but in summary, the idea
was to capture different type of shared and independent information among the signals and sensors.
With respect to the recurrent layers, LSTMs and bidirectional LSTMs were chosen to extract temporal
information of the recordings. To train the models quick and effectively, a learning rate scheduler was
defined that modified dynamically the learning rate during the training phase. Additionally, to reduce
overfitting, early stopping was executed on the training and dropout layers were implemented across
the architecture. At the end, 23 deep learning architectures were proposed, trained and finetuned over
4 different variants of the input data: with and without standardization; and using accelerometer and
gyroscope signals or only accelerometers. This resulted in 92 models, that were trained 5 times with
different 70%30% traintest splits. The average and standard deviation of their resulting prediction
accuracies were presented in tables 5.1 and 5.2. By standardization of the input data, it is referred
to the centering of the values of each window by subtracting the mean and dividing by the standard
deviation of each one of the windows. It is, then, a local standardization.

The results of training and testing the 92 aforementioned models showed that, in general, good per
formances were achieved in terms of prediction accuracy and with low overfitting. Models only based
on LSTMs or bLSTMs, however, did not perform well and obtained low test accuracies with clear over
fitting. Furthermore, it can be seen that models with a combination of convolutional and recurrent layers
had better accuracies than those that only rely on convolutions. This can be explained by understand
ing the role that both CNNs and LSTMs play in the architecture. Convolutional layers perform, as their
name suggests, convolutions over the signals and combinations of them. These operations extract
relevant features that are present in the recordings and are characteristic of the activities to be rec
ognized. The initial convolutional layer extracts simple features, which are then combined into more
complex ones with the deeper convolutional layer. This is the power of CNNs: the ability to extract
relevant features without the need of specific human interaction. LSTMs are placed after these con
volutional layers and they are responsible of taking those extracted features and giving them temporal
meaning, knowing that the IMU signals are time series and should be treated as that. The combination
of these two types of layers allows models to effectively extract features and timerelate them so that
final accurate classifications are made. It is interesting to note that only CNN models performed better
than only LSTM models. This implies that the usage of convolutional layers to extract relevant features
is critical. The usage of bidirectional LSTMs gave better results than the usage of regular unidirectional
LSTMs, suggesting that important elements of the recordings are captured when looking at them from
right to left. The usage of both acceleration and gyroscope data allowed the training of better models
than when only accelerometer data was used.

Accuracies of up to 96.71% with low deviation were obtained, specifically when using what we
called 1D CNNs in combination with bLSTMs. Good results were obtained for almost all the models
that had combination of CNNs and (b)LSTMs (between 94,94% and 96,71% accuracy). Some of the
differences in accuracy are very small, so it is not correct to say that one specific model is better than
the other good performing ones just based on the test accuracy. To choose a model as the final one,
both the evaluation time and prediction accuracy were evaluated. Based on its high average accu
racy, low overfitting and fast evaluation time, a model such as 2DCNN_perSensor_bLSTM could be
chosen. This does not mean that other models cannot be used depending on the necessities, such
as 1DCNN_perSensor_bLSTM, which is also a good choice, since it has a slightly larger evaluation
time, compensated by a smaller error. Figure 5.15, on the other hand, compared the prediction ac
curacy and evaluation time of one of the chosen deep learningbased model and several traditional
machine learningbased classifiers built using the exact same dataset. It is clear from the graph that
deep learning models perform better and faster for this problem, supporting their usage for football
activity recognition.

Table 5.1 also showed that the usage of locally standardized windows worsened the prediction
accuracy for almost all the models with respect to the unstandardized ones. Even more, locally stan
dardized models had more overfitting and larger deviations on their accuracies. Although normalization
or standardization is a common and recommended practice when building deep learning models, lo
cally standardizing the input windows deteriorated the performance of the models. This is because by
doing so, the signals lose the relationships between the scales among them, which are very impor

81

tant for the classification. By doing local standardization, the signals of each window are standardized
using the means and standard deviations of the signals of that specific window. This makes that, for
instance, windows of a shot and a pass are standardized independently and their signals look similar
at the end because they are both locally standardized. Nevertheless, a pass has smaller signal values
than a shot and the standardization should reflect this. If standardization or normalization is desired, it
must preserve the relative scale of the activities. This can be done by standardizing or normalizing all
the windows with the values of a calibration recording (a recording where many different activities are
performed) instead of using the local values of the window. This experiment was performed and will
be discussed in section 6.2.2.

The general pipeline also allowed the recognition of low activity periods, which are of huge impor
tance when distinguishing one activity from another in a row. As explained in section 5.2, different
methodologies could have been followed to make the model additionally understand these low activi
ties. Since the deep model had a very high accuracy when recognizing the 5 high activities (jog, jump,
shot, sprint, and pass), in order to maintain this good performance, it was decided to implement a bi
nary highvslowactivity classifier on top of the deep model. So, the window to be classified passes
first through the binary classifier, which identifies the window as a high or low activity. If it is detected
as the former, it is then fed to the deep model that further classifies it as one of the 5 high activities.
Because of the evident differences in the signals of these both types of activities, it was possible to
build an accurate binary classifier responsible of that distinction using solely the standard deviation
of the norm of accelerometer signals. Different options could have been used to build that classifier:
low activity could have been added as an additional class to a twooutput deep model so that it would
recognize passes, jumps, shots, sprints, or jogs on one output and high or low activities on the other; or
an independent binary highvslowactivity classifier could have been built using another deep neural
network. The thresholdbased binary classifier achieved an accuracy of 96.56% on the test dataset.

Postprocessing and outlier removal processes were implemented to align the predictions with all
the timesteps of the recording and clean the outputs of the model from unwanted shortlived and low
confidence predictions. Three postprocessing options were proposed and implemented: interpolate,
mode and best score. Each one of them was thoroughly explained. It was shown that the interpolate
postprocessing was not useful to remove unwanted predictions, and depending on which part of the
window is used as the location of the prediction, it moves the predictions across time to the future or
the past. To take the most out of the sliding window approach for the evaluation phase, the mode and
best score postprocessing variants were designed. They both use the fact that a single timestep will be
evaluated by several windows, so the final prediction must take into account all of them. These two op
tions have the additional property of cleaning the final outputs: the former one gives more importance to
predictions of the same class over the timestep; the latter focuses on the confidence of the predictions,
giving more weight to predictions with high confidence, even if they are isolated. In order to obtain those
prediction confidences or scores, the output of a softmax activation function was used on top of the
last layer of the deep model. These values can be understood as the probabilities of the window being
classified as each one of the 5 high activities. The best score is the type of postprocessing recom
mended, because intuitively it makes more sense to focus on predictions with high confidence, it gives
information about the score of each prediction, and it gives better and clearer results. Additionally, this
postprocessing option is analogous to what the commonly used NonMax Supression algorithm does
in object recognition tasks. The subsequent outlier removal process eliminates shortlived predictions,
since activities that last less than a certain amount of time are not physically possible and should be
considered outliers. Its operation is dependent on the hyperparameter 𝜏.

The usage of the output of the softmax activation function to obtain class probabilities allowed the
usage of the best score postprocessing and the visualization of the confidences of the predictions with
a yellowblack color gradient. However, since low activities are detected used a hard threshold clas
sifier, they do not come with any confidence values (this is a reason why it could make sense to build
soft binary highvslow activity classifiers using another deep model, for example). Because of this,
windows classified as low activities were artificially set to have confidence 𝑐𝑙. This value, that was set
to 98% for the presented results, must be high and determines how much the binary classifier should
be trusted in detecting low activities. Larger values of 𝑐𝑙 would make low activities more important,

82

making the predictions of high activities between low activity periods narrower. Furthermore, the pre
diction confidences allowed the inclusion of an additional class: other high activity. This class is defined
as any window recognized by the binary classier as a high activity, but classified by the deep model
as any of the 5 activities with a low confidence (lower than ℎℎ). These other high activities have, by
definition, low confidence, so to avoid them from being eliminated from the final predictions due to the
best score postprocessing, they are given an artificial large score 𝑐ℎ (95% was used for the presented
results). Similar to the confidence 𝑐𝑙 of low activities, 𝑐ℎ must be large and is set as a hyperparameter
to allow experimentation. Note that, however, the general pipeline is not designed to recognize this
“other high activity” class. Its inclusion is just a way to consider this class depending on the chosen
value for ℎℎ. The deep model is optimized to recognize a window as a jump, pass, shot, sprint, or
jump, so it will always try to understand a recording as one of those 5 activities. If an additional type
of activity wants to be recognized (such as turns or slides, for instance), the model must be retrained
with enough examples of that class to be able to specifically recognize it.

6.1. Evaluation on different datasets 83

6.1. Evaluation on different datasets
The model was trained and evaluated using the dataset provided by Wilmes, 2019, as explained. The
figures that have been presented in section 5.4 are the results of evaluating the model on unseen
samples of the same dataset. However, it is important to see if the built pipeline can generalize and
also give correct results on different datasets. To evaluate this, the following datasets were used:

6.1.1. Rozemarijn’s dataset
This dataset was provided by Schotel, 2019. It was solely used to evaluate the performance of the
trained models on a more complex dataset, such as this one. This dataset had several recordings of
activities happening one after the other in a more real scenario instead of short recordings where single
activities happened, making the task of activity recognition more difficult.

To build this dataset, Schotel, 2019 attached 5 IMUs (Shimmer3) in the exact same locations as
shown in figure 4.1 on the participants. Five male subjects performed drills that included activities such
as jogging, sprinting, passing and shooting. In particular 2 drills were executed, each one of them
composed of several situations where different activities were performed. A complete and detailed ex
planation of the experiments and procedures can be found in the original paper (Schotel, 2019). These
experiments resulted in much longer recordings (almost 1 hour) of more complex data.

Similar to the dataset from Wilmes, 2019, each one of the IMUs had a triaxial accelerometer, gy
roscope and magnetometer. The range for the accelerometers was set to ±16𝑔, for the gyroscopes to
±2000∘/𝑠, and for the magnetometers to ±4.7𝐺𝑎. A big difference with the previous dataset is that this
one used a sample frequency of of 200 Hz instead of 500 Hz.

When working with a different dataset, one of the first things that should be done is to check whether
the distribution of these new data is similar to the one of the data that was used to train the model. As
quoted in McGaughey et al., 2016, “a common prerequisite in supervised learning algorithms is that
the training and prediction data arise from the same distribution and are independently and identi
cally distributed (iid). Intuitively this is justified, as one should not expect to learn a classifier on one
distribution of examples and apply it to accurately predict labels of examples drawn from a different
distribution”. This problem is often called covariate shift (figure 6.1). A model evaluating a testing or
prediction dataset with a different scale and distribution than the training one will not perform as good
as expected. This is actually one of the reasons why it is a good practice to normalize the data when
training and evaluating models.

Figure 6.1: Covariate shift. Taken from (Stewart, 2019)

By plotting the time series of Wilmes’ (train) and Rozemarijn’s (test) datasets, it was evident that

6.1. Evaluation on different datasets 84

both had different scales. Rozemarijn’s sensors provided measurements with considerable larger val
ues, specially with the gyroscope signals. Examples of these plots can be seen in figures 6.2 and 6.3.
This change in scale will be a problem when using the model to predict Rozemarijn’s recordings, since
the model is not normalized.

Figure 6.2: Comparison of scales of measurements in Wilmes’ and Rozemarijn’s datasets. Sample accelerometer signal

Figure 6.3: Comparison of scales of measurements in Wilmes’ and Rozemarijn’s datasets. Sample gyroscope signal

Not only the scales were different, which implied the use of different calibration methods of the sen
sors, but also some of the signals had significant different distributions, as can be seen in figure 6.4.

6.1. Evaluation on different datasets 85

Figure 6.4: Comparison of distributions in Wilmes’ and Rozemarijn’s datasets for selected signals. Histograms limited from 100
to 100 for visualization purposes

The difference in scale, distribution, and even sampling frequency (the signal had to be resampled
to 500 Hz) had terrible consequences for the model using the aforementioned values for the hyperpa
rameters ℎℎ , 𝑐ℎ , 𝑐𝑙. As it can be seen in figure 6.5 with the yellow dots, all the predictions of high activities
had very low confidence. The example there depicted corresponds to an interval of the recording where
a drill consisting of sprints, turns and shots are performed 10 times in a row. All the predictions made by
themodel had very low confidence, somany of themwere considered as “other high activity”. But, since
𝑐ℎ assigns by default 95% confidence to “other high activities”, they end up having scores larger than
all the predictions of high activities and the final prediction is composed of solely “other high activities”.
However, if we check the initial predictions (yellow dots on the top graph), it can be seen that there is a
certain tendency of the model to predict more jogs and shots. So, by not imposing that 95% confidence
on “other high activities”, the results of figure 6.5 are obtained. The final predictions in this case had low
scores, as seen with the yellow tone in them, but it was possible to evidence the model recognizing the
activities, even with bad confidences. As mentioned, this sample corresponded to repetitions of sprints,
turns and shots. The model recognized patterns composed by jogs (slow sprints) and “other high activ
ities” (turns) followed by shots. It is clear that the predictions are not entirely correct, and, as explained,
this can be attributed to the large difference distribution and specially scale for this dataset. However,
this experiment allowed us to confirm that the model can still generate not so inaccurate predictions on
when the scale is different, but it is needed to tweak the hyperparameters 𝑐ℎ and ℎℎ to see some results.

Another example of results obtained by the model on a different interval of Rozemarijn’s dataset
is presented in figure 6.7. To obtain those final results and graphs it was necessary to not impose 𝑐ℎ,
just like with the previous example. Additionally, the minimum activity duration was set to 100ms for
the outlier removal phase. The recording there presented corresponds to 5 repetitions of consecutive
sprints and turns (zigzag) separated by short low activity periods. Eventhough the model is not com
pletely accurate in this case, it still has the ability to recognize the 5 activity intervals and that there are,
in general, jogs (slow sprints) interspersed with “other high activities”.

Finally, a whole recording of one of the experiments of this dataset was evaluated to address the time
required to predict a long series (figure 6.8). This recording lasts 2476 seconds (about 42.3 minutes).
It was evaluated using a sliding window step of 100 ms which resulted in 24751 windows predicted.
The time needed to recognize (predict) all the windows was 24.06 seconds and the best score post
processing took 7.46 seconds. In total, after the signal was resampled to 500 Hz (because it was
sampled originally at 200 Hz), the final predictions for this 2476 secondslong recording were obtained
in 31.52 seconds (1.27% of the length of the recording). These numbers were obtained when running
the code on a local computer without GPU (Intel i58250 CPU @ 1.601.80 GHz with 8GB of RAM).

6.1. Evaluation on different datasets 86

Figure 6.5: Example of predictions made on part of Rozemarijn’s dataset with default values for hyperparameters

When running this using Google Colab’s GPU, the prediction and postprocessing times decrease to
7.08 seconds and 6.88 seconds respectively (13.96 seconds in total, that is just 0.56% of the duration
of the recording).

The main conclusion of these experiments is that the scale and the distribution of the input record
ing has a big influence on the model’s performance. In those cases, the predictions obtained by the
model were not completely wrong, but their confidence were significantly low. This implied that certain
hyperparameters such as 𝜏 and 𝑐ℎ had to be modified to obtain predictions other than “other high activ
ities”. The different scale and distribution clearly confuses the model. It is, then, recommended to use
recordings with similar scales as the ones used to train and validate the model. This can be achieved
by calibration of the sensors.

6.1. Evaluation on different datasets 87

Figure 6.6: Example of predictions made on part of Rozemarijn’s dataset without imposing a value for 𝑐ℎ. True label: sprint,
turn, sprint and shot 10 times in a row

Figure 6.7: Second example of predictions made on part of Rozemarijn’s dataset without imposing a value for 𝑐ℎ. True label: 5
repetitions of sprints and turns separated by short low activity periods

6.1. Evaluation on different datasets 88

Figure 6.8: Evaluation of complete recording from Rozemarijn’s dataset

6.1. Evaluation on different datasets 89

6.1.2. Wilmes’ new Dataset
This dataset was also provided by Mr. Erik Wilmes (same author of Wilmes, 2019). Just like Rozemar
ijn’s dataset, it was solely used to evaluate the performance of the model on a more complex dataset
that looked closer to an actual football match. Several exercises were made one after the by the play
ers. The data was acquired in the same way as the data from Wilmes, 2019 was obtained: similar
IMUs were placed on the same 5 body parts (left thigh, right thigh, left shank, right shank, and pelvis)
and both triaxial accelerometer and gyroscope measurements were captured.

Following the same procedure that was explained on section 6.1.1 with Rozemarijn’s dataset, the
first thing that was done was an exploratory data analysis to visualize the data. This was made with
the purpose of checking for covariate shift: whether this new dataset had similar scale and distribution
as the training dataset or not (like what happened with Rozemarijn’s data).

Examples of time series from both Wilmes’ (train) and new Wilmes’ (test) measurements can be
seen in figures 6.9 and 6.10. Unlike Rozemarijn’s data, where the signals had significantly larger scales
than the training data (especially with the gyroscopes), this new Wilmes’ dataset had more consistent
values with respect to the training data. There is some difference, however, in the accelerations, but the
measurements coming from the gyroscopes have now a very similar scale. In terms of their distribu
tion, as it can be seen in figure 6.11 (showing just two out of the 30 signals for illustrative reasons), the
values were also consistent with those of the training dataset. In conclusion, there was little covariate
shift on the new Wilmes’ dataset, and we expected to obtain good results when applying the models
on the raw data.

Figure 6.9: Comparison of scales of measurements in Wilmes’ and new Wilmes’ datasets. Sample accelerometer signal

In figure 6.12, the evaluation of a section of this new dataset is shown. That specific interval corre
sponds to a player jogging and turning 5 times with a short jog at the end. The recommended default
parameters were not changed. The first thing that deserves special interest is the confidence of the
predictions made by the model. In this case, since the dataset does not suffer from covariate shift, the
predictions have very high confidence when one of the 5 original activities is present (in this case a
jog). However, it can be seen that when turns occur, the model goves predictions of low confidence
but of a consistent activity (it finds that the most similar activity to the turns are sprints). Having those
predictions very low score, they are converted into other high activities, obtaining at the end a nearly
perfect activity recognition process. The 5 turns are identified with perfectly defined jogs in between.

6.1. Evaluation on different datasets 90

Figure 6.10: Comparison of scales of measurements in Wilmes’ and Rozemarijn’s datasets. Sample gyroscope signal

Figure 6.11: Comparison of distributions in Wilmes’ and new Wilmes’ datasets for selected signals

An initial period of other high activity is identified by the model, which can be explained by it capturing
the first movement of the exercise. Note that the mode postprocessing option also gives very good
results when the input dataset does not suffer from covariate shift (see in figure 6.13 the evaluation
of the same interval using the mode postprocessing instead). In this case, since the low confidence
predictions happen together during certain time, the mode postprocessing option also captures them
as other high activities that occur for those periods of time.

Another two examples of results obtained by the model on different intervals of newWilmes’ dataset
are shown in figures 6.14 and 6.15. Those two intervals consist of more complex exercises where var
ious different activities are performed one after the other. In both cases, the model recognizes almost
perfectly all the activities.

Figure 6.14 corresponds to the player sprinting and then jumping for 6 times. Then, he rests for
some seconds and then performs 3 shots one after the other. The first part of the exercise is perfectly

6.1. Evaluation on different datasets 91

Figure 6.12: Example of predictions made on part of new Wilmes’ dataset. Using best score postprocessing. True label: jog and
turn 5 times with a final jog.

Figure 6.13: Example of predictions made on part of new Wilmes’ dataset. Using mode postprocessing. True label: jog and turn
5 times with a final jog.

identified by the model with even an initial jump being detected when the person makes the first move.
Then, the three shots are recognized, but it is interesting to note that they are not identified as pure
shots. For the three cases, they are preceded by a short jog and followed by a jump. This makes

6.1. Evaluation on different datasets 92

Figure 6.14: Second example of predictions made on part of new Wilmes’ dataset. Using best score postprocessing. True label:
period of alternating sprints and jumps done 6 times and then 3 shots

Figure 6.15: Third example of predictions made on part of new Wilmes’ dataset. Using best score postprocessing. True label: 6
passes followed by 6 shots

complete sense by understanding how a shot happens in real life scenarios: the player must first take
a jog (or sprint) towards the ball, then shoot and, because of the inertia of the high intensity of the
movement, usually the player ends up jumping. The model effectively identified this dynamic. Note

6.1. Evaluation on different datasets 93

that there is a short jog identified between the first and second shot. Although this movement was not
part of the experiment, the player did a slow jog to position himself back to make a shot. The model,
again, identified this situation.

The other example, in figure 6.15, shows the player making 6 passes and then 6 shots. The model
identifies correctly the 6 passes, but with a short jump before each one of them. These short jumps
represent the player positioning his body to perform the pass just before making the contact with the
ball. Then, the 6 shots are also precisely recognized. In this case, unlike the previous example, 5 out
of the 6 shots are purely shots with no jump afterwards. However, the raw predictions of the shots still
show a tendency to find jumps next to the shots. There is a jog being recognized after the last shot,
which corresponds to the player going to another position after the exercise is finished. Additionally,
between the passes and the shots, the model found a short jump and a jog which were not part of the
exercise and are treated as low intensity movements made by the player when preparing to perform
the shots.

These experiments show that if the input data has similar scale, distribution and frequency as the
training dataset (there is little covariate shift), the model and pipeline perform very accurate predictions
and the activities can be identified. This whole recording had a duration of 4971.2 seconds (about
82.5 minutes). Its evaluation with a sliding window step of 100 ms using Google Colab’s GPU took in
total 14.84 seconds including prediction and postprocessing. This is just 0.3% of the duration of the
recording.

6.2. Additional experiments 94

6.2. Additional experiments
Apart from the evaluation of the model on different datasets, additional experiments were conducted in
order to investigate the effect of other variables on the model performance.

6.2.1. Exclusion of shank sensors
All the datasets that were used in this thesis consisted of recordings containing IMUs in 5 different lo
cations: right thigh, left thigh, right shank, left shank and pelvis. To capture the data, Wilmes, 2019 and
Schotel, 2019 used specially designed pants with the sensors there integrated. However, football is a
sport that must be played with shorts instead of pants. So, for reallife scenarios, it would be only possi
ble to use pelvis and thigh IMUs integrated in special shorts. It would be very hard to place sensors on
the shanks (they could be placed on special long socks, but that would make the communication of the
system more complex). Because of that, it was decided evaluate the performance of the models if only
3 out of 5 sensors were available (left thigh, right thigh, and pelvis). To do so, the same procedure was
followed but eliminating the right and left shank sensors from the datasets. Both accelerometer and
gyroscope signals were included and raw data (without any type of standardization) was used. All the
models were trained with the same architectures, parameters, and algorithms to have a fair comparison.

Table 6.1: Mean and standard deviation prediction accuracies for the models without shanks. 5 runs

Table 6.1 shows the mean and standard deviation prediction accuracies for this experiment. 5 runs
were performed. In general terms, the models also showed good performance with small variation be
tween runs. The comparison of the mean prediction accuracies of these models with the models that
included the 5 sensors is presented in table 6.2. From this figure, it is clear that the inclusion of shanks
is beneficial to the model. The data comes with more information and the models can extract more pat
terns from the recordings and better learn to recognize the activities. Because of this, in practically all
the cases, the models have a better prediction accuracy when shanks are included. Nevertheless, the
performance of the models is just slightly compromised when not including the shanks. In particular,

6.2. Additional experiments 95

Table 6.2: Comparison of mean prediction accuracies between the models with and without shanks

the average decrease in accuracy is of only around 1.4% points. The models without shanks obtain test
accuracies of up to 96%, with even one of the models achieving the same maximum 96.71% accuracy.
In terms of overfitting, the models are not significantly affected. This experiment demonstrated that it
is not required to use pants that include shank sensors to build good models. The loss in performance
is very low if IMUs placed on those sensors are ignored, meaning that the usage of shorts with only
thigh and pelvis sensors is possible.

6.2.2. Normalization of signals
The second additional experiment that was performed was based on what is recommended to do when
building machine learning: normalization. During the present work it was mentioned that one of the
main ideas of the thesis was to evaluate the building of models using raw data without any filtering or
normalization. However, it was stated in many cases that a process of global standardization or nor
malization could be used. The importance of this procedure was seen in section 6.1.1, where another
dataset with a clear different scale was used to evaluate the model and the results were not as good
as expected. When the models were initially built, they were also trained with locally standardized
windows, but the resulting accuracies were always worse than the ones without local standardization
(tables 5.1 and 5.2). By local standardization it is referred to standardization of each window by using
its own mean and standard deviation. This, as explained, destroyed the relationship in scales between
all the signals, making it more difficult for the model to recognize each activity.

Instead of that, a global normalization was proposed in this experiment. By doing global normaliza
tion, a perrecording normalization was done instead of a perwindow one. This was done by normal
izing all the windows of a recording with the values of the whole recording instead of using the local
values of the window. This is similar to what is done in image recognition tasks, where all the pixels

6.2. Additional experiments 96

of an image are normalized with respect to the global values of that image. This procedure normalizes
the values of the signals while maintaining the relative scales between sensors. Since the signals have
both positive and negative values and it is desired to keep information about their positiveness and
negativeness (positive or negative speeds and accelerations have important meanings in terms of limb
movement), instead of using a [0, 1] or [−1, 1] normalization, the values were normalized to have max
imum absolute value equal to 1 (take for example a signal with maximum value of 100 and minimum
value of 5. If [−1, 1] normalization is applied, 5 will be transformed to 1 and 100 to 1, losing the valu
able information that the original maximum value was much larger in magnitude than the minimum).
To do this normalization, we find, across all the values of the signal, the value with maximum absolute
value and then all the values of the signal are divided by that absolute value. The resulting series has
the same shape and structure as the original, but all its values lie between 1 and 1 without losing the
positivenegative distribution and relationship. This type of normalization was applied on each one of
the signals and the models were trained with these new normalized windows. To have a fair compari
son, all the models were trained with the same architectures, parameters, and algorithms as the ones
previously built. The only thing that had to be changed, since the values were normalized and were
smaller and the training happened at a different pace, was the initial learning rate of the models that had
LSTMor bLSTM layers. It was set to 10 times the original value of the respective nonnormalizedmodel.

Table 6.3: Comparison of mean prediction accuracies between the original unnormalized models and the normalized ones. 5
runs

Tables 6.3 and 6.4 show the comparison in mean and standard deviation accuracies for 5 training
runs for the original unnormalized models of section 5.1 and these new normalized models. These
results show that global normalization of the recordings is effective and the models perform, in almost
all the cases, better. With exception of purely LSTM and bLSTM models, the prediction accuracy of the
normalized models is larger in all the cases. These new normalized models improved the results on
almost 2 percentage points, achieving accuracies on the test set up to 98.2%. The worst performing

6.2. Additional experiments 97

Table 6.4: Comparison of standard deviation of the prediction accuracies between the original unnormalized models and the
normalized ones. 5 runs

normalized models had accuracies close to the ones of the best performing unnormalized models: at
least 96%. The difference in results between train and test datasets also show that normalized models
had less overfitting across all the architectures. On the other hand, the normalized models gave more
consistent results than the unnormalized ones, as seen in the standard deviation of the prediction accu
racies: the newmodels had, in general, lower variance. In conclusion, normalizing the recordings is not
required to obtain good models, but, by doing so, the results appear to be better, so it is recommended.

These models were used to evaluate the additional datasets of section 6.1 and compare the results
when using normalized and unnormalized classifiers. For the normalized model, the 1D CNN combined
bLSTM architecture was used for these experiments.

In figure 6.16 the evaluation of an interval of Rozemarijn’s dataset using the normalized model is
presented. To show the difference, the results of the same interval evaluated with the unnormalized
model is shown in figure 6.17 (note that in this case it is needed to not impose a value for 𝑐ℎ as ex
plained in section 6.1.1). The true label for that interval corresponds to a player sprinting, turning, then
sprinting back and shooting. This done 10 times in a row. As it can be seen, the normalized model
achieves much better results than the unnormalized model. Recall that Rozemarijn’s dataset has a
very different scale and distribution, so the normalized model take care of these differences, so the
hyperparameter 𝑐ℎ does not need to be modified and the default parameters can be used. The nor
malized model effectively predicts 9 out of 10 of the shots (see that, anyway, the last shot is correctly
recognized by the model in the top plot of figure 6.16). Between each one of the 10 shots the model
identifies mainly sprints interrupted by a short jog. This short jog is the model’s prediction of a turn. As
it was explained, even if there is an implementation that allows the classifier to “recognize” other high
activities, it is not optimized to do so, and it will always try to associate everything to a sprint, shot, jog,

6.2. Additional experiments 98

jump or pass. In this case, the model found that the most similar activity to those turns is a jog, so it
is recognized as such. Furthermore, the raw predictions made by the normalized model are not only
more accurate in terms of the predicted activity, but have very high confidences, which is ideal. The
unnormalized model, on the other hand, gives very low confidence on its predictions, resulting in an
inaccurate activity recognition process and the need to modify the parameter 𝑐ℎ.

Figure 6.16: Example of predictions made on part of Rozemarijn’s dataset using a normalized model. True label: sprint, turn,
sprint and shot 10 times in a row

6.2. Additional experiments 99

Figure 6.17: Example of predictions made on part of Rozemarijn’s dataset using an unnormalized model. True label: sprint, turn,
sprint and shot 10 times in a row

6.3. Conclusions and future work 100

6.3. Conclusions and future work
This thesis explored the usage of deep learning based methods to recognize football activities in a fast
and accurate manner based on measurements obtained from IMUs located on different body parts.
Literature review showed that, for Human Activity Recognition, these types of techniques have been
taking over the usage of traditional machine learning techniques such as kNN, decision trees and SVMs
where a manual process of feature extraction is required. The majority of reviewed articles focused
on deep learning models to recognize daily human activities, but this study worked with activities that
are by nature more repetitive and explosive, since they happen during a football match. The possibility
to build deep learningbased models on raw, not pre.processed IMU signals was one of the main goals.

A robust and endtoend pipeline was proposed that included activity detection and isolation in
order to prepare the required datasets, training of the model, evaluation of a recording via a sliding
window approach, and postprocessing to obtain the final results. Although the built deep models were
trained to recognize the 5 most common football activities (sprints, passes, shots, jumps, and shots),
the proposed methodology can be applied to train models able to recognize additional specific activities
provided that there is enough training samples of those movements.

A dynamic activity detection algorithm was proposed that was used to isolate activities in recordings
from low activity periods that happen before and after. This algorithm was used to build the training and
testing datasets. Internally, it uses a simple classifier that distinguishes between periodic (sprints and
jogs) and explosive (shots, passes, and jumps) activities. Several deep learning architectures were
built, trained, and evaluated in terms of prediction accuracy, overfitting and evaluation time. Those
architectures were based on novel variations of convolutional layers acting across signals, sensors
and/or combination of them with and without weight sharing. Recurrent layers (LSTMS and bidirec
tional LSTMs) implemented after the convolutional layers were used to further give temporal meaning
to the features previously extracted by the CNNs. The proposed models obtained high accuracies
(up to 96.71%) with fast evaluation times. Compared to traditional machine learning algorithms, deep
learning models achieved better accuracies and faster evaluation times, showing that their usage is
recommended for HAR tasks. The combination of CNNs and (b)LSTMs was beneficial and achieved
better results than the usage of only CNNs. On the other hand, models with only (b)LSTMs did not
generate good results, implying that convolutional operations are critical to extract relevant features.
Further experimentation is encouraged over the training of the models, not only with respect to pro
posed architectures, but also around fine tuning of architecture and training variables, such as number
of layers, number of convolutional filters, type of convolutional operations, learning rate, optimization
algorithm, among others. The usage of batch normalization layers has been growing in popularity and
its inclusion in the models could be also explored. On top of the deep model that recognizes the 5 types
of activities, a binary thresholdbased classifier was built responsible of distinguishing a high activity
period (where any of the 5 activities is present) from low activity intervals (such as standing or walking).
The application of this binary classifier before the deep model allowed the recognition of low activity
periods without compromising the high accuracy of the main model. Additional ways to build this binary
model were mentioned, such as a multioutput deep model or a binary deep model on top of the main
model.

A sliding window approach for the evaluation phase was implemented following recommendations
and best practices found in the literature. With this approach, a full recording can be evaluated by
the built models. Postprocessing of the predictions made by the model was found to be needed, so
three possible postprocessing algorithms were designed, implemented and compared, concluding that
the recommended one is the proposed best score postprocessing. This algorithm acts analogous as
how the nonmax suppression algorithm works for object detection on computer vision applications.
The best score postprocessing not only aligns the predictions to the original recording, but also cleans
them from shortlived, undesired activities. An outlier removal process was implemented at the end of
the pipeline to further refine the final recognized activities.

The final pipeline is dependent on several parameters that could be further investigated to address
their exact influence on the final predictions, such as the sliding window length, sliding window step
or overlap, minimum activity length 𝜏 for outlier removal, low activity confidence 𝑐𝑙, other high activity

6.3. Conclusions and future work 101

confidence 𝑐ℎ, and other high activity thershold ℎℎ. For the last three of those parameters, their rec
ommended values were stated according to the performed experiments, but it was also shown that the
final results are very sensible to them.

Experiments on additional datasets were performed to examine the model’s performance on more
complex data. It was evidenced that when the models are built without data normalization, different
scales and distributions of the new data considerably affect the results. However, when working with
IMUs calibrated in the same way so that the measurements have a consistent scale, the proposed
pipeline is capable of performing good activity recognition tasks. A global data normalization process
via a calibration recording is beneficial for the models, since they improved their accuracies to up to
98.2%. Applying the normalized models on these new datasets gave better results than when using
the original notnormalized models. It is recommended, then, to perform a previous normalization of
the signals and to further refine the binary lowvshigh activity classifier on these normalized signals.
It is encouraged to further test the proposed pipelines in reallife scenarios (i.e. a football match). Fur
thermore, the exclusion of shank sensors just slightly penalized the models, which means that only
thigh and pelvis sensors are enough to obtain reliable models.

Even if the obtained accuracies were high, it is recommended to acquire more data and retrain the
models. The more data that a model has to be trained on, the better the learning will be. It is also rec
ommended to use training data from different sources and experiments to have a better generalization.
Literature review showed that HAR is an active research area in deep learning, so several opensource
datasets are present online ((Roggen et al., 2010), (Kwapisz et al., 2011), and (Anguita et al., 2013),
to name a few). Although the majority of them are about daily human activities, such as walking, sitting
or standing, those large datasets could be used to build a base model, and then use transfer learning
to finetune it with football data to allow it to recognize specific football activities. Transfer learning is
a deep learning technique in which a base model is trained with a large, different but related dataset,
and then it is used as the starting point of the training of a more specific model. Its usage has shown
to be very effective when building deep models for tasks that do not have large training datasets and
is expensive or timeconsuming to build them. It is, then, highly recommended to explore this transfer
learning approach to potentially further improve the models here presented.

Finally, it is encouraged to use this work as an input to further research on injury prevention on
athletes. This thesis focused on football, but it the proposed methodology and pipeline can be applied
to other sports. Recognizing and locating each one of the activities that a player does while playing a
sport is just one of the steps that must be done in order to analyze his or her movements to prevent
injuries. The recognized activities can be further combined with information from video recordings,
biomechanical analysis, and intensity of the movements, among others, to study the prevalence and
early detection of injuries.

The code of this thesis is available at:
https://github.com/rafaelcuperman/football_activity_recognition

https://github.com/rafaelcuperman/football_activity_recognition

References
Adaskevicius, R. (2014). Method for recognition of the physical activity of human being using a wearable

accelerometer. Elektronika ir Elektrotechnika, 20(5), 127–131.
Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Van Esesn, B. C., Awwal,

A. A. S., & Asari, V. K. (2018). The history began from alexnet: A comprehensive survey on
deep learning approaches. arXiv preprint arXiv:1803.01164.

Anguita, D., Ghio, A., Oneto, L., Parra, X., & ReyesOrtiz, J. L. (2013). A public domain dataset for
human activity recognition using smartphones. Esann, 3, 3.

Arbel, N. (2018). How lstm networks solve the problem of vanishing gradients. https://medium.datadriveninvestor.
com/howdolstmnetworkssolvetheproblemofvanishinggradientsa6784971a577

Blank, P., Hoßbach, J., Schuldhaus, D., & Eskofier, B. M. (2015). Sensorbased stroke detection and
stroke type classification in table tennis. Proceedings of the 2015 ACM International Sympo
sium on Wearable Computers, 93–100.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: Synthetic minority over
sampling technique. Journal of artificial intelligence research, 16, 321–357.

Chen, Y., Zhong, K., Zhang, J., Sun, Q., & Zhao, X. (2016). Lstm networks for mobile human activity
recognition. 2016 International conference on artificial intelligence: technologies and applica
tions, 50–53.

Connaghan, D., Kelly, P., O’Connor, N. E., Gaffney, M., Walsh, M., & O’Mathuna, C. (2011). Multisensor
classification of tennis strokes. SENSORS, 2011 IEEE, 1437–1440.

De Vries, S. I., Engels, M., &Garre, F. G. (2011). Identification of children’s activity typewith accelerometer
based neural networks. Medicine and science in sports and exercise, 43(10), 1994–1999.

Edel, M., & Köppe, E. (2016). Binarizedblstmrnn based human activity recognition. 2016 International
conference on indoor positioning and indoor navigation (IPIN), 1–7.

Fernández, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). Smote for learning from imbalanced
data: Progress and challenges, marking the 15year anniversary. Journal of artificial intelli
gence research, 61, 863–905.

Ha, S., & Choi, S. (2016). Convolutional neural networks for human activity recognition using multiple
accelerometer and gyroscope sensors. 2016 International Joint Conference on Neural Net
works (IJCNN), 381–388.

Ha, S., Yun, J.M., & Choi, S. (2015). Multimodal convolutional neural networks for activity recognition.
2015 IEEE International conference on systems, man, and cybernetics, 3017–3022.

Hammerla, N. Y., Halloran, S., & Plötz, T. (2016). Deep, convolutional, and recurrent models for human
activity recognition using wearables. arXiv preprint arXiv:1604.08880.

Hernández, F., Suárez, L. F., Villamizar, J., & Altuve, M. (2019). Human activity recognition on smart
phones using a bidirectional lstm network. 2019 XXII Symposium on Image, Signal Processing
and Artificial Vision (STSIVA), 1–5.

Hsu, Y.L., Chang, H.C., & Chiu, Y.J. (2019). Wearable sport activity classification based on deep
convolutional neural network. IEEE Access, 7, 170199–170212.

Ignatov, A. (2018). Realtime human activity recognition from accelerometer data using convolutional
neural networks. Applied Soft Computing, 62, 915–922.

Jiao, L., Bie, R., Wu, H., Wei, Y., Ma, J., Umek, A., & Kos, A. (2018). Golf swing classification with mul
tiple deep convolutional neural networks. International Journal of Distributed Sensor Networks,
14(10), 1550147718802186.

K, S. (2019). Nonmaximum suppression (nms). https : / / towardsdatascience . com /non maximum
suppressionnms93ce178e177c

Kaketsis, G. (2020). Classification in football: Activity classification using sensor data in football (Mas
ter’s thesis). Delft University of Technology.

Kautz, T., Groh, B. H., Hannink, J., Jensen, U., Strubberg, H., & Eskofier, B. M. (2017). Activity recogni
tion in beach volleyball using a deep convolutional neural network. Data Mining and Knowledge
Discovery, 31(6), 1678–1705.

102

https://medium.datadriveninvestor.com/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577
https://medium.datadriveninvestor.com/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577
https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c
https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c

References 103

Kingma, D. P., & Ba, J. (2014). Adam: Amethod for stochastic optimization. arXiv preprint arXiv:1412.6980.
Kuo, P.H., & Huang, C.J. (2018). A green energy application in energy management systems by an

artificial intelligencebased solar radiation forecasting model. Energies, 11, 819. https://doi.org/
10.3390/en11040819

Kwapisz, J. R., Weiss, G. M., & Moore, S. A. (2011). Activity recognition using cell phone accelerome
ters. ACM SigKDD Explorations Newsletter, 12(2), 74–82.

Lang, C., Steinborn, F., Steffens, O., & Lang, E. W. (2019). Applying a 1dcnn network to electricity load
forecasting. International Conference on Time Series and Forecasting, 205–218.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradientbased learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Liu, X. (2020). Tennis stroke recognition: Stroke classification using inertial measuring unit and machine
learning algorithm in tennis (Master’s thesis). Delft University of Technology.

Lv, M., Xu, W., & Chen, T. (2019). A hybrid deep convolutional and recurrent neural network for complex
activity recognition using multimodal sensors. Neurocomputing, 362, 33–40.

Mannini, A., & Sabatini, A. M. (2010). Machine learning methods for classifying human physical activity
from onbody accelerometers. Sensors, 10(2), 1154–1175.

McGaughey, G., Walters, W. P., & Goldman, B. (2016). Understanding covariate shift in model perfor
mance. F1000Research, 5.

Murad, A., & Pyun, J.Y. (2017). Deep recurrent neural networks for human activity recognition. Sen
sors, 17(11), 2556.

Navlani, A. (2019). Neural network models in r. https://www.datacamp.com/community/tutorials/neural
networkmodelsr

Olah, C. (2015). Understanding lstm networks. http://colah.github.io/posts/201508Understanding
LSTMs/

Ordóñez, F. J., & Roggen, D. (2016). Deep convolutional and lstm recurrent neural networks for multi
modal wearable activity recognition. Sensors, 16(1), 115.

Pienaar, S. W., & Malekian, R. (2019). Human activity recognition using lstmrnn deep neural network
architecture. 2019 IEEE 2nd Wireless Africa Conference (WAC), 1–5.

Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Förster, K., Tröster, G., Lukowicz, P., Bannach, D.,
Pirkl, G., Ferscha, A., et al. (2010). Collecting complex activity datasets in highly rich networked
sensor environments. 2010 Seventh international conference on networked sensing systems
(INSS), 233–240.

Schotel, R. (2019). Monitoring local muscle load in football (Master’s thesis). Delft University of Tech
nology.

Schuldhaus, D., Zwick, C., Körger, H., Dorschky, E., Kirk, R., & Eskofier, B. M. (2015). Inertial sensor
based approach for shot/pass classification during a soccer match. KDD workshop on large
scale sports analytics, 1–4.

Sharma, M. (2020). A brief introduction to perceptron. https://becominghuman.ai/abriefintroduction
toperceptronf3b9bade8f67

Slim, S., Atia, A., Elfattah, M., & Mostafa, M.S. M. (2019). Survey on human activity recognition based
on acceleration data. Intl. J. Adv. Comput. Sci. Appl, 10, 84–98.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple
way to prevent neural networks from overfitting. The journal of machine learning research,
15(1), 1929–1958.

Stewart, M. (2019). Understanding dataset shift. https : / / towardsdatascience . com / understanding
datasetshiftf2a5a262a766

Wang, L., & Liu, R. (2020). Human activity recognition based on wearable sensor using hierarchical
deep lstm networks. Circuits, Systems, and Signal Processing, 39(2), 837–856.

Wilmes, E. (2019).Measuring changes in hamstring contractile strength and lower body sprinting kine
matics during a simulated soccer match (Master’s thesis). Delft University of Technology.

Wolpert, D. H. (2001). The supervised learning nofreelunch theorems. Proceedings of the 6th Online
World Conference on Soft Computing in Industrial Applications, 1–20. https://doi.org/10.1007/
9781447101239_3

Xia, K., Huang, J., & Wang, H. (2020). Lstmcnn architecture for human activity recognition. IEEE
Access, 8, 56855–56866.

https://doi.org/10.3390/en11040819
https://doi.org/10.3390/en11040819
https://www.datacamp.com/community/tutorials/neural-network-models-r
https://www.datacamp.com/community/tutorials/neural-network-models-r
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://becominghuman.ai/a-brief-introduction-to-perceptron-f3b9bade8f67
https://becominghuman.ai/a-brief-introduction-to-perceptron-f3b9bade8f67
https://towardsdatascience.com/understanding-dataset-shift-f2a5a262a766
https://towardsdatascience.com/understanding-dataset-shift-f2a5a262a766
https://doi.org/10.1007/978-1-4471-0123-9_3
https://doi.org/10.1007/978-1-4471-0123-9_3

References 104

Xu, C., Chai, D., He, J., Zhang, X., & Duan, S. (2019). Innohar: A deep neural network for complex
human activity recognition. Ieee Access, 7, 9893–9902.

Yang, J., Nguyen, M. N., San, P. P., Li, X., & Krishnaswamy, S. (2015). Deep convolutional neural
networks on multichannel time series for human activity recognition. Ijcai, 15, 3995–4001.

Zebin, T., Scully, P. J., & Ozanyan, K. B. (2017). Evaluation of supervised classification algorithms for
human activity recognition with inertial sensors. 2017 IEEE SENSORS, 1–3.

Zebin, T., Sperrin, M., Peek, N., & Casson, A. J. (2018). Human activity recognition from inertial sensor
timeseries using batch normalized deep lstm recurrent networks. 2018 40th Annual Interna
tional Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1–4.

Zhao, Y., Yang, R., Chevalier, G., Xu, X., & Zhang, Z. (2018). Deep residual bidirlstm for human activity
recognition using wearable sensors. Mathematical Problems in Engineering, 2018.

Zheng, Y., Liu, Q., Chen, E., Ge, Y., & Zhao, J. L. (2014). Time series classification using multichannels
deep convolutional neural networks. International conference on webage informationmanage
ment, 298–310.

A
Appendix A: Replication of results of

Kaketsis, 2020
The main experiments performed in (Kaketsis, 2020) were replicated in order to have a better under
standing of the process and the results obtained in that work. In his work, Kaketsis used traditional
machine learning techniques to perform football activity classification.

He used the following models:

• Naive Bayes

• KNearest Neighbors

• Support Vector Machine

• Discriminant Analysis

• Decision Trees

Since he used a traditional machine learning approach, he had to manually select and extract fea
tures from the recordings. In particular, he chose the following features:

• Spatial features

– Mean
– Median
– Standard Deviation
– Skewness
– Kurtosis
– Maximum
– Minimum

• Spectral features

– Sum of real coefficients of FFT
– Maximum of real coefficients of FFT

Additionally, he performed several experiments:

• Use euclidean norm of sensors or raw signals

• Use only accelerometer, only gyroscope data, or both

105

106

• Use only spatial features, or spatial and spectral features

• Recognize 4 types of activities or 7

Kaketsis used data obtained by (Wilmes, 2019), which is the same data that we used to train the
deep learningbased models in this thesis. So, checking Kaketsis results and conclusions was impor
tant to have a starting point to compare with the deep learningbased models to be built. This appendix
will show the results obtained by recreating Kaketsis’ experiments, showing that they are consistent.
For more information and detailed discussion of Kaketsis’ results, refer to the original document.

In the barplots below, the comparison between the accuracies reported in (Kaketsis, 2020) and the
ones obtained by replicating the experiments are shown. The blue bars show the training accuracies
and the red ones the accuracies on the test dataset. Furthermore, dark colored bars correspond to the
numbers presented by Kaketsis in his work and the light colored ones, the values obtained by repeat
ing his experiments. It is important to mention that these replications were made in Python, while the
original work was done in Matlab.

The most important conclusions that were drawn after replicating Kaketsis’ results are:

• Consistent results were obtained with respect to the ones that reported in (Kaketsis, 2020).

• No hyperparemeter tuning was made. The default parameter were used for all the models.

• Support Vector Machines do not converge in several cases.

• There is some overfitting in the great majority of the model. There is in almost all the cases a
large difference between the train and test accuracies. By using deep learningbased models, it
is expected to reduce this problem.

• The original work in (Kaketsis, 2020) used windows manually cropped to isolate the movements
for the training phase. The proposed pipeline in this thesis will perform this activity detection
phase automatically.

• Some of the experiments show promising results. Even if some overfitting is seen, accuracies on
the test dataset of around 90%+ are obtained. This shows that the dataset can be used to build
activity recognition models with a good performance.

• The goal of the present work will be to design, build and evaluate deep learningbased models for
football activity recognition. Having now a reference on Kaketsis’ results, the focus will be mainly
on (but not limited to) the following items: accuracy/performance of the model, evaluation speed,
low overfitting, robustness, and reduction of necessity of human interaction (no manual feature
extraction and no manual activity detection to clean the training dataset).

107

Using euclidean norm of signals and 4 types of activities

Figure A.1: Using euclidean norm of signals and 4 types of activities

108

Using raw signals and 4 types of activities

Figure A.2: Using raw signals and 4 types of activities

109

Using euclidean norm of signals and 7 types of activities

Figure A.3: Using euclidean norm of signals and 7 types of activities

110

Using raw signals and 7 types of activities

Figure A.4: Using raw signals and 7 types of activities

B
Appendix B: Confusion matrices

111

112

113

114

115

	Introduction
	Literature review
	Traditional approaches to HAR
	Deep Learning approaches to HAR

	Conceptual framework
	IMUs
	Traditional Machine Learning Algorithms
	Deep learning
	Convolutional Neural Networks
	Recurrent Neural Networks
	Additional Deep Learning Concepts

	Data overview and preparation
	Data
	Feasibility analysis of a deep learning approach
	Activity detection

	Activity recognition
	Activity recognition
	Window segmentation
	Proposed models
	Training
	Performance
	Evaluation times

	Low activity recognition
	Sliding window evaluation
	Prediction: activity recognition
	Postprocessing
	Outlier removal and ``other high activity'' recognition

	Results

	Discussion
	Evaluation on different datasets
	Rozemarijn's dataset
	Wilmes' new Dataset

	Additional experiments
	Exclusion of shank sensors
	Normalization of signals

	Conclusions and future work

	References
	Appendix A: Replication of results of kaketsis2020
	Appendix B: Confusion matrices

